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ABSTRACT 
 

The effect of heated wall position on magneto- hydrodynamic mixed convection in a 

channel with an open cavity has been investigated numerically. Magnetic field is 

acting countering the fluid flow, normal to the vertical wall of the cavity. Three 

different cases were considered based on heater position in the cavity as the left 

vertical side (Case 1), bottom side (Case 2) and right vertical side (Case 3). An 

external flow enters through an opening located at the left side of the channel, passes 

through the cavity and finally leaves the channel through an exit at the right side. The 

physical problems are represented mathematically by different sets of governing 

equations along with the corresponding boundary conditions. Using a class of 

appropriate transformations, the governing equations along with the boundary 

conditions are transformed into non-dimensional form, which are then solved by 

employing a finite-element scheme based on the Galerkin method of weighted 

residuals. Results are presented in terms of streamlines, isotherms, average Nusselt 

number along the hot wall, average fluid temperature at the exit port, pressure and 

temperature gradient in the domain for different combinations of the governing 

parameters namely Rayleigh number (Ra) at selected values of Hartmann numbers 

(Ha) and cavity aspect ratio AR. The results indicate that both the flow and the 

thermal fields strongly depend on the aforesaid parameters. Comparisons with 

previously published work are performed and the results are found to be in excellent 

agreement. 
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CHAPTER 1 

INTRODUCTION 

 

Heat transfer through channel is an important development and an area of very rapid 

growth in contemporary trend of heat transfer research. The flow of energy carrying 

fluids through channel is a rapidly growing branch of fluid mechanics and heat 

transfer. Mixed convection heat transfer in a channel with an open cavity in the 

presence of magnetic field is a new branch of thermo-fluid mechanics. To describe 

the heat transport phenomenon, strong background of the hydrodynamics, the 

convective heat transfer mechanism and the electromagnetic field are prerequisite as 

they have a symbiotic relationship.  

1.1 CONVECTION HEAT TRANSFER  

Convective heat transfer is the heat transfer mechanism affected by the flow of 

fluids. The amount of energy and matter are conveyed by the fluid can be predicted 

through the convective heat transfer. The convective heat transfer bifurcates into two 

branches; the natural convection and the forced convection. Forced convection 

regards the heat transport by induced fluid motion which is forced to happen. This 

induced flow needs consistent mechanical power. But natural convection differs from 

the forced convection through the fluid flow driving force which happens naturally. 

The flows are driven by the buoyancy effect due to the presence of density gradient 

and gravitational field. The density difference gives rise to buoyancy effects due to 

which the flow is gyrated. Buoyancy is due to the combined presence of the fluid 

density gradient and the body force. As the temperature distribution in the natural 

convection depends on the intensity of the fluid currents which is dependent on the 

temperature potential itself, the qualitative and quantitative analysis of natural 

convection heat transfer is very difficult. Numerical investigation instead of 

theoretical analysis is more needed in this field. Two types of natural convection heat 

transfer phenomena can be observed in the nature. One is that external free 

convection that is caused by the heat transfer interaction between a single wall and a 

very large fluid reservoir adjacent to the wall. Another is that internal free convection 

which befalls within a channel or cavity.  
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1.2 MAGNETOHYDRODYNAMICS 

Basic phenomenon is that solid or fluid material moving in a magnetic field 

experiences an electromotive force. If the material is electrically conducting and a 

current path is available, electric currents ensue. The consequence is that an 

electromagnetic force due to the interaction of currents and field appears, perturbing 

the original motion. Therefore, magneto-hydrodynamics (MHD) is the science of the 

motion of electrically conducting fluids under the influence of applied magnetic 

forces. The symbiotic interaction between the fluid velocity field and the 

electromagnetic forces give rise to a flow scenarios; the magnetic field affects the 

motion. Indeed MHD, like the low frequency electro-technology that developed in 

the later nineteenth century, is entirely pre-Maxwellian in spirit. Nevertheless MHD 

is usually regarded as a very contemporary subject. Applications of MHD are 

electromagnetic pump, the MHD generator using ionized gas as an armature, 

electromagnetic pumping of liquid metal coolants in nuclear reactors, stirring and 

levitation (to avoid contamination) in the metallurgical industries, controlled 

thermonuclear fusion by confining hot ionized deuterium away from all walls by 

MHD forces led to intensive research on this branch of MHD and the related topic of 

plasma physics. One of the novelties of MHD is that a gas can have a free surface, 

not constrained by a rigid wall and prone to waves and instability. A related 

application is the use of MHD acceleration to shoot plasma into fusion devices or to 

produce high energy wind tunnels for simulating hypersonic flight. Other potential 

applications for MHD include electromagnets with fluid conductors, various energy 

conversion or storage devices, magnetically controlled lubrication by conducting 

fluids etc.  

1.3 APPLICATION 

Mixed convection in a channel with an open cavity plays a significant role in many 

practical applications. Simultaneous convection of buoyancy and forced convection 

is called as combined or mixed convection, which is of great interest in engineering 

applications such as nuclear reactors, lakes and reservoirs, cooling process of 

electronical devices, solar applications, combustion chambers, food processing and 

float glass production in industry. 
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1.4 LITERATURE REVIEW 

Combined free and forced (mixed) convective flow in which neither the free 

convection nor the forced convection effects are dominant and both modes are in a 

comparable level arise in many natural and technological process. Various 

researchers investigated the effects of mixed convective flows in cavities, channels 

by using analytical, experimental and numerical methods. Several studies of mixed 

convection heat transfer in channels with open cavities have been reported in recent 

years. Leong et al. (2005) performed a numerical study on the mixed convection 

from an open cavity in a horizontal channel. Authors found that the heat transfer rate 

was reduced, and the flow became unstable in the mixed convection regime. 

Papanicolaou and Jaluria (1990, 1992, 1993 and 1994) carried out a series of 

numerical studies to investigate the combined forced and natural convective cooling 

of heat dissipating electronic components, located in rectangular enclosure and 

cooled by an external through flow of air. Moreover, Raji and Hasnaoui (1998a, 

1998b) obtained numerical results by using a finite difference procedure for opposing 

flows mixed (forced and natural) convection flow in a rectangular cavity heated from 

the side with a constant heat flux and submitted to a laminar cold jet from the bottom 

of its heated wall. The fluid leaves the cavity via the top or the bottom of the 

opposite vertical wall. Later on, the same authors i.e. Raji and Hasnaoui (2000) 

investigated the mixed convection in ventilated cavities where the horizontal top wall 

and the vertical left wall were prescribed with equal heat fluxes. At the same time, 

Angirasa (2000) numerically studied and explained the complex interaction between 

buoyancy and forced flow in a square enclosure with an inlet and a vent situated 

respectively, at the bottom and top edges of the vertical isothermal surface, where the 

other three walls are adiabatic. Also, Omri and Nasrallah (1999) performed 

numerical analysis by a control volume finite element method on mixed convection 

in a rectangular enclosure with differentially heated vertical sidewalls. Later on, 

Singh and Sharif (2003) extended their works by considering six placement 

configurations of the inlet and outlet of a differentially heated rectangular enclosure 

whereas the previous work was limited to only two different configurations of inlet 

and outlet. Hsu and Wang (2000) investigated the mixed convective heat transfer 

where the heat source was embedded on a board mounted vertically on the bottom 
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wall at the middle in the enclosure. The cooling airflow enters and exits the enclosure 

through the openings near the top of the vertical sidewalls. Gau et al. (2000) 

performed experiments on mixed convection in a horizontal rectangular channel with 

side heating. A numerical study of mixed convection heat transfer in two 

dimensional open-ended enclosures were investigated by Khanafer et al. (2002) for 

three different forced flow angle of attack. Wang and Jaluria (2002) numerically 

investigated the characteristics of the instability and the resulting effect on the heat 

transfer in mixed convection flow in a horizontal duct with discrete heat sources. A 

numerical analysis of laminar mixed convection in a channel with an open cavity and 

a heated wall bounded by a horizontally insulted plate was presented in Manca et al. 

(2003), where they considered three heating modes: assisting flow, opposing flow 

and heating from below. Later on, similar problem for the case of assisting forced 

flow configuration was tested experimentally by Manca et al. (2006). The flow and 

temperature field for a two-dimensional confined slot jet impinging on an isothermal 

hot surface computed by Sahoo and Sharif (2004). A finite-volume based 

computational study of steady laminar forced convection inside a square cavity with 

inlet and outlet ports was presented in Saeidi and Khodadadi (2006). Recently 

Rahman et al. (2007) studied numerically the opposing mixed convection in a vented 

enclosure. They found that with the increase of Reynolds and Richardson numbers 

the convective heat transfer becomes predominant over the conduction heat transfer 

and the rate of heat transfer from the heated wall is significantly depended on the 

position of the inlet port. Aminossadati and Ghasemib (2009) performed a numerical 

study on the mixed convection in a horizontal channel with a discrete heat source in 

an open cavity. They considered three different heating modes and found noticeable 

differences among the indicated three heating modes. Very recently, Oztop (2011) 

studied the influence of exit opening location on mixed convection in a channel with 

volumetric heat sources using finite volume method.  

 

Magneto-hydrodynamics (MHD) is that branch of science, which studies the 

dynamics of electrically conducting fluids in the presence of electromagnetic fields. 

MHD is usually regarded as a very up to the date subject, because it has many 

engineering applications such as liquid-metal cooling of nuclear reactors and 
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electromagnetic casting, etc. MHD studies are mostly focused on convection heat 

transfer in closed cavities. Piazza and Ciofalo (2002) carried out a numerical 

investigation on buoyancy-driven magneto-hydrodynamic flow in a liquid-metal 

filled in a cubic enclosure. The authors found that increasing Hartmann number 

suppressed the convective motions. Chamkha (2002) made a study for mixed 

convection in a square cavity in the presence of magnetic field and an internal heat 

generation and absorption. He concluded that the flow behavior inside the cavity and 

heat transfer rate is strongly affected by the magnetic field. Mahmud et al. (2003) 

studied analytically a combined free and forced convection flow of an electrically 

conducting and heat-generating/ absorbing fluid a vertical channel made of two 

parallel plates under the action of transverse magnetic field. Sarries et al. (2005) 

performed a numerical study on unsteady natural convection of an electrically 

conducting fluid in a laterally and volumetrically heated square cavity under the 

influence of a magnetic field. Xu et al. (2006) completed an experimental study on 

natural convection of a molten metal contained in a rectangular enclosure in the 

presence of an external magnetic field. Sposito and Ciofalo (2008) studied fully 

developed mixed magnetohydrodynamic convection in a vertical square duct. Oztop 

et al. (2009) studied the effects of sinusoidal temperature boundary conditions on 

magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square 

enclosure. Ogot (2010) made an analysis of heat and fluid flow transport due to 

natural convection and magnetohydrodynamic flows in a square enclosure with a 

finite length heater using differential quadrature technique. Rahman et al. (2011a) 

worked on a conjugated effect of joule heating and magnetohydrodynamic on 

double-diffusive mixed convection in a horizontal channel with an open cavity. 

Rahman et al. (2011b) examined the magnetohydrodynamic mixed convection in a 

horizontal channel with an open cavity with Galerkin weighted residual method for 

the numerical simulation. They showed a significant effect of the considered 

parameters on the flow and thermal fields inside the cavity. Bhuvaneswari et al. 

(2011) carried out a computational study of convective flow and heat transfer in a 

cavity in the presence of uniform magnetic field.  
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1.5 MOTIVATION 

Leong et al. (2005) performed a numerical study on the mixed convection from an 

open cavity in a horizontal channel. The effects of discrete heat source in an open 

cavity with a horizontal channel by using control volume method Aminossadati and 

Ghasemib (2009) has been studied numerically. From the literature review it is clear 

that very little numerical study on the effect of mixed convection heat transfer in a 

channel with an open cavity. Thus far, none have conducted studies involving the 

effect of heated wall position on magneto- hydrodynamic mixed convection in a 

channel with an open cavity, although it has numerous engineering applications. 

Numerical studies are therefore essential to observe the variation in fluid flow and 

heat transfer due to the above physical changes, which forms the basis of the 

motivation behind the present study. Contextually the present study will focus on the 

computational analysis of the influence of magnetic field on the mixed convection in 

a channel with an open cavity. 

1.6 OBJECTIVES  

The investigation is carried out in a two dimensional horizontal channel with an open 

cavity. In case 1, case 2 and case 3, left side, bottom side and right side are heated 

under constant temperature respectively. Remaining solid walls are adiabatic. The 

specific objectives of the present research work are as follows: 

• To develop a mathematical model for mixed convection in a channel with an 
open cavity considering magnetic effect and hence to solve that model using 
finite element method. 

• To carry out the validation of the present finite element model by investigating 
the effect of laminar mixed convection in a channel with an open cavity. 

• To investigate the effects of heater location in an open cavity for different 
Rayleigh number. 

• To investigate the effect of Hartmann number, cavity aspect ratio and Rayleigh 
number on the flow and thermal fields.  

• To investigate the effect of Hartmann number, cavity aspect ratio and Rayleigh 
number on the average Nusselt number, average fluid temperature at the exit 
port, pressure and temperature gradient in the domain. 
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1.7 OUTLINE OF THE THESIS  

This dissertation contains four chapters. In this chapter a brief introduction is 

presented with aim and objective. There is nothing new to say about it. This chapter 

also consists a literature review of the past studies on fluid flow and heat transfer in 

cavities or channels. In this state-of-the art review, different aspects of the previous 

studies have been mentioned categorically. This is followed by the post-mortem of a 

recent historical event for the illustration of fluid flow and heat transfer effects in 

cavities or channels.  

Chapter 2 presents mathematical model along with the computational procedure of 

the problem. 

In Chapter 3 a detailed results and discussion is conducted.  

Finally, in Chapter 4 the dissertation is rounded of with the conclusions and 

recommendations for further study of the present problem are outlined.  

 



CHAPTER 2 

MATHEMATICAL MODELLING 

 

Mathematical model of physical phenomena may be ordinary or partial differential 

equations, which have been the subject of analytical and numerical investigations. 

The partial differential equations of fluid mechanics and heat transfer are solvable for 

only a limited number of flows. To obtain an approximate solution numerically, we 

have to use a discretization method, which approximated the differential equations 

by a system of algebraic equations, which can then be solved on a computer. The 

approximations are applied to small domains in space and /or time so the numerical 

solution provides results at discrete locations in space and time. Much as the 

accuracy of experimental data depends on the quality of the tools used, the accuracy 

of numerical solutions depend on the quality of discretizations used. Computational 

fluid dynamics (CFD) computation involves the formation of a set numbers that 

constitutes a practical approximation of a real life system. The outcome of 

computation process improves the understanding of the performance of a system. 

Thereby, engineers need CFD codes that can make physically realistic results with 

good quality accuracy in simulations with finite grids. Contained within the broad 

field of computational fluid dynamics are activities that cover the range from the 

automation of well established engineering design methods to the use of detailed 

solutions of the Navier-Stokes equations as substitutes for experimental research into 

the nature of complex flows. CFD have been used for solving wide range of fluid 

dynamics problem. It is more frequently used in fields of engineering where the 

geometry is complicated or some important feature that cannot be dealt with standard 

methods.  

The remainder of this chapter is as follows. In section 2.1, the physical 

configurations of the current research interest are shown. Then the appropriate 

mathematical model (both governing equations and boundary conditions) is 

considered in section 2.2. After that a numerical scheme that is employed in this 

study are described in the section 2.3.  
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Fig. 2.1. Physical model under consideration: (a) heating from left, 
(b) heating from below, and (c) heating from right. 
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2.1 PHYSICAL MODEL 

Considered model is presented in Fig. 1 (a) to (c). In these figures, channel includes a 

square cavity and magnetic field affects in –x direction and gravity acts in the 

vertical direction. Flow inlets to channel via inlet port at a uniform velocity, ui, 

temperature, Ti and exits the channel via outlet port. The length of channel is chosen 

as 3H, length and height of the cavity are defined by L and H respectively. In case 1, 

case 2 and case 3, left side, bottom side and right side are heated under constant 

temperature, Th respectively. Remaining solid walls are adiabatic. 

2.2 GOVERNING EQUATIONS ALONG WITH BOUNDARY CONDITIONS 

The electrically conducting fluids are assumed to be Newtonian fluids with constant 

fluid properties, except for the density in the buoyancy force term. Moreover, the 

fluid is considered to be laminar, incompressible, steady and two-dimensional. The 

electrically conducting fluids interact with an external horizontal uniform magnetic 

field of constant magnetic flux density B0. Assuming that the flow-induced magnetic 

field is very small compared to B0 and considering electrically insulated cavity walls. 

The electromagnetic force can be reduced to the damping factor –B0υ (Rahman et al 

(2009)), where v is the vertical velocity component. Thus the Lorentz force depends 

only on the velocity component perpendicular to the magnetic field. The governing 

equations for the two-dimensional steady flow after invoking the Boussinesq 

approximation and neglecting radiation and viscous dissipation can be expressed as 

Continuity Equation  

0=
∂
∂

+
∂
∂

y
v

x
u  (2.1) 

Momentum Equations  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

21
y
u

x
u

x
p

y
uv

x
uu υ

ρ
 (2.2) 

( )
22 2

0
2 2

1
i

B vv v p v vu v g T T
x y y x y

σ
υ β

ρ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + + − −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (2.3) 
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Energy Equations  

2 2

2 2
p

T T k T Tu v
x y c x yρ

⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠
 (2.4) 

where x and y are the distances measured along the horizontal and vertical directions 

respectively; u and v are the velocity components in the x and y directions 

respectively; T denote the fluid temperature, Ti denotes the reference temperature for 

which buoyant force vanishes, p is the pressure and ρ is the fluid density, g is the 

gravitational constant, β is the volumetric coefficient of thermal expansion, cp is the 

fluid specific heat, k is the thermal conductivity of fluid. 

2.2.1 Boundary Conditions 

The boundary conditions for the present problem are specified as follows: 

At the inlet: , 0,i iu u v T T= = =  

At the outlet: 0, 0, 0u Tv
x x
∂ ∂

= = =
∂ ∂

 

at all solid boundaries other than heated wall: 0Tu v
n

∂
= = =

∂
  

At the heated wall: 0, hu v T T= = =  

where n is the non-dimensional distances either along x or y direction acting normal 

to the surface and k is the thermal conductivity of the fluid. 

Such local values have been further averaged over the entire heated surface to obtain 

the surface averaged or overall mean Nusselt number 

0

1 sL

s

TNu ds
L N

∂
= −

∂∫  

where Ls is the length of the heated wall. The average Nusselt number can be used in 

process engineering design calculations to estimate the rate transfer from the heated 

surface. 
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2.2.2 Dimensional Analysis 

Non-dimensional variables are used for making the governing equations (2.1−2.4) 

into dimensionless form are stated as follows: 

( ) ( )
( )

2

2, , , , , i

i i h ii

p gy H T Tx y u vX Y U V P
H H u u T Tu

ρ
θ

ρ
+ −

= = = = = =
−

 

where X and Y are the coordinates varying along horizontal and vertical directions, 

respectively, U and V are the velocity components in the X and Y directions, 

respectively, θ is the dimensionless temperature and P is the dimensionless pressure. 

After substitution the dimensionless variables into the equations (2.1-2.4), we get the 

following dimensionless equations as 

Continuity Equation 

0=
∂
∂

+
∂
∂

Y
V

X
U  (2.5) 

Momentum Equations 

2 2

2 2
1U U P U UU V

X Y X Re X Y
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + +⎜ ⎟
∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2.6) 

2 2 2

2 2 2
1V V P V V Ra HaU V V

X Y Y Re ReX Y Re Pr
θ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − + + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (2.7) 

Energy Equations 

2 2

2 2
1U V

X Y Re Pr X Y
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂
+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (2.8) 

The dimensionless parameters appearing in the equations (2.6) through (2.8) are the 

Reynolds number Re, Prandtl number Pr, Rayleigh number Ra, and Hartmann 

number Ha. They are respectively defined as follows: 

2 23
2 0, , , B HUH g THRe Pr Ra Ha συ β

υ α να µ
∆

= = = =  
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where h i pT T T and k Cα ρ∆ = − = are the temperature difference and thermal 

diffusivity of the fluid respectively. 

The dimensionless boundary conditions under consideration can be written as: 

At the inlet: U = 1, V = 0, θ = 0 

At the outlet: 0, 0, 0U V
X X

θ∂ ∂
= = =

∂ ∂
 

at all solid boundaries other than heated wall: 0, 0, 0U V
N
θ∂

= = =
∂

 

at the heated wall: 0, 1U V θ= = =  

where N is the non-dimensional distances either along X or Y direction acting normal 

to the surface. According to Singh and Sharif (2003), the average Nusselt number at 

the heated wall of the cavity based on the no-dimensional variables may be expressed 

as 
0

L Lh
Nu dS

N
θ∂

= −
∂∫ . 

where Lh is the length of the heated wall and N is the non-dimensional distances 

either X or Y direction acting normal to the surface. 

2.3 NUMERICAL ANALYSIS 

The governing equations along with the boundary conditions are solved numerically, 

employing Galerkin weighted residual finite element techniques discussed below. 

2.3.1 Finite Element Formulation and Computational Procedure 

To derive the finite element equations, the method of weighted residuals Zienkiewicz 

and Taylor (1991) is applied to the equations (2.5) – (2.8) as  

0=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

∫ dA
Y
V

X
UN

A α  (2.9) 

2 2

2 2
1

A A A

U U P U UN U V dA H dA N dA
X Y X Re X Yα λ α

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫ ∫ ∫  (2.10) 
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2 2

2 2

2

1
A A A

A A

V V P V VN U V dA H dA N dA
X Y Y Re X Y

Ra HaN dA N V dA
ReRe Pr

α λ α

α αθ

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = − + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ −

∫ ∫ ∫

∫ ∫
 (2.11) 

2 2

2 2
1

A A
N U V dA N dA

X Y Re Pr X Yα α
θ θ θ θ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫  (2.12) 

where A is the element area, Nα ( α = 1, 2, … … , 6) are the element interpolation 

functions for the velocity components and the temperature, and Hλ ( λ = 1, 2, 3) are 

the element interpolation functions for the pressure. 

Gauss’s theorem is then applied to equations (2.10)-(2.12) to generate the boundary 

integral terms associated with the surface tractions and heat flux. Then equations 

(2.10)-(2.12) become, 

00

1

A A

xA S

U U PN U V dA H dA
X Y X

N NU U dA N S dS
Re X X Y Y

α λ

α α
α

∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫ ∫

∫ ∫
 (2.13) 

2

02 0

1
A A A

yA A S

N NV V P V VN U V dA H dA dA
X Y Y Re X X Y Y

Ra HaN dA N V dA N S dS
ReRe Pr

α α
α λ

α α αθ

∂ ∂∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− + =

∫ ∫ ∫

∫ ∫ ∫
 (2.14) 

1
. w wA A Sw

N NN U V dA dA N q dS
X Y Re Pr X X Y Y

α α
α α

θ θ θ θ∂ ∂∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫  (2.15) 

Here (2.13)-(2.14) specifying surface tractions (Sx, Sy) along outflow boundary S0 and 

(2.15) specifying velocity components and fluid temperature or heat flux (qw) that 

flows into or out from domain along wall boundary Sw.  

The basic unknowns for the above differential equations are the velocity components 

U, V the temperature, θ and the pressure, P. The six node triangular element is used 

in this work for the development of the finite element equations. All six nodes are 

associated with velocities as well as temperature; only the corner nodes are 

associated with pressure. This means that a lower order polynomial is chosen for 
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pressure and which is satisfied through continuity equation. The velocity component 

and the temperature distributions and linear interpolation for the pressure distribution 

according to their highest derivative orders in the differential equations (2.5)-(2.8) as  

( ) ββ UNYXU =,  (2.16) 

( ) ββ VNYXV =,  (2.17) 

( ) ββ θθ NYX =,  (2.18) 

( ) λλ PHYXP =,  (2.19) 

where β = 1, 2, … … , 6;  λ = 1, 2, 3. 

Substituting the element velocity component distributions, the temperature 

distribution, and the pressure distribution from equations (2.16)-(2.19), the finite 

element equations can be written in the form, 

0=+ ββαββα
VKUK yx  (2.20) 

( )1
x y x xx yy uK U U K V U M P S S U Q

Reβ γ γ γ µ βαβγ αβγ αµ αβ αβ α
+ + + + =  (2.21) 

( )
2

2

1
x y y xx yy

v

K U V K V V M P S S V
Re

Ra HaK K V Q
ReRe Pr

β γ β γ µ βαβγ αβγ αµ αβ αβ

αβ β αβ β α
θ

+ + + +

− + =
 (2.22) 

( )1
.x y xx yyK U K V S S Q

Re Prβ γ β γ β θαβγ αβγ αβ αβ α
θ θ θ+ + + =  (2.23) 

where the coefficients in element matrices are in the form of the integrals over the 

element area and along the element edges S0 and Sw as  

,x xA
K N N dAα βαβ

= ∫  (2.24a) 

,y yA
K N N dAα βαβ

= ∫  (2.24b) 

,x xA
K N N N dAα β γαβγ

= ∫  (2.24c) 
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,y yA
K N N N dAα β γαβγ

= ∫  (2.24d) 

A
K N N dAαβ α β= ∫  (2.24e) 

, ,xx x xA
S N N dAα βαβ

= ∫  (2.24f) 

, ,yy y yA
S N N dAα βαβ

= ∫  (2.24g) 

,x xA
M H H dAα µαµ

= ∫  (2.24h) 

,y yA
M H H dAα µαµ

= ∫  (2.24i) 

00u xS
Q N S dSαα

= ∫  (2.24j) 

00v yS
Q N S dSαα

= ∫  (2.24k) 

w wSw
Q N q dSθ αα

= ∫  (2.24l) 

These element matrices are evaluated in closed form ready for numerical simulation. 

Details of the derivation for these element matrices are omitted herein. 

The derived finite element equations (2.20)-(2.23) are nonlinear. These nonlinear 

algebraic equations are solved by applying the Newton-Raphson iteration technique 

by first writing the unbalanced values from the set of the finite element equations 

(2.20)-(2.23) as, 

p x yF K U K Vβ βα αβ αβ
= +  (2.25a) 

1 ( )

u x y x

xx yy u

F K U U K V U M P

S S U Q
Re

β γ γ γ µα αβγ αβγ αµ

βαβ αβ α

= + +

+ + −
 (2.25b) 

1 ( )

v x y y

xx yy v

F K U V K V V M P

S S V Ri K Q
Re

β γ γ γ µα αβγ αβγ αµ

β αβ βαβ αβ α
θ

= + + +

+ − −
 (2.25c) 

( )1
.x y xx yyF K U K V S S Q

Re Prθ β γ β γ β θα αβγ αβγ αβ αβ α
θ θ θ= + + + −  (2.25d) 
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This leads to a set of algebraic equations with the incremental unknowns of the 

element nodal velocity components, temperatures, and pressures in the form, 

0 0

0

0

ppu pv

uuu uv up

u v

vu vv v vp v

FK K p
FK K K u
FK K K

vK K K K F

α

α

θθ θ θθ α

θ
α

θ

⎧ ⎫⎡ ⎤ ∆⎧ ⎫ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪∆⎪ ⎪ ⎪ ⎪⎢ ⎥ = −⎨ ⎬ ⎨ ⎬⎢ ⎥ ∆⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪∆⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎪ ⎪⎩ ⎭

 (2.26) 

where ( )1
uu x x y xx yyK K U K U K V S S

Reβ γ βαβγ αγβ αβγ αβ αβ
= + + + +  

uv yK K U
αβγ

γ=  

0uK θ = , up xK M
αµ

=  

vu xK K V
αβγ

γ=  

( )1
vv x y y xx yyK K U K V K V S S

Reβ γ γαβγ αγβ αβγ αβ αβ
= + + + +  

vK Ri Kθ αβ= − , vp yK M
αµ

=  

u xK Kθ αβγ
θγ= , v yK Kθ αβγ

θγ=  

1 ( )
.x y xx yyK K U K V S S

Re Prθθ β βαβγ αβγ αβ αβ
= + + +  

0pKθ = , pu xK K
αβ

= , pv yK K
αβ

=  and 0p ppK Kθ = =  

The iteration process is terminated if the percentage of the overall change compared 

to the previous iteration is less than the specified value. 

To solve the sets of the global nonlinear algebraic equations in the form of matrix, 

the Newton-Raphson iteration technique has been adapted through PDE solver with 

MATLAB interface. The convergence of solutions is assumed when the relative error 

for each variable between consecutive iterations is recorded below the convergence 



Chapter 2 

 18

criterion ε such that ε<Ψ−Ψ + nn 1 , where n is number of iteration and 

, ,U V θΨ = . The convergence criterion was set to ε = 10- 5.  

2.3.2 Grid Size Sensitivity Test 

The grid sensitivity tests are performed to locate the field variables grid-

independence solutions. Non-uniform triangular element grid system is employed in 

the present study. Five different non-uniform grid systems with the following 

number of elements within the resolution field: 3536, 5120, 6248 8106 and 9636 are 

examined. The numerical simulation is carried out for a highly accurate solution in 

the average Nusselt number for the aforesaid elements to develop an understanding 

of the grid fineness as shown in Fig. 2.2. The magnitudes of the average number for 

5120 elements show a very little difference with the results obtained for the other 

elements. Thus the grid independence tests showed that a grid of 5120 elements is 

enough for the desired accuracy of results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2. Grid independency study: average Nusselt number at different grid 
elements for case1 and Ha = 10 
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2.3.3 Validation of the Numerical Scheme 

Due to lack of suitable experimental results in the literature pertaining to the present 

configuration, the obtained numerical result has been validated against the existing 

numerical result for channel with an open cavity. For this reason, the present 

numerical model is validated against the numerical results of Manca et al. (2003) for 

mixed convection problem in a channel with an open cavity. The calculated average 

Nusselt number and maximum fluid temperature for the test case are shown in Table 

1. The agreement between the present computation and those of Manca et al. (2003) 

are seen to be very well with a maximum difference within 0.5%. These validations 

make a good confidence in the present numerical code. 

 

Table 2.1. Comparison of results for validation at Pr = 0.71,  

Re = 100, Ri = 0.1, w/H = 0.5, L/H = 2 

Opposing flow Present Manca et al. (2003) 

Nu 1.7657 1.7748 

θmax 0.629 0.627 

 



CHAPTER 3 

RESULTS AND DISCUSSION 

As stated earlier, the overall objective of the current chapter is to explore the 

conjugate effects of conduction and laminar mixed convection heat transfer in an 

open channel with a rectangular cavity in the presence of a magnetic field. A 

numerical investigation has been performed in this work for different temperature 

conditions at different Rayleigh numbers in the enclosure. Three different cases were 

tested according to heated part of the enclosure. In the first case, heater is located on 

the left vertical wall of the enclosure, in the second case it situated onto the bottom 

wall and lastly in the third case; right side of the vertical is heated. The implications 

of varying the Rayleigh numbers Ra, Hartmann number Ha and physical parameters 

for the system are the cavity aspect ratio AR will be emphasized. The results are 

presented in terms of streamline and isotherm patterns at the three different regimes 

of flow Ra = 103, 104 and 105. Prandtl number is chosen as Pr = 7.1 and Reynolds 

number is fixed at Re = 100. The variations of the average Nusselt number at the 

heated surface, average fluid temperature at the exit port and pressure and 

temperature gradient in the domain for the different values of the parameters.  

3.1 CASE 1 

Fig. 3.1 shows the effect of Hartmann number on the streamlines (on the left) and 

isotherms (on the right) at Ra = 103 and AR = 1. It is clearly seen from the figures, 

heating part of the cavity is not so effective on flow distribution and inlet flow goes 

through the channel from the top wall of the channel without any circulation inside 

the cavity except Ha = 0. This is because the lower value of Rayleigh number. One 

may notice that a circulating cell is formed in the clockwise direction and ψmin = -

0.001 at the bottom part of the cavity in absence of magnetic field. Isotherms are 

distributed from the left heated vertical wall into the cavity and hot fluid leave from 

the cavity from right top side. The effect of Hartmann number on the flow field and 

temperature fields has been depicted in Fig 3.2 at Ra = 104 and AR = 1. We observe 

that the flow and temperature fields are almost same as Fig. 3.1 for higher values 

Hartmann number Ha (= 50 and 100). But, an interesting result is found that a  
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Fig. 3.1 (a) Streamlines and (b) Isotherms for the case 1 at Ra = 103, AR = 1 and 
selected values of Hartmann number Ha. 
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Fig. 3.2 (a) Streamlines and (b) Isotherms for the case 1 at Ra = 104, AR = 1 and 
selected values of Hartmann number Ha. 
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Fig. 3.3 (a) Streamlines and (b) Isotherms for the case 1 at Ra = 105, AR = 1 and 
selected values of Hartmann number Ha. 
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circulating cell is formed in the clockwise direction and ψmin = -0.063 in absence of 

magnetic field. It is also noticed that the clockwise rotating cell covered most of the 

part of the cavity. As the cavity is heated from the left wall, the cavity behaves like 

differentially heated cavity from left and right. Thus, isotherms are parallel to left 

wall and wavy distribution is formed. The influence of Hartmann number on the 

streamlines and isotherms has been displayed in Fig 3.3 at Ra = 105 and AR = 1. One 

may notice that both the flow field as well as the thermal field strongly influenced for 

higher values of Rayleigh number. It can easily be seen that the circulating cell is 

formed in the clockwise direction and ψmin = -0.274 in absence of magnetic field. If 

this figure is compared with Fig. 3.1, the circulation cell becomes stronger with ψmin 

= -0.274 at Ha = 0. It is also noticed that the clockwise rotating cell occupies almost 

whole of the part of the cavity. This clockwise circulating cell decreases with the 

increasing values of Hartmann number. The location of the main center is changed a 

little bit to right side. The circulating cell center move to vertical heated. It is also 

clearly seen that the shape and size of the eddy changes while magnetic force 

changes. For Ra = 105, thermal boundary layer becomes thinner due to higher values 

of Rayleigh number as seen from Fig. 3.3. Plume like temperature distribution is 

seen for Ha = 0. Isotherms are parallel to the heater for Ha = 100 due to low flow 

velocity. In this case, isotherms are clustered around the heater and fluid flows 

directly over the cavity. Because domination of buoyancy effective flow is increased.  

Figs. 3.4 – 3.6 presents the outcome of Hartmann number on the streamlines (on the 

left) and isotherms (on the right) while AR = 2. Fig. 3.4 shows the streamline (on the 

left) and isotherms (on the right) for different values of Hartmann numbers at Ra = 

103. In this cases, heating part of the cavity does not an effective parameter on the 

flow field and inlet flow goes through the channel from the top wall of the channel 

without any circulation inside the cavity apart from Ha = 0. For Ha = 0, a very small 

circulation cell with clockwise rotating direction is formed at right bottom corner of 

the cavity due to domination of buoyancy force. Fig. 3.4 (on the right) illustrates the 

isotherms to see the effects of temperature distribution with different magnetic 

forces. Isotherms are spread from the right heated vertical wall into the cavity and 

hot fluid go away from the cavity from right top side. As seen from the figure, 

thermal boundary layer becomes thicker with decreasing of Hartmann number.  
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Fig. 3.4 (a) Streamlines and (b) Isotherms for the case 1 at Ra = 103, AR = 2 and 
selected values of Hartmann number Ha. 
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Fig. 3.5 (a) Streamlines and (b) Isotherms for the case 1 at Ra = 104, AR = 2 and 
selected values of Hartmann number Ha. 
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Fig. 3.6 (a) Streamlines and (b) Isotherms for the case 1 at Ra = 105, AR = 2 and 
selected values of Hartmann number Ha. 
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The effect of Hartmann number on the flow field and temperature fields has been 

shown in Fig 3.5 at Ra = 104 and AR = 2. It can be seen that the flow and 

temperature fields are almost identical as Fig. 3.4 for higher values Hartmann 

number Ha (= 25, 50 and 100). But, an interesting result is found that three 

circulating cells is formed in absence of magnetic field. As seen from the figure, 

thermal layer becomes thicker with decreasing of Hartmann number. For Ha = 0, 

plume like distribution is formed. Fig. 3.6 is plotted streamlines and isotherms for 

different values of Hartmann number Ha = 0, 25, 50 and 100 at Ra = 105. As seen 

from the left column of this figure, an amount of fluid near the heating wall of the 

cavity is activated so as to create a buoyancy-induced clockwise rotating cell for the 

lowest value of Ha = 0. As the Hartmann number increases the strength of the 

rotating cell is reduced and pushed to the left bottom corner of the cavity and then 

through flow in the channel gains its strength and occupies the whole of the cavity as 

well as the channel indicating the establishment of conduction mode of heat transfer. 

A higher value of Hartmann number, which is a measure of magnetic field, retards 

the flow velocity. Thus, this recirculation cell becomes smaller at Ha = 50, and 100 

and it disappeared for further values of magnetic field. The corresponding isotherms 

for the lowest value of Ha = 10 shows the usual convective twist inside the cavity. 

The distortion of isothermal lines appears due to the high convective current inside 

the cavity. Distortions of isothermal lines start to disappear with increasing 

Hartmann number. As Hartmann number increases, isothermal lines inside the cavity 

as well as the channel approaches more and more towards the conduction-like 

distribution pattern of isothermal lines. For large Hartmann number Ha = 50 and 100, 

the convection is almost suppressed, and the isotherms are almost parallel to the 

horizontal wall, indicating that a quasiconduction regime is reached. Plume like 

temperature distribution is seen for Ha = 0 and 25. 

Fig. 3.7 (a) and (b) illustrate the average Nusselt number and average fluid 

temperature at the exit port, respectively while AR = 1. The figures are given for 

different Rayleigh numbers at selected values of Hartmann numbers. Both Nusselt 

number and average fluid temperature at the exit port exhibit similar trends. In 

addition, both heat transfer and average fluid temperature are decreased with 

increasing of Hartmann numbers. 
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Fig. 3.7 (a) Average Nusselt number and (b) average fluid temperature at the exit 
port versus Hartmann number Ha for the case 1, at AR = 1 and selected values of 
Rayleigh number Ra. 
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Fig. 3.8 (a) Pressure and (b) temperature gradient in the domain versus Hartmann 
number Ha for the case 1, at AR = 1 and selected values of Rayleigh number Ra. 
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Fig. 3.9 (a) Average Nusselt number and (b) average fluid temperature at the exit 
port versus Hartmann number Ha for the case 1, at AR = 2 and selected values of 
Rayleigh number Ra. 
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Fig. 3.10 (a) Pressure and (b) temperature gradient in the domain versus Hartmann 
number Ha for the case 2, at AR = 2 and selected values of Rayleigh number Ra. 
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Heat transfer becomes constant for Ra = 103, 104 and 105 due to decreasing of flow 

velocity with increasing of strength of magnetic field.  

Pressure and temperature gradient in the domain for different Rayleigh number while 

AR = 1 is presented in Fig. 3.8. It is seen that pressure is almost zero up to Ra = 104 

but negative values are formed for increasing of Rayleigh number. Also, temperature 

gradient is presented in Fig. 3.8 (b). As seen from the figure, general view of 

temperature gradient exhibit decreasing behavior with Rayleigh number. It is noticed 

that temperature becomes constant for Ra = 103 and 104 between Ha = 50 and Ha = 

100 as given in Fig. 3.8 (b).  

Variation of average Nusselt number and average fluid temperature at the exit port 

have been depicted in Fig. 3.9 (a) and (b), respectively while AR = 2. Both Nusselt 

number and average fluid temperature at the exit port reveal comparable trends. 

Additionally, both heat transfer rate and average fluid temperature are decreased with 

escalating of Hartmann numbers. One may notice that heat transfer rate decreases 

very smoothly Ra = 105 with increasing of strength of magnetic field.  

On the other hand, pressure and temperature gradient in the domain for different 

Rayleigh number while AR = 2 is presented in Fig. 3.10. It is seen that pressure is 

positive up to Ra = 104 but negative values are produced for increasing of Rayleigh 

number. Also, temperature gradient is shown in Fig. 3.10(b). It is clearly seen from 

the figure, general view of temperature gradient demonstrates decreasing behavior 

with Rayleigh number. However, the temperature gradient increases for Ra = 103 and 

104 between Ha = 50 and Ha = 100. 

3.2 CASE 2  

In this case, heater is located onto the bottom wall of the enclosure. Fig. 3.11 

illustrates the effect of Hartmann number on the streamlines (on the left) and 

isotherms (on the right) at Ra = 103 and AR = 1. It can easily be seen from the 

figures, heating part of the cavity is not so effective on flow distribution and inlet 

flow goes through the channel from the top wall of the channel without any 

circulation inside the cavity excluding Ha = 0. This is because the lower value of 

Rayleigh number. A circulating cell is fashioned in the clockwise direction and ψmin 

= -0.002 at the bottom part of the cavity in absence of magnetic field. Isotherms are  
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Fig. 3.11 (a) Streamlines and (b) Isotherms for the case 2 at Ra = 103, AR = 1 and 
selected values of Hartmann number Ha. 
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Fig. 3.12 (a) Streamlines and (b) Isotherms for the case 2 at Ra = 104, AR = 1 and 
selected values of Hartmann number Ha. 
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Fig. 3.13 (a) Streamlines and (b) Isotherms for the case 2 at Ra = 105, AR = 1 and 
selected values of Hartmann number Ha. 
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distributed from the bottom heated wall into the cavity and hot fluid leave from the 

cavity from right top side. Isotherms are almost parallel to the bottom surface. The 

effect of Hartmann number on the flow field and temperature fields has been shown 

in Fig 3.12 at Ra = 104 and AR = 1. It is clearly seen that the flow and temperature 

fields are almost same as Fig. 3.11 for higher values Hartmann number Ha (= 25, 50 

and 100). But, an interesting result is found that a circulating cell is formed in the 

clockwise direction and ψmin = -0.065 in absence of magnetic field. It is also noticed 

that the clockwise rotating cell enclosed the majority of the part of the cavity. Since 

the cavity is heated from the bottom wall, the cavity behaves like differentially 

heated cavity from bottom and upper. Thus, isotherms are parallel to bottom wall and 

wavy distribution is produced. The outcome of Hartmann number on the flow field 

and temperature fields has been revealed in Fig 3.13 at Ra = 105 and AR = 1. It can 

easily be seen that the circulating cell is formed in the clockwise direction and ψmin = 

-0.274 in absence of magnetic field. This clockwise rotating cell occupies almost 

whole of the part of the cavity. It is noticed that flow strength of core of the rotating 

cell decreasing with the escalating values of Hartmann number. And, also this cell 

disappears for higher magnetic field. For Ra = 105, thermal boundary layer becomes 

thinner due to higher values of Rayleigh number as seen from right column of Fig. 

3.13. Isotherms are parallel to the heater for higher Ha (= 50 and 100) due to low 

flow velocity. However, spiral like temperature distribution is formed for lower Ha = 

(0 and 25). 

Figs. 3.14 – 3.16 illustrates the effect of Hartmann number on the streamlines (on the 

left) and isotherms (on the right) while AR = 2. Fig. 3.14 displays the streamline (on 

the left) and isotherms (on the right) for different values of Hartmann numbers at Ra 

= 103. It is clearly be seen that heating part of the cavity does not influence on the 

flow field and flow goes through the channel from the top wall of the channel 

without any circulation inside the cavity in the presence of magnetic field. In absence 

of magnetic field, a very small circulation cell with clockwise rotating direction and 

ψmin = -0.004 is formed at right bottom corner of the cavity due to domination of 

buoyancy force. Fig. 3.14 (on the right) shows the isotherms to analyze the effects of 

temperature distribution with different magnetic forces. Isotherms are spread from 

the bottom heated surface into the cavity and hot fluid leave from the cavity from  
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Fig. 3.14 (a) Streamlines and (b) Isotherms for the case 2 at Ra = 103, AR = 2 and 
selected values of Hartmann number Ha. 

H
a 

= 
0 

H
a 

= 
10

0 
H

a 
= 

50
 

H
a 

= 
25

 

(b) (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

 39

Fig. 3.15 (a) Streamlines and (b) Isotherms for the case 2 at Ra = 104, AR = 2 and 
selected values of Hartmann number Ha. 
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Fig. 3.16 (a) Streamlines and (b) Isotherms for the case 2 at Ra = 105, AR = 2 and 
selected values of Hartmann number Ha. 
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right top side. For large Hartmann number Ha = 50 and 100, the convection is almost 

suppressed, and the isotherms are almost parallel to the horizontal wall, indicating 

that a quasiconduction regime is reached. But wavy shaped isotherms are observed 

for lower values of Ha. The effect of Hartmann number on the flow field and 

temperature fields has been depicted in Fig 3.15 at Ra = 104 and AR = 2. It is found 

from the figure that the flow and temperature fields are almost indistinguishable as 

Fig. 3.14 for higher values Hartmann number Ha (= 25, 50 and 100). But, an 

interesting result is found that a circulating cell is formed in the clockwise direction 

and ψmin = -0.002 at the bottom part of the cavity in absence of magnetic field. As 

seen from the figure, thermal layer becomes thicker with decreasing of Hartmann 

number. For Ha = 0, spiral like distribution is formed. Fig. 3.16 have been plotted 

streamlines and isotherms for different values of Hartmann number Ha = 0, 25, 50 

and 100 at Ra = 105 and AR =2. As seen from the left column of this figure, an 

amount of fluid near the heating wall of the cavity is activated so as to generate a 

buoyancy-induced clockwise rotating cell for the lower values of Ha = (0, 25 and 

50). As the Hartmann number increases the strength of the rotating cell is reduced 

and pushed to the left bottom corner of the cavity and then through flow in the 

channel gains its strength and occupies the whole of the cavity as well as the channel 

indicating the establishment of conduction mode of heat transfer. A higher value of 

Hartmann number, which is a measure of magnetic field, retards the flow velocity. 

Thus, this recirculation cell becomes smaller at Ha = 25, and 50 and it moved out for 

further values of magnetic field. In addition, the main flow suppresses the rotating 

flow inside the cavity. The corresponding isotherms for the lowest value of Ha = 0 

shows the usual convective twist inside the cavity. The distortion of isothermal lines 

appears due to the high convective current inside the cavity. Distortions of isothermal 

lines start to disappear with increasing Hartmann number. As Hartmann number 

increases, isothermal lines inside the cavity as well as the channel approaches more 

and more towards the conduction-like distribution pattern of isothermal lines. For 

largest Hartmann number Ha = 100, the convection is almost censored, and the 

isotherms are almost parallel to the horizontal wall, indicating that a quasiconduction 

regime is reached. Wavy like temperature distribution is seen for Ha = 25 and 50. 
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Fig. 3.17 (a) Average Nusselt number and (b) average fluid temperature at the exit 
port versus Hartmann number Ha for the case 2 at AR = 1 and selected values of 
Rayleigh number Ra. 
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Fig. 3.18 (a) Pressure and (b) temperature gradient in the domain versus Hartmann 
number Ha for the case 1, at AR = 1 and selected values of Rayleigh number Ra. 
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Fig. 3.19 (a) Average Nusselt number and (b) average fluid temperature at the exit 
port versus Hartmann number Ha for the case 2 at AR = 2 and selected values of 
Rayleigh number Ra. 

(a) 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

 45

Fig. 3.20 (a) Pressure and (b) temperature gradient in the domain versus Hartmann 
number Ha for the case 2, at AR = 2 and selected values of Rayleigh number Ra. 
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Fig. 3.17 (a) and (b) express the average Nusselt number and average fluid 

temperature at the exit port, respectively while AR = 1. The figures are shown for 

different Rayleigh numbers at selected values of Hartmann numbers. Both Nusselt 

number and average fluid temperature at the exit port demonstrate comparable 

trends. In addition, both heat transfer and average fluid temperature are decreased 

with increasing of Hartmann numbers up to Ha = 50. Both heat transfer and average 

fluid temperature become steady for Ra = 103, 104 and 105 due to decreasing of flow 

velocity with increasing of strength of magnetic field. Pressure and temperature 

gradient in the domain for different Rayleigh number for AR = 1 is presented in Fig. 

3.18. It is clearly seen that pressure is positive for lower values of Ra = 103 and 104, 

but negative values are formed for increasing of Rayleigh number. In addition, from 

Fig 3.18(a), one may notice that negative values of pressure decreases with 

decreasing of Hartmann numbers for Ra = 105. One the other hand, temperature 

gradient is offered in Fig. 3.18 (b). As seen from the figure, general view of 

temperature gradient exhibit decreasing behavior with increasing of Hartmann 

numbers up to Ha = 50. However, temperature gradient becomes constant for Ra = 

103 and 104 from Ha = 25 to higher value, but for Ra = 105 from Ha = 50 to higher 

value. 

Fig. 3.19 (a) and (b) presents the average Nusselt number and average fluid 

temperature at the exit port, respectively while AR = 2. The figures are displayed for 

different Rayleigh numbers at chosen values of Hartmann numbers. Both Nusselt 

number and average fluid temperature at the exit port show similar trends. 

Furthermore, both heat transfer and average fluid temperature are decreased with 

increasing of Hartmann numbers. A linear decreasing is seen for Ra = 105 with 

increasing of Hartmann number. This is because increasing of strength of magnetic 

field causes decreasing of flow velocity. Pressure and temperature gradient in the 

domain for different Rayleigh number for AR = 2 is depicted in Fig. 3.20. It is 

clearly seen that pressure is positive for lower values of Ra = 103 and 104. But 

negative values are found for increasing of Rayleigh number. Also, from Fig 3.20(a), 

it is easily seen that negative values of pressure decreases with decreasing of 

Hartmann numbers for Ra = 105. One the other hand, temperature gradient is 
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presented in Fig. 3.20 (b). As seen from the figure, broad view of temperature 

gradient exhibit decreasing behavior with increasing of Hartmann numbers. 

3.3 CASE 3  

Fig. 3.21 shows the effect of Hartmann number on the streamlines (on the left) and 

isotherms (on the right) at Ra = 103 and AR = 1. As seen from the figures, heating 

part of the cavity is not so effective on flow distribution and inlet flow goes through 

the channel from the top wall of the channel without any circulation inside the cavity. 

This is because the lower value of Rayleigh number. Isotherms are distributed from 

the right heated vertical wall into the cavity and hot fluid leave from the cavity from 

right top side. The cavity behaves like heated cavity from right. Thus, isotherms are 

parallel to right vertical wall and wavy distribution is formed in absence of magnetic 

field. The effect of Hartmann number on the flow field and temperature fields has 

been depicted in Fig 3.22 at Ra = 104 and AR = 1. It can easily be seen that the flow 

and temperature fields are just about similar as Fig. 3.21 for higher values Hartmann 

number Ha (= 25, 50 and 100). The influence of Hartmann number on the 

streamlines and isotherms has been displayed in Fig 3.23 at Ra = 105 and AR = 1. 

One may notice that both the flow field as well as the thermal field strongly 

influenced for higher values of Rayleigh number. It can easily be seen that a 

circulating cell is formed in the clockwise direction and ψmin = -0.017 in absence of 

magnetic field at the bottom left corner. For Ra = 105, thermal boundary layer 

becomes thinner due to higher values of Rayleigh number as seen from Fig. 3.23. In 

this case, isotherms are clustered around the heater and fluid flows directly over the 

cavity. Because domination of buoyancy effective flow is increased.  

Figs. 3.24 – 3.26 illustrates the streamlines (on the left) and isotherms (on the right) 

to see the effects of temperature distribution with different magnetic forces while AR 

= 2. Fig. 3.24 shows the streamline (on the left) and isotherms (on the right) for 

different values of Hartmann numbers at Ra = 103. The fluid flow is characterized by 

open lines and inlet flow goes through the channel from the top wall of the channel 

without any circulation inside the cavity. Besides, Fig. 3.25 illustrates the streamline 

(on the left) and isotherms (on the right) for different values of Hartmann numbers at 

Ra = 104. It can be seen that the flow field is almost identical as Fig. 3.24. As seen  
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Fig. 3.21 (a) Streamlines and (b) Isotherms for case 3 at Ra = 103, AR = 1 and 
selected values of Hartmann number Ha. 
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Fig. 3.22 (a) Streamlines and (b) Isotherms for case 3 at Ra = 104, AR = 1 and 
selected values of Hartmann number Ha. 
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Fig. 3.23 (a) Streamlines and (b) Isotherms for case 3 at Ra = 105, AR = 1 and 
selected values of Hartmann number Ha. 
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Fig. 3.24 (a) Streamlines and (b) Isotherms for case 3 at Ra = 103, AR = 2 and 
selected values of Hartmann number Ha. 
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Fig. 3.25 (a) Streamlines and (b) Isotherms for case 3 at Ra = 104, AR = 2 and 
selected values of Hartmann number Ha. 
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Fig. 3.26 (a) Streamlines and (b) Isotherms for case 3 at Ra = 105, AR = 2 and 
selected values of Hartmann number Ha. 
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from the right column of Fig. 3.25, thermal boundary layer becomes thicker with 

decreasing of Hartmann number. For Ha = 50 and 100, higher values isotherms are 

parallel to the heated wall. However, this parallel distribution is distorted for lower 

values of Hartmann number. The distortion of isothermal lines appears due to the 

high convective current inside the cavity. Distortions of isothermal lines start to 

disappear with increasing Hartmann number. 

The effect of Hartmann number on the flow field and temperature fields has been 

revealed in Fig 3.26 at Ra = 105 and AR = 2. One may notice that the flow fields are 

almost alike as Figs. 3.24 – 3.25 for higher values Hartmann number Ha (= 25, 50 

and 100). But, an interesting result is found that a very small circulating cell is 

formed in absence of magnetic field. As seen from the left column of this figure, an 

amount of fluid near the heating wall of the cavity is activated so as to create a 

buoyancy-induced clockwise rotating cell for the lowest value of Ha = 0. On the 

other hand, the thermal layer becomes thicker with decreasing of Hartmann number. 

In addition, it is observed that the higher values isotherms are more tightened at the 

vicinity of the heated wall of the cavity. As Hartmann number increases, isothermal 

lines inside the cavity approaches more and more towards the conduction-like 

distribution pattern of isothermal lines. For large Hartmann number Ha = 50 and 100, 

the convection is almost suppressed, and the isotherms are almost parallel to the 

horizontal wall, indicating that a quasiconduction regime is reached. However, in the 

remaining area near the right wall of the cavity, the temperature gradients are very 

small. 

Fig. 3.27 (a) and (b) illustrate the average Nusselt number and average fluid 

temperature at the exit port, respectively while AR = 1. The figures are given for 

different Rayleigh numbers at preferred values of Hartmann numbers. Both Nusselt 

number and average fluid temperature at the exit port show similar trends. In 

addition, it is clearly noticed that both heat transfer and average fluid temperature are 

decreased with increasing of Hartmann numbers. Pressure and temperature gradient 

in the domain for different Rayleigh number while AR = 1 is offered in Fig. 3.28. It 

is found that pressure is positive for lower values of Ra (= 103 and 104) at selected 

values of Hartmann numbers. On the contrary, for higher value of Ra (= 105), 

pressure is decreasing also it starts to take negative value for Ha ≥ 38. However,  
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Fig. 3.27 (a) Average Nusselt number and (b) average fluid temperature at the exit 
port versus Hartmann number Ha for the case 3 at AR = 1 and selected values of 
Rayleigh number Ra. 
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Fig. 3.28 (a) Pressure and (b) temperature gradient in the domain versus Hartmann 
number Ha for the case 3, at AR = 1 and selected values of Rayleigh number Ra. 
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Fig. 3.29 (a) Average Nusselt number and (b) average fluid temperature at the exit 
port versus Hartmann number Ha for the case 3 at AR = 2 and selected values of 
Rayleigh number Ra. 
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Fig. 3.30 (a) Pressure and (b) temperature gradient in the domain versus Hartmann 
number Ha for the case 3, at AR = 2 and selected values of Rayleigh number Ra. 
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temperature gradient is shown in Fig. 3.28 (b). As seen from the figure, broad sight 

of temperature gradient show decreasing behavior with Rayleigh number. 

Variation of average Nusselt number and average fluid temperature at the exit port 

have been presented in Fig. 3.29 (a) and (b), respectively while AR = 2. It can easily 

be seen that both of the average Nusselt number and fluid temperature at the exit port 

gives alike trends. Furthermore, both heat transfer rate and average fluid temperature 

are decreased with rising of Hartmann numbers. It is also noticed that the heat 

transfer rate decreases straightly for Ra = 105 with increasing of magnetic force.  

On the other hand, pressure and temperature gradient in the domain for different 

Rayleigh number while AR = 2 is presented in Fig. 3.30. It is seen that pressure is 

positive up to Ra = 104. But negative values are produced for increasing of Rayleigh 

number. Additionally, pressure is falling with decreasing Ha for Ra = 105. Also, 

temperature gradient is shown in Fig. 3.30(b). It is clearly seen from the figure, 

temperature gradient is decreasing for Ra = 105 with rising values of Hartmann 

numbers. But, the temperature gradient is declining for Ra (= 103 and 104) up to Ha 

=50 later on it is increasing. 

 

 

 



CHAPTER 4 

CONCLUSIONS 

Mixed convection in a channel with a cavity heated from different sides under the 

influence of the applied magnetic force has been investigated numerically. The 

results are presented for flow and thermal fields as well as heat transfer for the 

channel with an enclosure subjected to constant hot temperature at a wall of the 

cavity while the remaining sidewalls are kept adiabatic. Finite element method is 

used to solve governing equations. Comparisons with the beforehand published work 

are performed and found to be in excellent agreement. The influences of Rayleigh 

number, the Hartmann number and the cavity aspect ratio have been reported. The 

various ideas and results have been discussed in detail at the relevant chapters of the 

thesis. In the present chapter an attempt is made to summarize the concepts presented 

and results obtained in the work reported already. A section on the scope of further 

work on associated fields of investigation is also included. 

4.1 SUMMARY OF THE MAJOR OUTCOMES 

Three different cases were considered based on heater position in the cavity as the 

left vertical side (Case 1), bottom side (Case 2) and right vertical side (Case 3). 

Prandtl number is chosen as Pr = 7.1 and Reynolds number is fixed at Re = 100. 

The following main concluding remarks are drawn from the present study: 

(i) Flow strength and heat transfer increase with Rayleigh number for all cases. 

(ii) Flow velocity is reduced with increasing of Hartmann number, and this reduces 
flow strength and heat transfer. Thus, magnetic field can be a control parameter 
for heat transfer and fluid flow in open ended channel flow with cavity. 

(iii) Each case is showed different behavior on the temperature distribution and flow 
field. Higher temperature gradient is observed in Case 3 when the heater locates 
on to the right wall. 

(iv) Heat transfer is increased with increasing of Rayleigh number and higher fluid 
temperature is formed for the highest value of Rayleigh number in Case 3. 
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(v) Highest mean Nusselt number is formed for Ra = 105 in Case 3. For lower 
values of Rayleigh number, changing of location of the heater becomes 
insignificant. 

(vi) Conduction mode of heat transfer becomes dominant for low values for Case 1. 

(vii) Pressure inside the domain becomes almost zero for lower values of Rayleigh 
numbers and pressure becomes negative at the highest value of Rayleigh 
number.  

(viii) The influence of cavity aspect ratio on fluid flow and temperature field is found 
to be pronounced. The heat transfer rate for lower cavity aspect ratio is higher 
than for higher aspect ratio. 

4.2 FURTHER WORKS 

The following can be put forward for the further works as follow-ups of the present 

research as. 

 Double diffusive mixed convection can be analyzed through including the 
governing equation of concentration conservation.  

 Investigation can be performed by using magnetic fluid instead of electrically 
conducting fluid within the porous medium and changing the boundary 
conditions of the cavity’s walls. 

 The study can be extended for turbulent flow using different fluids, different 
thermal boundary conditions such as constant heat flux or radiation and unsteady 
flow.  

 Only two-dimensional fluid flow and heat transfer has been analyzed in this 
thesis. So this deliberation may be extended to three-dimensional analyses to 
investigate the effects of parameters on flow fields and heat transfer in cavities.  
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