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ABSTRACT 

Drag analysis based on CFD (computational Fluid Dynamics) simulation has become a 

decisive factor in the development of new, economically efficient and environmentally 

friendly ship hull forms. Recently, computational Fluid Dynamics (CFD) has been 

experiencing rapid advances due to both computer technology progress and efficient 

algorithms that have been developed to solve the Navier-Stokes(N-S) equations used in 

the flow analysis around ship  hulls. Three-dimensional finite volume method (FVM) 

based on Reynolds averaged Navier-Stokes equations (RANS) has been used to simulate 

incompressible flow around two conventional models namely Wigely parabolic and 

Series 60 hull in steady-state condition.  Different turbulence models such as Standard k-

ε, Realizable k-ε and Shear stress transport (SST) k-ω are used with standard wall 

function to measure the drag coefficient. It is observed that k-ε turbulence model shows 

better performance than any other model. The numerical solutions of the governing 

equations have been obtained using commercial CFD software package FLUENT 6.3.26. 

Model tests conducted with these two models are simulated to measure various types of 

drag coefficient at different Froude numbers. The numerical results in terms of pressure 

coefficient and drag coefficient for different Froude numbers have been shown 

graphically or in the tabular form.  The agreement between the numerical results and the 

experimental indicates that the implemented code is able to reproduce correctly the drag 

coefficient, pressure field, velocity field and the free-surface elevation around the Wigely 

parabolic and Series 60 hull.  Velocity vectors as well as contour of pressure distribution 

have also been displayed graphically. The computed results show good agreement with 

the experimental measurements/numerical results at a Froude number below 0.3. 
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CHAPTER 1 

1.INTRODUCTION 

1.1  What is Computational Fluid Dynamics? 

Computational fluid dynamics, usually abbreviated as CFD, is a branch of fluid 

mechanics that uses numerical methods and algorithms to solve and analyze 

problems that involve in fluid flows ,heat transfer, mass transfer and associated 

phenomena by means of mathematical modeling (partial differential equations), 

numerical methods (discretization and solution techniques),software tools (solvers, 

pre- and post- processing utilities).This is a very useful tool to solve the basics 

equations that model the flow movement. The majority of these equations do not 

have any analytical solution. For these reasons we resort to numerical analysis with 

CFD. The objective of these tools is to solve approximate (numerically) the flow 

basic equations whose solutions give us the movements and other characteristics of 

the flow. These techniques discretise the spatial and time domain for reaching the 

solution. 

1.2  Computational Fluid Dynamics in Research and 

Development 

Computational fluid dynamics (CFD) is one of the branches of fluid mechanics that 

uses numerical methods and algorithms to solve and analyze problems in fluid flows. 

Computers are used to perform the millions of calculations required to simulate the 

interaction of fluids and gases with the complex surfaces used in engineering. 

Research in fluid flow problems is necessary for the development of new fluid based 

systems. Computational Fluid Dynamics (CFD) has the power to model fluid flow 

and heat transfer in an abundance of situations. With the advent of more powerful 

computers and more comprehensive computer codes, CFD has come to the forefront 
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as a legitimate and effective research tool. CFD analysis can be much more cost 

effective compared to experimental models particularly in the ship design process. 

Since changes can be made quickly and easily to almost any characteristic of the 

simulation. Simulations can also be set up more quickly and easily than experimental 

methods. However, since it is a computer based solution technique, the results must 

be verified against experimental data. Not every simulation needs to be compared 

with experimental values. Only a few base cases are compared for validation 

purposes and then it is assumed safe to say that the other CFD simulations in that 

range are valid. Even if some simulations are analyzed both experimentally and 

numerically, CFD is still beneficial since it has the ability to offer more information 

to researchers about the flow. CFD not only gives the overall values that 

experimentation offers, but gives a value at every node in the domain. If the overall 

values match, it can be assumed that all the detail described by the CFD solution is 

legitimate, giving researchers the ability to investigate small but important regions of 

the flow more closely. 

1.3  CFD Advantages versus Disadvantages 

The advantages of CFD techniques will probably be summarized in the following 

lines: 

• A great time and cost reduction in new designs. 

• There is a possibility to analyze different problem whose experiments are 
very difficult and dangerous. 

• The CFD techniques offer the capacity of studying system under conditions 
over its limits. These conditions will probably be dangerous to experimental. 

• The level of detail is practically unlimited. The experimental methods are 
more expensive with the increasing of measure point. However CFD 
techniques permits to generate several pieces of information without any 
cost. This offers the possibility to carry along a lot of parametric studies. 

• The possibility to generate different graphs permits to understand the features 
of result. 
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Unfortunately, there are drawbacks to computational fluid dynamics as well .Its 

accuracy is still in many aspects insufficient. 

•  It can be difficult to model accurately in all situations with current numerical 
algorithms. Boundary layer transition and separation are two phenomena that 
can be particularly troublesome to predict with a high degree of accuracy. 

• Many problems must be simplified to make them tractable. With some 
problems, computer resources may not be available to solve the problem to 
the level of accuracy originally desired. Examples of problem simplification 
include modeling a three-dimensional problem as a two-dimensional or 
axisymmetric problem, reducing the computational domain size or solution 
resolution of a given flow field, or modeling a time-varying problem as a 
steady-state problem.  

• Certain assumptions must be made to obtain a solution. Usually these 
assumptions appear as boundary conditions and are relatively accurate – 
examples are asymptotic behavior at far-field boundaries or prescribed inlet 
or exit conditions. 

• Particular solution algorithm might not produce a converged solution for a 
given flow field. In many cases, simply using intuition and applying 
specifically suited algorithms to the problem at hand can avoid this problem. 

1.4  CFD in Ship Design Practice and Ship Hydrodynamics 

Analysis 

The practical application of the Computational Fluid Dynamics (CFD), for predicting 

the flow pattern around ship hull has made much progress over the last decade. 

Today, several of the CFD tools play an important role in the ship hull form design. 

CFD has been used for analysis of ship resistance, sea-keeping, manoeuvering and 

investigating its variation when changing the ship hull form due to vary its 

parameters, which represents a very important task in the principal and final design 

stages. However, due to the existence of free surface and complex ship geometry, 

CFD has fallen behind its counterparts in other industrial fields. But with the recent 

breakthrough in ship CFD technology, practical applications of CFD in analyzing 

and predicting ship performance now become possible. 
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The solution of Drag measurement problems using Computational Fluid Dynamics 

(CFD) analysis is now becoming tractable through the accessibility of high 

performance computing. In ship hydrodynamics drag is also being named as 

“resistance”. Resistance characteristic of ship is one of the most important topics in 

Naval Architecture, Offshore and Ocean Engineering. Resistance of a moving ship 

occurs when the fluid force acting on the ship to oppose its motion, exerting pressure  

on the body of ship hull that may cause deformation in the ship structure and alter the 

flow of the fluid itself. In ship hydrodynamics where the accurate result is never 

possible and getting the resistance consequences of a ship hull form, optimization 

based on CFD solutions quantitative accuracy of integral results such as drag is 

imperative. When designing a ship, it is necessary to determine the total drag in order 

to obtain the maximum speed of ship and to determine what size of engine is required 

to reach a desired cruising speed as size of the engine will affect the weight of the 

ship and as well as the amount of fuel the ship consumes. This allows the designers 

to determine if the drag of the ship is an acceptable level from a financial standpoint 

as well as a physical standpoint. The financial perspective relates to the cost of the 

engine, and the fuel that the engine consumes in order to meet the ship’s mission 

requirements. Overall drag measurement is an important parameter that has been 

thoroughly studied by Naval Architects since this determines the power required to 

propel a ship. In preliminary stage, model test is expensive and time concise. CFD 

computation might be more practical which could provide more accurate and more 

reliable full-scale power prediction simulating the optimum result with effective cost 

and least amount of time. 

When designing a ship, a scale model can be constructed and tested in a towing tank 

so that performance of the full scale ship can be determined by the scale model. 

William Froude developed the earliest technique to measure the resistance of a ship 

based on the testing of a model in a towing tank. This technique is not so easy to 

implement as the one used when a body is fully immersed in a fluid, for example, the 

case of an aircraft wing in a wing tunnel by Schwabacher (2000).  

An alternative to the expensive experimental method is to use computer simulations 

based on methodologies of Computational Fluid Dynamics (CFD) to analyze the 
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flow field and predict drag for actual flow conditions. These methodologies are 

robust and can provide detailed information about the flow field. Advances in 

Computational methods and computer hardware allow efficient and accurate 

predictions for most flow conditions. Application of CFD methods to complex flows, 

however, needs to be examined carefully and validated with experimental data. 

In our present work we will analyze drag coefficients of the hull of various model of 

ship. The hull is the main body of the ship below the main weather deck. The hull 

consists of an outside covering (or skin) and an inside framework to which the skin is 

secured. The economic recession, the environmental impact as well as the continuous 

fossil fuel consumption encourage actions that focuses on saving energy. In the 

vessels sector, one of the main objectives has always been to reach a hydro-

dynamically optimum hull which will give the desired speed with minimum power. 

In such cases, it is necessary to analyze ship hull with free surface by using a 

numerical model with non-linear free surface conditions. The simulation of free 

surface flows around ship hulls, from an engineering standpoint, provides the ability 

to predict or calculate important parameters such as drag, lift etc. The drag, in 

particular, is very sensitive to free surface conditions. 

1.5  Previous Research 

Considering the importance of calculating drag co-efficient, an extensive research 

work has been carried out by naval architects, offshore and ocean engineers, hydro-

dynamists and mathematicians. Both experimental and numerical investigations have 

been carried out to examine the characteristic of turbulent flow around different hull 

designs. The prediction of total drag experienced by an advancing ship is a 

complicated problem which requires a thorough understanding of the hydrodynamics 

forces acting on the ship hull, the physical process from which these forces arise and 

their mutual interaction. For instance, it is well established that an advancing ship 

generates a complex flow field which consists both the wave structure and the 

viscous boundary layer. These two features referred to as the wave resistance and the 

viscous resistance, respectively. It is the mutual interaction that renders the prediction 
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of the total drag of an advancing ship a challenging task, whether by experimental, 

analytical or computational methods.  

Modern Computational Fluid Dynamics (CFD) computer codes which solve the 

Reynolds-Averaged Navier Stokes(RANS) equations for complex geometries have 

been used to simulate viscous flow around ship hulls since the early 1990s. The first 

significant simulations were confined to tanker and were relatively simple by today’s 

standards; wave effects were absent, the free surface was considered as a plane of 

symmetry, and the most sophisticated turbulence model employed was the k-ε 

model. A summary of these early simulations can be found in the proceedings of the 

SSPA-CTH-IIHR workshop on Ship Viscous Flow held in Gothenburg, Sweden by 

Larsson et al. (1991). 

As the speed and memory capacity of the computers increased and more 

sophisticated RANS codes were developed more realistic simulations were able to be 

performed. These advances are well documented in the proceedings of several 

international conferences on the application of CFD techniques to ship flows which 

have been held every few years since 1990, most notably those in Tokyo by Kodoma 

(1994), in Gothenburg by Larsson et al. (2003) and in Tokyo by Hino (2005). 

Significant information on the application of CFD codes to naval ships and 

submarines can also be found in another proceedings of the “Symposium on Naval 

Hydrodynamics”, which is a biennial symposium sponsored by the US Office of 

Naval Research (ONR) and was first held in 1956. 

Sangseon (1983) from the university of IOWA, performed a study of the viscous 

resistance for the Wigley Parabolic ship. In this study, the resistance for the fixed and 

free conditions as well as the viscous resistances are analyzed. Using Computational 

Fluid Dynamics tools the frictional resistance of a Trimaran ship has been studied by 

Gray (2007). Repetto (2001) computed drag co-efficient with free surface flows of 

ships like like Wigley and Series 60 model and other Floating vessels. The numerical 

study of Series 60 hull to improve the resistance characteristic has been investigated 

by Fonfach et al.(2010). Recently Fluent code simulation has been implemented 

around another type of naval hull named DTMB5415 by Jones et al (2010). In this 
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simulation wave profile for different find of mesh has been showed using Volume of 

Fluid (VOF) model. Drag estimates and their error estimation comparing with the 

experimental values in the presence on free surface flows have been simulated by 

Muscientes et al. (2010).For their wide range of applicability interface capturing 

methods are most frequently for free surface flows, but they can be computationally 

expensive. In this work, the volume of fluid (VOF) method implemented in a RANS 

solver was employed to simulate the free surface wave flow around Wigley parabolic 

and Series 60 hulls. VOF formulation implemented in FLUENT(ANSYS 2006)is 

slightly different from the original formulation of Hirt and Nichols(1981) and more 

general. Numerical breaking waves around a surface piercing NACA 0012 hydrofoil 

has been implemented by Ungureanu et al. (2011). Reynolds-averaged Navier-Stokes 

method has been implemented with the numerical solution of free-surface wave 

flows around surface-piercing cylindrical structures using an unstructured grid in the 

work of Rhee (2012).Numerical test were also performed by Rhee et al.(2005) who 

proposed a VOF-based technique to simulate the flow around the foil and the 

validations suggested that the most efficient solutions were found when the high 

resolution interface capturing(HRIC) schemes are employed. 

Applications of computational fluid dynamics (CFD) to the maritime industry 

continue to grow as this advanced technology takes advantage of the increasing 

speed of computers. Numerical approaches have evolved to a level of accuracy which 

allows them to be used during the design process to predict ship resistance. 

Simulation of flows around hull forms is of considerable importance in marine 

hydrodynamics. This is mainly due to lack of reliable and sufficiently accurate 

experimental data. Generation of quality experimental data requires a large number 

of hull forms and experimental facilities. In the last two decades, different areas of 

incompressible flow modeling - including grid generation techniques, solution 

algorithms and turbulence modeling, and computer hardware capabilities have 

witnessed tremendous development. In view of these developments, computational 

fluid dynamics (CFD) can offer a cost-effective solution to many problems in 

underwater vehicle hull forms. However, effective utilization of CFD for marine 

hydrodynamics depends on proper selection of turbulence model, grid generation and 

boundary resolution. On the other hand grid generation and boundary layer resolution 
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depends on the kind of turbulence model that is used in a solution process. However, 

it can be said that the main issue is turbulence modeling and grid generation and 

boundary layer resolution are sub-issues. 

Traditional methods to predict resistance on real hulls are based on towing tank 

models running at corresponding different Froude numbers in the region 0.2< Fr <0.5 

and then scaling results taking into account a friction line for the respective Reynolds 

numbers from 106 < Re < 108.Advantages of these methods are the knowledge and 

experience acquired through the years that make results reasonably trustworthy. This 

has been one of the motivations of attempting to predict hull behaviors using 

computational tools, for this specific case, resistance. An alternative to the expensive 

experimental method is to use computer simulations based on methodologies of 

computational fluid dynamics (CFD) to analyze the flow field and predict drag for 

actual flow conditions which can be compared with other previous numerical results 

with Olivieri et al. (2001) and Azcueta (2005). These methodologies are robust and 

can provide detailed information about the flow field. Advances in computational 

methods and computer hardware allow efficient and accurate predictions for most 

flow conditions with Wanderely et al. (2011) as for Series 60 model.In order to 

obtain accurate results even in steady state simulations, Pranzitelli et al. (2011) 

included sufficient nodes within boundary layer correct mesh for high zones and 

suitable time step sizes. 

In our present work, in the case of Wigley hull we have compared the computed 

result with other numerical results with Azcueta (2005), Mucientes (2010), 

Pranzitelli et al.(2011) and also with the experimental result Anon (1983).Similarly 

for the Series 60  hull the computed result has been compared with the numerical 

results like Azcueta  (2005), Pranzitelli et al.(2011) and also with the experimental 

result Toda et al. (1992). 

Many researchers used turbulence modeling to simulate flow around axisymmetric 

bodies since late nineteenth. The flow around under water or floating bodies was 

investigated and the force acting on it was calculated by a large number of 

researchers. The present research is influenced by the work of Versteeg and  

Malalasekera (1995), Banawan  et al. (2006), Ozdemir et al. (2007), Izaguirre et al . 
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(2010),Saha G.K (2004), Mulvany et al. (2004), Rahman (2008),Jones  et al .(2008) 

etc. 

1.6  Research Objectives 

The main objective of the present study is to calculate ship resistance and observe on 

the flow pattern around the hull using CFD (computational fluid Dynamics) 

simulation and investigating its variation when changing the ship hull form 

parameters using different CFD tools. The investigation is carried out to simulate 

incompressible flow around hull of two models namely Wigley Parabolic and Series 

60. The major objectives of this study are: 

• To compute the total drag using CFD tools in Wigley Parabolic and Series 60 
at different turbulent models at different forward speed as well as various 
Froude numbers. 

• To compute the drag co-efficient of ship  

• To model the problem with appropriate boundary conditions creating mesh on 
it. 

• To validate present numerical results with experimental and other reported 
numerical results. 

• To observe the flow pattern around the ship hull. 
 



 

 

CHAPTER 2 

2. COMPUTATIONAL FLUID DYNAMICS MODELING 

CONSIDERATIONS 

2.1  Discretization Methods in Computational Fluid 

Dynamics  

Every computational fluid dynamics, in one form or another, is based on the governing 

equations of fluid dynamics: the continuity, energy, and momentum equations. These 

equations mathematically state three things, respectively; that mass is conserved, that 

energy is conserved, and that force equals mass times acceleration. In general, these 

governing equations can be written in two forms: the integral form and the partial 

differential equation form. Though the form of the equations results little difference 

with regard to hydrodynamic theory, different form leads to vastly different CFD 

solution algorithm. Since computers are unable to directly solve the governing 

equations of fluid motion, these equations must be transformed into forms that 

computers can handle; namely, the partial derivative (or integral) equations must be 

replaced with discrete numbers. In short, the computational domain is discretized so 

that the dependent variables are computed only at discrete points. Derivatives and 

integrals are approximated, which lead to an algebraic representation of the governing 

equations. In this way, a calculus problem is effectively transformed into an algebraic 

problem. There are four discretization schemes in CFD: (i) Finite Difference Method 

(FDM) (ii) Finite Element Method (FEM) (iii) Finite Volume Method (FVM) which 

are discussed elaborately by Versteeg & Malalasekera, (1995) and (iv) Boundary 

Element Method (BEM). 
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2.1.1  Finite Difference Method (FDM) 

The FDM is the oldest of the methods, considered to have been developed by Euler in 

1968, and is used to obtain numerical solution to differential equations by simple 

calculations. Tailor’s series expansions are used to generate finite difference 

approximations to the derivatives of the RANS equations. The derivatives appearing in 

the governing equations are then replaced by these finite difference expressions, 

yielding an algebraic equation for the flow solution at each grid point. It is the simplest 

method to apply, but requires a high degree of regularity of the mesh. 

2.1.2  Finite Element Method (FEM) 

The FEM was developed initially as a procedure for constructing matrix solutions to 

stress and displacement calculations in structural analysis. The method uses simple 

piecewise polynomial functions on elements to describe the variations of the unknown 

flow variables. When these approximation functions are substituted into the governing 

equations it will not hold exactly, and the concept of a residual is introduced to 

measure the errors. Multiplying by a set of then minimizes these residuals weighting 

functions and then integrating. This result is a set of algebraic equations for the 

unknown terms of the approximating functions and hence the flow solutions can be 

found. Finite element method is not used extensively as it requires greater 

computational resources and CPU effort than equivalent finite volume method. 

2.1.3  Finite Volume Method (FVM) 

The FVM method discretises the integral form of the governing equations directly in 

physical space. The resulting statements express the exact conservation of relevant 

properties for each finite cell volume. Finite-difference type approximations are then 

substituted for the terms of the integrated equations, forming algebraic equations that 

are solved by an iterative method which will be discussed in Chapter 3. As this method 

works with the cell volumes and not the grid intersection points, both structured and 

unstructured meshes can be used. Flow variables can be stored either at Cell Centre or 

Cell Vertex locations. Conveniently, the cells coincide with the control volumes if 

using the Cell Centered scheme. For the cell vertex scheme, additional volumes are 

required to be constructed; however, the scheme has the advantage that boundary 

conditions are more easily applied since the variables are known on all boundaries. 
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2.1.4  Boundary Element Method (BEM) 

The boundary element method (BEM) is a numerical computational method of solving 

linear partial differential equations, which have been formulated as integral equations. 

It can be applied in many areas of engineering and science including fluid mechanics 

and fracture mechanics. The integral equation may be regarded as an exact solution of 

the governing partial differential equation. The boundary element method attempts to 

use the given boundary conditions to fit boundary values into the integral equation, 

rather than values throughout the space defined by a partial differential equation. Once 

this is done, in the post-processing stage, the integral equation can then be used again 

to calculate numerically the solution directly at any desired point in the interior of the 

solution domain.BEM is applicable to problems for which Green’s functions can be 

calculated. In BEM, there is no need to discretize the volume into meshes; unknowns 

at chosen points inside the solution domain are involved in the linear algebraic 

equations approximating the problem being considered. 

2.2  Basics of Fluid Dynamics 

In order to understand the results of this study, one must first understand the basics of 

fluid flow concepts including viscosity (µ), density (ρ), laminar and turbulent flow and  

also Reynolds and Froude number. Firstly, all fluids, whether they are liquids or 

gasses, have a certain density and viscosity. While the definition of density is widely 

understood as the weight of set volume of material, the definition of viscosity is much 

less widely known. Viscosity is a measure of a fluids resistance to flow. When a fluid 

is sheared (a force is applied), it begins to strain at a rate inversely proportional to the 

viscosity (Versteeg and Malalasekera, 1995). Accordingly, a high viscosity translates 

to a slower moving fluid.  

2.2.1  Reynold’s Number  

The Reynolds number can be defined for a number of different situations where a fluid 

is in relative motion to a surface. Reynolds number is represented by the expression: 

µ
ρVL

=Re  
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Where, V is the free stream flow velocity and L is the length value suited for the 

situation, typically the length of the hull of a ship. Reynolds number is a dimensionless 

value describing the viscous behavior of all Newtonian fluids. Because density (ρ), 

viscosity (µ) and L remain constant throughout the experiment, the Reynolds number 

is directly proportional to the free-stream velocity. 

2.2.2  Froude Number 

The Froude number is a dimensionless number defined as the ratio of a characteristic 

velocity to a gravitational wave velocity. It may equivalently be defined as the ratio of 

a body's inertia to gravitational forces. In fluid mechanics, the Froude number is used 

to determine the resistance of an object moving through water, and permits the 

comparison of objects of different sizes. Froude number is represented by the 

expression: 

VFn
gL

=
 

where V is the velocity of the ship, g is the acceleration due to gravity, and L is the 

length of the ship at the water line level. 

2.3  Laminar and Turbulent Flow 

In general, viscous flow over a surface can be characterized in two ways.  

Laminar flow: If the path lines of the various fluid elements that make up the flow 

move smoothly and evenly, as shown in Figure 2.1 (a), the flow is called laminar. 

Laminar flow is orderly in nature and follows smooth streamlines. In laminar flow the 

fluid appears to move by the sliding of limitations of the infinitesimal thickness 

relative to adjacent layers. 

Turbulent flow: If the movement of the fluid elements is rough and erratic, as shown 

in Figure 2.1 (b), the flow is called turbulent. Turbulence is a random phenomenon of 

flow disorder paradoxically due to the destabilizing effects of viscosity (Versteeg & 

Malalasekera, 1995). 
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Figure 2.1: (a) Laminar and (b) Turbulent Path Line 

Turbulent flow is characterized by fluctuation in velocity at all points of the flow field 

and these fluctuations with no definite frequency. 

Due to the irregular motion of the fluid elements in a turbulent flow field, elements 

with higher kinetic energy from the outer regions of the flow are readily circulated 

close to the surface of the body. Thus, the average flow velocity near the body surface 

is larger for a turbulent flow than for a comparable laminar flow. This phenomenon is 

demonstrated in Figure 2.2, which shows the relative velocity profiles for laminar and 

turbulent flow. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Laminar and Turbulent Velocity Profiles 
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Directly above the surface, the slope of the turbulent velocity profile is much greater 

than the laminar curve’s slope. Since the shear stress (and skin friction force) on the 

body is directly proportional to the velocity gradient at the surface, it is clear that the 

skin friction drag is larger for the turbulent flow in comparison with the laminar flow. 

Reynolds number is used as a measure of when or where turbulent flow will occur. 

When 6Re 10< ; the flow is laminar 

Re ≥ 106; the flow is turbulent. 

2.4  Drag Forces 

In fluid dynamics, drag (sometimes called resistance) refers to forces that oppose the 

relative motion of an object through a fluid. Drag forces act in a direction opposite to 

the oncoming flow velocity. When fluid flows over the hull of a ship then generally 

the ship is considered stationary. On the other hand, the ship moves through the fluid, 

while the fluid is more or less stationary. However, analyzing flow patterns past a 

moving body with stationary fluid is dynamically equivalent to analyzing the flow 

pattern around a stationary body as the flow moves. Drag of a moving ship occurs 

when the fluid force acting on the ship to oppose its motion, exerting pressure that may 

cause deformation in the structure and alter the flow of the fluid itself. In fluid 

dynamics, the drag equation is a practical formula used to calculate the force 

of drag experienced by an object due to movement through a fully enclosing fluid. The 

force on a moving object due to a fluid is: 

ACVF DD
2

2
1 ρ=          (2.1) 

where  

FD is the force of drag, which is by definition the force component in the direction of 

the flow velocity, 

 ρ is the mass density of the fluid, 

V is the velocity of the object relative to the fluid, 
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A is the wetted surface area and 

CD is the drag coefficient — a dimensionless constant related to the object's geometry 

and taking into account both viscous and wave making drag. 

As a general rule, the wetted surface area is used as the frontal area  for stream line 

bodies (e.g. pod, submarine).  

2.4.1  Frictional and Viscous Drag 

Frictional drag comes from friction between the fluid and the surfaces over which it is 

flowing. This friction is associated with the development of boundary layers, and it 

scales with Reynolds number. The viscous effects are a result of the friction between 

the fluid and the body and are generated in the boundary layer. The viscous resistance 

is defined as the component associated with the expenditure of energy in generating 

vorticity and turbulence. 

Frictional drag , ⎟
⎠
⎞

⎜
⎝
⎛= AVCR fF

2

2
1 ρ  

 and Viscous drag ,
SV

RC F
V

2

2
1 ρ

=        (2.1) 

 where k  is the form factor. 

 

2.4.2  Residuary and Wave Making Drag 

Wave-making and eddy-making drag components are often lumped into a single 

“residuary drag,” especially when drag measurements are extrapolated from model 

testing. Wave making is usually by far the larger component of residuary drag; it is 

therefore given more attention in research and in the designing of a hull.The residuary 

drag, RW can be further broken down into numerous individual components of drag, 

with the main component being the wave making drag.. Wave making resistance CW is 

defined as the resistance due to the loss of energy to the formation of waves. 

SV

R
C W

W
2

2
1 ρ

=          (2.3) 
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2.5  Grid Generation 

Analytical solutions of fluid dynamics problems involve closed-form mathematical 

expressions that describe the variation of the dependent variables continuously 

throughout the flow domain. However, numerical solvers cannot generate closed-form 

analytical expressions, but it can calculate values of the dependent variables only at 

discrete points in the domain. These points are called grid points, or nodes. In order for 

a computational fluid dynamics code to provide a complete flow field description for a 

particular problem, the user must specify a grid that tells the flow solver at what 

locations in the problem domain the solution is to be computed. The specifications of 

the grid construction can have a major influence on the fidelity of the solution and can, 

in fact, determine whether a solution is even attainable. 

Grid generation is often considered as the most important and most time consuming 

part of CFD simulation. The quality of the grid plays a direct role on the quality of the 

analysis, regardless of the flow solver used. Additionally, the solver will be more 

robust and efficient when using a well constructed mesh. 

2.5.1  Solution Dependence on Grid 

The quality and efficiency of the numerical solution is highly dependent on the 

construction of the grid used in the computational model. Several factors must be 

considered when generating a grid to ensure that the best possible numerical results are 

obtained with a particular solution algorithm. Grid point placement can have a 

substantial effect on the stability and convergence of the numerical solver. For 

example, if grid points are not adequately concentrated in regions of high flow 

parameter gradients (such as near shock waves, in boundary layer separation regions, 

or near stagnation points), the numerical solver may not be able to adequately resolve 

these gradients in the flow field. Because obtaining the solution numerically is an 

iterative process, it is possible, and quite likely, that an insufficiently fine mesh will 

preclude the adequate calculation of important flow features, leading to oscillations in 

computed parameters or even divergence of the solution. 

In numerical grid construction, there is an important trade-off between mesh density, 

solution efficiency, and solution accuracy. Generally, the more grid points contained in 
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a given grid, the more accurate the final, converged solution will be. However, the 

density of the grid cannot be arbitrarily increased without bound. Computer processor 

speed and memory limitations often dictate how fine a mesh can realistically be. 

Increasing the density of a mesh too much can quickly cause a given problem to 

become intractable. Along these same lines, it is important for the CFD analyst to 

carefully concentrate grid points in high-gradient regions while keeping the grid 

density throughout the majority of the computational domain fine enough for accuracy 

yet sparse enough for speed. Clearly, the maximum allowable grid point density of a 

particular simulation is highly dependent on the speed and capabilities of the computer 

platform being used. 

2.5.2  Structured Grids 

Structured grid methods take their name from the fact that the grid is laid out in a 

regular repeating pattern called a block. These types of grids utilize quadrilateral 

elements in 2D and hexahedral elements in 3D in a computationally rectangular array. 

Although the element topology is fixed, the grid can be shaped to be body fitted 

through stretching and twisting of the block. Really good structured grid generators 

utilize sophisticated elliptic equations to automatically optimize the shape of the mesh 

for orthogonality and uniformity. 

 
Figure 2.3: Structured Multiblock Mesh Using Point to Point 
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Structured grids enjoy a considerable advantage over other grid methods in that they 

allow the user a high degree of control. Because the user places control points and 

edges interactively, it has total freedom when positioning the mesh. In addition, 

hexahedral and quadrilateral elements, which are very efficient at filling space, support 

a high amount of skewness and stretching before the solution will be significantly 

affected. This allows the user to naturally condense points in regions of high gradients 

in the flow field and expand out to a less dense packing away from these areas. Also, 

because the user interactively lays out the elements, the grid is most often flow-

aligned, thereby yielding greater accuracy within the solver. Structured block flow 

solvers typically require the lowest amount of memory for a given mesh size and 

execute faster because they are optimized for the structured layout of the grid. Lastly, 

post processing of the results on a structured block grid is typically a much easier task 

because the logical grid planes make excellent reference points for examining the flow 

field and plotting the results. 

The major drawback of structured block grids is the time and expertise required to lay 

out an optimal block structure for an entire model. Often this comes down to past user 

experience and force placement of control points and edges. Some geometries, e.g. 

shallow cones and wedges, do not lend themselves to structured block topologies. In 

these areas, the user is forced to stretch or twist the elements to a degree which 

drastically affects solver accuracy and performance. Grid generation times are usually 

measured in days if not weeks. 

2.5.3  Unstructured Grids 

Unstructured grid methods utilize an arbitrary collection of elements to fill the domain. 

Because the arrangement of elements has no discernible pattern, the mesh is called 

unstructured. These types of grids typically utilize triangles in 2D and tetrahedral in 

3D. While there are some codes which can generate unstructured quadrilateral 

elements in 2D, there are currently no production codes which can generate 

unstructured hexahedral elements in 3D.  

It is interesting to note that discretization of a domain can be accomplished either 

directly in the physical space or in the transformed computational space; the choice 

depends mainly on the numerical solution method and the domain of the solution. For 
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those solution schemes where the governing fluid dynamics equations are integrated 

numerically on the physical domain and solved, the corresponding grid system is 

usually generated directly in the physical domain. In such cases, the domain of 

solution is divided into individual cells (usually triangles or quadrilaterals in 2D or 

pyramids or tetrahedrons in 3D) and for these cases, the grid points generally cannot 

be associated with grid lines. Instead locations of points must be individually 

specified. 

 

   
Figure 2.4: Unstructured Mesh Consisting of Triangles and Tetrahedral Elements 

 

The advantage of unstructured grid methods is that they are much automated and, 

therefore, require little user time or effort. The user need not worry about laying out 

block structure or connections. Additionally, unstructured grid methods are well suited 

to inexperienced users because they require little user input and will generate a valid 

mesh under most circumstances. Unstructured methods also enable the solution of very 

large and detailed problems in a relatively short period of time. Grid generation times 

are usually measured in minutes or hours. 

The major drawback of unstructured grids is the lack of user control when laying out 

the mesh. Typically any user involvement is limited to the boundaries of the mesh with 

the mesher automatically filling the interior. Triangle and tetrahedral elements have 

the problem that they do not stretch or twist well, therefore, the grid is limited to being 
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largely isotropic, i.e. all the elements have roughly the same size and shape. This is a 

major problem when trying to refine the grid in a local area, often the entire grid must 

be made much finer in order to get the point densities required locally. 

2.5.4  Hybrid Grids  

Hybrid grid methods are designed to take advantage of the positive aspects of both 

structured and unstructured grids. Hybrid grids utilize some form of structured grid in 

local regions while using unstructured grid in the bulk of the domain. 

Hybrid grids can contain hexahedral, tetrahedral, prismatic, and pyramid elements in 

3D and triangles and quadrilaterals in 2D. The various elements are used according to 

their strengths and weaknesses. Hexahedral elements are excellent near solid 

boundaries (where flow field gradients are high) and afford the user a high degree of 

control, but are time consuming to generate. Prismatic elements (usually triangles 

extruded into wedges) are useful for resolving near wall gradients. In almost all cases, 

tetrahedral elements are used to fill the remaining volume. 

Another type of hybrid grid is the quasi-structured or "cooper" grid method. While 

basically a form of the prismatic grid extrusion technique, the quasi-structured method 

does allow for some sophisticated forms of growing the 3D mesh using a sweeping 

concept within a CAD solid model. 

   
 

Figure2.5: Quasi Structured Prismatic Mesh 
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The advantage of hybrid grid methods it can be utilized the positive properties of 

structured grid elements in the regions which need them the most and use automated 

unstructured grid techniques where not much is happening in the flow field. The 

ability to control the shape and distribution of the grid locally is a powerful tool which 

can yield excellent meshes.  

The disadvantage of hybrid methods is that they can be difficult to use and require user 

expertise in laying out the various structured grid locations and properties to get the 

best results. Hybrid methods are typically less robust than unstructured methods. The 

generation of the structured portions of the mesh will often fail due to complex 

geometry or user input errors. While the flow solver will use more resources than a 

structured block code, it should be very similar to an unstructured code. Post 

processing the flow field solution on a hybrid grid suffers from the same disadvantages 

as an unstructured grid. The time required for grid generation is usually measured in 

hours or days. 

2.6  Computational Fluid Dynamics Solver 

Today There is a great variety of CFD codes, from free codes to powerful commercial 

CFD codes. We can join these codes in some groups: 

General Codes: Into these types we can find the codes that have the following tools at 

the service of the user to: to generate geometries, to apply boundary conditions, to 

discretise the spatial domain (generally this step is called mesh generating), solve the 

problem and show the results. Examples of these are: CFX, Fluent, Phoenix, Open 

FOAM etc. 

When the fluid flow problems are numerically solved, the surfaces, BC and spaces 

around the boundaries of the computational domain are discretized to be used in 

Computational Fluid Dynamics (CFD) code. Typical CFD software contains three 

main modules: the preprocessor, the solver and the post-processor. 

Pre-processor: In the pre-processor are included all variables that define the problem 

setup. In the region of fluid to be analysed it must be defined the properties of the fluid 
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acting on the domain, including external constraints or boundary conditions, such as 

pressure and velocity to implement realistic situations. 

Solver: Here the solution to a CFD problem is computed. The governing equations are 

solved iteratively to compute the flow parameters of the fluid as the time lapses. 

Convergence is important to produce an accurate solution of the partial differential 

equations. 

Post-processor: This module is used to process and visualize the results obtained from 

the solver. To obtain an approximate solution of the governing equations, a discretized 

method is used, which approximates the original differential equations with a system 

of algebraic equations, solved by the CFD software. Discretization in space and time 

must be defined. The accuracy of numerical solutions depends on the quality of the 

discretization used. 

Spatial discretization divides the computational domain into small sub-domains where 

the mesh is generated. The fluid flow is described mathematically by specifying its 

velocity at all points in space and time. Meshes in CFD comprise nodes at which flow 

parameters are resolved. 

2.7   The Fluent Code 

Fluent is a computational fluid dynamics commercial computer code developed and 

marketed by Fluent Inc. and Ansis. The code solves the equations for conservation of 

mass, momentum, energy and other relevant fluid variables using a cell-centered finite 

volume method. First the fluid domain is divided into a large number of discrete 

control volumes(also known as cells) using a pre-processor code which creates a 

computational mesh on which the equations can be solved. The meshing software 

available with Fluent is called Gambit. This software allows the use of several types of 

computational cells including triangular, quadrilateral, hexahedral, tetrahedral, 

pyramidal, prismatic and hybrid meshes. 

Once the fluid domain has been meshed, the governing equations (in integral form) are 

applied to each discrete control volume and used to construct a set of non-linear 

algebraic equations for the discrete dependent variables. Fluent then offers the user a 
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number of choices for the algorithm used to solve these equations, including coupled 

explicit, coupled implicit and segregated solvers. In all the calculations reported here 

only the coupled implicit has been used. In this approach the governing equations are 

solved sequentially. Since these equations are non-linear they are first linearised using 

an implicit method. This produces a scalar system of equations containing only one 

equation per computational cell per degree of freedom. An implicit (Gauss-Siedel) 

linear equation solver is then used in conjunction with an algebraic multigrid(AMG) 

method to solve the resultant scalar system of equations for the dependent variable in 

each cell. Since the equations are non-linear several iterations of the solution loop 

must be performed before a converged solution is obtained. 



 

 

CHAPTER 3  

3. THEORETICAL BACKGROUND 

With the progress of computational fluid dynamics (CFD), it is now being used more 

often as a performance prediction tool for hull design. In particular, combining 

computation codes capable of accurately interpreting free surfaces and the multi-block 

grid technique has enabled highly accurate estimations of the drag co-efficient of 

various hull designs in free surface flow. Most CFD programs used for engineering 

applications provide a solution of the Reynolds averaged Navier-Stokes equations 

(RANS) .The solution obtained is thus a stationary, time-averaged representation of the 

flow and provides vast information on the turbulence characteristics. 

3.1   Mathematical Formulations 

We consider three dimensional moving bodies at a constant velocity U
r

 at the surface of 

a fluid of finite depth. The sketch of the body and free surface is depicted in Fig 3.1.The 

fluid is assumed to be inviscid and incompressible and the flow to be irrotational. We 

choose a cartesian frame of reference moving bodies and assume that the flow is steady. 

The cartesian coordinates (x, y, z) are chosen with the positive z-axis directed vertically 

upwards where the origin at the aft perpendicular to the hull form, the x-axis in the 

opposite flow direction of the velocity U
r

 and positive y in portside. 

 

 
Figure 3.1: Three Dimensional Co-ordinate Systems for a Hull Design 
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3.1.1  Governing Equations 

The conservative or divergence form of the system of equations, which governs the 

steady state three dimensional flow of an incompressible Newtonian fluid is [Versteeg 

and Malalasekera, 1995]: 

Mass/continuity: div( ) 0u =
r

         (3.1) 

x-momentum : ( ) xSu
x
Puu ++
∂
∂

−= graddiv)(div µρ r     (3.2) 

y-momentum: ( ) ySv
y
Pvu ++
∂
∂

−= graddiv)(div µρ r      (3.3) 

z-momentum: ( ) zSw
z
Pwu ++
∂
∂

−= graddiv)(div µρ r       (3.4) 

Where, ρ = density, p = pressure, t = time, wkvjuiu ++=
r  = velocity vector, µ = 

viscosity, and Sx,, Sy and Sy = source term. The above equations are known as 

conservation equations as these equations obey the conservation principles of mass, 

momentum and energy. It is clear that there are significant commonalities among above 

the various equations. So these equations can be written in a general form and that 

general equation can be solved numerically instead of solving each equation 

individually. By introducing a general variable φ the conservative form of all fluid flow 

equations can be written as: 

( ) ( )div u div grad Sφρφ φ= Γ +
r

       (3.5) 

 In words 

 Rate of flow of               Rate of increase         Rate of increase  

φ  of fluid element   =    of φ due to diffusion     +  of φ due to source  

  (Convective term)     (Diffusive term)        (Source term)  

Equation (3.5) is the so-called transport equation for property φ. In order to bring out the 

common features we have, of course, had to hide the terms that are not shared between 

the equations in the source terms. By setting φ equal to 1, u, v, w and selecting 

appropriate values for the diffusive coefficient Γ and source term we may obtain 
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Equations (3.1) to (3.4). Equation (3.5) is used as the starting point for computational 

procedures in the finite volume method. 

3.2  Solution using Finite Volume Method 

The Finite Volume Method (FVM) offers an alternative approach for deriving the 

discretized equations. This method is based on the principle that the divergence term, 

that frequently occurs in differential equations governing various interesting scientific 

phenomena, can be rewritten as a surface integral using the divergence theorem. The 

problem then simplifies to evaluating fluxes normal to the cell walls. Since this becomes 

a vector problem, the cell walls can take any shape and can be arbitrarily oriented. All 

that is required is that they enclose a closed volume. And since the method is based on 

evaluating fluxes, the Finite Volume Method is conservative. Outflow from one cell 

becomes inflow into another. This makes the FVM stable and flexible, and yet relatively 

easy to implement. This is why the Finite Volume Method is commonly implemented in 

commercial computational fluid dynamics (CFD) solvers. 

As we have seen, all differential equations are conservation equations for mass, 

momentum, energy so it is necessary that all discretized equations also obey the 

conservation principle. Finite volume method is inherently conservative method because 

the flux going out through a face of one control-volume is exactly equal to the flux 

coming into the adjacent control-volume through the same face. Including discretization 

following steps are involved in finite volume method: 

i. Divide the domain into finite control volumes. 

ii. Integrate the differential equations over each control volume. 

iii. Approximation of volume and surface integrals. 

iv. Discretization and interpolation using UDS or CDS. 

3.3  Integration of the Transport Equation 

The key step of finite volume method is the integration of the transport Equation (3.5) 

over each control volume yielding 
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( )( )
CV CV CV

div u dv div grad dv S dvφρφ φ= Γ +∫ ∫ ∫
r      (3.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: A Cell in Three Dimensions with Its Neighbouring Points and Faces. 

 

The volume integrals in the first term on the left hand side, the convective term, and in 

the first term on the right hand side, the diffusive term, are re-written as integrals over 

the entire bounding surface of the control volume by using Gauss’ divergence theorem.  

For a vector ar  this theorem states 

CV
∫ div ar  dv = 

A
∫ nr  . ar  dA 

Where nr  is the vector normal to surface element dA. 
Applying Gauss’ divergence theorem, Equation (3.6) can be written as 

( ) ( ). .
A A CV

n u dA n grad dA S dvφρφ φ= Γ +∫ ∫ ∫
r r r       (3.7) 

Here we are solving this problem in three dimensions that is, in x-y-z plane, so it can be 

written as 

W E 

B

S 

N 

T

t n

eP

w 
s

b
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( ) ( ) ( ) ( ) ( ) ( )
e w n s t b

e w n s t

b CV

u dx u dx v dy v dy w dz w dz

dx dx dy dy dz
x x y y z

dz S dxdydz
z φ

ρ φ φ φ φ φ φ

φ φ φ φ φ

φ

⎡ ⎤
− + − + − =⎢ ⎥

⎣ ⎦
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞Γ − Γ + Γ − Γ + Γ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∂⎛ ⎞− Γ +⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫

    (3.8) 

Here, the term ρuφ is the convective flux and Γgradφ is the diffusive flux. 

3.4  Approximation of Integrals 

The next step is to approximate the flux integrals which are done by two levels of 

approximation. Consider, if  = the flux in the ith direction. In first level the integral is 

approximated in terms of the variable values at one or more location on the cell face. 

The simplest way is the midpoint rule flux, where if  is approximated as the value at the 

centre of CV face. The midpoint rule is a second order approximation, so in order to 

preserve the second order accuracy the interpolation should also be of second order. On 

the east face of control-volume, the midpoint rule applied as:  

i e
e

f y f y∆ = ∆∫  

Source term approximation is done by applying the centre value of the source as 

representative value for the whole CV. Thus, Equation (3.8) becomes 

( ) ( ) ( ) ( ) ( ) ( )e w n s t b

e w tn s

b

u x u x v y v y w z w z

x x y y z
x x y y z

z S x y z
z

ρ φ φ φ φ φ φ

φ φ φ φ φ

φ

⎡ ⎤∆ − ∆ + ∆ − ∆ + ∆ − ∆⎣ ⎦
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Γ ∆ − Γ ∆ + Γ ∆ − Γ ∆ + Γ ∆⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∂⎛ ⎞− Γ ∆ + ∆ ∆ ∆⎜ ⎟∂⎝ ⎠

   (3.9a) 

This can also be written as 

[ ]e e w w n n s s t t b b

e w n s
e w n s

t b
t b

u x u x v y v y w z w z

x x y y
x x y y

z z S x y z
z z

ρ φ φ φ φ φ φ

φ φ φ φ

φ φ

∆ − ∆ + ∆ − ∆ + ∆ − ∆ =

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞Γ ∆ −Γ ∆ + Γ ∆ −Γ ∆⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∂ ∂⎛ ⎞ ⎛ ⎞+Γ ∆ −Γ ∆ + ∆ ∆ ∆⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

    (3.9b) 
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To simplify the above equation, Fi, denotes the convective flux that is, 

xuF ii ∆= ρ  

Equation (3.9b) now be simplified to  

e e w w n n s s t t b bF F F F F Fφ φ φ φ φ φ− + − + −

e w n
e w n

s t b
t bs

x x y
x x y

y z z S x y z
y z z

φ φ φ

φ φ φ

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= Γ ∆ −Γ ∆ +Γ ∆⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞−Γ ∆ +Γ ∆ −Γ ∆ + ∆ ∆ ∆⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

    (3.9c) 

3.5   Interpolation 

After the approximation of the integrals we obtain Equation (3.11) involving the values 

of fluxes at each CV face, with φ as unknown. Since we want to calculate the variable at 

each grid point, it is required to write φ at face location in terms of their values at the 

grid points. Thus, we have to interpolate φ between grid points. There are many 

schemes available for approximation. Two basic schemes are the Central Differencing 

Scheme (CDS) or Linear Interpolation, and Upwind Differencing Scheme (UDS). 

Diffusive term is generally discretized using CDS approximation whereas convection 

term can be discretized by any scheme depending on the strength of the convection 

(Versteeg and Malalasekera, 1995). 

In the present study, the convective term is discretized by upwind differencing scheme. 

In the upwind method the variation of φ between two grid points is approximated by a 

zeroth order polynomial, i.e., a constant value from the grid node in upstream direction. 

As for example for a flow in positive x direction we take eφ is equal to the value of φ in 

upstream direction which is pφ . 
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eP
e e e

if F
if F

φ
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<=  { 0
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wW
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if F
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φ
φφ >
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{ 0
0

nP
n nN

if F
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φ
φφ >

<=  { 0
0
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s sP

if F
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φ
φφ >
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Flux approximation for F 

( ) ( )max ,0 min ,0e e e eP EF F Fφ φ φ= +  

( ) ( )max ,0 min ,0w w w wW PF F Fφ φ φ= +  

( ) ( )max ,0 min ,0n n n nP NF F Fφ φ φ= +       (3.9e) 

( ) ( )max ,0 min ,0s s s s PSF F Fφ φ φ= +  

( ) ( )max ,0 min ,0t t t tP TF F Fφ φ φ= +  

( ) ( )max ,0 min ,0B Pb b b bF F Fφ φ φ= +  

Equations (3.9d) and (3.9e) are identical, both of them give the same information, but 

for generalization equation (3.9e) is used here. For implementation into the computer 

code, the expressions in equation (3.9e) are applied. 

 

 

 

 

 

 

Figure 3.3: The Upwind Difference Scheme for One Dimensional Flow 

 

Like the convective flux, the diffusive flux integral is approximated by midpoint rule. 

The derivatives of φ are generally approximated by the CDS as follows: 

E P

E Pex x x
φ φφ⎛ ⎞

⎜ ⎟
⎝ ⎠

−∂ =
∂ −

  P W

P Wwx x x
φ φφ⎛ ⎞

⎜ ⎟
⎝ ⎠

−∂ =
∂ −  

N

N

P

Pny y y
φ φφ⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

−∂ =
∂ −

   
P S

P Ssy y y
φ φφ⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

−∂ =
∂ −      (3.9f)

 

T P

T Ptz z z
φ φφ⎛ ⎞

⎜ ⎟
⎝ ⎠

−∂ =
∂ −   

P B

P Bbz z z
φ φφ⎛ ⎞

⎜ ⎟
⎝ ⎠

−∂ =
∂ −  

φw φP φe 

φw φe
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3.6  Finite Volume Method for Three-Dimensional Diffusion 

Problems 

Steady state diffusion in a three –dimensional situation is governed by 

0S
x x y y z z

φ φ φ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂Γ + Γ + Γ + =
∂ ∂ ∂ ∂ ∂ ∂

      (3.10) 

Now a three-dimensional grid is used to subdivide the domain. A typical control volume 

is shown in Figure 3.2: 

A cell containing node P now has six neighboring nodes identified as west, east, south, 

north, bottom and top nodes (W, E, S, N, B, and T). As before, the notation, w, e, s, n, b 

and t are used to refer to the west, east, south, north, bottom and top cell faces 

respectively.  Integration of equation (3.10) over the control volume shown gives 

0

e e w w n n s s
e w n s

t t b b
t b

A A A Ax x y y

A A S Vz z

φ φ φ φ

φ φ

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∂ ∂ ∂ ∂Γ −Γ + Γ −Γ∂ ∂ ∂ ∂

∂ ∂+ Γ −Γ + ∆ =∂ ∂

     (3.11) 

The above equation represents the balance of the generation of φ in a control volume 

and the fluxes through its cell faces. 

The diffusive flux terms are evaluated as 

Flux across the east face,
 

E P
e e e e

PEe
A A

x x
φ φφ
δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−∂Γ =Γ
∂

 

Flux across the west face, P W
w w w w

WPw
A A

x x
φ φφ
δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−∂Γ =Γ
∂

, 

Flux across the north face, N P
n n n n

PNn

A A
y y

φ φφ
δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−∂Γ = Γ
∂

, 

Flux across the south face, P S
s s s s

SPs

A A
y y

φ φφ
δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−∂Γ =Γ
∂

, 
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Flux across the top face,
t

T P
t t t

PTt
A A

z z
φ φφ
δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−∂Γ = Γ
∂

, 

Flux across the bottom face,
b

P B
b b b b

BP
A A

y y
φ φφ
δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−∂Γ = Γ
∂

 

Following the above procedures the discretised form of the equation (3.11) is obtained 

( ) ( ) we P WE P
e w

PE WP

AA
x x

φ φφ φ
δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

−−
Γ −Γ + ( ) ( ) sn P SN P

n s
PN SP

AA
y y

φ φφ φ
δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

−−
Γ −Γ  

+ ( ) ( ) bt P BT P
t b

PT BP

AA
z z

φ φφ φ
δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

−−
Γ −Γ + 0u P PS S φ+ =      (3.12) 

As before this can be arranged as to give the discretised equation for interior nodes: 

uP P W W E E N N B B T TS Sa a a a a a a Sφ φ φ φ φ φ φ= + + + + + +     (3.13) 

where  

Wa  

w w

WP

A
xδ

Γ  

Ea

e e

PE

A
xδ

Γ  
Sa  

Ss

SP

A
yδ

Γ  
Na

n n

PN

A
yδ

Γ  
Ba

b b

BP

A
zδ

Γ  

Ta

t t

PT

A
zδ
Γ  

Pa  

W E N B T PSa a a a a a S+ + + + + −

 

The discretised equations for three dimensional diffusion problems take the following 

general form; 

uP P nb nba a Sφ φ= +∑  

3.7  Linear Equation System 

 It may be possible that sometimes source term is a non-linear function of unknown φ to 

improve convergence it can be linearized as: 

u P PS x y z S S φ∆ ∆ ∆ = +  

Where, Su = constant term, SP = function of φ. 

Using the above schemes for the diffusive and convective fluxes and source term 

linearization the discretization Equation (3.9c) can be rearranged to: 
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P P W W E E N N B B T TS Sa a a a a a a bφ φ φ φ φ φ φ= + + + + + +     (3.14) 

where, ( )min ,0 e
eE

E P

xa F
x x
Γ ∆= − +
−

 

 ( )max ,0 w
wW

P W

xa F
x x
Γ ∆= +
−

 

 ( )min ,0 n
nN

N P

ya F
y y
Γ ∆= − +
−

       (3.15) 

 ( )m ax , 0 s
sS

P S

ya F
y y
Γ ∆= +
−

 

 ( )m in , 0 t
tT

T P

za F
z z
Γ ∆= − +
−

 

 ( )m ax , 0 b
B b

P B

za F
z z
Γ ∆= +
−

 

P E W N T BSa a a a a a a= + + + + +  

ub S=  
Equation (3.15) can be written in the general form: 

P P nb nba a bφ φ= +∑         (3.16) 

Here, ‘nb’ represents neighbouring points. 

Discretized equation of the form (3.16) must be set up at each of the nodal points in 

order to solve a problem. For control volumes that are adjacent to the domain 

boundaries the general discretized Equation (3.16) is modified to incorporate boundary 

conditions. The resulting system of linear algebraic equations is then solved to obtain 

the distribution of the property at nodal points which can be solved by applying several 

algebraic solvers using boundary conditions  

i) Gauss elimination, 

ii)LU decomposition, 

 

iii) TDMA (Tri diagonal matrix algorithm). 

Iterations should be done until a converged solution is achieved [Versteeg and 

Malalasekera, 1995]. 
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3.8  Solution Algorithm for Pressure-Velocity Coupling 

Using this approach an equation for each component of the momentum equation and 

then the continuity equation are solved sequentially.The solution procedure of the 

generalized transport equations discussed in Section 3.2 can be summarized as: 

1. Define the geometry of the case 

2. Split the region of flow into cells (CV) 

3. Integrate the equations of interest over each cell (Discretization) 

4. Invert the resulting matrix 

5. Repeat for as many times steps as necessary. 

 

Navier-Stokes Equations (3.1 to 3.4) three-dimensional flow of incompressible fluid can 

be written in vector notation as: 

( )

( )

( ) zz

yy

xx

w
z
Puwiv

v
y
Puviii

u
x
Puuii

ui

2

2

2

1.)(

1.)(

1.)(

0.)(

∇+
∂
∂

−=∇

∇+
∂
∂

−=∇

∇+
∂
∂

−=∇

=∇

ν
ρ

ν
ρ

ν
ρ

r

      (3.17) 

Where ρ
µν =  

For momentum, ignore 1st equation and concentrate on the momentum equations 

(ii),(iii) & (iv) of equation (3.17).These are transport equation form, with a source term 

i.e. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
ix

P
ρ
1   and a diffusion term on the R.H.S. 
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However there are two main problems: 

• The equation is non-linear that needs to be known ur  to evaluate the transport of (u, v, 

w) into the domain 

• The source term involves P, which is one of the variables we want to solve for. 

Both of these problems relate to the tangled nature of the NSE. Of the four equations 

making up the NSE (continuity and the three components of velocity) all components of 

velocity appears in all the equations, and the pressure appears in the three velocity 

equations. It is not possible to evaluate the velocity until to know the pressure, and vice 

versa. In order to find both, one value should be guessed and solve for the other, then go 

back and correct the first. It might start by guessing the pressure, and use this to get a 

better estimate of the velocity and then correct the pressure, etc. 

If we consider the discretised form of the Navier-Stokes system, the form of the 

equations shows linear dependence of velocity on pressure and vice-versa. This inter-

equation coupling is called velocity pressure coupling. A special treatment is required in 

order to velocity-pressure coupling. 

FLUENT provides four segregated types of algorithms: 

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) - used for 
steady state problems 

• SIMPLEC (SIMPLE-Consistent) - used for steady state problems 

• PISO (Pressure Implicit Splitting of Operators) - for time dependent flows-used 
for time dependent and transient calculations 

• Fractional Step or coupled. 

It is noted that, from Equation (ii) if p and the flux ( )ur are known then ju can be found. 

Also, Equations (ii)-(iv) and (i) can be combined to give an equation for p given the 

flux: 

1. p
A

⎡ ⎤
⎢ ⎥⎣ ⎦

∇ ∇ - (flux term) that has to satisfy the continuity Equation (i). 
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The SIMPLE Scheme 

A widely-used scheme for coupling the pressure and velocity is the SIMPLE (Semi 

Implicit Method for Pressure Linked Equations) scheme .The basic SIMPLE algorithm 

uses a relationship between velocity and pressure corrections to enforce mass 

conservation and to obtain the pressure field. If a steady-state problem is being solved 

iteratively, it is not necessary to fully resolve the linear pressure-velocity coupling, as 

the changes between consecutive solutions are no longer small. The SIMPLE algorithm 

is 

•  an approximation of the velocity field is obtained by solving the momentum 
equation. The pressure gradient term is calculated using the pressure 
distribution from the previous iteration or an initial guess.  

•  the pressure equation is formulated and solved in order to obtain the new 
pressure distribution.  

•  Velocities are corrected and a new set of conservative fluxes is calculated. 
 

The Simple algorithm is as follows:  

Guess an initial pressure field *p  

Use equation (i)-(iv) to create a velocity field *u from this pressure field. 

Find a correction p′ to the pressure field 

** *p p p= +′  

Correct the velocity flux to obey continuity 

In theory, p and u should now be the desired solution. In practice, it is necessary to 

repeat this procedure as an iterative process. 

If new solution ** **,p u adopted at each step →algorithm becomes unstable.  
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Figure 3.4: Flow Chart for SIMPLE Algorithm 
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Thus, use under relaxation : 

Underrelax solution 

( )1 ** 1n np p pα α+ = + −  

α is under relaxation parameter. At each step of the iteration, the error in the solution 

(the residual) should decrease; residuals for all variables should be monitored to ensure 

this. 

3.9  Spatial Discretisation 

Fluent stores discrete values of the variables at the cell centres, however values of the 

variables are required at the cell faces for the convection terms in the equations and 

these must be interpolated from the centre values. In Fluent 6.3.26 this is accomplished 

using an upwind scheme and there are several alternatives: first-order upwind, second 

order upwind, power law and QUICK (Quadratic Upstream Interpolation Convective 

kinetics). 

In the first order upwind scheme quantities at cell faces are determined by assuming that 

the cell-centre values of any variable represent a cell-average value and hold throughout 

the entire cell. Hence the face quantities are identical to the cell quantities. The Power-

Law scheme is an improvement which interpolates the face value of a variable by using 

the exact solution to a one-dimensional convection-diffusion equation. When the flow is 

dominated by convection this implies that the face value of the variable is effectively 

equal to the cell value in the upwind direction. If the flow is weak and diffusion stronger 

then the Power-Law scheme amounts to a simple linear average of the value of the 

variable at the current cell location and the upstream cell. The Second-Order Upwind 

Scheme provides true second order accuracy by performing a Taylor series expansion of 

the cell-centered solution about centroid. The QUICK scheme also allows calculation of 

a higher-order value of the convected variable at the cell face by using a weighted 

average of second-order upwind and central interpolation. 
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3.10 Turbulence Modeling 

Turbulence modeling is a key issue in most CFD simulations. Since most of the flows of 

engineering interest are turbulent, the appropriate treatment of turbulence will be crucial 

to the success of CFD. Turbulence could be thought of as instability of laminar flow that 

occurs at high Reynolds numbers. Whenever turbulence is present in a certain flow it 

appears to be the dominant over all other flow phenomena. The flow field of a 

Newtonian fluid is fully described by the Navier-Stokes equation. However, turbulent 

flows contain small fluctuations. The resolution of such small motions requires fine 

grids and time steps, such that a direct simulation becomes unfeasible for high Reynolds 

numbers. That is why successful modeling of turbulence greatly increases the quality of 

numerical simulations. 

A review for the assessment of turbulence modeling is given by Spalart (2000). 

Commonly known models can be classified as follows:  

• Zero and one equation models; Spalart-Allmaras model  

• The• Reynolds stress model  

• Algebraic stress model 

• Detached eddy simulation (DES)model 

• Larges eddy simulation (LES) model 
 

Classes of Turbulence models 

• RANS-based models  

o Linear eddy-viscosity models  

 Algebraic models  

 One and two equation models  

o Non-linear eddy viscosity models and algebraic stress models  

o Reynolds stress transport models  

• Large eddy simulations  

• Detached eddy simulations and other hybrid models  
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• Direct numerical simulations  

In the present study, Reynolds-Averaged Navier-Stokes (RANS) is used for the 

simulation of turbulent flow. The RANS equations are time-averaged equations of 

motion for fluid flow. They are primarily used while dealing with turbulent flows. These 

equations can be used with approximations based on knowledge of the properties of 

flow turbulence to give approximate averaged solutions to the Navier-Stokes equations. 

To illustrate the influence of turbulent fluctuations on the mean flow we re-write the 

instantaneous continuity and Navier-Stokes equations for three dimensional flow of an 

incompressible Newtonian fluid. 
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          (3.18) 

Since div and grad are both differentiations then for a fluctuating vector a A a= + ′
rr r

and 

its combinations with a fluctuating scalar φ=Φ+φ′we have the following relations 

(Versteeg and Malalasekera, 1995): 

( ) ( ) ( )aaa

dAa

′′==

==

rrr

rr

φφφ

φφ

divdivdiv

gradivgraddiv;divdiv
 (3.19) 

To investigate the effects of fluctuations we replace in Equation (3.18) the flow 

variables ur  (hence also u, v and w) and p by the sum of a mean and fluctuating 

components. Thus 

//// ;;;; pPpwWwvVvuUuuUu +=′+=+=+=+=
→→→

 

Then the time average is taken applying the rules stated in (3.19). Considering the 

continuity equation first we note that Udivudiv =
r  .This yield the continuity equation 

for the mean flow 
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0div =U
r

  (3.20a) 

A similar process is now carried out on the x-momentum equation. The time 

independent of the individual terms in this equation can be written as follows: 

( ) ( ) ( )
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uuUUuu
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 (3.20b) 

Substitution of these results gives the time-average x-momentum equation 

( ) U
x
PuuUU graddiv1divdiv ν

ρ
+
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It is important to note that the 1st, 2nd, 3rd and 4th terms in Equations (3.21a, b &c) 

also appear in instantaneous Equations (3.18a-d)., but the process of time averaging 

has introduced new 3rd terms in the resulting time-average momentum equations. 

The terms involve products of fluctuating velocities and constitute convective 

momentum transfer due to the velocity fluctuations. It is customary to place these 

terms on the right hand sides of the equations (3.21a, b & c) to reflect their role as 

additional turbulent stresses on the mean velocity components U,V and W. 
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The extra stress terms have been written out in longhand to clarify their structure. 

Theresult from six additional stresses, three normal stresses and three shear stresses: 

2 2 2, , ,
,

xx yy zz xy yx

xz zx yz zy

u v w u v
u w v w

τ ρ τ ρ τ ρ τ τ ρ
τ τ ρ τ τ ρ

= − = − =− = =−′ ′ ′ ′ ′
= = − = =−′ ′ ′ ′

 

These extra turbulent stresses are termed the Reynolds stresses. In turbulent flows the 

normal stresses 2uρ− ′ , 2vρ− ′ and 2wρ− ′  are always non-zero because they contain 

squared velocity fluctuations. The shear stresses u vρ ′ ′− , v wρ− ′ ′ and w uρ ′ ′− are 

associated with correlations between different velocity components. If, for instance, 

,u v′ ′ and w′ are statistically   independent fluctuations, the time-independent of their 

product   u v′ ′ ,v w′ ′and w u′ ′would be zero. However, the turbulent shear stresses are 

also non-zero and usually very large compared to the viscous stresses in a turbulent 

flow. The set of Equations (3.22 a, b & c) is called Reynolds equations. Similar extra 

turbulent transport terms arise when we derive a transport equation for an arbitrary 

scalar quantity. 

Some models are used to solve the RANS equations. In this study the following models 

are used for the investigation of the incompressible turbulent flow over the underwater 

body. 

• One equation model: The Spalart-Allmaras 

• Two equation model: i) The k-ε model 

ii) The k-ω model 
Models like the k-ε and the k-ω have become industry standard models and are 

commonly used for most of the fluid-engineering problems. Two equation turbulence 

models are also very much an active area of research and new refined two-equation 

models are still being developed. 
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3.10.1  The Spalart-Allmaras (S-A) Model 

The Spalart-Allmaras turbulence model is a simple one equation model that solves a 

modeled transport equation for the turbulent viscosity. This model is designed for wall-

bounded flows and gives good results for boundary layers subjected to adverse pressure 

gradients, much like the flow fields encountered in this study. Although the original 

Spalart-Allmaras model requires that the viscous-affected region of the boundary layer 

be properly resolved through the use of a fine mesh inside the boundary layer, the model 

has been modified for its implementation in FLUENT so that wall functions are used 

when the mesh resolution is not sufficiently fine near object surfaces. The fact that the 

S-A model is a one-equation model with relatively lax grid density requirements further 

enhances its suitability for this particular study since, for the computer platform used, 

maximum computational efficiency is critical. The transported variable in the Spalart-

Allmaras model, ν is identical to the turbulent kinematic viscosity except in the near-

wall (viscous-affected) region (Fluent Inc. 2005). 

The transport equation for ν is  
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Where, vG  is the production of turbulent viscosity and vY is the destruction of turbulent 

viscosity that occurs in the near-wall region due to wall blocking and viscous damping. 

vσ  and 2bC are constants and v  is the molecular kinematic viscosity. vS is a user-defined 

source term. Note that the turbulence kinetic energy k is not calculated in the Spalart-

Allmaras model. 

To obtain the modified turbulent viscosity, ν, for the Spalart-Allmaras model from the 

turbulence intensity, I and length scale, l, the following equation can be used: 

3
2 avgv U Il=           (3.25) 

Where, 0.07l L= ×  

and ( )
1
80.16 ReI =  
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In this model the constants are considered as: 

2 1 2 30.1355, 0.622, 7.1, 0.03, 2, 0.667bi b v w w rC C C C C P= = = = = =  
 

 

3.10.2  The k-ε Model 

The k- ε model is one of the most common turbulence models. It is a two equation 

model that means, it includes two extra transport equations to represent the turbulent 

properties of the flow. This allows a two equation model to account for history effects 

like convection and diffusion of turbulent energy. The first transported variable is 

turbulent kinetic energy, (k). The second transported variable in this case is the turbulent 

dissipation, (ε). It is the variable that determines the scale of the turbulence, whereas the 

first variable, k, determines the energy in the turbulence (Fluent Inc. 2005).  In this 

study, Standard k-ε model and Realizable k-ε model are used to simulate the flow 

around the hull of a ship. 

In the derivation of the k ε− model, it was assumed that the flow is fully turbulent, and 

the effects of molecular viscosity are negligible. The standard k ε−  model is therefore 

valid only for fully turbulent flows. 

3.10.2.1  The Standard k-ε Model 

The Standard k-ε turbulence model is presently the most widely applied turbulence 

model to practical engineering flows as it is robust, economical and provides reasonable 

accuracy for a wide range of flows. The standard k ε− model is a semi-empirical model 

based on model transport equations for the turbulence kinetic energy k and its 

dissipation rate ε  The model transport equation for k is derived from the exact equation, 

while the model transport equation for ε  was obtained using physical reasoning and 

bears little resemblance to its mathematically exact counterpart.. 

Transport Equations for the Standard k-ε Model for turbulence kinetic energy, k, and its 

rate of dissipation ε, are: 
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In these equations kG represents the generation of turbulent kinetic energy due to mean 

velocity gradients, bG is the generation of turbulent kinetic energy due to buoyancy, mY  

represents the contribution of the fluctuating dilation in compressible turbulence to the 

overall dissipation. 1 2,C Cε ε  and 3C ε are constants. kσ and εσ are the turbulent Prandtl 

numbers for k and ε, respectively. kS and Sε are user-defined source terms. 

The remaining constants applied in the Standard k ε− turbulence model are equal to: 

1 21.44, 1.92, 0.09, 1.0, 1.3kC C Cε ε µ εσ σ= = = = =  

3.10.2.2  Realizable k- ε Model 

In Realizable k ε−  model it satisfies certain mathematical constraints on the normal 

stresses, consistent with the physics of turbulent flows. The most straightforward way to 

ensure the realizability is to make Cµ variable by sensitizing it to the mean flow (mean 

deformation) and the turbulence (k, ε). The modeled transport equations for k is similar 

to Equation (3.26) and ε in the realizable k-ε model are 
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Where, 1 max 0.43, , , 2
5 ij ij

kC S S S Sη η
η ε

⎡ ⎤
= = =⎢ ⎥+⎣ ⎦

 

In these equations, kG represents the generation of turbulence kinetic energy due to the 

mean velocity gradients, bG is the generation of turbulence kinetic energy due to 

buoyancy, MY  represents the contribution of the fluctuating dilatation in compressible 

turbulence to the overall dissipation rate, 2C and 1C ε  are constants. kσ and εσ are 

turbulent Prandtl numbers for k and ε, respectively. kS and Sε  are user defined source 

terms. 

The turbulence kinetic energy, k is given by ( )23
2 avgk U I=  
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Where, avgU  is the mean flow velocity. 

The turbulence intensity I and is the turbulence length l can be found from the 

following equations: 

0.07l L= ×  and  ( )
1
80.16 ReI =  

Also, the turbulence dissipation rate ε defined as 

3
23

4
kC
lµε =

 

The constants applied in the Realisable k-ε turbulence model are equal to: 

11.0, 1.3, 1.9k Cεσ σ= = =  

3.10.3   The k-ω Turbulence Model 

The Standard k-ω turbulence model incorporates modifications for low-Reynolds 

number effects and shear flow spreading. The shear flow spreading rates are in close 

agreement with measurements for far wakes, mixing layers, and plane, round, and radial 

jets, and are thus applicable to wall-bounded and free shear flows. In present work, 

Shear-Stress Transport (SST) k-ω (Fluent Inc.2005) are used to simulate the flow 

around the hull. 

3.10.3.1  SST k-ω model 

The SST k-ω turbulence model is a conglomeration of the robust and accurate 

formulation of the Standard k-ω model in the near-wall region, with the Standard k-ε in 

the far field. The SST k-ω is more accurate and reliable for a wider class of flows than 

the Standard k-ω, including adverse pressure gradient flows. 

Transport equations for the SST k-ω model are given by: 
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  (3.30) 

In these equations, kG~  represents the generation of turbulence kinetic energy due to 

mean velocity gradients, Gω represents the generation of ω, kΓ  and ωΓ represent the 

effective diffusivity of k and ω, respectively, kY and Yω represent the dissipation of k and 

ω due to turbulence, Dω represents the cross-diffusion term, kS and Sω are user -defined 

source terms.  

It is so named because the definition of the turbulent viscosity is modified to account for 

the transport of the principal turbulent shear stress. It is such a feature that gives the SST 

k-ω model an advantage in terms of performance over both the standard k-ε and 

realizable k-ε model. Other modification includes the addition of a cross-diffusion term 

in the k-ω equation and a blending function to ensure that the model equations behave 

appropriately in both the near-wall and far-field zones. In SST k-ω model the specific 

dissipation rate ω can be found by 

1
2

1
4

k

C lµ

ω =

 

The constants applied in the high Reynolds number form of the SST k-ω turbulence 

model are equal to: 

k =0.41 and 09.0=µC . 

3.11  Ideal Turbulence Model  

Solving CFD problem usually consists of four main components: geometry and grid 

generation, setting-up a physical model, solving it and post-processing the computed 

data. The way geometry and grid are generated, the set problem is computed and the 

way acquired data is presented is very well known. Precise theory is available. 

Unfortunately, that is not true for setting-up a physical model for turbulence flows. The 

problem is that one tries to model very complex phenomena with a model as simple as 

possible.  
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Therefore an ideal model should introduce the minimum amount of complexity into the 

modeling equations, while capturing the essence of the relevant physics. 

Complexity of the Turbulence Model 

Complexity of different turbulence models may vary strongly depends on the details one 

wants to observe and investigate by carrying out such numerical simulations. 

Complexity is due to the nature of Navier Stokes equation (N-S equation). N-S equation 

is inherently nonlinear, time-dependent, three-dimensional partial differential equation. 

Turbulence could be thought of as instability of laminar flow that occurs at high 

Reynolds numbers (Re). Such instabilities origin form interactions between non-linear 

inertial terms and viscous terms in N-S equation. These interactions are rotational, fully 

time-dependent and fully three-dimensional. Rotational and two-dimensional 

interactions are mutually connected via vortex stretching. Vortex stretching is not 

possible in three dimensional spaces. That is also why no satisfactory three-dimensional 

approximations for turbulent phenomena are available. 

Furthermore turbulence is thought of as random process in time. Therefore no 

deterministic approach is possible. Certain properties could be learned about turbulence 

using statistical methods. These introduce certain correlation functions among flow 

variables. However it is impossible to determine these correlations in advance. 

3.12  Grid Considerations for Turbulent Flow Simulations(Y+) 

Successful computations of turbulent flows require some consideration during the mesh 

generation. Since turbulence (through the spatially-varying effective viscosity) plays a 

dominant role in the transport of mean momentum and other parameters, one must 

ascertain that turbulence quantities in complex turbulent flows are properly resolved if 

high accuracy is required. Due to the strong interaction of the mean flow and turbulence, 

the numerical results for turbulent flows tend to be more susceptible to grid dependency 

than those for laminar flows. It is therefore recommended that, one resolve with 

sufficiently fine meshes, the regions where the mean flow changes rapidly and there are 

shear layers with a large mean rate of strain. Three parameters are significant for a 

computational grid; total number of grid points, location of outer computational 
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boundaries, and minimum spacing (initial spacing normal to body surface).  RANS 

computation on similar geometry usually guides the determination of minimum spacing 

of grid from wall. The minimum spacing is generally based on y+, a dimensionless 

parameter representing a local Reynold’s number with standard wall function. This 

parameter is defined as: 

*yuy
ν

+ ≈          (3.31) 

Where,  y = distance from the wall surface 

  *u = frictional velocity 

  ρ = density 

  ν = kinematic viscosity 

It is recommended that, for standard wall function in k ε− model or when transitional 

flows option is not active in k ω− model the y-plus value should be 30 300.y+< <   

( y+ value close to the lower bound 30y+ = is most desirable.) On the other hand, for 

enhanced wall treatment in k-ε model or when transitional flows option is enabled in 

SST k-ω model the y+ at the wall-adjacent cell should be on the order of y+ = 1.It should 

be noted here that the y+ value is based on a turbulent boundary layer on a flat plate. 

Therefore, it is used only as an estimate in the present case as the geometry is not 

actually a flat plate. The y+ values are also solution dependent. The actual value of y+ for 

the hull form is obtained with the viscous flow solution. Furthermore, the real y+ is not a 

constant but varies over the wall surface according to the flow in the boundary layer. 

 



 

CHAPTER 4 

4. NUMERICAL SIMULATION 

The numerical simulation is conducted in two distinct stages. Firstly, computational 

models are created and simulations are run on 3d turbulent models on the hull of a ship. 

At first the main concentration is carried out for the simulation on the influence of 

different turbulence models like Standard k-ε, Realizable k-ε and Shear Stress Transport 

(SST) k-ω  model. Secondly the computed results are compared to experimental and 

other numerical results to validate the computational models.   All of the investigations 

are carried out using very efficient commercial software FLUENT 6.3.26. 

4.1  Simulation Using FLUENT 6.3.26 Based on Finite Volume 

Method 

FLUENT 6.3.26 uses a finite volume-based algorithm to transform the governing 

physical equations to algebraic equations that can be solved numerically. In such an 

approach, the computational domain is subdivided into individual, discrete control 

volumes, or cells. The governing equations about each cell are then integrated, yielding 

discrete equations that conserve each quantity on a control-volume basis. Consider the 

following steady-state conservation equation for transport of a scalar quantity φ written 

in integral form for an arbitrary control volume V (Fluent Inc., 2005): 

∫ ∫ ∫+∇Γ=
→→→→

V

dVSdAdA ϕϕ ϕνρϕ ..        (4.1) 

where   ρ = density 

  
→

ν  = velocity vector (= ui + vj +wk in 3D) 

  
→

A  = surface area vector 
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Γφ = diffusion coefficient for φ 

→

∇  = gradient of φ 

Sφ = source of φ per unit volume 

This equation is applied to each cell in the computational domain. FLUENT discretizes 

this integral equation as: 

∑∑
→→

+⎟
⎠
⎞

⎜
⎝
⎛∇Γ=
→facesfaces N

f
f

n

N

f
fff VSAA ϕϕ ϕϕν        (4.2) 

Where,  Nfaces = number of faces enclosing cell 

  φ = value of φ convected through face f  

  
→

fν  = mass flux through the face  

Af   = area of face f , A   

( )nφ∇ = magnitude of ϕ
→

∇ normal to face f 

V = cell volume  

The equations solved by FLUENT that lead to a full description of the flow field around 

a given object take the same form as the discretized equation above (Fluent Inc., 2005). 

4.2  Steady Flow over the hull of a ship 

4.2.1  Geometric Modeling 

The Wigley and Series 60 hull was selected as the benchmark to gain understanding of 

free surface simulations using CFD. The focus of the analysis is in modeling and 

comparison for the Wigley hull as a single body. This is a standard hull shape, which is 

defined by a parabolic profile for the beam(width of the hull),overall length and the 

draft(distance from the bottom of the hull to the water surface),as opposed to the 
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elevation, that is defined by a rectangular profile. The numerical form of the wigley hull 

is given by 

⎟
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⎠
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121
2 D

z
L
xBy  (4.3) 

Where B is the maximum beam, L is the length of the vessel, D is the draft. For this 

study, this relationship between these three parameters will be given by 1:1/10:1/16. 

These values were calculated using the vessel’s solid model and considering it as 

constant density which is an acceptable initial approximation. 

4.3  Computational Approaches to Free Surface Modelling  

An important aspect of any simulation of the fluid flow around a surface ship is the 

method used to model the air/water interface. Thanks to the advent of high performance 

computing, Computational fluid dynamics (CFD) techniques solving the Navier- Stokes 

equations are now abundant and widely used for various types of fluid flow problems. 

Free-surface wave flow is one of the subjects, which draws attention in the CFD 

community for hydraulics and hydrodynamics applications. 

4.3.1  Free Surface 

 For Navier-Stokes equations there are two different types of free-surface wave solution 

methods: interface tracking and interface capturing. In the interface tracking methods 

only the waterside of the domain is simulated and the grid is adjusted to conform to the 

position of the free surface. Interface tracking methods track the free-surface by 

satisfying the kinematic condition and conform the grid to the interface every time step 

or iteration. Once the grid has been conformed, the Navier-Stokes equations are solved 

with dynamic free-surface boundary conditions on the free surface. These methods 

accurately predict the free surface, are computationally less demanding, but cannot 

handle highly distorted or breaking waves. Also it is sometimes difficult to conform to 

complex geometry, and grid quality degrades during the conforming process. 

 In the interface capturing approach, the computational domain includes both the water 

and air, and the location of the interface on the mesh is computed from the solution of 

an auxiliary equation. Interface capturing methods, on the other hand, capture the free 
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surface by solving a transport equation for the fraction of the cell occupied by the liquid 

phase, as in the volume of fluid (VOF) method (Hirt and Nichols 1981).This method are 

suitable for complex geometries and known to be the most  general for free-surface 

wave flow simulations and adopted in many CFD codes with various numerical 

techniques. In our work, the VOF method implemented in a RANS solver was 

employed to simulate the free surface wave flow around two hulls. The method has  

been validated on two standard ship hull form , that is the wigley parabolic hull and the 

series 60. 

4.4  Computational Domain  

The ship model used for this study is Wigley parabolic and Series 60, which are 

standard for ship-hydrodynamics research, and are chosen because these are used by 

ITTC research program.  Two types of hull modes used for the experimental and 

computational test are, given bellow, and the longitudinal profiles of the 3D model are 

shown in Figure 4.1 (a) and 4.1(b)  

 

   

 

 

(a) 

 

(b) 

Figure 4.1: (a) Hull of Model Wigley (b) Hull of Model Series 60. 
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The flow from left to right submersed in an incompressible fluid is considered. The 

parabolic hull is located at the upper middle position of a rectangular flow domain. The 

hull is modeled as an ellipse and a square flow domain is created surrounding the hull. 

The computational domain consists of 10 times of the length of hull, 10 times of   the 

beam and 10 times draught of the hull .Due to symmetry of the flow the calculations 

were carried out for full length of ship. Computations were performed in model scale for 

reduction of the computational effort. The flow was computed in rectangular domain 

surrounding the hull. A physical domain with water and air at standard conditions was 

specified.An homogeneous model allows two different phases when the interface is 

distinct and well defined everywhere, as it is the case of hulls riding on a free surface 

without breaking waves The control volume was made with these dimensions to ensure 

fully developed flow, and to be certain that the fluid/wall interactions of the control 

volume would not influence the frictional resistance calculations on the Wigley and  

Series 60 hull. 

Table 4.1: Principal particulars of Wigley and Series 60 model 

 

Parameters Wigley Series 60 

 Length Between 

Perpendicular([LPP) 

1.00(m) 1.0(m) 

Breadth (B) 0.1(m) 0.1333(m) 

Draft (D) 0.0625(m) 0.053(m) 

Block 

Coefficient(CB) 

0.44 0.60 

Wetted surface area 0.135(m2) 0.168(m2) 

L/B 10 7.5 

L/D 16 18.75 

 

4.5  Grid Generation 

GAMBIT, the preprocessor of FLUENT 6.3.26 is used to generate the three-

dimensional grid around a hull in this study. The quality and efficiency of the numerical 
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simulation is highly dependent on the construction of the grid used in the computational 

model.  A typical computational mesh both for the two models is used for simulation 

shown in the following figures 4.2 and 4.3. 

 

 
 

Figure 4.2: Grid Lines in Mesh around the Hull of Wigley 

 

 

 
 

 

Figure 4.3: Grid Lines in  Mesh around the Hull of Series 60 
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Several factors must be considered when generating a grid to ensure that the best 

possible numerical results are obtained with a particular solution algorithm. Grid point 

placement can have a substantial effect on the stability and convergence of the 

numerical solver. In order for a computational fluid dynamics code to provide a 

complete flow field description for a particular problem, the user must specify a grid 

that tells the flow solver at what locations in the problem domain the solution is to be 

computed. The specification of the grid’s construction can have a major influence on the 

fidelity of the solution and can, in fact determine whether a solution is even attainable. 

4.5.1  Mesh Studies 

The particular mesh both for model Wigley and series 60 are given below in the 

following table with considerable mesh concentration around the hull.. To facilitate 

meshing, we employed a C-type grid system around the hull. Generally speaking, a 

value of 10x10x10 determinant over 0.4, and an aspect Ratio between 100 and 500 are 

good indicatives that a mesh could work properly. 

Table 4.2: Mesh analysis of Wigley and Series 60 model 

 Wigley Series 60 

nodes 9322 11258 

wall faces 22 24 

velocity-inlet faces 146 160 

pressure outlet faces 146 158 

interior faces 83977 101046 

tetrahedral faces 43887 52835 

 

4.5.2  Grid Study 
 

A detailed grid study around the hull is carried out for the i) Wigley   Parabolic  and ii) 

Series 60 model ship using the commercial software FLUENT 6.3.26. The flow 

geometry, the inlet and outlet conditions are specified in Figure 4.5. The grid clustering 

near the ship hull to capture the velocity gradient can yield cells with high aspect ratio, 

potentially resulting in highly skewed grids. The C-grid topology is adopted, and the 

boundary condition used in the simulations is shown also in that figure 4.5. 
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(a) 

 

 
(b) 

Figure 4.4: Grid Display with Nodes around the Hull of (a) Wigley and (b) Series 60. 

 

First of all to minimize the CPU time, we tried to create a mesh topology that would 

allow a coarse grid in the region around the hull .The first configuration is rejected due 

to lack of required minimum spacing near the hull. Since selecting a few Grid do not 

provide good results, adaptation of region near the hull surface is performed since more 

cells are needed near the hull surface to obtain results with high accuracy. Three typical 

mesh densities can be chosen for analysis of grid sensitivity. We consider coarse mesh 

respectively. Small difference exists in pressure distribution with medium and fine mesh 

but there is a large discrepancy for using coarse mesh. 

4.6  Initial Condition 

There are three initial conditions that must be controlled in order to speed up the 

solutions and reduce the CPU time required. The first one is the pressure, which is 

configured as the hydrostatic pressure of flat wave field function, i.e., the current of the 

wave applies certain initial pressure, and the software calculates this value and reflects it 

in the initial condition. Secondly the velocity is set up as the velocity of the hull wave 
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field function, which reflects the wave current parameters in order to avoid the 

superposition of values. The third step is to set up the volume fractions of each one of 

the fluids. Thus the water and the air are set up as the volume fraction of heavy fluid and 

volume fraction of light fluid, respectively. 

4.7  Boundary Condition 

Four boundary conditions of the respective domain are used in this study. These are: 

• The upstream 

• The downstream 

• Wall 

• Symmetry 
The upstream and the downstream boundary of the domain are modeled as velocity inlet 

and pressure outlet respectively and both the upper side , lower side and the side part of 

the domain have symmetry boundary conditions. The surface of the hull of the domain 

are modeled as a wall 

For computations with a free surface, the water velocity is set (at the inlet) equal to the 

hull speed being investigated, but in the opposite direction. The air velocity is set equal 

to the water velocity, if a no wind condition is assumed, or otherwise in any other 

direction and speed.  

For incompressible flows, as in the case of the flow around hulls, the inlet boundary 

condition can be specified at that portion of that boundary where the velocity 

distribution is known, usually in front of the hull. A velocity inlet boundary condition is 

used upstream; the flow velocity is considered equal to the velocity experimental of the 

model using the cases of experimental measurement to wave profile. The free surface 

elevation is fixed at the inlet. As  this boundary condition is intended for incompressible 

flows where the magnitude and direction of the inlet velocity is known. The velocities 

are set to given values, and the first derivative of the pressure with respect to the axial 

direction is taken equal to zero.  

( ) ( )givenwvuwvu ,,,, =  ,  0=
∂
∂

=
∂
∂

x
p

n
p
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The outlet boundary condition is usually specified where the flow leaves the 

computational domain and where it can be assumed that the zero gradient condition 

applies. A hydrostatic pressure outlet boundary condition is used downstream; the 

hydrostatic pressure at the outlet is calculated assuming an undistributed free surface
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Schematic Diagram of the Flow Field around Hull with Boundary Condition. 

 

The pressure outlet boundary condition is used to model flow exit where the details of 

the flow and gauge pressure are not known. Pressure outlet boundary conditions require 

the specification of a static (gauge) pressure at the outlet boundary. 

On the other hand , the Y=0 plane was created as a symmetry plane in the boundary 

conditions in order to save computational resources in the simulation time by splitting 

the geometry in half. Symmetry boundary conditions are used for the physical geometry 

of interest, and the expected pattern of the flow solution. They can also be used to model 

zero-shear slip walls in viscous flows.  

Fluent assumes a zero flux of all quantities across a symmetry boundary. There is no 

convective flux across a symmetry plane: the normal velocity component at the 
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symmetry plane is zero. There is no diffusion flux across a symmetry plane: the normal 

gradients of all flow variables are zero at the symmetry plane. The symmetry boundary 

condition can therefore be summarized as follows: 

Zero normal velocity at a symmetry plane 

Zero normal gradients of all variables at a symmetry plane 

 Since the shear stress is zero at a symmetry boundary, it can also be interpreted as a 

‘slip wall’ when used in viscous flow calculations. 

  0=
∂
∂

=
∂
∂

n
u

n
p

,   0== wv  

Finally, the hull of the ship was selected as no slip wall condition in order to model the 

viscous boundary layer effect on these surfaces. 

4.8  Solver Initialization and Flow Solution  

After the grids are constructed, the next step is to import them into FLUENT 6.3.26 the 

numerical solver. Since each grid is exported from GAMBIT in FLUENT 6.3.26’s 

native format, the import process is straightforward. After the grids are imported, the 

solver is initialized. This procedure involved several steps, such as: 

-Selecting the solver formulation  

-Defining physical models 

 -Specifying fluid properties  

-Specifying boundary conditions 

 -Adjusting residual  

 -Initializing the flow field  

 -Iterating  

For all of the grids generated in this study, the pressure based solver formulation is used. 

This approach solves the continuity, momentum, and energy equations sequentially as 
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opposed to simultaneously. Because the pressure based solver is traditionally used for 

incompressible and mildly compressible flows, given the flow conditions being 

investigated, this study is well-tailored for its use. Next, the flows around the geometries 

modeled in this study are approximated as steady-state. Although this choice precluded 

the ability to capture other time-dependent effects, the majority of pertinent flow 

features and their associated drag effects (like separation point, pressure drag, and skin 

friction drag) could still be accurately modeled. One reason for choosing steady-state 

simulations is because of the reduced computational load they placed on the computer – 

given the total number of simulations needed, run time is a major limiting factor. The 

other, more compelling reason for choosing a steady-state modeling approach is that the 

properties of interest in this study is steady state values. Although, in reality, pressure, 

drag and wave profile all vary with respect to time on a microscopic scale, their net 

values and net effects can usually be considered steady properties and can accurately be 

modeled as such. The user interface updates based upon whether the steady or unsteady 

solver is selected. The time step size, the number of iterations per time step, the total 

number of time steps, and the convergence limit for each time step needs be specified 

when the unsteady solver is used. On the other hand, the total number of iterations and 

the convergence limit needs to be specified for steady solver. 

For the geometries modeled in this research, definition of the physical model simply 

involves specifying turbulent simulation is desired in the solution computation. A 

turbulent model of two different hulls is also simulated to compare with experimental 

results. In this stage, the k-ε model with standard wall function is used in all of the cases. 

For velocity- pressure coupling the SIMPLE algorithm is used for steady case. The 

Presto scheme for the pressure equation and QUICK discretization for momentum 

equation are used throughout this study.  

The VOF model is a simplified multiphase model that can be used to model multiphase 

flows where the phase moves at different velocities. In this study we consider two phase 

only, air as a primary phase and water-liquid as secondary phase.  Specifying the fluid 

properties and the boundary conditions are straightforward. For every computational 

model in the study, the default fluid properties for water-liquid (water-liquid at standard 

conditions) and water vapor are used. Also, the boundary condition types are all 
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specified during the grid generation step, so the only addition needed is to specify the 

inlet velocity. 

For all flow cases, the flow field is initialized from the inlet boundary condition. This 

process is necessary to provide a starting point for the evolution of the iterative solution 

process. In every case, after the flow is successfully initialized, the solution is iterated 

until one of the following two conditions is attained: convergence, divergence of the 

residuals. Convergence is declared if the x-velocity, y-velocity, z-velocity and continuity 

residuals all dropped below 0.001. 

 



 

 

CHAPTER 5 

5.RESULT AND DISCUSSION 

5.1 Introduction 

The major benefit of CFD analysis is its ability to compute the values of every flow 

parameter at each grid point in the domain studied, giving a very descriptive picture of 

the entire flow field. The present study can be classified to in two main parts: Firstly, the 

three dimensional turbulent flow over parabolic and semi-parabolic hull and then the 

turbulent flows with free surface over water surface bodies of revolution are simulated.  

The drag coefficient is computed as 

AU

DC
refref

D
2

2
1 ρ

=

 

Where  D = drag force  

  A = reference surface area  

As explained earlier, the drag of the hull of a ship is estimated using two separate tests, 

by assuming that the ship drag is composed of wave drag (due to disturbances to the free 

surface characterize by the Froude number) and the friction drag(due to friction and 

characterize by the Reynolds number). Therefore in order to calculate the frictional 

resistance the model is approximated by the drag of the flat plate, using the same cross 

section of the hull and the wave drag would be equal to the total resistance of the model 

minus the estimated viscous resistance. 

 An alternative to the expensive experimental method is to use computer simulation 

based on methodologies of computational fluid dynamics (CFD) to analyze the flow 

field and predict drag for actual flow conditions. These methodologies are robust and 
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can provide detailed information about the flow field. Advances in computational 

methods and computer hardware allow efficient and accurate predictions for most flow 

conditions.  

Application of CFD methods to complex flows, however, needs to be examined 

carefully and validated with experimental data. 

Total drag coefficient is normally broken down into a Froude number dependent 

component-wave drag coefficient, CW (residuary drag coefficient, CR) and a Reynolds 

number dependent component-viscous drag coefficient , CV ( frictional drag coefficient, 

CF). 

The bracketed names give an alternative breakdown: 

Total drag coefficient = Wave drag coefficient + Viscous drag coefficient 

   = Residuary drag coefficient+ frictional drag coefficient 

Several approaches have been taken in order to assess the effectiveness of using CFD 

for the calculation of the frictional resistance.The CFD data was compared to 

analytically determined values of the frictional resistance of the full scale model of the 

ship,as well as data obtained from scaled model tests in a water towing tank. 

Typically the friction drag coefficient is predicted using the ITTC 1957 Model-Ship 

Correlation Line or some similar formulation. 

Frictional drag coefficient 
AV

RC F
F 25.0 ρ
=  , 

Frictional resistance ⎟
⎠
⎞

⎜
⎝
⎛= AVCR fF

2

2
1 ρ , where Cf is the co-efficient of friction . 

Co-efficient of friction is a function of the Reynolds number and can be estimated by 

using the ITTC 1957 Model-Ship Correlation Line, which is produced by means of, 
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Here,    ρ is the density of the fluid 

V is the velocity of the fluid and  

A is the reference surface area. 

Viscous drag coefficient CV = (1+k) CF, where k is the form factor which is counted as 

k=0.100 for IOWA. 

 Wave drag coefficient,
AV

RC W
W 25.0 ρ
= , where RW is the force on the hull surface in the 

x-direction. 

The viscous drag coefficient includes a form effect applied to the frictional drag 

coefficient .The frictional resistance arises from frictional forces set up by the flow of 

water along the surface of the hull, and is consequently influenced by fouling and the 

coatings of paints used for its prevention. The residual resistance is due to pressures 

developed in pushing the water aside, and arises from the form of the hull. William 

Froude first recognized that the residual resistance of a model could be scaled up to give 

the residual resistance of the full –scale ship by use of the principle of similitude 

developed by Newton. 

5.2  Test Cases 

In this section the test cases used to investigate the accuracy of the numerical resistance 

prediction is presented. The test cases were the Wigley hull, the Series 60 hull with 

turbulent –flow profile. The flow around the Wigley and the Series 60 hulls has been 

investigated and validated with the available experimental data. 

5.2.1  Wigley Parabolic Hull 

The classical test which is often considered in the naval engineering community is the 

simulation of the free surface flow around the Wigley-hull. Although the Wigley hull as 
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a test case has to some extent become obsolete for comparing the performance of 

numerical methods, it is sometimes still used because of its simple geometrical form, 

which simplifies grid generation, and also due to the large amount of experimental and 

computational data available for validation. 

We consider a parallelepiped computational domain situated at -35 m ≤ x ≤ 65 m, -10 m 

≤ y ≤ 0 m, -6.25 m ≤ z ≤ 0 m. The hull is centered at the origin and 1 m in length. Due to 

the symmetry of the problem with respect to the mid plane, only one half of the 

geometry is considered. Since both the air and water regions are modeled, the Wigley 

hull has been extended vertically upward 0 m to give it a rather large false free board. 

The vertical extent of the air zone should be large enough so that the presence of the 

upper boundary does not perturb the resulting solution. Standard boundary conditions 

(no-slip, inflow, outflow and symmetry) are considered. 

5.2.1.1  Grid Independence and CD Calculation 

Two types of grids with different resolutions have been considered. The total number of 

cells and the total number of points along the hull(x), normal to the hull(y) and in the 

vertical direction (z) for the two grids is reported in Table 5.1. A view of the finer grid is 

presented in Figure 5.1. 

 
(a) 
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(b) 

Figure 5.1: Grid of (a) Wigley Hull and (b) its Computational Domain 

 

Table 5.1:Grid Structure of Wigley Hull 

Types of Grids Nodes Types of Elements Groups Number of Elements

Structured Grid 7817 Hexahedral 8 6000 

Unstructured Grid 9322 Tetrahedral 8 43887 
 

The model considered here has a length of L=10m and advancing at different Froude 

numbers corresponding to Re =5.3×106 to 1.48×107(both Reynolds and Froude numbers 

are based on L). For the RANS analysis, coarse grid for both the cases is generated. The 

Standard k- ε (SKE), Realizable k- ε (REA-KE), SST k-ω turbulence model and 

Boundary Element Method (BEM) are used. 

.Table 5.2: Computed Value of CD, CV and CW by Standard k-ε(SKE) Model. 

Different Froude 
Numbers(Fn) 

CD×10-3 CV×10-3 CW×10-3 

0.19 1.98 0.24 1.74 

0.25 2.80 0.12 2.68 

0.33 3.84 0.07 3.77 

0.45 5.56 0.03 5.53 

0.50 6.34 0.026 6.32 
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The computation of viscous (CV), wave (CW) and total (CD) drag coefficient by Standard 

k-ε(SKE) model for the wigley hull  have  been showed in Table 5.2. In figure 5.2 we 

see that with the increasing values of Fn, CD and CW increases significantly but CV 

decreases frequently. Froude number between the range [0.17, 0.5] has been taken 

because calculating wave making drag in these ranges, we get the approximate value. 
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Figure 5.2: Various Drag Coefficients Vs Froude Numbers 

 

Table 5.3: Comparison of Computed CD by Different Turbulent Models 

 

Different  

Froude 

Numbers(Fn) 

Viscous Turbulent Models 

Standard k- ε 

CD×10-3 

Realizable k- ε 

CD×10-3 

SST k-ω 

CD×10-3 

0.19 1.98 3.08 2.30 

0.25 2.80 4.29 3.10 

0.33 3.84 5.61 4.20 

0.45 5.56 7.75 6.02 

0.50 6.34 8.67 6.86 
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Figure 5.3: Drag Coefficients for Different Models Vs Froude Numbers  

 

Table 5.4: Comparison of Computed CW of Various Turbulence Models and 

Boundary Element (BEM) Method. 

 

Different 

Froude Numbers(Fn) 

Viscous Turbulent Models  

BEM SKE REA-KE 

 

SST k-ω 

 

0.19 0.0017 0.0038 0.0020 0.37 

0.25 0.0027 0.0041 0.0029 0.80 

0.33 0.0037 0.0055 0.0041 0.82 

0.45 0.0055 0.0077 0.0059 4.16 

0.50 0.0063 0.0086 0.0068  
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Figure 5.4:  Wave Drag Coefficient Vs Froude Numbers 

 

5.2.1.2   Comparison with other Researchers 

The model considered here has a length L=1m and advancing at Fn=0.267 

corresponding to Re= 8.3×106 (both Reynolds and Froude numbers are based on 

L).Computed drag coefficients with turbulence k- ε model is compared with the results 

of Azcueta  (2005) ,Pranzitelli et al.(2011) and Mucientes(2010) for the same Froude 

number Fn=0.267 corresponding to Reynolds number Re= 5.95×106 , 5.94×106 and 

6.66×106 respectively. In those cases the model considered there had a length L=4m. 

Table 5.5: Comparison of Computed CD for Wigley hull 

 

 CD×10-3 

Present 4.66 

Azcueta(2005) 4.39 

Mucientes(2010) 4.15 

Pranzitelli et al.(2011) 4.20 
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5.2.1.3  Comparison with experimental result 

A Reynolds number Re= 5.95×106 and a Froude number Fn=0.267 as in the model test 

(4 m model) of the Ship Research Institute (SRI), N.N.(1983) was set. Analogous results 

are obtained for the coefficient of total drag co-efficient CD, (Table 5.6) where the 

difference ∆CD = (CD,cfd-CD,exp)/CD,exp, between numerical and experimental results is 

greater than 12% in all of the cases. The present result shows a good agreement on the 

experimental results from Ship Research Institute (SRI), Anon (1983). As it can be 

noticed from results presented here, good free surface and CD calculations can be 

obtained using one of the two types of grids reducing significantly in this manner CPU 

time without excessive loss of accuracy. 

Table 5.6: Comparison with the Experimental Result 

 

 CD×10-3 (CD,cfd- CD,exp)/CD,exp, 

Present 4.66  

12% SRI, Anon 4.16 

 

The drag coefficients as a function of different Reynolds numbers are compared with 

experimental and other numerical results in Figure 5.5 and in Tables 5.5 and 5.6.In most 

cases, the computed results show better agreement with experimental data compared to 

other predicted values.  
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Figure5.5: Drag Coefficient Vs Froude Number 

 

The present result has been compared with other nu merical and experimental results for 

a single Fr = 0.267 corresponding to Re = 8.3×106.  We can   also compare the total drag 

co-efficient(CD), viscous  drag co-efficient(CV) and also wave  drag coefficient(CV)  

with the computed results of Sangseon(1983) and Olivieri et.al.(2001) . 

Table 5.7: Comparison with Other Numerical Result 

 

 

Fn 

 

Present Sangseon Olivieri 

CD×10-3 CV×10-3 CW×10-3 CD×10-3 CV×10-3 CW×10-3 CD×10-3 CV×10-3 CW×10-3 

0.173 2.96 2.36 0.60 4.22 4.0 .22 - - - 

0.205 3.52 3.20 0.32 4.32 3.89 .41 4.25 3.38 0.86 

0.267 4.66 4.17 0.49 4.51 3.72 .78 4.35 3.20 1.15 

0.355 6.10 5.19 0.91 5.00 3.6 1.4 5.12 3.08 2.04 

 

5.2.2  Series 60 Hull 

The ship model used for this study is a series 60 hull with block coefficient CB of 0.6, 

which is a single-propeller merchant type ship and is a standard for ship hydrodynamics 
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research, and widely used in ITTC research program. The series 60 hull form is largely 

used to design ships and it has been the subject of several numerical and experimental 

studies. Extensive towing tank tests were carried out at Iowa Institute of Hydraulic 

Research (IIHR) (Toda et al .1992). 

We consider a parallelepiped computational domain situated at -50 m ≤ x ≤ 50 m, -

13.3m ≤ y ≤ 0 m, -5.33 m ≤ z ≤ 0 m. The hull is centered at the origin and 1 m in length. 

Like the Wigley hull due to the symmetry of the problem with respect to the mid plane, 

only one half of the geometry is considered. Standard boundary conditions (no-slip, 

inflow, outflow and symmetry) are considered. 

5.2.2.1  Grid Independence and CD Calculation 

In this section numerical simulations has been carried out of the Series 60 hull model of 

L=1.00 m for a direct comparison with the experimental tests cited. Five types of   

Froude numbers for two types of grids has been considered. The total number of cells 

and the total number of points along the three directions for the two grids is reported in 

table 5.8. A view of the finer grid is presented in figure 5.6. 

 
(a) 

 



Chapter  5: Result and Discussion 

 75

 
(b) 

Figure 5.6: Grid of (a) Series 60 hull 

and (b) its Computational Domain 

 

Table 5.8: Grid Structure of Series 60 Hull 

 

Types of Grids Nodes Types of  

Elements 

Groups Number of 

Elements 

Structured Grid  67705 Hexahedral 8 59788 

Unstructured Grid 76236 Tetrahedral 8 402887 

 

Like the Wigley hull, the model considered here has a length of L=10m and advancing 

at different Froude numbers corresponding to Re =5.3×106 to 1.48×107(both Reynolds 

and Froude numbers are based on L). For the RANS analysis, coarse grid for both the 

cases is generated. The Standard k- ε (SKE), and Boundary Element Method(BEM) are 

used to compare the computed result with other numerical and experimental results. 
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Table 5.9: Computed Value of CD, CV and CW by Standard k-ε (SKE) Model. 

 

Different Froude 
Numbers(Fn) CD×10-3 CV×10-3 CW×10-3 

0.19 1.98 0.19 1.79 

0.25 3.19 0.09 3.10 

0.33 7.21 0.05 7.16 

0.45 11.43 0.03 11.40 

0.50 19.18 0.02 19.16 
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 Figure 5.7: Various Drag Coefficients Vs Froude Numbers. 

 

 

The computation of viscous (Cv), wave (Cw) and total (CD) drag coefficient by standard 

k-ε model for the Series 60 hull have been showed in Table 5.8. In Figure 5.7 we see 

that with the increasing values of Fn, CD and CW increases significantly but CV decreases 

slightly. 
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Both from the Figure 5.4 and 5.9 it has been observed that comparing the values of total 

drag co-efficient of  different turbulent models  with the BEM method, results shows a 

well agreement for Froude numbers in the range of [0.173,0.267]. Whenever the range 

exceeds 0.3 there occurrences a large variation between the computed result and other 

numerical and experimental results.  

Table 5.10: Comparison of Computed CD by Various Turbulent Models 

 

Different  

Froude 

Numbers(Fn) 

Viscous Turbulent Models 

Standard k- ε 

CD×10-3 

Realizable k- ε 

CD×10-3 

SST k-ω 

CD×10-3 

0.19 1.98 2.65 2.17 

0.25 3.19 3.64 3.19 

0.33 7.21 8.09 10.30 

0.45 11.43 23.50 80.28 

0.50 19.18 76.35 96.82 
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Figure 5.8: Drag Coefficients of Different Models Vs Froude Numbers. 
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Table 5.11: Comparison of Computed CW of Various Turbulence Models and 

Boundary Element (BEM) Method. 

 

Different 
Froude Numbers(Fn) 

Viscous Turbulent Models  

BEM SKE 
 

REA-KE 

 

SST k-ω 

 

0.19 0.0018 0.0025 0.0019 0.16 

0.25 0.0031 0.0035 0.0031 0.24 

0.33 0.0071 0.0080 0.0102 1.24 

0.45 0.011 0.0235 0.0803 13.84 

0.50 0.0192 0.0763 0.0968  
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Figure 5.9: Wave Drag Coefficient Vs Froude Numbers. 

 

5.2.2.2  Comparison with other Researchers 

The model considered here has a length L=1m and advancing at Fn=0.316 

corresponding to Re = 9.8×106 (both Reynolds and Froude numbers are based on 

L).Computed drag coefficients with turbulence k- ε model is compared with the results 

of Azcueta (2005) and Pranzitelli et al.( 2011) for the same Froude number Fn=0.316 

corresponding to Reynolds number Re = 4.0×106 and 5.24×106 respectively. While 
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comparing the result with the second case the model considered there had a length 

L=3.048m. 

Table 5.12: Comparison of Computed CD for Series 60 hull 

 

 CD×10-3 

Present 5.72 

Azcueta  (2005) 5.10 

Pranzitelli et al.(2011) 5.41 

 

5.2.2.3  Comparison with experimental result 

Extensive towing tank tests were carried out at Iowa Institute of Hydraulic Research 

(IIHR)(Toda et al.1992) and results are partially available on the web in digital form. 

IIHR Towing tank is 100m long and 3m wide, test was carried out on a model 3.048m 

long at Froude numbers Fn = 0.316 corresponding to Re = 4.0×106. 

In this section, numerical simulations were carried out of the Series 60 hull model of 

L=1m for a direct comparison with the experimental tests cited. Froude number 

considered is 0.316, corresponding to Re = 9.8×106.  

Table 5.13: Comparison with the Experimental Result 

 

 CD×10-

3 

(CD,cfd- CD,exp)/CD,exp, 

Present 5.72  

4.02% Toda et al.(1992) 5.96 

 

Analogous results are obtained for the coefficient of total drag co-efficient CD,(Table 

5.11)where the difference ∆CD = (CD,cfd-CD,exp)/CD,exp, between numerical and 

experimental results is less than 4.02% in all of the cases. Table 5.11 shows a 

remarkable variation in the CD calculation that now falls in the range of uncertainty of 

the experimental tests both for the k- ε model and BEM method. 
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Figure5.10: Drag Coefficient Vs Froude Number 

 

The drag coefficients as a function of different Froude numbers are compared with 

experimental and other numerical results in Figures 5.10 and in tables 5.12 and 5.13.In 

most cases, the computed results show better agreement with experimental data 

compared to other predicted values. 

5.3  Effect of Turbulence Model 

The turbulent flow structure in the proximity of the free-surface can be much more 

complex than the turbulent flow structure of single phase flows. Existing turbulence 

models, which have been mainly proposed for single phase flows may not adequately 

represent the turbulence structure at the free surface(Senocak and laccarino 2005).The 

creation of a turbulence model able to simulate correctly turbulent free- surface flows 

and the interaction between free- surface and turbulent boundary layer represents a 

challenge in CFD. Among the turbulence models available in FLUENT, the Realizable 

k- ε and the SST k-ω models are compared with the Standard k- ε model to investigate 

possible differences in resistance predictions. 
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5.4  Improvement of the Convergence 

Using VOF model it is easy to encounter convergence problems in presence of a high 

difference between densities of fluids considered as equations become stiffer. This is the 

case of air and water where 800≈
a

w

ρ
ρ .Convergence can be improved by altering the 

ratios between densities and viscosities of fluids; a value of 100 for 
a

w

ρ
ρ  and 

a

w

µ
µ  can be 

used without committing remarkable errors. As one can see in Figure 5.5 residuals, 

become more regular and reach lower values than in the real case. The effects on CD are 

minimal and mainly due to the major forces acting on the surfaces exposed to air. 

However, this problem can be relevant only if superstructures are well defined and in 

the pre-design phase this error can be easily corrected or avoided by eliminating these 

surfaces from CD calculation. 

 

 

 

Figure 5.11: Residual History of Model Wigley for Fn=0.476 
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Figure 5.12: Residual History of Model Series 60 for Fn=0.476 

 

Figure 5.13: Drag Convergence History of Model Wigley 

 

Figure 5.14: Drag Convergence History of Model Series 60 
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5.5  Numerical Scheme 

In this simulation, the commercial software package FLUENT 6.3.26 is used. It is a 

two/three dimensional structure mesh code that solves a set of time independent 

Reynolds-averaged Navier Stokes equations(RANS) in a conservative form. The 

numerical model uses an implicit finite volume method associated with multiphase 

model. An implicit steady-state cell based solution procedure is used to solve the 

equations. Free surface calculations are performed with the VOF model which is 

employed to handle the free –surface wave flow around a surface-piercing structure. In 

the VOF method a single set of momentum equations is shared by the fluids and the 

volume fraction of each of the fluids in every computational cell is tracked throught the 

domain. Central differencing scheme, while generally able to retain the sharpness of the 

interface, are unbounded and often give unphysical results. To overcome these 

deficiencies, a modified version of the HRIC scheme that consists of a non-linear blend 

of upwind and downwind differencing is employed. The second order upwind scheme is 

used for convection and diffusion terms. The velocity-pressure coupling is employed 

and the overall solution procedure is based on the SIMPLE segregated algorithm. The 

PRESTO scheme is used for pressure calculation.  Note that in the present study, all 

flows and phases of fluids are considered to be incompressible. The VOF formulation 

relies on the fact that two or more fluids/phases are not interpenetrating or mixing. For 

each additional phase, a new variable that in the volume fraction of the corresponding 

phase is introduced. The relaxation factors are typically set to 0.2.The y+ values for the 

wall adjacent cells over the hull is in the range 80.0 ≤ y+ ≤ 100.0, which is comfortably 

within the guidelines for the use of the wall function approach. 

Initial convergence of the simulation is found to be considerably enhanced by paying 

careful attention to the initialization procedure. The primary phase should always be set 

the lower density fluid, which is in this case is air. The specified operation density 

should be set to that of the primary phase and the reference pressure location should be 

set to a region which will always contain the primary phase .It is also found helpful to 

initialize the entire water domain with the correct hydrostatic pressure profile and to 

initialize both the water and air domain to the same velocity. 
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5.4  Free Surface Generation 

It is instructive to visualize the free surface wave generated due to the motion of the 

hull. This was created using a derived part within FLUENT. The input part is selected to 

be the complete body, not just the hull itself, and the volume fraction of water at the 

scaler at 0.5. The free surface is considered at 0.5 volume fraction in each cell. The later 

means the iso- surface will be created at half of the domain (in z direction) and it will 

extend throught the entire dimension of it. Thus, since the geometry was generated in 

the middle of the domain, the generated iso- surface represents the water surface. 

5.5  Simulation Results with a Tetrahedral Mesh 

One of the advantages of the Fluent code for simulations of naval vessels is its ability to 

solve the RANS equations on either a structured hexahedral mesh or an unstructured 

hybrid mesh consisting of tetrahedral cells. It is generally accepted that hexahedral 

meshes provide more accurate simulation results but the one disadvantages of this 

approach in the time required to construct the mesh. Especially when using the Gambit 

Software package to create the mesh, the use of an unstructured hybrid mesh will result 

in considerable time savings. In our study we have used an unstructured hybrid mesh to 

gain some experience with this technique in anticipation of the need to consider more 

complicated geometries in future naval applications. 

 Both for the two models a half domain grid has been used but the size of the domain is 

smaller than that used with the unstructured mesh. The undisturbed sea surface is 

located on the z = 0 plane. A surface mesh for the hull is considered from triangular 

elements. A Gambit curvature size function is used to ensure smooth growth of the mesh 

size in highly curved regions of the hull. The hull top, undisturbed sea surface and 

symmetry plane have been meshed with triangular elements. Prism layers are then 

grown from the hull surface, the symmetry plane and the plane representing the 

undisturbed sea surface. A tetrahedral volume mesh is then from each of these surfaces, 

again using appropriate size functions to ensure a uniform rate of change in cell size, 

and the resulting mesh has 43887 cells and 52835 cells in the case of Wigley and Series 

60 respectively. 
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In the case of Wigely hull one of the reference surfaces has been created in terms of the 

contours of z co-ordinate at z = -0.051 and compared the contours of pressure co-

efficient, velocity magnitude of the hull with free surface and symmetric top of the  

computational domain for different Froude numbers which are shown in figures 5.15 -

5.25.Also in  the case of series 60 hull another reference surface has been created in 

terms of the contours of z co-ordinate at z = -0.54 and compared the contours of 

pressure co-efficient, velocity magnitude of the hull with free surface of the 

computational domain for different Froude numbers which are shown in figures 5.26-

5.34. 
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(a) 

 
 

(b 

 
(c) 
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(d) 

 

 
(e) 

 

Figures 5.15: Contours of Pressure Coefficient of Wigley Hull for 

a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 0.476. 

 

 

 

 



Chapter  5: Result and Discussion 

 88

 (a) 

 
(b) 

 
 (c) 
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(d) 

 

 
(e) 

 

Figures 5.16: Contours of Pressure Coefficient of Wigley Hull and its Free Surface for  

a) Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476 
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(a) 

 
(b) 

 
(c) 
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(d) 

 

 
 

(e) 

 

Figures 5.17: Close up View of Contours of Pressure Coefficient of Wigley Hull and its 

Free Surface for a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

 

 
(b) 

 

 
( c ) 
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(d) 

 

 

 
(e) 

 

Figures 5.18: Contours of Wall Y+ of Wigley Hull for 

a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, 

d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

 

 
(b) 

 

 
(c) 
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(d) 

 

 
(e) 

 

Figures 5.19: Contour Position of Free Surface About z Axis of Wigley Hull for 

 (a) Fn = 0.173, (b) Fn = 0.205, (c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

 

 
(b) 

 
( c ) 
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(d) 

 

 
(e) 

 

Figures 5.20: Contours of Velocity Magnitude of Wigley Hull and the  Reference Surface 

for  a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

 
(b) 

(c) 
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(d) 

 

 
 

(e) 

 

Figures 5.21: Contours of Close up View of Velocity Magnitude of Wigley Hull and the  

Reference Surface for  a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 

0.476. 
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(a) 

 
(b) 

 

(c) 
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(d) 

 

 
 

(e) 

 

Figures 5.22: Contours of Velocity Magnitude of  Wigley Hull and Symmetric Top Side of 

the Volume for  a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

 

 
(b) 

 

 
(c) 
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(d) 

 

 
(e) 

  

Figures 5.23: Contours of Velocity Vectors of  Wigley Hull and the Reference Surface for 

a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

 

 
(b) 

 

 
(c) 
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(d) 

 

 
(e) 

 

Figures 5.24: Plot of Pressure Co-Efficient of Wigley Hull and its Free Surface for  

a) Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476 

 

 

 

 

 



Chapter  5: Result and Discussion 

 106
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(d) 

 
(e) 

 

Figures 5.25: Close Up View of Pressure Co-Efficient of Wigley Hull and the Reference 

Surface for a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476. 
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 (a) 

 
(b) 

 
(c) 
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(d) 

 

 
 

(e) 

 

Figures 5.26: Contours of Pressure Coefficient of Series 60 Hull for 

a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 
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(d) 

 

 
(e) 

 

 

Figures 5.27: Contour Position of Free Surface About z Axis of Series 60 Hull for (a) Fn = 

0.173, (b) Fn = 0.205, (c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

 
(b) 

 
( c ) 



Chapter  5: Result and Discussion 

 113

 

 

 
(d) 

 

 
(e) 

 

Figures 5.28: Contours of Pressure Coefficient of Series 60 Hull and its Free Surface for  

a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

(b) 
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(d) 

 

 
( e) 

 
Figures 5.29: Close Up View of Contours of Pressure Coefficient of Series 60 Hull and its 

Free Surface for a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

  
(b) 

 
(c) 
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        (d) 

 
(e) 

 

Figures 5.30: Contours of Wall Y+ of Series 60  Hull for 

a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, 

d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 

 
(b) 

 
( c ) 
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(d) 

 

 
(e) 

 

Figures 5.31: Contours of Velocity Magnitude of Series 60 Hull and the  Reference Surface 

for  a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267, d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 
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(d) 

 

 
(e) 

 

Figures 5.32: Contours of Velocity Magnitude of Series 60 Hull and Symmetric top Side of 

the Volume for  a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476. 
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(d) 

 

 
(e) 

 

Figures 5.33: Contours of Velocity Vectors of Series 60 Hull and the Reference Surface for 

a)Fn = 0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476. 
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(a) 
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(d) 

 

 
(e) 

 

Figures 5.34: Plot of Pressure Co-Efficient of Series 60 Hull and its Free Surface for a) Fn = 

0.173,b)Fn = 0.205, c) Fn = 0.267,d) Fn = 0.355 and e) Fn = 0.476. 

 



 

CHAPTER 6 

6. CONCLUSION AND RECOMMENDATIONS  

6.1  Conclusion 

Three-dimensional finite volume method has been applied to simulate incompressible 

flow around Wigley parabolic and Series 60 hull using CFD software FLUENT 

6.3.26. From the above study, following conclusions can be drawn: 

1) Finite volume method is very much prospective for simulation of flow around 

ship in both hexahedral and tetrahedral grid resolution. 

2) Three turbulence models such as Standard k-ε, Realizable k-ε with standard 

wall functions and Shear Stress Transport (SST) k-ω models are used to capture 

boundary layer in the simulation of steady flow around hulls in viscous 

turbulent flow. It is observed that the Standard k-ε model with standard wall 

functions compute the drag coefficient accurately. However, only SST k-ω 

model with transitional flow is used for simulation of turbulent flow because of 

its better performance. 

3) In this research the Volume of Fluid (VOF) method implemented in the RANS 

software FLUENT is employed to determine the free-surface wave flow around 

the Wigely parabolic hull advancing in calm water. Particular care was given to 

the grid generation to avoid problems of reflection of the waves and to 

minimize the computational efforts. It was shown that the convergence can be 

improved by increasing the density ratio between air and water without any 

relevant lack of accuracy in both free-surface and resistance predictions. 

4) Both the Standard k-ε and the SST k-ω turbulence models gave similar results 

concerning the coefficient of total resistance calculation for the Wigely 

parabolic hull form. Variation of result appeared in the case of Series 60 hull 

when the Froude number Fn > 0.3. This variation can be minimized by 

changing the mesh size, refining mesh and using super computers like SGI 

900,8 processor. Based on the results of a CFD simulation, a ship designer can 
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choose optimum speed with minimum power and then proceed to a model test 

for experimental result.  

5) The numerical model based on SIMPLE algorithm, associated with two 

different single hulls is used to simulate turbulent flow at different Reynolds 

number from 5.3x106 from 1.48x107. The computed value of drag coefficient 

agrees satisfactorily with experimental results. In this case, the viscous 

coefficient is 2.975% of the total drag coefficient of the hull.  The flow is very 

well predicted by k-ε turbulence model.  

6) Particulars importance is attached to the grid topology for the RANS simulation 

to minimize computational efforts without any lack of accuracy of the 

numerical solution. Indeed, all the computations presented here are carried out 

on a dual core processor personal computer avoiding expensive hardware. 

6.2  Recommendation for further study 

Following are recommendations for further study: 

(i) In this study, although three-dimensional model is used for a single hull 

however three dimensional models also can be used in multihull models and 

for a full scale model like a ship.  

(ii) This research is restricted only to measure drag coefficients with free surface 

effects. This may be done to show the effects of sinkage and trim with 

different angle of attack. 

(iii)  More study may be done to model the laminar-to-turbulent flow transition. 

(iv) The unsteady turbulent flow with other viscous models like Spalart-Allmaras, 

Reynolds Stress models can also be considered. 

(v) Wave profile and wave pattern along the two shapes of hulls may be 

investigated. 

(vi) More study may be done to model the laminar-to-turbulent flow transition. 
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APPENDICES 

Appendix A: 

 

Verification of Friction Coefficient  
 

Velocity V= Fn× gL  
 

Reynolds Number Re = ( )
µ

ρ Lv  

 

Coefficient of friction 
( )2

10 2log
075.0

−
=

Rn
C f  

Frictional Drag Coefficient 
AV

RC F
F 25.0 ρ
=  

 
Viscous drag coefficient CV = (1+k) CF 

 
Density ρ = 998.2 kg/m3 

 

Viscosity µ=0.001003 kg/m-s 
 

Form factor k = 0.100 
 
 

1. Fn =0.173, V=0.173× 181.9 ×  = 0.173×3.13 =0.54 
 
Re = (998.2×0.54×1.00)/ 0.001003 = 5.4 × 106 

 
730.5Relog10 =  

( )
3

2 1039.5
91.13

075.0
2730.5

075.0 −×==
−

=fC  

 
 
2. Fn =0.205, V=0.205× 181.9 ×  = 0.205×3.13 =0.64 
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Re = (998.2×0.64×1.00)/ 0.001003 = 6.4 × 106 

 

80.5Relog10 =  

( )
3

2 1019.5
44.14

075.0
280.5

075.0 −×==
−

=fC  

 
3. Fn =0.267, V=0.267× 181.9 ×  = 0.267×3.13 =0.84 

 
Re = (998.2×0.84×1.00)/ 0.001003 = 8.4 × 106 

 

92.5Relog10 =  

( )
3

2 1088.4
36.15

075.0
292.5

075.0 −×==
−

=fC  

 

4. Fn =0.355, V=0.355× 181.9 ×  = 0.355×3.13 =1.11 
 
Re = (998.2×1.11×1.00)/ 0.001003 = 1.1 × 107 

 

04.6Relog10 =  

( )
3

2 1060.4
32.16

075.0
204.6

075.0 −×==
−

=fC  

 

 
5. Fn =0.476, V=0.476× 181.9 ×  = 0.476×3.13 =1.49 

 
Re = (998.2×1.49×1.00)/ 0.001003 = 1.48 × 107 

 

17.6Relog10 =  

( )
3

2 1031.4
38.17

075.0
217.6

075.0 −×==
−

=fC  
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Appendix B: 

Verification of Wigley Parabolic Hull 
 

Data is provided for a Length=1m, Beam=0.1 m, Draft=0.0625 m and Block coefficient 

CB =0.44. 

Volumetric Displacement ∆ = LBD CB×1.00 

             = 1×0.1×0.0625×0.44 

                   = 2.75×10-3 m3 

Wetted Surface Area   A =2.58 L∇  = 0.135 m2 

0.5ρ A = 0.5×998.2×0.135 = 67.37 

 

1. Fn = 0.173 

( )
( ){ }2

3

54.037.67
1039.5

×
×

=
−

FC  

   = 0.274× 10-3 

     CV     =  (1+k)CF 

              =1.001× 0.274× 10-3 

               = 0.274× 10-3 

 

2.  Fn = 0.205 

 ( )
( ){ }2

3

64.037.67
1019.5

×
×

=
−

FC  

              = 0.264× 10-3 

       CV     =  (1+k)CF  

              =1.001× 0.264× 10-3 

              = 0.264× 10-3 
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3. Fn = 0.267 

 ( )
( ){ }2

3

84.037.67
1088.4

×
×

=
−

FC  

= 0.102× 10-3 

      

   CV   = (1+k)CF  

       = 1.001× 0.102× 10-3 

        = 0.102× 10-3 

4. Fn =0.355 

 ( )
( ){ }2

3

11.137.67
1060.4

×
×

=
−

FC  

 = 0.056× 10-3 

        CV     = (1+k)CF  

       =1.001× 0.056× 10-3 

              = 0.056× 10-3 

5. Fn= 0.476 

 ( )
( ){ }2

3

49.137.67
1031.4

×
×

=
−

FC  

  = 0.028× 10-3 

       CV     =  (1+k)CF  

            = 1.001× 0.028× 10-3 

              = 0.028× 10-3 
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Appendix C: 

 

Verification of Series 60 Hull 

 
Data is provided for a Length=1m, Beam=0.1333 m, Draft=0.0533 m and Block 

coefficient CB =0.60. 

Volumetric Displacement ∆ = LBD CB×1.00 

             = 1×0.1×0.0625×0.44 

                   = 4.26×10-3 m3 

Wetted Surface Area A =2.58 L∇  = 0.168 m2 

0.5ρ A = 0.5×998.2×0.168 = 83.84 

 

1.  Fn = 0.173 

     ( )
( ){ }2

3

54.084.83
1039.5

×
×

=
−

FC  

    = 0.22× 10-3 

     CV    =  (1+k)CF  

      = 1.001× 0.22× 10-3 

       =  0.22× 10-3 

 

2.  Fn = 0.205 

     ( )
( ){ }2

3

64.084.83
1019.5

×
×

=
−

FC  

         =  0.15× 10-3 

    CV   =  (1+k)CF  

          = 1.001× 0.15× 10-3 

           = 0.15× 10-3 
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3.   Fn = 0.267 

      ( )
( ){ }2

3

84.084.83
1088.4

×
×

=
−

FC  

            = 0.08× 10-3 

        CV   = (1+k)CF  

       = 1.001× 0.08× 10-3 

        = 0.08× 10-3 

4.    Fn =0.355 

       ( )
( ){ }2

3

11.184.83
1060.4

×
×

=
−

FC  

            = 0.045× 10-3 

        CV   = (1+k)CF  

=1.001× 0.045× 10-3 

             = 0.045× 10-3 

              

5.Fn= 0.476 

( )
( ){ }2

3

49.184.83
1031.4

×
×

=
−

FC  

       = 0.023× 10-3 

        CV   = (1+k) CF  

           =1.001× 0.023× 10-3 

             = 0.023× 10-3 
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Appendix D: 

Boundary Element Method(BEM) 
The flow around a ship moving with a steady forward speed U under the influence of 

incoming waves defines a boundary value problem for the velocity potential. 

 

 

 

 

 

 

 

 

 

The fluid is assumed to be inviscid and incompressible and the flow is irrotational such 

that the velocity potential Φ can be defined as 

φ+=Φ x.U  
The velocity potential Φ satisfies the Laplace equation 

02 =Φ∇  

The hull boundary condition requires that normal velocity potential on the hull must be 

zero.  
0n =⋅Φ∇             

The kinematic and dynamic boundary conditions on the free surface can be respectively 

written as: 

ζ==Φ−ζΦ+ζΦ zat0zyyxx   

[ ] ζ==−Φ∇Φ∇+ζ zat0U.
2
1g 2    

Combining the above two equations 

 ( ) ζ==Φ+⎥⎦
⎤

⎢⎣
⎡ Φ∇Φ∇∇Φ∇ zat0g.
2
1. z   

 

Figure: Co-ordinate system 
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Wave Making Resistance using BEM 

The pressure at any point on the hull surfaces ( ) gz
2
1pp ρ−Φ∇⋅Φ∇−ρ=− ∞

2U
 

21 φφU ∇+∇+=Φ∇  for 2nd order approximation 

The hydrodynamic force in the x-direction is obtained by integrating the pressure over 

the instantaneous wetted hull surface as follows 

 ( )∫
′+

∞−−=
SS

xW SdnppR   

( ) ( ) SnρUρ
2
1-SnρU

2
1

S

2

S

2 dgzdgzR xxw ∫∫
′

⎥⎦
⎤

⎢⎣
⎡ −Φ∇⋅Φ∇−⎥⎦

⎤
⎢⎣
⎡ −Φ∇⋅Φ∇−−= ρ   

 Where S is the mean wetted surface and S′ is the fluctuating part of the wetted surface 

between still water plane , z = 0 and the waterline along the hull , z = ζ. 

S = mean wetted surface and S′ = fluctuating part of the wetted surface 

Pressure along the water line, p = p∞.  

( ) ζρUρ
2
1 2 g=Φ∇⋅Φ∇−  

The force on the hull surface in the x-direction can be expressed as 

( ) ( ) Lzn-SnU
2
1

SS

2 ddgzgdgzR xxw ∫∫
′

−⎥⎦
⎤

⎢⎣
⎡ −Φ∇⋅Φ∇−−= ρζρρρ   

After calculating the pressure coefficient on the hull surface , the wave making resistance 

coefficient can be obtained as 

  2U
2
1 S

R
C w

w

ρ
=
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Appendix E: 

Comparison of Computed CD by Various Turbulent Models 

 

For Wigely Parabolic Hull 
Different  

Froude Numbers(Fn) 

Viscous Turbulent Models 

Standard k- ε 

CD×10-3 

Realizable k- ε 

CD×10-3 

SST k-ω 

CD×10-3 

0.173 1.91 2.96 2.19 

0.205 2.30 3.52 2.55 

0.267 3.12 4.66 3.41 

0.355 4.24 6.10 4.59 

0.476 6.13 8.31 6.57 

 

For Series 60 Hull 
Different  

Froude Numbers(Fn) 

Viscous Turbulent Models 

Standard k- ε 

CD×10-3 

Realizable k- ε 

CD×10-3 

SST k-ω 

CD×10-3 

0.173 2.37 2.09 1.56 

0.205 3.08 3.52 2.19 

0.267 1.98 2.08 2.78 

0.355 7.44 7.75 19.43 

0.476 23.34 76.35 134.90 
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Computed Value of CD, CV and CW by Standard k-ε(SKE) Model 

For Wigely Parabolic Hull 
Different Froude 

Numbers(Fn) 

CD×10-3 CV×10-3 CW×10-3 

0.173 1.91 0.30 1.60 

0.205 2.30 0.29 2.01 

0.267 3.12 0.11 3.01 

0.355 4.24 0.06 4.18 

0.476 6.13 0.03 6.10 

 

For Series 60 Hull 
Different Froude 

Numbers(Fn) 

CD×10-3 CV×10-3 CW×10-3 

0.173 2.37 0.24 2.13 

0.205 3.08 0.16 2.92 

0.267 1.98 0.09 1.89 

0.355 7.44 0.05 7.39 

0.476 23.34 0.03 23.31 

 


