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Abstract 

 
In this study, a mathematical model for steady laminar mixed convection boundary layer flow 

over a semi infinite, isothermal, vertical flat plate immersed in an incompressible fluid  is 

developed. The governing non linear partial differential equations are first transformed using an 

appropriate non similar transformation and then solved using an implicit finite difference method 

with Keller- Box scheme. Numerical results presented include the velocity and temperature 

profiles as well as the fluid flow and heat transfer characteristics, for the different values of 

pressure work parameter ∈, viscous dissipation parameter Ec and heat generation parameter Q 

while Prandtl number Pr and the buoyancy force parameter Ri are fixed which are taken 1 and 

0.72 respectively. The numerical code have been developed using FORTRAN language 

software. Next, the solution have been showed graphically. 
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CHAPTER 1 

 
 

INTRODUCTION 
 

 
 
 
 
1.1 General Introduction 
 
The convective mode of heat transfer is generally divided into two basic processes, namely 

natural or free convection, and forced convection. In several practical applications, temperature 

difference exist in the boundary region near a heated or cooled surface. The temperature 

differences cause density gradients in the fluid medium, and in the presence of a body force such 

as gravity, free convection effects arise. The density difference gives rise to buoyancy forces. If 

the motion of the fluid arises from an external agent, then the process is termed forced 

convection, and the externally imposed flow is generally known. Thus, in any forced convection 

situation, free convection effects are also present under the presence of gravitational body forces. 

In addition, when the effect of the buoyancy force in forced convection, or the effect of forced 

flow in free convection becomes significant, then the process is called mixed convection flows, 

or combined forced and free convection flows. The effect is especially pronounced in situations 

where the forced flow velocity is low and/ or the temperature difference is large. In mixed 

convection flows, the free convection effects and the forced convection effects are of comparable 

magnitude [28]. 

 
The domain of mixed convection regime is generally defined as the region bGra n ≤≤ Re/ , 

where the Grashof number (Gr) is a measure of the ratio of buoyancy to viscous forces and 

Reynolds number (Re) indicates the ratio of inertia to viscous forces. The buoyancy parameter 

nGr Re/ , provides a measure of the influence of free convection in comparison with that of 

forced convection on the flow. 
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The exponent n depends on the flow configuration and the surface heating condition. Outside the 

mixed convection region )Re/( bGra n ≤≤ , either the pure forced convection or the pure free 

convection analysis can be used to describe accurately the flow or the temperature field. As this 

non- dimensional ratio approaches zero, forced convection dominates; as it approaches infinity, 

natural convection dominates. Mixed convection may be aiding or opposed. Aiding implies free 

stream flow in the direction of buoyancy forces; opposed convection implies free stream flow 

opposite to buoyancy forces. 

 
Convective heat transfer can also be classified as either bounded or unbounded, which is more 

commonly known as internal or external flow, respectively. Both the free and mixed convection 

processes may be divided into external flow over immersed body (such as flat plates, cylinders 

and spheres), and internal flow in ducts (such as pipes, channels and enclosures). The resultant 

flow can further be classified as either laminar (stable) or turbulent (unstable) flow. The laminar 

flow is smooth, with a particle of fluid moving steadily in a smooth line parallel to the surface, 

and a thin layer of fluid then moves as a lamination. On the other hand, the turbulent flow is 

described as an erratic and chaotic flow with a particle of fluid moving unsteadily in an 

unpredictable zigzag path. Turbulent flow is generally expected to occur when Reynolds number 

is high while laminar flow is when Reynolds number is low [21]. 

 
Mixed convection flow past a vertical semi infinite flat plate has received much attention and is 

important in situations encountered in the areas of geothermal power generation and drilling 

operation, when the free stream velocity and the induced buoyancy velocity are  comparable. It 

continues to be one of the most important problems, also due to its fundamental nature as well as 

many engineering applications. In spite of the fact that a good number of theoretical and 

experimental studies were carried out in the past on mixed convection flow, it seems that most of 

these studies are not on Pure mixed convection )1Re/( =nGr flows and these are away from the 

effects of viscous dissipation, pressure work and heat generation together. The viscous 

dissipation term is always positive and represents a source of heat due to friction between the 

fluid particles. A variety of expressions are used in the literature for this term like viscous 

heating, share stress heating and viscous work. The pressure work is the work that required 

pushing fluid into or out of a control volume. When fluid cross a control surface and enters the 
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control volume, it must push back the fluid that is already inside the control volume. Since that 

fluid has a pressure, the entering fluid must do work to move it. For example, rising air expands 

because as it rises there is less atmospheric pressure compressing it and as it expands becomes 

cooler. This phenomenon is called adiabatic cooling. The reverse case happens when air sinks. 

This phenomenon is called adiabatic heating. The viscous dissipation tends to rise the fluid 

temperature while the pressure work tends to lower its temperature in the upward flow. 

Literatures and published works on these topics are also reviewed in the next chapters 

corresponding to the problems. 

 

The present study considers the problem of mixed convection boundary layer flow over a semi 

infinite vertical flat plate, using air as a working fluid. In this study, the flow is assumed to be 

laminar, the external flow is considered and steady state prevails. Boundary conditions are 

discussed on constant surface temperature. The analysis include (i) formulation of the 

mathematical model to obtain the governing boundary layer flow and heat transfer equations (ii) 

nonsimilar boundary layer transformation and (iii) numerical computation using a finite 

difference scheme. The scheme employed is the Box method developed by Keller [14], and 

throughout the whole course of this study, the main reference for the Keller-box method is the 

book by Cebeci and Bradshaw [3]. 

 

1.2 Objectives of present study 

 

The objectives of the present study are to construct mathematical models, to carry out 

mathematical formulations and analyses and to develop numerical algorithms for the 

computations of the following two problems. 

 The effects of pressure stress work and viscous dissipation in mixed convection flow 

of a  viscous incompressible fluid past a semi- infinite vertical flat plate. 

 
 The effect of heat generation in mixed convection flow of a viscous incompressible  

fluid past a semi- infinite vertical flat plate in presence of pressure stress work and       

viscous dissipation. 

 



 4 

Solutions are obtained and analyzed in terms of velocity and temperature profiles, local skin- 

friction coefficients and the local Nusselt number for different values of Prandtl number Pr , 

Eckert number Ec , pressure work parameter ε  and heat generation parameter Q. The results are 

also shown graphically. 

 

1.3 Outline of this study 

 

This thesis is divided into three chapters including this introductory one. This chapter should be 

regarded as preliminaries with general introduction and objectives. In this study, the problems of 

steady laminar mixed convection boundary layer flows over a semi infinite vertical flat plate 

with constant surface temperature is considered using air as a working fluid. These problems are 

generally divided into the two main chapters, namely Chapter 2 and Chapter 3. 

 

Chapter 2 represents the effects of pressure stress work and viscous dissipation in mixed 

convection flow along a semi- infinite vertical flat plate. Here also discussed on Prandtl number. 

Since most of the researcher discussed or investigated the effects of viscous dissipation, mainly the 

effect of pressure work in presence of viscous dissipation is investigated here. 

 

Chapter 3 represents the effect of heat generation in mixed convection flow of a viscous 

incompressible fluid past a semi- infinite vertical flat plate in presence of pressure stress work 

and viscous dissipation. Effects of the including parameters, namely heat generation parameter, 

pressure work parameter and viscous dissipation parameter are discussed taking Prandtl number 

as 0.72 which corresponds to air. 
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CHAPTER 2 
 
 
 

EFFECTS OF PRESSURE STRESS WORK 
AND VISCOUS DISSIPATION IN 

MIXED CONVECTION FLOW ALONG A 
VERTICAL FLAT PLATE 

 
      

 
2.1 Introduction: 
 
The study of mixed convection flow for an incompressible viscous fluid past a heated surface has 

attracted the interest of many researchers in view of its important applications to many 

engineering problems which include nuclear reactors cooled during emergency shutdown, 

electronics devices cooled by fans, heat exchangers placed in a low velocity environment and 

solar central receivers exposed to wind currents. There are certain situations where the free as 

well as the forced convection are of comparable magnitude. One such case is when air is flowing 

over a heated surface at a low velocity. The ratio )Re( 2GrRi =  , buoyancy force parameter is 

used to check the relative magnitudes of forced and free convection according to the criteria 

                             Free convection neglected if 1Re2 <<Gr  

                             Free and Forced convection comparable if 1Re2 ≈Gr  

                             Forced convection neglected if 1Re2 >>Gr  

In the study of fluid over heated or cooled surfaces, the effect of buoyancy forces neglected 

when the flow is horizontal. For vertical or inclined surfaces, the buoyancy force modifies the 

flow field and hence the heat transfer rate. Therefore it is not possible to neglect the effect of 

buoyancy forces for vertical or inclined heated or cooled surfaces. In recent years, much 

attention has been paid to develop efficient energy systems. Kumari and  Nath [15] developed 
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the mixed convection flow over a vertical plate due to an impulsive motion. Hossain and Arbad 

[7] studied the forced and free convection flow past a semi- infinite vertical plate with viscous 

dissipation effects using the method of parametric differentiation. Yao [26]  studied the mixed 

convection flow along a vertical flat plate. It has been generally recognized that 2ReGr is the 

governing parameter for the convection flow along a vertical plate.  

 
In almost all heat convection studies, the viscous dissipation and pressure stress terms are 

neglected in the energy equation. Some researchers like Joshi and Gebhart [13] studied the effect 

of pressure stress work and viscous dissipation in some natural convection flows. Alam et al. [1] 

studied the same with heat conduction along a vertical flat plate. Zakerullah [27] investigated the 

viscous dissipation and pressure work effects in axisymmetric natural convection flows. 

Miyamoto et al [18] also investigated the effect of axial heat conduction in a vertical flat plate on 

free convection heat transfer. Gebhart [4] studied the flow generated by the plate surface 

temperature varying as power of x (the distance measuring along the plate surface from the 

leading edge) by a series expansion method and Gebhart and Mollendorf [5] derived similarity 

solutions for such a flow generated by the plate surface temperature varying exponentially with 

x. 

 
In the present study, the effects of pressure stress work and viscous dissipation in mixed 

convection flow of a viscous incompressible fluid past a semi- infinite vertical flat plate are 

investigated. This investigation is on the steady mixed convection flow over a heated vertical flat 

plate. To obtain the solution of the governing equations for this case, we direct our attention to 

the region near the leading edge of the plate. The steadiness is induced by impulsively creating 

motion in the ambient fluid and at the same time suddenly raising the wall temperature above the 

surrounding temperature. The solutions of the nonlinear coupled singular parabolic partial 

differential equations governing the steady mixed convection flow are obtained numerically by 

using an implicit finite difference scheme. Though for an incompressible fluid, the value of the 

Eckert number Ec is less than unity, its effect on the temperature and flow fluids cannot be 

neglected ( Gebhart [4] and Gebhart and Mollendorf [5] ).The result will be obtained for 

different values of relevant physical parameters and will be shown graphically as well as in 

tables.  
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2.2 Geometry of the problem: 
 
A semi-infinite vertical plate is placed in an ambient viscous fluid with uniform temperature ∞T . 

The temperature of the plate is the same as that of the ambient fluid. At time t = 0, the ambient 

fluid is impulsively moved with a constant velocity ∞U  and at the same time the surface 

temperature is suddenly raised to ).( ∞> TTT ss  Fig. 1 shows the flow field over a vertical 

surface, where x is the distance along the surface of the plate measured from the leading edge 

x=0 and y is the distance normal to the surface. The buoyancy force arises due to the temperature 

difference between the surface and the fluid. u and v denoting respectively the velocity 

components in the x and y direction.  

 
 
 
                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 o y 

u 

v 

g 

 
∞∞ TU

 
sT

Fig 1: Coordinate System  

  x 
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For steady two dimensional flow the boundary layer equations including viscous dissipation and 
pressure work are  
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where T is the fluid temperature, •  is the kinematic viscosity, •  is the fluid expansion coefficient, 

g is the acceleration due to gravity, •  is the thermal conductivity, Cp 

g
dx

dP ρ−=

is the specific heat at 

constant pressure, •  is the fluid density and P is the pressure. The last two terms in the energy 

equation are the viscous dissipation and the pressure stress work respectively. The fluid pressure 

consists of the hydrostatic and motion pressure.  

 
The motion pressure is considered small compared to hydrostatic pressure and is ignored. For the 

hydrostatic pressure we have 

                                                                                                                             (2.2.5)                                                                         

 

The viscous dissipation term is always positive and represents a source of heat due to friction 

between the fluid particles. The pressure work is the work required to push fluid into or out of a 

control volume. The viscous dissipation tends to raise the fluid temperature while the pressure 

work tends to lower its temperature in the upward flow examined here.  
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2.3 Transformation of the governing equations: 
 
The following transformations for the independent and dependent variables are introduced in 

equations (2.2.1) to (2.2.3). 

  
 

 

Here •  is the dimensionless similarity variable, L denoting the reference length and •  is the 

stream function which satisfies the equation of continuity and                        ),( ηξθ is the 

dimensionless temperature.  

Now we get the non-dimensional  momentum and energy equations as 
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taken unity for this problem. 
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2.4 Solution Methodology: 

To get the solutions of the differential equations (2.3.1) and (2.3.2) along with the boundary 

condition (2.3.3), we shall employ a most practical, an efficient and accurate solution technique, 

known as implicit finite difference method together with Keller-box elimination technique which 

is well documented and widely used by Keller  and Cebeci  and recently by Hossain and Alim. 

 

To apply the aforementioned method, we first convert the equations (2.3.1) and (2.3.2) into the 

following system of first order differential equations with dependent variables 

),( ηξu , ),( ηξv and ),( ηξp along with the boundary condition (2.3.3) as 

                                                uf =′                                                                               (2.4.1) 

                                                vuf =′=′′                                                                       (2.4.2) 

                                                vuf ′=′′=′′′                                                                     (2.4.3) 

                                                p=′θ                                                                               (2.4.4)    

                                               p′=′′θ                                                                              (2.4.5) 

Equations (2.3.1) and (2.3.2) transform to 
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The boundary conditions are: 

 

 

 

 

 

 

)9.4.2(
0,1

01,0,0





∞→→→=′
====′=

ηθ
ηθ

asuf

atuff



 11 

 

 

We now consider the net rectangle on the (• , • ) plane shown in the figure (2) and denote the net 

points by 
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Here ‘n’ and ‘j’ are just sequence of numbers on the (• , •  ) plane , ki and hj 

 

 

 

 

                                                    

                            

are the variable 

mesh widths.      

  

 
 

 
 
      
 
 
         Figure 2: Net rectangle of the difference approximation for the Box scheme. 
 
We approximate the quantities (f, u, v, p) at the points (•i , • j

i
jf ) of the net by( , i

ju  i
jv , i

jp )

i
jg

 

which we call net function . We also employ the notation  for the quantities midway between 

net points shown in figure (2) and for any net function as  

 

)(
2

1 12/1 −− += iii ξξξ           (2.4.11a) 

)(
2

1
12/1 −− += jjj ηηη          (2.4.11b) 

)(
2

1 12/1 −−
+= i

j
i

j

i

j θθθ           (2.4.11c) 

)(
2

1
12/1

i
j

i
j

i
j −− += θθθ           (2.4.11d) 

    hj 

ki 

• j-1/2 

• j 

• j-1 

• i-1 
• i-1/2 • i 

P1 P4 

P3 P2 
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Now we write the difference equations that are to approximate the three first order ordinary 

differential equations (2.4.1),(2.4.2) and (2.4.4) according to Box method by considering one 

mesh rectangle. We start by writing the finite difference approximation of the above three 

equations using central difference quotients and average about the mid-point ( 21, −j
i ηξ ) of the 

segment P1P2 

21
21 , −

−
j

i ηξ

shown in the figure (2) and the finite difference approximations to the two first 

order differential equations (2.4.6)-(2.4.7) are written for the mid point ( ) of the 

rectangle P1P2P3P4

2
)( 1

2/11
1

i
j

i
ji

j
i
j

i
jj

uu
uffh

+
==− −

−−
−

. This procedure yields.  

 

 (2.4.12) 

2
)( 1

2/11
1

i
j

i
ji

j
i
j

i
jj

vv
vuuh

+
==− −

−−
−  (2.4.13) 

2
)( 1

2/11
1

i
j

i
ji

j
i
j

i
jj

pp
ph

+
==− −

−−
− θθ  (2.4.14) 

[ ]1
2/12/1

1
2/1

1
2/12/12/1

1
2/1

2
2/1

2

1
2/132/13

1
2/112/11

1
1

1
1

)()()()(

)()()()(

−
−−

−
−

−
−−−

−
−−

−
−−

−
−−

−
−

−
−

+−+−−=

++++
−

+
−

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
ji

i
j

i
j

i
j

i
j

j

i
j

i
j

j

i
j

i
j

fvfvfvfvuu

ppfvpfvp
h

vv

h

vv

α

θθ
 (2.4.15) 

[ ]
1

2/15
1

2/14
1

2/1
2

2
1

2/11
11

1
2/1

1
2/12/1

1
2/12/1

1
2/12/1

1
2/1

1
2/12/1

2/12/12/152/142/1
2

22/11

)()()()(
Pr

1

)()(

)()()()()()(
Pr

1

−
−

−
−

−
−

−
−

−
−

−

−
−

−
−−

−
−−

−
−−

−
−

−
−−

−−−−−−−

++−−−−

+−+−+−=

+−−−++−

i
j

i
j

i
j

i
j

i
ij

i
j

j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
ji

i
ji

i
ji

i
j

i
j

i
j

i
j

i
ij

i
j

j

upupvpfpppp
h

pfpffpuuu

fpuupupvpfpppp
h

θ

θθθα

αθαθ

 

(2.4.16) 

where 2/1
2/1

1 −
−= i

j
i

i k
ξα  

Now from the equation (2.4.15) we get 
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1
2/1

1
2/12/12/1

1
2/1

2/132/1
2

2/11

1
1

1
1

)(

)()())((

−
−

−
−−−

−
−

−−−

−
−

−
−

=−+

+−++
−

+
−

i
j

i
j

i
j

i
j

i
ji

i
j

i
ji

i
ji

j

i
j

i
j

j

i
j

i
j

Rfvfv

pufvp
h

vv

h

vv

α

θαα
 

 
 
 
(2.4.17) 

[ ]
1

2/13
1

2/11

1
1

1
1

2/1

1
2/1

21
2/1

1
2/1

1
2/1

)(and

)()(where

−
−

−
−

−
−

−
−
−

−
−

−
−

−
−

−
−

++
−

=

−+−=

i
j

i
j

j

i
j

i
ji

j

i
j

i
ji

i
j

i
j

pfvp
h

vv
L

ufvLR

θ

α

 

 

 
 
Again from the equation (2.4.16) we get  
 

1
2/1

1
2/12/12/1

1
2/1

1
2/12/12/1

1
2/1

2/152/142/1
2

22/11
1

)(

))(()())((
Pr

1

−
−

−
−−−

−
−

−
−−−

−
−

−−−−
−

=−+−−

++−+++
−

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
ji

i
j

i
ji

i
j

i
ji

j

i
j

i
j

Tpfpfuu

upupvpfpp
h

pp

θθα

θαα
 

 
 
 
(2.4.18) 

[ ]

1
2/15

1
2/14

1
2/1

2
2

1
2/11

1
1

1
1

2/1

1
2/1

1
2/1

1
2/1

1
2/1

)(

)()(
Pr
1

and

)()(where

−
−

−
−

−
−

−
−

−
−

−
−
−

−
−

−
−

−
−

−
−

−−

++
−

=

−+−=

i
j

i
j

i
j

i
j

j

i
j

i
ji

j

i
j

i
ji

i
j

i
j

upup

vpfpp
h

pp
M

ufpMT

θ

θα

 

 

 
The boundary conditions become 
 

0,0

1,0,0 000

==

===
i
J

i
J

iii

u

uf

θ

θ
 

(2.4.19) 

 
If we assume 11111 ,,,, −−−−− i

j
i
j

i
j

i
j

i
j pvuf θ  to be known for Jj≤≤0 , equations ( 2.4.12) to (2.4.14) 

and (2.4.17) to (2.4.19 ) form a system of 5J + 5 non linear equations for the solutions of the     

5J + 5 unknowns ( i
j

i
j

i
j

i
j

i
j pvuf ,,,, θ  ) , j = 0,1,2 …J. These non linear system of algebraic 

equations are to be linearized by Newton’s Quassy linearization method . We define the iterates 
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[ i
j

i
j

i
j

i
j

i
j pvuf ,,,, θ  ] , i = 0,1,2 …IMAX with initial values equal those at the previous x -station, 

which are usually the best initial guess availables. For the higher iterates we set: 

)()()1( i
j

i
j

i
j fff δ+=+  (2.4.20) 

)()()1( i
j

i
j

i
j uuu δ+=+  (2.4.21) 

)()()1( i
j

i
j

i
j vvv δ+=+  (2.4.22) 

)()()1( i
j

i
j

i
j θδθθ +=+  (2.4.23) 

)()()1( i
j

i
j

i
j ppp δ+=+  (2.4.24) 

 
Now we substitute the right hand sides of the above equations in place of i

j
i
j

i
j

i
j

i
j pvuf and,,, θ                   

 in equations (2.4.12) to (2.4.14), (2.4.17) to (2.4.19 )  and omitting the terms that are quadratic         

in i
jfδ  , i

juδ , i
jvδ ,

i
jθδ and i

jpδ . This procedure yields the following system of algebraic 

equations: 
 

j
i

j
i

j
ji

j
i

j ruu
h

ff )()(
2 1

)(
1

)()(
1

)( =+−− −− δδδδ  
(2.4.25) 

Where )(
2/1

)()(
11 )( i

jj
i

j
i

jj uhffr −− +−=  (2.4.26) 

  

j
i

j
i

j
ji

j
i

j rvv
h

uu )()(
2 4

)(
1

)()(
1

)( =+−− −− δδδδ  

 
 
(2.4.27) 

)(
2/1

)()(
14 )( i

jj
i

j
i

jj vhuur −− +−=  (2.4.28) 

 
 

j
i

j
i

j
ji

j
i

j rpp
h

)()(
2 5

)(
1

)()(
1

)( =+−− −− δδθδθδ  
 
(2.4.29) 

where )(
2/1

)()(
15 )( i

jj
i

j
i

jj phr −− +−= θθ  (2.4.30) 
  

j
i
jj

i
jj

i
jj

i
jj

i
jj

i
jj

i
jj

i
jj

i
jj

i
jj

rpspsssus

usfsfsvsvs

)()()()()()(

)()()()()(

21109
)(
18

)(
7

)(
16

)(
5

)(
14

)(
3

)(
12

)(
1

=+++++

++++

−−−

−−

δδθδθδδ

δδδδδ
 (2.4.30) 

where 1
2/1

)(
1

1
1 2

1
)(

2

1
)( −

−
− −++= i

ji
i

jijj ffphs αα  (2.4.31) 

1
2/1

)(
11

1
2 2

1
)(

2

1
)( −

−−
− −++−= i

ji
i

jijj ffphs αα  (2.4.32) 

1
2/1

)(
13 2

1
)(

2

1
)( −

−++= i
ji

i
jij vvps αα  (2.4.33) 

1
2/1

)(
14 2

1
)(

2

1
)( −

−++= i
ji

i
jij vvps αα  (2.4.34) 
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)(
5 )( i

jij us α=  (2.4.35) 
)(
16 )( i

jij us −= α  (2.4.36) 

2
)( 3

7

p
s j =  (2.4.37) 

2
)( 3

8

p
s j =  (2.4.38) 

0)( 9 =js  (2.4.39) 

0)( 10 =js  (2.4.40) 

)(
2/1

1
2/1

1
2/1

)(
2/1

)(
2/13

)(
2/1

2)(
2/11

)(
1

)(11
2/12 )()()()()(

i
j

i
ji

i
j

i
ji

i
j

i
ji

i
ji

i
j

i
jj

i
jj

vfvf

pufvpvvhRr

−
−
−

−
−−

−−−−
−−

−

+−

−−+−−−=

αα

θαα
 (2.4.41) 

 
Here the coefficients js )( 9  and js )( 10 , which are zero in this case, are included here for the 

generality. 

 
Similarly by using the equations (2.4.20) to (2.4.24) in the equation (2.4.18) we get the following 

form:  

 

j
i

jj
i

jj
i
jj

i
jj

i
jj

i
jj

i
jj

i
jj

i
jj

i
jj

rvtvtttut

utftftptpt

)()()()()()(

)()()()()(

3
)(
110

)(
9

)(
18

)(
7

)(
16

)(
5

)(
14

)(
3

)(
12

)(
1

=+++++

++++

−−−

−−

δδθδθδδ

δδδδδ
 (2.4.42) 

where 1
2/11

)(1
1 2

1
)(

2

11
)( −

−
− −++= i

jii
i

jj
r

j fpfh
P

t αα  (2.4.43) 

1
2/11

)(
1

1
2 2

1
)(

2

11
)( −

−−
− −++−= i

jii
i

jj
r

j fpfh
P

t αα  (2.4.44) 

1
2/11

)(
3 2

1
)(

2

1
)( −

−++= i
jii

i
jj pppt αα  (2.4.45) 

1
2/11

)(
14 2

1
)(

2

1
)( −

−− ++= i
jii

i
jj pppt αα  (2.4.46) 

1
2/154

)(
5 2

1

2

1
)(

2

1
)( −

−+−+−= i
jii

i
jj uppt ααθ  (2.4.47) 

1
2/154

)(
16 2

1

2

1
)(

2

1
)( −

−− +−+−= i
jii

i
jj uppt ααθ  (2.4.48) 

1
2/14

)(
7 2

1
)(

2

1
)( −

−−+−= i
jii

i
jj uput αα  (2.4.49) 

1
2/14

)(
18 2

1
)(

2

1
)( −

−− −+−= i
jii

i
jj uput αα   (2.4.50) 

)(
29 )( i

jj vpt =   (2.4.51) 
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)(
1210 )( i

jj vpt −=   (2.4.52) 

)(
2/1

1
2/1

)(
2/1

1
2/1

)(
21

1
21

)(
2/1

1
2/1

)(
2/15

)(
2/14

)(
2/1

2
2

)(
2/1)1

)(
1

)(11
2/13 ))(()()()()(

1
)(

i
j

i
ji

i
j

i
ji

i
j

i
ji

i
j

i
ji

i
j

i
ji

i
j

i
ji

i
j

i
jj

r

i
jj

fppfuuup

upvpfpppph
P

Tr

−
−
−−

−
−−

−
−−

−
−−

−−−−
−−

−

−+−++

++−+−−−=

ααθαθα

θαα
  (2.4.53) 

 
 
The boundary conditions (2.4.19) become  
 

0,0

,0,0,0 000

==

===
i
J

i
J

iii

u

uf

θδδ

θδδδ
 (2.4.54) 

 
which just express the requirement for the boundary conditions to remain during the iteration 

process.  

Now the system of linear equations (2.4.25) -(2.4.30), (2.4.41), (2.4.42) and (2.4.53) together 

with the boundary conditions (2.4.54) can be written in a block matrix from a coefficient matrix, 

which are solved by modified ‘Keller Box’ methods especially introduced by Keller . Later, this 

method has been used most efficiently by Cebeci and Bradshow  and recently by Hossain . 

Results are shown in graphical form by using the numerical values obtained from the above 

technique.  

The solutions of the above equations (2.3.1) and (2.3.2) together with the boundary conditions 

(2.3.3) enable us to calculate the skin friction • and the rate of heat transfer q at the surface in the 

boundary layer from the following relations: 

 

 ( )0,
Re

//2/1

0

ξξ
µ

µτ f
Gr

L

U

y

u

y

−∞

=

=







∂
∂

=  (2.4.55) 

 ( )0,
Re

/2/1

0

ξθξ Gr

L

TT
k

y

T
kq s

y

−∞

=

−
−=








∂
∂

−=    (2.4.56) 

 
Hence, the local skin- friction co-efficient and the heat transfer rate in terms of Nusselt number 

are given by  

)0,(
2

Re
2/1

2/3
2/1 ξξ f

Gr
C f ′′=  

2.4.57 

)0,(
Re 2/3

2/1
2/1 ξθξ ′−=− Gr

Nu  
2.4.58 
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2.5 Result and Discussion: 

 

Equations (2.3.1) and (2.3.2) under condition (2.3.3) have been solved by the implicit finite 

difference scheme described earlier. In this solution buoyancy force parameter Ri

0=ξ

 is considered 

as unity. Investigation has been focused on the neighbouring points of , but not at 0=ξ . 

Nevertheless, under consideration of 0=ξ equation (2.3.1) turns to the well known Blassius 

equation which has the solution .33201.0)0,( =′′ ξf In all the tables 2.5f, 2.5g, and 2.5h, the 

results are found to be in very good agreement with the Blasius solution. The corresponding 

energy equation in the absent of viscous dissipation and pressure work was solved by Polhausen 

(1921). For Prandtl numbers 6.0≥  i.e. ,1Pr6.0 ≤≤  the dimensionless heat transfer rate was 

presented by .Pr332.0 3/1 These informations are described elaborately in the book [22]. Our 

results also match with the Polhausen’s result which have been shown in the following table 

2.5.a. 

 
 
 
 
 
 
 
 
 
 
                Table 2.5.a: Values of - )0,(ξθ ′ for various values of Pr when Ec=0.0 and .0.0=ε  
 
As a check on the accuracy of the present numerical scheme, some results are compared with 

those of Soundalgekar et al. [23], Hossain and Arbad [7] for Pr=0.72 and 0.0=ε in the following 

table 2.5.b. We see from the column of Soundalgekar , Hossain and Arbad that increasing of Ec 

decreases the local heat transfer rate - )0.(ξθ ′  for the fixed buoyancy force parameter Ri=0.1 in 

the absent of pressure work effect. Similar result is seen from the present work for the fixed 

buoyancy force parameter Ri

Name of the gases 

=1.  

 

Prandtl no. Pr 
Polhausen 
 

Present result 

- )0,(ξθ ′  
Air at 2500 0.72 K 0.29757 0.29563 
Methen at 2500 0.742 K 0.30057 0.29882 
Helium at 2500 0.681 K 0.29209 0.28981 
Water vapor at 3800 1.0 K 0.33200 0.33205 
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                 Table2.5.b: Values of - )0,(ξθ ′ for various values of Ec when Pr=0.72 and .0.0=ε  
 
 

 

Numerical values are presented in the table 2.5c for velocity and temperature profiles for 

variation of Prandtl number Pr against • . Table 2.5d and 2.5e contain the values of the same 

factors against •  for the variation of  ε  and Ec respectively.  

 

 

 

 

 

 

Table 2.5c :Numerical values of the velocity profile and the temperature profile for different        

                     values of Prandtl number Pr while Ec=0.01and ε =0.01. 

 

 

Ec 

Soundalgekar Hossain and Arbad Present result 

Ri R=0.1 i R=0.1 i=1 

- )0.(ξθ ′  

0.0 0.3157 0.3174 0.29563 
0.01 0.3141 0.3169 0.29438 
0.05 - - 0.28937 
0.1 - - 0.28311 

Values 
of •  

Pr=0.3 Pr=0.72 Pr=1.0 Pr=10.0 

),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  

0.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 
0.02623 0.04428 0.99201 0.03854 0.98917 0.03653 0.98793 0.02474 0.97575 
0.05248 0.08782 0.98402 0.07634 0.97832 0.07231 0.97585 0.04875 0.95143 
1.77392 1.40519 0.48271 1.17778 0.32772 1.10282 0.26913 0.74703 0.00664 
1.82795 1.40588 0.46901 1.17988 0.31225 1.10573 0.25367 0.75758 0.00402 
1.93982 1.40266 0.44130 1.18096 0.28166 1.10898 0.22350 0.77859 0.00027 
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Table 2.5d: Numerical values of the velocity profile and the temperature profile for different    

                        values of Pressure work parameter ε  while Pr=0.72 and Ec=0.01. 

 

 

Table 2.5e: Numerical values of the velocity profile and the temperature profile for different                      

                        values of viscous dissipation parameter  Ec while Pr=0.72 and ε =0.01. 

 

 

 

Numerical values are presented in the table 2.5f for local skin friction coefficient and local heat 

transfer rate against •  for variation of Prandtl number Pr. Table 2.5g and 2.5h contain the values 

of the same factors against •  for the variation of  ε  and Ec respectively. The graphical 

representation of the data are given in the figure 2.5.1(a,b), 2.5.2(a,b), 2.5.3(a,b), 2.5.4(a,b), 

2.5.5(a,b), 2.5.6(a,b) 

 

 

Values 
of •  

ε =0.0 ε =0.01 ε =0.04 ε =0.07 

),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξf ′  ),( ηξf ′  ),( ηξθ  

0.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 
0.02623 0.03877 0.98934 0.03854 0.98917 0.03789 0.98869 0.03728 0.98825 
0.10511 0.15075 0.95722 0.14984 0.95655 0.14722 0.95465 0.14479 0.95289 
2.97288 1.09818 0.09263 1.09295 0.08910 1.07761 0.07909 1.06278 0.06989 
3.05619 1.08961 0.08330 1.08462 0.07989 1.06996 0.07021 1.05575 0.06131 
4.23775 1.01583 0.01450 1.01330 0.01232 1.00574 0.00604 0.99824 0.00011 

Values 
of •  

Ec=0.0 Ec=0.05 Ec=0.1 Ec=0.3 

),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  

0.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 
0.05248 0.07623 0.97800 0.07678 0.97963 0.07735 0.98130 0.07974 0.98849 
0.10511 0.14962 0.95595 0.15072 0.95900 0.15185 0.96214 0.15663 0.97563 
3.50544 1.04686 0.04227 1.04732 0.04270 1.04779 0.04315 1.04965 0.04503 
4.01507 1.02034 0.01849 1.02047 0.01865 1.02059 0.01881 1.02107 0.01950 
5.39382 1.00018 0.00018 1.00016 0.00017 1.00014 0.00016 1.00005 0.00012 



 20 

 

 

Table2.5f:Numerical values of the local skin friction and the rate of heat transfer for various          

                   values of  Prandtl number Pr while Ec=0.01and ε =0.01. 

 

 

 

 

 

 

 

Table 2.5g: Numerical values of the local skin friction and the rate of heat transfer for various   

                     values of Pressure work parameter ε  while Pr=0.72 and Ec=0.01. 

 

 

 

 

Values 
of •  

Pr=0.3 Pr=0.72 Pr=1.0 Pr=10.0 

)0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  

0.00000 0.33205 0.21433 0.33205 0.29438 0.33205 0.33039 0.33205 0.71735 
0.02000 0.36828 0.21801 0.36156 0.29890 0.35926 0.33520 0.34658 0.72361 
0.10017 0.50181 0.23040 0.47169 0.31452 0.46125 0.35196 0.40252 0.74672 
4.83720 4.65225 0.40773 3.96833 0.55099 3.72805 0.61250 2.30482 1.19150 
4.93696 4.71960 0.40961 4.02476 0.55346 3.78062 0.61522 2.33409 1.19613 
5.24827 4.92732 0.41532 4.19870 0.56098 3.94263 0.62348 2.42385 1.21009 

Values 
of •  

ε =0.0 ε =0.01 ε =0.04 ε =0.07 

)0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  
 

)0,(ξf ′′
 

- )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  

0.00000 0.33205 0.29438 0.33205 0.29438 0.33205 0.29438 0.33205 0.29438 
0.02000 0.36157 0.29881 0.36156 0.29890 0.36154 0.29917 0.36152 0.29944 
0.04001 0.39019 0.30296 0.39017 0.30314 0.39009 0.30368 0.39002 0.30422 
2.48059 2.54489 0.46258 2.51028 0.47890 2.41665 0.52209 2.33582 0.55840 
2.53459 2.58307 0.46423 2.54715 0.48097 2.45020 0.52516 2.36673 0.56217 
2.82020 2.78194 0.47249 2.73880 0.49148 2.62363 0.54091 2.52589 0.58157 
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Table 2.5h: Numerical values of the local skin friction and the rate of heat transfer for various   

                       values of viscous dissipation parameter Ec while Pr=0.72 and ε =0.01. 

Figure 2.5.1a and 2.5.1b show the velocity and temperature profiles for different values of 

Prandtl number in presence of the viscous dissipation and pressure work .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 2.5.1a with Prandtl number less than or equal to 1, the velocity in the boundary layer 

can exceed the external velocity )1( >′f as the buoyancy effect becomes stronger. At Prandtl 

number greater than 1, the effect of the buoyancy on the velocity profile reduces and we do not 

Values 
of •  

Ec=0.0 Ec=0.05 Ec=0.1 Ec=0.3 
)0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  

0.00000 0.33205 0.29563 0.33205 0.28937 0.33205 0.28311 0.33205 0.25807 
0.10017 0.47153 0.31615 0.47233 0.30801 0.47314 0.29983 0.47637 0.26678 
0.12029 0.49753 0.31967 0.49848 0.31113 0.49944 0.30255 0.50326 0.26778 
1.90430 2.09728 0.46580 2.12089 0.40960 2.14548 0.35070 2.25526 0.08336 
2.03686 2.19330 0.47251 2.21956 0.41222 2.24700 0.34881 2.37081 0.05807 
2.27434 2.36122 0.48397 2.39256 0.41621 2.42551 0.34452 2.57708 0.00943 
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Fig.2.5.1: (a) Velocity and (b) Temperature profiles are shown against •  for different           
                       values of Prandtl number Pr while Ec=0.01, ε =0.01  
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observe any overshoots in the velocity profile as is the case when 1Pr ≥ . On the other hand, 

from figure 2.5.1b we see that the temperature distribution over the whole boundary layer 

decreases significantly when the values of Prandtl number increases.  

 

The effect of Prandtl number Pr(=0.3, 0.72, 1.0, 10.0) on the local skin friction coefficient and 

the local heat transfer rate while Ec=0.01 and 01.0=ε  is shown in figure 2.5.2a and 2.5.2b 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is found that skin friction coefficient decreases and the heat transfer rate increases for 

increasing values of the Prandtl number Pr. For example, at •=0.2 the values of the skin friction 

decreases by 28.0968% and the heat transfer rate increases by 215.49% while Pr increasing from 

0.3 to 10.0. 

Figure 2.5.3a and 2.5.3b illustrate the velocity and temperature profiles for different values of 

pressure work parameter ε  while Pr=0.72 and Ec=0.01.  

 

Fig.2.5.2: (a) Skin friction and (b) Rate of heat transfer against •  for different values       
                     of  Prandtl number Pr while Ec=0.01, ε =0.01 
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We observe from figure 2.5.3a that an increase in the pressure work parameter ε  decreases the 

velocity profiles. But near the surface of the plate the velocity increases , become maximum and 

then decrease and finally approaches to unity. The maximum values of the velocities are 

1.18921, 1.18096, 1.1570, 1.13506 for ε =0.0, 0.01, 0.04, 0.07 respectively occurs at                 

• = 1.88324, 1.93982, 1.99774, 1.93982. Here we find that the velocity decreases by 4.55% as ε  

increases from 0.0 to 0.07. Clearly it is seen from figure 2.5.3b that the temperature distribution 

decreases owing to increasing values of the pressure work parameter and becomes maximum at 

the wall. The local maximum values of the temperature are unity i.e. all are same and become 

zero as .∞→η  But at a particular • >0 decreasing rate is not so much significant.  

 

 

 

                                        (a)                                                                               (b) 
 
Fig.2.5.3: (a) Velocity and (b)Temperature profiles are shown against •  for different   
                      values of  Pressure work parameter ε  while Pr=0.72, Ec=0.01 
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Figure 2.5.4a and 2.5.4b illustrate the effect of pressure work parameter on the local skin friction 

coefficient and the local heat transfer rate respectively while Pr=0.72 and Ec=0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 From figure 2.5.4a, it is seen that an increase in the pressure work parameter 

ε (=0.0,0.01,0.04,0.07) leads to a decrease in the local skin friction coefficient and inverse result 

is observed from figure 2.5.4b for local heat transfer rate. 

 

 

                                          (a)                                                                                   (b) 
 
Fig.2.5.4: (a) Skin friction and (b) Rate of heat transfer against •  for different values of  
                    Pressure work parameter ε  while Pr=0.72, Ec=0.01 
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Figure2.5.5a and 2.5.5b show the effects of the viscous dissipation parameter 

Ec(=0.0,0.05,0.1,0.3) on the velocity and the temperature profiles for Pr=0.72 andε =0.01.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From figure 2.5.5a, it is revealed that the velocity profile increases with the increase of the 

viscous dissipation parameter Ec which indicates that viscous dissipation accelerates the fluid 

motion slightly. In figure 2.5.5b the similar behaviour has also been observed for the temperature 

profiles with exactly the same values of the parameters Ec, Pr and ε . 

 
 
Figure 2.5.6a and 2.5.6b show the variation of the local skin friction coefficient and local heat 

transfer rate with viscous dissipation parameter Ec while Pr=0.72 and ε =0.01.  

 

 

                                           (a)                                                                               (b) 
 
Fig.2.5.5: (a) Velocity and (b) Temperature profiles are shown against •  for different values   
                     of viscous dissipation parameter Ec while Pr=0.72, ε =0.01 
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It can be seen that the skin friction  increases along the •  direction for a particular Ec. This is to 

be expected since the fluid motion within the boundary layer increases for increasing Ec              

( Fig 2.5.5a ) and eventually increases the skin friction factor. Figure 2.5.6b shows that the effect 

of the viscous dissipation parameter leads to a decrease of the local heat transfer rate. 

 
 
2.6 Conclusion: 
 
The effect of viscous dissipation and pressure work on mixed convection flow along a vertical 

isothermal flat plate has been studied. Thermal boundary layer is produced by the sudden 

increase of the surface temperature of the plate as the motion is started. The results are obtained 

using a very accurate numerical method, namely the implicit finite difference method. The 

numerical values of the local skin friction coefficient, local Nusselt number, velocity and 

temperature profiles have been presented graphically and in tabular form.  

 

 

                                       (a)                                                                                        (b)        
 
Fig.2.5.6: (a) Skin friction and (b) Rate of heat transfer against •  for different values of  
                     Viscous dissipation parameter Ec while Pr=0.72, ε =0.01 
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We conclude the following from the results and discussions: 

 
 Local skin friction coefficient, velocity and temperature distributions increase and local 

Nusselt number decrease for increasing values of the viscous dissipation parameter. 

 
 Due to increasing values of the pressure work parameter, local skin friction coefficient, 

velocity and temperature distributions decrease and the local Nusselt number increase. 

 
 For the increasing values of Prandtl number the values of local skin friction coefficient, 

velocity and temperature distributions decrease and local Nusselt number increase. 
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CHAPTER 3 
 
 
 

EFFECTS OF PRESSURE STRESS WORK 
AND VISCOUS DISSIPATION IN MIXED 

CONVECTION FLOW ALONG A 
VERTICAL FLAT PLATE IN PRESENCE 

OF HEAT GENERATION 
 
 
 
3.1 Introduction: 

             

           The aim of this chapter is to investigate the heat generation effect on mixed convection flow in  

presence of viscous dissipation and pressure work. The developed governing equations with the 

associated boundary conditions for this analysis are transferred to dimensionless forms using a 

local non-similar transformation. The transformed non-linear equations are then solved using the 

implicit finite difference method along with Newton’s linearization approximation. Numerical 

results are found for different values of the heat generation parameter, viscous dissipation 

parameter, pressure work parameter with Prandtl number 0.72 which corresponds to air at 2500

The study of heat generation or absorption in moving fluids is important in problems dealing 

with chemical reactions and those concerned with dissociating fluids. Possible heat generation 

effects may alter the temperature distribution; consequently, the particle deposition rate in 

nuclear reactors, electronic chips and semiconductor wafers. In fact, the literature is replete with 

examples dealing with the heat transfer in laminar flow of viscous fluids. Vajravelu and 

Hadjinolaou [25] studied the heat transfer behavior in the laminar boundary layer for a viscous 

fluid over a stretching sheet with viscous dissipation and internal heat generation. In this study 

K. 

The overall investigations of the velocity, temperature, skin friction and heat transfer rate are 

presented graphically. 
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the volumetric rate of heat generation was considered as )( ∞−=′′′ TTQq o  ∞≥ TTfor  and equal 

to zero for ,∞< TT where 0Q is a heat generation constant. Hossain et al. [9] also discussed the 

problem of natural convection flow along a vertical wavy surface with uniform surface 

temperature in presence of heat generation. The effects of the conjugate conduction-natural 

convection heat transfer along a thin vertical plate with non-uniform heat generation have been 

studied by Mendez and Trevino [19]. Mamun et al.[16] analyzed the heat generation effect on 

natural convection flow of electrically conducting fluid along a vertical flat plate. Alam et al.[2] 

studied the effects of thermophoresis and chemical reaction on an unsteady hydromagnetic free 

convection and mass transfer flow past an impulsively started infinite inclined porous plate in the 

presence of heat generation or absorption. Teodor Groson [24] showed that the effect of internal 

heat generation is greater for negative values of the mixed convection parameter on a vertical flat 

plate embedded in a fluid saturated porus media. 

 

To our best of knowledge, heat generation effect along with viscous dissipation and pressure work 

on mixed convection flow from an isothermal vertical flat plate has not been studied yet. Here we 

have focused our attention on the evolution of the surface shear stress in terms of local skin 

friction and the rate of heat transfer in terms of local Nusselt number, velocity distribution as well 

as temperature distribution for selected parameters. Heat source accelerates the fluid flow and 

generates the greater buoyancy force and therefore increases the skin friction factor. 

 

 
 
 
3.2  Geometry of the problem: 
     
Geometry for this problem will be unchanged as we described in chapter one. The appropriate 

equations for the conservation of mass and momentum correspond to those given by equations 

(2.2.1) and (2.2.2). To show the effect of heat generation, we write the energy equation (2.2.3) in 

a slightly different form. The term )(0
∞− TT

C

Q

pρ
is assumed to be the amount of generated or 

absorbed heat per unit volume, where 0Q  is constant, which may take as either positive or 

negative values. When the wall temperature sT exceeds the free stream temperature ∞T , the 
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source term represents the heat source when 00 >Q and heat sink when 00 <Q . For the 

condition that ∞< TTs the opposite relationship holds good.  

 
Now the energy equation (2.2.3) takes the following form 
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The governing equations have to be solved along with the same boundary conditions (2.2.4). 
 
 
 
3.3 Transformation of the governing equations: 
 
 
Introducing the same transformations described in section 2.3, into the momentum and energy 
equations, we obtain the following non linear partial differential equations: 
 
 
 
 
 
 
 
 
 
 

where   
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p Re
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= is the heat generation parameter. 

In the above equations the primes denote differentiation with respect to • . 

The corresponding boundary condition takes the form 
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3.4 Solution Methodology: 

 

To get the solutions of the parabolic differential equations (3.3.1) and (3.3.2) along with the 

boundary condition (3.3.3), we shall employ implicit finite difference method together with 

Keller- box elimination technique. Since a good description of this method has been discussed in 

details in Chapter-2, further discussion is disregarded here. The numerical results obtained are 

presented in the following sections. 

 

3.5 Result and Discussion: 

  

A comprehensive set of numerical results is displayed graphically to illustrate the influence of 

the various physical parameters on the locally similar solutions. The value of Prandtl number is 

considered to be 0.72 that correspond to air. Numerical values are presented in the table 3.5a for 

velocity and temperature profiles for variation of heat generation parameter Q against • . Table 

3.5b and 3.5c contain the values of the same factors against •  for the variation of  ε  and Ec 

respectively. 

 

 

 

 

Table3.5a: Numerical values of the velocity profile and the temperature profile for different   

                    values of  heat generation parameter Q while Pr=0.72, Ec=0.01and ε =0.01. 

 

Values 
of •  

Q=0.01 Q=0.05 Q=0.08 Q=0.1 

),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  

0.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 
0.02623 0.03867 0.98935 0.03919 0.99011 0.03960 0.99069 0.03989 0.99109 
0.21138 0.29019 0.91387 0.29437 0.91932 0.29765 0.92356 0.29989 0.92646 
3.05619 1.08573 0.08093 1.09024 0.08530 1.09372 0.08876 1.09608 0.09117 
4.01507 1.02060 0.01880 1.02156 0.01995 1.02229 0.02087 1.02279 0.02151 
5.39382 1.00019 0.00019 1.00023 0.00025 1.00025 0.00030 1.00027 0.00033 
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Table 3.5b: Numerical values of the velocity profile and the temperature profile for different  

                    values ofPressure work parameter ε  while Pr=0.72, Q=0.01 and Ec=0.01 

 

 

Table 3.5c:Numerical values of the velocity profile and the temperature profile for different   

                    values of viscous dissipation parameter  Ec while Pr=0.72, Q=0.01 and ε =0.01. 

 

 

Numerical values are presented in the table 3.5d for local skin friction coefficient and local heat 

transfer rate against •  for variation of heat generation parameter Q. Table 3.5e and 3.5f contain 

the values of the same factors against •  for the variation of  ε  and Ec respectively. The graphical 

representation of the data are given in the figure 3.5.1(a,b), 3.5.2(a,b), 3.5.3(a,b), 3.5.4(a,b), 

3.5.5(a,b), 3.5.6(a,b) 

 

Values 
of •  

ε =0.01 ε =0.05 ε =0.08 ε =0.2 

),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  

0.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 
0.02623 0.03867 0.98935 0.03780 0.98872 0.03719 0.98828 0.03515 0.98682 
0.21138 0.29019 0.91387 0.28321 0.90882 0.27840 0.90538 0.26204 0.89388 
1.21093 1.07436 0.51713 1.04365 0.49751 1.02234 0.48429 0.94938 0.44116 
2.05703 1.18110 0.25434 1.15051 0.23570 1.12898 0.22318 1.05340 0.18286 
3.50544 1.04752 0.04295 1.03226 0.03212 1.02109 0.02468 0.97919 0.00004 

Values 
of •  

Ec=0.01 Ec=0.05 Ec=0.08 Ec=0.2 

),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  ),( ηξf ′  ),( ηξθ  

0.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 0.00000 1.00000 
0.02623 0.03867 0.98935 0.03889 0.99003 0.03905 0.99071 0.03977 0.99273 
0.21138 0.29019 0.91387 0.29196 0.91822 0.29316 0.92237 0.29888 0.93543 
3.05619 1.08573 0.08093 1.08663 0.08167 1.08665 0.08153 1.09007 0.08455 
4.01507 1.02060 0.01880 1.02070 0.01893 1.02059 0.01881 1.02106 0.01943 
5.39382 1.00019 0.00019 1.00017 0.00018 1.00014 0.00016 1.00010 0.00015 
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Table 3.5d:Numerical values of the local skin friction and the rate of heat transfer for various                             

                      values of heat generation parameter Q while Pr=0.72, Ec=0.01and ε =0.0 

 

 

 

 

 

Table 3.5e: Numerical values of the local skin friction and the rate of heat transfer for various   

                        values of Pressure work parameter ε  while Pr=0.72, Q=0.01 and Ec=0.01.   

 

 

 

 

 

Values 
of •  

Q=0.01 Q=0.05 Q=0.08 Q=0.1 

)0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  

0.00000 0.33205 0.29438 0.33205 0.29438 0.33205 0.29438 0.33205 0.29438 
0.02000 0.36157 0.29872 0.36160 0.29800 0.36162 0.29746 0.36164 0.29710 
0.20134 0.59809 0.32886 0.59955 0.32233 0.60065 0.31739 0.60140 0.31407 
2.03686 2.20971 0.44900 2.25666 0.40071 2.29408 0.36278 2.32011 0.33660 
3.00492 2.87885 0.48196 2.95870 0.41551 3.02321 0.36265 3.06865 0.32581 
4.10555 3.57177 0.51132 3.69266 0.42567 3.79165 0.35673 3.86210 0.30823 

Values 
of •  

ε =0.01 ε =0.05 ε =0.08 ε =0.2 

)0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  

0.00000 0.33205 0.29438 0.33205 0.29438 0.33205 0.29438 0.33205 0.29438 
0.02000 0.36157 0.29872 0.36154 0.29908 0.36152 0.29935 0.36143 0.30042 
0.20134 0.59809 0.32886 0.59636 0.33270 0.59509 0.33553 0.59017 0.34644 
0.78384 1.19755 0.38444 1.17921 0.40102 1.16627 0.41264 1.12041 0.45341 
0.80941 1.22096 0.38625 1.20160 0.40342 1.18796 0.41543 1.13977 0.45740 
1.17520 1.53988 0.40905 1.50352 0.43483 1.47854 0.45232 1.39430 0.51037 
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Table 3.5f: Numerical values of the local skin friction and the rate of heat transfer for various   

                       values of viscous dissipation parameter  Ec while Pr=0.72, Q=0.01 and ε =0.01. 

 

 

The increased value of the heat generation parameter Q(=0.01,0.05,0.08,0.1) means that more 

heat is produced and eventually, that heat accelerates the fluid motion as obtained in figures 

3.5.1b and 3.5.1a, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values 
of •  

Ec=0.01 Ec=0.05 Ec=0.08 Ec=0.2 

)0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  )0,(ξf ′′  - )0,(ξθ ′  

0.00000 0.33205 0.29438 0.33205 0.28937 0.33205 0.28561 0.33205 0.27059 
0.02000 0.36157 0.29872 0.36171 0.29343 0.36182 0.28945 0.36225 0.27353 
0.10017 0.47180 0.31367 0.47245 0.30715 0.47293 0.30224 0.47487 0.28249 
2.94217 2.83743 0.48007 2.87690 0.40645 2.90799 0.34826 3.04736 0.08490 
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Fig.3.5.1: (a)Velocity and (b) Temperature profiles are shown against •  for different  values    
                     of  heat generation parameter Q while Pr=0.72, Ec=0.01and ε =0.01. 
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The variation of the local skin friction coefficient and local rate of heat transfer with Ec=0.01 

and ε = 0.01 for different values of Q are illustrated in figures 3.5.2a and 3.5.2b, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be concluded that an increase in the heat generation parameter leads to an increase in the 

skin friction factor and a decrease in the local heat transfer rate. The heat generation accelerates 

the fluid flow, as mentioned earlier, and increases the shear stress at the wall. The increased skin 

friction coefficients with the increasing Q represent this phenomenon as illustrated in figure 

3.5.2a. 

Moreover, a hot fluid layer is created adjacent to the surface due to the heat generation 

mechanism As a result, the heat transfer rate from the surface decreases as shown in figure 

3.5.2b. 
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Fig.3.5.2: (a) Skin friction and (b) Rate of heat transfer against •  for different values of  
                     heat generation parameter Q while Pr=0.72, Ec=0.01and ε =0.01.  
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Figure 3.5.3a and 3.5.3b illustrate the velocity and temperature profiles for different values of 

pressure work parameter ε  while Q=0.01 and Ec=0.01.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We observe from figure 3.5.3a that an increase in the pressure work parameter ∈ decreases the 

velocity profiles. But near the surface of the plate the velocity increases and become maximum 

and then decrease and finally approaches to unity. The maximum values of the velocities are 

1.18339, 1.15276, 1.13064, 1.05375 for ε =0.01, 0.05, 0.08, 0.2 respectively which occur at       

• = 1.82795, 1.93982, 1.93982, 1.99774. Here we see that the velocity decreases by 10.95% as ε  

increases from 0.01 to 0.2. Clearly it is seen from figure 3.5.3b that the temperature distribution 

decreases owing to increasing values of the pressure work parameter and becomes maximum at 

the wall. The local maximum values of the temperature are unity i.e. all are same and become 

zero as .∞→η  But at a particular • >0 decreasing rate is significant.  
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Fig.3.5.3: (a) Velocity and (b)Temperature profiles are shown against •  for different values   
                      of  Pressure work parameter ε  while Pr=0.72, Q=0.01 and Ec=0.01 
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Figure 3.5.4a and 3.5.4b illustrate the effect of pressure work parameter on the local skin friction 

coefficient and the local heat transfer rate respectively while Q=0.01 and Ec=0.01.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 From figure 3.5.4a, it is seen that an increase in the pressure work parameter 

ε (=0.01,0.05,0.08,0.2) leads to a decrease in the local skin friction coefficient and inverse result 

is observed from figure 3.6.4b for local heat transfer rate. This is to be expected since the fluid 

motion within the boundary layer decreases for increasing ε  and eventually decreases the skin 

friction factor. 

 
Figure3.5.5a and 3.5.5b depict the effects of the viscous dissipation parameter 

Ec(=0.01,0.05,0.08,0.2) on the velocity and the temperature profiles for Q=0.01 and ε =0.01.  
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Fig.3.5.4: (a) Skin friction and (b) Rate of heat transfer against •  for different values of  
                    Pressure work parameter ε  while Pr=0.72, Q=0.01 and Ec=0.01 
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From figure 3.5.5a, it is revealed that the velocity profile increases with the increase of the 

viscous dissipation parameter Ec which indicates that viscous dissipation increases the fluid 

motion slightly. In figure 3.5.5b the similar behaviour has also been observed for the temperature 

profiles with the similar values of the parameters Ec, Q and ε . 

 
 

Figure 3.5.6a and 3.5.6b dipict the variation of the local skin friction coefficient and local heat 

transfer rate with viscous dissipation parameter Ec while Q=0.01and ε =0.01. It can be seen that 

the skin friction factor increases along the •  direction for a particular Ec.  
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Fig.3.5.5: (a) Velocity and (b)Temperature profiles are shown against •  for different  values of    
                      viscous dissipation parameter Ec while Pr=0.72, Q=0.01 and ε =0.01. 
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This is to be expected since the fluid motion within the boundary layer increases for increasing 

Ec ( Fig 3.5.6a ) and eventually increases the skin friction factor. Figure 3.5.6b shows that the 

effect of the viscous dissipation parameter leads to decrease the local heat transfer rate. 

 
      
 
3.6 Conclusion: 
 
A time independent, two dimensional, laminar mixed convection flow is studied considering heat 

generation in the presence of viscous dissipation and pressure work effects. The effects of 

pressure work, viscous dissipation parameter and heat generation parameter are analyzed on the 

fluid flow. From the present investigation the following conclusion may be drawn. 

 

 The velocity of the fluid and the skin friction at the surface decrease with the 

increasing pressure work parameter while they increase with the increasing viscous 

dissipation parameter and heat generation parameter.  
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Fig.3.5.6: (a) Skin friction and (b) Rate of heat transfer against •  for different values of  
                     Viscous dissipation parameter an=Ec while Pr=0.72, Q=0.01 and ε =0.01 
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 The temperature of the fluid decreases with the increasing pressure work parameter 

and increases with the increasing viscous dissipation parameter and heat generation 

parameter.  

 

 The rate of heat transfer increases with the increasing pressure work parameter and 

decreases with the increasing viscous dissipation parameter and heat generation 

parameter. 

 
 



 41 

References 
 
[1] Alam, Alim and Chowdhury, ‘Effect of pressure stress work and viscous dissipation flow          
along a vertical flat plate  with heat conduction’, Journal of Naval Architecture and Marine   
Engineering, pp 69- 76, December, (2006). 

 
[2] Alam M.S, Rahman M.M., and Sattar M.A., ‘ Effects of thermophoresis and chemical     

reaction on an unsteady hydromagnetic free convection and mass transfer flow past an  

impulsively started infinite inclined porous plate in the presence of heat generation       

/absorption’, Thammasat Int. J. Sc. Tech., Vol. 12, No. 3, pp 44-47. (2007) 

 

[3] Cebeci T., Bradshaw P., ‘Physical and Computational Aspects of convective Heat Transfer’, 

Springer, Newyork, (1984)  

 
[4] Gebhart, ‘Effect of viscous dissipation in natural convection’, J. Fluid Mech., Vol. 14,  pp  

225-295 (1962). 

 
[5] Gebhart and Mollendorf, ‘ Viscous dissipation in external natural convection flows’. J. Fluid   

Mech. S8,pp 97-107 (1969). 

 

[6] Hossain M.A., and Alim M.A., ‘Natural convection radiation Interaction on Boundary layer  

Flow along a Thin cylinder’, J. Heat and Mass Transfer, Vol. 32, pp.515-520, (1997) 

  
 
[7] Hossain and Arbad, ‘Forced and Free convection flow with viscous dissipation effects: The   

method of  parametric differentiation’, International Atomic Energy Agency and United  Nations 

Educational Scientific and Cultural  Organization,  International  centre for   theoretical physics, 

IC/ 88/ 141. 

  

 [8] Hossain M. A., Kutubuddin M., and Takhar H.S., ‘Radiation interaction on forced and free   

convection across a horizontal cylinder’, Applied Mechanics and Engineering, Vol. 4, pp.219-

235. (1999). 

 
 



 42 

[9] Hossain M.A., Molla M.M., Yao L. S., ‘Natural convection flow along a vertical wavy  

surface with uniform surface temperature in presence of heat generation /absorption’, Int. J. 

Thermal Science, Vol  43, pp. 157–163, (2004). 

 
 
 
[10] Hossain, Sidharta and Gorla, ‘Unsteady mixed convection boundary layer flow along a 

symmetric wedge with variable surface temperature’, Int. J. Heat and Mass Transfer, Vol  44, pp. 

607–620,( 2006). 

 

[11]  Ishak, Nazar and Pop, ‘Mixed convection of the stagnation point flow towards a stretching   

vertical  permeable sheet’, Malaysian Journal for Mathematical Sciences 1(2):pp 217-226, 

(2007). 

 

[12] Ishak, Nazar and Pop, ‘Post stagnation point boundary layer flow and mixed convection   

heat transfer over a vertical linearly stretching sheet’, Arch. Mach., Vol 60, pp. 303-322. (2008) 

 
 [13] Joshi and Gebhart, ‘The effect of pressure stress work and viscous dissipation in some   
natural convection flows’, Int. J. Heat Mass Transfer, Vol 24, No.10, pp 1577- 1588,  (1981). 

[14] Keller H.B, Cebeci T.,’Accurate Numerical Methods for boundary layer flows , Springer, 

Newyork, (1971)  

 
[15] Kumari and Nath , ‘Development of mixed convection flow over a vertical plate due to an  
mpulsive motion’, Int. J. Heat Mass Transfer, Vol 40, pp  823-828, (2004). 

 
[16] Mamun A.A., Chowdhury Z.R., Azim M.A.,. Maleque M.A., ‘Conjugate Heat Transfer for a  

Vertical Flat Plate with Heat Generation Effect’, Nonlinear Analysis: Modelling and Control, , 

Vol. 13, No. 2, pp 213–223. (2008) 

 

[17] Mamun A.A., Chowdhury Z.R., Azim M.A., Maleque M.A., ‘ MHD- conjugate heat    

transfer analysis for a vertical flat plate in presence of viscous dissipation and heat      

generation’, International Communications in Heat and Mass Transfer, Vol.35, pp 1275- 1280.  

(2008) 



 43 

 [18] Miyamoto, M., Sumikawa, J., Akiyoshi, T. and Takamura, T., ‘The effect of axial heat 
conduction  in a vertical flat  plate on free convection heat transfer’, Int. J. Heat Mass Transfer, 
Vol 23, pp  1545- 1553, (1980). 

 
[19] Mendez F., Trevino C., ‘The conjugate conduction-natural convection heat transfer along a  

thin vertical plate with non-uniform internal heat generation’, Int. J. Heat and Mass Transfer, Vol 

43, pp. 2739–2748,( 2000). 

 
[20] Pantokratoras, ‘Effect of viscous dissipation and pressure stress work in natural convection    

along a vertical isothermal plate’, Int. J. Heat and Mass Transfer, Vol 46, pp.4979–4983,(2003). 

 
[21] Roslinda Bt Mohd Nazar, ‘Mathematical Models for Free and Mixed Convection boundary  

layer flows of Micropolar fluids’, Ph.d thesis, Universiti Teknologi Malaysia, December  2003. 

 

[22] Sachdeva R.C., Fundamentals Engineering heat and Mass Transfer, Wiley Eastern Limited,  

New Age International Limited, ISBN 81-224-0076-0. (1994)  

  
[23] Soundalgekar V.M., Vighnesan N.V. and Pop I., ‘Combined free and forced convection  

flow past a vertical porous plate’, Int. J. Energy Research, Vol.5, pp. 215-226 (1981). 

 

[24] Teodor Groson, ‘Mixed convection on a vertical flat plate embedded in a fluid saturated   

porus media.’, J. Engng. Math., Vol 14, pp 301-313. (1980) 

 

[25] Vajravelu K., Hadjinicolaou A., ‘Heat transfer in a viscous fluid over a stretching sheet with 

viscous dissipation and internal heat generation’ Int. Commun. Heat Mass transfer, Vol 20, pp 

417-430. (1993) 

 
 [26] Yao, ‘Two-dimensional mixed convection along a flat plate’, ASME J. Heat Transfer, Vol 

109,pp 440-445, (1987).     

 

 [27] Zakerullah, ‘Viscous dissipation and pressure work effects in axisymmetric natural   

convection flows’, Ganit ( J. Bangladesh Math. Soc.), Vol.2, No. 1, pp 43-51, (1972). 



 44 

[28] John H Lienhard, ‘A Heat Transfer Text Book’, Phlogiston Press, Cambridge,     

Massachusetts, USA, 3rd

 One may solve this problem considering time dependent flow of the fluid. 

 edition.(2008) 

 

 

Appendix 
 

Extension of this work 

 

Some proposal related to this problem are given below: 

 This problem can be extended for the opposed mixed convection flow. 

 For the angular flat plate can also be solved. 

 Effect of atmospheric pressure on the fluid flow can be shown. 
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