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Abstract 

In this dissertation, the effect of mesh quality on stress concentration factor in structural 

discontinuities has been investigated. The effect of mesh quality on stress concentration 

around the circular holes in an infinite plate subjected to uniform tensile force at the 

edges of the plate, which very much conforms to the structural problems faced in 

configuring the structures with discontinuity is highly significant. Because structural 

discontinuity problems are difficult to solve analytically, a leading general purpose finite 

element software NASTRAN-PATRAN has been presented to perform the analyses 

computationally. The main purpose of this thesis is to determine how structural 

discontinuities alter stress distributions and how the mesh quality influences these 

stresses. Different models have been used in this study with variable number and quality 

of elements from model to model. Four-node quadrilateral membrane element (2 degrees 

of freedom per node) has been used in meshing the computational domain. The mesh 

quality has been defined as a combination of two criteria such as element quality and 

enough number of elements in the mesh. The quality of the surface mesh should be good 

to get acceptable finite element results. Element quality is defined by two factors namely: 

Distortion factor and Aspect ratio. Based on these two factors an object oriented C++ 

program named “MESH QUALITY_2012” has been developed. The results have been 

shown in tabular form and graphically. The computed results show good agreement with 

the published theoretical results. Finally a correct meshing approach is prescribed to 

model structures with single or multiple holes which is essential for a finite element 

analyst. 
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

 
1.1 Introduction 
The application of finite element method (FEM) to the analysis of discontinuous 

structural systems has received a significant interest in recent years. Examples of 

problems in which discontinuities play prominent role in the physical behavior of a 

system are numerous. In engineering practice, there is a variety of structures with 

discontinuities. From a mathematical point of view, analytical solutions are possible only 

for a limited class of such problems. The complexities of the structures, material 

properties and of boundary conditions, have progressively led to the predominance of 

numerical models based on finite elements and finite differences. For cases in which 

discrete representation of discontinuities is required, the finite element approach provides 

the best modeling to date.  

A ship floating in still water has an unevenly distributed weight owing to both cargo 

distribution and structural distribution. The buoyancy distribution is also non-uniform 

since the underwater sectional area is not constant along the length. Total weight and 

total buoyancy are of course balanced, but at each section there will be a resultant force 

or load, either an excess of buoyancy or excess of load. Since the vessel remains intact 

there are vertical upward and downward forces tending to distort the vessel (Fig 1.1) 

which are referred to as vertical shearing forces, since they tend to shear the vertical 

material in the hull. The ship shown in Figure 1.1 will be loaded in a similar manner to 

the beam shown below it, and will tend to bend in a similar manner owing to the variation 

in vertical loading. It can be seen that the upper fibres of the beam would be in tension; 

similarly the material forming the deck of the ship with this loading. Conversely the 

lower fibres of the beam, and likewise the material forming the bottom of the ship, will 

be in compression. A vessel bending in this manner is said to be ‘hogging’ and if it takes 

up the reverse form with excess weight amidships is said to be ‘sagging’. When sagging 

the deck will be in compression and the bottom shell in tension.  
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Lying in still water the vessel is subjected to bending moments, either hogging or sagging 

depending on the relative weight and buoyancy forces. 

 
Fig 1.1 Vertical shear and longitudinal bending in still water 

When a ship is in a seaway the waves with their troughs and crests produce a greater 

variation in the buoyant forces and therefore can increase the bending moment, vertical 

shear force, and stresses. Classically the extreme effects can be illustrated with the vessel 

balanced on a wave of length equal to that of the ship. If the crest of the wave is 

amidships the buoyancy forces will tend to ‘hog’ the vessel; if the trough is amidships the 

buoyancy forces will tend to ‘sag’ the ship (Fig 1.2). In a seaway the overall effect is an 

increase of bending moment from that in still water when the greater buoyancy variation 

is taken into account. From classic bending theory the bending stress (σ) at any point in a 

beam is given by: 

I
My

=s  
 

 

where M=applied bending moment. 

y=distance of point considered from neutral axis and 

I=second moment of area of cross-section of beam about the neutral axis. 
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Fig. 1.2 Wave bending moments 

 

When the beam bends it is seen that the extreme fibres are, say in the case of hogging, in 

tension at the top and in compression at the bottom. Somewhere between the two there is 

a position where the fibres are neither in tension nor compression. This position is called 

the neutral axis, and at the farthest fibres from the neutral axis, the greatest stress occurs 

for plane bending. So the deck plate, bottom shell and the members attached to these are 

in tension or compression and are considered as stressed structural members. 

Openings in ship structures are made for access, cargo handling, passage of pipes, ducts 

and cables, drainage and air escape, weld relief, etc.  

In the Maritime and aerospace industry, it is often desirable to design structure to be as 

light as possible for both performance and cost reasons; a weight reduction can enable 

ships or airplanes to increase their performance by running on less fuel. By removing 

small amounts of material from various places in the airframe or in the ship, the total 

weight of the entire structure can be reduced which decreases the operating cost. In 

addition to weight concerns, holes may be needed for such reasons as openings for 

windows and doors or when component are immersed together. 

Any opening in a stressed structural member, no matter how small or how well designed 

and fabricated, always causes a stress concentration. Ship openings that are improperly 

designed poorly located or involve bad workmanship in cutting and welding may lead to 

serious structural failures. 
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 If a discontinuity like hole exists in a structural or machine element that interrupts the 

stress path, then the stress at the discontinuity may be significantly higher than the 

nominal stress on the section. A stress concentration thus occurs at the discontinuity.  

 

 
Fig 1.3 Plate with hole subjected to a tensile force 

 
Fig 1.3 shows a plate with a hole subjected to a tensile force. The material which is 

subjected to a quite low stress may locally be stressed very highly because of 

discontinuity created by the hole. When these holes are in hull, bending stress levels that 

are already high, critical stress situations can develop. 

 

By contrast, a less desirable, and unintentional, type of discontinuity that structural 

engineers have to deal with is cracks, which are usually due to material imperfections that 

are impossible to avoid. If the stress were so great or below the yield point for the 

material fatigue failure or local failure might occur which could result in general failure 

of the structure as shown in the following figure. Although ideally engineers would prefer 

their structures to be free of cracks, their presence does not necessarily assure that a 

structure will fail. However, when cracks are detected, certain measures should be taken 

to determine the probability of crack propagation. 
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Fig 1.4: Fatigue Cracks under combined torsional and axial loading for circular 

notch/indention 

 

The two structural features described above, holes and cracks, are examples of what are 

known as structural discontinuities. A structural discontinuity can be described as a break 

or gap in a structural component that alters its behavior when loaded. Configuring the 

structures with discontinuities is one of the most important topics in the construction of 

ships, aero-planes, cars etc. Whenever the cross–section of a structural member changes 

suddenly, a structural discontinuity arises, e.g. deck openings like hatch and machinery 

openings, access openings on side wall, cutout in the web plate, oil hole in crankshaft etc. 
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Fig 1.5 Some ship structures with holes 

 

Since structural discontinuities alter the stress distribution of a structure, they also induce 

stress concentrations such as at the tip of a crack or near the edge of a hole. In the design 

and testing process, it is these areas of high stress that are of most concern; therefore, an 

accurate method must be employed to analyze the effects of these discontinuities so that 

engineers may design around them.  
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1.2 Review of the previous work: 
Considering the importance of structural discontinuity, an extensive research work has 

been carried out by naval architects, offshore and ocean engineers, hydro dynamists and 

mathematicians. In the past, stress analyses were performed analytically or 

experimentally, which could be both difficult and time consuming, especially when 

dealing with discontinuities. Many times, an accurate solution was not possible due to the 

complexity of the discontinuity configurations. Stress concentration factors are obtained 

analytically from the elasticity theory, computationally from the finite element method, 

and experimentally using methods such as photoelasticity or strain gages. The universal 

availability of powerful, effective computational capabilities, usually based on the finite 

element method, has alerted the use of and the need for stress concentration factors. Often 

a computational stress analysis of a mechanical device, including highly stressed regions, 

is performed, and the explicit use of stress concentration factors is avoided. Alternatively, 

a computational analysis can provide stress concentration factor, which is available for 

traditional design studies. The use of experimental techniques such as photoelasticity to 

determine stress concentration factors has been virtually replaced by the more flexible 

and more efficient computational techniques. However, with the advent of the finite 

element method (FEM), these analyses can now be performed with a great degree of 

accuracy.   

A great many researchers have outlined the importance of stress concentration factor in 

isotropic and composite materials. Folias and Wang (1990) presented most of the 

previous works on stress concentration in this subject. They presented a series solution 

for stress filled around a circular holes in a plates with arbitrary thickness. A wide range 

of holes diameters to plate thickness are presented. Ko (1985) used anisotropic plate 

theory to evaluate the stress concentration factor for a single layer or laminated 

composite plates with central circular cutout. Most of these works are based on the theory 

developed by Lekhnitskii (1961) and Savin (1961) for perforated anisotropic plates. In all 

of these works, circular and elliptical cutouts are considered. Daoust and Hoa (1991) 

solved the case of circular and triangular cutouts and investigated the influence of blunt 

curvature and material properties on the state of stress around a triangular cutout in an 

infinite composite plate. Wu and Mu (2003) investigated the stress concentration factor 
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for isotropic plates under uni-axial and bi-axial loads. The stress concentration factor was 

also determined for isotropic and orthotropic cylindrical shells with circular cutout. Chai 

(1996) presented finite element and some experimental results on the free vibration of 

symmetric composite plates with central hole. Huang and Sakiyama (1999) have 

proposed an approximate method for analyzing the free vibration of rectangular plates 

with different cutouts. Delale et al. (1984) have considered the axisymmetric bending 

problem of a perforated plate consisting of two bonded isotropic dissimilar materials. 

Fraser (1975) considered the problem of finding the stress distribution in a highly 

stretched plate containing an eccentrically plate-reinforced circular hole subjected to a 

large biaxial stress system at infinity. Reissner (1975) evaluated the stress concentration 

factor of an infinite plate containing a circular hole subjected to pure bending using his 

theory; he has shown that his results are in close agreement with those of Alblas (1957). 

Lekhnitskii (1968) studied homogenous anisotropic plate with a circular hole subjected to 

a pure bending moment acting along the edges of the plates.  

Iwaki (1980) worked on stress concentrations in a plate with two unequal circular holes. 

Ukadgaonker and Rao (2000) proposed a general solution for stresses around holes in 

symmetric laminates by introducing a general form of mapping function and an arbitrary 

biaxial loading condition into the boundary conditions. Ting et al. (1999) presented a 

theory for stress analysis by using rhombic array of alternating method for multiple 

circular holes. Chaudhuri (1987) worked on stress concentration around a part through 

hole weakening a laminated plate by finite element method. Mahiou and Bekaou (1997) 

studied local stress concentration for the prediction of tensile failure in unidirectional 

composites. Toubal et al. (2005) studied experimentally stress concentration in a circular 

hole in composite plate. Younis (2006) investigated through reflected photo elasticity 

method that the assembly stresses contributes in reducing stresses around the holes in a 

plate. Peterson (1966) has developed good theory and charts on the basis of mathematical 

analysis and presented excellent methodology in graphical form for evaluation of stress 

concentration factors in isotropic plates with different types of abrupt change, but no 

techniques are presented for evaluation of the stress concentration factor in orthotropic 

and laminated plate. N.K. Jain and N.D. Mittal (2008) have analyzed the effect of D/A 

ratio (where D is hole diameter and A is plate width) upon stress concentration factor 
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(SCF) and deflection in isotropic, orthotropic and laminated composite plates with central 

circular hole under different transverse static loading condition using finite element 

formulation. Recently, Ulku babuscu yesil (2010) has studied the effect of the initial 

stretching of the rectangular plate with a cylindrical hole on the stress and displacement 

distributions around the hole. In order to find the solution of his problem the 3D finite 

element was employed. Mittelstedt et al. (2004) have presented a closed-form higher-

order plate theory approach to find stress concentration in layered plates. Allam et al. 

(2003) have determined the stress concentration factor for a fiber-reinforced viscoelastic 

plate using the method of effective moduli. The plate is weakened by an oval or crack 

opening and deformed by forces applied to its middle plane. A comparison has been 

made between results when the small oval opening tends to a crack. 

 

1.3 Objectives of this thesis: 
A plate with central circular hole have found widespread applications in various fields of 

engineering such as aerospace, marine, automobile and mechanical. Stress concentration 

arises from any abrupt change in geometry of plate under loading. As a result, stress 

distribution is not uniform throughout the cross-section. Failures such as fatigue cracking 

and plastic deformation frequently occur at points of stress concentration. Hence for the 

design of a plate with central circular hole, stress concentration plays an important role 

and accurate knowledge of stresses and stress concentration factor at the edges of hole 

under in plane or transverse loading are required. Analytical solutions are available in 

literature for the prediction of stress concentration factor in different types of abrupt 

changes in shape. 

From the discussions made in section 1.2, it is clear that much work has been done on the 

theoretical development of different stress concentration problems but the effect of mesh 

quality on the finite element analysis result is never made. To get accurate result in less 

modeling time is very important in the industries now a day. Trial-error method to get 

better result is no more possible. For this reason the knowledge of the effect of different 

shapes of elements of the mesh is very important for a finite element analyst. Without this 

knowledge erroneous result can be produced which can lead to design of a faulty 

structure. 
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In the present work, the stress concentration around the hole in an infinite plate will be 

investigated using finite element method and the effect of mesh quality on stress 

concentration factor will be studied as well. The main objective of this study is to analyze 

the stress concentration around the hole in an infinite plate and to assess the effect of 

mesh quality on stress concentration factor in finite element method.   

The major objectives of this study are: 

§ To make a finite element model of a rectangular plate with a circular hole and 

analyze it to find out stress concentration factor and compare it with the value 

found from the formula given by Pilkey & Pilkey (2008). 

§ To assign appropriate boundary conditions for the model. 

§ To produce various models with variable number of grids/nodes. 

§ To investigate the effect of mesh quality on the stress concentration factor  

 achieved through finite element analysis. 

§ To make finite element models of a rectangular plate for multiple holes 

 

1.4 Outline of Methodology: 
This study concerns mainly with the fundamentals of FEM, where a particular structural 

problem is analyzed to study the effect of mesh quality. The problem involving stress 

distribution in an infinitely long plate with a hole subjected to uniform tensile force at the 

edges of the plate is investigated with the help of a FEM based software package- 

NASTRAN-PATRAN. The approach of solving the problem will be as follows: 

§ Different models will be used in this study with variable number and quality 

of elements from model to model. 

§ Four-node quadrilateral membrane element (2 degrees of freedom per node) 

will be used in meshing the computational domain. 

§ The theoretical investigation is being carried out using the formula given by 

 Pilkey & Pilkey (2008). 

§ The quality of mesh will be examined using aspect ratio and distortion factor 

 applying program codes written in c++. 
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§ The results will be shown in tabular form and graphically by utilizing a world 

 renowned and leading general purpose finite element software package 

 NASTRAN-PATRAN. 

§ Results will be analyzed specially emphasizing the physical aspects. 
 

1.5 Thesis Framework: 
For complete understanding of the work, the thesis is divided into a number of chapters 

describing its different topics.  

Chapter one first discusses on the importance of the study of structural discontinuities 

and presents the review of previous works on this topic. From these discussions it is clear 

that much work has been done on the theoretical development of different stress 

concentration problems but the effect of mesh quality on the finite element analysis result 

is never made. To get accurate result in less modeling time is very important in the 

industries. Trial-error method to get better result is no more possible. For this reason the 

knowledge of the effect of different shapes of elements of the mesh is very important for 

a finite element analyst. Without this knowledge erroneous result can be produced which 

can lead to design of a faulty structure. The objectives and outline of the methodology are 

given in details in later part of the chapter. 

In the second chapter some fundamental concepts of finite element method are given. The 

formulation of quadrilateral element is discussed in details as this element is used in the 

analytical work of this thesis. 

In chapter 3 the importance of choosing quadrilateral element over triangular element in 

2-D finite element analysis is presented. Different mesh generation procedures are 

discussed to understand why the shape of the elements may not become perfect. The 

mesh quality and element quality are then discussed. The standard of element quality 

(distortion factor and aspect ratio) is first fixed and then the developed computer program 

“MESH QUALITY_2012” is discussed. 

Following this, the formulation and modeling of the problem, as mentioned above, are 

being carried out in Chapter 4.  In this chapter we have also mentioned our results in both 

tabular and graphical form.  
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And at last conclusion of our findings with future recommendations on further study in 

the field of Finite Element analysis are discussed in Chapter 5.   
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CHAPTER 2 

 

BASICS OF FINITE ELEMENT METHOD 

 
In this thesis we used finite element method (FEM) for analyzing structural 

discontinuities problems. To facilitate the study some basic concepts of FEM are 

discussed below. 

 

2.1 What is The Finite Element Method (FEM)?  

The Finite Element Method originated as a method of stress analysis. Today finite 

elements are also used to analyze problems of heat transfer, fluid flow, lubrication, 

electric and magnetic fields and many others. This method is used to model a structure as 

an assemblage of small elements. Each element is of simple geometry and therefore is 

much easier to analyze than the actual structure. Then analyzing those elements 

individually and taking into account the interactions between them, the solution of that 

specified problem can be obtained.  

The finite element procedure produces many simultaneous algebraic equations, where the 

calculations are performed on personal computers, mainframes and all sizes in between. 

Results are rarely exact. However, errors are decreased by processing more equations and 

results accurate enough for engineering purposes are obtainable at reasonable cost.  

Now-a-days most of the analysis using FEM is done on software packages, which 

comprises of mainly three components – pre-processor, solver and post-processor. These 

components usually perform the functions followed by a typical finite element analysis, 

where the steps that are pursued to do so are given below:  

- At first the structure or continuum has to be discretized into finite elements. Mesh 

generation program, called Pre-processors, help the user in doing so. Then the 

boundary conditions and known nodal values (for plane stress problem it is zero, 

for heat transfer problem it is the nodal temperature) are specified on the mesh to 

assign it the correct nodal degrees of freedom. 
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- In the next step simultaneous linear algebraic equations, evolved from various 

elements, are solved by the program called ‘Solver’ to determine the specific 

nodal values, which depends upon the nature of the problem (for plane stress 

problem it is nodal stress value, for heat transfer problem it is the nodal heat 

fluxes, etc.).   

- Last step concerns the generation of output (as determined by the solver) in a 

graphical form with the help of an output interpretation program, called Post-

processor. 

The power of the finite element method resides principally in its versatility. The method 

can be applied to various physical problems. The body analyzed can have arbitrary shape, 

loads and boundary conditions. The mesh can mix elements of different types, shapes and 

physical properties. This great versatility may be contained within a single computer 

program. User-prepared input data controls the selection of problem type, geometry, 

boundary conditions, element selection and so on.  

Another attractive feature of finite element method is the close physical resemblance 

between the actual structures and its finite element model. The model is not simply an 

abstraction. This seems especially true in structural mechanics and may account for the 

finite element method having its origins here.  

 

2.2 How/Why should we study the method?  

Whether computer based or not, analytical methods rely on assumptions and on theory 

that is not universally applicable. That is why its limitations are really a matter to be 

concerned with. It is far easier for a user to make silly mistakes like making an error in 

computer program, input of wrong data or generation of poor mesh, which would lead to 

the formation of incorrect output with elegant graphic display. The results obtained from 

the programs cannot be trusted if user has no knowledge of their internal workings and 

little understanding of the physical theories on which those are based. Moreover, the 

choice of element for various analyses is crucial. An element that is good in one problem 

area (such as magnetic fields) may be poor in another (such as stress analysis). Even in a 

specific problem area an element may behave well or badly, depending on particular 

geometry, loading and boundary conditions. If an analysis is to be done by numerical 
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methods, finite elements are not the only choice, because there are other methods like 

finite difference method, boundary element method, finite volume method etc., which 

would be more effective in some areas of analysis than the finite element method. For 

example, finite difference methods are effective for shell of revolutions and boundary 

elements are effective for some problems with boundaries at infinity. But in linear 

computational solid mechanics problems, finite element methods currently dominate the 

scene as regards space discretization. Boundary element methods post a strong second 

choice in specific application areas, where for nonlinear problems the dominance of finite 

element method is overwhelming.  In other cases experiment may be the most appropriate 

method to obtain data needed for analysis, as well as to compare it with the results 

obtained from analysis using the discretization methods, where the analytical process is 

being pushed beyond previous experience & established practice.  

 

2.3 Fundamentals of Finite Element Method  

As mentioned earlier in Section 2.1 that the FEM analysis of the structural problem 

involves three major steps - the tasks involved in each step require a good understanding 

of the sequential aggregation of the modeling of the structure. Preprocessing involves the 

preparation of data, such as nodal connectivity, boundary conditions, and loading and 

material information. The processing stage involves stiffness generation, stiffness 

modification and the solution of the equations, resulting in the evaluation of the nodal 

variables. Other derived quantities, such as gradients or stresses, may be evaluated at this 

stage. The postprocessing stage deals with the presentation of results. Typically, the 

deformed configuration, mode shapes, temperature, and stress distribution are computed 

and displayed at this stage. A complete Finite Element Analysis is a logical interaction of 

three stages. Since this study mainly focuses on the two-dimensional problem concerning 

the analysis of a plate with a hole, the approach towards most of the conceptual review 

would be to cover only the two-dimensional aspects of finite element analysis.   

 

Today the concept of the finite element method is a very broad one. Even when 

restricting ourselves to the analysis of structural mechanics problems only, the approach 

towards the formulation of those can differ in nature. Here the potential energy approach 
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is being applied in the derivation of necessary entities, needed in solving those analytical 

problems.   

The formulation of element stiffness matrix and global load vector requires the potential 

energy  or variational approach, where the potential energy is defined as,  
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where, the first term denotes the strain energy equation for a linear elastic body, which is 

expressed as,  
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and the rest of the terms together constitute the work potential of the body, where 

WP = åòò ---
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In equation (2.1), f & T denotes the body force components comprising the distributed 

forces per unit volume and surface traction forces per unit area respectively as shown in 

Fig-2.1. Here the Fig-2.1 represents a three-dimensional body having a volume and 

surface area V and S respectively. Traction force per unit area T and distributed body 

force per unit volume f, are also shown in the figure, where some region of the boundary, 

Su, are constrained. The deformation of a point [ ] )zy,x, T=x( is given by the three 

components of its displacements, [ ]Twv,u,=u .  In the last term of equation (2.1), Pi 

represents a force acting at point i.  

 
Fig-2.1: A three dimensional body 
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2.4 Finite Element Modeling 

The Finite Element Method is the dominant discretization technique in structural 

mechanics. The basic concept in FEM is the subdivision of a region into disjoint (non-

overlapping) components of simple geometry called finite element or element for short. 

For 2-D modeling the most commonly employed elements are linear or quadratic 

triangles and quadrilaterals. In two-dimensional problem, each node is permitted to 

displace in the two directions. Thus, each node has two degrees of freedom. So, the 

displacement components of node j are taken as Q2j-1 in the x direction and Q2j in the y 

direction. And the global displacement vector can be represented as  

[ ]TNQQQ .,,........., 21=Q  (2.4) 

and global load vector, 

[ ]TNFFF ..,,........., 21=F  (2.5) 

where N is the number of degrees of freedom (d.o.f), which is defined as the flexibility of 

the nodes to displace in permitted numbers of direction. Thus in two dimensional 

problem, as the nodes are permitted to displace in both ± x and ± y direction, hence each 

node has two degrees of freedom.   

Computationally, the information on the discretization is to be represented in the form of 

nodal coordinates and connectivity. The nodal coordinates are stored in a two-

dimensional array represented by the total number of nodes and the two coordinates per 

node. The element connectivity information is an array of the size and number of 

elements and the nodes per element, which are the global node numbers of the particular 

elements that can be derived from the discretized region. 

 

2.5 Formulation of four node quadrilateral element matrices: 

The two dimensional Finite Element formulation provides with a family of Isoparametric 

elements, where the Four-node Quadrilateral Element represents one of the most basic 

form among those. Since in this study the discretization of the models are made using the 

quadrilateral elements, the shape functions, element stiffness matrix and element body 

forces for only this particular element is being figured out here.    
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Here a general quadrilateral element has been considered as shown in Fig-2.2, having 

local nodes numbered as 1,2,3 and 4 in a counterclockwise fashion and (xi, yi) are the 

coordinates of node i. The vector q = [q1, q2,…….q8]T denotes the element displacement 

vector. The displacement of an interior point P located at (x, y) is represented as               

u = [ u (x, y), v (x, y)]T.  

 

 

Fig 2.2: Four-node quadrilateral element    

 

2.5.1 Shape Functions 

To develop the shape functions let us consider a master element (Fig-2.3) having a square 

shape and being defined in ξ-, η- coordinates (or natural coordinates). The Lagrange 

shape functions, where i = 1, 2, 3 and 4, are defined such that Ni is equal to unity at node i 

and is zero at other nodes. In particular: 

î
í
ì

=
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1 andnodeat

nodeat
N    (2.6) 

Now, the requirement that N1 = 0 at nodes 2, 3 and 4 is equivalent to requiring that N1 = 0 

along edges ξ = +1 and η = +1 (Fig-2.3.). 
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Fig 2.3: The quadrilateral element  in ξ, η space (master 
element)      

 

All the four shape functions can be written as  

)1)(1(
4
1

1 hx --=N  )1)(1(
4
1

2 hx -+=N  
(2.7) 
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4
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4 hx +-=N  

Now, to express the displacement field within the element in terms of the nodal values, 

let u = [u, v]T represent the displacement components of a point located at (ξ, η), and q, 

dimension (8 × 1), represents the element displacement vector which can be written in 

matrix form as,  

Nqu =  (2.8) 

 where,  
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In the isoparametric formulation, the same shape functions can also be used to express 

the coordinates of a point within the element in terms of nodal coordinates.  

Thus,  

44332211 xNxNxNxNx +++=  
(2.10) 

44332211 yNyNyNyNy +++=  
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Let a function ),,( yxff =  in view of Equation (2.10 )be considered to be an implicit 

function of x  and h  as  

)].,(),,([ hxhx yxff =     (2.11) 

From calculus we find that 

hx d d dydx Jdet=     (2.12) 

where, J is the Jacobian matrix.  
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2.5.2 Element Stiffness Matrix 

The stiffness matrix for the quadrilateral element can be derived from the strain energy in 

the body, given by,  

ò= v

T dVU  εσ2
1    (2.14) 

or, 

å ò=
e e

e dAtU es T
2
1  (2.15) 

 where te is the thickness of element e. Using the strain-displacement relation the strain in 

the element is expressed in terms of its nodal displacement. The stress is now given by  

DBq=σ  (2.16) 

where, D is s (3×3) material matrix. energy in equation (2.15) becomes,    
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As, TTT BDq=σ and Bq=ε , using equation (2.15) we get, 
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where,  

òò
- -

=
1

1

1

1

det J dξ dξDB Btk T
e

e    (2.20) 

is the element stiffness matrix of dimension (8×8). 

Here the quantities B and det J in the integral in equation (2.20) are involved functions of 

ξ and η.  

 

2.5.3 Stiffness Integration 

From equation (2.20) we find the element stiffness for a quadrilateral element  

òò
- -

=
1
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1

1

det hx d d t T
e

e J DBBk  (2.21) 

where B and det J are functions of ξ and η. This integral actually consists of the integral 

of each element in an (8×8) matrix. The Gaussian quadrature approach for evaluating this 

integral is adopted here. This method has proved most useful in finite element work.  

 

2.5.4 Element Force Vectors 

Body Force 

 A body force that is distributed force per unit volume, contributes to the global load 

vector F. This contribution can be determined by considering the body force term in the 

potential – energy expressions        

ò
v

dV fu T  (2.22) 

Using u = Nq, and treating body force [ ]Tyx ff ,=f as constant within each element, we 

get  
eT fqfu åò =
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where the (8×1) element body force vector is given by, 
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Since NT and det J is the function of ξ and η, the body force vector has to be evaluated 

numerically.  
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Traction Force 

 A traction force is distributed load acting on the surface of the body. Such a force acts on 

edges connecting boundary nodes. A traction force acting on the edge of an element 

contributes to the global load vector F. Let us assume a traction force  

[ ]Tyx TT ,=T is applied on edge 2-3 of the quadrilateral element in Fig-2.3. From the 

potential energy equation we get the traction term,  

òò -
+=

32
)(

l
dltvTuTdlt eyx

L
e

T  Tu    (2.25) 

Along that edge we have ξ = 1. If we use the shape functions as in equation (2.7), this 

becomes N1 = N4 = 0, N2 = (1-η)/2 and N3 = (1 + η)/2, where the shape functions have 

become linear functions. Consequently, from the potential, the element traction load 

vector is readily given by,  

[ ]Tyxyx
e TTTTlt

0000
2 3322

32e -=T    (2.26) 

where, l2-3 = length of edge 2-3. 2xT , 3xT  are the traction force components at node 2 and 

2yT , 3yT  are the traction force components at node 3.  

Finally, point loads are considered in the usual manner by having a structural node at that 

point and simply adding to the global load vector F. 

 

2.5.5 Stress Calculation 

From equation (2.16) we get that, the stresses DBq=σ  acting in the quadrilateral 

element are not constant within the element; they are functions of ξ and η and 

consequently vary within the element. In practice, the stresses are evaluated at the Gauss 

points, which are also the points used for numerical evaluation of ke, where they are 

found to be accurate.  

 

2.6 Evaluation of Global Stiffness Matrix and Load Vector  

This section explains the way to assemble the Global Stiffness Matrix and Load Vector. 

The total potential energy as in equation (2.1) can be written in the form, 
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Õ -= FQKQQ TT

2
1    (2.27) 

by taking element connectivity into account, where K and F are the Global Stiffness 

Matrix and Load Vector respectively. This step involves assembling K and F from 

element stiffness and force matrices. The global load vector F is assembled from element 

force vectors and point loads as-  

i)å ++=
e

PT(f F ee   (2.28) 

where, ef & eT are the element body force vector and element traction force vector 

respectively and P i represents the point vector.  

 

2.7 Treatment of Boundary conditions: 

In dealing with the proper boundary condition and deriving the equilibrium equations the 

minimum potential energy theorem can be used. This theorem states that: Of all possible 

displacements that satisfy the boundary conditions of a structural system, those 

corresponding to equilibrium configurations make the total potential energy assume a 

minimum value. Consequently, the equations of equilibrium can be obtained by 

minimizing with respect to Q, the potential energy P  subject to the boundary conditions. 

Boundary conditions are usually of the type, 

11 aQp = , 22 aQp = ,………, rpr aQ =  (2.29) 

where, P1, P2,……, Pr are denoted to be the degrees of freedom and r is judged to be the 

number of supports in the structure. The requirement that the potential energy P  takes on 

a minimum value is obtained from the equation.                                                      

0=P

idQ
d              Ni ,......,3,2=  (2.30) 

Applying these boundary conditions and also using the equation 2.30 the finite element 

equations can be expressed in the matrix form as,                                                                                      

FKQ =               (2.31) 

where, K is a reduced (N-1×N-1) matrix obtained by eliminating the row and column 

corresponding to the specified degrees of freedom. This process of determining 

equilibrium equations is referred to as elimination approach.  
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In the elimination approach, the stiffness matrix K is obtained by deleting rows and 

columns corresponding to fixed d.o.f.  

 

2.8 Element stress calculation   

Equation (2.31) can be solved for the displacement vector Q using Gaussian elimination. 

As the reduced K matrix is a nonsingular one, the boundary condition can be considered 

to be specified properly. Once Q has been determined, the element stress can be 

evaluated using the equation derived from Hooke’s law,  

BqEσ =          (2.32) 

where B is the element strain-displacement matrix and q is the element displacement 

vector for each element, which is extracted from Q using element connectivity 

information.  
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CHAPTER 3 

 

 FINITE ELEMENT MESH AND ITS QUALITY 

 
It has been already mentioned that for finite element analysis, the problem domain need 

to be discretized or subdivided into disjoint (non-overlapping) components of simple 

geometry called finite element or element for short. Moreover for two dimensional finite 

element analyses there exist principally two types of elements, triangular and 

quadrilateral elements. In section 2.5 we mentioned that we will use 4 node quadrilateral 

elements for our analysis in this thesis. In this chapter we will focus on the advantages of 

quadrilateral elements over triangular elements and the domain discretization techniques 

which are also called finite element meshing. 

 

3.1 Why we chose to use quadrilateral element? 
Consideration of the convergence characteristics of two dimensional solutions of elastic 

continuum problems, using both quadrilateral and triangular elements, has been covered 

in previous studies and some finite element textbooks (Zienkiewicz and Taylor 1989, 

Brauer 1993). Such studies conclude that the significant factors that affect convergence 

characteristics of finite element solutions include the element's basic shape, element 

distortion, polynomial order of the element, completeness of polynomial functions, 

integration techniques, and material incompressibility. It is generally accepted that 

simplex triangular elements are inferior when compared to bilinear quadrilaterals. For 

example, statements such as “... for reasons of better accuracy and efficiency, 

quadrilateral elements are preferred for two- dimensional meshes and hexahedral 

elements for three-dimensional meshes. This preference is clear in structural analysis and 

seems to also hold for other engineering disciplines.” (Brauer, 1993) However, it is also 

generally accepted that triangular elements, with higher order displacement assumptions, 

provide acceptable accuracy and convergence characteristics. However, mesh locking 

due to material incompressibility as reported by Hughes(1987), is a serious shortcoming 

of triangular elements. 
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3.2 Mesh and its generation 
A key step of the finite element method for numerical computation is mesh generation. 

Mesh generation is the practice of generating a polygonal or polyhedral mesh that 

approximates a geometric domain. In this process, one is given a domain (such as a 

polygon or polyhedron; more realistic versions of the problem allow curved domain 

boundaries) and must partition it into simple "elements" meeting in well-defined ways. 

There should be few elements, but some portions of the domain may need small elements 

so that the computation is more accurate there. All elements should be "well shaped" 

(which means different things in different situations, but generally involves bounds on 

the angles or aspect ratio of the elements).  

 

 

 

 

Fig 3.1: Examples of mesh generation 

3.2.1 Types of Mesh 

From the point of view of how elements meet, mesh can be divided into two major types: 

1. Structured Mesh: A structured mesh can be recognized by all interior nodes of the 

mesh having an equal number of adjacent elements. For this purposes, the mesh 

generated by a structured grid generator is typically all quad or hexahedral. Algorithms 

employed generally involve complex iterative smoothing techniques that attempt to align 

elements with boundaries or physical domains. Where non-trivial boundaries are 

required, “block structured” techniques can be employed which allow the user to break 

the domain up into topological blocks. Structured grid generators are most commonly 

used within the CFD field, where strict alignment of elements can be required by the 

analysis code or necessary to capture physical phenomenon. 
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Fig 3.2: Structured Mesh 

 

2. Unstructured Mesh: An unstructured (or irregular) grid is a tessellation of a part of 

the Euclidean plane or Euclidean space by simple shapes, such as triangles or tetrahedra, 

in an irregular pattern. Grids of this type may be used in finite element analysis when the 

input to be analyzed has an irregular shape. 

In Unstructured mesh generation relaxes the node valence requirement, allowing any 

number of elements to meet at a single node. Triangle and Tetrahedral meshes are most 

commonly thought of when referring to unstructured meshing, although quadrilateral and 

hexahedral meshes can also be unstructured. While there is certainly some overlap 

between structured and unstructured mesh generation technologies, the main feature 

which distinguish the two fields are the unique iterative smoothing algorithms employed 

by structured grid generators. 

Unlike structured grids, unstructured grids require a list of the connectivity which 

specifies the way a given set of vertices make up individual elements. 

Ruppert's algorithm is often used to convert an irregularly shaped polygon into an 

unstructured grid of triangles. 

In addition to triangles and tetrahedra, other commonly used elements in finite element 

simulation include quadrilateral (4-noded) and hexahedral (8-noded) elements in 2D and 

3D, respectively. One of the most commonly used algorithms to generate unstructured 

quadrilateral grid is "Paving". However, there is no such commonly used algorithm for 

generating unstructured hexahedral grid on a general 3D solid model. "Plastering" is a 3D 
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version of Paving, but it has difficulty in forming hexahedral elements at the interior of a 

solid. 

 

Fig 3.3: Unstructured Mesh 

3.2.2 Use of mesh: 

Typical uses of mesh are for rendering to a computer screen or for physical simulation 

such as finite element analysis or computational fluid dynamics. The field is highly 

interdisciplinary, with contributions found in mathematics, computer science, and 

engineering. There has now been considerable theoretical work in the geometry 

community on mesh generation problems, complementing and building on practical work 

in the numerical community. There is also beginning to be a convergence of these 

communities, in which theoretical work is fed back in to practical mesh generation 

applications. Theoretically, the preferred type of mesh is the triangulation, but in mesh 

generation practice quadrilaterals or higher dimensional cubical element shapes are 

preferred (both because fewer are typically needed and because they have better 

numerical properties). Remaining problem areas in the theory of meshing include 

triangulations in dimensions higher than two, meshes with cubical elements, mesh 

smoothing, mesh decimation and multi-grid methods, and data structures for efficient 

implementation of meshing algorithms. There has also been some theoretical work on 



29 

using geometry to partition meshes by finding small separators of their underlying 

graphs. 

3.2.3 Various Mesh Generation Techniques    

In this section we will discuss triangular (three noded) and quadrilateral (four noded) 

mesh generation techniques (two dimensional linear elements). In section 3.1 above we 

stated that we are going to use quadrilateral mesh for our analysis. But it is important to 

mention that a triangle can be subdivided into quadrilaterals (that is, a triangular mesh 

can be converted into quadrilateral mesh), thus their (triangular elements) generation is 

also relevant and important. 

 

 

 

 

 

Fig 3.4: A triangular element is converted into three quadrilateral elements 

3.2.3.1 Triangular Meshing 

Triangles are by far the most common forms of two dimensional unstructured mesh 

generation. There are a number of triangulation techniques. We will discuss the following 

techniques: 

a. Delaunay 

b. Octree 

c. Advancing Front 

d. Islam et al.(2010) proposed technique 

a. Delaunay 

The Delaunay Method is one of the most popular techniques of triangular mesh 

generation. In mathematics and computational geometry, a Delaunay triangulation for a 

set P of points in the plane is a triangulation DT(P) such that no point in P is inside the 

circumcircle of any triangle in DT(P), i.e., Delaunay criterion is the requirement that the 

circumcircles of all triangles have empty interiors. It was given by Boris Delaunay in 

1934.  
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The criterion in itself is not an algorithm for generating a mesh. It merely provides the 

criterion for which to connect a set of existing points in space. As such it is necessary to 

provide a method for generating node locations within the geometry. A typical approach 

is to first mesh the boundary of the geometry to provide an initial set of nodes. The 

domain bounded by boundary nodes is then triangulated according to the Delaunay 

criterion which involves Voroni diagram. In two dimensions the Voroni diagram of a 

group of vertices divides two dimensional space into regions bound by straight line 

segments. Each region or Voroni cell belongs to one vertex. Although the Delaunay 

criterion has been known for many years, it was not until the work of Lawson (1977) and 

Watson (1981) that the criterion was utilized for developing algorithms to triangulate a 

set of vertices. The criterion was later used in developing meshing algorithms by Baker 

(1989) at Princeton, Weatherill and Hassan (1994) at Swansea, George et. al. (1991) at 

IRINA among others. 

Delaunay triangulations maximize the minimum angle of all the angles of the triangles in 

the triangulation; they tend to avoid skinny triangles. 

b. Octree  

The Octree technique was primarily developed in the 1980s by Mark Shephard at 

Rensselaer. With this method, cubes containing the geometric model are recursively 

subdivided until the desired resolution is reached. First the equivalent two-dimensional 

quadtree decomposition of a model is taken. Irregular cells are then created where cubes 

intersect the surface, often requiring a significant number of surface intersection 

calculations. Tetrahedra are generated from both the irregular cells on the boundary and 

the internal regular cells. The Octree technique does not match a pre-defined surface 

mesh, as an advancing front or Delaunay mesh might, rather surface facets are formed 

wherever the internal octree structure intersects the boundary. The resulting mesh also 

will change as the orientation of the cubes in the octree structure is changed and can also 

require. To ensure element sizes do not change too dramatically, a maximum difference 

in octree subdivision level between adjacent cubes can be limited to one. Smoothing and 

cleanup operations can also be employed to improve element shapes. 
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c. Advancing Front 

Another very popular family of triangle and tetrahedral mesh generation algorithms is the 

advancing front, or moving front method. It was first presented by Lo in 1985. He 

presented a new mesh generation algorithm that initially defines the boundary of the 

domain by a set of line segments, the initial advancing front. All nodes are generated 

within the domain bounded by the initial advancing front and valid triangular elements 

are then formed from the line segments and interior nodes. Each element is generated by 

joining the end nodes of a line segment to a third node with the condition that it does not 

intersect the advancing front. The front is then updated and the element creation process 

goes on as long as the front is not empty. Peraire et al [9] presented a modified version of 

advancing front method in 1987. Most of the subsequent advancing front method 

research has been based upon Peraire’s algorithm. 

d. Islam et al.(2010) proposed technique 

A triangular mesh generation algorithm was presented by Islam et al.(2010). On that 

procedure a fully automatic object oriented program in C++ language was developed for 

any arbitrary 2D geometry. The program generates unstructured triangular surface mesh 

which can be used for finite element analysis. The program gives mesh output in a script 

file format for viewing in AutoCAD. Importance is given to the quality of the triangles 

generated so that better results can be achieved by the finite element analysis. A very 

practical approach has been taken in this regard. A number of example meshes were 

presented to show the effectiveness of the algorithm and program.  

3.2.3.2 Quadrilateral Meshing 

Automatic unstructured mesh generation algorithms have lent themselves more readily to 

triangle and tetrahedral meshing. As a result, most of the literature and software are 

triangle and tetrahedral. In spite of this, there is a significant group of literature that 

focuses on unstructured quad and hexahedral methods. Unstructured quad34 and hex35 

meshing software have also become widely available in recent years. Unlike triangle and 

tetrahedral methods, extension from a 2D quadrilateral algorithm to a 3D hexahedral 

method is not generally straightforward. 
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There are two main types of Quad/Hexahedral Meshing: 

 a. Mapped Meshing 

 b. Unstructured Quad Meshing 

a. Mapped Meshing 

When the geometry of the domain is applicable, quad or hex mapped meshing36 will 

generally produce the most desirable result. Although mapped meshing is considered a 

structured method, it is quite common for unstructured codes to provide a mapped 

meshing option. For mapped meshing to be applicable, opposite edges of the area to be 

meshed must have equal numbers of divisions. In 3D, each opposing face of a topological 

cube must have the same surface mesh. This can often be impossible for an arbitrary 

geometric configuration or can involve considerable user interaction to decompose 

geometry into mapped meshable regions and assign boundary intervals. In order to 

reduce human interaction, research has be done in recent years through the CUBIT37 

project at Sandia National Labs to automatically recognize features38and decompose 

geometry39 into separate mapped meshable areas and volumes. Work has also been done 

to automate interval assignments40. Another category of mapped meshing, also 

developed as part of the CUBIT37 project is referred to as submapping41. This method, 

rather than decomposing the geometry directly, determines an appropriate virtual 

decomposition based on corner angles and edge directions. The separate map-meshable 

regions are then meshed separately. This method is suitable for blocky shapes and 

volumes that have well defined corners and cube-like regions. 

b. Unstructured Quad Meshing 

Unstructured quadrilateral meshing algorithms can, in general, be grouped into two main 

categories: direct and indirect approaches. With an indirect approach, the domain is first 

meshed with triangles. Various algorithms are then employed to convert the triangles into 

quadrilaterals. With a direct approach, quadrilaterals are placed on the surface directly, 

without first going through the process of triangle meshing. 

3.3 Mesh quality 

The title of this thesis is” Study of the Effect of Mesh Quality on Stress concentration 

factor of plate with holes using Finite Element Analysis”. In this section we will discuss 

how we define mesh quality in our study and why. 
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We define mesh quality as a combination of two criteria. 

1. Element quality 

2. Enough number of element in the mesh 

3.3.1 Element quality 

The quality of the surface mesh should be good to get acceptable finite element results. 

To judge if a mesh is of sufficient good quality, it is needed to define a standard. Element 

quality is defined by two factors: 

a. Distortion factor 

b. Aspect ratio 

3.3.1.1 Distortion Factor: 

Zhu et al (1991)considered a quadrilateral element satisfactory if all its internal angles θ 

fall within 90º ± 45º and was considered as unsatisfactory if θ exceeds the limit 90º± 60º. 

Lo and Lee (1992) found that the first condition appeared to be too strict, so a more 

flexible range of 90º ± 52.5º was used for quadrilateral interior angles. In the present 

study Lo and Lee’s range is chosen for acceptable quality of a quadrilateral element. Any 

element exceeding this range is considered unacceptable. The optimum shape for a 

quadrilateral is a square with interior angles 90º. The following equations were used to 

measure the distortion factor of quadrilaterals.  

The deviation of each interior angle of a quadrilateral, idq , is defined as,  
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The distortion factor for quadrilateral element, qF  is defined as,  
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It can be seen that qF  would attain a minimum value of zero for a perfect square and the 

acceptable range of 90º± 52.5º defined by Lo and Lee would correspond to o105£qF . 

 

Derivation of Distortion factor for a quadrilateral element (Fig. 3.5) can be expressed in 

the following manner:  

 
Fig. 3.5 Derivation of Distortion factor for a quadrilateral element 

 

The deviations of each interior angle can be expressed as,  

 

                                              ooo 999901 =-=dq          

                                              ooo 21111902 =-=dq  

                                              ooo 3357903 =-=dq  

                                              ooo 393904 =-=dq  

Hence, the distortion factor, )( 2
4

2
3

2
2

2
1 dqdqdqdq +++=qF  

                                                   )333219( 2222 +++=  

                                                   o25.40=  

where, the value of qF is below the limit of o105 . So, the element as depicted above can 

be said to possess acceptable quality in terms of distortion factor according to Lo and 

Lee.   
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3.3.1.2 Aspect ratio:  

Aspect ratio of a quadrilateral element is defined as the ratio of the largest to the smallest 

length of the sides of the element.  

So,  

Aspect ratio = Lmax / Lmin 

Where, Lmax and Lmin are the largest and smallest characteristic lengths of an element, 

respectively. Examples of acceptable and unacceptable elements in terms of aspect ratio 

are given below:  

 

 

 

 

 

Fig. 3.6 Elements with unacceptable aspect ratio 

3.3.1.3 Computer program “MESH QUALITY_2012” 

Based on the above two factors an object oriented C++ program named “MESH 

QUALITY_2012” is developed. The program listing is given in the Appendix. It takes 

NASTRAN PATRAN *.dat files as input and calculates each element internal angles and 

computes the distortion factor. Finding out the maximum and minimum edge length of 

each element it also calculates the aspect ratio. Finally the average distortion factor of the 

mesh and element of worst distortion factor is found out. 

 

3.3.2 Enough number of element in the mesh 
As the results obtained in solving problems by finite element method yield the 

approximate solution, the convergence towards the exact result necessitates the 

implementation of enough number of elements in modeling structures. If the number of 

element is not enough, the exact result will not come and if the number of element is in 

excess it will cause waste of manpower, time and will require much more computing 

ability (includes increased use of computer graphics). An example may be to model a part 

with 10 thousand elements while it can be sufficiently modeled by 5 thousand elements. 

This can go to much extreme case.  

a b 

a > > b 

a 

b 

a > > b 
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CHAPTER 4 

 

PROBLEM DESCRIPTION, RESULTS AND DISCUSSIONS 

 
4.1 Problem Description 
It is known that stress, which is denoted bys , is a function of loading and cross-section 

area. Therefore, a rectangular plate being loaded uniformly will have a uniform stress 

distribution as well. However, introducing a structural discontinuity, such as a hole or 

crack, alters the plate’s stress distribution. The reason the stress field is altered is because 

the presence of the hole requires that the stresses in the plate redistribute themselves in 

order for any part of the structure to remain in static equilibrium. This phenomenon holds 

true for cracks as well. Since material is separated in a crack, the structure can no longer 

carry any loads on these surfaces and stress distribution around the crack will change. 

This alteration of the stress fields around structural discontinuities induces stress 

concentrations such as at the tip of a crack or near certain parts of the edge of the hole. 

When discontinuities are introduced into a structure, the problem can no longer be solved 

by simple solid mechanics methods and alternate methods must be employed to reach an 

accurate solution.  

In his chapter, the stress concentration around the hole in an infinite plate will be 

investigated using finite element method and the results will be compared with theoretical 

values. The effect of mesh quality on stress concentration factor will be studied as well. 

Then the acquired knowledge of appropriate meshing for another physical problem will 

be used for which there is no theoretical study. 

4.2 Basic Physical Model 
Let an infinitely long plate be of finite width H as in the following Figure, which is being 

placed under constant tensile stress σ (plane stress), acting in a perpendicular direction to 

the width at the edges of the plate and having a circular hole of diameter d at the middle 

of it.  
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The stress concentration factor k can be defined as the ratio of the maximum stress in the 

body to some other stress taken as reference stress. The value of this factor depends very 

much on the abruptness of discontinuity, and it follows that it is desirable to design the 

structures in the neighborhood of a discontinuity so as to keep this factor as low as 

possible.   

Stress concentration Formula for plate with a hole is defined as (Pilkey & Pilkey, 2008) 
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where Ktg is the stress concentration factor based on gross stress, smax is the maximum 

stress, at the edge of the hole (at the ends m and n in Fig. 4.1), s is the stress on gross 

section far from the hole. 

Stress concentration factors are obtained analytically from the elasticity theory, 

computationally from the finite element method and experimentally using methods such 

as photoelasticity or strain gages. Unfortunately, use of stress concentration factors in 

analysis and design is not on as firm a foundation as the theoretical basis for determining 

the factors. In time, advances will take place and revisions in the use of stress 

concentration factors will need to be made accordingly. On the other hand, it can be said 

that our limited experience in using these methods has been satisfactory as (Pilkey & 

Pilkey, 2008).  

Fig-4.1: Plane stress of a finite width element with a circular hole. 
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For modeling purposes, one quarter of plate is being subjected to the analysis due to the 

symmetrical appearance of the structure about horizontal and vertical axis. Application of 

uniform stress at the edges was also being applied with the help of symmetrical boundary 

conditions. 

The useful quantities used in this problem are:  

· Uniform stress at the edges  σ = 400 psi 

· Thickness of the plates  t = 0.4 inch 

· Modulus of Elasticity   E = 30 × 106 psi 

· Poisson’s ratio    υ = 0.3 

· Plate length    A = 20 inch 

· Plate width    H = 20 inch 

· Hole diameter    d = 2 inch    

4.2.1 Application of Boundary Condition 

Proper boundary conditions are needed to be applied to make the analysis conforming to 

the real life experiments. In this respect, the behavior of boundary conditions in this 

problem is illustrated as follows:  

 

 
Fig 4.2: Boundary conditions of models 

 

From Fig 4.1 we can see that the geometry of the plate model along with its loading is 

symmetrical. Now this symmetric property can be fully utilized by modeling only a 
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quarter model as shown in Fig 4.2 (the mesh shown in Fig 4.2 is just for illustration, 

actual mesh will be shown in later figures). From this figure it is evident that the sides of 

the quarter of plates adjacent to the hole are being constrained to move in such directions 

which would restrict the rigid body displacement of the models.  

 

4.2.2 Application of Loading 

Considering the two – dimensional aspect of the problem, the body forces comprising the 

weights of the plates are neglected, where the Global Load Vector, F, is deemed to be 

comprised of only the nodal components of traction forces applied at the edges. The 

nodal traction force components are obtained using the following formula (we are 

considering a traction force/pressure is applied on edge 2-3 of a quadrilateral element) 

  [ ]0000
2 3322

32
yxyx

ee TTTTltT -=  (4.2) 

where, 3-2 edge oflength 32 =-l ,  22 yx T,T are the traction force components at node 2 and 

33 yx T,T  are the traction force components at node 3.  

 

4.2.3 Finite Element Analysis of the Model of Fig. 4.1 and Discussion on results 

The finite element analysis software used for this study are NASTRAN-PATRAN. 

PATRAN is preprocessor and is used for model making and output visualization. 

NASTRAN is solver. As these are world leading general purpose finite element software, 

so we use it for most reliable analysis. 

 

4.2.3.1 Model 1 

The first finite element model for the problem discussed in the beginning of section 4.2 is 

shown in Fig 4.3. The model has 27 nodes and 16 quadrilateral elements. The PATRAN 

*.bdf file (which NASTRAN uses to solve) is then shown. Then the output of our 

program named MESH QUALITY_2012 is presented. 
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Fig: 5.3 Model -1 

 

 

 

 

 

 

 

 

 

 

 

 

The data file generated for Model- 1(a) by software PATRAN is as follows: 
$ NASTRAN input file created by the MSC MSC.Nastran input file 

$ translator ( MSC.Patran 12.0.041 ). 

$ Direct Text Input for File Management Section 

$ Linear Static Analysis, Database 

SOL 101 

$ Direct Text Input for Executive Control 

CEND 

SEALL = ALL 

SUPER = ALL 

TITLE = MSC.Nastran job created on 01-Jan-06 at 04:17:00 

ECHO = NONE 

$ Direct Text Input for Global Case Control Data 

SUBCASE 1 

$ Subcase name : Default 

   SUBTITLE=Default 

   SPC = 2 

   LOAD = 2 

 

 

 
Fig 4.3: model -1 
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   DISPLACEMENT(SORT1,REAL)=ALL 

   SPCFORCES(SORT1,REAL)=ALL 

   STRESS(SORT1,REAL,VONMISES,BILIN)=ALL 

BEGIN BULK 

PARAM    POST    0 

PARAM    AUTOSPC YES 

PARAM   PRTMAXIM YES 

$ Direct Text Input for Bulk Data 

$ Elements and Element Properties for region : ph 

PSHELL   1       1       .4 

$ Pset: "ph" will be imported as: "pshell.1" 

CQUAD4   1       1       1       2       5       4 

CQUAD4   2       1       2       3       6       5 

CQUAD4   3       1       4       5       8       7 

CQUAD4   4       1       5       6       9       8 

CQUAD4   5       1       7       8       11      10 

CQUAD4   6       1       8       9       12      11 

CQUAD4   7       1       10      11      14      13 

CQUAD4   8       1       11      12      15      14 

CQUAD4   9       1       13      14      17      16 

CQUAD4   10      1       14      15      18      17 

CQUAD4   11      1       16      17      20      19 

CQUAD4   12      1       17      18      21      20 

CQUAD4   13      1       19      20      23      22 

CQUAD4   14      1       20      21      24      23 

CQUAD4   15      1       22      23      26      25 

CQUAD4   16      1       23      24      27      26 

$ Referenced Material Records 

$ Material Record : steel 

$ Description of Material  

MAT1     1       3.+7            .3 

$ Nodes of the Entire Model 

GRID     1               0.      1.      0. 

GRID     2               0.      5.5     0. 

GRID     3               0.      10.     0. 

GRID     4               .195094 .980785 0. 

GRID     5               1.34756 5.49039 0. 
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GRID     6               2.5     10.     0. 

GRID     7               .38269  .923877 0. 

GRID     8               2.69137 5.46194 0. 

GRID     9               5.      10.     0. 

GRID     10              .55558  .831463 0. 

GRID     11              4.02782 5.41573 0. 

GRID     12              7.5     10.     0. 

GRID     13              .707107 .707107 0. 

GRID     14              5.35355 5.35355 0. 

GRID     15              10.     10.     0. 

GRID     16              .831472 .555567 0. 

GRID     17              5.41574 4.02777 0. 

GRID     18              10.     7.5     0. 

GRID     19              .923882 .382677 0. 

GRID     20              5.46194 2.69132 0. 

GRID     21              10.     5.      0. 

GRID     22              .980788 .195079 0. 

GRID     23              5.49039 1.34751 0. 

GRID     24              10.     2.5     0. 

GRID     25              1.      0.      0. 

GRID     26              5.5     0.      0. 

GRID     27              10.     0.      0. 

$ Loads for Load Case : Default 

SPCADD   2       1       3 

LOAD     2       1.      1.      1       1.      3 

$ Displacement Constraints of Load Set : b2 

SPC1     1       1       1       2       3 

$ Displacement Constraints of Load Set : b1 

SPC1     3       2       25      26      27 

$ Nodal Forces of Load Set : p1 

FORCE    1       15      0       200.    1.      0.      0. 

FORCE    1       27      0       200.    1.      0.      0. 

$ Nodal Forces of Load Set : p2 

FORCE    3       18      0       400.    1.      0.      0. 

FORCE    3       21      0       400.    1.      0.      0. 

FORCE    3       24      0       400.    1.      0.      0. 

$ Referenced Coordinate Frames 
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ENDDATA 

Here CQUAD4 means quadrilateral shaped membrane element. Membrane elements are 

those which can effectively model in plane loading of plates and formulation of this 

element is given in Chapter 2. 

The output of MESH QUALITY_2012 is as follows: 
Quad 
no      

angle1         angle2        angle3        angle4        distortion  factor aspect ratio 

   1 95.624976 89.591407 76.073021 98.710595 17.367858 23.743039 

   2 90.408593 90.000000 75.664754 103.926653 19.990445 3.453959 

   3 92.539813 103.122735 64.248717 100.088734 30.717551 25.972369 

   4 76.877590 104.335246 63.036367 115.750797 42.045665 3.788034 

   5 91.161492 114.983810 54.839098 99.015600 44.080720 29.335088 

   6 65.016676 116.963633 52.859284 125.160407 62.983260 4.300463 

   7 92.234016 124.455866 47.685345 95.624773 54.903238 33.521971 

   8 55.544629 127.140716 45.000000 132.314655 79.888268 4.951126 

   9 95.625150 47.685675 124.455236 92.233939 54.902624 33.519276 

   10 132.314325 45.000000 127.141173 55.544502 79.888361 4.950938 

   11 99.016331 54.838970 114.983893 91.160806 44.081001 29.335260 

   12 125.161293 52.858827 116.964134 65.015746 62.984607 4.300481 

   13 100.089118 64.249063 103.122327 92.539493 30.717186 25.972084 

   14 115.751298    63.035866 104.335842 76.876994 42.046683 3.788051 

   15 98.710630 76.073445 89.591392 95.624533 17.367393 23.744823 

   16 103.927234     75.664158 90.000000 90.408608 19.991278 3.454096 

**********bad quadfaces, distortion factor more than 105(the passing mark).*************** 

**********average distortion factor and aspect ratio*************** 

46.930409     17.208737 

**********quad with worst distortion factor*************** 

 10, 79.888361  

**********quad with worst aspect ratio*************** 

 7, 33.521971 

From the output of MESH QUALITY_2012 given above, it is seen that the distortion 

factors of the elements are all within the acceptable range but the aspect ratio of all the 

elements are too high. Where a value of 5 may be too high, here only 8 elements have 

aspect ratio below 5. 
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The result file is shown in Fig 4.4. From the figure it is seen that the maximum stress 

developed is 589 psi. So the stress concentration factor is 589/400 = 1.4725. 
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Fig 4.4   Result of model 1 
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4.2.3.2 Model 2 

To create second finite element model for our problem two surfaces were created as in 

figure below. Each edge is then divided as shown in Fig 4.5. The word ms means mesh 

seed which represents number of subdivisions. One way bias 1.5 means largest 

subdivision is 1.5 times larger from the smallest one.  

Based on theses seeding the mesh of Fig 4.5 is generated. The model has 99 nodes and 80 

quadrilateral elements.  

 

 

Fig 4.5 Mesh seed for model 2 
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Fig 4.6 Model 2 

The output(in short form) of MESH QUALITY_2012 for model 2 is as follows: 
quad 
no, 

angle1 angle2 angle3 angle4 
 

distortion  
 

aspect ratio 
factor 

1 95.625150 63.778636 108.341410 92.254804 32.568293 5.428097 

2 116.221364 56.132324 115.998948 71.647363 53.360510 3.091528 

3 123.867676 52.253277 119.887720 63.991327 64.354964 2.118035 

. . . . . . . 

. . . . . . . 

. . . . . . . 

11 98.995466 66.203556 103.626862 91.174116 28.883543 4.759553 

21 100.075809 70.906022 96.488863 92.529306 22.684899 4.218154 

22 109.101371 67.716005 99.665887 83.516738 31.573737 2.280432 

23 112.289619 66.109099 101.262430 80.338852 35.885684 1.574353 
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28 116.277623 63.452662 103.912036 76.357679 42.129945 1.888878 

29 116.541408 63.233878 104.141498 76.083216 42.597305 2.052024 

30 116.757154 63.046844 104.345458 75.850545 42.993222 2.206617 

31 98.720816 78.045358 87.609293 95.624533 16.009902 3.854348 

32 101.949042 76.999741 88.660510 92.390707 17.868857 2.063080 

33 102.995520 76.528023 89.136967 91.339490 18.786078 1.427243 

40 104.228506 75.654542 90.000000 90.116952 20.205352 2.287073 

41 95.624976 87.609462 78.044364 98.721198 16.010983 3.854078 

42 92.390538 88.660594 76.999025 101.949843 17.869885 2.062940 

43 91.339406 89.137017 76.527368 102.996209 18.787017 1.427158 

44 90.862983 89.386467 76.281388 103.469162 19.254604 1.272824 

48 90.289517 89.790087 75.877698 104.042699 19.918953 1.953723 

49 90.209914 89.883050 75.779963 104.127074 20.045982 2.123878 

50 90.116950 90.000000 75.656012 104.227038 20.203274 2.287073 

51 92.529210 96.488169 70.906581 100.076039 22.684322 4.218190 

52 83.517624 99.665475 67.716814 109.100088 31.572082 2.280434 

59 76.083730 104.140983 63.234743 116.540544 42.595886 2.052020 

60 75.852015 104.343988 63.047667 116.756329 42.991218 2.206631 

61 91.174187 103.627608 66.203390 98.994815 28.883832 4.759524 

62 76.365722 109.004086 60.822153 113.808039 44.330783 2.626936 

69 63.657168 116.691776 53.132278 126.518778 64.025352 1.874755 

70 63.317152 116.952333 52.877447 126.853068 64.611417 2.016304 

71 92.254801 108.342272 63.778154 95.624773 32.569101 5.428534 

72 71.646299 115.998726 56.133129 116.221846 53.360493 3.091718 

73 63.992132 119.887336 52.253661 123.866871 64.353812 2.118186 

79 53.661166 126.800539 45.336668 134.201628 81.384198 1.658809 

80 53.214115 127.122553 45.000000 134.663332 82.165068 1.786731 

**********bad quadfaces, distortion factor more than 105(the passing mark).*************** 

**********average distortion factor and aspect ratio*************** 
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46.067674     2.060350 

**********quad with worst distortion factor*************** 

 10, 82.165659  

**********quad with worst aspect ratio*************** 

 71, 5.428534 

From the output of MESH QUALITY_2012 for model 2 it is seen that all the elements 

have acceptable distortion factor but the elements surrounding the hole (the quad no.1, 

11, 21, 31, 41, 51, 61, 71) have larger aspect ratio 3.8 to 5.4.  

 

 

Fig 4.7 Result of model 2 

The result file is shown in Fig 4.7. From the figure it is seen that the maximum stress 

developed is 1040 psi. So the stress concentration factor is 1040/400 = 2.6.  
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4.2.3.3 Model 3 

Since the mesh quality of the elements near the hole is not satisfactory in Model 2 and 

also we know that the stress concentration occurs at that region, we are intended to refine 

our mesh. For this reason, in our next model we rearrange mesh seeds though the number 

of nodes and elements are same as Model 2. The next model has mesh seed as Fig 4.8.  

 

Fig 4.8 Mesh seed for model 3 
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Enlarged around 
the maximum 
stressed region 
 

Fig 4.9 Mesh for model 3 
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The mesh of model 3 is shown in Fig 4.9. The model has 99 nodes and 80 quadrilateral 

elements. The output(in short form) of MESH QUALITY_2012 for model 3 is as 

follows: 
quad no angle1 angle2 angle3 angle4 distortion 

factor 
aspect ratio 

1 92.470327 88.620336 83.890044 95.019292 8.398265 4.786649 

2 91.379664 89.146234 82.573480 96.900623 10.266654 3.444965 

3 90.853766 89.427968 81.373599 98.344667 12.045929 2.692061 

4 90.572032 89.575413 80.160324 99.692231 13.829897 2.201760 

. . . . . . . 

. . . . . . . 

. . . . . . . 

10 90.159768 90.000000 68.942715 110.897517 29.667170 1.528809 

11 91.373477 91.907360 77.836832 98.882331 15.243455 3.142946 

12 87.301974 94.450396 74.966787 103.280844 20.723505 2.364000 

14 82.502873 98.204482 70.436370 108.856275 29.356689 1.659506 

15 80.560804 99.941172 68.251745 111.246279 33.351406 1.470690 

16 78.630958 101.752363 65.960516 113.656163 37.481783 1.332436 

17 76.601633 103.714667 63.495178 116.188521 41.904088 1.280963 

20 69.231945 111.057285 54.747461 124.963309 57.791832 1.422186 

21 91.265202 95.674429 71.246864 101.813505 22.913728 2.210756 

25 70.982076 110.183792 58.401349 120.432784 51.900829 1.256935 

30 55.166484 125.252539 47.091718 132.489258 78.118967 1.237005 

31 94.293792 98.570164 67.253972 99.882072 26.587996 1.739232 

32 80.638420 106.656245 59.959307 112.746028 42.248014 1.409693 

38 53.130873 127.847616 46.303578 132.717933 80.783499 1.370878 

39 50.353223 130.401692 45.548663 133.696422 84.198945 1.254248 

40 47.640382 132.908282 45.000000 134.451337 87.386379 1.099186 

41 95.625150 69.918354 102.199042 92.257454 24.265769 3.045180 

42 110.081646 61.622793 110.501877 77.793684 42.164671 2.450516 

43 118.377207 56.463412 115.668686 69.490695 54.858743 2.039004 

50 134.443217 45.000000 127.127070 53.429713 81.951234 1.205053 

51 98.992816 70.529051 99.302348 91.175785 23.407365 2.670724 

71 98.722095 78.944659 86.708712 95.624533 15.516554 2.162934 

72 101.051686 77.741517 87.915509 93.291288 16.958416 1.643811 

73 102.254821 77.043112 88.617576 92.084491 18.008825 1.362208 

74 102.953333 76.615114 89.049129 91.382424 18.701852 1.293904 

75 103.381640 76.346215 89.321274 90.950871 19.153563 1.264763 
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76 103.651463 76.173576 89.496235 90.678726 19.448570 1.303394 

77 103.824661 76.054007 89.617567 90.503765 19.647189 1.372908 

78 103.947680 75.951787 89.718100 90.382433 19.801914 1.432571 

79 104.051863 75.833416 89.832821 90.281900 19.956311 1.484023 

80 104.176088 75.656733 90.000000 90.167179 20.167268 1.528809 

**********bad quadfaces, distortion factor more than 105(the passing mark).*************** 

**********average distortion factor and aspect ratio*************** 

43.483030     1.654446 

**********quad with worst distortion factor*************** 

 40, 87.386379  

**********quad with worst aspect ratio*************** 

 1, 4.786649 

From Fig 4.9 we see that only four members (fewer than Model 2) have aspect ratio 

larger than three and those are shown as by coloring.  

 

 

Fig 4.10 Result of model 3 

The result file is shown in Fig 4.10. From the figure it is seen that the maximum stress 

developed is 1180 psi. So the stress concentration factor is 1180/400 = 2.95. 
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4.2.3.4 Model 4 

The mesh remaining same (same seeding as in Fig 4.8) as model 3 but the elements near 

the hole are subdivided (along the larger length of the elements) to modify the aspect 

ratios. As a result, the number of nodes in the next model (Model 4) becomes 117 and the 

number of element is 96.The Model 4 has mesh seed as Fig 4.11.  

 

   

Enlarged around the 
maximum stressed 
region 
 

Fig 4.11 Mesh of model 4 
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The output (in short form) of MESH QUALITY_2012 for model 4 is as follows, where 

the elements near the hole have mentioned. 
quad no angle1 angle2 angle3 angle4 distortion factor aspect ratio 

1 91.379664 89.146234 82.573480 96.900623 10.266654 3.444965 

. . . . . . . 

. . . . . . . 

. . . . . . . 

67 104.176088 75.656733 90.000000 90.167179 20.167268 1.528809 

68 92.470327 88.200210 84.324828 95.004635 8.160620 2.393221 

69 91.799790 88.620336 83.875388 95.704486 8.671490 1.825570 

70 91.388135 90.612760 79.116323 98.882783 14.130133 1.571446 

71 89.357927 91.922016 77.837284 100.882773 16.446058 1.227760 

72 91.264750 92.907620 74.005782 101.821848 20.140133 1.262864 

73 87.093284 95.673977 71.255207 105.977532 25.441930 1.520861 

74 95.625150 75.823249 96.292885 92.258716 16.653071 1.522572 

75 104.176751 69.918354 102.200304 83.704591 28.155504 1.252773 

76 98.991555 74.737866 95.094594 91.175985 18.469397 1.335557 

77 105.264658 70.527789 99.302548 84.905004 26.919754 1.259897 

78 100.073939 76.046231 91.352722 92.527107 17.447293 1.257658 

79 103.954170 73.496656 93.900056 88.649118 22.002604 1.405004 

88 112.886911 64.683592 105.143867 77.285630 39.442656 1.518324 

89 106.507068 71.452605 95.938372 86.101955 25.825340 1.448806 

90 108.548910 70.003047 97.384970 84.063073 28.874298 1.694643 

91 101.052409 78.234240 87.422064 93.291288 16.675346 1.517006 

92 101.764316 77.742239 87.915509 92.577936 17.310190 1.773281 

93 86.709901 101.695891 71.170121 100.424087 24.715269 1.346872 

94 79.572157 102.555810 70.393970 107.478063 30.923574 1.434902 

95 89.345421 93.306785 78.631388 98.716407 14.716806 1.464165 

96 91.165645 101.372369 72.521937 94.940049 21.461041 1.733098 

**********bad quadfaces, distortion factor more than 105(the passing mark).*************** 

**********average distortion factor and aspect ratio*************** 

40.684585     1.498629 

**********quad with worst distortion factor*************** 

 35, 87.386379  

**********quad with worst aspect ratio*************** 

 1, 3.444965 
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Fig 4.12 Result of model 4 

The result is shown in Fig 4.12. From the figure it is seen that the maximum stress 

developed is 1040 psi. So the stress concentration factor is 1230/400 = 3.075. 

 

So we now summarize the results in table below. 
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From Table 4.1 we see that the desired correct result does not depend on the increasing 

number of nodes and elements. With same number of nodes and elements, model 3 gives 

better results than model 2. As the models have better quality (in terms of distortion 

factor and aspect ratio), we approach to the desired result. 

 

 4.2.4 Finite Element Analysis of a Plate with a center hole and additional holes in a 

plane perpendicular to the loading direction 

  

After finding out the correct approach to mesh a model, our next problem which is not 

listed in Pilkey & Pilkey (2008) is a plate with a center hole and two additional smaller 

holes. We placed the additional holes to see the effect of stress concentration in the 

region where originally the maximum stress developed. 

The schematic diagram is as follows: 

 

Fig. 4.13 A plate with a center hole and additional holes in a plane perpendicular to the 

loading direction 

For modeling and analysis we placed an additional hole of 0.5 inch diameter (in the 

quarter mode) and placed its centre 5.5 inch away from the centre of the central hole 

(remaining length above center hole/2 = 9/2 = 4.5). All other dimensions and parameters 

are kept same.    
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Fig 4.14 Mesh seed for model with additional hole 

The generated mesh is shown in Fig 4.15. It is to be toted here that the elements of higher 

aspect ratio are refined. 
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Fig 4.15 Mesh of model with additional hole 

The out put of is as follows: 
quad 
no 

angle1 angle2 angle3 angle4 Distortion factor aspect ratio 

1 90.294859 89.785437 83.535635 96.384068 9.092707 3.780323 

2 90.214563 89.819493 82.600617 97.365327 10.444019 3.068710 

5 90.142921 89.880192 78.862612 101.114275 15.735415 1.850013 

. . . . . . . 

. . . . . . . 

. . . . . . . 

318 90.000000 90.000000 90.000000 90.000000 0.000000 1.639156 

319 90.000000 90.000000 90.000000 90.000000 0.000000 1.639142 

320 90.000000 90.000000 90.000000 90.000000 0.000000 1.639142 

321 91.061526 89.220006 86.111848 93.606620 5.464491 3.738455 

364 98.695380 135.058930 45.000000 81.245691 64.865667 2.220641 

366 141.449409 38.835041 59.525175 120.190376 84.291569 3.201113 

367 142.286432 97.772947 82.790698 37.149923 75.095900 2.843970 

368 157.692488 41.740039 134.230696 26.336777 113.669069 1.847521 

371 47.867549 152.627368 30.823862 128.681222 103.418484 2.043926 
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372 44.898436 134.449206 48.519907 132.132451 86.635008 1.000000 

373 45.549424 133.806136 21.791714 158.852726 115.273151 2.318610 

374 134.414335 75.172364 90.000000 60.413301 55.388309 1.952721 

397 83.318721 97.689750 72.454628 106.536901 26.174051 1.209095 

398 128.032539 48.481859 128.016029 55.469573 76.208916 2.109067 

399 131.520163 45.134833 84.397165 98.947839 62.034367 2.344328 

400 127.307935 133.036132 42.854086 56.801846 81.048413 3.524343 

401 119.413689 56.316775 136.572634 47.696902 77.189941 2.480238 

402 123.683225 51.965082 124.529943 59.821751 68.441642 2.191283 

403 163.605615 52.692549 123.197522 20.504314 112.877625 3.024109 

415 116.775089 75.260045 106.315111 61.649754 44.767075 1.590135 

416 118.348223 73.686069 107.451309 60.514399 47.367869 1.847080 

**********bad quadfaces, distortion factor more than 105(the passing mark).*************** 

368 113.669069  

369 123.092536  

373 115.273151  

403 112.877625  

**********average distortion factor and aspect ratio*************** 

31.843396     1.555439 

**********quad with worst distortion factor*************** 

 369, 123.092536  

**********quad with worst aspect ratio*************** 

 107, 3.922250     
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Fig 4.16 Mesh of model (with element numbers) with additional hole 
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Fig 4.17 Result of model with additional hole 

The result is shown in Fig 4.17. From the figure it is seen that the maximum stress 

developed is 1250 psi. So the stress concentration factor is 1250/400 = 3.125 (more than 

3.075, the stress concentration found from previous problem). So we see that the addition 

of holes will not make the situation better but will worsen the case. Now we get two 

additional regions with stress concentration (extreme edges of the smaller hole). 
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4.2.5. Verification of the Infiniteness of the Model 

The formulation of the physical model in section 4.2 involves the plate to be infinite in 

length. When the hole is sufficiently far away from the lateral edge of the plate, the 

model is to be considered as infinite in length. At this stage of the analysis the plate is to 

be considered as of finite length. For this purpose a finite element model is being created 

using hole of 2 inch diameter (d) and the plate of length (A) 10 inch. Width (H) of the 

plate is taken as 20 inch. All other dimensions and parameter are kept same. The 

generated mesh is shown in the following figure. 

 

 

Fig. 4.18 .Plate (finite length) with hole 
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Fig 4.19 Plate (finite length) with hole (Von Mises stress) 

 

Fig 4.20 Plate (finite length) with hole Maximum stress (X Component) 
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From the figures 4.19 and 4.20 it is seen that the maximum stress developed is 1290 psi 

(in X component) and is 1260 psi (von mises). For the obvious  reasons the maximum 

stress increased to 1260-1290 psi for finite plate from the range of 1190-1230 psi for 

infinite plate.  

 

4.2.6. Von Mises Stress 
 
In this section the results are shown (for all models) in terms of Von Mises stress. Von 

Mises stress is a geometrical combination of all the stresses (normal stress in the three 

directions, and all three shear stresses) acting at a particular location. Since it is a stress, it 

is measured in Pascal, just like any other type. Von Mises stress is useful for materials 

which classify as ductile. If the Von Mises stress at a particular location exceeds the yield 

strength, the material yields at that location. If the Von Mises stress exceeds the ultimate 

strength, the material ruptures at that location. The failure criterion states that the Von 

Mises stress sVM should be less than the yield stress sY of the material. In the inequality 

form, the criterion may be put as  

YVM ss £   
 

The Von Mises stress sVM is given by 
 

2
2
1 3IIVM -=s   

 
where I1 and I2 are given by 
 

zyxI sss ++=1   
222

2 xyxzyzxzzyyxI tttssssss ---++=   
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                                      Fig.4.21 Von mises stress for model 1 

      

 
                                           Fig. 4.22 Von mises stress for model 2 
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                                           Fig.4.23  Von mises stress for model 3 

                    

 
                                           Fig. 4.24 Von mises stress for model 4 
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Fig. 4.25 Von mises stress for model with additional hole 

                                      
 
 

So we now summarize the results in the following table. 
 

 
*  With respect to the Ktg of column 5 

 
Table 4.2 Stress concentration factor in terms of Von Mises stress

Model smax 
(Maximum 

Von 
Misses 
stress) 

s 
(Von Mises stress at 

the edge nodes 
where pressure 

applied) 

Ktg 
(Numerical) 

Ktg 
(theoretical) 

% 
difference 

1 578.00 400 1.445 3.0354 52.40 
2 996.00 400 2.490 3.0354 17.97 
3 1130.0 400 2.825 3.0354 6.900 
4 1190.0 400 2.975 3.0354 1.990 
5 

(Finite model) 
1260.0 400 3.150 3.0354 3.780 

6 
(Additional 

hole) 

1220.0 400 3.050 Unknown 0.480* 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATION 

 
5.1 Conclusions  
In this study the main target was to perform a FEM analysis on a structural problem 

concerning stress concentration around a hole in the middle of an infinitely long plate to 

validate the formula for the problem and by this to find out correct meshing of the 

domain. The high stress concentration found at the edge of a hole is of great practical 

importance. As an example, holes in ships’ decks may be mentioned. When the hull of a 

ship is bent, tension or compression is produced in decks and there is a high stress 

concentration at the holes. Under the cycles of stress produced by waves, fatigue of the 

metal at the overstressed portions may result finally in fatigue cracks. Also in the aviation 

industry, the localized stress distribution concept forms a very useful aspect in the 

building of aircrafts, where the discontinuities in plates are quite commonly encountered 

in the construction of windows, frames etc of the aero-planes.  

 

The following conclusions can be drawn from the present study:   

 

1. A reliable program in c++ is developed which can effectively check the 

quality of 2-dimensional quadrilateral finite element mesh. To achieve correct 

result a good quality mesh is necessary and for evaluating if the mesh is good 

enough, this program is very much essential. 

2. After performing a number of investigations (only four are given in section 

4.2.3) a reliable meshing technique is proposed (Section 4.2.4), using which a 

mesh consisting of a minimum number of elements can be generated for 

achieving accurate results. 

3. It is found from the analyses that element aspect ratio has a great impact on 

the finite element results. The maximum allowable aspect ratio (the best is 1) 

is found to be 3.44. But care should be given to keep elements having higher 
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aspect ratio away from region of high stress concentration and numbers of 

these elements to be minimum.  

4. Though the distortion factor of value zero means perfect square (the best 

possible), but for geometric constraints achieving this value is not always 

possible. From the analyses we made, it is found that the average distortion 

factor of the mesh should not be more than 40. 

5. After investigating the results obtained in Section 4.2.3 the formula (equation 

4.1) given by Pilkey & Pilkey (2008) is found reasonably accurate. 

6. The proposed meshing technique is used for a plate with center hole and 

additional holes in a plane perpendicular to the loading direction. It is seen 

that the presence in additional hole increases the stress concentration factor in 

the original place and moreover two additional points are found to have stress 

concentration. Thus the effect of additional hole is very detrimental.  

7. The proposed meshing technique can be extended to a plate having any 

number of holes. 

 

5.2    Recommendation for Further Study      

This thesis provides a strong foundation for further study on this subject.  This study 

recommends the following topics as possibilities for future work: 

1. Finite element modeling of structures having cracks: 

All of the finite element models used in this thesis have been made for structures 

having hole.  However, structure having crack is also a very important topic. 

Study for achieving correct meshing for this problem will be valuable to a finite 

element analyst.  

 

2. Finite element modeling of structural discontinuities in more complex 

structures: 

The finite element models that we have considered in this study are for plate 

structures.  However, future research groups may investigate the possibility of 

using finite elements to study the behavior of structural discontinuities in three-

dimensional structures. 
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3. Adaptation of user friendly software: 

To see the effects of varying the position of holes in structures, we had to 

manually reconfigure the model for each case, which was very tedious. However, 

future research groups may contribute to create more user friendly software where 

the mesh generation process will be trouble-free. In other words more advanced 

automatic mesh generation program should be developed. A considerable 

progress in this field is already achieved.  
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APPENDIX 
 

PROGRAM “MESH QUALITY_2012” 
 
///////////////////////////////////////////////////////main.cpp///////////////////////////////////////////////////////////// 
//quad quality checker for 2d mesh 
#include <stdio.h> 
#include <stdlib.h> 
#include <process.h> 
#include "class.h" 
#include "function.h" 
 
//Global variables-----------------------------------------------------
---- 
//FILE *fp;//File pointer to inout data 
//char inputfilename[256];// 
 
//starting main function 
  
void main(){ 
 
 int i, itemp; 
 int d1,d2,d3,d4,i2,i3,j,j2,j3,a1,a2,a3,a4,a5,a6,a8;//face number 
 double x,y,z,a7;//coordinate of the node on surface mesh 
 int numnode,numsurface;    //number of nodes and faces of input 
 int dummy; 
 //char dumy[81], title[81]; 
 FILE *fp; 
 char dumy[81], file1[81]; 
    puts("Input file name < dr:fn.ext >: "); 
 gets(file1); 
    fp = fopen(file1, "r"); 
 //fgets(dumy,80,fp); 
 //fgets(dumy,80,fp); 
 //fgets(dumy,80,fp); 
 //fgets(dumy,80,fp); 
    fscanf(fp,"%d  %d", &numnode, &numsurface); 
  
 Node*  nodetable[1000];//node information (x,y,z) 
  
 for(i=0;i<numnode;i++){ 
  fscanf(fp,"%d %lf %lf %lf\n", &itemp, &x, &y, &z); 
  nodetable[i] = new Node(x, y, z);       //read x,y,z and 
store in "coord" 
   nodetable[i]->number=i; 
 };//end of reading nodedata 
 
   //fgets(dumy,80,fp); 
   //fgets(dumy,80,fp); 
  //fscanf(fp,"%d", &numsurface); 
 //read face data 
 //numsurface=numsurface-1; 
 Face* facetable[1000]; 
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 for(i=0;i<numsurface;i++){ 
  fscanf(fp,"%d  %d  %d  %d  %d\n", &itemp, &d1, &d2, &d3, 
&d4);//nodenumbers 
  //fscanf(fp,"%d %d %d %d %d\n", &itemp,&d1, &d2, &d3, 
&d4);//nodenumbers 
  facetable[i]=new Face(nodetable[d1-1], nodetable[d2-1], 
                        nodetable[d3-1], nodetable[d4-1]); 
  facetable[i]->number=i; 
  };//end of reading facedata 
 
 
 fclose(fp); //closing inputfile 
 
 Edge*  edgetable[1000]; 
 int numedge=0; 
 
 
 for(i=0; i < numsurface; i++){//loop by number of surfaces 
  for(i2=0; i2<4; i2++){ 
   if(facetable[i]->nextedge[i2] == NULL){ 
    i3 = (i2<3)?(i2+1) : 0; 
    Node* pi1 = facetable[i]-
>node[i2];//no,n1,n2,n3 of a face 
    Node* pi2 = facetable[i]-
>node[i3];//n1,n2,n3,no of a face  
    //node number of the edge of a surface is 
stored in node[] 
    for(j=i+1; j < numsurface; ++j){//betn a face 
and another face 
     for(j2=0; j2<4; j2++){ 
      j3 = (j2<3)?(j2+1) : 0; 
      Node* pj1 = facetable[j]-
>node[j2];// 
      Node* pj2 = facetable[j]->node[j3]; 
      if((pi1==pj1&&pi2==pj2) || 
(pi1==pj2&&pi2==pj1)){ 
       edgetable[numedge]=new 
Edge(facetable[i],facetable[j],pi1,pi2); 
       edgetable[numedge]->number = 
numedge; 
       //---check corner housenn----
----------- 
       //edgetable[numedge]-
>housenn(); 
       Edge* e = edgetable[numedge]; 
       facetable[i]-
>nextedge[i2]=edgetable[numedge]; 
       facetable[j]-
>nextedge[j2]=edgetable[numedge]; 
       numedge++; 
       j2=4; 
       j=numsurface; 
      };//if 
     };//for 
    };//for  
   };//end if nextedge.. 
  };//end for i2 
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 };//end for i 
 
 
 ////////////////////quality 
program///////////////////////////////////////////// 
 //flagging the inner nodes (nodes not on boundaries) 
 for (i=0;i<numedge;i++){ 
  for(j=0;j<numedge;j++){ 
   if(j!=i){ 
    Edge* e0=edgetable[i]; 
    Edge* e1=edgetable[j]; 
    if(e0->node[0]==e1->node[0] || e0->node[0]==e1-
>node[1]){ 
     e0->node[0]->checkn=1; 
    } 
    if(e0->node[1]==e1->node[0] || e0->node[1]==e1-
>node[1]){ 
     e0->node[1]->checkn=1; 
    } 
   } 
  }  
 } 
 ////////////////////////////////// 
 //Finding neighbor nodes 
 for(i=0;i<numnode;i++){ 
  Node* curn=nodetable[i]; 
  if(curn->checkn==1){ 
   int h=0; 
   for(j=0;j<numedge;j++){ 
    if(edgetable[j]->node[0]==curn){ 
     curn->nn[h]=edgetable[j]->node[1]; 
     h++; 
     curn->nnn=h; 
    } 
    if(edgetable[j]->node[1]==curn){ 
     curn->nn[h]=edgetable[j]->node[0]; 
     h++; 
     curn->nnn=h; 
    } 
   } 
  } 
 } 
    
 ///////////////////////////////// 
 quadquality(numsurface,facetable); 
 printquadquality( numsurface, facetable); 
 
};//end main 
 
void quadquality(int numsurface,Face* facetable[]){ 
 int i; 
 for(i=0;i<numsurface;i++){ 
  double pi= 3.1415926535; 
  if(facetable[i]->number==698){ 
   int as=2; 
  } 
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  double n010=facetable[i]->node[1]->coord[0]-facetable[i]-
>node[0]->coord[0];//first digit 0=node0, 2nd digit 1=node1, third 
digit 0=coord0 
  double n011=facetable[i]->node[1]->coord[1]-facetable[i]-
>node[0]->coord[1]; 
  double n012=facetable[i]->node[1]->coord[2]-facetable[i]-
>node[0]->coord[2]; 
  double n030=facetable[i]->node[3]->coord[0]-facetable[i]-
>node[0]->coord[0]; 
  double n031=facetable[i]->node[3]->coord[1]-facetable[i]-
>node[0]->coord[1]; 
  double n032=facetable[i]->node[3]->coord[2]-facetable[i]-
>node[0]->coord[2]; 
  double 
A=(acos((n010*n030+n011*n031+n012*n032)/(sqrt(n010*n010+n011*n011+n012*
n012)*sqrt(n030*n030+n031*n031+n032*n032))))/pi*180; 
  double n100=facetable[i]->node[0]->coord[0]-facetable[i]-
>node[1]->coord[0]; 
  double n101=facetable[i]->node[0]->coord[1]-facetable[i]-
>node[1]->coord[1]; 
  double n102=facetable[i]->node[0]->coord[2]-facetable[i]-
>node[1]->coord[2]; 
  double n120=facetable[i]->node[2]->coord[0]-facetable[i]-
>node[1]->coord[0]; 
  double n121=facetable[i]->node[2]->coord[1]-facetable[i]-
>node[1]->coord[1]; 
  double n122=facetable[i]->node[2]->coord[2]-facetable[i]-
>node[1]->coord[2]; 
  double 
B=(acos((n100*n120+n101*n121+n102*n122)/(sqrt(n100*n100+n101*n101+n102*
n102)*sqrt(n120*n120+n121*n121+n122*n122))))/pi*180; 
  double n210=facetable[i]->node[1]->coord[0]-facetable[i]-
>node[2]->coord[0]; 
  double n211=facetable[i]->node[1]->coord[1]-facetable[i]-
>node[2]->coord[1]; 
  double n212=facetable[i]->node[1]->coord[2]-facetable[i]-
>node[2]->coord[2]; 
  double n230=facetable[i]->node[3]->coord[0]-facetable[i]-
>node[2]->coord[0]; 
  double n231=facetable[i]->node[3]->coord[1]-facetable[i]-
>node[2]->coord[1]; 
  double n232=facetable[i]->node[3]->coord[2]-facetable[i]-
>node[2]->coord[2]; 
  double 
C=(acos((n210*n230+n211*n231+n212*n232)/(sqrt(n210*n210+n211*n211+n212*
n212)*sqrt(n230*n230+n231*n231+n232*n232))))/pi*180; 
  double n320=facetable[i]->node[2]->coord[0]-facetable[i]-
>node[3]->coord[0]; 
  double n321=facetable[i]->node[2]->coord[1]-facetable[i]-
>node[3]->coord[1]; 
  double n322=facetable[i]->node[2]->coord[2]-facetable[i]-
>node[3]->coord[2]; 
  double n300=facetable[i]->node[0]->coord[0]-facetable[i]-
>node[3]->coord[0]; 
  double n301=facetable[i]->node[0]->coord[1]-facetable[i]-
>node[3]->coord[1]; 
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  double n302=facetable[i]->node[0]->coord[2]-facetable[i]-
>node[3]->coord[2]; 
  double 
D=(acos((n320*n300+n321*n301+n322*n302)/(sqrt(n320*n320+n321*n321+n322*
n322)*sqrt(n300*n300+n301*n301+n302*n302))))/pi*180; 
  facetable[i]->df=sqrt(fabs(90-A)*fabs(90-A)+fabs(90-
B)*fabs(90-B)+fabs(90-C)*fabs(90-C)+fabs(90-D)*fabs(90-D)); 
  facetable[i]->Angle1=A; 
  facetable[i]->Angle2=B; 
  facetable[i]->Angle3=C; 
  facetable[i]->Angle4=D; 
  double edl1=sqrt((n010*n010)+(n011*n011)+(n012*n012)); 
  double edl2=sqrt((n120*n120)+(n121*n121)+(n122*n122)); 
  double edl3=sqrt((n230*n230)+(n231*n231)+(n232*n232)); 
  double edl4=sqrt((n300*n300)+(n301*n301)+(n302*n302)); 
  double biggest, smallest; 
  if(edl1>=edl2 && edl1>=edl3 && edl1>=edl4){ 
   biggest=edl1; 
  } 
  if(edl2>=edl1 && edl2>=edl3 && edl2>=edl4){ 
   biggest=edl2; 
  } 
  if(edl3>=edl1 && edl3>=edl2 && edl3>=edl4){ 
   biggest=edl3; 
  } 
  if(edl4>=edl1 && edl4>=edl2 && edl4>=edl3){ 
   biggest=edl3; 
  } 
  if(edl1<=edl2 && edl1<=edl3 && edl1<=edl4){ 
   smallest=edl1; 
  } 
  if(edl2<=edl1 && edl2<=edl3 && edl2<=edl4){ 
   smallest=edl2; 
  } 
  if(edl3<=edl1 && edl3<=edl2 && edl3<=edl4){ 
   smallest=edl3; 
  } 
  if(edl4<=edl1 && edl4<=edl2 && edl4<=edl3){ 
   smallest=edl4; 
  } 
  facetable[i]->aspr=biggest/smallest; 
  int r=3; 
 
 
  if(facetable[i]->df<=105){ 
   facetable[i]->pass=1; 
  } 
  int a=0; 
 } 
} 
 
void printquadquality( int numsurface,Face* facetable[]){ 
 FILE* ffile2; 
 int i; 
 ffile2 = fopen("printquadquality.dat", "w"); 
 //fprintf(hexfile2,"**********quads with distortion 
factor***************\n"); 
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 fprintf(ffile2,"quad no     angle1        angle2       angle3       
angle4       distortion factor    aspect ratio\n"); 
 for(i=0;i<numsurface;i++){ 
  fprintf(ffile2,"   %d       %lf    %lf    %lf    %lf        
%lf           %lf\n", i+1,facetable[i]->Angle1,facetable[i]->Angle2, 
facetable[i]->Angle3, facetable[i]->Angle4, facetable[i]->df, 
facetable[i]->aspr); 
 } 
 fprintf(ffile2,"**********bad quadfaces, distortion factor more 
than 105(the passing mark).***************\n"); 
 for(i=0;i<numsurface;i++){ 
  if(facetable[i]->pass==0){ 
   fprintf(ffile2,"%d %lf \n", i+1,facetable[i]->df); 
  } 
 } 
 fprintf(ffile2,"**********average distortion factor and aspect 
ratio***************\n"); 
 double averagedf=0; 
 double averagear=0; 
 for(i=0;i<numsurface;i++){ 
  averagedf=averagedf+facetable[i]->df; 
  averagear=averagear+facetable[i]->aspr; 
 } 
 averagedf=averagedf/(numsurface-1); 
 averagear=averagear/(numsurface-1); 
 fprintf(ffile2,"%lf     lf\n", averagedf, averagear); 
 fprintf(ffile2,"**********quad with worst distortion 
factor***************\n"); 
 double worstquad=facetable[0]->df; 
 Face* f=facetable[0]; 
 int numf=f->number; 
 for(i=1;i<numsurface;i++){ 
  if(worstquad>facetable[i]->df){ 
   worstquad=worstquad; 
   f=f; 
   numf=f->number+1; 
  } 
  if(worstquad<facetable[i]->df){ 
   worstquad=facetable[i]->df; 
   f=facetable[i]; 
   numf=f->number; 
  } 
  int a=4; 
 } 
 fprintf(ffile2," %d, %lf \n", numf, worstquad); 
 /////////////////////////////////////////////////// 
 fprintf(ffile2,"**********quad with worst aspect 
ratio***************\n"); 
 double worstquadar=facetable[0]->aspr; 
 f=facetable[0]; 
 numf=f->number; 
 for(i=1;i<numsurface;i++){ 
  if(worstquadar>facetable[i]->aspr){ 
   worstquadar=worstquadar; 
   f=f; 
   numf=f->number+1; 
  } 
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  if(worstquadar<facetable[i]->aspr){ 
   worstquadar=facetable[i]->aspr; 
   f=facetable[i]; 
   numf=f->number; 
  } 
  int a=4; 
 } 
 /////////////////////////////////////////////////// 
 fprintf(ffile2," %d, %lf \n", numf, worstquadar); 
 fclose(ffile2); 
}; 
 
///////////////////////////////end main.cpp//////////////////////////// 
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/////////////////////////edge.cpp////////////////////////////////////// 
 
#include "class.h" 
#include "function.h" 
Edge::Edge(Face* f1,Face* f2,Node* n1,Node* n2){ 
 
   checkflag=0; 
   face[0]=f1; 
   face[1]=f2; 
   node[0]=n1; 
   node[1]=n2; 
 
}; 
 
////////////////////////////end edge.cpp/////////////////////////////// 
 
////////////////////////////face.cpp////////////////////////////////// 
 
#include "class.h" 
#include "function.h" 
 
Face::Face(Node* d1,Node* d2,Node* d3,Node* d4){ 
    node[0]=d1; 
 node[1]=d2; 
 node[2]=d3; 
    node[3]=d4; 
 nextedge[0]=NULL; 
 nextedge[1]=NULL; 
    nextedge[2]=NULL; 
    nextedge[3]=NULL; 
 pass=0; 
  
}; 
 
///////////////////////////end face.cpp/////////////////////////////// 
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/////////////////////////////class.h/////////////////////////////// 
 
#ifndef class_h 
#define class_h 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
 
class Node; 
class Face; 
 
 
 
class Node { 
  public: 
   int number;//node number 
   double coord[3];//coordinate of node 
 
  int checkn;// 
  int ev;//edgevalence 
  Node* nn[10];//neighbor node 
  int nnn;//number of neighbor nodes 
 
   Node(){}; 
 
 Node(double x,double y,double z){ 
  coord[0]=x; 
  coord[1]=y; 
  coord[2]=z; 
  ev=0; 
 // checkn=1; 
  };//end Node function 
 
};//end class Node 
extern int  newgennodnum; 
extern int  gg; 
 
class Edge; 
class Face { 
 public: 
 int number; 
 int check; 
 int checkn; 
 double df;//distortion factor for quad quality 
 int pass;//1 mean pass, 0 means fail 
 Node* node[4]; 
 Node* nod[18]; 
 Face* fac[4]; 
 Face* fa[4]; 
 double aspr;//aspect ratio 
  
 Face(Node*, Node*, Node*, Node*);//this function has to be 
defined outside, in face.cpp 
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 //as in the function above an outside class is used, so the 
function is defined 
 //in face.cpp 
 double Angle1; 
 double Angle2; 
 double Angle3; 
 double Angle4; 
 
 Edge* nextedge[4]; 
 //Edge* GetOpEdge(Edge*);//for a face, it has two sets of edges. 
each set got one edge and the other one is the opedge of the first one 
 
 Edge* Find_Common_Edge(Face* next_face){ 
  Face* f1=this; 
  Face* f2=next_face; 
  if(f1!=NULL && f2!=NULL){ 
   for(int i=0;i<4;++i){ 
    for(int j=0;j<4;++j){ 
     Edge* e1=f1->nextedge[i]; 
     Edge* e2=f2->nextedge[j]; 
     if(e1==e2){ 
      return e1; 
     }//if e1,e2 
    }//for j 
   }//for i 
  }//if 
  return NULL; 
 }//Find_Common_Edge 
 
}; 
 
class Edge { 
public: 
 
 int number; 
 Face* face[2]; 
 Node* node[2]; 
 int checkflag; 
 
 Edge(Face*,Face*,Node*,Node*); 
   
}; 
 
 
 
#endif 
 
///////////////////////////////end class.h///////////////////////// 
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////////////////////////////////function.h//////////////////////// 
 
#ifndef function_h 
#define function_h 
 
//all the functions mentioned any where must be listed here, other 
files can get access 
//to the functions through this file. 
extern Node* newntable[50000]; 
extern FILE *fp; 
extern char inputfilename[256]; 
void printquadquality( int numsurface,Face* facetable[]); 
void quadquality(int numsurface,Face* facetable[]); 
#endif 
 
///////////////////////end function.h//////////////////////////////// 
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EXAMPLE DATA FILE FOR PROGRAM “MESH 
QUALITY_2012” 

 
 
 
27 16          Number of nodes and elements 
    1               0.      1.      0. 
    2               0.      5.5     0. 
    3               0.      10.     0. 
    4               .195094 .980785 0. 
    5               1.34756 5.49039 0. 
    6               2.5     10.     0. 
    7               .38269  .923877 0. 
    8               2.69137 5.46194 0. 
    9               5.      10.     0. 
    10              .55558  .831463 0. 
    11              4.02782 5.41573 0.  Node number and coordinates 
    12              7.5     10.     0. 
    13              .707107 .707107 0. 
    14              5.35355 5.35355 0. 
    15              10.     10.     0. 
    16              .831472 .555567 0. 
    17              5.41574 4.02777 0. 
    18              10.     7.5     0. 
    19              .923882 .382677 0. 
    20              5.46194 2.69132 0. 
    21              10.     5.      0. 
    22              .980788 .195079 0. 
    23              5.49039 1.34751 0. 
    24              10.     2.5     0. 
    25              1.      0.      0. 
    26              5.5     0.      0. 
    27              10.     0.      0. 
   1            1       2       5       4 
   2            2       3       6       5 
   3            4       5       8       7 
   4            5       6       9       8 
   5            7       8       11      10   
   6            8       9       12      11 Element no. and member nodes 
   7            10      11      14      13 
   8            11      12      15      14 
   9            13      14      17      16 
   10           14      15      18      17 
   11           16      17      20      19 
   12           17      18      21      20 
   13           19      20      23      22 
   14           20      21      24      23 
   15           22      23      26      25 
   16           23      24      27      26 
     
 
 


