
A STUDY ON 

PRIME AND SEMI-PRIME RINGS AND MODULES 
 

 

 

M. Phil. Thesis 

 

 

 
SUBMITTED BY 

MOHAMMOD JAHIRUL HAQUE MUNSHI 
Student No. 0409093003F, Registration No. 0409093003, Session: April, 2009 

 

 

 

 
 

 

 

 
DEPARTMENT OF MATHEMATICS 

BANGLADESH UNIVERSITY OF ENGINEERING ANDTECHNOLOGY (BUET) 

DHAKA-1000  

 

February, 2012 



 

A STUDY ON PRIME AND SEMI-PRIME RINGS AND MODULES 

 

 

 

by 

Mohammod Jahirul Haque Munshi 

Student No. 0409093003 F, Session: April, 2009 

Department of Mathematics 

Bangladesh University of Engineering and Technology 

Dhaka-1000  

 

 

 

 

 
A dissertation submitted in partial fulfillment of the  

requirements for the award of the degree 

of 

MASTER OF PHILOSOPHY 

in Mathematics 

 

 

 

 
 

DEPARTMENT OF MATHEMATICS 
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY  

Dhaka-1000  
 

February, 2012 
 



 

 

ii

The thesis entitled 
A STUDY ON PRIME AND SEMI-PRIME RINGS AND MODULES 

                                             
Submitted by 

 
Mohammod Jahirul Haque Munshi 

Student No. 0409093003F, Registration No. 0409093003, Session: April, 2009 a full time 
M. Phil. student in Mathematics has been accepted as satisfactory in partial fulfillment of the 
requirements for the degree of MASTER OF PHILOSOPHY in Mathematics on 29/01/2011. 

BOARD OF EXAMINERS 
 
 

 
1. Dr. Khandker Farid Uddin Ahmed  Chairman 
    Assistant Professor            (Supervisor) 
    Department of Mathematics, BUET, Dhaka. 
 

 

2. Dr. Md. Elias                                                                                                     Member 

    Professor and Head                                                                                    (Ex-Officio) 

    Department of Mathematics, BUET, Dhaka. 
  

 
3. Dr. Md. Mustafa Kamal Chowdhury  Member 

    Professor 
    Department of Mathematics, BUET, Dhaka. 
   
 
 
 
4. Dr. Md. Abdul Alim  Member 

    Associate Professor 
    Department of Mathematics, BUET, Dhaka. 
    
 

 

5. Dr. Salma Nasrin  Member 

    Associate Professor (External) 
   Department of Mathematics, University of Dhaka. 

 
 



 

 

iii

 
 

CANDIDATE’S DECLARATION 
 

 
It is herby declared that this thesis or any part of it has not been submitted else where for the 

award of any degree or diploma.  

 

 

 

 

_________________________ 

(Mohammod Jahirul Haque Munshi) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv

 

 

 

 

 

 

 

 
DEDICATED 

TO 

MY PARENTS 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v

 

ACKNOWLEDGEMENTS 

 
First of all, I would like to express my sincerest gratitude and appreciation to my supervisor 

Dr. Khandker Farid Uddin Ahmed, Assistant Professor, Department of Mathematics, BUET, 

Dhaka-1000, for his invaluable suggestion, constant inspiration and supervision that has 

enabled me to finish this dissertation successfully. I am highly grateful to the honorable 

members of the Board of Examiners, Prof. Dr. Md. Mustafa Kamal Chowdhury and Assoc. 

Prof. Dr. Md. Abdul Alim, for their thoughtful and fruitful comments in preparing and 

writing this thesis. I am greatly indebted to the Head of the Department, Prof. Dr. Md. Elias 

for providing me with all kinds of generous help and support during the period of my study. I 

wish to thank the external examiner of the Board of Examiners, Dr. Salma Nasrin, Associate 

Prof., Department of Mathematics, University of Dhaka, Dhaka-1000.    

My special thanks go to all of my respectable teachers and staffs of the Department of 

Mathematics, BUET, Dhaka, for their kind help and support. 

Last, first and always, I am grateful to my parents for their prayers and unstinting support 

throughout my study period. My special thanks go to my beloved wife Jannatul Ferdous for 

her continuous sacrifices and understanding and our son Sadnan Jamiul Haque (Jim) for his 

love, devotion and patience. 

Finally, I wish to thank the authority of Bangladesh Institute of Science & Technology 

(BIST) for giving me permission of pursuing M. Phil. Degree in the Department of 

Mathematics, BUET. 

Above all, I am grateful to Almighty Allah for giving me patience and strength to finish this 

program.  

 

 

Mohammod Jahirul Haque Munshi  

 

 



 

 

vi

ABSTRACT 
 

Let R  be a ring. Then a proper ideal P  in a ring R  is called a prime ideal of R  if for any 

ideals JI ,  of R  with ,PIJ ⊂  then either PI ⊂  or .PJ ⊂  A ring R  is called a prime ring 

if 0  is a prime ideal. Let M  be a right R-module and ),(MEndS R=  its endomorphism ring. 

A submodule X  of M  is called a fully invariant submodule of M  if for any ,Sf ∈  we 

have .)( XXf ⊂  Let M  be a right R-module and P,  a fully invariant proper submodule of 

.M  Then P  is called a prime submodule of  M  if for any ideal I  of S , and any fully 

invariant submodule X  of  ,M  PXI ⊂)(  implies PMI ⊂)(  or .PX ⊂  A fully invariant 

submodule X  of a right R-module M  is called a semi-prime submodule if it is an 

intersection of prime submodules. An ideal P  in a ring R  called a semi-prime ideal if it is an 

intersection of prime ideals. A ring R  is called a semi-prime ring if 0  is a semi-prime ideal.  

This study describes some properties of prime and semi-prime ideals in associative rings 

modifying the results on prime and semi-prime Goldie modules investigated in [15]. The 

structures of prime and semi-prime rings are also available in this study. Finally, some 

properties of prime and semi-prime submodules as a generalization of prime and semi-prime 

ideals in associated rings are also investigated.  
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CHAPTER I 

INTRODUCTION 
Ring theory is a subject of central importance in algebra. Historically, some of the major 

discoveries in ring theory have helped shape the course of development of modern abstract 

algebra. In view of these basic connections between ring theory and other branches of 

mathematics, it is perhaps no exaggeration to say that a course in ring theory is an 

indispensable part of education for any fledgling algebraist. 

 

Background and present state of the problem 

Modern ring theory begins when Wedderburn in 1907 proved his celebrated classification 

theorem for finite dimensional semi-simple algebras over fields. Twenty years later, E. 

Noether and E. Artin introduced the ascending chain condition and descending chain 

condition as substitutes for finite dimensionality. Dauns [1] first introduced and investigated 

the notion of prime modules. In the literature on module theory, there is another notion of 

primal modules due to Dauns [2].  Goodearl and Warfield [3] and McCasland and Smith [4] 

introduced the notion of prime submodules of Noetherian modules. Wisbauer [5] introduced 

the structure of the category σ [M]. He called it the full subcategory of Mod-R whose objects 

are M-generated modules, i.e., modules which are isomorphic to submodules of M-generated 

modules. Later, Beider and Wisbauer [6] introduced the notion of semi-prime and strongly 

semi-prime modules and rings.  Lu [7] and Goodearl [8] introduced the notion of prime 

submodules of Noetherian modules. In 2004, Behboodi and Koohy [9] defined weakly prime 

submodules.  Ameri [10] and Gaur et al. [11] introduced the structure of prime submodules 

in multiplication modules over commutative rings.  

Recently in 2007, Sanh et al. [14] introduced a new notion of prime and semi-prime 

submodules over associative rings. A basic tool in the study of Noetherian rings and modules 

is the Goldie dimension of modules. In 2007, Sanh et al. [15] introduced the new notion of 

Goldie modules. In 2008, Ahmed et al. [16] investigated some properties of semi-prime 

modules.  



 

 

2

In this thesis, Chapter I deals with the early history of prime and semi-prime rings and 

modules. All the essential basic definitions, examples and their properties are given in 

Chapter II. Chapter III, deals with the basic properties of prime and semi-prime rings. In this 

Chapter, we describe some properties of prime and semi-prime ideals in associative arbitrary 

rings modifying the results on prime and semi-prime modules investigated in [15]. In Chapter 

IV, some properties of prime and semi-prime submodules as a generalization of prime and 

semi-prime ideals in associative rings are investigated. 

 



CHAPTER II 

BASIC KNOWLEDGE 
 

Overview 
The subject of our study is ring theory. Throughout this thesis, all rings are associative with 

identity and all modules are unitary right R-modules. Ring admit a valuable and natural 

representation theory, analogous to the permutation representation theory for groups. As we 

shall see, each ring admits a vast horde of representation as an endomorphism ring of an 

abelian group. Each of these representations is called a module. A substantial amount of 

information about a ring can be learned from a study of the class of modules it admits. 

Modules actually serve as a generalization of both vector spaces and abelian groups, and 

their basis behaviour is quite similar to that of the more special systems. In this chapter, we 

introduce the fundamental tools of this study. Section 2.1 reviews the basic facts about rings, 

subrings, commutative division ring, center of a ring, integral domain, ring homomorphisms 

and other notions. It also introduces some of the notation and the examples that will be 

needed later. We denote by R an arbitrary ring and by Mod-R, the category of all right R-

modules. The notation RM  indicates a right R-module M which, when R∈1 , is assumed to 

be unity. The set Hom(M, N) denotes the set of right R-module homomorphisms between two 

right R-modules M  and N  and if further emphasis is needed, the notation ),( NMHomR  is 

used. The kernel of any ),( NMHomf R∈  is denoted by Ker (f) and the image of  f by Im (f). 

In particular, )(MEnd R  denotes the ring of endomorphisms of a right R-module M. 

 

2.1. Preliminaries 
Before dealing with deeper results on the structure of rings with the help of module theory, 

we provide first some essential elementary definitions, examples and properties. 

 

Definition 2.1.1 A ring R is called commutative if the multiplication operation is 

commutative.  
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 Definition 2.1.2 Let R be a ring with unity. Then R then R is called a division ring if every 

non-zero element in R has multiplicative inverse in R. 

 

Definition 2.1.3 The ring R is said to be a ring with unity if ∃  a multiplicative identity 

denoted by 1 in R such that a. 1 = 1. a = a, Ra∈∀ . A ring R is said to be a ring without zero 

divisors if it is not possible to find two non-zero elements of R whose product is zero i. e. if 

00 =⇒= aab  or .0=b  A field is a commutative ring with unity in which every non-zero 

element has its multiplicative inverse.  

 

Definition 2.1.4 The center of a ring R is the subset of R defined by   

Cen xrrxRrR =∈= :{  }Rx∈∀   

which is a commutative subring of R.  Of course, Cen R is commutative if and only if R is 

equal to its center. We may say that an element Rr ∈  is central in case .CenRr ∈  Note that 

if ,CenRA∈  then the subring of R generated by A is also in the center of R. 

 
Definition 2.1.5 An element a of a ring R is called a left zero divisor if 0=ab  for some non-

zero Rb∈ , right zero divisor if 0=ba  for some non-zero Rb∈  and zero divisor if it is a 

left or right zero divisor. 
 

Definition 2.1.6 An integral domain is a commutative ring with unity and without zero 

divisors. A commutative ring R is called an integral domain if ∀ Ryx ∈, , we have 0=xy . 

 

Example 2.1.7 The ring ),,( ⋅+I  is an integral domain where I is the set of all irrational 

numbers. Also the rings ),,( ⋅+Z , ),,( ⋅+Q , ),,( ⋅+C , ),,( ⋅+R  all are examples of  integral 

domains. 

 

Definition 2.1.8 Let R  be a ring and I  be an ideal of R. Then I  is called a  principal ideal of 

R  if I  is generated by a single element. If I is generated by a, then we write ).(aI =  Let R be 

a ring and M be an ideal of R such that RM ≠ . Then M is called maximal if for any ideal A 

of R such that ,RAM ⊂⊂  then either AM =  or .RA =  
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Let I be an ideal. Then the set }:{ RaIaI
R ∈+= is a ring for the operations in I

R  defined 

by the following ways:  

baIbIaI ++=+++ )()(  and .,))(( RbaabIbIaI ∈∀+=++   

This ring  is called the quotient ring. 
 

Definition 2.1.9 A mapping  f  from a ring R into a ring R′  is called a ring  homomorphism if 

Rba ∈∀ ,  (i) )()()( bfafbaf +=+  and (ii) )()()( bfafabf =  

Let f  be a homomorphism from a ring R into a ring R′ , then  

   ,)(:{Im xxfRxf ′=′∈′=  for some }Rx∈  

Let f  be a homomorphism from a ring R into a ring R′ . Then 

 }0)(:{ ′=∈= xfRxKerf  

 where 0′  is the additive identity of R′ .  f  is said to be an  isomorphism if it is a one-one and 

onto.  

 

Definition 2.1.10 Let M be a right R-module. A homomorphism MMf →:  is called an 

endomorphism. The abelian group Hom ),( MMR  becomes a ring if we use the composition 

of maps as multiplication. This ring is called the endomorphism ring of M, and we denoted 

by End ).(MR  
 

2.2 Different kinds of submodules 

Definition 2.2.1 Let R be a ring with identity and M an abelian group. Then M is called a 

right R-module if there exists mrmrMMR →→× ),(,  satisfying the following conditions: 

(i)  ∀ Mmm ∈′, and  ∀ rmmrrmmRr ′+=′+⇒∈ )( ; 

(ii)  ∀ Mm∈  and  ∀ )(, rrmRrr ′+⇒∈′ = rmmr ′+ ; 

(iii)  ∀ Mm∈ and  ∀ )(, rrmRrr ′+⇒∈′ = rmr ′)( ; 

(iv)  ∀ Mm∈ and mmR =⇒∈ 1.1 . 

Similarly, we can define left R- modules by operating to the left side of M. We write 

RM (respectively, RM ) to indicate that M is a right (respectively, left) R-module. Let M be an 

R-module. A subset L of M is a submodule of M if L is an additive subgroup and 
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∀ Lm∈ ,∀ ,LmrRr ∈⇒∈ i.e., L  is a module under operations inherited from M. When L 

is a submodule of M, we can define the quotient module (factor module) 
L
M  with the 

operation LMRLM /)/( →×  given by  

(i) mrrm →),(   (ii) LmrrLmrLm +=+=+ )(),( . 

Let R, S be two rings and M an abelian group. Then M is called an R-S-bimodule if M is a left 

R-module, right S-module, and if for any m∈M, r ∈  R, s ∈  S, we have r (ms) = (r m) s. We 

denote it by R M S . 

Let M be a module and m ∈  M. An element m generates a cyclic submodule mR of M. There 

is an epimorphism α : X →  m X given by  

      α (x) = mx Xx∈∀  and Ker (α ) = }0)(|{ =∈ xXx α  = Ann(m),  

is the annihilator of m. Hence m X ≅ X / Ann(m). 

A subset I of a ring R is a right ideal if (i) andIyxIyx ,,, ∈+∈∀  (ii) IxrRrIx ∈∈∀∈∀ ,, . 

Every ring R may be considered as a right R-module and every right ideal can be considered 

as a submodule of .RR  

Let ModM ∈ -R and ., MBA >⊂  Then MBA >⊂∩  but BA∪  may not be a submodule of 

M. Suppose that .MX ⊆ Consider }.{ AXMAF ⊆⊂= >  Since ,FM ∈  we have .φ≠F  

Then  )X = I
MAX

A
>⊂⊆

 is a submodule of M.  This is the smallest submodule of M containing X. 

Then )X  is called the submodule of M generated by X, and )X  = ,{
1
∑
=

∈
n

i
iii Xxrx  

}.;,,2,1, NnniRri ∈=∈ K  

Consider =)B  ,{
1
∑
=

∈
n

i
iii Xxrx }.;,,2,1, NnniRri ∈=∈ K  

Then )X  = ,{
1
∑
=

∈
n

i
iii Xxrx  }.;,,2,1, NnniRri ∈=∈ K  

For ., 1 BxxXx ∈=∈ So, BX ⊆ and so .) BX ⊆  for any 

⇒⊆∈∈∑
=

),
1

XXxBrx i

n

i
ii ∑

=

∈
n

i
ii Xrx

1

) and so ).XB ⊆  
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Hence ).XB = If ., RMBA >⊂ As we know .RMBA >⊄∪  

Consider .) RMBA >⊂∪  

Then =∪ )BA }.,:{
1

RrBAxrx ii

n

i
ii ∈∪∈∑

=

 

Now ∑
=

=
n

i
ii rx

1
∑
=

+
n

i
ii ra

1
∑
=

n

i
ii rb

1
= a + b. 

Then .}{) BABbAabaBA +=∈∧∈+=∪  

 A submodule A of RM  is called a direct summand of M if there exists a submodule 

MB >⊂ such that BAM += and }.0{=∩ BA  In this case, we write BAM ⊕=  and call 

M a direct sum of A and B or the sum A + B is direct. In general, for ,Ii∈ let .Ri MA >⊂   

 The sum ∑
∈

>⊂
Ii

i MA is called a direct sum if for any ,Ij∈  

               .0
,
∑

∈≠

=∩
Iiji

ij AA  

 

Definition 2.2.2 Let M and N be R-modules. A map NMf →:  is a homomorphism if  

 (i) ∀ Mmm ∈′, and  ∀ )()()( mfmfmmfRr +=′+⇒∈  

 (ii)  ∀ Mm∈  and  ∀ rmfmrfRr )()( =⇒∈  

If  NMf →:  is R- linear, we define its kernel as kerf = { 0)(: =∈ mfMm } 

and its image as Imf = { Mmmf ∈:)( }.  Kerf is a submodule of M and  

Imf is a submodule of N.  f is called a  monomorphism if )()( mfmf ′= . 

 

Definition 2.2.3 Let .RMA >⊂ Since M is an abelian group, ),( +AM is also an abelian 

group. We provide a scalar multiplication to make AM  a right R-module: 

.)(),(,)( AmrrAmrAmAMRAM +=+→+→×  Then AM  is a right R-module, called 

the factor module of M by A. 

 

Definition 2.2.4 An R-homomorphism RR NMf →:  is called  
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(i) a monomorphism if for any  ModX ∈ -R and for any homomorphism   

.,:, ghfogfohMXgh =⇒=→  

(ii) an epimorphism if for any  ,RModX −∈  and for any homomorphism      

ghgofhofXNgh =⇒=→ ,:, . 

 (iii) an isomorphism if  f  is a monomorphism and an epimorphism. 

 

Remarks 

(i) RR NMf →:  is a monomorphism iff  f  is one-one. 

(ii) RR NMf →:  is an epimorphism iff  f  is onto. 

 

Definition 2.2.5 A ring R is semi-simple (or completely reducible) if R is semi-simple as a 

right R-module. A right ideal I of R which is simple as an R-module am called a minimal 

right ideal. A semi-simple ring is thus a direct sum of minimal right ideals, and every simple 

module is isomorphic to a minimal right ideal of R. The module 0 is semi-simple as an empty 

sum of simple submodules but 0 is not a simple module, since it was assumed that for a 

simple module R, R ≠  0. Every abelian group may be considered as a Ζ -module; so an 

abelian group is semi simple if it is a semi simple Ζ -module. The factor group Ζ  / nΖ , n ≠  

0, is a semi-simple Ζ -module if and only if n is square-free (i.e., n is the product of pair-wise 

distinct prime numbers, Kppn ,,1 K= or n = ± 1). The modules ZZ and ZQ are not semi-

simple since they have no simple submodules. 

 

Proposition 2.2.6([19], page 23) The following properties of a module S are equivalent: 

(a) S is semi-simple. 

(b) S is a direct sum of simple modules. 

(c) Every submodule of S is a direct summand. 

Proof. )()( ba ⇔ follows from Proposition 7.1([19], page-23) (with L = 0), and also 

)()( ca ⇔ is an immediate consequence of Proposition 7.1. 

:)()( ac ⇔  The sum of all simple submodules of S  is a direct summand of ,S and in order 

to show that the complementary summand is zero, it is enough to show that every non-zero 

submodule L of S contains a simple submodule.  



 9

The module L  may as well assumed to be cyclic, so by Lemma 6.8[19], it contains a 

maximal proper submodule M . The submodule M splits S  as ,KMS ⊕= and then 

).( LKML ∩⊕= It follows that MLLK ≅∩ is a simple submodule of .L  

 

Lemma 2.2.7 Let A be a right ideal of a ring R. Then 

 .:, 2 eRAeeReRA R ==∈∃⇔⊂⊕
>   

Proof. Assume that .RRA ⊕
>⊂  Then there exists a right ideal RRB >⊂  such that .BAR ⊕=  

Since ,1 BAR ⊕=∈  there exists .1:, feBfAe +=∈∈  Then efee += 2  and  .2 feee +=  

Then ,0=∩∈= BAfeef  and so .2ee =  This shows that e  is an idempotent. Similarly, we 

can show that .2 ff =  We first have, .AaR ⊆  Let .Aa∈  Then 

.0=∩∈=−⇒+= ABfaeaafaeaa  So .eReaa ∈=  Hence .eRA ⊆  Thus A = eR. 

Conversely, assume that there exists an idempotent Re∈  such that .eRA =  Since 

,11)1( 22 eeeee −=+−−=−  and ,)1()1(1 ReeRee −+⊆−+=  we have .)1( ReeRR −+=  

For each ,)1( ReeRx −∩∈  we have seerx )1( −==  for ., Rsr ∈  Since xereerex ===  

and .0)()1( 2 =−=−= seeseeex  we have .0=x  So .0)1( =−∩ ReeR  Thus 

.)1( ReeRR −⊕=  

 

Definition 2.2.8 Let M be a right R-module and let ., MBA >⊂  If ,0=∩ BA we write 

.BABA ⊕=+  We note that if ,BAx ⊕∈ then ,bax += where Aa∈  and .Bb∈  

 

Theorem 2.2.9 If BA⊕  is the internal direct sum and A, B are submodules of M, then show 

that .MBA >⊂⊕  

Proof. Consider },),{( BbAabaBA ∈∧∈=× we can consider as CBA or ∏ .BA  It is 

clear that BA× is a right R-module but .MBA >⊄×  Define BABA ⊕→×:ϕ  by 

baba +=),(ϕ  for all Aa∈ and .Bb∈  Then ϕ  is an R-homomorphism, because for any 

BAbaba ×∈′′ ),(),,( and for any ,Rr ∈  we have 
=′++′+=′+′+=′′+ )()(),()),(),(( bbaabbaababa ϕϕ ),,(),()()( babababa ′′+=′+′++ ϕϕ  

and .),()(),()),(( rbarbabrarbrarrba ϕϕϕ =+=+==   
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Also, ),,(),(),(),( bababbaababababa ′′=⇒′=∧′=⇒′+′=+⇒′′= ϕϕ showing that ϕ  

is a monomorphism. For every ,BAy ⊕∈  bay +=  where ., BbAa ∈∈   

Choose .),( BAbax ×∈=  we have .)( yx =ϕ  then ϕ  is an epimorphism. Thus ϕ  is an 

isomorphism, i.e., .BABA ⊕≅×  

 

Definition 2.2.10 Let },{ IiAi ∈  be a family of submodules of M. If for any 

,0,
,

=∩∈ ∑
≠∈ jiIi

ij AAIj then ∑
∈Ii

iA is called the direct sum of },{ IiAi ∈ which is denoted by 

.i
Ii

A⊕
∈

 

 

Theorem 2. 2.11([20], Lemma 7.2, page-246) Let M be a right R-module. 

(1) Z (M) is a submodule, called the singular submodule of M. 

(2) Z (M). Soc(R R ) = 0, where soc(R R ) denotes the socal of R R  

(3) If f: M →  N is any R-homomorphism, then f (Z (M)) ⊆  Z (N). 

(4) If M ⊆N, then Z (M) = M ∩  Z (N). 

Proof. (1) If ),(, 21 MZmm ∈ then Rei Rmann ⊆)(  (i = 1, 2) imply that 

.)()( 21 Re Rmannmann ⊆∩  since )( 21 mmann + contains the L.H.S, it follows that 

).(21 MZmm ∈+ It remains to prove that .)()( RrRmrannRmann ReRe ∈∀⊆⇒⊆  For this 

we apply the criterion for essential extensions in (3.27) (1). Give any element 

),(mrannRs∈ we have ,0)( ≠rsm so from ,)( Re Rmann ⊆ we see that 0)( =rstm for some 

Rt ∈ such that .0≠rst  now we have )(0 mrannst ∈≠  which yields the desired conclusion 

.)( Re Rmrann ⊆  

(2) For any ,)(),( Re RmannMZm ⊆∈ so by Exercise (6.12) (2), ).()( RRsocmann ⊇ this 

shows that .0)(. =RRsocm  

(3) Follows from the fact that ))(()( mfannmann ⊆ for any Mm∈ . 

(4) Directly from definition. 

Note that for any f ∈  S = End (M R ), we have f (Z (M)) ⊂  Z (M), i.e., Z (M) is a fully 

invariant submodule of M. 
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Example 2.2.13[20]  

(a) Any simple ring is nonsingular. 

(b) Any semi simple ring R is nonsingular because R has no proper essential one-sided ideals. 

More precisely, a ring R is semi simple if and only if any right R-module M is nonsingular. 

(c) Let M ⊂  N be a right R-modules. If N is nonsingular, then so is M, and the converse 

holds if M is essential in N. In particular, we see that M is nonsingular if and only if its 

injective hull E (M) is nonsingular. 

 

2.3 Noetherian and artinian modules  

 

Definition 2.3.1 A right R- module M is called noetherian if every non empty family of 

submodules has a maximal element by inclusion. A ring R is called right noetherian if RR  is 

artinian as a right R- module. 

 
Proposition 2.3.2 ([19], page 12) A module is noetherian if and only if every strictly 

ascending chain of submodules is finite. 

Proof. Let M  be noetherian and ......21 ⊂⊂ MM  an ascending chain of submodules. The 

submodule U
ii

iM
∈

 has a finite number of generators, and all of them must lie in some
0i

M . It 

follows that the chain gets stationary at 
0i

M . Conversely, it is easy to see that the ascending 

chain condition for submodules implies that every submodule has a finite number of 

generators. 

The `assending chain condition`, i.e. finiteness of all strictly ascending chains, is usually 

abbreviated as ACC.  

 
Proposition 2.3.3 ([19], page 12)   Let L be a submodule of M. Then M is noetherian if and 

only if both L and M / L are noetherian. 

Proof. M noetherian obviously implies that L is noetherian. It also implies that LM  is 

noetherian, because the submodules of LM  can be written as LM ′ , there MML ⊂′⊂ . 
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Suppose conversely that L and LM  are noetherian. If M ′  is a submodule of ,M  then 

ML ′∩  is finitely generated as a submodule of ,L and LMLMLM )()( ′+≅′∩′  is 

finitely generated as a submodule of  .LM  It follows from Lemma 3.1(ii) ([19], page-11) 

that M ′  is finitely generated. Hence M  is noetherian. 

The ring R is right noetherian if RR  is a noetherian module, i.e. every right ideal of R is 

finitely generated. 

 

Proposition 2.3.4 ([19]) If A ring noetherian, then every finitely generated module is 

noetherian. 

Proof. If RR  is noetherian, then every finitely generated free module is noetherian by Prop. 

2.3.3, and therefore every finitely generated module is a quotient of a noetherian module and 

hence noetherian by Prop. 2.3.3. 

 

Definition 2.3.5 A right R-module M is called artinian if every nonempty family of 

submodule has a minimal element by inclusion. A right R is called right- artinian if RR  is 

artinian as a right R-module. 

 

Proposition 2.3.6 For an Artinian ring R the following statements are equivalent: 

(a) R is semisimple; 

(b) Every right ideal of R is of the form eR, where e is an idempotent; 

(c) Every nonzero ideal in R contains a nonzero idempotent; 

(d) R has no nonzero nilpotent ideals; 

(e) R has no nonzero nilpotent right ideals. 

Proof: ).()( ba ⇒ If l is a right ideal of a semisimple ring R, then, by theorem 2.2.5[19] and 

proposition 2.2.4[19] .ll ′⊕=R Let ee ′+=1  be a corresponding decomposition of the 

identity of the ring R in a sum of orthogonal idempotents, then by proposition 2.1.1, .eR=l  

)()( cb ⇒ is trivial. 

)()( dc ⇒ Follows from the fact that if e is a nonzero idempotent, then 0≠= een for some n. 
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).()( ed ⇒ If 0≠l is a nilpotent right ideal, then lR is a two-sided ideal of R and 
nn RR ll =)( implies that lR is nilpotent as well. 

).()( ae ⇒ If l is a simple submodule of the right regular module, i.e., a minimal right ideal 

in the ring R, then by hypothesis 02 ≠l and, by lemma 9.2.8[19] ,eR=l where e is a nonzero 

idempotent. Therefore, by proposition 2.1.1, there is a decomposition of R is Artinian, by 

proposition 2.2.4, the ring R is semisimple. 

 

Definition 2.3.7 A nonempty family of submodules of RM  is said to satisfy the Ascending 

Chain Condition (briefly, ACC) if for any chain  

    KK ⊂⊂⊂⊂ nMMM 21  

of submodules, there exists a positive integer n such that nn MM =+1  for n = 1, 2,K .   A right 

R-module M is called noetherian if and only if every nonempty family of submodules of M 

has a maximal element by inclusion. A ring R is called right (res., left) noetherian if and only 

if R R is a noetherian right (res., left) R-module. The ring R is called a noetherian ring if it is 

both right and left noetherian. 

 

Theorem 2.3.8 ([18], page-127, Prop. 10.9) Let M be a right R-module and .MA >⊂  Then 

the following conditions are equivalent: 

(1) M is noetherian; 

(2) A  and M / A are noetherian; 

(3) Any ascending chain KK >>>> ⊂⊂⊂⊂ nAAA 21 of submodules of M is stationary, i.e., 

there exists Ν∈n  such that .1+= nn AA  This condition is called the ascending chain condition 

or ACC. 

(4) Every submodule of M is finitely generated. 

Proof. :)3()1( ⇒ Suppose that every nonempty family of submodules of M has a maximal 

element by inclution. Given an ascending chain  

   KK >+>>>> ⊂⊂⊂⊂⊂ 121 nn AAAA  
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Let }{ Ν∈=Υ iAi . By hypothesis, we can find a maximal element of Υ by inclusion, say 

.kA  We can see that for any ., nk AAkn >⊂≥  But then since kA  is maximal, .kn AA >⊂  

Hence for any ., kn AAkn =≥  This implies that the chain is stationary. 

:)1()3( ⇒ Let Χ  be a family of submodules of M and let  

 

be a chain in Χ . By assumption, this chain is stationary. So, we can find nA  such that 

,ni AA ⊆  for any i. By Zorn’s lemma, Χ  has a maximal element. Then M is noetherian. 

:)2()3( ⇒  Let  KK >+>>> ⊂⊂⊂⊂⊂ 121 nn XXXX  

be a chain of submodules in  A. Then this chain is also a chain in M and hence it must be 

stationary. So A is noetherian. Now let  

KK >+>>> ⊂⊂⊂⊂⊂ 121 nn XXXX               (∗ )  

be a chain of submodules in M / A. Then .......,, 2211 AAXAAX == with 

.121 MAAAA nn >>+>>>> ⊂⊂⊂⊂⊂⊂ KK since M is noetherian, M satisfies (3), and so 

we can find Ν∈0n  such that 100 += nn AA Hence the chain (∗ ) is stationary, proving that M / 

A is noetherian. 

:)3()2( ⇒ Assume that A and M / A are noetherian. Let 

 .................. 121 >+>>>> ⊂⊂⊂⊂⊂ nn AAAA  

be a chain in M. Then  

 AAAAAAAAA nn >>+>>>> ⊂⊂∩⊂∩⊂⊂∩⊂∩ .................. 121   

Since A is noetherian, by (3), there exists Ν∈1n  such that for any ,0≥K  we have 

AAAA nkn ∩=∩+ 11
. Consider ,/)( AMAAAn >⊂+ so we have  

  ........)(.......)()( 21 AMAAAAAAAAA n >>>> ⊂⊂+⊂⊂+⊂+   

Since AM  is noetherian, there exists Ν∈2n  such that for any ,0≥k we have 

AAAAAA nkn )()(
22
+=++ . Hence for any ,0≥k  we have .

22
AAAA nkn +=++   

Put }.,max{ 210 nnn =  Then for any ,0nn ≥ we have AAAA knn +=∩
00

 for all 0≥k  and 

AAAA knn +=+ +00
 for all .0≥k Thus for any ,0≥k  we have  

 .00000000
)()()( nnnnknknknkn AAAAAAAAAAA =∩+=+∩=+∩= ++++  

LL ⊆⊆⊆⊆⊆ nAAAA 321
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Hence M  is noetherian. 

:)4()3( ⇒  Let MA >⊂ and let .0 1 Am ∈≠  Then .1 ARm >⊂  If ,1 ARm =  then we are done. 

Suppose .1 ARm ≠ we can find RmAm 12 ∈  and then .211 ARmRmRm >> ⊂+⊂ If  

,21 ARmRm =+  then we are done. Continuing in this way, we have a chain  

>> ⊂+⊂ RmRmRm 211 ...321 >⊂++ RmRmRm   

in A by (3), this chain is stationary. Thus M is finitely generated. 

:)3()4( ⇒  Let .................. 121 >+>>>> ⊂⊂⊂⊂⊂ nn AAAA be a chain in M. Then 

.:
11

AAA
i

i
i

i == ∑
∞

=

∞

=
U  So .MA >⊂  By (4), A is finitely generated. Then by the property of 

finitely generated module, we can find kii ,.......,1 such that .........
1 kii AAA ++=  Let 

}.,,.........max{ 1 kiin =  Then nAA =  proving that the above chain is stationary. 

 

Definition 2.3.9 A nonempty family of submodules of RM  is said to satisfy the DCC if for 

any chain .................21 ⊃⊃⊃⊃ nMMM of submodules, there exists a positive integer n 

such that nn MM =+1  for  n = 1, 2,  … 

A right R-module M is called artinian if and only if every nonempty family of submodules of 

M has a minimal element by inclusion. A ring R is called right artinian if R R  is an artinian 

module. The ring R is called an artinian ring if it is both right and left artinian. 

 

Theorem 2.3.10 [18] Let M be a right R-module and let A be its submodule. Then the 

following statements are equivalent: 

(a) M is artinian; 

(b) A and M / A are artinian; 

(c) Any descending chain KK ⊃⊃⊃⊃ nAAA 21  of  submodules of M is stationary. This 

condition is called the descending chain condition or DCC. 

(d) Every factor module of M is finitely co-generated. 

Let 00 →→→→ ZYX  be an exact sequence of right R-modules. Then Y is noetherian 

(resp. artinian) ⇔ X and Z are noetherian (resp. artinian). 
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Corollary 2.3.11 [3] (1) The image of artinian (resp. noetherian) module is also artinian( 

resp. noetherian ). 

(2)The finite sum of artinian ( resp. noetherian ) submodules of M is also artinian (resp. 

noetherian). 

(3) The finite direct sum of artinian (resp. noetherian) modules of M is also artinian (resp. 

noetherian).  

(4) If R is semi-simple, then R is both left and right artinian (resp. noetherian). 

  

Remarks. (1) If a ring R is right artinian, then R is right noetherian but the converse is not 

true. For example, consider Ζ (northerian), mnnm ⇔Ζ⊆Ζ  and 

KK ,, 2312321 mmmmmmm ⇔⊆Ζ⊆Ζ⊆Ζ  

The chain KK ⊃Ζ⊃⊃Ζ⊃Ζ⊃Ζ n2222 32 is not stationary. So Ζ  is not artinian. Thus Ζ  

is noetherian but not artinian. 

(2) A right R-module M is artinian but it need not be noetherian. For example, the Prufer 

group ,∞Ζ p where Ζ∈= a
p
aQ ip { and }Qi >⊂Ν∈  where pQ⊆Ζ and .:/ ∞Ζ=Ζ ppQ  

In Z p ∞ , there are infinite ascending chains of submodules, so Z p ∞  does not satisfy the 

ACC and consequently, it is not noetherian. The module Z z  is noetherian but not artinian. 

Indeed, since every ideal of Z is principal and therefore finitely generated, it is noetherian. 

Since the chain Z ⊃ 2Z ⊃ 2 2 Z ⊃K is not stationary, we can conclude that Z z  is not 

artinian. The Prufer group Z p ∞  : = Q p /Z is artinian but not noetherian. The 

ring ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Ζ
=

Q
Q

R
0

 is right noetherian but not left noetherian. On the other hand, the ring 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

R
RQ

R
0

 is right artinian but not left artinian. 

 

Definition 2.3.12 Let A be a submodule of a module M. Then A is a direct summand of M if 

there there exists a submodule B of M such that M = A⊕B which is equivalent to saying that 
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M = A+B and A∩B = 0 = {0}. The direct summands of R R correspond to idempotent 

elements of R, i.e., e R∈  such that e 2 = e. 

 

Definition 2.3.13 Let M be a right R-module and X, a subset of M. Then the set  X ) is 

called the submodule of M generated by X, where X ) = { ∑
≤≤ ni

ix
1

r i  : x i  ∈  X, r i ∈  R, I = 1, . 

. .  , n; n ∈  N}, and this is the smallest submodule of M containing X. A subset X of RM  is 

called a free set (or linearly independent set) if for any ,,,3,2,1 Xxxxx k ∈K and for any 

,,,2,1 Rrrr k ∈K we have ∑
=

∈∀=⇒=
k

i
iii kirrx

1

},...,2,1{00 .A subset X of RM  is called a 

basis of M if  M = X ) and X is a free set. If a module M has a basis then M is called a free 

module. 
 
Definition 2.3.14  A right R-module M is said to be finitely generated if there exists a finite 

set of generators for M, or equivalently, if there exists an epimorphism R n →  M for some n 

∈  Ν . In particular, M is cyclic if it is generated by a single element, or equivalently, if there 

exists an epimorphism R →  M. It follows that M is cyclic if and only if M ≅ R / I for some 

right ideal I of R. For example,  

let M be a right R-module and m ∈  M. Then m generates a cyclic submodule m R of M. 

There is an epimorphism f : R →  mM given by f(r) = mr and Ker (f) = {r ∈  R mr = 0}, 

which is a right ideal of R. Hence mR ≅  R/ Ker (f). 

 
Lemma 2.3.15 ([19], page 11) Let X be a submodule of a right R-module M. 

(a) If M is finitely generated, then so is M / X. 
(b) If X and M / X are finitely generated, then so is M. 

Proof. (i): If nxx ,,1 K  generate M, then 1x  ,…, nx  generate XM . 
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(ii): Suppose X  is generated by mxx ,,1 L  and XM  is generated by 
−−

,1 ,, nyy K where 

.Myi ∈  If ,Mx∈  then ∑
−−

= iiayx  and hence ∑ ∈− ,Xayx ii  so ∑ ∑=− .jjii bxayx  

Thus M  is generated by mxx ,,1 K , ,1 ,, nyy K  

 

Example.  In Ζ 6  = { 5,4,3,2,1,0 } = 1),  Ζ 6  is a Ζ -module. Then  

1. 1) =  Ζ 6 , 2 ) = ( 4,2,0 ) = 4 ),  3 ) = { 3,0 }, 3,2 ) =  Ζ 6 , because  

         x3  + y 2  = 1  for some x, y  ∈  Ζ . 

2. { 2 } is not free because 3 ×  2  = 0 , { 3,2 } is not free  

          because 3 ×  2  + 32×  = .0  

Hence Ζ 6  is a finitely generated Ζ -module. 

 
Theorem 2.3.16 The following statements hold: 

(1) Every free right R-module is isomorphic to R )( X   for some set X. 

(2) Every right R-module is an epimorphic image of a free module. 

Proof. (1) we have 
XxxXxx

Xx
x

X rrRR
∈∈

∈

== )(){()( C has finite support}.  

Let .)( Xyxyxe ∈= δ then }{ Xxex ∈ is a basis of ,)( XR and so ,)( XR is a free module. Let M be a 

free right R-module with X as its basis. For any ,Mm∈ we can write 

∑∑
∈=

===
Xx

xx

k

i
ii rxrrxm 0,

1
but a finite number. 

Define )( XRM → by Xxx
Xx

x rxrm ∈
∈

== ∑ )()()( ϕϕ for all .Mm∈  It is clear that ϕ is well-

defined. To show that ϕ  is a homomorphism. Let ∑
∈

=
Xx

xxrm and ∑
∈

′=′
Xx

xrxm be any element 

in M. Since ∑
∈

′+=′+
Xx

xx rrxmm )( and ,)()( ∑∑
∈∈

==
Xx

x
Xx

x rrxrxrmr  

we have ),()()()()()( mmrrrrmm XxxXxxXxxx ′+=′+=′+=′+ ∈∈∈ ϕϕϕ and 

.)()()()( rmrrrrmr XxxXxx ϕϕ === ∈∈  Then ϕ  is an R-homomorphism. 
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Let ∑
∈

=
Xx

xxrm , and ∑
∈

′=′
Xx

xrxm  be in M such that ).()( mm ′= ϕϕ  

Then ∈∀′=⇒∈∀′=⇒′= ∈∈ xrxxrXxrrrr xxxxXxxXxx )()( X 

xx rxxr ′=  .∑∑
∈∈

′=′==⇒∈∀
Xx

x
Xx

x mrxxrmXx  This shows that ϕ is a monomorphism.  

Again, let Xxrx ∈)(  be an arbitrary element in .)( XR  Consider ∑
∈

=
Xx

xxrm . Then  

∑
∈Xx

xxr is a finite sum because Xxrx ∈)( has finite support. This means that Xxxrm ∈= )()(ϕ . 

Hence ϕ  is an epimorphism. Thus ϕ  is an isomorphism. 

(2) To show that for any ,RModM −∈ there exists a free module RModF −∈ and 

MF →:ϕ is an epimorphism. Let X be a generating subset of M. Then ).XM = Consider 

.)( XRF = Then F is free. Define MR X →)(:ϕ by =∈ ))(( Xxxrϕ ∑
∈Xx

xxr . Then it is obvious 

that ϕ  is an epimorphism. 

 

Definition 2.3.17 A module M is simple (or irreducible) if M ≠ 0 and the only submodules of 

M are 0 and M. Every simple module M is cyclic, in fact it is generated by any non-zero x 

∈M. It is clear that M is simple if and only if M ≅  I / J, where J  is a maximal right ideal of 

I. 

 
Proposition 2.3.18 ([19], page 9) The following properties of an exact sequence 

0 →  X ⎯→⎯α Y ⎯→⎯β  Z →  0 are equivalent:  

(a) The sequence splits. 

(b) There exists a homomorphism ϕ : Y →  X such that ϕ α  = 1 X . 

(c) There exists a homomorphism ψ : Z →  Y such that β  ψ  = 1 Z  

Proof. It is clear that (a) implies (b) and (c). Suppose (b) is satisfied. The maps 

XY →:ϕ and ZY →:β  can be used to define ZXY ⊕→:µ  so that the diagram(1) 

commutes. µ  is an isomorphism by Prop. 1.3 [19]. Hence the sequence splits. The proof of 

)()( ac ⇒ goes dually. 
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A module Y is said to be generated by a family Iix )(  of elements of Y if each Yx∈ can be 

written ∑=
I

ii axx  with all but a finite number of ia  equal to 0. It it furthermore is true that 

the coefficients ia  are uniquely determined by x, then the family Iix )(  is a basis for Y . A 

module is called free if there exists a basis for it. 

 
Theorem 2.3.19 ([18]) For a left R-module the following statements are equivalent: 

(a) M is semisimple; 

(b) M is generated by simple modules; 

(c) M is the sum of some set of simple submodule; 

(d) M is the sum of its simple submodules; 

(e) Every submodule of M is a direct summand; 

(f) Every short exact sequence  0 →  L →  M →  N →  0  of left R-modules splits. 

Proof. )()( ba ⇒ Let M be a semisimple left R-module with semisimple decomposition 

.αTM A⊕=  If  00 →⎯→⎯⎯→⎯→ NMK gf  is an exact sequence of R-modules, then the 

sequence splits and both K and N are semisimple.  

Since fIm is a submodule of M. The sequence splits and .Im ββ TfMN ⊕≅≅  But 

also )( αTM BA⊕= )( ββ T⊕⊕ , so that .Im αTfK BA⊕≅≅ Every submodule and every 

factor module of a semisimple module are semisimple. Moreover, every submodule is a 

direct summand. 

)()( ef ⇒  A short exact sequence 0 →  L →  M →  N →  0. Let 1M  and 2M  be submodule 

of a module M. so M = 1M + 2M  and 1M ∩  2M  = 0, then M is the direct sum of its 

submodules 1M and 2M , and we write M = 1M ⊕  2M . Thus M = 1M ⊕  2M . If and only if 

for each Mx∈  there exists unique elements 11 Mx ∈  and 22 Mx ∈  such that 21 xxx += . 

A submodule 1M  of M is a direct summand of M in case there is a submodule 2M  of M with 

M = 1M ⊕  2M ; such an 2M  is also a direct summand, and 1M  and 2M  are complementary 

direct summands. 

Also )()()( dcb ⇔⇔  are all trivial. Finally, ).()( de ⇒  Assume that M satisfies (e). We 

claim that every non-zero submodule of M has a simple submodule. Inded, Let 0≠x in M. 
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Thus (2.8) xR has a maximal submodule, say H. By (e), we have HHM ′⊕= for some 

.MH ≤′ Thus by modularity (2.5), )( HRHMRR xxx ′∩⊕=∩= and HRHR xx ≅′∩  is 

simple, so xR  has a simple submodule. Let N be the sum of all simple submodules of M. 

Then ,NNM ′⊕= by (e) for some .MN ≤′  Since ,0=′∩ NN  N ′  has no simple 

submodule. But as we have just seen, this means .0=′N  so .Mn =  

 

Definition 2.3.20 A module RM  is called a semi-simple module if and only if every 

submodule of M is a direct summand, i.e., M is semi-simple if and only if for any submodule 

,MX ⊂ there exists a submodule MY ⊂ such that YXM ⊕= . 

 

Definition 2.3.21 A submodule X of M ∈  Mod-R is called a simple submodule(or minimal 

submodule) if X is a simple module, i.e., 

MX >⊂  is minimal M⇔ is nonzero  and ∀ submodule 

MXMXMX =⇒⊂⊂⊂ >>> 0,  

 

Definition 2.3.22 Let X  be a submodule of a right R-module M . Then X is called a 

maximal submodule of M or maximum in M  if MX ≠  and for any submodule  ,MY >⊂ if 

MYX >> ⊂⊂ then XY = or MY =  

 

Theorem 2.3.23 The following statements hold: 

(a) Every finitely generated right R-module contains at least one maximal submodule. 

Therefore, every ring with identity contains at least one maximal right ideal. 

(b) For any submodule MX >⊂ , X  is maximal if and only if M / X  is a simple module. 

(c) M is simple if and only if for any 0 ≠  m ∈  M, M = mR. 

Proof. (a) We will prove that every proper submodule of a finitely generated right R-module 

M is contained in a maximal module. Let ∑
=

=
n

i
i RxM

1
 and .MA ≠⊂>  Clearly, 

.}},,1{{ AniX i ⊄∈ K  (If not, we have ,MA ⊆ a contradiction). Consider  
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   }{ MXandXAMX ≠⊂⊂=Υ >  

We note that AA ⊂  and ,MA ≠ so .Υ∈A  Thus .φ≠Υ  Let  

   KK ⊆⊆⊆⊆⊆ +121 nn AAAA  

be a chain in Υ  and  U
∞

=

=
1n

nAB . If ,MB = we have ,,,1 Bxx n ∈K  there exists 

nKK AA ,.....,1
such that 

.21
,,, 21 nKnKK AxAxAx ∈∈∈ K  Choose },,max{ 1 nkkm K= . We have 

mn Axx ∈,,1 K  implying that ,MAm =  a contradiction. Then MB ≠  and .
1

MA
n

n >

∞

=

⊂U  

Hence .FB∈  By Zorn`s lemma, Υ contains a maximal element, say C. 

 

Claim. C  is a maximal submodule of M . Since ., MCFC ≠∈  Suppose that 

.MYC >> ⊂≠⊂  If ,MY ≠  then YA ⊆  and .MY ≠  It follows that FY ∈  contradicting the 

maximality of C in F so, Y = M 

Assume that M is simple and .0 Mm∈≠  Then ,0 MmR >⊂≠ and hence mRM = . 

Conversely, assume that mRM =  for all .0 Mm∈≠  Let 0≠X  and .MX >⊂  Then there 

exists XMx ⊆∈  and .0≠x  Hence ,XxRM >⊂= and so .XM =  

 

Note:  Semisimple module⇔ sum (or direct sum) of all simple submodule 

                                         ⇔ Every submodule is a direct summand. 

 

Definition 2.3.24 A submodule A of a right R-module M is called essential or large in M if 

for any nonzero submodule U of M, AIU 0≠ . If A is essential in M we denote A M*
>⊂ . A 

right ideal I of a ring R is called essential if it is essential in R R . For any right R-module M, 

we always have M *
>⊂  M. Any finite intersection of essential submodules of M is again 

essential in M, but it is not true in general. For example, consider the ring Ζ  of integers. 

Every nonzero ideal of Ζ  is essential in Ζ  but the intersection of all ideals of Ζ  is 0 which is 

not essential in Ζ . Since any two nonzero submodules of Q have nonzero intersection, Q is 

an essential extension of Ζ . A monomorphism κ : U →  M is said to be essential if  

Im(κ ) *
>⊂  M. 
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       A *
>⊂ M ⇔ .0,0 ≠⊂≠ > UAMU I  

00, ≠⇒≠⊂∀⇔ > UAUMU I  

.00, =⇒=⊂∀⇔ > UUAMU I  

 

Proposition 2.3.25 In Ζ , every nonzero ideal is essential. 

Proof. Let 0 ≠  I ⊂  Ζ . Then ∃  m ∈  Ζ  : I = mΖ . For any nonzero ideal J Ζ⊂ , we can find 

an n ∈  Ζ  : J = nΖ . Thus I ∩  J = mΖ  ∩  nΖ  = m nΖ , so m n ∈  I ∩  J, and so I ∩  J ≠  0. 

Therefore,  I *
>⊂ Ζ . 

 

Proposition 2.3.26 Let M be a right R-module. Then for any submodule  A >⊂ M,  A *
>⊂ M  

⇔ ∀m ∈  M, m ≠  0, ∃ r ∈R: m r ≠  0 and m r ∈  A. 

Proof. Assume that .* MA >⊂  Choose m ∈  M, m ≠  0. Then ,0≠mR  and so .0≠∩mRA  

then there exists .0 mRAx ∩∈≠   

This means that Ax∈≠0  and there exists Rr ∈  such that mrx = . Therefore, 

.0 Amrx ∈=≠  

Conversely, let U  be a nonzero submodule of .M  Choose .0 Um∈≠  By hypothesis, there 

exists Rr ∈  with 0≠mr  and .Amr ∈  But then since ,Umr∈  we have 0≠mr  and 

.UAmr ∩∈  Hence .* MA >⊂  

 

Proposition 2.3.27 For any M ∈  Mod-R, let A >⊂  B >⊂ M. If  A *
>⊂ M, then (i) A *

>⊂ B, and 

(ii) B *
>⊂ M. 

Proof. (i) Let BU >⊂  be such that .0≠U  then U  is a submodule of M Since 

.0,* ≠∩⊂> AUMA Hence A *
>⊂ B. 

(ii) Let MU >⊂   be such that .0≠U   Then ,0 UBUA ∩⊆∩≠  because ,0≠∩UA and so 

B *
>⊂ M. 

 

Proposition 2.3.28 Let A and B be essential submodules in .RM  Then A ⊕  B *
>⊂ M and  A 

∩  B *
>⊂  M. 
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Proof. Let MU >⊂  be such that .0≠U  Then .0)()( ≠∩∩=∩∩ BAUBAU  

Hence A ∩  B *
>⊂  M. We have >⊂A A ⊕  B >⊂ M  and  A *

>⊂  M, implying that A ⊕  B *
>⊂ M 

. 

 Note: Every 0≠  submodule of M is essential is M, i.e., a non-zero submodule A of M is 

called essential in M if A has non-zero intersection with any non-zero submodule of M. 

 

Definition 2.3.29 A submodule A of RM  is called superfluous or coessential or small in M if 

for any submodule U of M, A + U = M implies U = M, or equivalently, U ≠  M implies X + 

U ≠  M. A right ideal I of a ring R is called superfluous in R if it is a superfluous submodule 

of R .R  Every module has at least one superfluous submodule, namely 0.  

The sum of a finite number of superfluous submodules of M is again a superfluous in M, but 

we are not sure about the arbitrary sum. For example, take Q Z  as a Z-module. In Q Z , every 

cyclic submodule is superfluous but the sum ∑
∈Qq

qZ  = Q which is not superfluous in Q. An 

epimorphism δ : M →  N is said to be superfluous if  Ker(δ ) 0
*⊂  M. If A is superfluous in M 

we denote by  

  .,.,* eiMA o⊂ .,* MUMUAMUMA o =⇒=+⊂∀⇔⊂ >  

 

2.4 Radical and socle of modules 
 

Definition 2.4.1 Let M be a right R-module. Then the sum of all superfluous submodules of 

M is called the radical of M and is denoted by rad(M). It is also the intersection of all 

maximal submodules of M. The radical of a module plays a very important role in studying 

the structure of modules or rings. If M is finitely generated, then rad(M) is superfluous in M. 

The first important property is that rad(M / rad(M)) = 0. Rad(M) = ∑
>⊂*

X   

The following theorem gives one of the properties of radical of a module. 

If there is no maximal submodule of M, then rad(M) = M. For example, rad(Q Z ) = Q. For a 

ring R, we have rad(R R ) = rad( R R), and by this fact we can define the Jacobson radical of a 

ring R by J(R) = rad(R R ) = rad( R R) as a two-sided ideal of R. There are many kinds of 
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radicals of a ring and we use the terminology Jacobson radical to mention the intersection of 

all maximal right ideals. The Jacobson radical of a ring R can be described in a more tangible 

way as follows: 

 

Proposition 2.4.2 ([18], page 120) Let M be a left R-module. Then  

rad (M) = I {K ≤  M K  is maximal in M} 

            = ∑ {L ≤  M L  is superfluous in M}. 

Proof: Since MK ≤  is maximal in M if and only if KM  is simple, the first equality is 

immediate from the definition of the reject in M of a class.  

For the second equality, Let .ML << If K is a maximal submodule of M, and if ⊄L K, then 

;MLK =+  but the since ,ML << we have K = M, a contradiction. We infer that every 

superfluous submodule of M is contained in Rad M. On the otherhand, Let .Mx∈  If MN ≤  

with ,MNRx =+  then either n = M or there is a maximal submodule K of M with KN ≤  

and .Kx∉  If ,RadMx∈  then the latter cannot occur, thus RadMx∈ forces MRx << and 

the second equality is proved. 

 
Definition 2.4.3 Let M be a right R-module. Then the sum of all simple (minimal) submodule 

of M is called the socle of M and is denoted by soc(M). We also define the socal of a module 

M as the intersection of all essential submodules of M.  

If sos(M) = 0, then M does not contain any simple submodules. For example, we have 

soc(Z Z ) = 0. Especially, soc(M) = M if and only if M is semisimple. 

 

Lemma 2.4.4 For any ⇔∈∈ )(, MradmMm  .0 MmR >⊂  

 

Proof. Suppose that ).(Mradm∈  Then ∑
>⊂

∈
0X

Xm  

MXxxxxm iin
0

21 , >⊂∈+++=⇒ K Ii∈∀   

MXXXm n
0

21 >⊂+++∈⇒ K   

MXXXmR n
0

21 >⊂+++⊆⇒ K  .0 MmR >⊂⇒  
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Conversely, assume that  .0 MmR >⊂  Then )(MradmR∈  and so ).(Mradm∈  

 

Lemma 2.4.5 For any ⇔∈∈ )(, MradmMm there exists a maximal submodule MA >⊂  

such that .Am∉  

Proof. Assume that ).(Mradm∉  By Lemma 2.4.4, .0 MmR >⊄  Then we can find a 

submodule MU >⊂  such that Um∉  and .MUmR =+  Consider the family 

UmMUF ∉⊂= >{  and }.MUmR =+  

Let .................1 >>> ⊂⊂⊂ nUU be any chain in F. Put .
1
U
∞

=

=
i

nUV  Then MV >⊂  and 

.Vm∉  We can see that .MVmR =+  This shows that .FV ∈  By Zorn’s lemma, F contains 

a maximal element, say B. 

Claim. B is a maximal submodule of M.  Suppose that B is not a maximal submodule of M. 

Then there exists a submodule MC >⊂ such that .MCB ≠⊂≠⊂ >>  If ,Cm∈ then 

,CBmRM ⊆+=  and so ,MC =  which is contradiction. Hence Cm∉  and 

.BmRMCmR +==+  this means that ,FC ∈  contradicting the maximality of F. 

Therefore, B is a maximal submodule of M and .Bm∉  conversely, if MA max
>⊂  and 

,Am∉ then ).(0 MradmMmRMAmRA ∉⇒⊂⇒=+⊂ >  

 

Theorem 2.4.6 I
MAMX

AX
max0

.
>> ⊂⊂

=∑  

Proof. ∀⇔∈ )(Mradm  maximal submodule I
MA

AmAmMA
max

,
>⊂

> ∈⇔∈⊂ . 

Theorem 2.4.7 ∑
>> ⊂⊂

==
MXMY simple

XYMsoc .)(
*
I  

Proof. Let MX >⊂  be any simple submodule of M and .* MY >⊂  Then 0≠∩YX  and 

).0.( XYXYYX =∩≠⊆∩  Since X is simple, ,XYX =∩  and so .YX >⊂  Then 

∑
>⊂

>> ⊂⊂
xsimpleMX

MYX
,

*  ∑
> >⊂ ⊂

>⊂⇒
XsimpleMX MY

YX
, *

I  
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Then ∑
>⊂ xsimpleMX

X
,

 is the largest semisimple submodule. To show that I
MY

Y
*
>⊂

 is semisimple, let 

>⊂U  I
MY

Y
*
>⊂

=:K. 

Claim. For any submodule U of M, there exists a submodule V of M such that .* MVU >⊂⊕  

Let }0{ =∩⊂= > UBMBF . Since ,0 F∈  so .φ≠F   

Consider ......21 >> ⊂⊂ BB any chain in F. Take .
1
U
∞

=

=
i

iBA  Then ,0=∩UA  and so .FA∈  

By Zorn’s lemma, F has a maximal element, say V. Clearly, .MVU =⊕  Next, to show that 

.* MVU >⊂⊕  Suppose .* MVU >⊄⊕  Then there exists a submodule 0≠X  of M such that 

0)( =∩+ XVU  Then MXVU =⊕⊕  and ,XVV ⊕⊂  and ,0)( =∩⊕ UXV  a 

contradiction. 

Let U be a submodule of I
MY

Y
*
>⊂

.Then there exists a submodule V of M such that 

.* MVU >⊂⊕  Then I
MY

Y
*
>⊂

.VU ⊕⊆   Using modular law,  

we have I
MY

Y
*
>⊂

= I
MY

Y
*
>⊂

.VU ⊕⊆ = ⊕U ( I
MY

Y
*
>⊂

).V∩  Hence I
MY

Y
*
>⊂

 is semisimple. 

 

2.5   Exact Sequences, Injective and Projective module 

 

Definition 2.5.1 Let },{ IiAi ∈ be a collection of right R-modules. For each ,Ii∈ let 

1: +→ iii AAf  be an R-homomorphism. Then a sequence 

.................. 11321
1321 ⎯⎯→⎯⎯→⎯⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ +−
+

nnn f
n

f
n

ffff AAAAA  

is called an exact sequence at nA  if )Im( 1−nf = ).ker( nf  The sequence is called an exact 

sequence if it is exact at each nA . 

An special exact sequence of the form 00 →⎯→⎯⎯→⎯→ CBA gf  is called a short exact 

sequence. 
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Remarks. 

(i) If the sequence 00 →⎯→⎯⎯→⎯→ CBA gf  is exact, then f is a monomorphism, 

g is an epimorphism and ).ker()Im( gf =  

(ii) Let .RModMX −∈⊂>  Consider the inclusion map MX →:ι defined by 

xx =)(ι  for any .Xx∈   

(iii) Then the sequence X→0 ⎯→⎯ι 0→⎯→⎯ XMM ν  is exact, where ν  is the 

canonical map. 

 

Definition 2.5.2 A short exact sequence 00 →⎯→⎯⎯→⎯→ CBA gf  is called split exact if 

,)Im( Bf ⊕
>⊂ (i.e., there exists BfBBB ′⊕=⊂′ > )Im(: ). 

 

Theorem 2.5.3 Let 00 →⎯→⎯⎯→⎯→ CBA gf  be a short exact sequence of right R-

modules. Then the following statements are equivalent: 

(1) The given sequence splits; 

(2) There exists a homomorphism ;1:: AffABf =′→′  

(3)  There exists a homomorphism .1:: CggBCg =′→′  

Proof. ).2()1( ⇒  Assume that )Im( f is a direct summand of B. Then there exists a 

submodule BB >⊂′  such that BfB ′⊕= )Im( . We will define a homomorphism .: ABf →  

to do this let .Bb∈  Then there exists )Im( fy∈ and Bb ′∈′  such that 

 b = y + b′  which is the unique decomposition. Since f is a monomorphism, there is a unique 

Aa∈  such that y = f(a). Let .)( abf =′  It is clear that f ′  is a map. We now show that f ′  is 

a homomorphism. To do this, let Bbb ∈21 ,  and .Rr ∈  Then 111 byb ′+=  and 222 byb ′+= , 

where )Im(, 21 fyy ∈ and ., 21 Bbb ′∈′′  Thus 

+′+=+ )( 1121 bybb =′+ )( 22 by ).()( 2121 bbyy ′+′++  Then there exists Aaa ∈21 ,  Such that 

)( 11 afy = and ).( 22 afy =  Then )()()( 212121 aafafafyy +=+=+  and so =+′ )( 21 bbf  

21 aa + = ).()( 21 bfbf ′+′  For ,Rr ∈  if  111 byb ′+= , then rbryrb 111 ′+=  and 

).()( 111 rafrafrb ==  Hence ==′ rarbf 11 )( ).( 1rbf ′  To show  ,1Aff =′  let Aa∈  be such 

that b = f(a). Then abf =′ )(  and so .)( aaff =′  Thus .1Aff =′  
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Assume that there is a homomorphism ABf →′ :  such that .1Aff =′  Let 

.)( BfKerB >⊂′=′  Then .)Im( BBf >⊂′⊕  For each ,Bb∈  we have Abf ∈′ )(  and so 

).Im()( fbff ∈′  Then ).())(())(( bfbfffbfff ′=′′=′′   

Hence .)()( BfKerbbff ′=′∈−′  Then there exists Bb ′∈′  such that bbbff ′=−′ )(  and so 

.)Im()( Bfbbffb ′+∈′−′=  Thus BfB ′+⊆ )Im(  and then .)Im( BfB ′+=  To prove 

0)Im( =′∩ Bf  let .)Im( Bfb ′∩∈ Then )Im( fb∈ and .Bb ′∈  Thus there is a Aa∈  such 

that b = f(a) and .0)( =′ bf  Then .0)()( =′=′= bfaffa  This implies that b = 0. Therefore, 

.)Im( BfB ′⊕=  

 

Properties 2.5.4 For a right R-module M, the following conditions are true:  

(1) Let X be a maximal submodule of M and let XMm −∈  If ,MmRXX >> ⊂+≠⊂  

then X + mR = M. 

(2) Let .MX >⊂  Suppose that for any ., MmRXXMm =+−∈  If  MYX >> ⊂≠⊂  

and ,XY ≠  then there exists .MYmRXX >>> ⊂⊂+≠⊂  Hence Y = M. Thus X is 

maximal. 
 

Theorem 2.5.5 A submodule MX >⊂ is maximal if and only if XM −  is simple. 

Proof.  Suppose that X is a maximal submodule of M. Let .0 XMU −⊂≠ >  Then U is of the 

form U = XV − for some .MVX ⊂⊂  Since X is maximal, V = X or V = M. Then U = 0 or 

U = XM − .  Hence XM −  is simple. 

Conversely, assume that XM −  is simple. Let .MYX >> ⊂⊂ Then .XMXY −⊂− >  

Since XM − is simple, we must have 0=− XY or .XMXY −=− It follows that Y = X or Y 

= M. Hence X is maximal. 

 

Theorem 2.5.6 Let M be a right R-module. Then M is semisimple if and only if ,∑
∈

=
Ii

iMM  

where each iM  is simple for any .Ii∈  

).1()2( ⇒
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Proof. Assume that M is semisimple. Let ,∑
∈

=
Ii

iMX  where iM a simple is submodule of 

M, for all .Ii∈ Then X  is a direct summand of M.  This means that YXM ⊕=  for some 

submodule Y of M. If ,0≠Y  let .0 Yy∈≠  Then yR  is cyclic where MYyR >> ⊂⊂  and 

then yR is finitely generated. So yR  contains a maximal submodule A, say. We see that both 

of yR  and A is a direct summand of M. By the modular law, A is a direct summand of yR . 

Hence BAyR ⊕=  and so AyRB ≅  is simple. Then .YyRB >> ⊂⊂  Then B is simple but 

,XB >⊄  a contradiction. Hence ,0 ∑
∈

==⊕=
Ii

iMXXM  where each iM  is simple for all 

.Ii∈  

Conversely, assume that ,∑
∈

=
Ii

iMM  where each iM  is simple for any .Ii∈  Let X be any 

submodule of M.  We must show that X is a submodule of M.  If X = 0, it is obvious that M = 

0 + M. So, suppose that .0≠X  Let iM  be a submodule of M  for all .Ii∈  Then 

XM i >⊂ or 0=∩ XM i for all .Ii∈  If 0≠∩ XM i  for all ,Ii∈  then ii MXM >⊂∩≠0  

for all .Ii∈  Since iM  is simple, ii MXM =∩  for all .Ii∈  Then  XM i >⊂  for all .Ii∈  

Let }0{ =∩= XMMF ii and }{ XMMG ii >⊂= . Then we have 

 MMXMMMM
iiii FM

i
GM

i
FM

i
Ii

i ⊆⊕⊆⊕== ∑∑∑∑
∈∈∈∈

 

Thus ∑
∈

⊕=
Ii

iMXM and so X is a direct summand of M. Therefore M is semisimple. 

 

Definition 2.5.7 For a pair of sets A and B, a map BAf →:  is called injective if and only if 

it has a left inverse, which means that there is a map ABf →′ :  such that ,1Aoff =′ the 

identity map of A. Dually, for a pair of sets C and D, a map DCg →:  is called surjective if 

and only if it has a right inverse. This means that there exists a map CDg →′ :  such that 

,1Dggo =′  the identity map of D. We now extend this notion to modules. Let BAf →:  be 

an R-homomorphism of right R-modules A and B. If there exists an R-homomorphism 

ABf →′ :  such that ,1Aoff =′ then f is a monomorphism. Suppose that BAf →:  is a 

monomorphism of right R-modules. Then there does not always exists an R-homomorphism 
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ABf →′ :  such that  .1Aoff =′  If B is semisimple, then there exists f ′  for all right R-

modules A. For all right R-modules B, if such homomorphism f ′  exists, then we call A an 

injective module.  

In the categorical viewpoint, a right R-module M is called an injective module if for any right 

R-module A and B, any monomorphism BAf →:  and any homomorphism  

,: MA →ϕ  there exists a homomorphism 
−

ϕ MB →:  such that 
−

ϕ ο  .ϕ=f  

                            
                                             Figure 1 

If the above condition is true only for a special module B, then M is called an B-injective 

module. Thus, a right R-module M is said to be injective if and only if it is B-injective for any 

right R-module B. A right R-module B is called quasi-injective if B is B-injective. 

 

Theorem 2.5.8 Let M be any right R-module. Then the following statements are equivalent: 

(1) M is injective; 

(2) Any exact sequence of the form 00 →→→→ BAM  splits. 

Proof. ).2()1( ⇒  Assume that M is injective. Consider the exact sequence 

 
                                          Figure 2 

Since M is injective, there exists MA →′ :α such that .1M=′αα so we get the sequence is 

splits. 
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).1()2( ⇒  Let  

 
Figure 3 

Define BMM ×→:1ι  and BMB ×→:2ι  by Mmmm ∈∀= )0,()(1ι  and  ),0()(2 bb =ι  

.Bb∈∀  Let .}))(),({( BMAaafaH ×⊂∈−= >ϕ  Consider HBM )( ×  and define 1νια =  

and 2νιβ = .  

For every ,Aa∈   

== )()( 1 aa ϕνιαϕ Haa += )0),(())0),((( ϕϕν   

and   == )()( 2 afaf νιβ .))(,0())(,0(( Hafaf +=ν  

Since ,))()(())(,0()0),(( Hafaafa ∈−=− ϕϕ we have =+ Ha )0),((ϕ  .))(,0( Haf +  We 

also have .fβαϕ =  To show that α  is a monomorphism. Let ).(αKerm∈ Then 

0)(0)( 1 =⇒= mm νια  ,0))0,(( =⇒ mν  i.e., (m,0) + H = 0 + H  and so .)0,( Hm ∈  Then 

there exists Aa∈  such that ))()(()0,( afam −= ϕ  which implies that ma =)(ϕ  and f(a) = 0. 

Since f is a monomorphism, a = 0 and we have m = ,0)0( =ϕ  i.e.  .0)( =αKer  Hence α  is a 

monomorphism. Consider an exact sequence 

0)Im())(()(0 →×→×→ ⎯→⎯
⎯⎯← ′

α
α

α
HBMHBMM   

Then by hypothesis, there exists MHBM →×′ )(:α  such that .1M=′αα  Chose 
−

ϕ  = .βα ′  

Then  
−

ϕ : MB →  and 
−

ϕ f = fβα ′  = .1 ϕϕαϕα ==′ M  Therefore, M is injective. 

 

Definition 2.5.9 Consider an R-homomorphism DCg →: of right R-modules. If there is an 

R-homomorphism CDg →′ :  such that ,1Dggo =′ then g is an epimorphism. In general, 

such a homomorphism does not always exist. If it exists for all modules C, then D is a free 

module. When it exists for any module C, we call D a projective module. 
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In categorical viewpoint, right R-module M is said to be B  projective if for any epimorphism 

g: CB →  and any homomorphism CM →:ψ , there exists a homomorphism
−

ψ : BM →  

such that g o ψψ =
−

. 

 

 

                                                 
Figure 4 

 

If M is B-projective for any right R-module B, then M is called a projective module. If B is B-

projective, then B is called quasi-projective. 

Every free module is projective but the converse is not true. Consider the ring R = Z / 6Z 

which can be decomposed as R = (
−

2 ) ⊕  (
−

3 ).  The ideal(
−

2 ) and (
−

3 ) are projective modules 

but they are not free. For every n ∈  N,  Z n  = Z / nZ  is quasi-projective but not Z- projective. 

Thus Z-modules Q / Z and ∞p
Z are not quasi-projective. 

 

 
                                                       Figure 5 
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(i)  1π o g ′  = g  projective. (ii) f ′o i  = f  injective. 

(iii) A right R-module M is called quasi-projective if M is M-projective, so P  = M  

(iv) A right R-module M is called quasi-injective if M is M-injective, so E  = M . 

 

Proposition 2.5.10 Let M be any right R-module. Then the following statements are 

equivalent: 

 (a) M is projective. 

 (b) Any exact sequence of the form 00 →→→→ MYX  splits. 

Proof. ).2()1( ⇒  Assume that M  is projective. Consider the exact sequence 

00 →⎯→⎯⎯→⎯→ MYX gf .   

Since M is projective, there exists a homomorphism YMg →′ : such that .1Mgg =′  so have 

the sequence is splits. 

).1()2( ⇒  Assume that every exact sequence of the form 00 →→→→ MYX splits. Let 

              
     Figure 6 

 

 
    Figure 7 

 

 

 
   Figure 8 
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Define )}.()(),{( magmaH ψ== Then .MAH ×⊆  To show that .MAH ×⊂>  Let 

.),(),,( Hmama ′′  Then )()( mag ψ= and ).()( aag ′=′ ψ   

(i) ).()()()()()( mmmmagagaag ′+=′+=′+=′+ ψψψ Thus .),( Hmmaa ∈′+′+  

(ii) Let Aa∈  and .Rr ∈ Then .)()()()()()( rmargrmragmag ψψψ =⇒=⇒=  

Then .),(),( Hmrarrma ∈= Therefore, .MAH ×⊂>  Let MAH ×→:ι  be the embedding 

map. Put ιπα 1= and .2ιπβ = We first note that ψβα =g  such that for any ,Hx∈ we have 

),( max =  with )()( mag ψ= and  

)()),(()),(()),(()( 11 agmagmagmagxg ==== πιπαα and 

).()),(()),(()),(()( 22 mmamamax ψπψιπψβψψβ ==== Hence Hxxxg ∈∀= )()( ψβα and 

so .ψβα =g  To show that β is an epimorphism. Let Mm∈ . Then Bm ∈)(ψ . Since g is an 

epimorphism, there is Aa∈ such that ).()( agm =ψ  So Hma ∈),( and 

.),(),(),( 22 mmamama === πιπβ Hence β is an epimorphism. By assumption, the exact 

sequence splits. Then there exists HM →′ :β such that .1M=′ββ  Choose .βαψ ′=
−

Then 

AM →
−

:ψ and so βαψ ′=
−

gg = .1 ψψβψβ ==′ M  Therefore, M is projective. 

 

Proposition 2.5.11 Every free right R -module is projective. 

Proof. Let F be a free right R-module and Let X be its basis. Then .xRF
Xx∈
⊕=  For ,Xx∈  

we have .)( Bx ∈ψ  we can find Aa∈  such that )()( agx =ψ  and we see that we can find 

many Aa∈  like that but we choose one and we denote it by .xa  

                                           
                                                        Figure 9 



 36

Put .)( xax =ψ  For ,Ff ∈  ∑
=

=
n

i
ii rxf

1
 and .)(

1
Araf

n

i
ixi
∈=∑

=

ψ  Then ψ  is an R-

homomorphism and .ψψ =g  This shows that F is projective. 

 

Note:  M is injective ., RModYX −∈∀⇔  

 

 

                                
⇔                                               Figure 10 

                                  
                                                          Figure 11 

 

Proposition 2.5.12 Every projective module is isomorphic to a direct summand of a free 

module, and conversely, any direct summand of a free module is projective. 

Proof. Let P be a projective right R-module. By the previous lemma, there exists a free 

module F such that PF →:ϕ is an epimorphism. Consider the exact sequence 

⎯⎯ →⎯⎯→⎯→ →0)ker(0: PF ϕιϕε  

Since P is projective, ε splits. Then FIMF ′⊕= )(ι  for some .)ker( FF ′⊕=⊂′ > ϕ  Thus 

.)ker( FFFP ⊕
>⊂′≅≅ ϕ  

 

Definition 2.5.13 An element c R∈  is called right regular (resp. left regular) if for any 

r R∈ , cr = 0 ⇒  r = 0 (resp. rc = 0 ⇒  r = 0). If cr = 0 = rc, then c is called a regular 

element. For example, every non-zero element of an integral domain is  regular and if F is a 
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field, then any element of the set M n (F) is regular if and only if its determinant values is 

zero. Elements which are regular on one side need not be regular. 

 

Proposition 2.5.14 ([19] Prop. 12.1, page 39) The following properties of a ring R are 

equivalent: 

(1) R is regular. 

(2) Every principal right ideal of R is generated by an idempotent element. 

(3) Every finitely generated right ideal of R is generated by an idempotent element. 

(4) Every left R-module is flat. 

Proof. :)2()1( ⇒  For any ,Ra∈ aR  is a principal right ideal of .R  Choose x  such that 

.axaa =  Then ax  is an idempotent and .axRaR =  

:)1()2( ⇒  Given ,Ra∈  chose an idempotent e such that .aReR =  Then axe =  for some x, 

and .axaeaa ==  

)3()1( ⇒ : It clearly suffices to show that if e and f are idempotents, then fReR +  is a 

principal right ideal. We have ,)( ReffeRfReR −+=+  and if Rx∈  is chosen so that 

),()( effxeffeff −−=−  then xefff )( −=′  is an idempotent with ,0=′fe  and 

.RfeRfReR ′+=+  Now ,)( ReffeRfeR ′−′+=′+  because eeffee )( ′−′+=  and 

.)( feffef ′′−′+=′  Thus fReR +  is principal. 

:)4()3( ⇒ The condition (3) means that every finitely generated right ideal is a direct 

summand of R, and Prop. 10.6 [19] then immediately gives that all left R-modules are flat. 

:)1()4( ⇒  If I is any right ideal and J is any left ideal of R, then the flatness of JR / implies 

that the canonical map JRJRI /)/( →⊗  is a monomorphism. But ,/)/( IJIJRI ≅⊗  by 

Example 8.1[19], so this means that the canonical map JRIJI // →  is a monomorphism, 

i.e. .IJJI =∩  Choosing in particular aRI =  and ,RaJ = we find that ,aRaRaaR =∩ and 

hence .aRaa∈  

 



CHAPTER III 

PRIME AND SEMI-PRIME RINGS 

 
Definition 3.1  
A prime ideal in a ring R is any proper ideal P of R such that, whenever I and J are ideals of 

R with PIJ ⊆ , then either PI ⊆ or .PJ ⊆  An ideal I of a ring R is called strongly prime if 

for any x, y ∈  R with x y ∈  I, then either x ∈  I or y ∈  I. A prime ring is a ring in which 0 is a 

prime ideal or equivalently, a  ring R is called a prime ring if there are no nonzero two-sided 

ideals I and J of R such that  I J = 0. 

A minimal prime ideal in a ring R is any prime ideal of R that does not properly contain any 

other prime ideals. 

For instance, if R is a prime ring, then 0 is the unique minimal prime ideal of R. 

A semi-prime ideal in a ring R is any ideal of R which is an intersection of prime ideals. A 

semi-prime ring is any ring in which 0 is a semi-prime ideal. An ideal P in a ring R is semi-

prime if and only if R / P is a semi-prime ring. The intersection of any finite list p1 Ζ ,…, 

Zpk of prime ideals, where p 1 ,…, p k are distinct prime integers, is the ideal p 1 …p .Zk  Hence 

the nonzero semi-prime ideals of Ζ  consist of the ideals n Ζ , where n is any square-free 

positive integer including  n = 1. 

 

Example 3.2 

(i) In a commutative artinian ring, every maximal ideal is a minimal prime ideal. 

(ii) In an integral domain, the only minimal prime ideal is the zero ideal. 

 

Proposition 3.3 The ring R is semi-prime if and only if it contains no nonzero nilpotent 

elements. 

 

Proposition 3.4([3], page 49) any prime ideal P in a ring R contains a minimal prime ideal.  

Proof. Let Χ  be the set of those prime ideals of R which are contained in P. We may use 

Zorn’s Lemma going downward in Χ provided we show that any nonempty chain Χ⊆Υ  

has a lower bound of Χ . 
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The set Υ∩=Q is an ideal of R, and it is clear that .PQ ⊆  we claim that Q is a prime ideal. 

Thus consider any Ryx ∈,  such that QxRy ⊆  but .Qx ∉  Then Px ′∉  for some .Υ∈′P  For 

any Υ∈′′P  such that PP ′⊆′′  we have Px ′′∉  and ,PQxRy ′′⊆⊆  whence Py ′′∈ . In 

particular, .Py ′∈  If P Υ∈′′P  and ,PP ′⊄′′  then ,PP ′′⊂′  and so .Py ′′∈  Hence, Py ′′∈  

for all elements P ′′  of Υ , and so ,Qy ∈  which proves that Q is a prime ideal. 

Now ,Χ∈Q  and Q is a lower bound for Υ . Thus, by Zorn’s Lemma, we can get a prime 

ideal Χ∈′′P  that is minimal among the ideals in Χ . Since any prime ideal contained in P ′′  

is in Χ , we conclude that P ′′  is a minimal prime ideal of R. 

 
Proposition 3.5([3], page 51) If R is a commutative ring, then the following are true:  

(a) The intersection of all prime ideals of R is precisely the set of nilpotent element of R. 

(b) For every ideal I of R, the intersection of all of the prime ideals of R containing  I  is  

      the set of elements r ∈  R such that r n ∈  I  for some positive integer  n. 

(c) The ring R is semi-prime if and only if it contains no nonzero nilpotent elements. 

Proof. (a) If r is a nilpotent element of R, then r must be contained in every prime ideal, 

since if P is a prime ideal, then PR  has no nonzero nilpotent elements. Hence, all nilpotent 

elements are in the intersection of the prime ideals. Conversely, if r is not nilpotent, then, 

letting }{ Ν∈= nrX n , we can apply Lemma 3.5([3], page 51) to obtain a prime ideal P of R 

such that ,Pr ∉  and so r is not in the intersection of the prime ideals. 

Clearly, (b) follows from (a) by passing to the factor ring IR  and (c) is a special case of (a). 

 

Definition 3.6  A right, left or two-sided ideal I of a ring R is called a nil ideal if and only if 

∀ a ,I∈ ∃  Nn ∈  such that ,0=nI nilpotent ideal if and only if Nn ∈∃ such that 0=nx . 

More generally, I is called a nil ideal if each of its elements is nilpotent. The sum of all nil 

ideals of a ring R is called the nil radical of R and is denoted by N(R). The prime radical P(R) 

of a ring R is the intersection of all the prime ideals of R. Hence we can conclude that 

).()( RNRP ⊂  

Let R be a semi-prime ring and I,J right ideals of R such that I J = 0. Then (JI) 2  = 0 and (J 

∩ I) 2  = 0. So that JI = 0 and J ∩ I = 0. Moreover, we have the following lemma. 
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Corollary 3.7 [17] 
(a) Every one-sided or two-sided nilpotent ideal is a nil ideal. 

(b) The sum of two nilpotent right, left or two-sided ideals is again nilpotent. 

(c) If R R is Noetherian then every two-sided nil ideal is nilpotent. 

Proof. (a) Clear. 

(b) Let ,RRA >⊂ RRB >⊂ and .0,0 == nm BA We assert that .0)( =+ +nmBA Let 

,,,3,2,1,, nmiBbAa ii +=∈∈ K then by binomial theorem ∏
+

=

+
nm

i
ii ba

1

)( is a sum of products 

of m + n factors of which either at least m factors are from A or at least n factors are from B. 

Since A and B are right ideals the assertion follows. 

(c) Let N be a two sided nil ideal of R. Since RR  is Noetherian, among the nilpotent right 

ideals contained in N, there is a maximal one. Let A be one such and suppose we have 

.0=nA  By (b), A is indeed the largest nilpotent right ideal contained in N. Since for Rx ∈ , x 

A is also a nilpotent right ideal contained in N, A is in fact a two-sided ideal. If for an element 

Nb ∈  we have: ,)( AbR K
>⊂ then it follows that ,0)( =KnbR thus .AbR >⊂  

 
Definition 3.8 A ring R is a prime ring if for any two elements a and b of R, if a r b = 0 for 

all r in R, then either a = 0 or b = 0. 
 

Example 3.9  

 (a) Any domain. 

 (b) A matrix ring over an integral domain. In particular, the ring of 2 x 2 integer  

       matrices is a prime ring.  

 

Lemma 3.10 A non-zero central element of a prime ring R is not a zero divisor in R. In 

particular, the center Z(R) is an integral domain. 
Proof: Let )(0 RZa ∈≠ , and 0=ab .Then .0== RabaRb  implies that 0=b  because R is a 

prime ring. Thus the result follows. 

 

Definition 3.11 A ring R is called a reduced ring if R contains no nonzero nilpotent element.  
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Lemma 3.12 For any semi-prime ring )(, RZR is reduced. 

Proof: Let )(RZa ∈ be such that .02 =a Then 02 == RaaRa  implies that 0=a . 

Note: Let P be a prime ideal, I a left ideal and J a right ideal of a ring R. Then PIJ ⊆  does 

not imply that PI ⊆  or .PJ ⊆  The following statement in the mixed case turns out to be 

valid([20], Prop. 10.2, page 165) RP⊂
≠

 is prime if and only if for any right ideal I and any 

left ideal PIJJ ⊆,  implies that either PI ⊆  or  the ‘if’ part follows directly from Prop. 

10.2[20]. For the ‘only if’ part, let us assume ,PIJ ⊆  where I is a right ideal and J is a left 

ideal. Then RI and JR  are ideals, with .)())(( PRPRRIJRJRRI ⊆⊆=  Therefore, we have 

either PRI ⊆  or .PJR ⊂  This implies that either PI ⊆  or .PJ ⊆  

 

Lemma 3.13 A ring R is a domain if and only if R is prime and reduced. 

Proof: First assume that R  is a domain. Then 0=na  for some N∈n  which implies that 

0=a and so R  is reduced. Also for all ,, Rba ∈  000 =⇒=⇒= aabaRb or ,0=b  so 

R is a prime ring. 

Conversely, assume that R  is prime and reduced. Let Rba ∈,  be such that 0=ab . Then for 

any ,Rr ∈  we have ,0)())(()( 2 === raabbrbrabrabra  so that .0=bra  This means that 

,0=bRa  implying that 0=b or 0=a , because R is a prime ring. This completes the proof. 

 

Proposition 3.14 In a right Artinian ring R , every prime ideal P  is maximal. Equivalently, 

R is prime if and only if it is simple. 

Proof: If PR /  is semi-prime and right Artinian, then it is semi-simple by Proposition 

10.24[20]. Since PR / is in fact prime, it can have only one simple component. Therefore, 

PR / is simple. In other words, P is a maximal ideal. 

In commutative ring theory, it is well-known that R is Artinian if and only if R is Noetherian 

and every prime ideal of R is maximal by Corollary 23.12[20]. 

 
Proposition 3.15 For a ring R, the following conditions are equivalent: 
(i) All proper ideals are prime; 
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(ii) The ideals of R are linearly ordered by inclusion;  

(iii) All ideals RI ⊆ are idempotent. 

 

Proof: (1) ⇒  (2): Let I and J be two proper ideals of R. Then by (i), JI ∩  is prime. So that 

JIIJ ∩⊆  implies that either JII ∩⊆  or JIJ ∩⊆ . Thus, we have either JI ⊆  or 

IJ ⊆ . This follows (ii). 

To show (iii), let us assume that .RI ≠  By (1), 2I  is a prime ideal. Since ,. 2III ⊆ we must 

.2II ⊆ Hence .2II =  

(2) ⇒ (1): Let P be an ideal of R such that ,RP ≠  and let PI ⊇  and PJ ⊇  be  

two ideals of R  such that .PIJ ⊆  We must show that PI ⊆  or .PJ ⊆  By (ii), we may 

assume that .JI ⊆  By(iii), we have .2 PIJII ⊆⊆=  Thus .PI =  If ,IJ ⊆  then by (iii), 

.2 PIJJJ ⊆⊆=  Thus .PJ =       

 

Proposition 3.16 Let )(VEndR K= where V is a vector space over a division ring K. Then R 

satisfies the properties of the above proposition. In particular, every non-zero homomorphic 

image of R is a prime ring. 

Proof. If RVK ,)(dim ∞<  is a simple ring. Therefore, it suffices to treat the case when V is 

infinite dimensional. By Exercise 3.16[20], the ideals of R are linearly ordered by inclusion. 

Next consider any ideal .,0 RI ≠  By Exercise 3.16[20], there exists an infinite cardinal 

)(dim VK<β such that }.)(dim:{ β<∈= VfRfI K  For any ,If ∈  let Rf ∈′  be such that 

f ′  is the identity on  f(V), and zero on a direct complement of  f(V). Then ,If ∈′  and 

.fff ′= Therefore, ,2If ∈  and we have proved that .2II =  

 
Example 3.17 For any integer n > 0, 

(i) 







ΖΖ
ΖΖ

=
n

R  is a prime ring, but 







Ζ
ΖΖ

=′
0

n
R  is not. 

(ii) R is not isomorphic to the prime ring )(2 ΖΜ=P  if n > 1. 
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Discussions: (i) In ,R′  there is a nilpotent ideal 






 Ζ
00

0 n
,0≠  so R′  is not semi-prime. Let 

alone prime. To show R a prime ring, consider it as a subring of ).(2 ΖΜ=P   

Note that .RnP ⊆  If Rba ∈,  are such that ,0=aRb  then ,0=⊆ aRbnaPb  and hence 

.0=aPb  Since P is a prime ring, by Theorem 10.20[20], we can conclude that a = 0 or b = 

0. 

(ii) Assume that n > 1. We show that .PR ≅  By Proposition 3.1[20], the ideals of P are of 

the form ,)()( 22 kPkk =ΖΜ=ΖΜ  where .Ζ∈k  Now R has an ideal ).(2 ΖΜ n  Since this 

ideal of R is not of the form kR  for any integer k, it follows that .PR ≅  

 

In [3], we have the notion of a prime ideal.  

 

Definition 3.18 A proper ideal P in a ring R  is a prime ideal if for any ideals I  and J  of R  

with ,PIJ ⊆  then either PI ⊆  or .PJ ⊆  A prime ring is a ring in which 0  is a prime ideal. 

Note that a prime ring must be non-zero. 

 

Proposition 3.19 ([3], page 48) For a proper ideal P in a ring R, the following conditions are 

equivalent: 

(a) P is a prime ideal.  

(b) If I and J are any ideals of R such that PI ⊃ and ,PJ ⊃  then I J ⊄  P. 

(c) R / P is a prime ring. 

(d) If I and J are any right ideals of R such that I J ⊆  P, then either I ⊆  P or J ⊆  P. 

(e) If I and J are any left ideals of R such that I J ⊆  P, then either I ⊆  P or J ⊆  P. 

(f) If x, y ∈  R with yRx ⊆  P, then either x ∈  P or  y ∈  P. 

Proof. )()( ca ⇒ : Let I and J  be ideals in PR , where P is a prime ideal of R . Then there 

exists ideal PI ⊇′  and PJ ⊇′ such that PII /′=  and .PJJ ′=  suppose ,0=IJ then 

.PJI ⊆′′  since P  is a prime ideal of ,R it follows that  

              either PI ⊆′  or PJ ⊆′  and so either 0=I  or .0=J  
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)()( ac ⇒ : Let PR  be a prime ring and I and J  be ideals of R satisfying PIJ ⊆  then 

PPI )( +  and PPJ )( +  are ideals in PR , whose product is equal to zero,   since PR  is a 

prime ring.  

           We have 0)( =+ PPI  or .0)( =+ PPJ  Hence PI ⊆  or .PJ ⊆  

)()( da ⇒ :  Since I  and J  are right ideal of R, .))(( PRIJRJRI ⊆=   

                Thus PRI ⊆  or PRJ ⊆ , and so PI ⊆  or .PJ ⊆  

)()( ea ⇒  : By symmetry. 

)()( fd ⇒ : Since ,))(( PyRxR ⊆  either PxR ⊆  or PyR ⊆ and so Px ∈  or .Py ∈  

)()( ba ⇒ : I and J  are any ideals of R  then multiplication not containing .P  

 

In [14], Sanh et al. modified the above structure of prime ideals. 

 

Corollary 3.20 ([14], Corollary 1.3) For a proper ideal P  in a ring R , the following 

conditions are equivalent: 

(a) P  is a prime ideal; 

(b) If I and J are any ideals of R such that PI ⊃ and ,PJ ⊃  then I J ⊄  P. 

(c) If I  and J  are any right ideals of R  such that ,PIJ ⊂  either PI ⊂  or ;PJ ⊂   

(d) If I  and J  are any left ideals of  R  such that ,PIJ ⊂  either PI ⊂  or ;PJ ⊂    

(e) If Ryx ∈,  with ,PxRy ⊂  either Px ∈  or ;Py ∈  

(f)  For any Ra ∈  and any ideal I  of R  such that ,PaI ⊂  either PaR ⊂  or ;PI ⊂  

(g) PR  is a prime ring. 

 

In this thesis, we prove some properties of prime and semi-prime rings. 

 

Proposition 3. 21 Every maximal ideal M of a ring R is a prime ideal. 

Proof. If I  and J  are ideals of R  not contained in M  then RMI =+  and 

.RMJ =+ Now MIJMMJIMIJMJMIR +⊆+++=++= 2))((  and hence .MIJ ⊄  

 
Theorem 3. 22 Let R be a commutative ring. 
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(a) A maximal ideal is prime. 

(b) An ideal P is prime if and only if R / P is integral. 

(c) An ideal M is maximal if and only if R / M is a field. 

Proof. (a) Let R be a commutative ring and M be an ideal of R such that .RM ≠  Take any 

ideal A of R such that .RAM ⊂⊂  Let M be a maximal ideal and ., MxRx ∉∈  Then 

.RRxM =+  So RxM +  is a proper ideal ,M≠ and RxM +  must be R , since M  is 

maximal. 

(b) Let R be a commutative ring with unity and P a prime ideal. Clearly PR  is a ring. 

Let .,,, RbaPRPbPa ∈∀∈++  Now  

).)(())(( PaPbPbaPabPbPa ++=+=+=++   

Thus PR  is commutative. Since ,1 R∈ so .1 PRP ∈+  Let .PRPr ∈+  Now 

PrPrPrP +=+=++ .1))(1(  and .1.)1)(( PrPrPPr +=+=++  Thus P+1  is a unity of 

PR . Let PPbPa =++ ))((  additive identity of PR . 

Now PapabPPab ∈⇒∈⇒=+  or Pb ∈ . This means that P is a prime ideal. 

Again, since PPa =+  or ,PPb =+  we can conclude that PR  has no zero divisors. 

Hence PR  is a integral domain. 

Conversely, let PR  is an integral domain. Then P is an ideal. Let .Pab ∈  Then 

PPaPPbPaPPab =+⇒=++⇒=+ ))((  or .PPb =+  So Pa ∈  or Pb ∈ . Hence P is 

a prime ideal of R. 

(c) Let R be a Commutative ring with unity. Let M be a maximal ideal of R, we shall prove 

that MR is a field: we have MR  is a ring. Let RbaMRbMaM ∈∈++ ,;,  

Now ),)(())(( aMbMbaMabMbMaM ++=+=+=++  since R is commutative. 

Therefore MR  is commutative. Since .11 MRMR ∈+∴∈  

Let MRrM ∈+ . Now rMrMMrM +=+=++ 1.)1)((  

MrMrMM =+=++ .1))(1( + 1 

1+∴ M  is the unitary of MR . 

Let Ra ∈  and MaMMa ≠+⇒∉  
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aM +∴  is a non-zero element of  MR . Since M is a maximal ideal of R, so 

,),( RaMM =⊂  ),(1 aM∈  R∈∴1  

arm +=∴1  for some RmR ∈∈ ,1  

Now IMarmmMarMrMaM +=++−=+=++ ))((  identity of MR . 

rM +  is the multiplicative inverse of  .aM +  Hence MR  is a field. 

Conversely, Let MR  is a field, we shall to show that M is a maximal ideal of R. clearly M is 

a ideal. Since MR is a field, so it has at least two element, therefore .MR ≠  Thus 

.MaM ≠+  aM +∴  is a non-zero element of MR . So )( aM +  has a multiplicative 

inverse, say rM + . Since MR is a field. 

1))(( +=++∴ MrMaM  unity of MR  

Mm
Mar

arMM
MarM

∈∃⇒
∈−⇒

−+=⇒
+=+⇒

1
1

1

 

Such that mar =−1  ),(11 amarm ∈⇒+=⇒  

Let ),(1., aMbbRb ∈=∈  therefore ),(),,( aMRaMR =⊂  

Hence M is a maximal ideal of R. 

 
Corollary 3.23[3] For an ideal I in a ring R, the following conditions are equivalent: 

(a) I is a semi-prime ideal. 

(b) If J is any ideal of R such that J 2  ⊆  I, then J ⊆  I. 

(c) If J is any right ideal of R such that J 2  ⊆  I, then J ⊆  I. 

(d) If J is any left ideal of R such that J 2  ⊆  I, then J ⊆  I. 

Proof. :)()( da ⇒  For any ,Jx ∈ we have ,2 IJxRx ⊆⊆ whence Ix ∈  by theorem 3.7[3]. 

Thus .IJ ⊆  

:)()( bc ⇒  If ,IJ ⊄  then JI +  properly contains I. But since 

.)( 222 IJJIIJIJI ⊆+++=+  we have a contradiction to (c). Thus .IJ ⊆  
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:)()( ab ⇒  Given any Rx ∈  such that ,IxRx ⊆  we have IRxRxRxR ⊆=2)(  and so 

,IRxR ⊆ where Ix ∈ . By Theorem 3.7[3] is semi-prime. 

:)()( ca ⇔  By symmetry. 

 

 Note: R is prime ring if and only if 0 is prime ideal. R is semi-prime ring if and only if 0 is 

semi-prime ideal. R is semi-prime ring P(R) = 0 

 

Lemma 3. 24 [21] for a ring R with identity, the following conditions are equivalent: 

(a) R is a semi-prime ring (i.e., P(R) = 0); 

(b) 0 is the only nilpotent ideal in R; 

(c) For ideals I, J in R with I J = 0 implies J ∩ I = 0. 

Proof. ).()( ba ⇒ Let R is prime ring if and only if 0 is prime ideal. R is semi-prime ring if 

and only if 0 is a semi-prime ideal. R is semi-prime ring P(R) = 0. In noetherian rings, all nil 

one-sided ideals are nilpotent. If R is the non zero ring, it has no prime ideals, and so P(R) = 

R. If R is nonzero, at has at least one maximal ideal. A ring is semi-prime if and only if P(R) 

= 0. In any case, P(R) is the smallest semi-prime ideal of R, and because P(R) is semi-prime, 

it contains all nilpotent one-sided ideals of R. Since all nilpotent (left) ideals of R are 

contained in P(R).  

).()( cb ⇒ If AB = 0 then 0)( 2 =⊂∩ ABBA and .0=∩ BA  

).()( bc ⇒ If AA = 0 then also .0==∩ AAA  

).()( ab ⇒ Let .0 Ra ∈≠ Then 0)( 2 ≠Ra and with 0aa = there exists .0 001 Raaa ∈≠ Then 

also 0)( 2
1 ≠Ra and we find ,0 112 Raaa ∈≠ and so on. Hence a is not strongly nilpotent and 

).(RPa ∉ Therefore P(R) =0. 

 

Definition 3.25  The singular submodule of a right R-module M is defined by  

         Z (M) = {m ∈  M: m K = 0 for some essential right ideal K of R}. 

The singular right ideal of a ring R is defined by Z(R R ) = {x R∈ xK  = 0 for some essential 

right ideal K of R}. In other words, x ∈Z(R R ) if and only if r R (x) is an essential right ideal 
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of R, where r R (x) is the right annihilator of x in R. If Z(R R ) = 0 then the ring R is called a 

right non-singular ring. Singular left ideals are defined similarly. 

The singular submodule of a right R-module M is defined by Z(M) = {m mKM∈  = 0 for 

some essential right ideal K of R}. It is equivalent to saying that Z(M) =  {m )(mrM R∈  is an  

essential right ideal  of R }, where r R (m) = {r R∈ mr  = 0}. A right R-module M is called a 

non-singular module if Z(M) = 0 and a singular module if Z(M) = M. 

 

Lemma 3.26 Let R  be a commutative ring. Then the right singular ideal Z(R) of R is zero if 

and only if R is semi-prime. 

Proof: Suppose that R is a semi-prime ring. Let )(RZz ∈ . We will show that z = 0. Set I = 

zR ∩ ).(zrR We have zR ∩ )(zrR  = 0. In fact, for any t ∈  R and any t ′ ∈ )(zrR , we have z t ′  

= 0. So z t t ′= tz t ′  = 0, showing that zR. )(zrR  = 0. We have II ⊆2  = zR ∩ )(zrR  = 0. So 
2I = 0. Since R is a semi-prime ring, 0 is a semi-prime ideal. It follows that I = 0. But )(zrR  

is an essential right ideal of R. This implies that zR = 0. Thus z = 0. 

Conversely, suppose that Z(R) = 0. Let a be an element of R such that 2a = 0. We will show 

that a = 0, from which it follows that R has no non-zero nilpotent element. Let 0 ≠  x ∈  R. 

Then we need to consider two cases: (i) ax = 0 ⇒ )(arR ; (ii) ax ≠ 0 ⇒  a(ax) = 2a x = 0 ⇒  

ax ∈  )(arR . Hence x R ∩ )(arR  ≠  0. Therefore )(arR  is an essential right ideal of R. This 

implies that  a ∈  Z(R). Thus a = 0. 

 

Definition 3.27 Let X be a subset of a right R-module M. The right annihilator of X is the set 

r R (X) = {r ∈  R: x r = 0 for all x ∈  X} is a right ideal of R. If X is a submodule of M, then 

r R (X) is a two-sided ideal of R. Annihilators of subsets of left R-modules are defined 

analogously, and are left ideals of R. If M = R, then the right annihilator of X ⊂  R is  

                  r R (X) = { r ∈  R : x r = 0 for all x ∈  X }  

As well as a left annihilator of X is  

                  l R (X) = { r ∈  R :  r x = 0 for all x ∈  X }. 
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A right annihilator is a right ideal of R which is of the form r R (X) (or simply r(X)) for some 

X and a left annihilator is a left ideal of the form l(X). An element c of a ring R is called right 

regular if r R (c) = 0, left regular if 0)(1 =cR and regular if  

                   r R (c) = l R (c) = 0.  

For example, every nonzero element of an integral domain is regular. Let RMM =  and 

.Mm ∈  Then   RR RmrRrmr ⊂=∈= }0:{)( . 

 
Definition 3.28 A ring R has finite right Goldie dimension if it contains a direct sum of finite 

number of nonzero right ideals. Symbolically, we write .)dim(. ∞<RG   A ring R is called a 

right Goldie ring if it has finite right Goldie dimension and satisfies the ACC for right 

annihilators. 

 

Theorem 3.29 Let R be a ring with the ACC for right annihilators. Then the right singular 

ideal Z(R) of R is nilpotent. 

 
Theorem 3.30 Let R be a semi-prime ring with the ACC for right annihilators. Then R has no 

non-zero nil one-sided ideals. 

 
Corollary 3.31 Let R be a right Noetherian ring. Then each nil one-sided ideal of R is 

nilpotent. 

 

Defination 3.32  An element c ∈  R is called right regular (resp. left regular) if for any r ∈  R, 

cr = 0 ⇒  r = 0 (resp. rc = 0 ⇒  r = 0). If cr = 0 = rc, then c is called a regular element. For 

example, every non-zero element of an integral domain is regular and if F is a field, then any 

element of the set )(FM n  is regular if and only if its determinant value is non-zero. 

Elements which are regular on one side need not be regular. 

 

Theorem 3.33 Let R be a semi-prime right Goldie ring and let I be an essential right ideal of 

R. Then I contains a regular element of R.  
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Lemma 3.34  Let R  be a ring with finite right Goldie dimension and let c be a right regular 

element of R. Then cR *
>⊂ R. 

Proof. Let I be a right ideal of R with I ∩ cR = 0. Since cI ⊂  cR, we can write I ∩  cI = 0 

and so the sum I + cI is direct. Consider (I + cI) ∩  2c I. Take any x ∈  (I + cI) ∩ 2c I. Then 

x = 2c t = u + cv where t, u, v ∈  I. This implies that u = c (ct - v) ∈  I ∩  cR = 0. Also, 2c t = 

cv. Then v = ct ∈  I ∩  cI = 0. So x = 0. This shows that the sum I + cI + 2c I. is direct. By 

induction, the sum I + cI + 2c I + 3c I is direct. Since R has finite right Goldie dimension, 
nc I = 0 for some n  and since c is right regular, we have I = 0. Thus cR is an essential right 

ideal of R. 

 

Definition 3.35 The singular right ideal of a ring R is defined by Z(R R ) = {x R∈ xK  = 0 for 

some essential right ideal K of R}. In other words, x ∈Z(R R ) if and only if r R (x) is an 

essential right ideal of R, where r R (x) is the right annihilator of x in R. If Z(R R ) = 0 then the 

ring R is called a right non-singular ring. Singular left ideals are defined similarly. 

The singular submodule of a right R-module M is defined by Z(M) = {m mKM∈  = 0 for 

some essential right ideal K of R}. It is equivalent to saying that Z(M) = {m )(mrM R∈  is an  

essential right ideal  of R }, where r R (m) = {r R∈ mr  = 0}. A right R-module M is called a 

non-singular module if Z(M) = 0 and a singular module if Z(M) = M. 

 

Lemma 3.36 Let R be a right non-singular ring with finite right Goldie dimension. Then the 

right regular elements of R are regular. 

Proof:  Let c be a right regular element of R. Then by Lemma 3.17, cR *
>⊂ R. But l(c) = 

l(cR). Suppose that l(cR) ≠  0. Then there is a t∈  l(cR) with t ≠  0 such that t(cR) = 0. Since  

cR *
>⊂ R, we have t ∈  Z( RR ) = 0 because R is a right non-singular ring. So t = 0, a 

contradiction. Thus l(cR) = 0 and so l(c) = 0. This means that c is left regular and 

consequently, c is regular. 
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Lemma 3.37 Let M be a right R-module and m ∈  M with m ≠ 0. If X is an essential 

submodule of M, then there is an essential right ideal Y of R such that 0 ≠ m Y ⊂ X. 

 

Lemma 3.38  Let R be a right non-singular ring with finite right Goldie dimension. Then R 

satisfies the ACC and the DCC for right annihilators. 

Proof. Let A, B be right annihilators of R with BA ⊆ . Suppose that A *
>⊂ B. Let b ∈  B. Then 

by Lemma 3.20, there exists an essential right ideal L of R such that b L ⊆  A. This implies 

that )(AlR b L = 0. Since R is right non-singular, we have )(AlR b ∈  Z( RR ) = 0. So )(AlR b = 

0 and thus b ∈  Rr ( )(AlR ) = A. Therefore, A = B. 

Suppose that BA ⊆  and A is not essential in B.  

Then there exists a non-zero right ideal C ⊂  R such that BC ⊆ , CA ∩  = 0 and CA ⊕  
*
>⊂ B. If  CA ⊕  = B, then we are done. Suppose that  CA ⊕  ≠  B. Then there exists a non-

zero right ideal C ′ ⊂  R such that CA ⊕  ⊕  C ′ *
>⊂ B. 

Consider a strictly ascending chain of right annihilators of R: 

1A  ⊂  2A  ⊂ ,…., ⊂  nA  ⊂  1+nA  ⊂  … 

Where 2A  = 1A  ⊕  /
2A , 3A  = 1A  ⊕  /

2A , …, nA  = 1A  ⊕  /
2A  ⊕  … ⊕  /

nA , . . .  

But this contradicts the hypothesis that R has finite right Goldie dimension. So the chain must 

be stationary. Therefore,  nA  = 1+nA  for some n∈  Ν . Thus R has the ACC for right 

annihilators. 

Finally, consider a strictly descending chain of right annihilators of R: 

1A  ⊃  2A  ⊃ … ⊃  nA  ⊃  1+nA  ⊃  … 

Where  1A  = 2A  ⊕  /
1A ,  2A  = 3A  ⊕  /

2A  ⊕  /
1A , . . , nA  = 1+nA  ⊕ /

nA  ⊕ …. ⊕  /
2A  ⊕  /

1A ,… 

But this contradicts the hypothesis that R has finite right Goldie dimension. So the chain must 

be stationary. Therefore, nA  = 1+nA  for some n ∈  Ν . Thus R has the DCC for right 

annihilators. 
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Theorem 3.39  A semi-prime right Goldie ring has the DCC for right annihilators. 

Proof. Let R be a right Goldie ring. Then R has the ACC for right annihilators. By Theorem 

3.29, Z( RR ) = 0, i.e., R is right non-singular. Thus, by Lemma 3.38, R has the DCC for right 

annihilators. 

 



CHAPTER IV 

PRIME AND SEMI-PRIME MODULES 

 

In [14], Sanh et al. introduced the notion of prime and semi-prime submodules of a given 

right R-module. In this thesis, we investigate some properties of prime and semi-prime 

submodules. 

Throughout the work, all rings are associative with identity and all modules are unitary right 

R- modules. Let M be a right R-module and S=End R (M), its endomorphism ring. Recall that 

in Ahmed et al. [14] investigated the following results: 

 

Theorem 4.1 Let X  be a proper fully invariant submodule of M . Then the following 

conditions are equivalent: 

(1) X  is a prime submodule of ;M  

(2) For any right ideal I  of ,S  any submodule U  of ,M  if ,)( XUI ⊂  then either 

XMI ⊂)(  or ;XU ⊂  

(3) For any S∈ϕ  and fully invariant submodule U  of M , if ,)( XU ⊂ϕ  then either 

XM ⊂)(ϕ  or ;XU ⊂  

(4) For any left ideal I  of S  and subset A  of ,M  if  ,)( XAIS ⊂  then either XMI ⊂)(  or 

;XA ⊂  

(5) For any S∈ϕ  and for any ,Mm∈  if  ,))(( XmS ⊂ϕ  then either XM ⊂)(ϕ   or  

.Mm∈  Moreover, if M is quasi-projective, then the above conditions are equivalent to: 

(6) XM  is a prime module. 

 

Proposition 4.2 Let M be a right R-module which is a self-generator. Then we have the 

following: 

(1) If X is a minimal prime submodule of M, then I X  is a minimal prime ideal of S. 

(2) If P is a minimal prime ideal of S, then X : = P(M)  is a minimal prime submodule of M 

and  XI  = P. 
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Theorem 4.3 Let M  be a right R-module which is a self-generator. Let X be a fully invariant 

sub module of M. Then the following conditions are equivalent: 

(1) X is a semi-prime submodule of M; 

(2) If J is any ideal of S such that (2J M) ⊂  X, then J(M) ⊂  X; 

(3) If J is any ideal of S such that J(M) 
≠
⊃ X,  then J 2 (M) ⊄  X; 

(4) If J is any right ideal of S such that J 2 (M) ⊂  X, then J(M) ⊂  X; 

(5) If J is any left ideal of S such that J 2 (M) ⊂  X, then J(M) ⊂  X. 

 

Now, we have more properties about prime and semi-prime submodules. 

 

Definition 4.4 Let M be a right R-module and X, a subset of M. Then the set X ) is called the 

submodule of M generated by X, where X ) = { ∑
≤≤ ni

ix
1

r i  : x i  ∈  X, r i ∈  R, i= 1, . . .  , n; n ∈  

N}, and this is the smallest submodule of M containing X. A subset X of RM  is called a free 

set (or linearly independent set) if for any ,,,3,2,1 Xxxxx k ∈K and for any ,,,2,1 Rrrr k ∈K we 

have .},...,2,1{00
1
∑
=

∈∀=⇒=
k

i
iii kirrx  A subset X of RM  is called a basis of M if M = X ) 

and X is a free set. If a module M has a basis then M is called a free module. 
 

Definition 4.5 A right R-module M is called a self-generator if it generates all of its 

submodules. A right R-module M is said to be finitely generated if there exists a finite set of 

generators for M, or equivalently, if there exists an epimorphism R n →  M for some Ν∈n . In 

particular, M is cyclic if it is generated by a single element, or equivalently, if there exists an 

epimorphism R →  M. It follows that M is cyclic if and only if M ≅ R / I for some right ideal 

I of R. For example, Let M be a right R-module and m ∈  M. Then m generates a cyclic 

submodule mR  of M. There is an epimorphism f : R →  mM given by f(r) = mr and Ker (f) = 

{r ∈  R mr = 0}, which is a right ideal of R. Hence mR ≅  R/ Ker (f). 
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Proposition 4.6 Let M  be a quasi-projective, finitely generated right R-module which is a 

self-generator. If M is a Noetherian module, then there exists only finitely many minimal 

prime submodules. 

Proof. If M is a Noetherian module, then S is a right Noetherian ring. Indeed, suppose that 

we have an ascending chain of right ideal of S, say I 1  ⊂  I 2  ⊂K  Then we have I 1 (M) ⊂  

I 2 (M) ⊂K is ascending chain of submodules of M. Since M is a Noetherian module, there is 

an integer n such that I n (M) = I k (M), for all k > n. Then we have I n  = Hom(M, I n (M)) = 

Hom(M, I k (M)) = I K . Thus the chain I 1  ⊂  I 2  ⊂K is stationary, so S is a right Noetherian 

ring. By Theorem 3.4 [3], S  has only finitely many minimal prime ideals .,,1 tPP K  By 

Proposition 4.2, P 1 (M),K , P t (M) are the only minimal prime submodules of M. 

 
Lemma 4.7  Let M  be a quasi-projective, finitely generated right R-module which is a self-

generator and X, a minimal submodule of M. Then I X is a minimal right ideal of S. 

Proof. Let J be a right ideal of S such that 0≠  J ⊂  I X . Then J (M) is a nonzero submodule 

of M and J(M) ⊂  X. Thus J (M) = X and it follows that J = XI . 

 

Proposition 4.8 Let M  be a quasi-projective, finitely generated right R-module which is a 

self-generator. Let X be a minimal submodule of M. Then either I 2
X  = 0 or X = f (M) for 

some idempotent f ∈  I X . 

Proof. Since X is a minimal submodule of M, I X is a minimal right ideal of S, by Lemma 4. 

1. 7. Suppose that I 2
X  ≠  0. Then there is g ∈  I X  such that g XI  ≠  0. Since g I X  is a right 

ideal of S and g I X  ⊂  I X , we have g I X  = I X . Then there exists f ∈  I X  such that g f = g. 

Then set I = {h ∈  I X : g h = 0} is a right ideal of S and I is properly contained in I X  since f 

∉  I. By the minimality of I X , we must have I = 0. We have f 2  - f ∈  I X  and g (f 2  - f) = 0, so 

f 2  = f. Since f (M) ⊂  X and f (M) ≠  0, we have f (M) = X. 
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Corollary 4.9 Let M be a quasi-projective, finitely generated right R-module which is a self-

generator. Let X be a minimal submodule of M. If M is a semi-prime module, then X = f (M) 

for some idempotent f ∈  I X . 

Proof.  Since M is a semi-prime module, I 2
X  ≠  0. Thus X = f (M) for some idempotent f  ∈  

I X , by Proposition 4.8. 

 

Proposition 4.10 Let M be a quasi-projective, finitely generated right R-module which is a 

self-generator. Then Z(S) (M) ⊂  Z (M) where Z(S) is a singular ideal of S and Z (M) is a 

singular submodule of M. 

Proof. Let f  ∈  Z(S) and x ∈  M. We will show that f(x) ∈  Z (M). Since f ∈  Z(S), there exists 

an essential right ideal K of S such that f K = 0. Then f K (M) = 0.  

From K is an essential right ideal of S, we have K (M) is an essential submodule of M, and so 

x 1−  K (M) is an essential right ideal of R. We have f(x) (x 1−  K (M)) = f(x(x 1−  K (M))) ⊂  f K 

(M) = 0, proving that f(x) ∈  Z (M). 

 

Corollary 4.11 Let M be a quasi-projective, finitely generated right R-module which is a 

self-generator. If M is a nonsingular module, then S is a right nonsingular ring. 

 

Proposition 4.12 Let M be a right R-module which is a self-generator. If M is a semi-prime 

module with the ACC for M-annihilators, then M has only a finite number of minimal prime 

submodules. If   P 1 ,K , P n  are minimal prime submodules of M, then P 1  ∩ ,K ,∩  P n  = 0. 

Also a prime submodule P of M is minimal if and only if I P  is an annihilator ideal of S. 

Proof. Since M is a semi-prime module, S is a semi-prime ring. If satisfies the ACC for M-

annihilators, then S satisfies the ACC for right annihilators. By Lemma 3.4[3], S has only a 

finite number of minimal prime ideals. Therefore M has only a finite number of minimal 

prime submodules, by Proposition 4.2. If P 1 , ,K P n  are minimal prime submodules of M, 

then I
,1P , ,K  I

nP are minimal prime ideals of S. Thus ,0,,
1

=∩∩
nPP II K  by Lemma 3.4[3]. 

But I
,1P ∩ , ,K ∩  I

nP  = I
,1 ,.., nPP ∩∩ K , we have P 1  ∩ , ,K ∩  P n  = 0. Finally, a prime 
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submodule P of M is minimal if and only if I P  is a minimal prime ideal of S. It is equivalent 

to saying that I P is an annihilator ideal of S, by Lemma 3.4[3]. 

 

Proposition 4.13 Let M be a quasi-projective right R-module and X, a fully invariant 

submodule of M. Then the following are equivalent: 

(1) X is a semi-prime submodule of M. 

(2) M / X is a semi-prime module. 

Proof. (1) ⇒  (2). We write X =  
primePMP ii ,⊂

∩ iP  . Then by XPi  is a prime submodule of 

.XM  So )(
,

XPi
primePMP ii >⊂

I  = ( XPi
primePMP ii

)
,>⊂
I  = XX  = 0. Thus 0 is a semi-prime 

submodule of ,XM  proving that XM  is semi-prime. 

)1()2( ⇒ . Since XM  is semi-prime, 0 is a semi-prime submodule of XM .  

We can write 0 = ., iprimeQXMQ
Q

ii⊂
∩   Then 11 )0( −− == ννX ( i

primeQXMQ
Q

ii ,>⊂
I ) = 

).(1

,
i

primeQXMQ
Q

ii

−

⊂>

νI  Since iQ  is a prime submodule of  ,XM  )(1
iQ−ν  is a prime 

submodule of M. Therefore X is a semi-prime submodule of M. 

 

Lemma 4.14 Let M be a quasi-projective, finitely generated right R-module which is a self-

generator. If M is a semi-prime Goldie module, then the left annihilator of every essential 

right ideal of a ring S is zero. 

Proof. Since M is a semi-prime Goldie module, S is a semi-prime right Goldie ring [15]. 

Then the singular ideal Z(S) of S is nilpotent since S satisfies the ACC for right annihilators. 

Since S is semi-prime, we have Z(S) = 0. It implies that the left annihilator of every essential 

right ideal of S is zero. 

 

Theorem 4.15 Let M be a quasi-projective, finitely generated right R-module which is a self-

generator. If M is a semi-prime Goldie module, then for any f ∈  S, the following conditions 

are equivalent: 

(1) f is regular; 

(2) f is right regular; 
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(3) f (M) is an essential submodule of M. 

Proof. Obviously (1) ⇒  (2), By Proposition 3.12 [15], we have (2) ⇒  (3). 

(3) ⇒  (1). Since M is a semi-prime Goldie module, S is a semi-prime right Goldie ring [15]. 

We first show that f S is an essential right ideal of S. Let P be a right ideal of S such that  f S 

∩  P = 0. Then 0 = f S ∩  P = Hom (M, f(M) ∩  P(M)).  

Since M is a self-generator, f (M) ∩P (M) = 0. From f (M) is essential in M, P (M) = 0 and 
so P = 0. Thus f S is an essential right ideal of S. By Lemma 4.14,  l S (f) = l S (f S) = 0. Now, 
put I = r S (f) and we wish to show that I = 0. Choose a right ideal J of S maximal with 
respect to the property that I ∩  J = 0. Then I + J is an essential right ideal of S. We claim 
that  f J is essential in f S. Let  f g be a nonzero element of f S. Put K: = g 1−  (I + J) = {h ∈  S: 
g h ∈  I + J} then K is an essential right ideal of S, so l S (K) = 0  by Lemma 4.14. Thus, 

.0≠fgK  But fgK ⊂  f (I + J) = f J. Therefore f J is essential in f S. Since J ∩  r S (f) = 0, we 
have J ≅  f J. Thus dim (J) = dim (f J) = dim (f S) = dim (Ss). Hence J is essential in S, so I = 
0. 



CONCLUSION 

 
Sanh et al. [14] introduced the new notion of prime and semi-prime submodules and prime 

and semi-prime Goldie modules. We can say that this new approach is non-trivial, creative 

and well-posed.  In [14], many results have been investigated that are unparallel.  

As an extension of our work, we first give the notions of rings of fractions [13]: 

Let R be a ring. Then the right quotient ring (right ring of fractions) of R, if it exists, is a ring 

Q satisfying the following properties: 

(a) R is a subring of Q ; 

(b) Each regular element of R is a unit of Q ;  

(c) Each element Qq∈  is of the form 1−ac for some Rca ∈,  with c regular, i.e., Rqc∈  

for some regular .Rc∈  

In this case, R is said to be a right order in Q. 

 

Let X  be a multiplicatively closed subset of a ring R , i.e., for any ,, Xyx ∈  we have 

Xxy∈  and .1 X∈  Then 1−RX  exists if and only if X satisfies: 

(a) (Right permutable) For any Ra∈  and ,Xx∈  we can find Rb∈  and Xy∈  such 

that ;xbay =  

(b) (Right reversible) For any ,Ra∈  if 0=xa  for some ,Xx∈  then 0=ay for some 

.Xy∈   

If RX ⊂  satisfies (a) and (b), then X  is called a right denominator set. 

 

The following definition is given in [19]. 

Let X  be a right denominator set in the ring .R  For each right R -module ,M  the module of 

fractions of M  with respect to X  is defined by 1−MX with the canonical structure as a right 
1−RX -module.  
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The following results are given in [13]. 

 

Theorem 1  

Let R  be a ring. Then R  has a right quotient ring Q  which is semi-simple artinian if and 

only if  R  is semi-prime right Goldie ring. 

 

Theorem 2  

Let R  be a ring. Then R  has a right quotient ring Q  which is simple artinian if and only if  

R  is prime right Goldie ring. 

 

We hope that the notions of prime and semi-prime modules and Goldie modules given in 

([14],[15]) along with the notion of modules of fractions given in [19] will be strong tools in 

generalizing the above theorem (Theorem 1 and Theorem 2) from rings to modules.  
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