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ABSTRACT

Let R be aring. Then a proper ideal P inaring R is called a prime ideal of R if for any

ideals 1,J of R with 1J — P, theneither | c P or J c P. Aring R is called a prime ring
if 0 isaprime ideal. Let M be a right R-module and S = End, (M), its endomorphism ring.
A submodule X of M is called a fully invariant submodule of M if for any f €S, we
have f(X)c X. Let M be a right R-module and P, a fully invariant proper submodule of

M. Then P is called a prime submodule of M if for any ideal 1 of S, and any fully
invariant submodule X of M, I(X)c P implies I[M)c P or X < P. A fully invariant
submodule X of a right R-module M is called a semi-prime submodule if it is an
intersection of prime submodules. An ideal P inaring R called a semi-prime ideal if it is an
intersection of prime ideals. A ring R is called a semi-prime ring if 0 is a semi-prime ideal.

This study describes some properties of prime and semi-prime ideals in associative rings
modifying the results on prime and semi-prime Goldie modules investigated in [15]. The
structures of prime and semi-prime rings are also available in this study. Finally, some
properties of prime and semi-prime submodules as a generalization of prime and semi-prime

ideals in associated rings are also investigated.
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CHAPTER |
INTRODUCTION

Ring theory is a subject of central importance in algebra. Historically, some of the major
discoveries in ring theory have helped shape the course of development of modern abstract
algebra. In view of these basic connections between ring theory and other branches of
mathematics, it is perhaps no exaggeration to say that a course in ring theory is an

indispensable part of education for any fledgling algebraist.

Background and present state of the problem

Modern ring theory begins when Wedderburn in 1907 proved his celebrated classification
theorem for finite dimensional semi-simple algebras over fields. Twenty years later, E.
Noether and E. Artin introduced the ascending chain condition and descending chain
condition as substitutes for finite dimensionality. Dauns [1] first introduced and investigated
the notion of prime modules. In the literature on module theory, there is another notion of
primal modules due to Dauns [2]. Goodearl and Warfield [3] and McCasland and Smith [4]
introduced the notion of prime submodules of Noetherian modules. Wisbauer [5] introduced
the structure of the category o [M]. He called it the full subcategory of Mod-R whose objects
are M-generated modules, i.e., modules which are isomorphic to submodules of M-generated
modules. Later, Beider and Wisbauer [6] introduced the notion of semi-prime and strongly
semi-prime modules and rings. Lu [7] and Goodearl [8] introduced the notion of prime
submodules of Noetherian modules. In 2004, Behboodi and Koohy [9] defined weakly prime
submodules. Ameri [10] and Gaur et al. [11] introduced the structure of prime submodules
in multiplication modules over commutative rings.

Recently in 2007, Sanh et al. [14] introduced a new notion of prime and semi-prime
submodules over associative rings. A basic tool in the study of Noetherian rings and modules
is the Goldie dimension of modules. In 2007, Sanh et al. [15] introduced the new notion of
Goldie modules. In 2008, Ahmed et al. [16] investigated some properties of semi-prime

modules.



In this thesis, Chapter | deals with the early history of prime and semi-prime rings and
modules. All the essential basic definitions, examples and their properties are given in
Chapter 1I. Chapter 11, deals with the basic properties of prime and semi-prime rings. In this
Chapter, we describe some properties of prime and semi-prime ideals in associative arbitrary
rings modifying the results on prime and semi-prime modules investigated in [15]. In Chapter
IV, some properties of prime and semi-prime submodules as a generalization of prime and

semi-prime ideals in associative rings are investigated.



CHAPTER II
BASIC KNOWLEDGE

Overview

The subject of our study is ring theory. Throughout this thesis, all rings are associative with
identity and all modules are unitary right R-modules. Ring admit a valuable and natural
representation theory, analogous to the permutation representation theory for groups. As we
shall see, each ring admits a vast horde of representation as an endomorphism ring of an
abelian group. Each of these representations is called a module. A substantial amount of
information about a ring can be learned from a study of the class of modules it admits.
Modules actually serve as a generalization of both vector spaces and abelian groups, and
their basis behaviour is quite similar to that of the more special systems. In this chapter, we
introduce the fundamental tools of this study. Section 2.1 reviews the basic facts about rings,
subrings, commutative division ring, center of a ring, integral domain, ring homomorphisms
and other notions. It also introduces some of the notation and the examples that will be
needed later. We denote by R an arbitrary ring and by Mod-R, the category of all right R-
modules. The notation M indicates a right R-module M which, whenle R, is assumed to
be unity. The set Hom(M, N) denotes the set of right R-module homomorphisms between two

right R-modules M and N and if further emphasis is needed, the notation Hom.(M,N) is
used. The kernel of any f € Hom, (M, N) is denoted by Ker (f) and the image of f by Im (f).

In particular, End, (M) denotes the ring of endomorphisms of a right R-module M.

2.1. Preliminaries

Before dealing with deeper results on the structure of rings with the help of module theory,

we provide first some essential elementary definitions, examples and properties.

Definition 2.1.1 A ring R is called commutative if the multiplication operation is

commutative.



Definition 2.1.2 Let R be a ring with unity. Then R then R is called a division ring if every

non-zero element in R has multiplicative inverse in R.

Definition 2.1.3 The ring R is said to be a ring with unity if 3 a multiplicative identity
denoted by 1inRsuchthata. 1 =1.a=a, VaeR.Aring R is said to be a ring without zero
divisors if it is not possible to find two non-zero elements of R whose product is zero i. e. if
ab=0=a=0 or b=0. A field is a commutative ring with unity in which every non-zero

element has its multiplicative inverse.

Definition 2.1.4 The center of a ring R is the subset of R defined by
Cen R={reR:rx=xr VxeR}

which is a commutative subring of R. Of course, Cen R is commutative if and only if R is
equal to its center. We may say that an element r € R is central in case r € CenR. Note that

if A eCenR, then the subring of R generated by A is also in the center of R.

Definition 2.1.5 An element a of a ring R is called a left zero divisor if ab =0 for some non-
zero b e R, right zero divisor if ba =0 for some non-zero b € R and zero divisor if it is a

left or right zero divisor.

Definition 2.1.6 An integral domain is a commutative ring with unity and without zero

divisors. A commutative ring R is called an integral domain if ¥ x,y € R, we have xy =0.

Example 2.1.7 The ring (1,+,-) is an integral domain where | is the set of all irrational
numbers. Also the rings (Z,+,),(Q.+,),(C,+,),(R,+,) all are examples of integral

domains.

Definition 2.1.8 Let R be aring and | be anideal of R. Then I is called a principal ideal of
R if I is generated by a single element. If | is generated by a, then we write |1 = (a). Let R be
a ring and M be an ideal of R such that M = R. Then M is called maximal if for any ideal A
of Rsuch that M — Ac R, then either M = A or A=R.



Let | be an ideal. Then the set F% ={a+1:a e R}isaring for the operations in F% defined

by the following ways:
(I+a)+(I+b)=1+a+band (I+a)(l +b)=1+ab Vva,beR.

This ring is called the quotient ring.

Definition 2.1.9 A mapping f fromaring R intoaring R’ is called a ring homomorphism if
Va,beR (i) f(a+b)= f(a)+ f(b) and (ii) f(ab)= f(a)f(b)
Let f be a homomorphism from a ring R into aringR’, then
Imf ={x"eR": f(x) =x, forsomex e R}
Let f be a homomorphism from a ring R into aring R’. Then
Kerf ={xeR: f(x)=0%
where 0" is the additive identity of R". f is said to be an isomorphism if it is a one-one and

onto.

Definition 2.1.10 Let M be a right R-module. A homomorphism f:M — M s called an
endomorphism. The abelian group Hom (M, M) becomes a ring if we use the composition

of maps as multiplication. This ring is called the endomorphism ring of M, and we denoted
by End; (M).

2.2 Different kinds of submodules
Definition 2.2.1 Let R be a ring with identity and M an abelian group. Then M is called a

right R-module if there exists RxM — M, (r,m) — mr satisfying the following conditions:
i) vVmmeMand VreR=m+m)r=mr+mr’;

(i) VmeMand Vr,r'reR=m(r+r)=mr+mr’;

@iii) YVmeMand Vr,r'eR=m(r+r)=(mnr’;

(iv) VmeMandleR=ml=m.

Similarly, we can define left R- modules by operating to the left side of M. We write

M., (respectively, M) to indicate that M is a right (respectively, left) R-module. Let M be an

R-module. A subset L of M is a submodule of M if L is an additive subgroup and



VmelL,VreR=mrel,ie,L isamodule under operations inherited from M. When L
is a submodule of M, we can define the quotient module (factor module) % with the

operation M /(LxR) — M /L given by

@(m,r) > mr (i)(m+L,r)=(mM+L)r=mr+L.
Let R, S be two rings and M an abelian group. Then M is called an R-S-bimodule if M is a left
R-module, right S-module, and if forany meM, r € R, s € S, we have r (ms) = (r m) s. We
denote itby ;M.

Let M be a module and m € M. An element m generates a cyclic submodule mR of M. There
is an epimorphism « : X — m X given by

a(xX)=mx Vxe X and Ker (a) = {x e X | a(x) =0} = Ann(m),
is the annihilator of m. Hence m X = X/ Ann(m).
Asubset | of aring Ris arightideal if (i)vVx,yel,x+yel,and (ii)vVxel,VreR,xrel.
Every ring R may be considered as a right R-module and every right ideal can be considered
as a submodule of R;.

Let M e Mod -Rand A, Bc. M. Then AnB <. M but AuB may not be a submodule of

M. Suppose that X < M.Consider F ={Ac_ M|X c A}. Since M € F, we have F = ¢.

Then |X) = ﬂ A is a submodule of M. This is the smallest submodule of M containing X.

XcAc. M
Then |X) is called the submodule of M generated by X, and |X) = {inri|xi e X,
i=1
rreR,i=12,...,n;ne N}

Consider [B) = {D_xr|x, € X, r; eR,i=12,...,n;n e N}.
i=1

Then |X) ={>_xr|x € X, r, eR,i=12,...,n;ne N}
i=1
For x e X,x =X, € B.So, X = Band so |X) = B. for any

Zn:xiri eB,x e X c|X)= Zn:xiri e|X)and so B < |X).
i=1 i=1



Hence B =|X).If A Bc, M,.Asweknow AUB z_ M.

Consider [AUB) <, M.

Then |[AUB) ={D> xr :x, € AUB,I, eR}.
i=1

Now Zn:xiri = Zn:airi + Zn:biri =a+h.
i=1 i=1 i=1
Then [AUB)={a+blac ArbeB}=A+B.

A submodule A of M is called a direct summand of M if there exists a submodule
B <. Msuch that M = A+Band AnB ={0}. In this case, we write M = A® B and call

M a direct sum of A and B or the sum A + B is direct. In general, for i e I, let A, . M;.

The sum > A <. M is called a direct sum if forany jel,

iel

AN DA =0.

i iel
Definition 2.2.2 Let M and N be R-modules. Amap f :M — N isahomomorphism if
) VmmeMand VreR= f(m+m’)=f(m)+ f(m)

(i) VmeM and VreR= f(mr)=f(m)r

If f:M — N isR- linear, we define its kernel as kerf ={meM : f(m)=0}

and itsimage as Imf={ f(m): me M }. Kerfis a submodule of M and

Imf is a submodule of N. fis called a monomorphism if f(m)= f(m’).

Definition 2.2.3 Let A <_ M_.Since M is an abelian group, (M/A,+)is also an abelian

group. We provide a scalar multiplication to make M/A a right R-module:
(M/A)xR —> M/A (m+Ar)— (m+A)r=mr+A Then M/A is a right R-module, called
the factor module of M by A.

Definition 2.2.4 An R-homomorphism f : M, — N is called



(i) a monomorphism if forany X e Mod -R and for any homomorphism
h,g: X - M, foh = fog = h =g.

(ii) an epimorphism if for any X € Mod — R, and for any homomorphism
h,g:N — X,hof =gof = h=g.

(iii) an isomorphism if f is a monomorphism and an epimorphism.

Remarks
(i) f:M; — Ny isamonomorphism iff f is one-one.

(if) f : Mz — Ng is an epimorphism iff f is onto.

Definition 2.2.5 A ring R is semi-simple (or completely reducible) if R is semi-simple as a
right R-module. A right ideal I of R which is simple as an R-module am called a minimal
right ideal. A semi-simple ring is thus a direct sum of minimal right ideals, and every simple
module is isomorphic to a minimal right ideal of R. The module 0 is semi-simple as an empty
sum of simple submodules but 0 is not a simple module, since it was assumed that for a
simple module R, R # 0. Every abelian group may be considered as a Z-module; so an
abelian group is semi simple if it is a semi simple Z-module. The factor group Z /nZ, n #
0, is a semi-simple Z-module if and only if n is square-free (i.e., n is the product of pair-wise

distinct prime numbers, n=p,,..., p,or n = £1). The modules Z,and Q, are not semi-

simple since they have no simple submodules.

Proposition 2.2.6([19], page 23) The following properties of a module S are equivalent:

(@) S is semi-simple.

(b) S is a direct sum of simple modules.

(c) Every submodule of S is a direct summand.

Proof. (a) < (b)follows from Proposition 7.1([19], page-23) (with L = 0), and also
(a) < (c) is an immediate consequence of Proposition 7.1.

(c) < (a): The sum of all simple submodules of S is a direct summand of S, and in order

to show that the complementary summand is zero, it is enough to show that every non-zero

submodule L of S contains a simple submodule.



The module L may as well assumed to be cyclic, so by Lemma 6.8[19], it contains a

maximal proper submodule M. The submodule M splits S as S=M @K,and then

L=M @ (K nL).Itfollows that K "L = L/M is a simple submodule of L.

Lemma 2.2.7 Let A be a right ideal of a ring R. Then
Ac®R, < JeeR,e’=e:A=¢R.

Proof. Assume that A c® R,. Then there exists a right ideal B —_ R, such that R = A® B.
Since 1e R=A®B, thereexists ec A, f eB:1=e+ f. Then e=e® +ef and e=e” + fe.
Then ef = fee AnB =0, and so e =e?. This shows that e is an idempotent. Similarly, we
can show that f2=f. We first have, aRc A Let aeA Then
a=ea+fa=>a-ea=faeBNA=0. So a=eaceR. Hence AceR. Thus A =eR.
Conversely, assume that there exists an idempotent e R such that A=eR. Since
(1-e)* =1-e—e+e”°=1-¢, and 1=e+(1-e)ceR+(1-e)R, we have R=eR+(1-¢)R.
For each xeeRn(1-e)R, we have x=er =(1-¢e)s for r,seR. Since ex=eer =er =X
and ex=e(l-e)s=(e—e’)s=0. we havex=0. So eRN(@1-e)R=0. Thus

R=eR®(1-e)R.

Definition 2.2.8 Let M be a right R-module and let ABc, M. If AnB =0,we write
A+B=A®B. Wenote that if xe A@B,then x=a+b,where ae A and b € B.

Theorem 2.2.9 If A® B is the internal direct sum and A, B are submodules of M, then show

that A@B <. M.

Proof. Consider AxB ={(a,b)|a € AAb e B}, we can consider as A]_[ Bor AH B. Itis
clear that AxBis a right R-module but AxBz_ M. Define ¢:AxB—> A®B by
p(a,b)=a+b for all ae Aand beB. Then ¢ is an R-homomorphism, because for any
(a,b),(a’,b") e AxBand for any r e R, we have
o((a,b)+(@'\b))=¢p(a+a',b+b)=(a+a)+(b+b")=(a+b)+ (@ +b’)=gp(ab)+ @b,
and ¢((a,b)r) = p(ar,br) =ar +br =(a+b)r =¢(a,b)r.
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Also, p(a,b)=¢p(@’,by=>a+b=a"+b'=a=a"Ab=b"= (a,b) =(a’,b’), showing that ¢
is a monomorphism. Forevery ye A@B, y=a+b where ac A/beB.
Choose x = (a,b) e Ax B. we have ¢(x) =y. then ¢ is an epimorphism. Thus ¢ is an

isomorphism, i.e., AxB= A®B.

Definition 2.2.10 Let {A,iel} be a family of submodules of M. If for any

jel,A,n D> A =0,then > A is called the direct sum of {A,ie I}which is denoted by

el i#] iel

DA.

iel

Theorem 2. 2.11([20], Lemma 7.2, page-246) Let M be a right R-module.
(1) Z (M) is a submodule, called the singular submodule of M.
(2) Z (M). Soc(R) = 0, where soc(R ) denotes the socal of R

(3) If f: M — N is any R-homomorphism, then f (Z (M)) < Z (N).

(4) If M <N, then Z (M) =M ~ Z (N).

Proof. (1) If m,m,eZ(M),then ann(m)c., Ry (G = 1, 2) imply that
ann(m,) nann(m,) c, R;. since ann(m, +m,)contains the L.H.S, it follows that
m, +m, € Z(M). It remains to prove that ann(m) <, R, = ann(mr) <, R;Vr € R. For this
we apply the criterion for essential extensions in (3.27) (1). Give any element
Se R|ann(mr), we have m(rs) = 0,s0 from ann(m) c, Ry, we see that m(rst) = 0for some
t € Rsuch that rst # 0. now we have 0 = st € ann(mr) which yields the desired conclusion
ann(mr) c, R;.

(2) For any meZ(M),ann(m) <, R;,so by Exercise (6.12) (2), ann(m) o soc(Rg).this
shows that m.soc(Ry) = 0.

(3) Follows from the fact that ann(m) < ann(f (m)) foranyme M .

(4) Directly from definition.
Note that for any f € S = End (M), we have f (Z (M)) < Z (M), i.e,, Z (M) is a fully

invariant submodule of M.
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Example 2.2.13[20]

(@) Any simple ring is nonsingular.

(b) Any semi simple ring R is nonsingular because R has no proper essential one-sided ideals.
More precisely, a ring R is semi simple if and only if any right R-module M is nonsingular.
(c) Let M < N be a right R-modules. If N is nonsingular, then so is M, and the converse
holds if M is essential in N. In particular, we see that M is nonsingular if and only if its

injective hull E (M) is nonsingular.
2.3 Noetherian and artinian modules

Definition 2.3.1 A right R- module M is called noetherian if every non empty family of
submodules has a maximal element by inclusion. A ring R is called right noetherian if Ry is

artinian as a right R- module.

Proposition 2.3.2 ([19], page 12) A module is noetherian if and only if every strictly
ascending chain of submodules is finite.

Proof. Let M be noetherian and M, c M, c....... an ascending chain of submodules. The

submodule U M; has a finite number of generators, and all of them must lie in some M, . It

follows that the chain gets stationary at M, . Conversely, it is easy to see that the ascending
chain condition for submodules implies that every submodule has a finite number of

generators.

The “assending chain condition’, i.e. finiteness of all strictly ascending chains, is usually

abbreviated as ACC.

Proposition 2.3.3 ([19], page 12) Let L be a submodule of M. Then M is noetherian if and
only if both L and M / L are noetherian.

Proof. M noetherian obviously implies that L is noetherian. It also implies that M/L is

noetherian, because the submodules of M/L can be written asM’/L, there LcM'c M .
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Suppose conversely that L and M/L are noetherian. If M’ is a submodule of M, then
LAM’ is finitely generated as a submodule of L,and M'/(LNM")=(L+M")/L is
finitely generated as a submodule of M/L. It follows from Lemma 3.1(ii) ([19], page-11)
that M is finitely generated. Hence M is noetherian.

The ring R is right noetherian if R; is a noetherian module, i.e. every right ideal of R is

finitely generated.

Proposition 2.3.4 ([19]) If A ring noetherian, then every finitely generated module is
noetherian.
Proof. If R; is noetherian, then every finitely generated free module is noetherian by Prop.

2.3.3, and therefore every finitely generated module is a quotient of a noetherian module and
hence noetherian by Prop. 2.3.3.

Definition 2.3.5 A right R-module M is called artinian if every nonempty family of
submodule has a minimal element by inclusion. A right R is called right- artinian if Ry is

artinian as a right R-module.

Proposition 2.3.6 For an Artinian ring R the following statements are equivalent:
(@) R is semisimple;

(b) Every right ideal of R is of the form eR, where e is an idempotent;

(c) Every nonzero ideal in R contains a nonzero idempotent;

(d) R has no nonzero nilpotent ideals;

(e) R has no nonzero nilpotent right ideals.

Proof: (a) = (b).If Zis a right ideal of a semisimple ring R, then, by theorem 2.2.5[19] and
proposition 2.2.4[19] R=/¢®¢'.Let 1=e+e’ be a corresponding decomposition of the

identity of the ring R in a sum of orthogonal idempotents, then by proposition 2.1.1, 7 =eR.
(b) = (c)is trivial.

(c) = (d) Follows from the fact that if e is a nonzero idempotent, then e" = e = 0 for some n.
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(d)=(e).If ¢+#0is a nilpotent right ideal, then R/is a two-sided ideal of R and

(RO™ = R¢"implies that R/ is nilpotent as well.

(e) = (a).If 7is a simple submodule of the right regular module, i.e., a minimal right ideal

in the ring R, then by hypothesis ¢? # 0and, by lemma 9.2.8[19] ¢ = eR, where ¢ is a nonzero

idempotent. Therefore, by proposition 2.1.1, there is a decomposition of R is Artinian, by

proposition 2.2.4, the ring R is semisimple.

Definition 2.3.7 A nonempty family of submodules of M is said to satisfy the Ascending
Chain Condition (briefly, ACC) if for any chain

M,cM,c...cM, c..
of submodules, there exists a positive integer n such that M ,, =M, forn=1,2,.... Aright
R-module M is called noetherian if and only if every nonempty family of submodules of M
has a maximal element by inclusion. A ring R is called right (res., left) noetherian if and only

if R ; is a noetherian right (res., left) R-module. The ring R is called a noetherian ring if it is

both right and left noetherian.

Theorem 2.3.8 ([18], page-127, Prop. 10.9) Let M be a right R-module and Ac_ M. Then

the following conditions are equivalent:
(1) M is noetherian;
(2) A and M/ A are noetherian;

(3) Any ascending chain A, . A, c_...c. A, c. ...of submodules of M is stationary, i.e.,
there exists n e N such that A, = A,,; This condition is called the ascending chain condition

or ACC.

(4) Every submodule of M is finitely generated.

Proof. (1) = (3) : Suppose that every nonempty family of submodules of M has a maximal
element by inclution. Given an ascending chain

Ac Ac ..c A c A.,c. ..
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Let Y :{A| I € N}. By hypothesis, we can find a maximal element of Y by inclusion, say
A.. We can see that for any n>k, A —_ A,. But then since A is maximal, A . A.
Hence for any n >k, A, = A.. This implies that the chain is stationary.

(3) = (1) : Let X be a family of submodules of M and let

AlgAngsggAng

be a chain in X. By assumption, this chain is stationary. So, we can find A, such that
A c A,, foranyi. By Zorn’s lemma, X has a maximal element. Then M is noetherian.
(3) = (2): Let X,c. X,c,...c. X, c X, C. ...
be a chain of submodules in A. Then this chain is also a chain in M and hence it must be
stationary. So A is noetherian. Now let

X,c, X, ...c. X, c X, C, ... (*)
be a chain of submodules in M / A Then X,=A/AX,=A/A,....with
Ac Ac ..c A c. A, c...c. M.since M is noetherian, M satisfies (3), and so
we can find n, € N such that A, = A, Hence the chain () is stationary, proving that M /

A is noetherian.
(2) = (3) : Assume that A and M / A are noetherian. Let

Since A is noetherian, by (3), there exists n, e N such that for any K >0, we have

A« "A=A N A. Consider (A +A)/Ac, M/A sowe have
(A+A)/Ac (A +A)/Ac, ... c (A +A)/Ac, ... . M/A

Since M/A is noetherian, there exists n, € N such that for any k > 0, we have

(A« +A)/A=(A, +A)/A. Hence forany k>0, we have A ,, + A=A +A

Put n, = max{n;,n,}. Then forany n>n,,we have A, NnA=A ,, A forall k>0 and

A, +A=A, , +A forall k>0.Thus forany k >0, we have

A = An0+k m(An0+k + A) = An0+k m(Ano + A) = An0 + (An0 M A) = Ano.

Ng+k
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Hence M is noetherian.
3= (4): Let Ac. Mandlet 0#m, € A Then mRc_ A If mR=A, then we are done.

Suppose m;R # A.we can find m, e A/m,R and then m;R <. mR+m,Rc_ AlIf
m,R+m,R = A, then we are done. Continuing in this way, we have a chain
mRc. mR+m,Rc. mR+m,R+mR . ...
in A by (3), this chain is stationary. Thus M is finitely generated.
4)=>@): Let Ac A c ... c. A c. A, C e be a chain in M. Then

>

o0

UAi :ZAi = A So Ac_ M. By (4), A is finitely generated. Then by the property of

i=1 i=1

finitely generated module, we can find i,.....,i;such that A=A +... +A, . Let

n=max{i,,...... 1. }. Then A= A, proving that the above chain is stationary.

Definition 2.3.9 A nonempty family of submodules of M is said to satisfy the DCC if for
any chain M, oM, o......... >M o... of submodules, there exists a positive integer n
suchthat M ., =M for n=1,2, ...

A right R-module M is called artinian if and only if every nonempty family of submodules of
M has a minimal element by inclusion. A ring R is called right artinian if R ; is an artinian

module. The ring R is called an artinian ring if it is both right and left artinian.

Theorem 2.3.10 [18] Let M be a right R-module and let A be its submodule. Then the
following statements are equivalent:

(@) M is artinian;

(b) Aand M/ A are artinian;

(c) Any descending chain A, > A, o...o A, ... of submodules of M is stationary. This

condition is called the descending chain condition or DCC.
(d) Every factor module of M is finitely co-generated.
Let 0> X ->Y — Z — 0 be an exact sequence of right R-modules. Then Y is noetherian

(resp. artinian) < X and Z are noetherian (resp. artinian).
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Corollary 2.3.11 [3] (1) The image of artinian (resp. noetherian) module is also artinian(
resp. noetherian ).
(2)The finite sum of artinian ( resp. noetherian ) submodules of M is also artinian (resp.
noetherian).
(3) The finite direct sum of artinian (resp. noetherian) modules of M is also artinian (resp.
noetherian).

(4) If R is semi-simple, then R is both left and right artinian (resp. noetherian).

Remarks. (1) If a ring R is right artinian, then R is right noetherian but the converse is not

true. For example, consider Z (northerian), mzZcnZ < n|m and
mZcmZcmZc...<m,/m,m,/m,,...

The chain 2Z 52°Z>52°Z>...52"Z >....is not stationary. So Z is not artinian. Thus Z
is noetherian but not artinian.

(2) A right R-module M is artinian but it need not be noetherian. For example, the Prufer

group Z ,, where Q, ={%|a €eZand ieNc, Q}where ZcQ,and Q,/Z=Z ,.

In Z o, there are infinite ascending chains of submodules, so Z j o does not satisfy the

ACC and consequently, it is not noetherian. The module Z, is noetherian but not artinian.
Indeed, since every ideal of Z is principal and therefore finitely generated, it is noetherian.

Since the chain Z 2Z 52°Z > ...is not stationary, we can conclude that Z, is not

artinian. The Prufer group Z o : = Q_/Z is artinian but not noetherian. The

Z
ring R :(O g] is right noetherian but not left noetherian. On the other hand, the ring

R
R= (g Rj is right artinian but not left artinian.

Definition 2.3.12 Let A be a submodule of a module M. Then A is a direct summand of M if

there there exists a submodule B of M such that M = A® B which is equivalent to saying that
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M = A+B and AnB = 0 = {0}. The direct summands of R correspond to idempotent

elements of R, i.e., ec R suchthate®=e.

Definition 2.3.13 Let M be a right R-module and X, a subset of M. Then the set |X ) is

called the submodule of M generated by X, where |X ) ={ in r.:x, e X,;r,e R I=1,.

1<i<n
., N; n e N}, and this is the smallest submodule of M containing X. A subset X of M is
called a free set (or linearly independent set) if for any X, X, X;,...,X, € X,and for any
K
rr,...r €R,we have inri =0=r =0Vie{l2,..,k}.A subset X of M is called a
i=1

basis of M if M = |X ) and X is a free set. If a module M has a basis then M is called a free

module.

Definition 2.3.14 A right R-module M is said to be finitely generated if there exists a finite
set of generators for M, or equivalently, if there exists an epimorphism R" — M for some n
e N. In particular, M is cyclic if it is generated by a single element, or equivalently, if there
exists an epimorphism R — M. It follows that M is cyclic if and only if M =R / | for some
right ideal | of R. For example,

let M be a right R-module and m € M. Then m generates a cyclic submodule m R of M.
There is an epimorphism f : R — mM given by f(r) = mr and Ker (f) = {r € R | mr = 0},
which is a right ideal of R. Hence mR = R/ Ker (f).

Lemma 2.3.15 ([19], page 11) Let X be a submodule of a right R-module M.
(@) If M is finitely generated, then so is M / X.
(b) If X and M / X are finitely generated, then so is M.

Proof. (i): If x,,..., X, generate M, then X, ,...,x, generate M/X .
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(ii): Suppose X is generated by x,,---,x, and M/X is generated by §/1y_n where
Y, eM. If xeM, then x=Yy.a, and hence x-Y y,a e X, 50 x-> ya = xb,.

Thus M is generated by X,,..., X, Yi,..0 Y,

1.\i)= Z., \§)=(6,E,Z)=\Z), \§)={6,§}, \§,§)= Z ., because
x3 +y2 =1 forsomex,y € Z.
2. {2} is not free because 3 x 2 =0, {2,3} is not free

because 3 x 2 + 2x3 = 0.

Hence Z , is a finitely generated Z-module.

Theorem 2.3.16 The following statements hold:
(1) Every free right R-module is isomorphic to R™) for some set X.

(2) Every right R-module is an epimorphic image of a free module.

Proof. (1) we have R™ =] [R, ={(r,)

xeX

(r,),_, has finite support}.

Lete, = (5 then {e,|x € X}is a basis of R™, and so R™’, is a free module. Let M be a

xy)yex.

free right R-module with X as its basis. For any meM,we can write

Kk
m=>xr = > xr,,r,=0buta finite number.
i=1

xeX

Define M — R™by o(m) =D xr,) = (r),for all me M. It is clear that pis well-

xeX

defined. To show that ¢ is a homomorphism. Let m = ZxrX and m’' = z xr, be any element

xeX xeX

in M. Since m+m’ = > x(r, +r;)and mr = (Q_xr,)r =Y x(r,r),

xeX xeX xeX
we have pM+m’) = (r +1)ex = (L) xex + () ex = @(M) + (M), and

p(mr)=(r,r),.x =(,),xr=e(m)r. Then ¢ is an R-homomorphism.
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Let m=>xr,, and m=>xr, be in M such that ¢(m)=gp(m).

xeX xeX

Then(r,),.x =(),x = I, =VXe X = xr, = xr,VxeX

Xr, =Xr, VXe X =>m= ZxrX = Zxrx’ =m’. This shows that ¢ is a monomorphism.

xeX xeX

Again, let (rx),., be an arbitrary element in R”. Considerm = )" xr, . Then

xeX

xeX

> xr, is a finite sum because (rx)

xeX

has finite support. This means that ¢(m) = (r,)

xeX xeX *

Hence ¢ is an epimorphism. Thus ¢ is an isomorphism.

(2) To show that for any M € Mod —R, there exists a free module F e Mod —R and

@:F — M is an epimorphism. Let X be a generating subset of M. Then M = |X).Consider

F =R™.Then F is free. Define 9:R™ — M by o((r,),.x) = D xr, . Then it is obvious

xeX

that ¢ is an epimorphism.

Definition 2.3.17 A module M is simple (or irreducible) if M = 0 and the only submodules of
M are 0 and M. Every simple module M is cyclic, in fact it is generated by any non-zero x
e M. It is clear that M is simple if and only if M = 1/ J, where J is a maximal right ideal of
l.

Proposition 2.3.18 ([19], page 9) The following properties of an exact sequence

0 > X —“%5Y —£5 7 — 0are equivalent:

(a) The sequence splits.
(b) There exists a homomorphism ¢:Y — Xsuchthat p o =1, .
(c) There exists a homomorphism y: Z — Y suchthat g v =1,

Proof. It is clear that (a) implies (b) and (c). Suppose (b) is satisfied. The maps
@:Y > Xand SB:Y —>Z can be used to define x:Y > X ®Z so that the diagram(1)

commutes. g is an isomorphism by Prop. 1.3 [19]. Hence the sequence splits. The proof of

(c) = (a) goes dually.
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A module Y is said to be generated by a family (x;), of elements of Y if each x €Y can be

written X = in a, with all but a finite number of a, equal to 0. It it furthermore is true that
|

the coefficients a, are uniquely determined by x, then the family (x;), is a basis for Y. A

module is called free if there exists a basis for it.

Theorem 2.3.19 ([18]) For a left R-module the following statements are equivalent:
(@) M is semisimple;

(b) M is generated by simple modules;

(c) M is the sum of some set of simple submodule;

(d) M is the sum of its simple submodules;

(e) Every submodule of M is a direct summand,

(F) Every short exact sequence 0 - L - M — N — 0 of left R-modules splits.

Proof. (a)= (b)Let M be a semisimple left R-module with semisimple decomposition

M=®,T,.If 05>K—>M—25N -0 is an exact sequence of R-modules, then the
sequence splits and both K and N are semisimple.

Since Imfis a submodule of M. The sequence splits and N=M/Imf=®,T,. But
alsoM = (©,,T,) ®(®,T,), so that K=Imf=®,,T,.Every submodule and every

factor module of a semisimple module are semisimple. Moreover, every submodule is a
direct summand.

(f)=(e) A shortexact sequence0 - L - M —> N — 0. Let M, and M, be submodule
of a module M. so M = M,+ M, and M, ~n M, = 0, then M is the direct sum of its
submodules M and M,, and we write M = M, ® M,. ThusM = M; ® M,. If and only if
for each x € M there exists unique elements x, € M, and x, € M, such that x = x, + X,.

A submodule M, of M is a direct summand of M in case there is a submodule M, of M with
M= M,® M,;suchan M, isalso a direct summand, and M, and M, are complementary

direct summands.

Also (b) < (c) < (d) are all trivial. Finally, (e) = (d). Assume that M satisfies (e). We

claim that every non-zero submodule of M has a simple submodule. Inded, Let x = 0in M.
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Thus (2.8) R has a maximal submodule, say H. By (e), we have M =H @& H'for some
H'’ < M.Thus by modularity (2.5), R, =R, "M =H ® (R, nH")and R, nH'=R,/H is
simple, so R, has a simple submodule. Let N be the sum of all simple submodules of M.

Then M =N®N',by (¢) for some N'<M. Since NNN'=0, N’ has no simple

submodule. But as we have just seen, thismeans N'=0. so n=M.

Definition 2.3.20 A module M is called a semi-simple module if and only if every

submodule of M is a direct summand, i.e., M is semi-simple if and only if for any submodule
X < M, there exists a submodule Y < M suchthat M = X @Y .

Definition 2.3.21 A submodule X of M € Mod-R is called a simple submodule(or minimal
submodule) if X is a simple module, i.e.,

X <. M is minimal < M is nonzero and Vv submodule

Xc. M0c, Xc. M=X=M

Definition 2.3.22 Let X be a submodule of a right R-module M . Then X is called a
maximal submodule of M or maximum in M if X # M and for any submodule Y c_ M, if

Xc. Yo, MthenY =XorY =M

Theorem 2.3.23 The following statements hold:

(@) Every finitely generated right R-module contains at least one maximal submodule.
Therefore, every ring with identity contains at least one maximal right ideal.

(b) For any submodule X <, M, X is maximal if and only if M / X is a simple module.

(c) Mis simple if and only if forany 0 # m € M, M = mR.

Proof. (a) We will prove that every proper submodule of a finitely generated right R-module

M is contained in a maximal module. Let M:inR and Ac_=# M. Clearly,
i=1

{Xifie{t,....nNz A (If not, we have A= M,a contradiction). Consider
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Y={Xc MAcX and X =M}
We note that Ac Aand A= M,s0 AeY. Thus Y # ¢. Let
AchAhc.cAcA, c..

be a chain in Y and B=UAn. If B=M,we have x,;,...,X, €B, there exists
=1

A such that x, € A , X, € A ,...,X, € A, Choose m=max{k,,...,k,}. We have

--------

X;,-., X, € A, implying that A, =M, a contradiction. Then B M and UAn c. M.

n=1

Hence B € F. By Zorn's lemma, Y contains a maximal element, say C.

Claim. C is a maximal submodule of M. Since CeF,C=M. Suppose that
Cc.#Yc M. IfY =M, then AcY and Y = M. It follows that Y € F contradicting the
maximality of Cin Fso, Y =M

Assume that M is simpleand 0=me M. Then 0 #mR c_ M, and hence M =mR.
Conversely, assume that M =mR forall 0=me M. Let X 0 and X —_ M. Then there

exists xe M < X and x#0. Hence M =xRc_ X,andso M = X.

Note: Semisimple module < sum (or direct sum) of all simple submodule

< Every submodule is a direct summand.

Definition 2.3.24 A submodule A of a right R-module M is called essential or large in M if
for any nonzero submodule U of M, ANU= 0. If A is essential in M we denote Ac. M . A

right ideal | of a ring R is called essential if it is essential in R . For any right R-module M,

we always have M <. M. Any finite intersection of essential submodules of M is again

essential in M, but it is not true in general. For example, consider the ring Z of integers.
Every nonzero ideal of Z is essential in Z but the intersection of all ideals of Z is 0 which is
not essential in Z. Since any two nonzero submodules of Q have nonzero intersection, Q is

an essential extension of Z. A monomorphism «: U — M is said to be essential if

Im(x)c. M.
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AcM < 02U c_ M,ANU =0.
svVUc, MU=0=ANU =0
& vUc M,ANU=0=U =0.

Proposition 2.3.25 In Z, every nonzero ideal is essential.
Proof. Let0 # | ¢ Z.Then 3 me Z :1=mZ. For any nonzero ideal J — Z, we can find

anne Z:J=nZ.Thusl nJ=mZ nnZ=mnZ,somnelnJandsol nJ = 0.

Therefore, | . Z.

Proposition 2.3.26 Let M be a right R-module. Then for any submodule A .M, A .M
SVmeMm=0 3IreRimr=0andmr € A
Proof. Assume that Ac. M. Choose m € M, m = 0. Then mR =0, and so A~mR 0.

then there exists 0 # x e AnmR.

This means that 0= xe A and there exists reR such that x=mr. Therefore,
O=x=mreA

Conversely, let U be a nonzero submodule of M. Choose 0= m eU. By hypothesis, there

exists reR with mr=0 and mr e A. But then since mreU, we have mr =0 and

mre AnU. Hence Ac. M.

Proposition 2.3.27 For any M € Mod-R, let A . B —_M. If A .M, then (i) Ac_B, and
(ii) B .M.

Proof. (i) Let Uc_B be such that U =0. then U is a submodule of M Since
Ac. M,UnA=0.Hence Ac_ B.

(i) Let U <. M besuchthat U #0. Then 0= AnU < BnU, because AnU = 0,and so

B .M.

Proposition 2.3.28 Let A and B be essential submodules in M. Then A ® B c_Mand A

N Bc. M.
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Proof. Let U . M be suchthat U #0. Then U n(AnB)=U nA)nB =0.
Hence A M B . M.Wehave Ac_ A @ B c_M and A . M, implyingthat A @ B .M

Note: Every =0 submodule of M is essential is M, i.e., a non-zero submodule A of M is

called essential in M if A has non-zero intersection with any non-zero submodule of M.

Definition 2.3.29 A submodule A of M is called superfluous or coessential or small in M if
for any submodule U of M, A + U = M implies U = M, or equivalently, U = M implies X +
U = M. Aright ideal I of a ring R is called superfluous in R if it is a superfluous submodule
of R. Every module has at least one superfluous submodule, namely 0.

The sum of a finite number of superfluous submodules of M is again a superfluous in M, but

we are not sure about the arbitrary sum. For example, take Q, as a Z-module. In Q, , every

cyclic submodule is superfluous but the sum Zqz = Q which is not superfluous in Q. An
9<Q

epimorphism & : M — N is said to be superfluous if Ker(5)c? M. If A is superfluous in M
we denote by

AcM,ie, Acc M VU MA+U =M =U =M.

2.4 Radical and socle of modules

Definition 2.4.1 Let M be a right R-module. Then the sum of all superfluous submodules of
M is called the radical of M and is denoted by rad(M). It is also the intersection of all
maximal submodules of M. The radical of a module plays a very important role in studying

the structure of modules or rings. If M is finitely generated, then rad(M) is superfluous in M.

The first important property is that rad(M / rad(M)) = 0. Rad(M) = Z X

The following theorem gives one of the properties of radical of a module.

If there is no maximal submodule of M, then rad(M) = M. For example, rad(Q,) = Q. For a
ring R, we have rad(R ;) = rad(; R), and by this fact we can define the Jacobson radical of a

ring R by J(R) = rad(R) = rad(;R) as a two-sided ideal of R. There are many kinds of
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radicals of a ring and we use the terminology Jacobson radical to mention the intersection of
all maximal right ideals. The Jacobson radical of a ring R can be described in a more tangible

way as follows:

Proposition 2.4.2 ([18], page 120) Let M be a left R-module. Then
rad (M) = N{K < M |K is maximal in M}

= > {L < M|L is superfluous in M}.

Proof: Since K <M is maximal in M if and only if M/K is simple, the first equality is

immediate from the definition of the reject in M of a class.
For the second equality, Let L << M.If K is a maximal submodule of M, and if L ¢ K, then

K+ L=M; but the since L <<M,we have K = M, a contradiction. We infer that every
superfluous submodule of M is contained in Rad M. On the otherhand, Let xe M. If N <M
with R, + N =M, then either n = M or there is a maximal submodule K of M with N <K
and x ¢ K. If xe RadM, then the latter cannot occur, thus x € RadM forces R, << M and

the second equality is proved.

Definition 2.4.3 Let M be a right R-module. Then the sum of all simple (minimal) submodule
of M is called the socle of M and is denoted by soc(M). We also define the socal of a module
M as the intersection of all essential submodules of M.

If sos(M) = 0, then M does not contain any simple submodules. For example, we have

soc(Z, ) = 0. Especially, soc(M) = M if and only if M is semisimple.

Lemma24.4Forany me M,merad(M) < mRc? M.

Proof. Suppose that m e rad(M). Then me >_ X

Xcg
SM=X+X, +...+ X, % €X, M Viel
S>meX, +X,+...+ X, <2 M

=SMRC X, +X,+...+ X, c M = mRc? M.
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Conversely, assume that mR <® M. Then mR e rad(M) and so m e rad(M).

Lemma 2.4.5 For any me M, m e rad(M) < there exists a maximal submodule Ac_ M
such that m ¢ A.
Proof. Assume that merad(M). By Lemma 2.44, mRg? M. Then we can find a

submodule Uc_ M such that meU and mR+U =M. Consider the family

F={Uc, MmgU and mR+U =M}.

c. U, c. .. be any chain in F. Put V =( JU,. Then V< M and
i=1

mgV. We can see that mR +V = M. This shows that V € F. By Zorn’s lemma, F contains

a maximal element, say B.
Claim. B is a maximal submodule of M. Suppose that B is not a maximal submodule of M.

Then there exists a submodule Cc_  Msuch that Bc #Cc_#M. If meC,then
M=mR+BcC, and so C=M, which is contradiction. Hence me¢C and
mMR+C =M =mR+B. this means that C e F, contradicting the maximality of F.

Therefore, B is a maximal submodule of M and m ¢ B. conversely, if Ac™ M and

me Athen AcmR+A=M =>mRc? M = megrad(M).

Theorem2.4.6 > X = []A

XM AT M

Proof. merad(M) < V maximal submodule Ac. M\me A< me ﬂA.
AcCT™*M

Theorem 2.4.7 soc(M) = (Y = > X.

YoM X Simple g
Proof. Let X c_ M be any simple submodule of M and Y <. M. Then X nY %0 and
XNYcY.(0#XNY =X). Since X is simple, XY =X, and so X c_Y. Then

X, YSIM = > Xc, ()Y

X<, M, xsimple X<, M, Xsimple Yc:M
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Then Z X is the largest semisimple submodule. To show that ﬂY is semisimple, let

X<, M, xsimple YciMm
Uc, [Y=K
YcIM

Claim. For any submodule U of M, there exists a suomodule V of M such that U @V <. M.
Let F={B <, M[BNU =0}.Since 0eF, so F = ¢.

Consider B, c_ B, c_ ...... any chain in F. Take A:UBi. Then AnU =0, andso AeF.

i=1

By Zorn’s lemma, F has a maximal element, say V. Clearly,U @V = M. Next, to show that
U@V . M. Suppose U ®V . M. Then there exists a submodule X =0 of M such that
U+V)NnX=0 Then UBV®X =M and VcV@®X, and V®X)nU =0, a
contradiction.

Let U be a submodule of ﬂY .Then there exists a submodule V of M such that

YoM

U®V <. M. Then (|Y cU ®V. Using modular law,

YciM

wehave (Y= (Y cU®V.=U®([|Y V). Hence (Y issemisimple.

YcIM YcIM YciM YcIM
2.5 Exact Sequences, Injective and Projective module

Definition 2.5.1 Let {A,ieI}be a collection of right R-modules. For each iel,let
f. : A > A, be an R-homomorphism. Then a sequence

A1 fi A2 fo o ,A3 f3 > s foy > An fy N An+l fou >,

is called an exact sequence at A, if Im(f ;)= ker(f,). The sequence is called an exact

sequence if it is exact at each A, .

An special exact sequence of the form 0 > A——>B—%>C — 0 is called a short exact

sequence.
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Remarks.
Q) If the sequence 0 > A——B—2—>C — 0 is exact, then f is a monomorphism,
g is an epimorphism and Im(f) = ker(g).
(i) Let X <. M e Mod —R. Consider the inclusion map :: X — M defined by
((x) =x forany x e X.
(iii)  Then the sequence 0 > X ——> M ——>M/X — 0 is exact, where v is the

canonical map.

Definition 2.5.2 A short exact sequence 0 > A——»B—95C — 0 is called split exact if

Im(f) =® B, (i.e., there exists B'c_ B:B=Im(f)®B’).

Theorem 2.5.3 Let 0> A—>B—2>C — 0 be a short exact sequence of right R-
modules. Then the following statements are equivalent:

(1) The given sequence splits;

(2) There exists a homomorphism f':B — A: ff =1,;

(3) There exists a homomorphism g':C - B:gg'=1..

Proof. (1)= (2). Assume that Im(f)is a direct summand of B. Then there exists a
submodule B —_ B such thatB = Im(f)® B’. We will define a homomorphism f :B — A.
to do this let b € B. Then there exists y e Im(f)and b’ € B" such that

b =y + b’ which is the unique decomposition. Since f is a monomorphism, there is a unique

ae A suchthaty =f(a). Let f'(b) =a. Itisclear that f' isa map. We now show that f' is
a homomorphism. To do this, let b;,b, e B and reR. Then b, =y, +b/ and b, =y, +b,,
where Y;, Y, € Im(f)and b/,b;, € B". Thus
b, +b, =(y, +b))+ (y, +b,) = (y, +V,)+ (b +b;). Then there exists a,,a, € A Such that
y, =f(a,)and y, = f(a,). Then y,+vy, = f(a,)+ f(a,)=f(a, +a,) andso f'(b, +b,) =
a+a,= f'(b)+f'(b,). For reR, if b,=y,+b/, then br=yr+br and
b,r=f(a,)r= f(ar). Hence f'(b,r)=a,r= f'(br). Toshow ff'=1,, let a< A be such
that b = f(a). Then f'(b) =a andso ff'(a)=a. Thus ff'=1,.
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(2) = (1). Assume that there is a homomorphism f’':B — A such that ff'=1,. Let
B'=Ker(f")c., B. Then Im(f)®B'<_ B. For each be B, we have f'(b)e A and so
ff'(b) e Im(f). Then f'(ff'(b)) = ff(f'(b)) = f'(b).

Hence ff'(b)—be Ker(f’)=B'". Then there exists b’ € B’ such that ff'(b)—b=Db" and so
b= ff'(b)-b"eIm(f)+B". Thus Bc Im(f)+B’ and then B=Im(f)+B’. To prove
ImM(f)nB'=0 let belm(f)nB".Then belIm(f)and b e B’ Thus there isa ae A such
that b =f(a) and f'(b)=0. Then a= ff(a)= f'(b) =0. This implies that b = 0. Therefore,
B=Im(f)®B"

Properties 2.5.4 For a right R-module M, the following conditions are true:
(1) Let X be a maximal submodule of Mand let me M - X If Xc . #X+mRc. M,
then X + mR = M.
(2)Let X . M. Suppose that forany me M - X, X +mR=M. If X c_2Y c_ M
and Y = X, then there exists X c_.# X +mRc_ Y <. M. Hence Y =M. Thus Xis

maximal.

Theorem 2.5.5 A submodule X —_ M is maximal if and only if M — X is simple.

Proof. Suppose that X is a maximal submodule of M. Let 0#U —_ M — X. Then U is of the
formU =V — X forsome X <V < M. Since X is maximal, V=XorV =M. ThenU =0 or
U=M-X. Hence M — X issimple.

Conversely, assume that M — X is simple. Let X .Y <, M.Then Y-X c. M -X.
Since M — X is simple, we must have Y — X =0or Y — X =M — X.Itfollows thatY = X or Y

= M. Hence X is maximal.

Theorem 2.5.6 Let M be a right R-module. Then M is semisimple if and only if M = z M;,

iel

where each M, is simple forany i e I.
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Proof. Assume that M is semisimple. Let X = ZMi, where M, a simple is submodule of

iel
M, for all i e1.Then X is a direct summand of M. This means that M = X @Y for some

submodule Y of M. If Y #0, let 0= yeY. Then yR is cyclic where yRc_ Y <. M and
then yR s finitely generated. So yR contains a maximal submodule A, say. We see that both
of yR and A is a direct summand of M. By the modular law, A is a direct summand of yR.

Hence yR=A® B and so B= yR/A is simple. Then B<_ yR <_Y. Then B is simple but

B . X, acontradiction. Hence M =X ©@0=X = Z M., where each M, is simple for all

iel
iel.

Conversely, assume that M = z M,, where each M, is simple forany i e I. Let X be any

iel
submodule of M. We must show that X is a submodule of M. If X =0, it is obvious that M =
0 + M. So, suppose that X = 0. Let M, be a submodule of M for all i € I. Then
M, c. Xor M;nX =0foralliel. If M,nX =0 foralliel, then 0M, "X . M,

forall i el. Since M, issimple, M, "X =M, forall iel. Then M, c_ X forall iel.

Let F ={M,;|M; n X =0}and G ={M|M,; <. X}. Then we have

M=>M=>M®>McX®YMcM

iel M;eF M; eG M; eF;

Thus M =X @ Z M, and so X is a direct summand of M. Therefore M is semisimple.

iel

Definition 2.5.7 For a pair of sets A and B, amap f : A— B is called injective if and only if
it has a left inverse, which means that there is a map f':B — A such that fbf =1,,the
identity map of A. Dually, for a pair of sets C and D, amap g :C — D is called surjective if
and only if it has a right inverse. This means that there exists a map g': D — C such that
gog’' =1,, the identity map of D. We now extend this notion to modules. Let f: A— B be
an R-homomorphism of right R-modules A and B. If there exists an R-homomorphism
f':B — A such that fbf =1,,then f is a monomorphism. Suppose that f :A—> B is a

monomorphism of right R-modules. Then there does not always exists an R-homomorphism
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f':B— A such that fbf =1, If B is semisimple, then there exists f’ for all right R-
modules A. For all right R-modules B, if such homomorphism f' exists, then we call A an

injective module.
In the categorical viewpoint, a right R-module M is called an injective module if for any right

R-module A and B, any monomorphism f : A— B and any homomorphism

@ . A— M, there exists a homomorphism ;0 :B — M such that ;o o f=o.

0 A—~L . p

M
Figure 1

If the above condition is true only for a special module B, then M is called an B-injective
module. Thus, a right R-module M is said to be injective if and only if it is B-injective for any

right R-module B. A right R-module B is called quasi-injective if B is B-injective.

Theorem 2.5.8 Let M be any right R-module. Then the following statements are equivalent:
(1) M is injective;
(2) Any exact sequence of the form 0 > M — A— B — 0 splits.

Proof. (1) = (2). Assume that M is injective. Consider the exact sequence

o—>M-L >a-L 53 >0
B
M
Figure 2

Since M is injective, there exists «': A— M such that o'a =1,,.50 we get the sequence is

splits.
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(2) = (1). Let

Figure 3

Define ;:M > M xB and ,:B—>MxB by f(m)=(m,0)vVmeM and ¢ (b)=(0,b)
vbeB. Let H ={(p(a),—f(a))|ae A} =, M xB. Consider (M x B)/H and define o =y,
and S =w,.
For every a € A,

ap(a) = vup(a) = v((p(a),0)) = (¢(a),0) + H
and pf@)=vi,f(a)=v((0, f(a)=(0, f(a)+H.
Since (¢(a),0) - (0, f(a)) =(p(a)— f(a)) e H,we have (p(a),0)+H = (0,f(a))+H. We
also have ap=pf. To show that « is a monomorphism. Let m e Ker(«).Then
a(m=0=vy(m=0 =v((m0))=0, ie, (m0) +H =0+ H and so (m0)eH. Then
there exists a € A such that (m,0) = (¢(a) — f (a)) which implies that ¢(a) =m and f(a) = 0.
Since f is a monomorphism, a = 0 and we have m = ¢(0) =0, i.e. Ker(a)=0. Hence « isa
monomorphism. Consider an exact sequence

0—>M_ " (MxB)/H - ((MxB)/H)/Im(a) -0

Then by hypothesis, there exists «': (M xB)/H — M such that o'« =1,,. Chose ;o = a'p.

Then (}): B—>M and g}f = a'ff = ad'ap=1,, ¢ =@. Therefore, M is injective.

Definition 2.5.9 Consider an R-homomorphism g :C — D of right R-modules. If there is an
R-homomorphism g': D — C such that gog’ =1,,then g is an epimorphism. In general,

such a homomorphism does not always exist. If it exists for all modules C, then D is a free

module. When it exists for any module C, we call D a projective module.
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In categorical viewpoint, right R-module M is said to be B projective if for any epimorphism

g: B — C and any homomorphism y : M — C, there exists a homomorphismy_/ ‘M —>B

such that g 01/_/ =y.

M

v

Y

B - C - 0

Figure 4

If M is B-projective for any right R-module B, then M is called a projective module. If B is B-

projective, then B is called quasi-projective.
Every free module is projective but the converse is not true. Consider the ringR =2 /6Z

which can be decomposed as R = (é) @ (é). The ideal(é) and (é) are projective modules

but they are not free. Foreveryn € N, Z, =Z/nZ is quasi-projective but not Z- projective.

Thus Z-modules Q / Z and pr are not quasi-projective.

Figure 5
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(i) =0 g’ =g projective. (if) f'oi = f injective.
(iii) A right R-module M is called quasi-projective if M is M-projective, so P = M
(iv) A right R-module M is called quasi-injective if M is M-injective, so E = M .

Proposition 2.5.10 Let M be any right R-module. Then the following statements are
equivalent:

(@) M is projective.

(b) Any exact sequence of the form 0 > X - Y — M — 0 splits.

Proof. (1) = (2). Assume that M is projective. Consider the exact sequence
0> X—5Y—5M 0.
Since M is projective, there exists a homomorphism g': M — Y such that g'g =1,,. so have

the sequence is splits.
(2) = (1). Assume that every exact sequence of the form 0 > X - Y — M — 0splits. Let

'.M

1™ M

b
o X Y g M O

Figure 6
M
4

A g B o
Figure 7
O Ker 8 H M )

Figure 8
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Define H ={(a,m)|g(a) =w(m)}.Then H < AxM. To show that H <, AxM. Let
(a,m),(a’,m)H. Then g(a) =w(m)and g(a’) =y (a’).

(i) gla+a)=g(@)+g@)=wy(mM)+y(Mm)=w(m+m’).Thus (a+a’,m+m’)eH.

(i) Let ae A and r e R.Then g(a) =w(m) = g(a)r =w(m)r = g(ar) =w(m)r.

Then (a,m)r = (ar,mr) € H.Therefore, H c_. AxM. Let ::H — AxM be the embedding
map. Put o = z;zand S = z,i.We first note that g = such that for any x € H, we have
x = (a,m) with g(a) =w(m) and

ga(x) = g(a(a,m)) = g(7(a,m)) = g(7, (a,m)) = g(a) and

wp(x) =y (p(a,m)) =y (z,u(a,m) =y(z,(am)=yw(m).Hence ga(x)=yB(x)vx e H and
S0 ga =wp. To show that gis an epimorphism. Let me M . Then w(m) € B. Since g is an
epimorphism, there is a € Asuch that w(m) = g(a). So (a,m) € H and

p(a,m)=r,(a,m)=r,(@m)=m.Hence Sisan epimorphism. By assumption, the exact
sequence splits. Then there exists f': M — H such that g4’ =1,,. Choose g;/ =qf'. Then

1/_/ M — Aandso g y_/ = gaf' =ypp' =wl,, =w. Therefore, M is projective.

Proposition 2.5.11 Every free right R -module is projective.
Proof. Let F be a free right R-module and Let X be its basis. Then F = @X XR. For xe X,

we have w(x) € B. we can find a e A such that y(x) = g(a) and we see that we can find

many a € A like that but we choose one and we denote it by a, .

F

5

A - B - 0
g

Figure 9
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Put w(x)=a,. For feF, f=>xr and y(f)=>ar A Then y is an R-
i=1 i=1

homomorphism and g& = . This shows that F is projective.

Note: M is injective < VX,Y € Mod —R.

X—t—' vy

»

M
& Figure 10
0 I

!

M

- Rp

sl

Figure 11

Proposition 2.5.12 Every projective module is isomorphic to a direct summand of a free
module, and conversely, any direct summand of a free module is projective.
Proof. Let P be a projective right R-module. By the previous lemma, there exists a free

module F such that ¢:F — Pis an epimorphism. Consider the exact sequence

£:0—> ker(p) ——>F —£22
Since P is projective, esplits. Then F = IM () ® F' for some F' c_=ker(p) ® F'. Thus

P=F/ker(p)=F' c®F.

Definition 2.5.13 An element ¢ € R is called right regular (resp. left regular) if for any
reR,cr=0=r=0(resp.rc =0 = r=0). If cr =0 = rc, then c is called a regular

element. For example, every non-zero element of an integral domain is regular and if F is a
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field, then any element of the set M (F) is regular if and only if its determinant values is

zero. Elements which are regular on one side need not be regular.

Proposition 2.5.14 ([19] Prop. 12.1, page 39) The following properties of a ring R are
equivalent:

(1) Ris regular.

(2) Every principal right ideal of R is generated by an idempotent element.

(3) Every finitely generated right ideal of R is generated by an idempotent element.

(4) Every left R-module is flat.

Proof. (1) = (2): For any a€R, aR is a principal right ideal of R. Choose x such that

a=axa. Then ax is an idempotent and aR = axR.

(2) = (1) : Given a e R, chose an idempotent e such that eR = aR. Then e = ax for some x,

and a =ea = axa.

(1) = (3): It clearly suffices to show that if e and f are idempotents, then eR+ fR is a
principal right ideal. We have eR+ fR=eR+(f —ef)R, and if xe R is chosen so that
f—ef =(f —ef)x(f —ef), then f’'=(f—ef)x is an idempotent with ef’'=0, and
eR+ fR=eR+fR. Now eR+fR=(e+f'—f€)R, because e=(e+ f'—fk)e and
f'=(+ f'—f&)f" Thus eR+ fR is principal.

(3) = (4) : The condition (3) means that every finitely generated right ideal is a direct

summand of R, and Prop. 10.6 [19] then immediately gives that all left R-modules are flat.
(4) = () : If lis any right ideal and J is any left ideal of R, then the flatness of R/ J implies

that the canonical map | ® (R/J) —» R/J is a monomorphism. But 1 ® (R/J)=1/1J, by

Example 8.1[19], so this means that the canonical map 1/1J — R/J is a monomorphism,

i.e. I mJ =1J. Choosing in particular 1 =aR and J = Ra, we find that aR n Ra = aRa,and

hence a € aRa.



CHAPTER IlI
PRIME AND SEMI-PRIME RINGS

Definition 3.1

A prime ideal in a ring R is any proper ideal P of R such that, whenever | and J are ideals of
R with 1J < P, theneither | c Por J < P. Anideal | of aring R is called strongly prime if
forany x,y € Rwith xy e I, then either x € lory e I. A prime ring is a ring in which 0 is a
prime ideal or equivalently, a ring R is called a prime ring if there are no nonzero two-sided
ideals I and J of R such that 1J = 0.

A minimal prime ideal in a ring R is any prime ideal of R that does not properly contain any
other prime ideals.

For instance, if R is a prime ring, then 0 is the unique minimal prime ideal of R.

A semi-prime ideal in a ring R is any ideal of R which is an intersection of prime ideals. A
semi-prime ring is any ring in which 0 is a semi-prime ideal. An ideal P in a ring R is semi-
prime if and only if R / P is a semi-prime ring. The intersection of any finite list p, Z,...,

p,Z of prime ideals, where p,..., p, are distinct prime integers, is the ideal p,...p, Z. Hence

the nonzero semi-prime ideals of Z consist of the ideals nZ, where n is any square-free

positive integer including n = 1.

Example 3.2
(1) In a commutative artinian ring, every maximal ideal is a minimal prime ideal.

(i) In an integral domain, the only minimal prime ideal is the zero ideal.

Proposition 3.3 The ring R is semi-prime if and only if it contains no nonzero nilpotent

elements.

Proposition 3.4([3], page 49) any prime ideal P in a ring R contains a minimal prime ideal.
Proof. Let X be the set of those prime ideals of R which are contained in P. We may use
Zorn’s Lemma going downward in X provided we show that any nonempty chain Y < X

has a lower bound of X.
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The set Q =Y is an ideal of R, and it is clear that Q < P. we claim that Q is a prime ideal.
Thus consider any X,y € R such that xRy c Q but x ¢ Q. Then x ¢ P’ for some P' e Y. For
any P"eY such that P" < P" we have x¢ P" and xRyc Q < P", whence yeP". In
particular, ye P. IfPP"eY and P"« P’, then P’ P”, and so y e P". Hence, y e P”"
for all elements P” of Y, and so y € Q, which proves that Q is a prime ideal.

Now Qe X, and Q is a lower bound for Y . Thus, by Zorn’s Lemma, we can get a prime

ideal P" € X that is minimal among the ideals in X . Since any prime ideal contained in P"

isin X, we conclude that P" is a minimal prime ideal of R.

Proposition 3.5([3], page 51) If R is a commutative ring, then the following are true:

(a) The intersection of all prime ideals of R is precisely the set of nilpotent element of R.

(b) For every ideal I of R, the intersection of all of the prime ideals of R containing | is

the set of elements r € R such that r" € | for some positive integer n.

(c) The ring R is semi-prime if and only if it contains no nonzero nilpotent elements.

Proof. (a) If r is a nilpotent element of R, then r must be contained in every prime ideal,
since if P is a prime ideal, then R/P has no nonzero nilpotent elements. Hence, all nilpotent
elements are in the intersection of the prime ideals. Conversely, if r is not nilpotent, then,

letting X ={r”|n € N}, we can apply Lemma 3.5([3], page 51) to obtain a prime ideal P of R
such that r ¢ P, and so r is not in the intersection of the prime ideals.

Clearly, (b) follows from (a) by passing to the factor ring R/l and (c) is a special case of (a).

Definition 3.6 A right, left or two-sided ideal | of a ring R is called a nil ideal if and only if
Vael,3 neN such that 1" =0,nilpotent ideal if and only if3n e N such that x" =0.

More generally, | is called a nil ideal if each of its elements is nilpotent. The sum of all nil
ideals of a ring R is called the nil radical of R and is denoted by N(R). The prime radical P(R)
of a ring R is the intersection of all the prime ideals of R. Hence we can conclude that
P(R)  N(R).

Let R be a semi-prime ring and 1,J right ideals of R such that I J = 0. Then (JI)* = 0 and (J

N 1)? =0.Sothat JI =0and J N1 = 0. Moreover, we have the following lemma.
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Corollary 3.7 [17]

(a) Every one-sided or two-sided nilpotent ideal is a nil ideal.

(b) The sum of two nilpotent right, left or two-sided ideals is again nilpotent.

(c) If R, is Noetherian then every two-sided nil ideal is nilpotent.

Proof. (a) Clear.

() Let Ac_ R,,Bc,  R;and A" =0,B"=0.We assert that (A+B)™" =0.Let

a, € Ab, €B,i=123,...,m+n,then by binomial theorem 1_[(ai +b,) is a sum of products
i=1

of m + n factors of which either at least m factors are from A or at least n factors are from B.
Since A and B are right ideals the assertion follows.

(c) Let N be a two sided nil ideal of R. Since R; is Noetherian, among the nilpotent right

ideals contained in N, there is a maximal one. Let A be one such and suppose we have

A" =0. By (b), A is indeed the largest nilpotent right ideal contained in N. Since for x € R, X

A is also a nilpotent right ideal contained in N, A is in fact a two-sided ideal. If for an element

be N we have: (bR)" —_ A then it follows that (bR)*" =0, thus bR = A

Definition 3.8 A ring R is a prime ring if for any two elements a and b of R, ifar b = 0 for
all r in R, then eithera=0o0r b =0.

Example 3.9
(a) Any domain.
(b) A matrix ring over an integral domain. In particular, the ring of 2 x 2 integer

matrices is a prime ring.

Lemma 3.10 A non-zero central element of a prime ring R is not a zero divisor in R. In
particular, the center Z(R) is an integral domain.
Proof: Let0=ae Z(R), and ab=0.Then aRb = Rab =0. implies that b =0 because R is a

prime ring. Thus the result follows.

Definition 3.11 A ring R is called a reduced ring if R contains no nonzero nilpotent element.
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Lemma 3.12 For any semi-prime ring R, Z(R) is reduced.

Proof: Let a e Z(R) be such that a*> =0.Then aRa = Ra® =0 implies that a=0.
Note: Let P be a prime ideal, | a left ideal and J a right ideal of a ring R. Then 1J — P does
not imply that 1 < P or J < P. The following statement in the mixed case turns out to be

valid([20], Prop. 10.2, page 165) P —R is prime if and only if for any right ideal I and any

left ideal J,1J < P implies that either | < P or the “if’ part follows directly from Prop.
10.2[20]. For the ‘only if* part, let us assume IJ < P, where | is a right ideal and J is a left
ideal. Then Rl and JR are ideals, with (RI)(JR) = R(1J)R < RPR < P. Therefore, we have

either Rl < P or JR < P. This implies that either | — P or J c P.

Lemma 3.13 Aring R is a domain if and only if R is prime and reduced.

Proof: First assume that R is a domain. Then a" =0 for some ne  which implies that
a=0and so R is reduced. Also for all a,beR, aRb=0=ab=0=a=00r b=0, so
R is a prime ring.

Conversely, assume that R is prime and reduced. Let a,b € R be such that ab =0. Then for

any reR, we have (bra)® = (bra)(bra) =br(ab)ra=0, so that bra=0. This means that

bRa =0, implying that b =00r a =0, because R is a prime ring. This completes the proof.

Proposition 3.14 In a right Artinian ring R, every prime ideal P is maximal. Equivalently,
R is prime if and only if it is simple.

Proof: If R/P is semi-prime and right Artinian, then it is semi-simple by Proposition
10.24[20]. Since R/Pis in fact prime, it can have only one simple component. Therefore,
R/ Pis simple. In other words, P is a maximal ideal.

In commutative ring theory, it is well-known that R is Artinian if and only if R is Noetherian
and every prime ideal of R is maximal by Corollary 23.12[20].

Proposition 3.15 For a ring R, the following conditions are equivalent:

(1) All proper ideals are prime;
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(i1) The ideals of R are linearly ordered by inclusion;

(iii) All ideals | < Rare idempotent.

Proof: (1) = (2): Let I and J be two proper ideals of R. Then by (i), | nJ is prime. So that
IJ c I nJ implies that either | c1nJ or JcInJ. Thus, we have either 1 < J or
J < | . This follows (ii).

% is a prime ideal. Since 1.1 — 12, we must

To show (iii), let us assume that | = R. By (1), |
| c1°.Hence | =12

(2) = (1): Let P be an ideal of R suchthat P # R, andlet | o P and J o P be

two ideals of R such that IJ < P. We must show that | — P or J < P. By (ii), we may
assume that | < J. By(iii), we have 1 =1 c 1J c P. Thus | =P. If J I, then by (iii),

J=J?clJcP. Thus J =P.

Proposition 3.16 Let R = End, (V) where V is a vector space over a division ring K. Then R

satisfies the properties of the above proposition. In particular, every non-zero homomorphic
image of R is a prime ring.
Proof. Ifdim, (V) <o, R is a simple ring. Therefore, it suffices to treat the case when V is

infinite dimensional. By Exercise 3.16[20], the ideals of R are linearly ordered by inclusion.

Next consider any ideal | #0,R. By Exercise 3.16[20], there exists an infinite cardinal
p<dim,(V)suchthat | ={f e R:dim, f(V) < g} Forany f e, let f'e R be such that

f' is the identity on f(V), and zero on a direct complement of f(V). Then f’'el, and

f = ff.Therefore, f €12, and we have proved that | =12,

Example 3.17 For any integer n > 0,
. 7 nZ). . . Z nZ).
() R= IS a prime ring, but R' = iS not.
7 7 0 Z

(i) R is not isomorphic to the prime ring P =M, (Z) ifn> 1.
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. . . . . . 0 nz . .
Discussions: (i) In R’, there is a nilpotent ideal (0 0 J #0, so R' is not semi-prime. Let

alone prime. To show R a prime ring, consider it as a subring of P =M, (Z).
Note that nPc R. If a,beR are such that aRb=0, then naPbc aRb=0, and hence

aPb = 0. Since P is a prime ring, by Theorem 10.20[20], we can conclude thata =0or b =
0.
(if) Assume that n > 1. We show that R = P. By Proposition 3.1[20], the ideals of P are of

the form M, (kZ) = kM, (Z) =kP, where k € Z. Now R has an ideal M, (nZ). Since this
ideal of R is not of the form kR for any integer Kk, it follows that R = P.

In [3], we have the notion of a prime ideal.

Definition 3.18 A proper ideal P inaring R isa prime ideal if for any ideals | and J of R
with 1J < P, theneither | ¢ P or J < P. Aprimering is aring in which 0 is a prime ideal.

Note that a prime ring must be non-zero.

Proposition 3.19 ([3], page 48) For a proper ideal P in a ring R, the following conditions are
equivalent:

(a) P is a prime ideal.

(b) If I and J are any ideals of R suchthat | o> Pand J o P, thenlJ & P.

(c) R/Pisaprime ring.

(d) If I and J are any right ideals of R such that I J — P, then either | c PorJ < P.

(e) If I and J are any left ideals of R such that I J — P, then either | — PorJ c P.

() Ifx,y € Rwith xRy < P, then either x e Por y e P.

Proof. (a) = (c): Let I and J be ideals inR/P, where P is a prime ideal of R. Then there
exists ideal I'>P and J'>Psuch that 1 =1'/P and J= J’/P. suppose 1J =0,then

') < P. since P isa prime ideal of R, it follows that

either I'< P or J'’< P and so either | =0 or J =0.
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(c)= (a): Let R/P be a prime ring and 1 and J be ideals of R satisfying 1J < P then
(1+P)/P and (J +P)/P are ideals in R/P, whose product is equal to zero, since R/P isa
prime ring.

We have (I +P)/P=0 or (J+P)/P=0. Hence | c P or J cP.
(@ = (d): Since I and J are right ideal of R, (RI)(RJ)=RIJ < P.

Thus RlcPorRIcP,andso | c P orJcP.

(a) = (e) : By symmetry.
(d)= (f): Since (xR)(YyR) < P, either xR P or yR c Pandso xe P or y e P.

(@)= (b): I 'and J are any ideals of R then multiplication not containing P.

In [14], Sanh et al. modified the above structure of prime ideals.

Corollary 3.20 ([14], Corollary 1.3) For a proper ideal P in a ringR, the following
conditions are equivalent:

(a) P isaprime ideal;

(b) If I and J are any ideals of R suchthat | o Pand J o P, thenlJ & P.

(c)If I and J are any right ideals of R such that IJ — P, either | c P or J c P;

() If I and J are any left ideals of R such that IJ — P, either | c P or J c P;

(e) If x,y € R with xRy — P, either xe P or y e P;

() Forany aeR andanyideal I of R suchthat al — P, either aR< P or | c P;

(9) R/P is a prime ring.
In this thesis, we prove some properties of prime and semi-prime rings.
Proposition 3. 21 Every maximal ideal M of a ring R is a prime ideal.

Proof. If | and J are ideals of R not contained in M then I+M =R and

J+M=RNow R=(I+M)J+M)=1J+IM+MI+M?c1J+M andhence IJ ¢ M.

Theorem 3. 22 Let R be a commutative ring.
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(a) A maximal ideal is prime.

(b) An ideal P is prime if and only if R / P is integral.

(c) Anideal M is maximal if and only if R / M is a field.

Proof. (a) Let R be a commutative ring and M be an ideal of R such that M = R. Take any
ideal A of R such that M < Ac R. Let M be a maximal ideal and xe R,xe M. Then

M+Rx=R. So M +Rx is a proper ideal=M,and M +Rx must be R , since M is
maximal.
(b) Let R be a commutative ring with unity and P a prime ideal. Clearly R/P is a ring.
Leta+P,b+P eR/P,Va,beR. Now

(@+P)(b+P)=ab+P=ba+P=(b+P)(a+P).
Thus R/P is commutative. Since leR,so 1+PeR/P. Let r+PeR/P. Now
@+P)(r+P)=1r+P=r+P and (r+P)1+P)=r.1+P=r+P. Thus 1+ P is a unity of
R/P. Let (a+P)(b+ P) =P additive identity of R/P.
Now ab+P=P=abe p=aeP orbeP.This means that P is a prime ideal.
Again, since a+P =P or b+ P =P, we can conclude that R/P has no zero divisors.
Hence R/P is a integral domain.
Conversely, let R/P is an integral domain. Then P is an ideal. Let abe P. Then
ab+P=P=(a+P)(b+P)=P=a+P=Porb+P=P.SoacP orbeP.HencePis

a prime ideal of R.
(c) Let R be a Commutative ring with unity. Let M be a maximal ideal of R, we shall prove
that R/M is a field: we have R/M isaring. Let M +a,M +beR/M;a,beR

Now (M+a)M +b)=M+ab=M +ba=(M +Db)(M +a), since R is commutative.
Therefore R/M is commutative. Since 1e R.. M +1e R/M.

Let M+reR/M.Now (M +r)(M +2) =M +r1=M +r

M +D)(M +r)=M +1r=M +1

- M +1 is the unitary of R/M .

LetacRand agM =>M+a=M
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o.M +a is a non-zero element of R/M . Since M is a maximal ideal of R, so
Mc(M,a)=R, 1e(M,a) ..1eR

~l=m+ar forsomele RmeR

Now (M +a)(M +r)=M +ar=M —m+m+ar =M +1 identity of R/M .

M +r is the multiplicative inverse of M +a. Hence R/M is a field.

Conversely, Let R/M s a field, we shall to show that M is a maximal ideal of R. clearly M is
a ideal. Since R/M is a field, so it has at least two element, therefore R= M. Thus
M+a=M. ..M +a is a non-zero element of R/M . So (M +a) has a multiplicative
inverse, say M +r . Since R/M is a field.

(M +a)(M +r)=M +1 unity of R/M

=>M+ar=M +1
=>M=M+1-ar
=>l-areM

= dneM

Suchthat1-ar=m =1=m+ar=1e(m,a)
Let be R,b=b.1€(M,a) therefore R < (M,a),R=(M,a)

Hence M is a maximal ideal of R.

Corollary 3.23[3] For an ideal I in a ring R, the following conditions are equivalent:

(a) I'is a semi-prime ideal.

(b) If J is any ideal of R such that J> < I, then J c |.

(c) If J is any right ideal of R such that J* < I, then J c |.

(d) If J is any left ideal of R such that J* < I, thenJ < .

Proof. (a) = (d): Forany x e J,we have xRx = J? — |, whence x e | by theorem 3.7[3].

Thus J c I.

)= (): If J & I, then I +J properly contains I. But since

(1+3)> =12 +13J+J1 +J% < |. we have a contradiction to (c). Thus J < I.
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(b) = (a): Given any xeR such that xRxc I, we have (RxR)*> =RxRxc | and so
RxR < I, where x e | . By Theorem 3.7[3] is semi-prime.

(a) © (c): By symmetry.

Note: R is prime ring if and only if O is prime ideal. R is semi-prime ring if and only if O is

semi-prime ideal. R is semi-prime ring P(R) =0

Lemma 3. 24 [21] for a ring R with identity, the following conditions are equivalent:

(a) R is a semi-prime ring (i.e., P(R) = 0);

(b) 0 is the only nilpotent ideal in R;

(c) Forideals I, J in R with I J =0 impliesJ N1 =0.

Proof. (a) = (b).Let R is prime ring if and only if 0 is prime ideal. R is semi-prime ring if
and only if 0 is a semi-prime ideal. R is semi-prime ring P(R) = 0. In noetherian rings, all nil
one-sided ideals are nilpotent. If R is the non zero ring, it has no prime ideals, and so P(R) =
R. If R is nonzero, at has at least one maximal ideal. A ring is semi-prime if and only if P(R)
= 0. In any case, P(R) is the smallest semi-prime ideal of R, and because P(R) is semi-prime,
it contains all nilpotent one-sided ideals of R. Since all nilpotent (left) ideals of R are
contained in P(R).

(b) = (c).If AB =0then (AnB)* c AB=0and AnB =0.

(¢)= (b).IfAA=0thenalso AnA=A=0.

(b) = (a).Let 0= a e R.Then (Ra)® = 0and with a = a, there exists 0 # a, € a,Ra,. Then

also (Ra,)* # 0and we find 0 a, € a,Ra,,and so on. Hence a is not strongly nilpotent and

a ¢ P(R).Therefore P(R) =0.

Definition 3.25 The singular submodule of a right R-module M is defined by
Z (M) ={m e M: m K =0 for some essential right ideal K of R}.

The singular right ideal of a ring R is defined by Z(R;) = {x € R |xK = 0 for some essential

right ideal K of R}. In other words, x e Z(R ) if and only if r; (x) is an essential right ideal



48

of R, where r (x) is the right annihilator of x in R. If Z(R ;) = 0 then the ring R is called a
right non-singular ring. Singular left ideals are defined similarly.

The singular submodule of a right R-module M is defined by Z(M) = {m € M|mK =0 for
some essential right ideal K of R}. It is equivalent to saying that Z(M) = {m e M |rR (m) isan

essential right ideal of R }, wherer,(m)={r eR |mr = 0}. A right R-module M is called a

non-singular module if Z(M) = 0 and a singular module if Z(M) = M.

Lemma 3.26 Let R be a commutative ring. Then the right singular ideal Z(R) of R is zero if
and only if R is semi-prime.
Proof: Suppose that R is a semi-prime ring. Let z € Z(R). We will show that z = 0. Set | =

ZR N ry(z).We have zZR n ry(z) = 0. In fact, for any t € R and any t' € r;(z), we have zt’
=0.So z tt'=tzt' = 0, showing that zR. r,(z) = 0. We have 1> 1 =zR nr,(z) =0. So
1= 0. Since R is a semi-prime ring, 0 is a semi-prime ideal. It follows that | = 0. But r,(z)
is an essential right ideal of R. This implies that zR = 0. Thus z = 0.

Conversely, suppose that Z(R) = 0. Let a be an element of R such that a?= 0. We will show

that a = 0, from which it follows that R has no non-zero nilpotent element. Let 0 # x € R.
Then we need to consider two cases: (i) ax =0 = r,(a); (iij) ax #0 = a(ax) = a’x=0 =
ax € ry(a). Hence x R nry(a) = 0. Therefore ry(a) is an essential right ideal of R. This

implies that a € Z(R). Thusa = 0.

Definition 3.27 Let X be a subset of a right R-module M. The right annihilator of X is the set
re(X) ={r e Rixr=0forall x € X} is a right ideal of R. If X is a submodule of M, then
r,(X) is a two-sided ideal of R. Annihilators of subsets of left R-modules are defined
analogously, and are left ideals of R. If M =R, then the right annihilator of X < R is
re(X)={reR:xr=0forallx e X}
As well as a left annihilator of X is
I,(X)={reR:rx=0forallx e X}.
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A right annihilator is a right ideal of R which is of the form r , (X) (or simply r(X)) for some
X and a left annihilator is a left ideal of the form I(X). An element ¢ of a ring R is called right
regular if r . (c) = 0, left reqular if 1, (c) = 0 and regular if

r.(c)=15()=0.
For example, every nonzero element of an integral domain is regular. Let M =M, and

me M. Then r,(m)={reR:mr=0}cR;.

Definition 3.28 A ring R has finite right Goldie dimension if it contains a direct sum of finite
number of nonzero right ideals. Symbolically, we write G.dim(R) <. A ring R is called a
right Goldie ring if it has finite right Goldie dimension and satisfies the ACC for right

annihilators.

Theorem 3.29 Let R be a ring with the ACC for right annihilators. Then the right singular
ideal Z(R) of R is nilpotent.

Theorem 3.30 Let R be a semi-prime ring with the ACC for right annihilators. Then R has no

non-zero nil one-sided ideals.

Corollary 3.31 Let R be a right Noetherian ring. Then each nil one-sided ideal of R is
nilpotent.

Defination 3.32 Anelement ¢ € R is called right regular (resp. left regular) if forany r € R,
cr=0=r=0(resp.rc=0 = r=0). Ifcr =0 =rc, then c is called a regular element. For
example, every non-zero element of an integral domain is regular and if F is a field, then any

element of the set M (F) is regular if and only if its determinant value is non-zero.

Elements which are regular on one side need not be regular.

Theorem 3.33 Let R be a semi-prime right Goldie ring and let | be an essential right ideal of
R. Then | contains a regular element of R.
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Lemma 3.34 Let R be a ring with finite right Goldie dimension and let ¢ be a right regular
element of R. Then cR < R.

Proof. Let | be a right ideal of R with I ~cR = 0. Since cl — cR, we canwrite | n cl =0
and so the sum | + cl is direct. Consider (I + cl) n ¢?I. Takeany x e (I + cl) n c?l. Then
x=c’t=u+cvwheret, u,v e |. This impliesthatu =c (ct-v) € I n cR =0. Also, ¢*t=
cv. Thenv =ct € | n ¢l =0. So x = 0. This shows that the sum | + cl + c?1. is direct. By
induction, the sum | + cl + c?1 + c®I is direct. Since R has finite right Goldie dimension,

c"l =0 for some n and since c is right regular, we have | = 0. Thus cR is an essential right
ideal of R.

Definition 3.35 The singular right ideal of a ring R is defined by Z(R;) = {x € R |xK =0 for

some essential right ideal K of R}. In other words, x €Z(R ;) if and only if r (x) is an
essential right ideal of R, where r , (x) is the right annihilator of x in R. If Z(R ;) = 0 then the
ring R is called a right non-singular ring. Singular left ideals are defined similarly.

The singular submodule of a right R-module M is defined by Z(M) = {m e M|mK =0 for
some essential right ideal K of R}. It is equivalent to saying that Z(M) = {m e M |rR (m) is an

essential right ideal of R }, wherer,(m)={r eR |mr = 0}. A right R-module M is called a

non-singular module if Z(M) = 0 and a singular module if Z(M) = M.

Lemma 3.36 Let R be a right non-singular ring with finite right Goldie dimension. Then the
right regular elements of R are regular.

Proof: Let ¢ be a right regular element of R. Then by Lemma 3.17, cR <_R. But I(c) =
I(cR). Suppose that I(cR) = 0. Then there isate I(cR) witht # 0 such that t(cR) = 0. Since
cRcIR, we have t € Z(R,) = 0 because R is a right non-singular ring. So t = 0, a

contradiction. Thus I(cR) = 0 and so I(c) = 0. This means that c is left regular and

consequently, c is regular.
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Lemma 3.37 Let M be a right R-module and m € M with m =0. If X is an essential

submodule of M, then there is an essential right ideal Y of R suchthat 0 = mY < X.

Lemma 3.38 Let R be a right non-singular ring with finite right Goldie dimension. Then R
satisfies the ACC and the DCC for right annihilators.

Proof. Let A, B be right annihilators of R with A < B. Suppose that A —_B. Letb € B. Then
by Lemma 3.20, there exists an essential right ideal L of R such that b L < A. This implies
that 1, (A)b L = 0. Since R is right non-singular, we have |, (A)b € Z(R;)=0.So I,(A)b=
Oandthusb € ry(I;(A)) =A. Therefore, A =B.

Suppose that A< B and A is not essential in B.

Then there exists a non-zero right ideal C < R suchthat Cc B, AnC =0and A®C

c.B.If A®C =B, then we are done. Suppose that A@®C = B. Then there exists a non-

zero right ideal C' = Rsuchthat A@C @ C’' <.B.

Consider a strictly ascending chain of right annihilators of R:

AAcA c,....c Ac A, cC..
Where A, = A @ A, A=A ®A,..,A=A®AD.®A, .

But this contradicts the hypothesis that R has finite right Goldie dimension. So the chain must

be stationary. Therefore, A = A

. .., for some ne N. Thus R has the ACC for right
annihilators.
Finally, consider a strictly descending chain of right annihilators of R:

Ao A o..oA DA, D..

Where A=A ® A, A=A A @A, . A=A, 0A &..® AJ® A,

n+1

But this contradicts the hypothesis that R has finite right Goldie dimension. So the chain must

be stationary. Therefore, A, = A, for some n € N. Thus R has the DCC for right

n+1

annihilators.
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Theorem 3.39 A semi-prime right Goldie ring has the DCC for right annihilators.
Proof. Let R be a right Goldie ring. Then R has the ACC for right annihilators. By Theorem
3.29, Z(Ry) =0, i.e., Riis right non-singular. Thus, by Lemma 3.38, R has the DCC for right

annihilators.



CHAPTER IV
PRIME AND SEMI-PRIME MODULES

In [14], Sanh et al. introduced the notion of prime and semi-prime submodules of a given
right R-module. In this thesis, we investigate some properties of prime and semi-prime
submodules.

Throughout the work, all rings are associative with identity and all modules are unitary right

R- modules. Let M be a right R-module and S=End ; (M), its endomorphism ring. Recall that

in Ahmed et al. [14] investigated the following results:

Theorem 4.1 Let X be a proper fully invariant submodule of M . Then the following
conditions are equivalent:

(1) X is aprime submodule of M;

(2) For any right ideal 1 of S, any submodule U of M, if I(U)c X, then either
IM)c X orU c X;

(3) For any ¢S and fully invariant submodule U of M, if ¢(U) < X, then either
p(M)c X orU c X;

(4) For any leftideal 1 of S and subset A of M, if IS(A) < X, then either I[(M)c X or
Ac X;

(5) For any ¢S and for any me M, if ¢@(S(m)) c X, then either (M) X or
m e M. Moreover, if M is quasi-projective, then the above conditions are equivalent to:

(6) M/X is a prime module.

Proposition 4.2 Let M be a right R-module which is a self-generator. Then we have the
following:

(1) If X'is @ minimal prime submodule of M, then I, is a minimal prime ideal of S.

(2) If P is a minimal prime ideal of S, then X : = P(M) is a minimal prime submodule of M
and I, =P.



54

Theorem 4.3 Let M be a right R-module which is a self-generator. Let X be a fully invariant
sub module of M. Then the following conditions are equivalent:

(1) X is a semi-prime submodule of M;

(2) If Jis any ideal of S such that J*(M) c X, then J(M) c X;
(3) If Jis any ideal of S such that J(M) o X, then J* (M) & X;

(4) If Jis any right ideal of S such that J* (M) — X, then J(M) < X;
(5) If J is any left ideal of S such that J* (M) < X, then J(M) < X.

Now, we have more properties about prime and semi-prime submodules.

Definition 4.4 Let M be a right R-module and X, a subset of M. Then the set |X ) is called the

submodule of M generated by X, where [X)={ Y x;r; :x;, e X,r;e R,i=1,... ,njne

1<i<n
N}, and this is the smallest submodule of M containing X. A subset X of M is called a free

set (or linearly independent set) if for any x, X, X;,...,X, € X,and forany r, r,,...,r, € R,we
K

have ) xr =0=r =0Vie{L2,.,k} Asubset X of M is called a basis of M if M = |X )
i=1

and X is a free set. If a module M has a basis then M is called a free module.

Definition 4.5 A right R-module M is called a self-generator if it generates all of its
submodules. A right R-module M is said to be finitely generated if there exists a finite set of
generators for M, or equivalently, if there exists an epimorphism R" — M for somen e N. In
particular, M is cyclic if it is generated by a single element, or equivalently, if there exists an
epimorphism R — M. It follows that M is cyclic if and only if M =R / | for some right ideal
I of R. For example, Let M be a right R-module and m € M. Then m generates a cyclic

submodule mR of M. There is an epimorphism f : R — mM given by f(r) = mr and Ker (f) =

{reR | mr = 0}, which is a right ideal of R. Hence mR = R/ Ker (f).
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Proposition 4.6 Let M be a quasi-projective, finitely generated right R-module which is a
self-generator. If M is a Noetherian module, then there exists only finitely many minimal
prime submodules.

Proof. If M is a Noetherian module, then S is a right Noetherian ring. Indeed, suppose that

we have an ascending chain of right ideal of S, say I, < I, <... Then we have I,(M) c
I, (M) c...is ascending chain of submodules of M. Since M is a Noetherian module, there is
an integer n such that I , (M) =1, (M), for all k > n. Then we have I, = Hom(M, I, (M)) =
Hom(M, I, (M)) =1, . Thus the chain I, < I, —...is stationary, so S is a right Noetherian
ring. By Theorem 3.4 [3], S has only finitely many minimal prime ideals R,,...,P,. By

Proposition 4.2, P, (M),..., P, (M) are the only minimal prime submodules of M.

Lemma 4.7 Let M be a quasi-projective, finitely generated right R-module which is a self-

generator and X, a minimal submodule of M. Then I, is a minimal right ideal of S.
Proof. Let J be a right ideal of S such that 0= J — I, . Then J (M) is a nonzero submodule

of M and J(M) < X. Thus J (M) = X and it follows that J = 1, .

Proposition 4.8 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator. Let X be a minimal submodule of M. Then either 153 =0 or X = f (M) for
some idempotentf e |, .

Proof. Since X is a minimal submodule of M, I, is a minimal right ideal of S, by Lemma 4.
1. 7. Suppose that 12 = 0. Then there isg € I, suchthatg I, = 0. Since g I, is a right
ideal of Sandg 1, < I,,wehavegl, =1,. Then there existsf € I, suchthatgf=g.
Thensetl ={h € I, :gh=0}isaright ideal of S and I is properly contained in I, since f
¢ 1. By the minimality of I, , we must have | = 0. We have f* -f e I, and g (f* -f) =0, so

f2 =1f. Since f (M) < X and f (M) = 0, we have f (M) = X.
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Corollary 4.9 Let M be a quasi-projective, finitely generated right R-module which is a self-
generator. Let X be a minimal submodule of M. If M is a semi-prime module, then X = f (M)

for some idempotentf e I, .
Proof. Since M is a semi-prime module, 12 = 0. Thus X = f (M) for some idempotent f <

I ., by Proposition 4.8.

Proposition 4.10 Let M be a quasi-projective, finitely generated right R-module which is a
self-generator. Then Z(S) (M) < Z (M) where Z(S) is a singular ideal of S and Z (M) is a
singular submodule of M.

Proof. Letf € Z(S) and x € M. We will show that f(x) € Z (M). Since f € Z(S), there exists
an essential right ideal K of S such that f K=10. Then f K (M) = 0.

From K is an essential right ideal of S, we have K (M) is an essential submodule of M, and so
x' K (M) is an essential right ideal of R. We have f(x) (x " K (M)) = f(x(x " K (M))) < fK
(M) =0, proving that f(x) € Z (M).

Corollary 4.11 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator. If M is a nonsingular module, then S is a right nonsingular ring.

Proposition 4.12 Let M be a right R-module which is a self-generator. If M is a semi-prime
module with the ACC for M-annihilators, then M has only a finite number of minimal prime

submodules. If P,..., P, are minimal prime submodules of M, then P, n,....,n P, =0.

Also a prime submodule P of M is minimal if and only if I ; is an annihilator ideal of S.

Proof. Since M is a semi-prime module, S is a semi-prime ring. If satisfies the ACC for M-
annihilators, then S satisfies the ACC for right annihilators. By Lemma 3.4[3], S has only a
finite number of minimal prime ideals. Therefore M has only a finite number of minimal

prime submodules, by Proposition 4.2. If P_,...,P are minimal prime submodules of M,

then I vooos 1 are minimal prime ideals of S. Thus 1, N,...,nl; =0, by Lemma 3.4[3].

But Iy nyoooim 1y = we have P, n,....» P, = 0. Finally, a prime

I PP, 0 n
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submodule P of M is minimal if and only if I, is a minimal prime ideal of S. It is equivalent

to saying that I ; is an annihilator ideal of S, by Lemma 3.4[3].

Proposition 4.13 Let M be a quasi-projective right R-module and X, a fully invariant
submodule of M. Then the following are equivalent:

(1) X is a semi-prime submodule of M.

(2) M/ X is a semi-prime module.

Proof. (1) = (2). We write X = N P, . Thenby P, /X is a prime submodule of
<M, P, prime
M/X. So N (PR/X)=(C N P)/X =X/X =0.Thus 0 is a semi-prime
P.c.M,P, prime P.c. M P prime

submodule of M /X, proving that M/X is semi-prime.
(2) = (1) . Since M/X is semi-prime, 0 is a semi-prime submodule of M /X .

We can write 0 = N Q, Then X =v*(0)=v" N Q)=
QicM/X,Q;prime " Qic. M/X,Q; prime

N v™(Q,). Since Q, is a prime submodule of M/X, v7(Q,) is a prime

Q<. M/X,Q; prime

submodule of M. Therefore X is a semi-prime submodule of M.

Lemma 4.14 Let M be a quasi-projective, finitely generated right R-module which is a self-
generator. If M is a semi-prime Goldie module, then the left annihilator of every essential
right ideal of a ring S is zero.

Proof. Since M is a semi-prime Goldie module, S is a semi-prime right Goldie ring [15].
Then the singular ideal Z(S) of S is nilpotent since S satisfies the ACC for right annihilators.
Since S is semi-prime, we have Z(S) = 0. It implies that the left annihilator of every essential

right ideal of S is zero.

Theorem 4.15 Let M be a quasi-projective, finitely generated right R-module which is a self-
generator. If M is a semi-prime Goldie module, then for any f € S, the following conditions
are equivalent:

(1) fis regular;

(2) fis right regular;
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(3) f (M) is an essential submodule of M.

Proof. Obviously (1) = (2), By Proposition 3.12 [15], we have (2) = (3).

(3) = (2). Since M is a semi-prime Goldie module, S is a semi-prime right Goldie ring [15].
We first show that f S is an essential right ideal of S. Let P be a right ideal of S such that fS
N P=0.Then0=fS n P =Hom (M, f(M) n P(M)).

Since M is a self-generator, f (M) NP (M) = 0. From f (M) is essential in M, P (M) =0 and
so P =0. Thus f S is an essential right ideal of S. By Lemma 4.14, |, (f) =14 (f S) = 0. Now,
put | = r (f) and we wish to show that | = 0. Choose a right ideal J of S maximal with
respect to the property that | m J=0. Then | + J is an essential right ideal of S. We claim

that fJis essential in f S. Let f g be anonzero element of fS. PutkK: =g™* (1+J)={h e S:
gh e I +J} then K is an essential right ideal of S, so I (K) =0 by Lemma 4.14. Thus,

fgK = 0. But fgK < f (I +J) =fJ. Therefore f J is essential in fS. Since J n r¢(f) =0, we

have J = fJ. Thus dim (J) = dim (f J) = dim (f S) = dim (Ss). Hence J is essential in S, so | =
0.



CONCLUSION

Sanh et al. [14] introduced the new notion of prime and semi-prime submodules and prime
and semi-prime Goldie modules. We can say that this new approach is non-trivial, creative
and well-posed. In [14], many results have been investigated that are unparallel.
As an extension of our work, we first give the notions of rings of fractions [13]:
Let R be a ring. Then the right quotient ring (right ring of fractions) of R, if it exists, is a ring
Q satisfying the following properties:

(@) Risasubring of Q;

(b) Each regular element of R is a unit of Q ;

(c) Each element g € Q is of the form ac™* for some a,c € R with cregular, i.e., gc e R

for some regular ¢ € R.

In this case, R is said to be a right order in Q.

Let X be a multiplicatively closed subset of a ringR, i.e., for any x,y € X, we have
xy € X and 1e X. Then RX * exists if and only if X satisfies:
(@) (Right permutable) For any a€ R and xe X, we can find be R and y e X such
that ay = xb;
(b) (Right reversible) For any ae R, if xa=0 for some x e X, then ay = 0for some
y e X.

If X < R satisfies (a) and (b), then X is called a right denominator set.

The following definition is given in [19].
Let X be aright denominator set in the ring R. For each right R -module M, the module of
fractions of M with respect to X is defined by MX ~with the canonical structure as a right

RX *-module.



60

The following results are given in [13].

Theorem 1
Let R be aring. Then R has a right quotient ring Q which is semi-simple artinian if and

only if R is semi-prime right Goldie ring.

Theorem 2
Let R be aring. Then R has a right quotient ring Q which is simple artinian if and only if

R is prime right Goldie ring.

We hope that the notions of prime and semi-prime modules and Goldie modules given in
([14],[15]) along with the notion of modules of fractions given in [19] will be strong tools in
generalizing the above theorem (Theorem 1 and Theorem 2) from rings to modules.
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