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ABSTRACT 

Free convection or natural convection in trapezoidal cavities has received considerable 

attention because of its importance in several thermal engineering problems, for example, 

in the design of electronic devices, solar thermal receivers, uncovered flat plate solar 

collectors having rows of vertical strips geothermal reservoirs etc. 

In this thesis under the title “Finite Element Analysis on Heat Flow Based on Heatline 

Concept for MHD Free Convection within Trapezoidal Cavity”, two problems have been 

studied. The relative direction between the buoyancy force and the externally forced flow 

is important. In the case where the fluid is externally forced to flow as the buoyancy force, 

the mode of heat transfer is termed combined forced and natural convection. The studies 

as well as depending on various flow of uniform and non-uniform heating  and 

geometrical conditions are abstracted below. 

Initially, Numerical simulation of two-dimensional laminar steady-state on MHD free 

convection within trapezoidal cavity with uniformly heated bottom wall has been 

investigated. In this study, natural convection within a trapezoidal enclosure for uniformly 

heated bottom wall, insulated top wall and isothermal side walls with inclination angles 

(ф) are considered. Heat flow patterns in the presence of natural convection within 

trapezoidal enclosures have been analyzed with heatlines concept. The fluid is concerned 

for the wide range of Rayleigh number (Ra) from 103 to 107 and Prandtl number (Pr) from 

0.026, 0.7, 1000 with various tilt angles Ф = 450, 300 and 00(square).. 

 
The properties of the fluid were presumed to be constant. The physical problems are 

represented mathematically by different sets of governing equations along with the 

corresponding boundary conditions. The non-dimensional governing equations are 

discretized by using Galerkin weighted residual method of finite element formulation. 

Results are presented in terms of streamlines, isotherms, average Nusselt number along the 

bottom wall for uniform heating , average Nusselt number along the side wall for uniform 

heating, Local Nusselt number along distance for uniform heating of the side wall, Local 

Nusselt number along distance for uniform heating of the bottom wall,  for different 

combinations of the governing parameters namely Prandtl number Pr, Hartmann number 

Ha and at the three values of Rayleigh number Ra, varying from 103 to 107. This range of 
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Ra is selected on the basis of calculation covering free convection dominated regimes. The 

computational results also indicate that the average Nusselt number at the uniform heating 

of bottom wall and side wall of the cavity is depending on the dimensionless parameters. 

Comparisons with previously published work are performed and the results are found to be 

in excellent agreement. 

Finally, Numerical simulation of two-dimensional laminar steady-state on MHD free 

convection within trapezoidal cavity with non-uniformly heated bottom wall has also been 

investigated. The cavity consists of the same condition like previous one i.e., natural 

convection within a trapezoidal enclosure non-uniformly heated bottom wall, insulated top 

wall and isothermal side walls with inclination angles (ф) are considered. Heat flow 

patterns in the presence of natural convection within trapezoidal enclosures have been 

analyzed with heatlines concept. The fluid is also concerned for the wide range of 

Rayleigh number (Ra) from 103 to 107 and Prandtl number (Pr) from 0.026, 0.7, 1000 with 

various tilt angles Ф =  450,  300 and 00(square). 

Results are also presented in terms of streamlines, isotherms, average Nusselt number 

along the bottom wall for non-uniform heating , average Nusselt number along the side 

wall for non-uniform heating, Local Nusselt number along distance for non-uniform 

heating of the side wall, Local Nusselt number along distance for non- uniform heating of 

the bottom wall,  for different combinations of the governing parameters namely Prandtl 

number Pr, Hartmann number Ha and at the three values of Rayleigh number Ra, varying 

from 103 to 107. This range of Ra is selected on the basis of calculation covering free 

convection dominated regimes. The computational results also indicate that the average 

Nusselt number at the non-uniform heating of bottom wall and side wall of the cavity is 

depending on the dimensionless parameters. 
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NOMENCLATURE 

 
θav average temperature 
B0 magnetic induction 
Cp Specific heat at constant pressure (J/kg K) 
g gravitational acceleration (m/s2) 
Gr Grashof number 
h convective heat transfer coefficient (W/m2 K) 
Ha Hartmann number 
k thermal conductivity of fluid(W/m K) 
L Height or base of trapezoidal cavity (m) 
K Thermal conductivity ratio fluid  
N Total number of nodes  
Nuav Average Nusselt number 
Nulocal Local Nusselt number 
P non-dimensional pressure 
p pressure 
Pr Prandtl number 
Ra Rayleigh number 
T non-dimensional temperature 
Th Temperature of hot bottom wall (k) 
Tc Temperature of cold  bottom wall (k) 
U x component of dimensionless  velocity 
u x component of  velocity (m/s) 
V y  component of dimensionless  velocity 
v y component of  velocity (m/s) 
V0 Lid velocity 
x, y Cartesian coordinates 
X, Y dimensionless Cartesian coordinates 

 
 

Greek symbols 
 
 
a Thermal diffusivity (m2/s) 
b Coefficient of thermal expansion (K-1) 
r Density of the fluid (kg/m3) 
∆θ Temperature difference 
θ Fluid temperature 
μ Dynamic viscosity of the fluid (Pa s) 
Ψ Streamfunction 
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Π Heatfunction 
ν Kinematic viscosity of the fluid (m2/s) 
σ Fluid electrical conductivity(Ω-1m-1) 
 

 
Subscripts 

 
 

b Bottom wall 
l Left wall 
r Right wall 
s Side wall  
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CHAPTER 1 

INTRODUCTION  

1.1 Introduction  
Heat transfer is that science which seeks to predict the energy transfer which may take 

place between material bodies as a result of a temperature difference. Thermodynamics 

teaches that this energy transfer is defined as heat. The science of heat transfer seeks not 

merely to explain how heat energy may be transferred, but also to predict the rate at which 

the exchange will take place under certain specified conditions. 

The phenomenon of heat transfer was known to human being even in the primitive age 

when they used to use solar energy as a source of heat. Heat transfer in its initial stage was 

conceived with the invention of fire in the early age of human civilization. Since then its 

knowledge and use has been progressively increasing each day as it is directly related to 

the growth of human civilization. With the invention of stream engine by James watt in 

1765 A. D., the phenomenon of heat transfer got its first industrial recognition and after 

that its use extended to a great extent and spread out in different spheres of engineering 

fields. In the past three decades, digital computers, numerical techniques and development 

of numerical models of heat transfer have made it possible to calculate heat transfer of 

considerable complexity and thereby create a new approach to the design of heat transfer 

equipment. 

The study of temperature and heat transfer is of great importance to the engineers because 

of its almost universal occurrence in many branches of science and engineering. Although 

heat transfer analysis is most important for the proper sizing of fuel elements in the 

nuclear reactors cores to prevent burnout, the performance of aircraft also depends upon 

the case with which the structure and engines can be cooled. The design of chemical plants 

is usually done on the basis of heat transfer analysis and the analogous mass transfer 

processes. The transfer and conversion of energy from one form to another is the basis to 

all heat transfer process and hence, they are governed by the first as well as the second law 
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of thermodynamics. Heat transfer is commonly associated with fluid dynamics. The 

knowledge of temperature distribution is essential in heat transfer studies because of the 

fact that the heat flow takes place only wherever there is a temperature gradient in a 

system. The heat flux which is defined as the amount of heat transfer per unit area in per 

unit time can be calculated from the physical laws relating to the temperature gradient and 

the heat flux. 

The study of the universe has led to the realization that all physical phenomena are subject 

to natural laws. The term natural might well be used to describe the framework or system 

of fundamental and universal importance within this system is the mechanisms for the 

transfer of heat. Heat transfer is a branch of applied thermodynamics. It estimates the rate 

at which heat is transferred across the system boundaries subjected to specific temperature 

differences and the temperature distribution of the system during the process. Whereas 

classical thermodynamics deals with the amount of heat transferred during the process. 

Heat transfer processes have always been an integral part of our environment. 

1.2 Flow within an enclosure 
The flow within an enclosure consisting of two walls, at different temperatures, is an 

important circumstance encountered quite frequently in practice. In all the applications 

having this kind of situation, heat transfer occurs due to the temperature difference across 

the fluid layer, one horizontal solid surface being at a temperature higher than the other. If 

the upper plate is the hot surface, then the lower surface has heavier fluid and by virtue of 

buoyancy the fluid would not come to the lower plate. Because in this case the heat 

transfer mode is restricted to only conduction. But if the fluid is enclosed between two 

horizontal surfaces of which the upper surface is at lower temperature, there will be the 

existence of cellular natural convective currents which are called as Benard cells. For 

fluids whose density decreases with increasing temperature, this leads to an unstable 

situation. Benard mentioned this instability as a “top heavy” situation. In that case fluid is 

completely stationary and heat is transferred across the layer by the conduction 

mechanism only. Rayleigh recognized that this unstable situation must break down at a 

certain value of Rayleigh number above which convective motion must be generated. 

Jeffreys calculated this limiting value of Ra to be 1708, when air layer is bounded on both 

sides by solid walls. 
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1.3  Regular and Irregular Shapes 
"Regular' has both a general meaning and a specific geometric meaning. In all cases, it 

concerns how much the various parts of the objects are 'the same'.  

Consider the rectangle:  

 
 
 
 
 
 
 
 
 

Figure 1.1: Regular shape of a rectangle 
 
The sides a and c have the same length. The sides b and d have the same length. All the 

angles are the same. A sense of the regularity comes from how it pick up and turn it, and 

drop it back down and it still look the same. These are called symmetries of the object. If it 

picks up and turn it 180 degrees: a goes to c, b goes to d. The property 'same length' now 

means something more that can rigidly move it so those sides coincide. If it pick up and 

flip it over around a vertical line through the center ac.  

 
 
 
 
 
 
 
 
 

Figure 1.2: Regular shape of a rectangle through the center line ac 
 

Side b goes to side d, sides a and d go on top of themselves. Another symmetry. A final 

reflection would involve turning through the line bd.  

 
 
 
 
 

a

b d

c

a

b d

c
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Figure 1.3: Regular shape of a rectangle through the center line bd 
 

This takes side a to side c. In fact, trying combinations of these, you can take any corner of 

the rectangle onto any other corner. All the corners are sort of 'the same'. 

A square would have more symmetries than a rectangle. Any side could be taken to any 

other side, any corner to any other corner. This has quarter turns as well as half-turns, 

mirrors through the corners as well as the vertical and horizontal mirrors of the rectangle. 

That is the square is more regular than the rectangle, because there are more symmetries. 

As a related fact, more parts are the same. For triangles:  

1. Some have no two sides the same, so they are not regular. 

2. Some have two sides the same. That also guarantees that two of the angles are the same. 

These are isosceles. Such triangles do have a mirror through the vertex (corner) where the 

equal sides meet and the middle of the edge opposite this vertex. That edge joins the two 

equal angles. 

3. Some have all three sides the same. That goes with having all three angles the same. 

(Get one and the other follows.) For these 'equilateral triangles', there are lots of 

symmetries: taking any side to any side, any corner to any other corner. This would 

certainly be called regular.  

1.3.1  Applications of an Irregular Trapezoidal Enclosure 
In recent years, trapezoidal enclosures have received a good attention because of its 

applicability in various fields. For this reason the present problem is customized under 

trapezoidal enclosure. The important natural phenomenon of trapezoidal enclosure is such 

as building and thermal insulation systems (air conditioning,  load calculations for pitched 

roofs with horizontal suspended ceiling), solar engineering applications (triangular built-

in-storage solar collector), geophysical fluid mechanics (heat transfer and exchange of 

nutrients or pollutants from the coastal region to the interior waters of lakes or reservoirs, 

a

b d

c
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pollutants diffusion in sea and also use in the Ultrasonic Grinding Machine in the 

industry).For Example,  

Rigidal Versacor Ultima is a trapezoidal through fixed insulated composite panel which 

provides an extremely cost-effective and fast track construction solution for both new 

build and refurbishment projects. Rigidal Versacor Ultima is available in steel or 

aluminum with a high performance Versacor corrosion resistant coating. 

This is particularly suited to heavy industry applications and coastal environments. 

Manufactured by CENTRIA (a partnership of HH Robertson and Smith Steelite), Versacor 

benefits from over 100 years experience and advanced technology in the provision of 

maximum protection for metal roofs and walls.The CFC-free insulation core of Rigidal 

Versacor Ultima provides thermal reliability over the lifetime of the building, and 

enhanced insulation cores using polyisocyanurate (PIR) foams are also available. 

Insulated composite panels offer many advantages over traditional build-up systems, 

including guaranteed performance, durability, reduced construction costs, excellent levels 

of air tightness and no risk of condensation or cold bridging within the panel. 

 

 

Figure 1.4: Trapezoidal through fixed Aluminium composite panel for 
façade cladding Versacor Ultima  

 

1.4 Heat Transfer Mechanism  
Heat is the form of energy that can be transferred from one system to another as a result of 

temperature difference. A thermodynamic analysis is concerned with the amount of heat 

transfer as a system undergoes a process from one equilibrium state to another. The 
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science that deals with the determination of the rates of such energy transfers is the heat 

transfer. The transfer of energy as heat is always from the higher temperature medium to 

the lower temperature one, and heat transfer stops when the two mediums reach the same 

temperature.  

Heat can be transferred in three different mechanisms or modes: conduction, convection 

and radiation. All modes of heat transfer require the existence of a temperature difference, 

and all modes are from the high temperature medium to a lower temperature one. In 

reality, the combined effect of these three modes of heat transfer control temperature 

distribution in a medium. A brief description of convection mode is given below. 

1.4.1   Convection 
Convection is the movement of molecules within fluids (i.e. liquids, gases) and rheids. It 

cannot take place in solids, since neither bulk current flows nor significant diffusion can 

take place in solids. 

Convection is one of the major modes of heat transfer and mass transfer. Convective heat 

and mass transfer take place through both diffusion – the random Brownian motion of 

individual particles in the fluid – and by advection, in which matter or heat is transported 

by the larger-scale motion of currents in the fluid. In the context of heat and mass transfer, 

the term "convection" is used to refer to the sum of advective and diffusive transfer. The 

term "convection" may have slightly different but related usages in different contexts. The 

broader sense is in fluid mechanics, where "convection" refers to the motion of fluid 

(regardless of cause). However in thermodynamics "convection" often refers specifically 

to heat transfer by convection. Additionally, convection includes fluid movement both by 

bulk motion (advection) and by the motion of individual particles (diffusion). However in 

some cases, convection is taken to mean only advective phenomena. For instance, in the 

transport equation, which describes a number of different transport phenomena, terms are 

separated into "convective" and "diffusive" effects. A similar differentiation is made in the 

Navier–Stokes equations. In such cases the precise meaning of the term may be clear only 

from context. Convection occurs on a large scale in atmospheres, oceans, and planetary 

mantles. Fluid movement during convection may be invisibly slow, or it may be obvious 

and rapid, as in a hurricane. On astronomical scales, convection of gas and dust is thought 

to occur in the accretion disks of black holes, at speeds which may closely approach that 

of light. 
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Convective heat transfer is a mechanism of heat transfer occurring because of bulk 

motion (observable movement) of fluids. Heat is the entity of interest being advected 

(carried), and diffused (dispersed). This can be contrasted with conductive heat transfer, 

which is the transfer of energy by vibrations at a molecular level through a solid or fluid, 

and radiative heat transfer, the transfer of energy through electromagnetic waves. Heat is 

transferred by convection in numerous examples of naturally occurring fluid flow, such as: 

wind, oceanic currents, and movements within the Earth's mantle. Convection is also used 

in engineering practices to provide desired temperature changes, as in heating of homes, 

industrial processes, cooling of equipment, etc. 

The rate of convective heat transfer may be improved by the use of a heat sink, often in 

conjunction with a fan. For instance, a typical computer CPU will have a purpose-made 

fan to ensure its operating temperature is kept within tolerable limits. 

A convection cell, also known as a Bénard cell is a characteristic fluid flow pattern in 

many convection systems. A rising body of fluid typically loses heat because it encounters 

a cold surface; because it exchanges heat with colder liquid through direct exchange; or in 

the example of the Earth's atmosphere, because it radiates heat. Because of this heat loss 

the fluid becomes denser than the fluid underneath it, which is still rising. Since it cannot 

descend through the rising fluid, it moves to one side. At some distance, its downward 

force overcomes the rising force beneath it, and the fluid begins to descend. As it 

descends, it warms again and the cycle repeats itself. In Convection mechanisms 

convection may happen in fluids at all scales larger than a few atoms. There are a variety 

of circumstances in which the forces required for natural and forced convection arise, 

leading to different types of convection, described below. In broad terms, convection 

arises because of body forces acting within the fluid, such as gravity (buoyancy), or 

surface forces acting at a boundary of the fluid. 

The causes of convection are generally described as one of either "natural" ("free") or 

"forced", although other mechanisms also exist (discussed below). However the distinction 

between natural and forced convection is particularly important for convective heat 

transfer. 
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1.4.2   Free or Natural Convection 
Natural convection, or free convection, occurs due to temperature differences which affect 

the density, and thus relative buoyancy, of the fluid. Heavier (more dense) components 

will fall while lighter (less dense) components rise, leading to bulk fluid movement. 

Natural convection can only occur, therefore, in a gravitational field. A common example 

of natural convection is a pot of boiling water in which the hot and less-dense water on the 

bottom layer moves upwards in plumes, and the cool and denser water near the top of the 

pot likewise sinks. 

Natural convection will be more likely and/or more rapid with a greater variation in 

density between the two fluids, a larger acceleration due to gravity that drives the 

convection, and/or a larger distance through the convecting medium. Convection will be 

less likely and/or less rapid with more rapid diffusion (thereby diffusing away the gradient 

that is causing the convection) and/or a more viscous (sticky) fluid. The onset of natural 

convection can be determined by the Rayleigh number (Ra).The differences in buoyancy 

within a fluid can arise for reasons other than temperature variations, in which case the 

fluid motion is called gravitational convection. 

1.4.3   Conduction 
Conduction is the mode of heat transfer in which energy exchange takes place from the region of 

high temperature to that of law temperature by the kinetic motion or direct impact of molecules, as 

in the case of fluid at rest, and by the drift of electrons, as in the case of metals. In a solid which is 

a good electric conductor, a large number of free electrons move about in the lattice, hence 

materials that are good electric conductors are generally good heat conductors (i.e. copper, 

silver.etc).  

1.4.4   Streamfunction 
The fluid motion is displayed using the streamfunction (ψ) obtained from velocity 

components U and V. The relationships between streamfunction (ψ)  and velocity 

components for two-dimensional flows are 

andU V
Y X
ψ ψ∂ ∂

= =−
∂ ∂  

which yield a single equation 
2 2

2 2

U V
X Y Y X
ψ ψ∂ ∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂  
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Using the above definition of the streamfunction, the positive sign of w denotes anti-

clockwise circulation and the clockwise circulation is represented by the negative sign of 

ψ. 

1.4.5   Heatfunction 
 
The heat flow within the enclosure is displayed using the heatfunction (Π) obtained from 

conductive heat fluxes ,
X Y
θ θ∂ ∂⎛ ⎞− −⎜ ⎟∂ ∂⎝ ⎠

as well as convective heat fluxes ( ),U Vθ θ . The 

heatfunction satisfies the steady energy balance equation, such that 

andU V
Y X X Y

θ θθ θ∂Π ∂ ∂Π ∂
= − = −

∂ ∂ ∂ ∂
 

which yield a single equation 

( ) ( )
2 2

2 2 U V
X Y Y X

θ θ∂ Π ∂ Π ∂ ∂
+ = −

∂ ∂ ∂ ∂
 

Using the above definition of the heatfunction, the positive sign of Π denotes anti-

clockwise heat flow and the clockwise heat flow is represented by the negative sign of Π. 

1.4.6   Thermal Conductivity 
Thermal conductivity of a material can be defined as the rate of heat transfer through a 

unit thickness of the material per unit area per unit temperature difference. Therefore the 

thermal conductivity of a material is a measure of the ability of the material to conduct 

heat. A high value for thermal conductivity indicates that the material is a good heat 

conductor, and a low value for thermal conductivity indicates that the material is a poor 

heat conductor or insulator. For example the materials such as copper and silver that are 

good electric conductors are also good heat conductors, and have high values of thermal 

conductivity. Materials such as rubber, wood are poor conductors of heat and have low 

conductivity values. The rate of heat conduction through a medium depends on the 

geometry of the medium, its thickness, and the material of the medium, as well as the 

temperature difference across the medium. The proportionality constant k is called thermal 

conductivity of the material. 

1.4.7   Thermal Diffusivity 
The time dependent heat conduction equation for constant k contains a quantity α, called 

the thermal diffusivity. Thermal diffusivity represents how fast heat diffuses through a 

material and is defined as  
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PC
κα
ρ

=  

Here the thermal conductivity κ represents how well a material conducts heat, and the heat 

capacity rCp represents how much energy a material stores per unit volume. Therefore, 

the thermal diffusivity of a material can be viewed as the ratio of the heat conducted 

through the material to the heat stored per unit volume. A material that has a high thermal 

conductivity or a low heat capacity will obviously have a large thermal diffusivity. The 

larger thermal diffusivity means that the propagation of heat into the medium is faster. A 

small value of thermal diffusivity means the material mostly absorbs the heat and a small 

amount of heat is conducted further. 

1.4.8   Internal and External Flows 
A fluid flow is classified as being internal or external, depending on whether the fluid is 

forced to flow in a confined channel or over a surface. An internal flow is bounded on all 

sides by solid surfaces except, possibly, for an inlet and exit. Flows through a pipe or in an 

air-conditioning duct are the examples of internal flow. Internal flows are dominated by 

the influence of viscosity throughout the flow field. The internal flow configuration 

represents a convenient geometry for the heating and cooling of fluids used in the 

chemical processing, environmental control, and energy conversion areas. The flow of an 

unbounded fluid over a surface is external flow. The flows over curved surfaces such as 

sphere, cylinder, airfoil, or turbine blade are the example of external flow. In external 

flows the viscous effects are limited to boundary layers near solid surfaces.  

1.4.9   Boundary Layer 
Since fluid motion is the distinguishing feature of heat convection, it is necessary to 

understand some of the principles of fluid dynamics in order to describe adequately the 

processes of convection. When a fluid flows over a body, the velocity and temperature 

distribution at the immediate vicinity of the surface strongly influenced by the convective 

heat transfer. In order to simplify the analysis of convective heat transfer the boundary 

layer concept frequently is introduced to model the velocity and temperature fields near 

the solid surface in order to simplify the analysis of convective heat transfer. So we are 

concerned with two different kinds of boundary layers, the velocity boundary layer and the 

thermal boundary layer. 
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The velocity boundary layer is defined as the narrow region, near the solid surface, over 

which velocity gradients and shear stresses are large, but in the region outside the 

boundary layer, called the potential-flow region, the velocity gradients and shear stresses 

are negligible. The exact limit of the boundary layer cannot be precisely defined because 

of the asymptotic nature of the velocity variation. The limit of the boundary layer is 

usually taken to be at the distance from the surface, at which the fluid velocity is equal to a 

predetermined percentage of the free stream value, ∞U . This percentage depends on the 

accuracy desired, 99 or 95% being customary. Although, outside the boundary layer 

region the flow is assumed to be inviscid, but inside the boundary layer the viscous flow 

may be either laminar or turbulent. In the case of laminar boundary layer, fluid motion is 

highly ordered and it is possible to identify streamlines along which particles move. Fluid 

motion along a streamline is characterized by velocity components in both the x and y 

directions. Since the velocity component v is in the direction normal to the surface, it can 

contribute significantly to the transfer of momentum, energy or species through the 

boundary layer. Fluid motion normal to the surface is necessitated by boundary layer 

growth in the x direction. In contrast, fluid motion in the turbulent boundary layer is 

highly irregular and is characterized by velocity fluctuations. These fluctuations enhance 

the transfer of momentum, energy and species and hence increase surface friction, as well 

as convection transfer rates. Due to fluid mixing resulting from the fluctuations, turbulent 

boundary layer thicknesses are larger and boundary layer profiles are flatter than in 

laminar flow. The thermal boundary layer may be defined (in the same sense that the 

velocity boundary layer was defined above) as the narrow region between the surface and 

the point at which the fluid temperature has reached a certain percentage of ambient 

temperature ∞T . Outside the thermal boundary layer the fluid is assumed to be a heat sink 

at a uniform temperature of ∞T  The thermal boundary layer is generally not coincident 

with the velocity boundary layer, although it is certainly dependent on it. If the fluid has 

high thermal conductivity, it will be thicker than the velocity boundary layer, and if 

conductivity is low, it will be thinner than the velocity boundary layer. 

1.4.10 Slanted Enclosure 
The tilted enclosure geometry has received considerable attention in the heat transfer 

literature because of mostly growing interest of solar collector technology. The angle of 

tilt has a dramatic impact on the flow housed by the enclosure. Consider an enclosure 

heated from below is rotated about a reference axis. When the tilted angle becomes 90º, 
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the flow and thermal fields inside the enclosure experience the heating from side 

condition. Thereby convective currents may pronounce over the diffusive currents. When 

the enclosure rotates to 180º, the heat transfer mechanism switches to the diffusion 

because the top wall is heated. 

1.5  Magneto-Hydrodynamics 
Magneto-hydrodynamics (MHD) is the academic discipline which studies the dynamics of 

electrically conducting fluids. Examples of such fluids include plasmas, liquid metals and 

salt water. The word Magneto-hydrodynamics (MHD) is derived from “magneto-” 

meaning “magnetic field”, and “hydro” meaning “liquid”, and “dynamics” meaning 

“movement”. The field of MHD was initiated by Hannes Alfven, for which he received 

the Noble Prize in Physics in 1970.The idea of MHD is that magnetic fields which induce 

currents in a moving conducting fluid, and create forces on the fluid, and also change the 

magnetic field itself. The set of equations which describe MHD are a combination of the 

Nevier-Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism. 

These differential equations have to be solved simultaneously, either analytically or 

numerically. MHD is a continuum theory and as such it cannot treat kinetic phenomena, 

i.e. those in which the existence of discrete particles or of a non-thermal velocities 

distribution are important. The simple form of MHD, Ideal MHD, assumes that fluid has 

so little resistivity that it can be treated as a perfect conductor. This is the limit of infinite 

magnetic Reynolds number in ideal MHD, Lenz’s law dictates that the fluid is in a sense 

tied to the magnetic fields lines. To explain, in ideal MHD a small rope like volume of the 

fluid surrounding a field line will continue to lie along a magnetic field line, even as it is 

twisted and distorted by fluid flows in the system The connection between magnetic field 

lines and fluid in ideal MHD fixes the topology of the magnetic field in the fluid-for 

example, if a set of magnetic field lines are tied into a knot, then they will remain so as 

long as the fluid/plasma has negligible resistivity. This difficulty in reconnecting magnetic 

field lines makes it possible to store energy by moving the fluid or the source of the 

magnetic field. The energy can then become available if the conditions for ideal MHD 

break down allowing magnetic reconnection that release the stored energy from the 

magnetic field. 

The ideal MHD equations consist of the continuity equation, the momentum equation, and 

Ampere's Law in the limit of no electric field and no electron diffusivity, and a 
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temperature evolution equation. As with any fluid description to a kinetic system, a 

closure approximation must be applied to highest moment of the particle distribution 

equation. This is often accomplished with approximations to the heat flux through a 

condition of adiabaticity or isothermality. 

Ideal MHD is only strictly applicable when: 

1. The plasma is strongly collisional, so that the time scale of collisions is shorter than the 

other characteristic times in the system, and the particle distributions are therefore close to 

Maxwellian. 

2. The resistivity due to these collisions is small. In particular, the typical magnetic 

diffusion times over any scale length present in the system must be longer than any time 

scale of interest. 

3. We are interested in length scales much longer than the ion skin depth and Larmor 

radius perpendicular to the field, long enough along the field to ignore Landau damping, 

and time scales much longer than the ion gyration time (system is smooth and slowly 

evolving). 

1.5.1   Applications of MHD 
Geophysics 

The fluid core of the Earth and other planets is theorized to be a huge MHD dynamo that 

generates the Earth's magnetic field. due to the motion of liquid iron. 

Astrophysics 

MHD applies quite well to astrophysics since over 99% of baryonic matter content of the 

Universe is made up of plasma, including stars, the interplanetary medium (space between 

the planets), the interstellar medium (space between the stars), nebulae and jets. Many 

astrophysical systems are not in local thermal equilibrium, and therefore require an 

additional kinematic treatment to describe all the phenomena within the system. Sunspots 

are caused by the Sun's magnetic fields, as Joseph Larmor theorized in 1919. The solar 

wind is also governed by MHD. The differential solar rotation may be the long term effect 

of magnetic drag at the poles of the Sun, an MHD phenomenon due to the Parker spiral 

shape assumed by the extended magnetic field of the Sun. Previously, theories describing 
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the formation of the Sun and planets could not explain how the Sun has 99.87% of the 

mass, yet only 0.54% of the angular momentum in the solar system. In a closed system 

such as the cloud of gas and dust from which the Sun was formed, mass and angular 

momentum are both conserved.  

That conservation would imply that as the mass concentrated in the center of the cloud to 

form the Sun, it would spin up, much like a skater pulling their arms in. The high speed of 

rotation predicted by early theories would have flung the proto-Sun apart before it could 

have formed. However, magneto hydrodynamic effects transfer the Sun's angular 

momentum into the outer solar system, slowing its rotation. Breakdown of ideal MHD (in 

the form of magnetic reconnection) is known to be the cause of solar flares, the largest 

explosions in the solar system. The magnetic field in a solar active region over a sunspot 

can become quite stressed over time, storing energy that is released suddenly as a burst of 

motion, X-rays, and radiation when the main current sheet collapses, reconnecting the 

field. 

Engineering 

MHD is related to engineering problems such as plasma confinement, liquid-metal cooling 

of nuclear reactors, and electromagnetic casting (among others).The first prototype of this 

kind of propulsion was built and tested in 1965 by Steward Way, a professor of 

mechanical engineering at the University of California, Santa Barbara. Way, on leave from 

his job at Westinghouse Electric, assigned his senior year undergraduate students to 

develop a submarine with this new propulsion system. In early 1990s, Mitsubishi built a 

boat, the 'Yamato,' which uses a magneto hydrodynamic drive, is driven by a liquid 

helium-cooled superconductor, and can travel at 15 km/h. MHD power generation fueled 

by potassium-seeded coal combustion gas showed potential for more efficient energy 

conversion (the absence of solid moving parts allows operation at higher temperatures), 

but failed due to cost prohibitive technical difficulties. In micro fluidic devices, the MHD 

pump is so far the most effective for producing a continuous, no pulsating flow in a 

complex micro channel design. It was used to implement a PCR protocol. 
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1.5.2 Fluid Mechanics Aspect  
The local properties such as pressure and velocity of the fluid should strictly be defined as 

averages over elements large compared with the microscopic structure of matter but small 

enough in comparison with the scale of the macroscopic phenomena.  

In MHD, the fluid is electrically conducting. It is not magnetic; it affects a magnetic field 

not by its mere presence but only by virtue of electric currents flowing in it. The fluid 

conducts because it contains free charges (ions or electrons) that can move indefinitely. 

According to the non-relativistic electromagnetic theory, a charged particle such as an 

electron suffers forces of three kinds. 

1. It is repelled or attracted by other charged particles, the total force on the particle per 

unit of its charge due to all the other charges present being the electrostatic field, E’s. 

2. Charged particles in motion and also magnetic materials produce the phenomenon of 

magnetism or magnetic field, B. 

2(a). A charge particle moving with velocity relative to a certain frame of reference suffers 
a magnetic force    BV ×    per unit of its charge. The force is perpendicular to V   and  B  . 
The direction of  B   is that in which the particle must travel to feel no magnetic force.  
 
2(b). If the magnetic field B, so identified, is changing with time relative to a certain frame 

of reference, then per unit of its charge a particle will suffer a further force Ei. The total 

force on a particle per unit of its charge is BVEfe ×+=  . This is known as Lorentz 

force.  

Electromagnetic body forces act on the fluid, and in turn the motion of the fluid in the 

presence of the electromagnetic field may generate an induced electromotive force and 

alter the fields. Implicit in this is the assumption of local quasi-equilibrium, which permits 

the state of the fluid at each point to be described by a few variables, related just as if the 

fluid were in equilibrium. Thereby the fluid may be assumed to be incompressible, 

homogeneous and isotropic in the mathematical and electric sense. The mathematical 

models have no difference from those used in conventional fluid mechanics. The only 

effect of the electromagnetic field is a coupling through the electromagnetic body force in 

the equation of motion. 
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1.5.3   Boussinesq Approximation 
The governing equations for convection flow are coupled elliptic partial differential 

equations and are, therefore, of considerable complexity. The major problems in obtaining 

a solution to these equations lie in the inevitable variation of density with temperature, or 

concentration, and in their partial, elliptic nature. Several approximations are generally 

made to considerably simplify these equations. Among them Boussinesq approximation is 

considered here. In flows accompanied by heat transfer, the fluid properties are normally 

functions of temperature. The variations may be small and yet be the cause of the fluid 

motion. If the density variation is not large, one may treat the density as constant in the 

unsteady and convection terms, and treat it as variable only in the gravitational term. This 

is called the Boussinesq approximation.  

 

1.6  Dimensionless Parameters 
The dimensionless parameters can be thought of as measures of the relative importance of 

certain aspects of the flow. Some dimensionless parameters related to our study are 

discussed below:  

1.6.1   Rayleigh Number, Ra  
The Rayleigh number for a fluid is a dimensionless number associated with buoyancy 

driven flow (also known as free convection or natural convection).in fluid mechanics 

When the Rayleigh number is below than the critical value for that fluid, heat transfer is 

primarily in the form of conduction; when it exceeds the critical value, heat transfer is 

primarily in the form of convection. The Rayleigh number is named after Lord Rayleigh 

and is defined as the product of the Grashof number, which describes the relationship 

between buoyancy and viscosity within a fluid, and the Prandt number, which describes 

the relationship between momentum diffusivity and thermal diffusivity. Hence the 

Rayleigh number itself may also be viewed as the ratio of buoyancy forces and (the 

product of) thermal and momentum diffusivities. 

For convection near a vertical wall, this number is 

3)(Pr xTTgGrRa sxx ∞−==
να
β
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where 

x = Characteristic length (in this case, the distance from the leading edge) 

Rax = Rayleigh number at position x 

Grx = Grashof number at position x 

Pr = Prandtl number 

g = acceleration due to gravity 

Ts = Surface temperature (temperature of the wall) 

T∞ = Quiescent temperature (fluid temperature far from the surface of the object) 

ν = Kinematic viscosity 

α = Thermal diffusivity 

β = Thermal expansion coefficient 

In the above, the fluid properties Pr, ν, α and β are evaluated at the film temperature, 

which is defined as,  

2
∞+

=
TT

T s
f  

For most engineering purposes, the Rayleigh number is large, somewhere around 106 and 

108. 

1.6.2   Grashof number, Gr  
The flow regime in free convection is governed by the dimensionless Grashof number, which 

represent the ratio of the buoyancy force to the viscous forces acting on the fluid, and is defined as  

( )
2

3

ν
β ∞−

=
TTLg

Gr w  

where g is the acceleration due to gravity, β is the volumetric thermal expansion coefficient, Tw is 

the wall temperature, T∞ is the ambient temperature, L is the characteristic length and ν is the 

kinematics viscosity. The Grashof number Gr plays same role in free convection as the Reynolds 
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number Re plays in forced convection. As such, the Grashof number provides the main criterion in 

determining whether the fluid flow is laminar or turbulent in free convection. For vertical plates, 

the critical value of the Grashof number is observed to be about 109. Therefore, the flow regime on 

a vertical plate becomes turbulent at Grashof numbers greater than109. 

1.6.3   Prandtl Number, Pr  

The relative thickness of the velocity and the thermal boundary layers is best described by the 

dimensionless parameter Prandtl number, defined as 

Pr = Molecular diffusivity of momentum / Molecular diffusivity of heat = υ/ α  

It is named after Ludwig Prandtl, who introduced the concept of boundary layer in 1904 and made 

significant contributions to boundary layer theory. The Prandtl numbers of fluids range from less 

than 0.01 for liquid metals to more than 100,000 for heavy oils. Note that the Prandtl number is in 

the order of 7 for water. The Prandtl numbers of gases are about 1, which indicates that both 

momentum and heat dissipate through the fluid at about the same rate.  Consequently the thermal 

boundary layer is much thicker for liquid metals and much thinner for oils relative to the velocity 

boundary layer. 

1.6.4   Hartmann Number, Ha 
Hartmann number is the ratio of electromagnetic force to the viscous force first 

introduced by Hartmann. It is defined by: 

μ
σLBHa 0=  

Where, B0 is the magnetic field, L is the characteristic length scale, σ is the electrical 

conductivity, μ is the viscosity. In addition, it is a dimensionless quantity characterizing 

flow of conducting fluid in a transverse magnetic field, being the product of the magnetic 

flux density, a representative length, and the square root of the ratio of electrical 

conductivity to viscosity. 

1.6.5   Nusselt Number, Nu 
The Nusselt number represents the enhancement of heat transfer through a fluid layer as a result of 

convection relative to conduction across the same fluid layer, and is defined as  

Nu = hL / k 
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where k is the thermal conductivity of the fluid, h is the heat transfer coefficient and L is the 

characteristics length. The Nusselt number is named after Wilhelm Nusselt, who made significant 

contributions to convective heat transfer in the first half of the twentieth century, and it is viewed 

as the dimensionless convection heat transfer coefficient. The larger Nusselt number indicates a 

large temperature gradient at the surface and hence, high heat transfer by convection. A Nusselt 

number of Nu = 1, for a fluid layer represents heat transfer across the layer by pure conduction. To 

understand the physical significance of the Nusselt number, consider the following daily life 

problems. We remedy to forced convection whenever we want to increase the rate of heat transfer 

from a hot object. In free convection flow velocities are produced by the buoyancy forces hence 

there are no externally induced flow velocities.  

1.7  Significance of Current Work 
Natural convection in enclosed cavities has received significant attention due to many 

engineering applications . A recent investigation is also based on applications of heatlines 

to analyze natural convection within porous non-isothermal triangular cavities . However, 

visualization of heat flows via heatlines was not reported for trapezoidal enclosures. It is 

also essential to study the heat transfer characteristics in complex geometries in order to 

obtain the optimal design of the container for various industrial applications. Thus, it is 

important to study the energy flow using heatlines within trapezoidal enclosures. Besides, 

this energy flows due to natural convection within trapezoidal enclosures with hot bottom 

wall and cold side walls in presence of insulated top walls is analyzed by Basak et 

al.(March 2009). This fundamental problem is to examine thermal mixing near the central 

core of the cavity for various material processing applications. Besides, The effects of 

permeability and different thermal boundary conditions on the natural convection in a 

square porous cavity by using Darcy – Forchheimer model and Darcy – Brinkman-

Forchheimer model have been studied numerically. The position of the enclosure has a 

significant influence on the natural convection. Computational study on the natural 

convection in an enclosure with layered porous media has been performed by using 

Darcy’s model  and Darcy-Brinkman-Forchheimer model. Mahmud and Fraser examined 

the flow, temperature and entropy generation fields inside a square porous cavity under the 

influence of magnetic field using Darcy model.But it was seen that heat flow using 

heatlines with magneto-hydrodynamics within trapezoidal enclosures had not been 

analyzed by weighted residual finite element method. Consequently as my interest I chose 
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a trapezoidal cavity whereas heat flow with MHD (magneto-hydrodynamics) of free 

convection was analyzed based on heatline concept.   

1.8  Main Objectives of The Present Study 
The aim of the proposed study is to present the effects on heat flow for MHD free 

convection within trapezoidal cavity. Results will be presented for different non-

dimensional governing and physical parameters in terms of streamlines, stream functions, 

total heat flux, isotherms, heat transfer rate as well as the average temperature of the fluid 

in the cavity.  

The specific objectives of the present research work are: 

• To develop the mathematical models regarding the effect on heat flow for 

MHD free convection in a trapezoidal cavity.  

• To investigate the effects of governing parameters namely Rayleigh number 

Ra, Prandtl number Pr and Hartmann number Ha on the flow and thermal field 

in the cavity. 

• To solve the model equations using finite element method.  

• To analyze effects on heat flow with heatline concept. 

• To compare results with other published works. 

1.9  Outline of the Thesis 
This dissertation contains seven chapters. This thesis is concerned with the analysis effects 

on heat flow for MHD free convection within trapezoidal cavity based on heatline 

concept. There are many cavity configurations for the study of conjugate effect of 

conduction and natural convection flow. In this study we have considered a trapezoidal 

cavity. 

In Chapter 1, a general framework for the description of convective heat transfers has been 

presented and discussed their properties, also relevant discussion on dimensionless 

parameter. In this chapter a brief introduction is presented with aim and objective and also 

inspiration behind the selection of current Work. 

In Chapter 2, a brief discussion of literature review. of the past studies on fluid flow and 

heat transfer in cavities or channels is presented. In this state-of-the art review, different 

aspects of the previous studies have been mentioned categorically. This is followed by the 
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post-mortem of a recent historical event for the illustration of fluid flow and heat transfer 

effects in cavities  

In Chapter 3, we have discussed the computational technique of the problem for viscous 

incompressible flow. 

In Chapter 4, Mathematical modeling of the problem for both uniform and non-uniform 

heating have been discussed. 

In Chapter 5, MHD effects of free convection for heated uniformly of bottom wall in a 

trapezoidal cavity have been investigated numerically. Here, results of the relevant 

parametric study have been performed. 

In Chapter 6, MHD effects of free convection for heated non-uniformly of bottom wall in 

a trapezoidal cavity have been investigated numerically. Here, results of the relevant 

parametric study have been performed. 

Finally, in Chapter 7 the main achievements and some ideas of further work have been 

summarized.  
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CHAPTER 2 

LITERATURE REVIEW 

Literature Review 
Analysis of free convection usually induced in enclosed cavities or channels containing 

heating elements on one of its wall or on both walls are important from both theoretical 

and practical points of view. The fundamental problem of free convection in cavity has 

received considerable attention from researchers. Most of the cavities commonly used in 

industries are cylindrical, rectangular, trapezoidal and triangular etc. Trapezoidal cavities 

have received a considerable attention for its application in various fields. Many numerical 

investigations on free convection in different types of cavities have been investigated in 

the recent year. 

Anandalakshmi and Basak (January 2012) have been carried out for the energy 

distribution and thermal mixing in steady laminar natural convective flow through the 

rhombic enclosures with various inclination angles, φ for various industrial applications. 

Here simulations are carried out for various regimes of Prandtl (Pr) and Rayleigh (Ra) 

numbers. Dimensionless streamfunctions and heatfunctions are used to visualize the flow 

and energy distribution, respectively. 

Also a comprehensive understanding of energy flow and entropy generation is needed for 

an optimal process design via reducing irreversibilities in terms of ‘entropy generation’. In 

this study, analysis on entropy generation during natural convection in a trapezoidal cavity 

with various inclination angles (φ = 45°, 60° and 90°) have been carried out for an 

efficient thermal processing of various fluids of industrial importance (Pr = 0.015, 0.7 and 

1000) in the range of Rayleigh number (103 − 105) by Basak et. al (January 2012). Basak 

et al. (August 2011) studied A comprehensive heatline based approach for natural 

convection flows in trapezoidal enclosures with the effect of various walls heating. The 

present numerical study deals with natural convection flow in closed trapezoidal 

enclosures. The detailed analysis is carried out in two cases: (1) linearly heated side walls; 

(2) linearly heated left wall and cold right wall. In both the cases bottom wall is uniformly 
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heated and top wall is well insulated. A penalty finite element method with bi-quadratic 

elements is used to obtain the results in the form of isotherms, streamlines and heatlines 

and local and average Nusselt numbers. Numerical results are obtained for various values 

of Rayleigh number Ra , Prandtl number Pr  and inclination angles (φ = 45°, 60° and 90°). 

Results signify that, at low Ra  heat transfer is conduction dominant. At , multiple 

circulations of streamlines and heatlines results in enhanced convection. For linearly 

heated side walls (case 1), symmetric pattern in fluid flow and heat flow is observed. 

Enhanced thermal transport is observed from bottom wall to top portion of side walls via 

dense heatlines along the vertical center line. It is found that, less intense circulations 

occurs in square cavity (φ = 90°) compared to other cavities φ = 45°, 60°. In case 2, the 

cold right wall receives larger amount of heat from bottom wall compared to that of 

linearly heated left wall. The formation of boundary layer on the walls is explained based 

on heatlines. The local and average Nusselt numbers are also illustrated using heatlines. It 

is found that, Nub distribution exhibits sinusoidal variation at in case 1. It is also found 

that, Nul and Nur display wavy pattern at higher Ra for all Pr in case 2. Finally, it is 

concluded that, overall heat transfer rates are larger for square cavity (φ = 90°) compared 

to other angles (φ = 45°, φ = 60°) irrespective of heating patterns for side walls. 

Basak et al. (March 2009) also investigated heat flow patterns in the presence of natural 

convection within trapezoidal enclosures with heatlines concept. In this study, natural 

convection within a trapezoidal enclosure for uniformly and non-uniformly heated bottom 

wall, insulated top wall and isothermal side walls with inclination angle have been 

investigated. Momentum and energy transfer are characterized by streamfunctions and 

heatfunctions, respectively, such that streamfunctions and heatfunctions satisfy the 

dimensionless forms of momentum and energy balance equations, respectively. Finite 

element method has been used to solve the velocity and thermal fields and the method has 

also been found robust to obtain the streamfunction and heatfunction accurately. The 

unique solution of heatfunctions for situations in differential heating is a strong function of 

Dirichlet boundary condition which has been obtained from average Nusselt numbers for 

hot or cold regimes. Parametric study for the wide range of Rayleigh number and Prandtl 

number with various tilt angles and (square) have been carried out. Heatlines are found to 

be continuous lines connecting the cold and hot walls and the lines are perpendicular to the 

isothermal wall for the conduction dominant heat transfer. The enhanced thermal mixing 

near the core for larger Ra is explained with dense heatlines and convective loop of 
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heatlines. The formation of boundary layer on the walls has a direct consequence based on 

heatlines. The local Nusselt numbers have also been shown for side and bottom walls and 

variation of local Nusselt numbers with distance have also been explained based on 

heatlines. It is found that average heat transfer rate does not vary significantly with for 

non-uniform heating of bottom wall. 

Basak et al. (December 2010) also investigated the numerical investigation of natural 

convection in a porous trapezoidal enclosures has been performed for uniformly or non-

uniformly heated bottom wall. Penalty finite element analysis with bi-quadratic elements 

is used for solving the Navier–Stokes and energy balance equations. The numerical 

solutions are studied in terms of streamlines, isotherms, heatlines, local and average 

Nusselt numbers for a wide range of parameters Da(10−5–10−3), Pr(0.015–1000) and 

Ra(Ra = 103–106). At low Darcy number (Da = 10−5), heat transfer is primarily due to 

conduction for all φ’s as seen from the heatlines which are normal to the isotherms. 

Basak et al. (September 2009a) also presented natural convection flows in porous 

trapezoidal enclosures with various inclination angles. Here Simulations were carried out 

using penalty finite element analysis with bi-quadratic elements to investigate the 

influence of uniform and non-uniform heating of bottom wall within a trapezoidal 

enclosure of various inclination angles . Parametric study has been carried out for a wide 

range of Rayleigh number , Prandtl number and Darcy number . Numerical results are 

presented in terms of stream functions, isotherm contours and Nusselt numbers. 

Natural convection in trapezoidal enclosures for uniformly heated bottom wall, linearly 

heated vertical wall(s) in presence of insulated top wall have been investigated 

numerically with penalty finite element method by Basak et. al (September 2009b). Baytaş 

and Pop (January 2001) studied natural convection in a trapezoidal enclosure filled with a 

porous medium. 

Basak et al. (January 2009) also studied the phenomena of natural convection in a 

trapezoidal enclosure filled with porous matrix numerically. A penalty finite element 

analysis with bi-quadratic elements is performed to investigate the influence of uniform 

and non-uniform heating of bottom wall while two vertical walls are maintained at 

constant cold temperature and the top wall is well insulated. Parametric study for the wide 

range of Rayleigh number Ra , Prandtl number Pr and Darcy number shows consistent 

performance of the present numerical approach to obtain the solutions in terms of stream 
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function and isotherm contours. For parameters studied in the above range, a symmetry is 

observed for temperature and flow simulations. Non-uniform heating of the bottom wall 

produces greater heat transfer rate at the center of the bottom wall than uniform heating 

case for all Rayleigh and Darcy numbers but average Nusselt number shows overall lower 

heat transfer rate for non-uniform heating case. It is observed that the conduction is 

dominant irrespective of Ra for . As Rayleigh number increases, there is a change from 

conduction dominant region to convection dominant region for . The correlations between 

average Nusselt number and three parameters (Rayleigh number (Ra), Prandtl number (Pr) 

and Darcy number (Da)) are also obtained. Basak et al. (September 2009c) also performed 

the phenomena of natural convection within a trapezoidal enclosure filled with porous 

matrix for linearly heated vertical wall(s) with various inclination angles φ. 

Besides, a study of the natural heat and mass transfer in a trapezoidal cavity heated from 

the bottom and cooled from the inclined upper wall is undertaken by Boussaid et al. (April 

1999). He obtained results show that the flow configuration depends on the θ angle 

inclination of the upper wall. Baez and Nicolas (2006) also Performed 2D natural 

convection flows in tilted cavities: Porous media and homogeneous fluids. 

Costa (1999, 2000, 2003, 2006) performed unified viewpoint in both physical and 

numerical aspects on the analysis of heatlines for visualizing two-dimensional transpoet 

problems. Heatlines analysis has been carried out for investigations in polar coordinates  

by Ho C.J. et al.(1989, 1990a,b), Littlefield (1986),Chattopadhyay and Das (1995). There 

are few studies on the application of heatlines for natural convection by earlier workers 

Aggarwal and Manhapra (1989), Bello-Ochende (1988), Deng and Tang (2002), Zhao et 

al. (2007). Application of heatlines was shown for thermomagnetic convection in 

electroconductive melts.  

Eyden (1988) presented some results of numerical and experimental study of turbulent 

double-diffusive natural convection of a mixture of two gases in a trapezoidal enclosure 

with imposed unstable thermal stratification. 

Fusegi et al.(1992) investigated natural convection in a differentially heated square cavity 

with internal heat generation. Hall et al. (1988) showed transient natural convection in a 

rectangular enclosure with one heated side wall. Lyican and Bayazitoglu (1980) performed 

an analytical study of natural convective heat transfer within trapezoidal enclosure. 

Kuyper and Hoogendoorn (1995) investigated Laminar natural convection flow in 
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trapezoidal enclosures to study the influence of the inclination angle on the flow and the 

dependence of the average Nusselt numbers on the Rayleigh number. A critical Rayleigh 

number is presented depending on the tilting angle, where unicellular convection is 

observed. Karyakin (1989) reported two-dimensional laminar natural convection in 

enclosures of arbitrary cross-section. This study reported on transient natural convection in 

an isosceles trapezoidal cavity inclined at angle φ to the vertical line where a single 

circulation region is found in the steady state case. The heat transfer rate is found to 

increase with the increase in angle φ. 

 
The extensive studies for rectangular and square enclosures using various numerical 

simulations reported by Al-Amiri et al.(2007) Hyun and Lee (1989), Lage and Bejan 

(1991,1993), Nicolette et al. (1985),  Patterson and Imberger (1980) and Xia and Murthy 

(2002). They ensure that several attempts have been made to acquire a basic understanding 

of natural convection flows and heat transfer characteristics in an enclosure. 

Peric (1993) studied Natural convection in trapezoidal cavities with a series of 

symmetrically refined grids 10×10 to 160×160 control volume and observed the 

convergence of results for grid independent solutions.  Boussaid et al. (2003) investigated 

thermosolutal heat transfer within trapezoidal cavity heated at the bottom wall and cooled 

at the inclined top wall. Varol et al. (2009, 2008a,b) recently for various inclinations of 

trapezoidal enclosures filled with either fluid or porous medium on natural convection 

have been carried out.  

The heatlines are introduced for visualization and analysis of heat transfer (1983,2004). 

Convective heat transfer processes were analyzed mainly using isotherms before 

introduction of the concept of ‘heatlines’. The heatline is the best way to visualize the heat 

transfer in two-dimensional convective transport processes. Energy flow within various 

regimes especially for convective heat transport processes can be best visualized by 

heatlines whereas isotherms are unable to give guideline for energy flows. The heatlines 

are mathematically represented by heatfunctions and the proper dimensionless forms of 

heatfunctions are closely related to overall Nusselt numbers. Kimura and Bejan (2004) 

proposed heatlines for visualization of convective heat transfer through an extension of 

heat flux line concept to include the advection terms. Further, Bejan (1983) reviewed 

extensively various aspects of heatlines and illustrated the use of heatline concept to 

visualize various physical situations.  
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Hooman et al.(2008) showed visualization of natural convection in a porous cavity 

occupied by a fluid with temperature-dependent viscocity. Mobedi (2008) made natural 

convection in a square cavity with finite thickness horizontal walls. Zhao et al. (2008) 

performed on natural convection in an enclosure with localized heating and salting. Basak 

et al. (2006) investigated the effects of thermal boundary conditions on natural convection 

flows within a square cavity. Basak and Roy (2005) also performed on natural convection 

flows in a square cavity with non-uniformly heated wall.  

Kumar B.V. Rathish and Kumar Bipin (April 2004) performed coupled non-linear partial 

differential equations governing the natural convection from an isothermal wall of a 

trapezoidal porous enclosure have been solved numerically by finite element method 

(FEM) in conjunction with GMRES, a Krylov subspace based solver. In view of the 

enormous amount of computation, a parallel numerical algorithm for incomplete LU-

conjugate gradient (ILU-CG) solver on eight-noded ANUPAM cluster under MIMD 

paradigm based on ANULIB message passing library has been developed. Parallel 

computations have been carried out for various values of flow and geometric parameters 

both under Darcian and non-Darcian assumptions on the porous model. Cumulative heat 

fluxes and Nusselt number (Nu) associated with convection process are presented through 

computer generated plots. Kumar Subodh (February 2004) presented simple thermal 

analysis to evaluate the natural convective heat transfer coefficient, hc12 for a trapezoidal 

absorber plate-inner glass cover enclosure of a double-glazed box-type solar cooker. 

A numerical study is conducted to investigate the transport mechanism of free convection 

in a trapezoidal enclosure filled with water–Cu nanofluid by Nasrin  and  Parvin (February 

2012). A penalty finite element analysis with bi-quadratic elements is performed to 

investigate the influence of uniform and non-uniform heating of bottom wall on natural 

convection flows in a trapezoidal cavity by Natarajan et. al (February 2008). In this 

investigation, bottom wall is uniformly and non-uniformly heated while two vertical walls 

are maintained at constant cold temperature and the top wall is well insulated. Parametric 

study for the wide range of Rayleigh number (Ra), and Prandtl number (Pr), shows 

consistent performance of the present numerical approach to obtain the solutions in terms 

of stream functions and the temperature profiles. 

Natarajan et. al (May 2012) presented. a numerical study of combined natural convection 

and surface radiation heat transfer in a solar trapezoidal cavity absorber for Compact 

Linear Fresnel Reflector (CLFR) . The numerical simulation results are presented in terms 



Chapter 2: Literature Review 
 

 28

of Nusselt number correlation to show the effect of these parameters on combined natural 

convection and surface radiation heat loss. 

Papanicolaou and  Belessiotis (January 2005) performed the natural convective heat and 

mass transfer in an asymmetric, trapezoidal enclosure is studied numerically. Such a 

configuration is encountered in greenhouse-type solar stills, where natural convection in 

the enclosed humid air due to vertical temperature and concentration gradients between 

the saline water and the transparent cover, plays a decisive role. In this double-diffusion 

problem, the relative magnitude of the thermal and the concentration (or solutal) Rayleigh 

numbers, expressed by their ratio N is a key parameter. The numerical solutions yield a 

multi-cellular flow field, with the number of cells depending on the Rayleigh number for a 

fixed Lewis number and geometry. For a positive value of N (N = 1) the solution is 

qualitatively similar to the case with only thermal buoyancy present (N = 0). However, for 

negative values (N = −1), more complex unsteady phenomena arise, having a different 

nature in the laminar and the turbulent flow regime, which are both investigated. 

Saleh et. al (January 2011) studied Natural convection heat transfer in a nanofluid-filled 

trapezoidal enclosure. Heat transfer enhancement utilizing nanofluids in a trapezoidal 

enclosure is investigated for various pertinent parameters.  Here we also developed a new 

correlation for the average Nusselt number as a function of the angle of the sloping wall, 

effective thermal conductivity and viscosity as well as Grashof number. Saleh et. al 

(August 2011) also studied the effect of a magnetic field on steady convection in a 

trapezoidal enclosure filled with a fluid-saturated porous medium by the finite difference 

method . Here the results indicate that the heat transfer performance decreases by 

decreasing the angle of sloping wall. Optimum reducing of the heat transfer rate was 

obtained for an acute trapezoidal enclosure and large magnetic field in the horizontal 

direction. 

However overall heat loss coefficients of the trapezoidal cavity absorber with rectangular 

and round pipe were studied in the laboratory by Singh et. al (February 2010). As there 

should be minimum heat loss from the absorber to achieve better efficiency of the solar 

collector. 

Varol (February 2012) analyzed the detailed heat transfer and fluid flow within two 

entrapped porous trapezoidal cavities involving cold inclined walls and hot horizontal 

walls. Results are presented for different values of the governing parameters, such as 

Darcy-modified Rayleigh number, aspect ratio of two entrapped trapezoidal cavities and 
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thermal conductivity ratio between the middle horizontal wall and fluid medium. Heat 

transfer rates are estimated in terms of local and mean Nusselt numbers. Local Nusselt 

numbers with spatial distribution exhibit monotonic trend irrespective of all Rayleigh 

numbers for the upper trapezoidal whereas wavy distribution of local Nusselt number 

occur for the lower trapezoidal. Varol (November 2010) also studied a numerical work to 

determine the heat transfer and fluid flow due to buoyancy forces in divided trapezoidal 

enclosures filled with fluid saturated porous media. In this investigation, bottom wall was 

non-uniformly heated while two vertical walls were insulated and the top wall was 

maintained at constant cold temperature. 

Entropy generation due to buoyancy induced convection and conduction in a right angle 

trapezoidal enclosure filled with fluid saturated porous medium has also been performed 

numerically by Varol et. al (June 2009). Left vertical solid wall of the trapezoidal 

enclosure has a finite thickness and conductivity. The outside temperature of the solid wall 

is higher than that of inclined wall, while horizontal walls are adiabatic. It is found that the 

most important parameters on heat transfer and fluid flow are thermal conductivity ratio 

and dimensionless thickness of the solid wall of the enclosure. Thus, these parameters also 

generate entropy for the whole system. It is also found that increasing the Rayleigh 

number decreases the Bejan number; however, heat transfer is an increasing function of 

Rayleigh number.A numerical study of the steady buoyancy-induced flow and heat 

transfer in a trapezoidal cavity filled with a porous medium saturated with cold water at a 

temperature around 4 °C has been performed by Varol et. al (April 2010). The analysis has 

been done for a cavity with different aspect ratios ranging from 0.25 to 0.75 and Rayleigh 

numbers ranging from 100 to 1000 using a finite-difference method. It is found that four 

cells are formed inside the cavity independent of the Rayleigh number and aspect ratio. 

Magnetohydrodynamics (MHD) is the academic discipline which studies the dynamics of 

electrically conducting fluids. Examples of such fluids include plasmas, liquid metals, and 

salt water. The MHD was originally applied to astrophysical and geophysical problems, 

where it is still very important. Engineers employ MHD principles in the design of heat 

exchanger, pumps and flow meters, in space vehicle propulsion, control and re-entry in 

creating novel power generating systems and developing confinement schemes for 

controlled fusion.  

Most existing studies are concerned with the natural convection heat transfer through a 

porous medium saturated by an electrically non-conducting fluid, which is the case in 
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most practical situations. Recently the equally important problem of hydro-magnetic 

convective flow of a conducting fluid motion induces an electric current and, in general, 

the fluid velocity is reduced due to interaction between the electric current and the motion. 

Very little research works has been done on the magnetohydrodynamics natural 

convection in porous media though its potential applications. The first experimental 

investigation on magnetic effects in porous media was carried out by Wallace et al. (1969, 

digitized 19 March 2009). They proposed a technique for studying pore size distribution in 

a porous medium using magnetic field. Experiments on the flow of mercury in porous 

media (sandstone) either with no magnetic field, or with a transverse magnetic field and in 

presence of crosswise electric currents were performed. When a transverse magnetic field 

is applied alone, there is no change of flow rate of mercury through the porous media due 

to the combination of low magnetic field and small characteristic pore length causing a 

small Ha. However, simultaneous application of a transverse magnetic field and an 

electric current cause the change of flow rate of mercury. Later, Rudraiah et al. (1975) 

carried out a theoretical and numerical study of Hartmann flow over a non-conducting 

permeable bed for the validation of the work of Wallace et al. (1969, digitized 19 March 

2009). They quoted that the volume rate of flow through porous media decreases 

considerably on increasing the magnetic field. Also, several analytical and numerical 

works in the literature are devoted to the study of the MHD flow through a porous medium 

between two parallel fixed plates (Ram and Mishra (1977); Tawil and Kamel (1994)), or 

bounded by an infinitely vertical plate (Raptis and Perdikis (1985); Yih (1998)) or in a 

circular pipe (Ram and Mishra (1977)). 

The instability problem of fluid flow down a vertical or an inclined plate are commonly 

seen in industrial applications, e.g. in the finishing of painting, laser cutting process and 

casting technology. Hung et al. (1996) made an attempt to analyze the nonlinear instability 

of a magnetohydrodynamics (MHD) film flow with phase change at the interface. They 

pointed that increasing the stability of film flow by controlling magnetic field; a film flow 

with optimum conditions could be obtained. Kahveci and Öztuna (2009) made on MHD 

natural convection flow and heat transfer in a laterally heated partitioned enclosure. Saha 

et al.(August 2007) studied on the effect of Hall current on the MHD laminar natural 

convection flow from a vertical permeable flat plate with uniform surface temperature.  
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CHAPTER 3  

COMPUTATIONAL TECHNIQUE 

3.1  Computational Technique 
Computational fluid dynamics (CFD) has been rapidly gaining popularity over the past 

several years for technological as well as scientific interests. For many problems of 

industrial interest, experimental techniques are extremely expensive or even impossible 

due to the complex nature of the flow configuration. Analytical methods are often useful 

in studying the basic physics involved in a certain flow problem, however, in many 

interesting problems; these methods have limited direct applicability. The dramatic 

increase in computational power over the past several years has led to a heightened 

interest in numerical simulations as a cost effective method of providing additional flow 

information, not readily available from experiments, for industrial applications, as well as 

a complementary tool in the investigation of the fundamental physics of turbulent flows, 

where analytical solutions have so far been unattainable. It is not expected (or advocated), 

however, that numerical simulations replace theory or experiment, but that they be used in 

conjunction with these other methods to provide a more complete understanding of the 

physical problem at hand. 

Mathematical model of physical phenomena may be ordinary or partial differential 

equations, which have been the subject of analytical and numerical investigations. The 

partial differential equations of fluid mechanics and heat transfer are solvable for only a 

limited number of flows. To obtain an approximate solution numerically, we have to use a 

discretization method, which approximated the differential equations by a system of 

algebraic equations, which can then be solved on a computer. The approximations are 

applied to small domains in space and / or time so the numerical solution provides results 

at discrete locations in space and time. Much as the accuracy of experimental data depends 

on the quality of the tools used, the accuracy of numerical solutions depend on the quality 

of discretizations used .Computational fluid dynamics (CFD) computation involves the 

formation of a set numbers that constitutes a practical approximation of a real life system. 

The outcome of computation process improves the understanding of the performance of a 
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system. Thereby, engineers need CFD codes that can make physically realistic results with 

good quality accuracy in simulations with finite grids. Contained within the broad field of 

computational fluid dynamics are activities that cover the range from the automation of 

well established engineering design methods to the use of detailed solutions of the Navier-

Stokes equations as substitutes for experimental research into the nature of complex flows. 

CFD have been used for solving wide range of fluid dynamics problem. It is more 

frequently used in fields of engineering where the geometry is complicated or some 

important feature that cannot be dealt with standard methods. More details are available in 

Ferziger & Perić (1997) and Patankar (1980).  

3.1.1   Merits and Demerits of Numerical Method 
As computational power grows, the need for more advanced numerical algorithms also 

increases. There are many different techniques for constructing numerical solutions of 

fluid flow problems, e.g. finite difference methods(FD), finite volume methods (FV), and 

finite element methods(FE), to name a few, and all have their strengths and weaknesses. 

Since the goal of the present research lies in the development of methods which may 

ultimately be used for large-scale applications of industrial interest, finite element methods 

have been chosen, given their accuracy as well as their ability to approximate arbitrarily 

complex geometric configurations. The finite element method applied to fluid dynamics 

has reached level of maturity over the past two decades such that it is now being 

successfully applied to industrial strength problems including turbulent flows. 

Finite element method is an ideal numerical approach for solving a system of partial 

differential equations. The finite element method produces equations for each element 

independently of all other elements. Only when the equations are collected together and 

assembled into a global matrix are the interactions between elements taken into account. 

Despite these ideal characteristics, the finite element method dominates in most of the 

computational fluid dynamics. The present research is an attempt to bring the FE 

technique again into light through a novel formulation of two dimensional incompressible 

thermal flow problems. As the formulation establishes a priority of finite element 

technique over the FD and FV method, the philosophy and approach of the three methods 

are recapitulated here in brief. The finite difference method relies on the philosophy that 

the body is in one single piece but the parameters are evaluated only at some selected 

points within the body, satisfying the governing differential equations approximately, 

where as the finite volume method relies on the philosophy that the body is divided into a 
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finite number of control volumes, On the other hand, in the finite element method, the 

body is divided into a number of elements. The Finite element method works when all 

other methods fail and it’s managing complex geometrical bodies and boundaries.  There 

are many commercial packages such as ANSYS, MATLAB and COMSOL 

MULTIPHYSICS for analyzing practical problems.  The demerits of this method, it 

considers the body is not in one piece, but it is an assemblage of elements connected only 

at nodes and Finite element solution is highly dependent on the element type.   

Accurate and reliable prediction of complex geometry is of great importance to meet the 

severe demand of greater reliability as well as economic challenge. It is noted that these 

complex geometries occurs most frequently in CFD. Presented methods have a common 

feature: they generate equations for the values of the unknown functions at a finite number 

of points in the computational domain. But there are also several differences. The finite 

difference and the finite volume methods generate numerical equations at the reference 

point based on the values at neighboring points. The finite element method takes care of 

boundary conditions of Neumann type while the other two methods can easily apply to the 

Dirichlet conditions. The finite difference method could be easily extended to 

multidimensional spatial domains if the chosen grid is regular (the cells must look 

cuboids, in a topological sense). The grid indexing is simple but some difficulties appear 

for the domain with a complex geometry. For the finite element method there are no 

restrictions on the connection of the elements when the sides (or faces) of the elements are 

correctly aligned and have the same nodes for the neighboring elements. This flexibility 

allows us to model a very complex geometry. The finite volume method could also use 

irregular grids like the grids for the finite element methods, but keeps the simplicity of 

writing the equations like that for the finite difference method. Of course, the presence of a 

complex geometry slows down the computational programs. Another benefit of the finite 

element method is that of the specific mode to deduce the equations for each element that 

are then assembled. Therefore, the addition of new elements by refinement of the existing 

ones is not a major problem. For the other methods, the mesh refinement is a major task 

and could involve the rewriting of the program. But for all the methods used for the 

discrete analogue of the initial equation, the obtained system of simultaneous equations 

must be solved. That is why, the present work emphasizes the use of finite element 

techniques to solve flow and heat transfer problems. The details of this method are 

explained in the following section.  
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3.2  Elements of Numerical Solution Methods 
Several components of numerical solution methods are available in Ferziger and Perić 

(1997), here only the main steps will be demonstrate in the following. 

3.2.1   Mathematical Model 
The starting point of any numerical method is the mathematical model, i.e. the set of 

partial differential equations and boundary conditions. A solution method is usually 

designed for a particular set of equations. Trying to produce a general-purpose solution 

method, i.e. one which is applicable to all flows, is impractical, is not impossible and as 

with most general purpose tools, they are usually not optimum for any one application.  

3.2.2   Discretization Process 
After selecting the mathematical model, one has to choose a suitable discretization 

method, i.e. a method of approximating the differential equations by a system of algebraic 

equations for the variable at some set of discrete locations in space and time. 

3.2.3   Numerical Grid 
The numerical grid defines the discrete locations, at which the variables are to be 

calculated, which is essentially a discrete representation of the geometric domain on which 

the problem is to be solved. It divided the solution domain into a finite number of sub-

domains (elements, control volumes etc). Some of the options available are structural 

(regular) grid, block structured grid, unstructured grids etc.  

3.2.4   Finite Approximations  
Following the choice of grid type, one has to select the approximations to be used in the 

discretization process. In a finite difference method, approximations for the derivatives at 

the grid points have to be selected. In a finite volume method, one has to select the 

methods of approximating surface and volume integrals. In a finite element method, one 

has to choose the functions and weighting functions. 

3.2.5   Solution Technique 
Discretization yields a large system of non-linear algebraic equations. The method of 

solution depends on the problem. For unsteady flows, methods based on those used for 

initial value problems for ordinary differential equation (marching in time) is used. At 

each time step an elliptic problem has to be solved. Pseudo-time marching or an equivalent 
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iteration scheme usually solves steady flow problems. Since the equations are non-linear, 

an iteration scheme is used to solve them. These methods use successive linearization of 

the equations and the resulting linear systems are almost always solved by iterative 

techniques. The choice of solver depends on the grid type and the number of nodes 

involved in each algebraic equation. 

3.3  Discretization Approaches 
The first step to numerically solve a mathematical model of physical phenomena is its 

numerical discretization. This means that each component of the differential equations is 

transformed into a “numerical analogue” which can be represented in the computer and 

then processed by a computer program, built on some algorithm. There are several 

discritization methods available for the high performance numerical computation in CFD. 

 Finite difference method (FDM) 

 Finite volume method (FVM) 

 Finite element method (FEM) 

 Boundary element method (BEM) 

 Boundary volume method (BVM) 

In the present numerical computation, galerkin finite element method (FEM) has been 

used. 

3.4  Finite Element Method  
The finite element method (FEM) is a powerful computational technique for solving 

problems which are described by partial differential equations or can be formulated as 

functional minimization. The basic idea of the finite element method is to view a given 

domain as an assemblage of simple geometric shapes, called finite elements, for which it 

is possible to systematically generate the approximation functions needed in the solution 

of partial differential equations by the variational or weighted residual method. The 

computational domains with irregular geometries by a collection of finite elements makes 

the method a valuable practical tool for the solution of boundary, initial and eigen value 

problems arising in various fields of engineering. The approximation functions, which 

satisfy the governing equations and boundary conditions, are often constructed using ideas 
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from interpolation theory. Approximating functions in finite elements are determined in 

terms of nodal values of a physical field which is sought. A continuous physical problem 

is transformed into a discretized finite element problem with unknown nodal values. For a 

linear problem, a system of linear algebraic equations should be solved. Values inside 

finite elements can be recovered using nodal values. 

The major steps involved in finite element analysis of a typical problem are: 

1. Discretization of the domain into a set of finite elements (mesh generation). 

2. Weighted-integral or weak formulation of the differential equation to be analyzed. 

3. Development of the finite element model of the problem using its weighted-

integral or weak form. 

4. Assembly of finite elements to obtain the global system of algebraic equations. 

5. Imposition of boundary conditions. 

6. Solution of equations. 

7. Post-computation of solution and quantities of interest. 

 

3.4.1   MESH GENERATION 
In finite element method, the mesh generation is the technique to subdivide a domain into 

a set of subdomains, called finite elements. Figure 3.1 shows a domain,Λ is subdivided 

into a set of subdomains, eΛ with boundary eΓ . 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Finite element discretization of a domain 
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The present numerical technique will discretize the computational domain into 

unstructured triangles by Delaunay Triangular method. The Delaunay triangulation is a 

geometric structure that has enjoyed great popularity in mesh generation since the mesh 

generation was in its infancy. In two dimensions, the Delaunay triangulation of a vertex 

set maximizes the minimum angle among all possible triangulations of that vertex set. 

Figure 3.2 shows the mesh mode for the present numerical computation. Mesh generation 

has been done meticulously. 

 

  

 

 

Figure 3.2: Current mesh structure of elements for trapezoidal cavity 
where ф = 0o,ф = 30o, ф = 45o 
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3.4.2   Finite Element Formulation and Computational Technique 
Viscous incompressible thermal flows have been the subject of our investigation. The 

problem is relatively complex due to the coupling between the energy equation and the 

Navier-Stokes equations, which govern the fluid motion. These equations comprise a set 

of coupled nonlinear partial differential equations, which is difficult to solve especially 

with complicated geometries and boundary conditions. The finite element formulation and 

computational procedure for Navier-Stokes equations along with energy equations will be 

discuss in the chapter 4 and chapter5. 

3.5  Algorithm 
The algorithm was originally put forward by the iterative Newton-Raphson algorithm; the 

discrete forms of the continuity, momentum and energy equations are solved to find out 

the value of the velocity and the temperature. It is essential to guess the initial values of 

the variables. Then the numerical solutions of the variables are obtained while the 

convergent criterion is fulfilled. The simple algorithm is shown by the flow chart below. 
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Figure 3.3: Flow chart of the computational procedure 
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3.5.1   Solution of System of Equations 
A system of linear algebraic equations has been solved by the UMFPACK with MATLAB 

interface. UMFPACK is a set of routines for solving asymmetric sparse linear systems Ax 

= b, using the Asymmetric MultiFrontal method and direct sparse LU factorization. Five 

primary UMFPACK routines are required to factorize A or Ax = b: 

1. Pre-orders the columns of A to reduce fill-in and performs a symbolic analysis. 

2. Numerically scales and then factorizes a sparse matrix. 

3. Solves a sparse linear system using the numeric factorization. 

4. Frees the Symbolic object. 

5. Frees the Numeric object. 

Additional routines are: 

1. Passing a different column ordering 

2. Changing default parameters 

3. Manipulating sparse matrices 

4. Getting LU factors 

5. Solving the LU factors 

6. Computing determinant 

UMFPACK factorizes PAQ, PRAQ, or PR−1AQ into the product LU, where L and U are 

lower and upper triangular, respectively, P and Q are permutation matrices, and R is a 

diagonal matrix of row scaling factors (or R = I if row-scaling is not used). Both P and Q 

are chosen to reduce fill-in (new nonzeros in L and U that are not present in A). The 

permutation P has the dual role of reducing fill-in and maintaining numerical accuracy (via 

relaxed partial pivoting and row interchanges). The sparse matrix A can be square or 

rectangular, singular or non-singular, and real or complex (or any combination). Only 

square matrices A can be used to solve Ax = b or related systems. Rectangular matrices 

can only be factorized. UMFPACK first finds a column pre-ordering that reduces fill-in, 

without regard to numerical values. It scales and analyzes the matrix, and then 

automatically selects one of three strategies for pre-ordering the rows and columns: 

asymmetric, 2-by-2 and symmetric. These strategies are described below. 

One notable attribute of the UMFPACK is that whenever a matrix is factored, the 

factorization is stored as a part of the original matrix so that further operations on the 

matrix can reuse this factorization. Whenever a factorization or decomposition is 
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calculated, it is preserved as a list (element) in the factor slot of the original object. In this 

way a sequence of operations, such as determining the condition number of a matrix and 

then solving a linear system based on the matrix, do not require multiple factorizations of 

the intermediate results. 

Conceptually, the simplest representation of a sparse matrix is as a triplet of an integer 

vector i giving the row numbers, an integer vector j giving the column numbers, and a 

numeric vector x giving the non-zero values in the matrix. The triplet representation is 

row-oriented if elements in the same row were adjacent and column-oriented if elements 

in the same column were adjacent. The compressed sparse row (csr) or compressed sparse 

column (csc) representation is similar to row-oriented triplet or column-oriented triplet 

respectively. These compressed representations remove the redundant row or column in 

indices and provide faster access to a given location in the matrix. 

3.6  Chapter Summary 
This chapter has presented a tutorial introduction to computational method with 

advantages of numerical investigation, because numerical method has played a central role 

in this thesis. Various components of numerical method have been also explained. Finally, 

the major steps involved in finite element analysis of a typical problem have been 

discussed. 

 

b
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CHAPTER 4 

MATHEMATICAL MODELING OF THE PROBLEM  

4.1  Mathematical Modeling 
The convection heat transfer occurs due to temperature differences which affect the 

density, and thus relative buoyancy of the fluid is referred to as free convection (natural 

convection). The starting point of any numerical method is the mathematical model, i.e. 

the set of partial differential equations and boundary conditions. A solution method is 

usually designed for a particular set of equations. Trying to produce a general-purpose 

solution method, i.e. one which is applicable to all flows, is impractical, is not impossible 

and as with most general purpose tools, they are usually not optimum for any one 

application.  

The generalized governing equations are used based on the conservation laws of mass, 

momentum and energy. As the heat transfer depends upon a number of factors, a 

dimensional analysis is presented to show the important non-dimensional parameters 

which will influence the dimensionless heat transfer parameter, i.e. Nusselt number. 

4.2  Physical Model  
The physical model is shown in Fig. 4.1, along with the important geometric parameters. 

A trapezoidal cavity of height L with the left wall inclined at an angle ф =  450, 300, 00 

with Y axis is considered. The heat transfer and the fluid flow for uniform heating in a 

two-dimensional trapezoidal cavity with a fluid whose left wall and right wall (i.e. side 

walls) are subjected to cold Tc temperature, bottom wall is subjected to hot Th temperature 

while the top wall is kept insulated. The heatlines and thermal mixing will be illustrated 

for commonly used fluid with Pr = 0:026 – 1000 and Ra = 103 - 107 in various industrial 

applications. The fluid is considered as incompressible, Newtonian and the flow is 

assumed to be laminar. The boundary conditions for velocity are considered as no-slip on 

solid boundaries. 

 
 



Chapter 4: Mathematical Modeling of the Problem 
 

 43

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: 4.1. Schematic diagram of the physical system for (a) ф =  450 , 
(b) ф = 300 and (c) ф = 00 
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4.3  Mathematical Formulation 
The several steps of the mathematical formulation for the above physical configurations 

are shown as follows  

4.3.1   Governing Equations 
The fundamental laws used to solve the fluid flow and heat transfer problems, which are 

the conservation of mass (continuity equations), conservation of momentums (momentum 

equations), and conservation of energy (energy equations and constitute a set of coupled, 

nonlinear, partial differential equations. The viscous dissipation term in the energy 

equation is neglected. For the treatment of the buoyancy term in the momentum equation, 

Boussinesq approximation is employed to account for the variations of density as a 

function of temperature, and to couple in this way the temperature field to the flow field. 

Also for laminar incompressible thermal flow, the buoyancy force is included here as a 

body force in the v-momentum equation. The governing equations for steady natural 

convection flow can be written as: 

Continuity Equation 

 0=
∂
∂

+
∂
∂

y
v

x
u           (4.1) 

Momentum Equations  

2 2

2 2

1u u p u uu v
x y x x y

ν
ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (4.2) 

22 2
0

2 2

1 ( ) ( )c
Bv v p v vu v g T T

x y y x y
σ νν β

ρ ρ
∂ ∂ ∂ ∂ ∂

+ = − + + + − −
∂ ∂ ∂ ∂ ∂

 (4.3) 

Energy Equations  

2 2

2 2
p

T T k T Tu v
x y c x yρ

⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (4.4) 

where x and y are the distances measured along the horizontal and vertical directions 

respectively; u and v are the velocity components in the x and y directions respectively; T 

denote the fluid temperature, Tc denotes the reference temperature for which buoyant force 
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vanishes, p is the pressure and r is the fluid density, g is the gravitational constant, β is the 

volumetric coefficient of thermal expansion, cp is the fluid specific heat, k is the thermal 

conductivity of fluid. 

4.3.2   Boundary Conditions  
The boundary conditions for the present problem are specified as follows: 

Case – I (Uniform heating): 

At the bottom wall: 

( ,0) 0, ( ,0) 0, (Heateduniformly), 0, 0hu x v x T T y x L= = = ∀ = ≤ ≤   

At the left wall:    

(0, ) 0, (0, ) 0, , cos sin 0, 0cu y v y T T x y y Lφ φ= = = ∀ + = ≤ ≤       

At the right wall: 

(0, ) 0, (0, ) 0, , cos sin cos , 0cu y v y T T x y L y Lφ φ φ= = = ∀ − = ≤ ≤
 

At the top wall: 

( )( , ) 0, ( , ) 0, 0, , tan 1 tanc

h c

T Tu x L v x L y L L x L
y T T

φ φ
⎛ ⎞−∂

= = = ∀ = − ≤ ≤ +⎜ ⎟∂ −⎝ ⎠  

Case – II (Non-Uniform heating): 

At the bottom wall: 

( ,0) 0, ( ,0) 0, (Heated Non-uniformly ), 0, 0hu x v x T T y x L= = = ∀ = ≤ ≤       

At the left wall:  

(0, ) 0, (0, ) 0, , cos sin 0, 0cu y v y T T x y y Lφ φ= = = ∀ + = ≤ ≤       

At the right wall: 

(0, ) 0, (0, ) 0, , cos sin cos , 0cu y v y T T x y L y Lφ φ φ= = = ∀ − = ≤ ≤
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At the top wall: 

( )( , ) 0, ( , ) 0, 0, , tan 1 tanc

h c

T Tu x L v x L y L L x L
y T T

φ φ
⎛ ⎞−∂

= = = ∀ = − ≤ ≤ +⎜ ⎟∂ −⎝ ⎠  

where x and y are the distances measured along the horizontal and vertical directions, 

respectively; u and v are the velocity components in the x- and y-direction, respectively; L 

is the height of trapezoidal cavity with left wall inclined at an angle ф = 450, 300, 00 with y 

axis; T denotes the temperature; Th and Tc are heated uniformly or non-uniformly and 

cold temperatures respectively.
 

The local Nusselt number at the heated surface of the cavity which is defined by the 

following expression: 

( )
l r s b

h x LNu Nu Nu Nu
k

= = = −
 

Such local values have been further averaged over the entire heated surface to obtain the 

surface averaged or overall mean Nusselt number at the bottom, left and right walls are 

0 0 0 0

L L L L

l r s bNu Nu dx Nu dx Nu dx Nu dx= = = =∫ ∫ ∫ ∫  

Where L and h(x) are the length and the local convection heat transfer coefficient of the 

heated wall respectively. The average Nusselt number can be used in process engineering 

design calculations to estimate the rate transfer from the heated surface. 

 
4.3.3  Non-Dimensional Variables 

Non-dimensional variables or numbers  are used for making the governing equations 

(4.1−4.4) into dimensionless form are stated as follows: 

( ) ( )

2

2

3 3 2 2
2 0

2 2

, , , , , , Pr ,

Pr
, , ,

c

h c

h c h c

p

T Tx y uL vL pLX Y U V P
L L T T

g L T T g L T T B L kGr Ra Ha
C

νθ
α α αρα

β β σ α
ρα ρν ν

−
= = = = = = =

−

− −
= = = =
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Where X and Y are the coordinates varying along horizontal and vertical directions, 

respectively, U and V are the velocity components in the X and Y directions, respectively, 

q is the dimensionless temperature and P is the dimensionless pressure and also
 andh cT T T αΔ = − are the temperature difference and thermal diffusivity of the fluid 

respectively. 

The dimensionless parameters are the Grashof number Gr, Prandtl number Pr, Hartmann 

number and Rayleigh number Ra.  

4.3.4   Non-Dimensional Governing Equations 
The non-dimensional governing equations for steady two-dimensional free convection 

flow in the trapezoidal cavity after substitution the Non-dimensional variables or numbers 

into the equations (4.1-4.4), we get,  

Continuity Equation 

0=
∂
∂

+
∂
∂

Y
V

X
U

 (4.5) 

Momentum Equations 

2 2

2 2PrU U P U UU V
X Y X X Y

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + +⎜ ⎟

∂ ∂ ∂ ∂ ∂⎝ ⎠
 (4.6) 

2 2
2

2 2

1 ( ) Pr
Re

U U P V VU V Ra Ha V
X Y Y X Y

θ∂ ∂ ∂ ∂ ∂
+ = − + + + −

∂ ∂ ∂ ∂ ∂
 (4.7) 

Energy Equations 

2 2

2 2U V
X Y X Y
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

  (4.8) 

 

 

 



Chapter 4: Mathematical Modeling of the Problem 
 

 48

4.3.5   Non-Dimensional Boundary Conditions  
The non- dimensional boundary conditions under consideration can be written as: 

Case – I (Uniform heating): 

At the bottom wall: 

0, 0, 1 0, 0 1U V Y Xθ= = = ∀ = ≤ ≤       

At the left wall:  

0, 0, 0, cos sin 0, 0 1U V X Y Yθ φ φ= = = ∀ + = ≤ ≤     

At the right wall: 

0, 0, 0, cos sin cos , 0 1U V X Y Yθ φ φ φ= = = ∀ − = ≤ ≤
 

At the top wall: 

( )0, 0, 0, 1, tan 1 tanU V Y X
Y
θ φ φ∂

= = = ∀ = − ≤ ≤ +
∂  

Case – II (Non-Uniform heating): 

At the bottom wall:  

( )0, 0, sin 0, 0 1U V X Y Xθ π= = = ∀ = ≤ ≤  

At the left wall: 

0, 0, 0, cos sin 0, 0 1U V X Y Yθ φ φ= = = ∀ + = ≤ ≤  

At the right wall: 

0, 0, 0, cos sin cos , 0 1U V X Y Yθ φ φ φ= = = ∀ − = ≤ ≤
 

At the top wall: 

( )0, 0, 0, 1, tan 1 tanU V Y X
Y
θ φ φ∂

= = = ∀ = − ≤ ≤ +
∂  
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where X and Y are dimensionless coordinates varying along horizontal and vertical 

directions, respectively; U and V are dimensionless velocity components in X and Y 

directions, respectively; θ  is the dimensionless temperature. 

 

The local Nusselt number at the heated surface of the cavity which is defined by the 

following expression: 

l r b sNu Nu Nu Nu
n
θ∂

= = = = −
∂  

where n denotes the normal direction on a plane.
 

According to Singh and Sharif (2003), the average Nusselt number at the heated bottom 

wall, cooled left and right walls and insulated top walls of the cavity based on the non-

dimensional variables may be expressed as, 
1 1 1 1

0 0 0 0
l r s bNu Nu dX Nu dX Nu dX Nu dX= = = =∫ ∫ ∫ ∫

.
 

4.4  Numerical Analysis  
The governing equations along with the boundary conditions are solved numerically, 

employing Galerkin weighted residual finite element techniques discussed below. 

4.4.1   Finite Element Formulation 
The numerical procedure used to solve the governing equations for the present work is 

based on the Galerkin weighted residual method of finite-element formulation.  The non-

linear parametric solution method is chosen to solve the governing equations. This 

approach will result in substantially fast convergence assurance. A non-uniform triangular 

mesh arrangement is implemented in the present investigation especially near the walls to 

capture the rapid changes in the dependent variables.  

The velocity and thermal energy equations (4.5)-(4.8) result in a set of non-linear coupled 

equations for which an iterative scheme is adopted. To ensure convergence of the 

numerical algorithm the following criteria is applied to all dependent variables over the 

solution domain  
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∑ −− ≤− 51 10n
ij

n
ij ψψ  

where Ψ  represents a dependent variable U, V, P, and T; the indexes i, j indicate a grid 

point; and the index n is the current iteration at the grid level. The six node triangular 

element is used in this work for the development of the finite element equations. All six 

nodes are associated with velocities as well as temperature; only the corner nodes are 

associated with pressure. This means that a lower order polynomial is chosen for pressure 

and which is satisfied through continuity equation. The velocity component and the 

temperature distributions and linear interpolation for the pressure distribution according to 

their highest derivative orders in the differential Eqs (4.5)-(4.8) as 

( ),U X Y N Uα α=  (4.9) 

( ),V X Y N Vα α=  (4.10) 

( , )X Y Nα αθ θ=  (4.11) 

( ),P X Y H Pλ λ=  (4.12) 

where α = 1, 2, … …, 6; λ= 1, 2, 3; Nα are the element interpolation functions for the 

velocity components and the temperature, and Hλ are the element interpolation functions 

for the pressure. 

To derive the finite element equations, the method of weighted residuals Zienkiewicz 

(1991) is applied to the equations (4.5) – (4.8) as  

0A
U VN dA
X Yα
∂ ∂⎛ ⎞+ =⎜ ⎟∂ ∂⎝ ⎠∫  (4.13) 

2 2

2 2PrA A A
U U P U UN U V dA H dA N dA
X Y X X Y

α λ α
⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ∂ ∂⎝ ⎠

∫ ∫ ∫  (4.14) 

2 2
2

2 2

( ) ( )

Pr ( ) Pr

A A

A A A

V V PN U V dA H dA
X Y Y

V VN dA Ra N dA Ha N VdA
X Y

α λ

α α αθ

∂ ∂ ∂
+ = − +

∂ ∂ ∂

∂ ∂
+ + −

∂ ∂

∫ ∫

∫ ∫ ∫
 (4.15) 
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2 2

2 2A AN U V dA N dA
X Y X Y

α α
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ = +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ∂ ∂⎝ ⎠

∫ ∫  (4.16) 

Where A is the element area. 

Gauss’s theorem is then applied to equations (4.14)-(4.16) to generate the boundary 

integral terms associated with the surface tractions and heat flux. Then equations (4.14)-

(4.16) becomes, 

00
Pr

A A

xA S

U U PN U V dA H dA
X Y X

N NU U dA N S dS
X X Y Y

α λ

α α
α

∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫ ∫

∫ ∫
 (4.17) 

2
0

0

( ) ( ) Pr ( )

Pr   
A A A

y
S

N NV V P V VN U V dA H dA
X Y Y X X Y Y

Ra N dA Ha N VdA N S dS

α α
α λ

α α α
α α

θ

∂ ∂∂ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

− + =

∫ ∫ ∫

∫ ∫ ∫
 (4.18) 

( ) ( ) lw w
Sw

N NN U V dA dA N q dS
X Y X X Y Y

α α
α α

α α

θ θ θ θ∂ ∂∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫  (4.19) 

Here (4.14)-(4.15) specifying surface tractions (Sx, Sy) along outflow boundary S0 and 

(4.16) specifying velocity components and fluid temperature or heat flux (qw) that flows 

into or out from domain along wall boundary Sw. Substituting the element velocity 

component distributions, the temperature distribution, and the pressure distribution from 

equations (4.9)-(4.12), the finite element equations can be written in the form, 

0x yK U K Vβ βα β α β
+ =  (4.20) 

Prx y x xx yy uK U U K V U M P S S U Qβ γ γ γ μ βαβγ αβγ αμ αβ αβ α
⎛ ⎞+ + + + =⎜ ⎟
⎝ ⎠

 (4.21) 

2Pr( ) Pr

x y y

xx yy v

K U V K V V M P

S S Ha K V Ra K Q

β γ γ γ μαβγ αβγ αμ

αβ β αβ βαβ αβ α
θ

+ + +

+ + − =
 (4.22) 
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x y xx yyK U K V S S Qβ γ β γ β θαβγ αβγ αβ αβ α
θ θ θ⎛ ⎞+ + + =⎜ ⎟

⎝ ⎠
 (4.23) 

where the coefficients in element matrices are in the form of the integrals over the element 

area and along the element edges S0 and Sw as  

,x xAK N N dAα βαβ
= ∫  (4.24a) 

,y yAK N N dAα βαβ
= ∫  (4.24b) 

,x xAK N N N dAα β γαβγ
= ∫  (4.24c) 

,y yAK N N N dAα β γαβγ
= ∫  (4.24d) 

AK N N dAαβ α β= ∫  (4.24e) 

, ,xx x xAS N N dAα βαβ
= ∫  (4.24f) 

, ,yy y yAS N N dAα βαβ
= ∫  (4.24g) 

,x xAM H H dAα μαμ
= ∫  (4.24h) 

,y yAM H H dAα μαμ
= ∫  (4.24i) 

00u xSQ N S dSαα
= ∫  (4.24j) 

00v ySQ N S dSαα
= ∫  (4.24k) 

1 wwSw
Q N q dSθ αα

= ∫  (4.24l) 

2 wwSws
Q N q dSθ αα

= ∫  (4.24m) 

These element matrices are evaluated in closed form ready for numerical simulation. 

Details of the derivation for these element matrices are omitted herein. 
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The derived finite element equations (4.20)-(4.23) are nonlinear. These nonlinear algebraic 

equations are solved by applying the Newton-Raphson iteration technique by first writing 

the unbalanced values from the set of the finite element equations (4.20)-(4.23) as, 

p x yF K U K Vβ βα αβ αβ
= +  (4.25a) 

Pr

u x y x

xx yy u

F K U U K V U M P

S S U Q

β γ γ γ μα αβγ αβγ αμ

βαβ αβ α

= + +

⎛ ⎞+ + −⎜ ⎟
⎝ ⎠

 (4.25b) 

( )2Pr Pr

v x y y

xx yy

F K U V K V V M P

S S Ha K V Ra K Q

β γ γ γ μα αβγ αβγ αμ

αβ β αβ β θαβ αβ α
θ

= + + +

+ + − −
 (4.25c) 

x y xx yyF K U K V S S Qθ β γ β γ β θα αβγ αβγ αβ αβ α
θ θ θ⎛ ⎞= + + + −⎜ ⎟

⎝ ⎠
 (4.25d)  

This leads to a set of algebraic equations with the incremental unknowns of the element 

nodal velocity components, temperatures, and pressures in the form, 

0 0

0

0

pu pv

uu uv up

u v

vu vv v vp

K K F pp
K K K F uu

FK K K
F vvK K K K

α

α

αθ θ θθ

αθ

θθ

⎡ ⎤ Δ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ = −⎢ ⎥ ⎢ ⎥⎢ ⎥Δ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (4.26) 

Where  Pruu x x y xx yyK K U K U K V S Sβ γ βαβγ αγβ αβγ αβ αβ
⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

 

uv yK K U
αβγ

γ=  

0;u up xK K Mθ αμ
= =  

vu xK K V
αβγ

γ=  

2Pr ( )vv x y y xx yyK K U K V K V S S Ha Kγ γ γ αβαβαβγ αβγαβγ αβ
= + + + + +  

Pr ;v vp yK Ra K K Mθ αβ αμ
= − =  
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;u x v yK K K Kθ θαβγ αβγ
θγ θγ= =  

( )x y xx yyK K U K V S Sθθ β βαβγ αβγ αβ αβ
= + + +

 

0pKθ =  

;pu x pv yK K K K
αβ αβ

= = , and 0p ppK Kθ = =  

The iteration process is terminated if the percentage of the overall change compared to the 

previous iteration is less than the specified value. 

To solve the sets of the global nonlinear algebraic equations in the form of matrix, the 

Newton-Raphson iteration technique has been adapted through PDE solver with 

MATLAB interface.  
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CHAPTER 5 

MHD FREE CONVECTION WITHIN TRAPEZOIDAL 
CAVITY WITH UNIFORMLY HEATED BOTTOM 
WALL 

The heat transfer and the fluid flow for uniform heating of bottom wall in a two-
dimensional trapezoidal cavity of height L with the left wall inclined at an angle ф =  450, 
300, 00 with Y axis was considered as shown in a schematic diagram of figure 4.1 in 
section 4.2 of chapter 4. In this physical system, dimensional governing equations (4.1 – 
4.4) and non-dimensional governing equations (4.5 -4.8) are solved in section 4.3.1 and 
4.3.4 respectively in previous chapter 4. For boundary conditions, left wall and right wall 
(i.e. side walls) are subjected to cold temperature (Tc) and the top wall is thermal insulated 
and also the bottom wall is heated uniformly as shown in section 4.3.2 and 4.3.5(case –I : 
uniform heating). Numerical technique of finite element formulation has also been 
discussed in section 4.4.1.In this chapter grid independence test, code validation, 
comparisons and results have been discussed.  

5.1   Grid Independence Test for Uniform Heating 
Test for the accuracy of grid fineness has been carried out to find out the optimum grid 
number. 

 
Figure 5.1: Convergence of average Nusselt number with grid 
refinement for Pr = 0.7, Ha = 50, ф  = 00 and Ra = 105 in presence of 
uniform heating. 
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In order to obtain grid independent solution, a grid refinement study is performed for a 

trapezoidal cavity with Pr = 0.7, phi =  0 and Ra = 105. Figure 4.2 shows the convergence 

of the average Nusselt number, Nuav at the heated surface with grid refinement. It is 

observed that grid independence is achieved with 2363 elements where there is 

insignificant change in Nu with further increase of mesh elements. Six different non-

uniform grids with the following number of nodes and elements were considered for the 

grid refinement tests: 6402 nodes, 952 elements; 10981  nodes, 1643 elements; 12922 

nodes, 1947 elements; 14729 nodes, 2218 elements; 15635 nodes, 2359 elements; 15731 

nodes, 2363 elements, 25462 nodes, 3852 elements, 26185 nodes, 3960 elements, 26903 

nodes, 4071 elements, 30970 nodes, 4687 elements,  . From these values, 15731 nodes, 

2363 elements elements can be chosen throughout the simulation to optimize the relation 

between the accuracy required and the computing time. 

 
Table 5.1: Grid Sensitivity Check at Pr = 0.7 , Phi = 0 , Ha = 50 and Ra = 105. 
 

5.2   Code Validation 
For the validation of the code, a trapezoidal cavity without MHD is considered with a fluid 

by finite element weighted residual method whose left wall and right wall (i.e. side walls) 

are subjected to cold Tc temperature, bottom wall is subjected to uniformly hot Th 

temperature while the top wall is kept insulated. Average Nusselt number is calculated for 

three different Rayleigh numbers (Ra = 103, 104 and 105) and three different angles ф =  

450, 300, 00 , while the prandtl number is fixed i.e. Pr = 0.7 for uniform heating of bottom 

and side wall respectively. The results were compared with those reported by Basak et al. 

(March 2009). In Table 5.2 and Table 5.3, for code validation, average Nusselt numbers is 

presented for different Rayleigh numbers of uniform heating of bottom and side wall 

respectively with fixed Prandtl number. For code validation, in Table 5.2 and also in the 

Nodes 
 

(elements)

6402 
 

(952) 

10981 
 

(1643) 

12922
 

(1947)

14729
 

(2218)

15635
 

(2359)

15731 
 

(2363) 

25462 
 

(3852) 

26185 
 

(3960) 

26903 
 

(4071) 

30970 
 

(4687) 
 

Nu 
 

5.753017 
 

6.005381 
 

6.120885
 

6.005761
 

6.121049
 

6.123839 
 

6.618788 
 

6.74774 
 

6.721055 
 

6.614218 

Time (s) 3.563 5.313 6.813 7.235 7.875 7.875 13.781 14.0 14.266 16.656 
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figure (5.2 – 5.4) of uniform bottom heating 14060 nodes and 2121 elements, 12673 nodes 

and 1906elements, 5858 nodes and 864 elements have been used for ф = 00, ф = 300, ф = 

450 and Ra = 105 respectively. In table 5.3, to bring the results of uniform heating of side 

wall 14060 nodes and 2121 elements, 8434 nodes and 1256 elements, 1527 nodes and 216 

elements have also been used for ф = 00, ф = 300, ф = 450 respectively. The results of the 

figure (5.2 – 5.4) of uniform bottom heating were also compared with those reported by 

Basak et al. (2009) with streamlines, isotherms (temperature) and Heat function or total 

heat flux for Pr =0.7 and . Ra = 105. The results from the present experiment are almost 

same as Basak et.al. 

 

 
Ra 

Average Nusselt Number, ( Nuav ) 

Present work without MHD Basak et al. (2009) without MHD 

ф =  00 ф =   300 ф =  450 ф =  00 ф =  300 ф =  450 

103 6.055778 4.714051 3.894428 5.31956 3.93605 3.34577 

104 6.09068 4.935452 4.19254 6.4311 5.37306 4.90481 

105 7.558405 6.633036 5.952502 8.71198 7.80227 7.37514 

 
Table 5.2: Code validation for uniform heating of bottom wall with Pr = 0.7. 
 

 
Ra 

Average Nusselt Number, ( Nuav ) 
 

Present work without MHD Basak et al. (2009) without MHD 

ф =  00 ф =   300 ф =  450 ф =  00 ф =  300 ф =  450 

 

103 3.134102 2.240473 1.672972 2.65347 1.74006 1.27778 

104 3.151073 2.354613 1.842988 3.19866 2.37812 1.83453 

105 3.887594 3.213328 2.797346 4.31809 3.43934 2.71105 
 

 
Table 5.3: Code validation for uniform heating of side wall with Pr = 0.7 
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Figure 5.2: Code validation for uniform bottom heating at Ra = 105, ф 
= 00 with Pr = 0.7. 

 

 
Figure 5.3: Code validation for uniform bottom heating at Ra = 105, ф 
= 300 with Pr = 0.7 
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Figure 5.4: Code validation for uniform bottom heating at Ra = 105, ф 
= 450 with Pr = 0.7. 

 
 

5.3   Comparisons between without and with MHD  
After validation of the code, a trapezoidal cavity with MHD is considered with a fluid 

whose left wall and right wall (i.e. side walls) are subjected to cold Tc temperature, bottom 

wall is subjected to uniformly hot Th temperature while the top wall is kept insulated . 

Average Nusselt number is calculated for three different Rayleigh numbers (Ra = 103, 104 

and 105) and three different angles ф = 450, 300, 00, while the prandtl number is fixed i.e. 

Pr = 0.7 for uniform heating of bottom and side wall respectively. The results were 

compared with the present work where magneto-hydrodynamic effect is not applied. In 

Table 5.4 and Table 5.5, for comparison, average Nusselt number is presented for different 

Rayleigh numbers of uniform heating of bottom and side wall respectively with fixed 

Prandtl number. Here average Nusselt number of uniform heating of bottom and side wall 

is enhancing for different Rayleigh numbers. When Rayleigh numbers increase then 

average Nusselt number increase is seen. This is happening because of heat transfer. Also 

magnitudes of average Nusselt number of uniform heating of bottom wall is higher than 

magnitudes of average Nusselt number of uniform heating of side wall for various 
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Rayleigh numbers. The results of the figure (5.5 – 5.7) with magneto-hydrodynamics 

(MHD) effect of uniform bottom heating for ф = 00, ф = 300, ф = 450 and Ra = 105 were 

also compared to the present work with streamlines, isotherms (temperature) and heat 

function or total heat flux where magneto-hydrodynamics (MHD) is not applied. Here 

from the present work of the figure it is seen that heat flow suppressed out for magnetic 

effect. Comparisons of the results without and with MHD of the current research work are 

given below. 

 

 
Ra 

Average Nusselt Number, ( Nuav ) 

Present work With MHD Present work without MHD 

ф =  00 ф =   300 ф =  450 ф =  00 ф =  300 ф =  450 

103 5.685321 4.46249 3.892641 6.055778 4.714051 3.894428 

104 5.686197 4.463856 3.893894 6.09068 4.935452 4.19254 

105 5.753017 4.666547 4.2141 7.558405 6.633036 5.952502 

 
Table 5.4: Comparison of the results for uniform heating of bottom wall with Pr = 
0.7. 
 

 
Ra 

Average Nusselt Number, ( Nuav ) 
 

Present work With MHD Present work without MHD 

ф =  00 ф =   300 ф =  450 ф =  00 ф =  300 ф =  450 

 

103 2.859967 2.239549 1.96883 3.134102 2.240473 1.672972 

104 2.859702 2.240199 1.970905 3.151073 2.354613 1.842988 

105 2.88603 2.341693 2.148533 3.887594 3.213328 2.797346 

 
Table 5.5: Comparison of the results for uniform heating of side wall with Pr = 0.7 
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Figure 5.5: Comparison for uniform bottom heating at Ra = 105, ф = 00 

with Pr = 0.7 when Ha = 0 and Ha = 50. 
 

 
Figure 5.6: Comparison for uniform bottom heating at Ra = 105ф = 300 

with Pr = 0.7 when Ha = 0 and Ha = 50. 
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Figure 5.7: Comparison for uniform bottom heating at Ra = 105ф = 450 

with Pr = 0.7 when Ha = 0 and Ha = 50. 
 
 

5.4  Results and Discussion 
After completing the code validation with those reported Basak et al. (March 2009), two 

dimensional laminar steady state on MHD free convection within trapezoidal cavity with 

uniformly heated bottom wall have been studied numerically. In this endorsement 

uniformly heated bottom wall, thermal insulation of top wall and cooled side (left or right) 

walls have been analyzed. Two-dimensional form of Navier-stoke equations along with 

the energy equations are solved by Galerkin finite element method. Results are obtained 

on uniform heating for parametric study for the wide range of Rayleigh number, Ra = 103- 

107 and Prandtl number, Pr = 0.026, 0.7, 1000 with various angles, ф = 450, 300, 00(square 

cavity). 

5.4.1   Uniform Heating of Bottom Wall 
Figure 5.8 -5.19 display the effects of streamline (stream function), isotherms 

(temperature) and heatlines for Pr = 0.026, 0.7, 1000 when bottom wall is uniformly 
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the bottom wall fluid rise up and the fluid near the hot of bottom wall has lower density. 

So it moves upward relatively heavy fluid along two vertical side walls moves downwards 

(flow down) forming using symmetric rolls with clockwise and anticlockwise rotations 

inside the cavity and the fluid is heated up. Thus fluid completes circulation. 

Figure 5.8 illustrate that the magnitudes of streamfunction contours are considerably 

smaller which express that, at low Rayleigh number the flow is primarily due to 

conduction. For Ra = 103, Pr = 0.026 and ф = 00(square cavity) isotherms (temperature) 

with θ = 0.05 - 0.10 occur symmetrically along side (left or right) walls and with θ ≥ 0.15 

are smooth curves symmetric with respect to vertical symmetrical line (Fig. 5.8a). For Ra 

= 103, Pr = 0.026 and ф = 300 the temperature contours with θ = 0.05 – 0.25 occur 

symmetrically near the side walls of the enclosure and with  θ ≥ 0.30 are smooth curves 

symmetric with respect to central symmetrical line (Fig. 5.8b). Again for Ra = 103, Pr = 

0.026 and ф = 450 isotherms (temperature) with θ = 0.05 – 0.30 occur symmetrically near 

the side walls of the enclosure and with θ ≥ 0.35 are smooth curves symmetric with 

respect to vertical symmetrical line (Fig. 5.8c). 

The presence of significant convection is also exhibited with temperature distribution for 

various ф in trapezoidal cavity. It can be explained with distribution of heat energy is 

governed by heat function or heat flux. Heatlines or total heat flux are shown in panels of 

fig.5.8a-c. Heatlines illustrate that heat energy from the bottom wall symmetrically 

distributed to side walls for various tilt angles of ф especially for smaller Ra. It is 

important to note that two bottom corner edges have infinite heat flux as the cold wall is 

directly in contact with the hot bottom wall and sign of heat functions are depend on 

boundary conditions at two bottom corners. Our sign convection is based on fact that heat 

flow occurs from hot to cold walls and the positive heat flow correspond to anticlockwise 

heat flow. It may be noted that the magnitudes of heat functions decrease from the bottom 

edges to the central symmetric line where no heat flux condition is valid due to symmetric 

boundary conditions for temperature. 

It is interesting to note that at the bottom corner point ф = 00(square cavity) is larger than 

for ф = 450 and 300. It is evident that heatlines near the bottom portion of side walls are 

more dense for ф = 450 and less dense for ф = 00(square cavity). The dense heatlines is 

also indicating enhanced rate of heat transfer from the bottom to the side walls. Therefore 

isotherms with θ = 0.05 – 0.35 are shifted for ф = 450 toward the side walls. It ios also 
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observed that heat transfer at the top portion of the cavity for ф = 450 and 300 is higher 

compressed to ф = 00(square cavity) based on value of heatfunction (Π). As the heat 

transfer is quite large at the corners of bottom wall, the thermal boundary layer was found 

to develop near the bottom edges and thickness of boundary layer is larger at the top 

portion of the cold wall signifying less heat transfer to the top portion. The stratification 

zone of temperature contours occur near the center of the bottom wall as vertical heatlines 

occur near the central heatlines. 

Figure 5.9 and 5.10 point up that the magnitudes of streamfunction are smaller for Ra = 

104, 105
,
 Pr = 0.026 and isotherms (temperature)  with θ = 0.05 – 0.15, θ = 0.05 – 0.30,  θ = 

0.05 – 0.35  occur symmetrically near the side walls of the enclosure and with  θ ≥ 0.25, θ 

≥ 0.30, θ ≥ 0.35  are smooth curves symmetric with respect to central symmetrical line for 

Ra = 104, 105
, Pr = 0.026 and ф = 450, 300, 00(square cavity) ( Fig 5.9a-c, 5.10a-c)  and 

heatlines enhanced the rate of heat transfer from the bottom to side walls for Ra = 104, 105
, 

Pr = 0.026. It is observed that at critical Ra the middle portion of isotherms starts getting 

deformed and the maximum value of ψ is at the eye of vortices. As Ra increases, the 

buoyancy driven circulation inside the cavity is also increased as seen from greater 

magnitudes of stream function (fig. 5.9and 5.10). It is also observed that the greater 

circulation in bottom regime follows a progressive wrapping and isotherms are more 

compressed towards the side wall as can be seen fig 5.9 and 5.10. 

Figure 5.11 illustrate that effect of buoyancy force is compared to viscous forces and the 

intensity of fluid motion has been increased by larger magnitudes of streamfunction for Ra 

= 107, Pr = 0.026. The enhance convection causes larger heat energy to flow from the 

bottom wall to the top portion of the vertical wall and large regime of the top portion of 

the cavity remains at uniform temperature for ф = 450 and 300.It is interesting to note that 

isotherms are more compressed near to corners of bottom wall. Therefore the deformation 

occurs in the streamfunction near to the corners of bottom wall. As a result secondary 

circulations are also developed near to the intersection of uniformly heated bottom wall 

and center of the cold side walls for ф = 00 and for ф =  300, 450 symmetric multiple 

circulations near to corner appear. These secondary vortices push the eye of the primary 

vortices toward the axis of symmetry as shown in fig 5.11. 

It is interesting to detect that the stratification zone of temperature at the center vertical 

line near the bottom wall for Ra = 107 is suppressed whereas stratification zone of 
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temperature is larger for Ra = 103 due to increased convection. It is also noted that 

stratification zone of temperature at bottom wall is thicker for ф = 00(square cavity) due to 

less intense circulation near the top portion of the cavity. Isotherms (temperature)  with θ 

= 0.05 – 0.55, θ = 0.05 – 0.70,  θ = 0.05 – 0.65  occur symmetrically near the side walls of 

the enclosure and with  θ ≥ 0.60, θ ≥ 0.75, θ ≥ 0.70  are smooth curves symmetric with 

respect to central symmetrical line for Ra = 107
, Pr = 0.026 and ф = 450, 300, 00(square 

cavity) respectively. It is also observed that the shapes of streamlines almost circular 

except near the side wall. Heatlines indicate the heat transfer from the hot wall to cold side 

walls and uniform heat flow circulation due to fluid circulation cells. Heatlines near the 

top portion of the side walls are oscillatory due to secondary circulation for ф = 450 and 

300
. It is also observed that heatlines are quite dense near the central regime for ф = 450 

and 300 and implies enhance thermal mixing near the central to top portion of the cavity.It 

may also be identify that the ignifcant convection causes distortion of heatlines especially 

near the side walls as compared with conduction heat transfer(see fig 5.8). 

Figure 5.12 – 5.15 exemplify that the magnitudes of streamfunction  are circular or 

elliptical near the core but the streamlines near the wall is almost parallel to wall 

exhibiting large intensity of flow for Pr = 0.7 and Ra = 103 – 107. Also for Pr = 0.7 and Ra 

= 103 isotherms with θ = 0.05 – 0.10, θ = 0.05 – 0.25,  θ = 0.05 – 0.30 and  also θ = 0.05 – 

0.10, θ = 0.05 – 0.25,  θ = 0.05 – 0.35 for Pr = 0.7 and Ra = 104 and also θ = 0.05 – 0.15, θ 

= 0.05 – 0.45,  θ = 0.05 – 0.50 for 0.7 and Ra = 105 and also θ = 0.05 – 0.50, θ = 0.05 – 

0.55,  θ = 0.05 – 0.45 for 0.7 and Ra = 107 occur symmetrically near the side walls of the 

enclosure and θ ≥ 0.15, θ ≥ 0.30, θ ≥ 0.35 and θ ≥ 0.15, θ ≥ 0.30, θ ≥ 0.40 and also θ ≥ 

0.20, θ ≥ 0.50, θ ≥ 0.55 and θ ≥ 0.55, θ ≥ 0.60, θ ≥ 0.50  are smooth curves symmetric with 

respect to central symmetrical line for Ra = 103 - 107
, Pr = 0.7 and ф = 450, 300, 00(square 

cavity) respectively. It is interesting to detect that the intensity of flow have been increased 

for irrespective of ф as seen fig 5.9 – 5.11. Although streamlines are circular or elliptical 

near the core but streamlines near the wall is almost parallel to wall for intensity of flow 

(see fig 5.12 – 5.15). It is also fascinating that multiple correlations are absent for Pr = 0.7 

and Ra = 107 wherwas multiple heat circulation loops were observed for Pr = 0.026(see fig 

5.15). Due to enhanced flow circulations the isotherms are highly compressed near the 

side walls except near the bottom wall especially for ф = 450 and 300.The thermal energy 

is further analyzed with heatlines. The large temperature gradient near the side walls are 

due to significant number of heatlines with a large variation of heatfunction as seen in 
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figure 5.12a-c to 5.15a-c whereas the heatlines along the side walls are less dense leading 

to less thermal gradient and also near corners irrespective of ф s.  

Figure 5.16 – 5.19 show streamline. Isotherms (temperature) and heatlines for Ra = 103 - 

107
, Pr =1000 and ф = 450, 300, 00(square cavity) respectively. Also for Pr = 1000 and Ra 

= 103 isotherms with θ = 0.05 – 0.10, θ = 0.05 – 0.25,  θ = 0.05 – 0.35 and  also θ = 0.05 – 

0.15, θ = 0.05 – 0.45,  θ = 0.05 – 0.50 for Pr = 1000 and Ra = 104 and also θ = 0.05 – 0.50, 

θ = 0.05 – 0.60,  θ = 0.05 – 0.55 for 1000 and Ra = 105 and also θ = 0.05 – 0.45, θ = 0.05 – 

0.40,  θ = 0.05 – 0.40 for 1000 and Ra = 107 occur symmetrically near the side walls of the 

enclosure and θ ≥ 0.15, θ ≥ 0.30, θ ≥ 0.40 and θ ≥ 0.20, θ ≥ 0.50, θ ≥ 0.55 and also θ ≥ 

0.55, θ ≥ 0.60, θ ≥ 0.60 and θ ≥ 0.50, θ ≥ 0.45, θ ≥ 0.45  are smooth curves symmetric with 

respect to central symmetrical line for Ra = 103 - 107
, Pr = 0.7 and ф = 450, 300, 00(square 

cavity) respectively. Comparative studies on figures (5.12 – 5.15) and figures (5.16 -5.19) 

show that as Pr increases from 0.7 to 1000 for various Ra, the values of stream function on 

the core cavity increase because of highly viscous. It is exemplify that the greater 

circulations due to higher Pr leads to elliptical stream function in the core. At larger Ra = 

107
 and Pr =1000 (Fig. 5.19a-c), it is seen that the intensity of flow circulations are 

increased from the values of stream functions. Streamlines near the side walls take the 

shape of container or circular and signify enhance mixing effects. The isotherms  θ ≤ 0.40 

are highly compressed near the side walls and isotherms with θ ≥ 0.50 are also confined 

within a small regime near the bottom wall. The heatlines are highly dense at the central 

regime. The enhanced thermal mixing due to convection as well as heat transfort from the 

bottom wall to uniform temperature near the central regime. 

It is also significant that at high Pr the streamline except at the central regime are almost 

circular indicating higher insity of flows. Also the signififcant number of heatlines are 

observed along the side walls leading to large thermal gradient for ф = 450 and 300 and 

heatlines are more less dense along the side vertical walls. Besides this, the effects of heat 

transfer for various Ra and inclination angles ф = 450, 300, 00 for different Pr on local and 

average Nusselt number are discussed later in detail.  
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   a    b    c 

 
Figure 5.8: Stream function (Ψ), temperature (θ), heat function or total 
heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with Pr = 
0.026, Ha = 50 and Ra = 103 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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  a    b                 c 

 
Figure 5.9: Stream function (Ψ), temperature (θ), heat function or total 
heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with Pr = 
0.026, Ha = 50 and Ra = 104 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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a    b           c 
 

Figure 5.10: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 0.026, Ha = 50 and Ra = 105 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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a      b      c 
 

Figure 5.11: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 0.026, Ha = 50 and Ra = 107 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 5.12: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 0.7, Ha = 50 and Ra = 103 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 5.13: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 0.7, Ha = 50 and Ra = 104 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 5.14: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 0.7, Ha = 50 and Ra = 105 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 5.15: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 0.7, Ha = 50 and Ra = 107 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 5.16: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 1000, Ha = 50 and Ra = 103 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 5.17: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 1000, Ha = 50 and Ra = 104 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 

 
 
 
 

Ψ

θ

П

4.30

0.920.99

5.68

3.671.79

5.92

4.451.93

0.10 0.150.20

0.35

0.55

0.85

0.15

0.25

0.30

0.
15

0.30
0.85

0.60

0.50

0.15

0.
350.55

0.60

0.
70

0.90

0.20

0.
05

4.18

1.881.63

5.75

6.894.08

6.91

3.861.11



Chapter 5: MHD free convection within trapezoidal cavity with uniformly heated bottom wall 

 77

 
 
 

  

  

  

a      b      c 
 

Figure 5.18: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 1000, Ha = 50 and Ra = 105 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 5.19: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) contours for uniform bottom heating θ(X,0) = 1 with 
Pr = 1000, Ha = 50 and Ra = 107 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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5.4.2   Heat Transfer Rates: Local Nusselt Number vs distance for 
various Prandtl Number, Rayleigh Number and inclination 
angles in case of uniform heating 

Figure 5.20 display the effects of local Nusselt number vs distance for various inclinations 

of angles i.e. i) ф = 00 ,ii) ф = 300, iii) ф = 450, for uniform heating of bottom wall with Pr 

= 0.026. Here the heat transfer rates are shown for Ra = 103. As bottom wall is heated and 

side wall is cold and top wall is insulated so that for adjacent wall it is observed that heat 

transfer rate is maximum near edge of the left wall and the rate is step down from left side 

and the it is straightly moving and then also it goes up to right side. Here the heat transfer 

rates are almost same for ф = 300, 450 except ф = 00 [square cavity]. 

Figure 5.21 and figure 5.22 also display similar effects of local Nusselt number with 

distance for various inclination tilt angles for Pr = 0.026 in case of uniform heating. But 

here the values of heat transfer rate increase a little. Here the heat transfer rates are shown 

for Ra = 103,104. 

Figure 5.23 detects the variation of local Nusselt number with distance for various 

inclination tilt angles i.e. i) ф = 00 ,ii) ф = 300, iii) ф = 450,with Pr = 0.026 for uniform 

heating of bottom wall. Here heat transfer rates are discussed for Ra = 107. It is observed 

that heat transfer rates is very high at corners and it reduce the heat transfer rates toward 

the middle of bottom wall as the comparison of temperature contours is minimum at the 

center of wall irrespective of фs with Pr = 0.026. 

Figure 5.24 show the effects for various inclination angles when Ra = 103 and Pr = 0.7 in 

presence of uniform heating of bottom walls. Here it is seen that the value of heat transfer 

rates increases as Pr increases. It is also interesting to observe that the heat transfer rates 

(Nub) for ф = 300, and ф = 450 are almost identical except ф = 00. It is also observed that 

thermal gradient is minimum at the center of bottom wall as seen from dispersed isotherm 

contours at the center of the wall for irrespective of фs. 

Figure 5.25 – 5.27 exemplify that similar effects of various inclination angles ф = 450, 300, 

00 for Ra = 104,105,107 with Pr = 0.7 in presence of uniform bottom heating. Here we also 

see that, in case of uniform heating the heat transfer rate of left wall is very high at the top 

edge of left wall is very high and heat transfer rate is almost uniform near the bottom edge 

of hot vertical wall. As Ra increases then the magnitudes of heat transfer rates increases. It 
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is seen that the thermal gradient is minimum at the center of bottom wall for dispersed 

isothermal contour for irrespective of ф. The larger heat transfer rate for ф = 00 occurs due 

to highly compressed isotherms as seen figure 5.12a-c to figure 5.15a-c. Here it is also 

seen that the heat transfer rates for ф = 300 and 450 are almost same except ф = 00. But at 

larger Ra = 107 it is experiential that the oscillation of local heat transfer rates occur due to 

presence of secondary circulations which result of isotherm contours at various places of 

bottom wall of uniform heating. 

Fig 5.28 – 5.31 illustrate that local heat transfer rate (Nub) vs distance for various 

inclination tilt angles i.e. for i) ф = 00 ,ii) ф = 300, iii) ф = 450 when Pr = 1000 and for 

different Rayleigh numbers in presence of uniform heating of bottom wall. From figure 

5.28, it is seen that heat transfer rates (Nub) are almost identical for ф = 300 , 450whereas ф 

= 00 are larger. The larger heat transfer rates (Nub) are compressed due to strong 

circulations. The similar effects is shown in figure 5.29 – 5.31.But it is that when Ra 

increases then the magnitudes of local heat transfer rates (Nub) increases. As Ra increases 

then the strength of circulations is increased and consequently isotherm lines are 

compressed towards the hot wall. Hence the gradient increases near the wall. It is also seen 

the heat transfer rate is maximum near the edge of side wall and minimum near the center 

of bottom wall (See figure 5.28 – 5.31).   

Figure 5.32 represent local heat transfer rates vs distance for different Rayleigh numbers 

i.e. for Ra = 103 - 107 when Pr = 0.026 and ф = 00 (square cavity).Here it is demonstrate 

that heat transfer rates are almost same for Ra = 103 – 105 except Ra =107. When Ra = 107 

the local heat transfer rates (Nub) is larger and isotherms are uniformly distributed 

throughout the domain except near the center of bottom wall  

Figure 5.33 – 5.34 show the similar effects of local hea transfer rates (Nub) for different 

Rayleigh numbers with ф = 00 and Pr = 0.7, 1000 respectively. Here it is shown that when 

Pr increases from 0.026 to 0.7 (see figure 5.33) then the magnitudes of heat transfer rates 

(Nub) increases. It is also happen when Pr increase to 1000 (see figure 5.34). At higher Pr 

(Pr = 0.7 - 1000) the isotherms near the center of bottom wall are highly compressed due 

to strong circulations. 

Figure 5.35 – 5.37 illustrates the same effects of local heat transfer rates vs distance for 

different Ra with ф = 300 and Pr = 0.026 – 1000 respectively. Here we see that hat transfer 
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rate are almost same (figure 5.35) for Ra = 103 – 105and is more larger for Ra = 107 when 

Pr = 0.026. When Pr increases (see figure 5.36 and 5.37) then the magnitudes of local heat 

transfer rates is also increased. 

Figure 5.38 – 5.40 exemplify that the effects of local heat transfer rates  for various Ra 

when ф = 450 and Pr = 0.026 – 1000 is considered. Figure 5.38 display that the effects of 

local heat transfer rates (Nub) are identical for Ra = 103 and 104with Pr = 0.026. As Ra 

increases then the heat transfer rates increases. When Pr [Pr = 0.7] increases (figure 5.39) 

then it is seen that the magnitudes of heat transfer rates increases. Here we also see that 

local Nusselt numbers have wavy distribution for Pr = 0.7. This is due to strong primary 

circulations. When Pr also increases (Pr = 1000 and see figure 5.40) then it is shown that 

the heat transfer rates are not almost identical for different Ra. As Ra increases then the 

strength of circulations is increased and local heat transfer rate (Nub) is also larger. Here 

also we see that local Nusselt numbers have also more wavy distributions (figure 5.40) for 

Pr = 1000. It is interesting to note that local Nusselt number has a high value for Pr = 1000 

due to large temperature gradient resulting increased intensity of circulations for uniform 

hating case of bottom wall.  

Figure 5.41 – 5.44 show the effect of local heat transfer rates (Nus) vs distance for various 

inclination tilt angles i.e. for ф = 00, 300, 450 when Ra = 103 and Pr = 0.026for uniform 

heating of side wall. It is observed that local heat transfer rate is maximum at the bottom 

edge of side wall and thereafter decreases sharply upto a point which is very near to the 

bottom edge. It is seen that Nus increase upto a point near to the top wall and also 

decreases with distance near to the bottom wall. The boundary layer starts to form at the 

bottom edge of the side wall and the boundary layer thickness is quite large near the 

bottom wall for all фs. Due to large intensity of convection at Ra = 103 the thickness of the 

boundary layers are small at the middle portions of side walls and is found to be larger 

near the top portion. But also figure 5.42-5.43 shows the similar effects of local heat 

transfer rates (Nus) with distance for same Pr and different Ra respectively. As Ra 

increases then the magnitudes of local heat transfer rates become smaller and maximum 

heat transfer occur near the top portion. It is also seen from figure 5.44 that the magnitude 

of heat transfer rate becomes quite smaller due to dominant heat conduction mode. It may 

be mentioned that the larger degree of compression of isotherms for uniform heating case 

results in larger and Nus is quite large near to the bottom wall.  
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Figure 5.20: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Ra = 103  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 

 
 

 
 

Figure 5.21: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Ra = 104  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 
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Figure 5.22: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Ra = 105  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 

 
 

 
 
 

Figure 5.23: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Ra = 107  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 
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Figure 5.24: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Ra = 103  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 

 

 
 

 
Figure 5.25: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Ra = 104  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 
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Figure 5.26: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Ra = 105  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 

 
 

 
 

 
 

Figure 5.27: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Ra = 107  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 
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Figure 5.28: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Ra = 103  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 

 

 
 
 

Figure 5.29: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Ra = 104  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 
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Figure 5.30: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Ra = 105  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 

 
 

 
 
 

Figure 5.31: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Ra = 107  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of bottom 
walls. 
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Figure 5.32: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Φ = 0o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of uniform heating 
of bottom walls. 

 
 

 
 
 

Figure 5.33: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Φ = 0o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of uniform heating 
of bottom walls. 
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Figure 5.34: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Φ = 0o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of uniform heating 
of bottom walls. 

 
 

 
 
 

Figure 5.35: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Φ = 30o and for various Rayleigh numbers (a) Ra = 103   
(b) Ra = 104 (c) Ra = 105 (d) Ra = 107 in presence of uniform heating of 
bottom walls. 
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Figure 5.36: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Φ = 30o and for various Rayleigh numbers (a) Ra = 103   
(b) Ra = 104 (c) Ra = 105 (d) Ra = 107 in presence of uniform heating of 
bottom walls. 

 
 

 
 
 

Figure 5.37: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Φ = 30o and for various Rayleigh numbers (a) Ra = 103   
(b) Ra = 104 (c) Ra = 105 (d) Ra = 107 in presence of uniform heating of 
bottom walls. 
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Figure 5.38: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Φ = 45o and for various Rayleigh numbers (a) Ra = 103   
(b) Ra = 104 (c) Ra = 105 (d) Ra = 107 in presence of uniform heating of 
bottom walls. 

 
 

 
 
 

Figure 5.39: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Φ = 45o and for various Rayleigh numbers (a) Ra = 103   
(b) Ra = 104 (c) Ra = 105 (d) Ra = 107 in presence of uniform heating of 
bottom walls. 
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Figure 5.40: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Φ = 45o and for various Rayleigh numbers (a) Ra = 103   
(b) Ra = 104 (c) Ra = 105 (d) Ra = 107 in presence of uniform heating of 
bottom walls. 

 
 
 

 
 
 

Figure 5.41: Variations of local Nusselt numbers (Nus) with distance 
for Pr = 0.026, Ra = 103  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of side walls. 
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Figure 5.42: Variations of local Nusselt numbers (Nus) with distance 
for Pr = 0.026, Ra = 104  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of side walls. 

 
 
 

 
 
 

Figure 5.43: Variations of local Nusselt numbers (Nus) with distance 
for Pr = 0.026, Ra = 105  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of side walls. 
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Figure 5.44: Variations of local Nusselt numbers (Nus) with distance 
for Pr = 0.026, Ra = 107  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of uniform heating of side walls. 

 
5.4.3   Heat Transfer Rates: Average Nusselt Number vs Rayleigh 

Number for different Prandtl Number, and inclination angles in 
case of uniform heating  

 

The overall effects upon the heat transfer rates are displayed in figure 5.45-5.47 and 5.48-
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is larges for uniform heating case whereas for Φ = 30o and 45o heat transfer rates are 

identical. It is also seen that Nus is largest near the bottom corner of side walls for Φ = 0o. 

At larges Pr (Pr= 1000) of uniform bottom heating it is seen that as Ra increase from 103 

to 106, then average heat transfer rates (Nub) increases. After crossing Ra = 106 then it is 

also seen average heat transfer rates are decreasing. After that when Ra goes to 107 then 

average heat transfer rate is also increasing because of highly viscous of Pr. Figure 5.48-

5.50 show the similar effects of average Nusselt number with uniform heating of side 

walls. Here it is interesting to note that the heat transfer rates (Nuav)of side wall is less than 

uniform heating of bottom wall and it effects only for highly viscous of Prandtl number. 

Besides this, the average Nusselt number with Rayleigh number are also shown in table 

(5.6 – 5.8) and table (5.9 – 5.11) for uniform heating of bottom wall and side walls 

respectively. 

 
Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 5.685279 4.462485 3.892755 

104 5.6854 4.462547 3.892687 

105 5.686727 4.463427 3.892576 

106 5.713755 4.511001 3.963368 

107 7.865817 7.490336 7.380522 
 

Table 5.6: Average Nusselt Number vs Rayleigh number for uniform heating of 
bottom wall with Pr = 0.026 

 
Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 5.685321 4.46249 3.892641 

104 5.686197 4.463856 3.893894 

105 5.753017 4.666547 4.2141 

106 8.796366 8.230399 8.011008 

107 15.497432 14.561562 12.946846 
 

Table 5.7: Average Nusselt Number vs Rayleigh number for uniform heating of 
bottom wall with Pr = 0.7 
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Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 5.685541 4.463759 3.894383 

104 5.720275 4.685459 4.195594 

105 7.502485 6.77423 6.38686 

106 11.336868 10.787012 10.630463 

107 18.04662 17.318061 16.436009 
 

Table 5.8: Average Nusselt Number vs Rayleigh number for uniform heating of 
bottom wall with Pr = 1000 
 
 

 
Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 2.86001 2.239547 1.968798 

104 2.85994 2.23954 1.968841 

105 2.859301 2.239628 1.969558 

106 2.859966 2.259666 2.013594 

107 3.867217 3.743934 3.821934 
 

Table 5.9: Average Nusselt Number vs Rayleigh number for uniform heating of side 
wall with Pr = 0.026 
 
 

 
Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 2.859967 2.239549 1.96883 

104 2.859702 2.240199 1.970905 

105 2.88603 2.341693 2.148533 

106 4.39259 4.125596 4.102104 

107 7.742302 7.407918 6.794414 
 

Table 5.10: Average Nusselt Number vs Rayleigh number for uniform heating of side  
wall with Pr = 0.7 
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Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 2.860026 2.240455 1.970969 

104 2.876289 2.35496 2.137091 

105 3.76617 3.400206 3.253002 

106 5.668432 5.358906 5.358472 

107 9.092274 9.06801 8.918795 
 

Table 5.11: Average Nusselt Number vs Rayleigh number for uniform heating of side 
wall with Pr = 1000 
 

 
 

Figure 5.45: Average Nusselt Number vs Rayleigh number for uniform 
heating of bottom wall with Pr = 0.026 

 
 

Figure 5.46: Average Nusselt Number vs Rayleigh number for uniform 
heating of bottom wall with Pr = 0.7 
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Figure 5.47: Average Nusselt Number vs Rayleigh number for uniform 
heating of bottom wall with Pr = 1000 

 
 

Figure 5.48: Average Nusselt Number vs Rayleigh number for uniform 
heating of side wall with Pr = 0.026 

 
Figure 5.49: Average Nusselt Number vs Rayleigh number for uniform 
heating of side wall with Pr = 0.7 
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Figure 5.50: Average Nusselt Number vs Rayleigh number for uniform 
heating of side wall with Pr = 1000 

 

5.5  Chapter Summary 
Two-dimensional laminar steady state MHD free or natural convection within trapezoidal 

cavity for uniformly heated of bottom wall has been analyzed with heatlines concept. A 

finite element method for steady-state incompressible MHD free convection flow is 

presented. The finite element equations were derived from the governing flow equations 

that consist of the conservation of mass, momentum, and energy equations. The derived 

finite element equations are nonlinear requiring an iterative technique solver. The Newton-

Raphson iteration method has applied to solve these nonlinear equations for solutions of 

the nodal velocity component, temperature, and pressure by considering Prandtl numbers 

of 0.026, 0.7, 1000, Hartman numbers of 50 and also Rayleigh numbers of 103 to 107. The 

results show that,  

 
 The heat transfer rate is maximum near the edge of the wall and the rate is 

minimum near the center of the wall irrespective of all angles (ф) for uniform 

heating of the bottom wallfor Rayleigh number 103 to 107 gradually. 

 

 Heat transfer depends on Prandtl number and heat transfer rate is maximum near 

the edge of the wall and the rate is minimum near the center of the wall 

irrespective of all angles (ф) for uniform heating of the bottom wall.  
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 Thermal boundary layer thickness is thinner for increasing of Rayleigh number due 

to upsurge of convective heat transfer rate.  

 Local Nusselt number for uniform bottom heating is largest at the bottom edge of 

the side wall, and thereafter that decreases sharply upto a point which is very near 

to the bottom edge.  

 
 The heat transfer rate average Nusselt Number, Nuav increases with the increase of 

Rayleigh number, Ra, for uniform heating of bottom wall.  

 The heat transfer rate average Nusselt Number, Nuav increases with the increase of 

Rayleigh number, Ra, for uniform heating of side wall.  

 Various vortices entering into the flow field and secondary vortex at the vicinity 

boundary wall and bottom wall of the cavity is seen in the streamlines. 
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CHAPTER 6 

MHD FREE CONVECTION WITHIN TRAPEZOIDAL 
CAVITY WITH NON-UNIFORMLY HEATED 
BOTTOM WALL 

A two-dimensional trapezoidal cavity of height L with the left wall inclined at an angle ф 
=  450, 300, 00 with Y axis was considered for non-uniform heating of bottom wall as 
shown in a schematic diagram of figure 4.1 in section 4.2 of chapter 4. In physical system, 
dimensional governing equations (4.1 – 4.4) and non-dimensional governing equations 
(4.5 -4.8) are solved in section 4.3.1 and 4.3.4 respectively in previous chapter 4. For 
boundary conditions, left wall and right wall (i.e. side walls) are subjected to cold 
temperature (Tc) and the top wall is thermal insulated and also the bottom wall is heated 
non-uniformly as shown in section 4.3.2 and 4.3.5 (case –II : non-uniform heating). 
Numerical technique of finite element formulation has also been discussed in section 
4.4.1.In this chapter grid independence test, code validation, comparisons and results have 
been discussed.  

6.1   Grid Independence Test for Non-Uniform Heating 
Test for the accuracy of grid fineness has been carried out to find out the optimum grid 
number. 

 

Figure 6.1:  Convergence of average Nusselt number with grid 
refinement for Pr = 0.7, Ha = 50,  ф = 450 and Ra = 107 in presence of 
non-uniform heating. 
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In order to obtain grid independent solution, a grid refinement study is performed for a 

trapezoidal cavity with Pr = 0.7, phi =  450 and Ra = 107. Figure 5.2 shows the 

convergence of the average Nusselt number, Nuav at the heated surface with grid 

refinement. It is observed that grid independence is achieved with 3456 elements where 

there is insignificant change in Nu with further increase of mesh elements. Six different 

non-uniform grids with the following number of nodes and elements were considered for 

the grid refinement tests: 5858 nodes, 864 elements; 6849  nodes, 1010 elements; 8098 

nodes, 1200 elements; 12672 nodes, 1894 elements; 16605 nodes, 2505 elements; 20781 

nodes, 3127 elements, 22944 nodes, 3456 elements, 23339 nodes, 3513 elements, 25053 

nodes, 3767 elements, 31479 nodes, 4301 elements, 43505 nodes, 6609 elements . From 

these values, 22944 nodes, 3456 elements can be chosen throughout the simulation to 

optimize the relation between the accuracy required and the computing time. 

 
Table 6.1: Grid Sensitivity Check at Pr = 0.7, Phi =450, Ha=50 and Ra = 107. 
 
 

6.2   Code Validation 
For the validation of the code, a trapezoidal cavity without MHD is considered with a fluid 

by finite element weighted residual method whose left wall and right wall (i.e. side walls) 

are subjected to cold Tc temperature, bottom wall is subjected to non-uniformly hot Th 

temperature while the top wall is kept insulated. Average Nusselt number is calculated for 

three different Rayleigh numbers (Ra = 103, 104 and 105) and three different angles ф =  

450, 300, 00 , while the prandtl number is fixed i.e. Pr = 0.7 for non-uniform heating of 

bottom wall. The results were compared with those reported by Basak et al. (March 2009). 

In Table 6.2, for code validation, average Nusselt numbers is presented for different 

Rayleigh numbers of non-uniform heating of bottom with the above fixed Prandtl number. 

For code validation, in Table 6.2 for non-uniform bottom heating 6402 nodes and 952 

Nodes 
 

(lements) 

5858 
 

(864) 

6849 
 

(1010) 

8098 
 

(1200) 

12672 
 

(1894) 

16605 
 

(2505) 

20781 
 

(3127) 

22944 
 

(3456) 

25053 
 

(3767) 

31479 
 

(4301) 

43505 
 

(6609) 

Nu 11.54703 11.782359 11.94927611.9675412.08048 12.66089 12.8922 12.8917 12.8233 12.6724 

Time (s) 8.047 8.781 9.172 12.719 18.703 26.203 26.75 31.968 38.594 64.75 
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elements, 2178 nodes and 314 elements, 1527 nodes and 216 elements have been used for 

ф = 00, ф = 300, ф = 450 and Ra = 105 respectively. The results of the figure (6.2 – 6.4) of 

non-uniform bottom heating were also compared with those reported by Basak et al. 

(March 2009) with streamlines, isotherms (temperature) and Heat function or total heat 

flux for Pr =0.026 and . Ra = 105. The results from the present experiment are almost same 

as Basak et.al. 

 

 
Ra 

Average Nusselt Number, ( Nuav ) 

Present work without MHD Basak et al. (2009) without MHD 

ф =  00 ф =   300 ф =  450 ф =  00 ф =  300 ф =  450 

103 4.362908 3.180613 2.883518 1.97369 1.5808 1.42156 

104 4.408955 3.39454 3.155096 2.84441 2.75579 2.87144 

105 5.839234 5.054993 4.822457 5.12784 4.84779 4.70209 

 
Table 6.2: Code validation for non-uniform heating of bottom wall with Pr = 0.7. 

 
Figure 6.2: Code validation for non- uniform bottom heating at Ra = 
105, ф = 00 with Pr = 0.026. 

 

B
as

ak
 e

t a
l.(

20
09

) W
ith

ou
t 

M
H

D
 (H

a 
= 

0)
 

Streamlines Isotherms Heatfunction 
or Heat flux 

  

Pr
es

en
t W

or
k 

 W
ith

ou
t 

M
H

D
 (H

a 
= 

0)
 

  



Chapter 6: MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall 

 104

 
Figure 6.3: Code validation for non- uniform bottom heating at Ra = 
105, ф = 300 with Pr = 0.026. 

 

 
Figure 6.4: Code validation for non- uniform bottom heating at Ra = 
105, ф = 450 with Pr = 0.026. 
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6.3   Comparisons between without and with MHD  
 
After validation of the code, a trapezoidal cavity with MHD is considered with a fluid 

whose left wall and right wall (i.e. side walls) are subjected to cold Tc temperature, bottom 

wall is subjected to uniformly hot Th temperature while the top wall is kept insulated. 

Average Nusselt number is calculated for three different Rayleigh numbers (Ra = 103, 104 

and 105) and three different angles ф = 450, 300, 00 , while the prandtl number is fixed i.e. 

Pr = 0.7 for non-uniform heating of bottom wall. The results were compared with the 

present work where magnetohydrodynamic effect is not applied. In Table 6.3, for 

comparison, average Nusselt number is presented for different Rayleigh numbers of non-

uniform heating of bottom wall with the above fixed Prandtl number. Here average 

Nusselt number of non-uniform heating of bottom wall is enhancing for different Rayleigh 

numbers. When Rayleigh numbers increase then average Nusselt number increase is seen. 

This is happening because of heat transfer. The results of the figure (6.5 – 6.7) with 

magneto-hydrodynamics (MHD) of non-uniform bottom heating for ф = 00, ф = 300, ф = 

450 and Ra = 105. were also compared with the present work with streamlines, isotherms 

(temperature) and Heat function or total heat flux where magneto-hydrodynamics (MHD) 

is not applied. Here from the present work of the figure it is seen that heat flow of non-

uniform heating more suppressed out than uniform heating for magnetic effect. 

Comparisons of the results without and with MHD of the current research work are given 

below. 

 
 

Ra 
Average Nusselt Number, ( Nuav ) 

Present work withMHD Present work without MHD 

ф =  00 ф =   300 ф =  450 ф =  00 ф =  300 ф =  450 

103 4.361568 3.506399 3.157268 4.362908 3.180613 2.883518

104 4.365658 3.51229 3.163712 4.408955 3.39454 3.155096

105 4.464063 3.729079 3.474017 5.839234 5.054993 4.822457

 

Table 6.3: Comparisons for non-uniform heating of bottom wall with Pr = 0.7. 
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Figure 6.5: Comparisons for non- uniform bottom heating at Ra = 105, 
ф = 00 with Pr = 0.026 when Ha = 0 and Ha = 50. 

 

 
Figure 6.6: Comparisons for non- uniform bottom heating at Ra = 105, 
ф = 300 with Pr = 0.026 when Ha = 0 and Ha = 50. 
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Figure 6.7: Comparisons for non- uniform bottom heating at Ra = 105, 
ф = 450 with Pr = 0.026 when Ha = 0 and Ha = 50. 
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cavity) isotherms (temperature) with θ = 0.10 - 0.20 occur symmetrically along side (left 

or right) walls and with θ ≥ 0.30 are smooth curves symmetric with respect to vertical 

symmetrical line (Fig. 6.8a). For Ra = 103, Pr = 0.026 and ф = 300 the temperature 

contours with θ = 0.10 – 0.40 occur symmetrically near the side walls of the enclosure and 

with  θ ≥ 0.50 are smooth curves symmetric with respect to central symmetrical line (Fig. 

6.8b). Again for Ra = 103, Pr = 0.026 and ф = 450 isotherms (temperature) with θ = 0.10 – 

0.50 occur symmetrically near the side walls of the enclosure and with θ ≥ 0.60 are smooth 

curves symmetric with respect to vertical symmetrical line (Fig. 6.8c).The heatlines or 

total heat flux or heat function are shown in panels of fig 6.8a-c. The heatlines illustrate 

similar feature that were observed for uniform heating cases. 

It is interesting to note that at the bottom corner point ф = 00(square cavity) is larger than 

for ф = 450 and 300. It is evident that heatlines near the bottom portion of side walls are 

more dense for ф = 450 and less dense for ф = 00(square cavity). The dense heatlines is 

also indicating enhanced rate of heat transfer from the bottom to the side walls. Therefore 

isotherms with θ = 0.05 – 0.35 are shifted for ф = 450 toward the side walls. It ios also 

observed that heat transfer at the top portion of the cavity for ф = 450 and 300 is higher 

compressed to ф = 00(square cavity) based on value of heatfunction (Π). As the heat 

transfer is quite large at the corners of bottom wall, the thermal boundary layer was found 

to develop near the bottom edges and thickness of boundary layer is larger at the top 

portion of the cold wall signifying less heat transfer to the top portion. 

Figure 6.9 and 6.10 point up that the magnitudes of streamfunction are smaller for Ra = 

104, 105 when Pr = 0.026 and isotherms (temperature)  with θ = 0.10 – 0.20, θ = 0.10 – 

0.40,  θ = 0.10 – 0.40  occur symmetrically near the side walls of the enclosure and with  θ 

≥ 0.30, θ ≥ 0.50, θ ≥ 0.65  are smooth curves symmetric with respect to central 

symmetrical line for Ra = 104, 105
, Pr = 0.026 and ф = 450, 300, 00(square cavity) ( Fig 6.9, 

6.10a-c)  and heatlines enhanced the rate of heat transfer from the bottom to side walls for 

Ra = 104, 105
, Pr = 0.026.In contrast the non-uniform heating removes the singularity at 

the edges of bottom wall and provides a smooth temperature distribution in the entire 

enclosure. For Ra = 104, 105 the circulation pattern is qualitatively similar to the uniform 

heating case with the identical situation. However to this case isotherms and heatlines are 

more compressed near the bottom wall of the enclosure in case of non-uniform heating. 
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Figure 6.11 illustrate that the magnitudes of streamfunction at larger Ra = 107 with Pr = 

0.026.It is interesting to detect that the stratification zone of temperature at the center 

vertical line near the bottom wall for Ra = 107 is suppressed whereas stratification zone of 

temperature is larger for Ra = 103 due to increased convection. It is also noted that 

stratification zone of temperature at bottom wall is thicker for ф = 00(square cavity) due to 

less intense circulation near the top portion of the cavity. Isotherms (temperature)  with θ 

= 0.10 – 0.1.20, θ = 0.10 – 1.20,  θ = 0.10 – 1.10  occur symmetrically near the side walls 

of the enclosure and with  θ ≥ 1.30, θ ≥ 1.30, θ ≥ 1.20  are smooth curves symmetric with 

respect to central symmetrical line for Ra = 107
, Pr = 0.026 and ф = 450, 300, 00(square 

cavity) respectively. Heatlines indicate the heat transfer from the hot wall to cold side 

walls and uniform heating flow circulation due to fluid circulation cells. Due to non-

uniform heating of bottom wall the heating rate near to corners of the wall is generally 

lower and that induces less buoyancy effect resulting in less thermal gradient throughout 

the domain. Heatlines near the top portion of the side walls are oscillatory due to 

secondary circulation for ф = 450 and 300
. It is also observed that heatlines are quite dense 

near the central regime for ф = 450 and 300 and implies enhance thermal mixing near the 

central to top portion of the cavity. This is due to the fact that strong primary circulations 

occur near to the corners to the bottom wall as like as uniform heating case.  

Figure 6.12 – 6.15 represent that the magnitudes of streamfunction  are circular or 

elliptical near the core but the streamlines near the wall is almost parallel to wall 

exhibiting large intensity of flow for Pr = 0.7 and Ra = 103 – 107. Also for Pr = 0.7 and Ra 

= 103 isotherms with θ = 0.10 – 0.20, θ = 0.10 – 0.40,  θ = 0.10 – 0.50 and  also θ = 0.10 – 

0.20, θ = 0.10 – 0.50,  θ = 0.10 – 0.60 for Pr = 0.7 and Ra = 104 and also θ = 0.10 – 0.50, θ 

= 0.10 – 1.00,  θ = 0.10 – 1.00 for 0.7 and Ra = 105 and also θ = 0.10 – 0.90, θ = 0.10 – 

0.80,  θ = 0.10 – 0.80 for 0.7 and Ra = 107 occur symmetrically near the side walls of the 

enclosure and θ ≥ 0.30, θ ≥ 0.50, θ ≥ 0.60 and θ ≥ 0.30, θ ≥ 0.60, θ ≥ 0.70 and also θ ≥ 

0.60, θ ≥ 1.10, θ ≥ 1.10 and θ ≥ 1.00, θ ≥ 0.90, θ ≥ 0.90  are smooth curves symmetric with 

respect to central symmetrical line for Ra = 103 - 107
, Pr = 0.7 and ф = 450, 300, 00(square 

cavity) respectively. It is also fascinating that multiple correlations are absent for Pr = 0.7 

and Ra = 107. Due to enhanced flow circulations the isotherms are highly compressed near 

the side walls except near the bottom wall especially for ф = 450 and 300.As Ra increases 

for Pr = 0.7 the the circulations near the central regime are stronger and consequently the 

bottom portion contours start getting stretched toward the central regime of the bottom 
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wall. Results indicate that the strength of circulations is more for non-uniform heating case 

than uniform heating case. 

Figure 6.16 – 6.19 show streamline. Isotherms (temperature) and heatlines for Ra = 103 - 

107
, Pr =1000 and ф = 450, 300, 00(square cavity) respectively. Also for Pr = 1000 and Ra 

= 103 isotherms with θ = 0.10 – 0.20, θ = 0.10 – 0.50,  θ = 0.10 – 0.60 and  also θ = 0.10 – 

0.40, θ = 0.10 – 0.90,  θ = 0.10 – 1.00 for Pr = 1000 and Ra = 104 and also θ = 0.10 – 0.90, 

θ = 0.10 – 1.00,  θ = 0.10 – 1.00 for 1000 and Ra = 105 and also θ = 0.10 – 0.80, θ = 0.10 – 

0.80,  θ = 0.10 – 0.90 for 1000 and Ra = 107 occur symmetrically near the side walls of the 

enclosure and θ ≥ 0.30, θ ≥ 0.60, θ ≥ 0.70 and θ ≥ 0.50, θ ≥ 1.00, θ ≥ 1.10 and also θ ≥ 

1.00, θ ≥ 1.10, θ ≥ 1.10 and θ ≥ 0.90, θ ≥ 0.90, θ ≥ 1.00  are smooth curves symmetric with 

respect to central symmetrical line for Ra = 103 - 107
, Pr = 0.7 and ф = 450, 300, 00(square 

cavity) respectively. As Pr incresses from Pr = 0.7 to 1000 the the flow intensity is found 

to be enhanced. Here it is seen that the magnitudes of streamlines is maximum and its 

shape is also circular or elliptical. It is also indicate that the values of stream functions of 

non-uniform heating case are almost similar to uniform heating cases due to the lower heat 

from bottom wall and the less intense heating effects near the central regime are attributed 

by less-dense heatline due to non-uniform heating effects. 
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Figure 6.8: Stream function (Ψ), temperature (θ), heat function or total 
heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with Pr = 
0.026, Ha = 50 and Ra = 103 (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.9: Stream function(Ψ), temperature(θ), heat function or total 
heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with Pr = 
0.026, Ha = 50 and Ra = 104 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.10: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 0.026, Ha = 50 and Ra = 105 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.11: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 0.026, Ha = 50 and Ra = 107(a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.12: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 0.7, Ha = 50 and Ra = 103 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 

 
 
 
 
 

Ψ

θ

П

9.99 7.39

1.21

0.36 1.09
1.23

2.33

5.53 5.11

1.34
1.85

0.35

0.
10

0.20

0.30

0.60
0.40

0.9
0

0.701.60

0.40 0.
10

0.50

0.60

0.80

1.500.
80

0.60

0.10 0.50 0.40

0.60

0.90

1.30

1.70

0.200.30

0.01
0.03

0.02

0.04

0.10

0.02
0.07

0.05
0.12 0.05

0.09

0.08



Chapter 6: MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall 

 116

 
 
 

 

 

 
 

                          a   b    c   
 
 

Figure 6.13: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 0.7, Ha = 50 and Ra = 104 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.14: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 0.7, Ha = 50 and Ra = 105 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.15: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 0.7, Ha = 50 and Ra = 107 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.16: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 1000, Ha = 50 and Ra = 103 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.17: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 1000, Ha = 50 and Ra = 104 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.18: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 1000, Ha = 50 and Ra = 105 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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Figure 6.19: Stream function (Ψ), temperature (θ), heat function or 
total heat flux(П) for non-uniform bottom heating θ(X,0) = sin(πx) with 
Pr = 1000, Ha = 50 and Ra = 107 (a) Φ = 0o (b)  Φ  = 30o   (c) Φ = 45o 
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6.4.2   Heat Transfer Rates: Local Nusselt Number vs distance for 
various Prandtl Number, Rayleigh Number and inclination 
angles in case of non-uniform heating 

 
Figure 6.20 show the effects of local heat transfer rates (Nub) for various inclinations of 

angles i.e. for i) ф = 00, ii) ф = 300, iii) ф = 450, for non-uniform of bottom wall with Pr = 

0.026. Here the hat transfer rates are shown for Ra = 103. It is observed that heat transfer 

rate is maximum near edge of the wall and the rate is step down from left side and then it 

is straightly moving and then also it goes up to right side. The heat transfer rate is 

changing for the effect of Grashof number because Prandtl number is fixed. Here the heat 

transfer rates are almost same for ф = 300, 450 except ф = 00 [square cavity].Figure 6.21 

and figure 6.22 also present similar effects of local Nusselt number with distance for 

various inclination tilt angles for Pr = 0.026 in case of non-uniform heating. But here the 

values of heat transfer rate increase a little and the heat transfer rates are shown for Ra = 

103,104. 

Figure 6.23 detects the variation of local Nusselt number with distance for various 

inclination tilt angles i.e. i) ф = 00 ,ii) ф = 300, iii) ф = 450,with Pr = 0.026 for non-uniform 

heating of bottom wall. Here heat transfer rates are discussed for Ra = 107. It is pragmatic 

that heat transfer rates is very high at corners and it reduce the heat transfer rates toward 

the middle of bottom wall as the comparison of temperature contours is minimum at the 

center of wall irrespective of фs with Pr = 0.026. Figure 6.24 explain the effects for 

various inclination angles when Ra = 103 and Pr = 0.7 in presence of non-uniform heating 

of bottom walls. Here it is seen that the value of heat transfer rates increases as Pr 

increases. It is also interesting to observe that the heat transfer rates (Nub) for ф = 300, and 

ф = 450 are almost alike except ф = 00. It is also observed that thermal gradient is 

minimum at the center of bottom wall as seen from dispersed isotherm contours at the 

center of the wall for irrespective of фs. 

Figure 6.25 – 6.27 epitomize that similar effects of various inclination angles ф = 450, 300, 

00 for Ra = 104,105,107 with Pr = 0.7 in presence of non-uniform bottom heating. Here we 

also see that, the heat transfer rate of left wall is very high at the top edge of left wall is 

very high and heat transfer rate is almost  not uniform near the bottom edge of hot vertical 

wall. As Ra increases then the magnitudes of heat transfer rates increases. It is seen that 

the thermal gradient is minimum at the center of bottom wall for dispersed isothermal 
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contour for irrespective of ф. The larger heat transfer rate for ф = 00 occurs due to highly 

compressed isotherms as seen figure 6.12a-c to figure 6.15a-c. Here it is also seen that the 

heat transfer rates for ф = 300 and 450 are almost same except ф = 00. But at larger Ra = 

107 it is experiential that the oscillation of local heat transfer rates occur due to presence of 

secondary circulations which result of isotherm contours at various places of bottom wall 

of non-uniform heating. 

Fig 6.28 – 6.31 illustrate that local heat transfer rate (Nub) vs distance for various 

inclination tilt angles i.e. for i) ф = 00 ,ii) ф = 300, iii) ф = 450 when Pr = 1000 and for 

different Rayleigh numbers in presence of non-uniform heating of bottom wall. From 

figure 6.28, it is seen that heat transfer rates (Nub) are almost identical for ф = 300, 

450whereas ф = 00 are larger. The larger heat transfer rates (Nub) are compressed due to 

strong circulations. The similar effects is shown in figure 6.29 – 6.31.But it is clear that 

when Ra increases then the magnitudes of local heat transfer rates (Nub) increases. As Ra 

increases then the strength of circulations is increased and consequently isotherm lines are 

compressed towards the hot wall. Hence the gradient increases near the wall. It is also seen 

the heat transfer rate is maximum near the edge of side wall and minimum near the center 

of bottom wall (See figure 6.28 – 6.31).   

Figure 6.32 indicate local heat transfer rates vs distance for different Rayleigh numbers i.e. 

for Ra = 103 - 107 when Pr = 0.026 and ф = 00 (square cavity).Here it is demonstrate that 

heat transfer rates are almost same for Ra = 103 – 105 except Ra =107. When Ra = 107 the 

local heat transfer rates (Nub) is larger and isotherms are distributed throughout the 

domain except near the center of bottom wall. Figure 6.33 – 6.34 show the similar effects 

of local heat transfer rates (Nub) for different Rayleigh numbers with ф = 00 and Pr = 0.7, 

1000 respectively. Here it is shown that when Pr increases from 0.026 to 0.7 (see figure 

6.33) then the magnitudes of heat transfer rates (Nub) increases. It is also happen when Pr 

increase to 1000 (see figure 6.34). At higher Pr (Pr = 0.7 - 1000) the isotherms near the 

center of bottom wall are highly compressed due to strong circulations. 

Figure 6.35 – 6.37 represents the same effects of local heat transfer rates vs distance for 

different Ra with ф = 300 and Pr = 0.026 – 1000 respectively. Here we see that hat transfer 

rate are almost same (figure 6.35) for Ra = 103 – 105 and is more large for Ra = 107 when 

Pr = 0.026. When Pr increases (see figure 6.36 and 6.37) then the magnitudes of local heat 

transfer rates is also increased. 
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Figure 6.38 – 6.40 exemplify that the effects of local heat transfer rates for various Ra 

when ф = 450 and Pr = 0.026 – 1000 is considered. Figure 6.38 display that the effects of 

local heat transfer rates (Nub) are identical for Ra = 103 and 104with Pr = 0.026. As Ra 

increases then the heat transfer rates increases. When Pr [Pr = 0.7] increases (figure 6.39) 

then it is seen that the magnitudes of heat transfer rates increases. Here we also see that 

local Nusselt numbers have wavy distribution for Pr = 0.7. This is due to strong primary 

circulations. When Pr also increases (Pr = 1000 and see figure 6.40) then it is shown that 

the heat transfer rates are not almost identical for different Ra. As Ra increases then the 

strength of circulations is increased and local heat transfer rate (Nub) is also larger. Here 

also we see that local Nusselt numbers have also more wavy distributions (figure 6.40) for 

Pr = 1000. It is interesting to note that local Nusselt number has a high value for Pr = 1000 

due to large temperature gradient resulting increased intensity of circulations for non-

uniform hating case of bottom wall.  

Figure 6.41 – 6.44 also show the effect of local heat transfer rates (Nus) vs distance for 

various inclination tilt angles i.e. for ф = 00, 300, 450 when Ra = 103 and Pr = 0.026 for 

non-uniform heating of side wall. It is observed that local heat transfer rate is maximum at 

the bottom edge of side wall and thereafter decreases sharply upto a point which is very 

near to the bottom edge(see figure 6.41). It is seen that Nus increase upto a point near to 

the top wall and also decreases with distance near to the bottom wall. The boundary layer 

starts to form at the bottom edge of the side wall and the boundary layer thickness is quite 

large near the bottom wall for all фs. Due to large intensity of convection at Ra = 103 the 

thickness of the boundary layers are small at the middle portions of side walls and is found 

to be larger near the top portion. But also figure 6.42-6.43 shows the similar effects of 

local heat transfer rates (Nus) with distance for same Pr and different Ra respectively. As 

Ra increases then the magnitudes of local heat transfer rates become smaller and 

maximum heat transfer occur near the top portion. It is also seen from figure 6.44 that the 

magnitude of heat transfer rate becomes quite smaller due to dominant heat conduction 

mode.  
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Figure 6.20: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Ra = 103  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 

 
 
 

 
 

Figure 6.21: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Ra = 104  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 
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Figure 6.22: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Ra = 105  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 

 
 
 

 
 

Figure 6.23: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Ra = 107  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 
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Figure 6.24: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Ra = 103  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 

 
 
 

 
 

Figure 6.25: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Ra = 104  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 
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Figure 6.26: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Ra = 105  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 

 
 
 

 
 

Figure 6.27: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Ra = 107  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 
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Figure 6.28: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Ra = 103  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 

 
 
 

 
 

Figure 6.29: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Ra = 104  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 
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Figure 6.30: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Ra = 105  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 

 
 
 

 
 

Figure 6.31: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Ra = 107  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 
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Figure 6.32: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Φ = 0o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 

 
 
 

 
 

Figure 6.33: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Φ = 0o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 
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Figure 6.34: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Φ = 0o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 

 
 
 

 
 

Figure 6.35: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Φ = 30o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 
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Figure 6.36: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Φ = 30o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 

 
 
 

 
 

Figure 6.37: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Φ = 30o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 
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Figure 6.38: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.026, Φ = 45o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 

 
 
 

 
 

Figure 6.39: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 0.7, Φ = 45o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 
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Figure 6.40: Variations of local Nusselt numbers (Nub) with distance 
for Pr = 1000, Φ = 45o  and for various Rayleigh numbers (a) Ra = 103   
(b)  Ra = 104  (c) Ra = 105  (d) Ra = 107  in presence of non-uniform 
heating of bottom walls. 

 
 
 

 
 

Figure 6.41: Variations of local Nusselt numbers (Nus) with distance 
for Pr = 0.026, Ra = 103  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of side 
walls. 

 
 
 

Distance, X

Lo
ca

lN
us

se
lt

N
um

be
r,

N
u

b

0 0.1 0.2 0.3 0.4 0.5

10
20
30
40
50
60
70
80
90

100 Phi = 45, Ra = 1e3
Phi = 45, Ra = 1e4
Phi = 45, Ra = 1e5
Phi = 45, Ra = 1e7

Distance, X

Lo
ca

lN
us

se
lt

N
um

be
r,

N
u

s

0 0.1 0.2 0.3 0.4 0.5 0.6
-5
0
5

10
15
20
25
30
35
40
45
50
55

Phi = 0, Ra = 1e3
Phi = 30, Ra = 1e3
Phi = 45, Ra = 1e3



Chapter 6: MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall 

 137

 
 

 
 
 

Figure 6.42: Variations of local Nusselt numbers (Nus) with distance 
for Pr = 0.026, Ra = 104  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of side 
walls. 

 
 
 

 
 
 

Figure 6.43: Variations of local Nusselt numbers (Nus) with distance 
for Pr = 0.026, Ra = 105  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of side 
walls. 

 
 

Distance, X

Lo
ca

lN
us

se
lt

N
um

be
r,

N
u

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-5
0
5

10
15
20
25
30
35
40
45
50
55 Phi = 0, Ra = 1e4

Phi = 30, Ra = 1e4
Phi = 45, Ra = 1e4

Distance, X

Lo
ca

lN
us

se
lt

N
um

be
r,

N
u

s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-5
0
5

10
15
20
25
30
35
40
45
50
55 Phi = 0, Ra = 1e5

Phi = 30, Ra = 1e5
Phi = 45, Ra = 1e5



Chapter 6: MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall 

 138

 
 

Figure 6.44: Variations of local Nusselt numbers (Nus) with distance 
for Pr = 0.026, Ra = 107  and for various inclination of angles (a) Φ = 0o  
(b)  Φ  = 30o   (c) Φ = 45o in presence of non-uniform heating of bottom 
walls. 

 
6.4.3   Heat Transfer Rates: Average Nusselt Number vs Rayleigh 

Number for different Prandtl Number, and inclination angles in 
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The effects upon the heat transfer rates are presented in figure 6.45 – 6.47 and 6.48 – 6.50, 
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plotted vs the logarithmic Rayleigh number. Here figure 6.45 – 6.47 and figure 6.48 – 6.50 
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non-uniform heating case whereas for Φ = 30o and 45o heat transfer rates are identical. It is 

also seen that Nus is largest near the bottom corner of side walls for Φ = 0o. At larges Pr 

(Pr= 1000) of non-uniform bottom heating it is seen that as Ra increase from 103 to 106, 

then average heat transfer rates (Nub) increases. After crossing Ra = 106 then it is also seen 

average heat transfer rates are decreasing. After that when Ra goes to 107 then average 

heat transfer rate is also increasing because of highly viscous of Pr. Figure 6.48 – 6.50 

show the similar effects of average Nusselt number with non-uniform heating of side 

walls. Here it is interesting to note that the heat transfer rates (Nuav) of side wall is less 

than non-uniform heating of bottom wall and it effects only for highly viscous of Prandtl 

number. Also magnitudes of average Nusselt number of non-uniform heating is less than 

uniform heating because of less heating effects. Besides this, the average Nusselt number 

with Rayleigh number are also shown in table (6.4 – 6.6) and table (6.7 – 6.9) for non-

uniform heating of bottom wall and side walls respectively. 

 
Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 4.361202 3.505918 3.156808 

104 4.36162 3.506366 3.157198 

105 4.365935 3.511142 3.161605 

106 4.42462 3.594347 3.267077 

107 6.607187 6.452412 6.467831 
 
Table 6.4: Average Nusselt Number vs Rayleigh number for non-uniform heating 
of bottom wall with Pr = 0.026 
 

 
Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 4.361568 3.506399 3.157268 

104 4.365658 3.51229 3.163712 

105 4.464063 3.729079 3.474017 

106 7.399533 7.046409 6.97625 

107 13.37451 12.753801 11.54703 
 
Table 6.5: Average Nusselt Number vs Rayleigh number for non-uniform heating 
of bottom wall with Pr = 0.7 
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Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 4.362899 3.510216 3.162099 

104 4.408609 3.720888 3.438032 

105 6.128158 5.68537 5.47684 

106 9.797762 9.409716 9.372445 

107 15.887965 15.346189 14.772105 
 
Table 6.6: Average Nusselt Number vs Rayleigh number for non-uniform heating 
of bottom wall with Pr = 1000 
 

 
Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 2.106961 1.639905 1.441976 

104 2.107064 1.640082 1.442203 

105 2.108158 1.641997 1.444725 

106 2.126783 1.678744 1.500528 

107 3.160948 3.096726 3.144749 
 
Table 6.7: Average Nusselt Number vs Rayleigh number for non-uniform heating 
of side wall with Pr = 0.026 
 

 

 
Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 2.10711 1.640168 1.442333 

104 2.10876 1.643219 1.446786 

105 2.154179 1.755563 1.618798 

106 3.615316 3.418606 3.3888467 

107 6.597279 6.32338 5.729601 
 
Table 6.8: Average Nusselt Number vs Rayleigh number for non-uniform heating 
of side wall with Pr = 0.7 
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Ra 

Average Nusselt Number, ( Nuav ) 

ф =  00 ф =   300 ф =  450 

103 2.107811 1.642566 1.446052 

104 2.131016 1.756123 1.602623 

105 2.99983 2.749447 2.638332 

106 4.807219 4.553474 4.531588 

107 7.94031 7.857242 8.291167 
 
Table 6.9: Average Nusselt Number vs Rayleigh number for non-uniform heating 
of side wall with Pr = 1000 
 

 
 

Figure 6.45: Average Nusselt Number vs Rayleigh number for non-
uniform heating  of bottom wall with Pr = 0.026 

 

 
 

Figure 6.46: Average Nusselt Number vs Rayleigh number for non-
uniform heating of bottom wall with Pr = 0.7 
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Figure 6.47: Average Nusselt Number vs Rayleigh number for non-
uniform heating  of bottom wall with Pr = 1000 

 

 
Figure 6.48: Average Nusselt Number vs Rayleigh number for non-
uniform heating of side wall with Pr = 0.026 

 
Figure 6.49: Average Nusselt Number vs Rayleigh number for non-
uniform heating of side wall with Pr = 0.7 
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Figure 6.50: Average Nusselt Number vs Rayleigh number for non-
uniform heating of side wall with Pr = 1000 

 

6.5  Chapter Summary 
Two-dimensional laminar steady state MHD free or natural convection within trapezoidal 

cavity for non-uniformly heated of bottom wall has been analyzed with heatlines concept. 

A finite element method for steady-state incompressible MHD free or natural convection 

flow is presented. The finite element equations were derived from the governing flow 

equations that consist of the conservation of mass, momentum, and energy equations. The 

derived finite element equations are nonlinear requiring an iterative technique solver. The 

Newton-Raphson iteration method has applied to solve these nonlinear equations for 

solutions of the nodal velocity component, temperature, and pressure by considering 

Prandtl numbers of 0.026, 0.7, 1000, Hartman numbers of 50 and also Rayleigh numbers 

of 103 to 107. The results show that  

 
 The heat transfer rate is maximum near the edge of the wall and the rate is 

minimum near the center of the wall irrespective of all angles (ф) for non-uniform 

heating of the bottom wall for Rayleigh number 103 to 107 gradually. 

 

 Heat transfer depends on Prandtl number and heat transfer rate is maximum near 

the edge of the wall and the rate is minimum near the center of the wall 

irrespective of all angles (ф) for non-uniform heating of the bottom wall.  
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 Thermal boundary layer thickness is thinner for increasing of Rayleigh number due 

to upsurge of convective heat transfer rate.  

 Local Nusselt number for non-uniform bottom heating is largest at the bottom edge 

of the side wall, and thereafter that decreases sharply upto a point which is very 

near to the bottom edge.  

 
 The heat transfer rate average Nusselt Number, Nuav increases with the increase of 

Rayleigh number, Ra, for non-uniform heating of bottom wall.  

 The heat transfer rate average Nusselt Number, Nuav increases with the increase of 

Rayleigh number, Ra, for non-uniform heating of side wall.  

 Various vortices entering into the flow field and secondary vortex at the vicinity 

boundary wall and bottom wall of the cavity is seen in the streamlines. 
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CHAPTER 7 

CONCLUSIONS  

The conjugate effects of conduction and MHD free or natural convection flow in a 

trapezoidal cavity with some possible boundary conditions are the fundamental objective 

of this work. The overall work can be summed up through the subsequent conclusions.   

7.1  Summary of the Major Outcomes  
In this authentication, the effect of conduction on free or natural convection flow and the 

significance of conduction on MHD free convection within trapezoidal cavity with 

uniformly and non-uniformly heated bottom based on heatline concept have been studied. 

In cases of uniform heating, the stream line, Total heat flux and thermal fields as well as 

characteristics of heat transfer process particularly its expansion has been evaluated in 

chapter 4. On the basis of the analysis the following conclusions have been drawn: 

 The heat transfer rate is maximum near the edge of the wall and the rate is 

minimum near the center of the wall irrespective of all angles (ф) for uniform 

heating of the bottom wall for Rayleigh number 103 to 107 gradually. 

 

 The average Nusselt number (Nu) at the uniform heating of bottom wall is the 

highest for the angle 00  when Rayleigh number 107, whereas the lowest heat 

transfer rate for the angle 450when Rayleigh number 103. Moreover, the average 

Nusselt number, the uniform heated bottom wall is higher than those obtained with 

the non-uniform heated bottom wall for different angle. 

 The average Nusselt number (Nu) at the uniform heating of side wall is the highest 

for the angle 00  when Rayleigh number 107, whereas the lowest heat transfer rate 

for the angle 450 when Rayleigh number 103. Moreover, the average Nusselt 

number, the uniform heating of side wall is higher than those obtained with the 

non-uniform heating of side wall for different angle. 

 Heat transfer depends on Prandtl number and heat transfer rate is maximum near 

the edge of the wall and the rate is minimum near the center of the wall 
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irrespective of all angles (ф) for uniform heating of the bottom wall for different 

prandtl number.  

 
 Thermal boundary layer thickness is thinner for increasing of Rayleigh number due 

to upsurge of convective heat transfer rate.  

 Local Nusselt number for uniform bottom heating is largest at the bottom edge of 

the side wall, and thereafter that decreases sharply upto a point which is very near 

to the bottom edge.  

 
 The heat transfer rate average Nusselt Number, Nuav increases with the increase of 

Rayleigh number, Ra, for uniform heating of bottom wall.  

 The heat transfer rate average Nusselt Number, Nuav increases with the increase of 

Rayleigh number, Ra, for uniform heating of side wall.  

 Various vortices entering into the flow field and secondary vortex at the vicinity 

boundary wall and bottom wall of the cavity is seen in the streamlines. 

In cases of non- uniform heating, the stream line, Total heat flux and thermal fields as well 

as characteristics of heat transfer process particularly its expansion has also been evaluated 

in chapter 4. On the basis of the analysis the following conclusions have been drawn: 

 The heat transfer rate is maximum near the edge of the wall and the rate is 

minimum near the center of the wall irrespective of all angles (ф) for non-uniform 

heating of the bottom wall for Rayleigh number 103 to 107 gradually. 

 

 The average Nusselt number (Nu) at the non-uniform heating of bottom wall is the 

highest for the angle 00  when Rayleigh number 107, whereas the lowest heat 

transfer rate for the angle 450when Rayleigh number 103. Moreover, the average 

Nusselt number, the non-uniform heating of bottom wall is lower than those 

obtained with the uniform heating of bottom wall for different angle. 

 The average Nusselt number (Nu) at the non-uniform heating of side wall is the 

highest for the angle 00  when Rayleigh number 107, whereas the lowest heat 

transfer rate for the angle 450 when Rayleigh number 103. Moreover, the average 

Nusselt number, the uniform heating of side wall is higher than those obtained with 

the non-uniform heating of side wall for different angle. 
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 Heat transfer depends on Prandtl number and heat transfer rate is maximum near 

the edge of the wall and the rate is minimum near the center of the wall 

irrespective of all angles (ф) for non-uniform heating of the bottom wall for 

different prandtl number.  

 
 Thermal boundary layer thickness is thinner for increasing of Rayleigh number due 

to upsurge of convective heat transfer rate.  

 Local Nusselt number for non-uniform bottom heating is largest at the bottom edge 

of the side wall, and thereafter that decreases sharply upto a point which is very 

near to the bottom edge.  

 
 The heat transfer rate average Nusselt Number, Nuav increases with the increase of 

Rayleigh number, Ra, for non-uniform heating of bottom wall.  

 The heat transfer rate average Nusselt Number, Nuav increases with the increase of 

Rayleigh number, Ra, for non-uniform heating of side wall.  

 Various vortices entering into the flow field and secondary vortex at the vicinity 

boundary wall and bottom wall of the cavity is seen in the streamlines. 

7.2  Comparison of Uniform and Non-Uniform Heating 
 
The streamlines, isotherms and heatlines have been influenced by MHD free convection 

within trapezoidal cavity with uniformly and non-uniformly heated bottom wall. The heat 

transfer rate for uniform heating of bottom and side wall is higher than non-uniform 

heating of bottom and side wall at different Rayleigh number, Ra. The average Nusselt 

number increases with the increases of Rayleigh number, Ra = 103 – 107 for uniform and 

non- uniform heating of bottom and side wall. In order to validate the numerical code, free 

or natural convection with Pr = 0.7 in a trapezoidal cavity has been solved. The results are 

compared for uniform and non- uniform heating. Table 6.1 show comparison of the results 

for uniform and non- uniform heating of bottom wall with Pr = 0.7 and table 6.2 show 

comparison of the results for uniform and non- uniform heating of side wall with Pr = 0.7. 

The reason for large difference at high Ra = 107 is explained by the fact that the heat 

transfer is dominated by convection regime. 
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Ra 

Average Nusselt Number, ( Nuav ) 

Uniformly Heated bottom wall Non-uniformly Heated bottom wall 
ф =  00 ф =  300 ф =  450 ф =  00 ф =  300 ф =  450 

103 5.685321 4.46249 3.892641 4.361568 3.506399 3.157268 

104 5.686197 4.463856 3.893894 4.365658 3.51229 3.163712 

105 5.753017 4.666547 4.2141 4.464063 3.729079 3.474017 

106 8.796366 8.230399 8.011008 7.399533 7.046409 6.97625 

107 15.497432 14.561562 12.946846 13.37451 12.753801 11.54703 
 
Table 7.1: Comparison of the results for uniform and non- uniform heating of 
bottom wall with Pr = 0.7. 
 

 

Ra 

Average Nusselt Number, ( Nuav ) 

Uniformly Heated side wall Non-uniformly Heated side wall  
ф =  00 ф =   300 ф =  450 ф =  00 ф =  300 ф =  450 

103 2.859967 2.239549 1.96883 2.10711 1.640168 1.442333 

104 2.859702 2.240199 1.970905 2.10876 1.643219 1.446786 

105 2.88603 2.341693 2.148533 2.154179 1.755563 1.618798 

106 4.39259 4.125596 4.102104 3.615316 3.418606 3.388847 

107 7.742302 7.407918 6.794414 6.597279 6.32338 5.729601 

 
Table 7.2: Comparison of the results for uniform and non-uniform heating of side 
wall with Pr = 0.7. 
 

7.3  Further Works 
The following recommendation can be put forward for the further work on this present 

research. 

 In the future, the study can be extended by dissimilar physics like radiation effects, 
heat generation and tube effects.  

 Effect of conduction on heat flow for MHD free convection within a trapezoidal cavity 

with a circular and square cylinder block 

 Effect of conduction on heat flow for MHD free convection within a trapezoidal cavity 

with joule heating effect.  



Chapter 7: Conclusions  

 149

 Effect of conduction on heat flow for MHD free convection within a trapezoidal cavity 

with a heat conducting circular and square cylinder.  

 Effect of conduction on heat flow for MHD free convection within a trapezoidal cavity 

with a heated circular and square cylinder block. 

 Effect of conduction on heat flow for MHD free convection within a trapezoidal lid-

driven cavity for different boundary conditions  

 Investigation can be performed by using magnetic fluid within the porous medium and 
changing the boundary conditions of the cavity’s walls. 

 Effect of conduction on heat flow for MHD free convection within a trapezoidal 

double lid-driven cavity for different boundary conditions. 

 Two-dimensional fluid flow and heat transfer has been analyzed in this thesis. So this 

consideration may be extended to three-dimensional analyses to explore the effects of 

parameters on flow fields and heat transfer in cavities. In addition, the problem of fluid 

flow and heat transfer along with heat generating cylinder may be studied in three-

dimensional cases. 
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