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Abstract 

 
The stability of steady two-dimensional laminar magnetohydrodynamic flow of viscous 

incompressible nanofluid through channel has been studied numerically. The basic 

governing equations in vector form for the flow and thermal field are expressed case by 

case. The extended governing equations with related boundary conditions are reduced to 

dimensionless form using appropriate transformations. The resultant nonlinear ordinary 

differential equations are then solved numerically employing power series with Hermite-

Padé approximation scheme. 

The effect of temperature dependent thermal conductivity on magnetohydrodynamic 

radiative flow of Cu-water nanofluid considering viscous dissipation through a vertical 

parallel channel has been analysed numerically. A stability analysis has been performed for 

the local rate of heat transfer which specifies the dual solution branch due to thermal 

conductivity criticality. The influences of the pertinent flow parameters on velocity and 

temperature profiles are represented graphically. The irreversibility of the system is also 

displayed in the form of entropy generation rates and Bejan profiles with the effects of flow 

parameters. A special case study is performed for the pure base water in absence of 

nanoparticles where the left wall of the channel is taken sliding with a uniform velocity.  

The entropy generation on magnetohydrodynamic radiative variable thermal conductivity 

flow of optically thin viscous water-based three different nanofluids through a vertical 

porous channel is studied. The effect of porosity parameter together with other physical 

parameters on velocity and temperature distributions, thermal stability conditions and 

entropy generation of the system are discussed extensively both numerically and 

graphically.        

The effects of Cu-water nanofluid on the entropy generation of the nonlinear 

magnetohydrodynamic Jeffery-Hamel flow through divergent channel are analysed. The 

dominating singularity behaviour of the problem is analysed numerically and graphically. 

The velocity profiles, temperature distributions and entropy generation rates with Bejan 

profiles are presented in divergent channel for various values of channel angle, flow 

Reynolds number along with other flow parameters.  
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Finally, the effects of three different nanoparticles on the stability of the 

magnetohydrodynamic nonlinear Jeffery-Hamel flow through convergent-divergent channel 

have been studied. The dominating singularity behaviour of the problem is analysed 

numerically and graphically for nanofluid. The alternation in the bifurcation diagram of 

channel semi-angle and flow Reynolds number due to the effect of various nanoparticles is 

observed. The critical relationships among the parameters are also performed qualitatively 

with the effect of different nanoparticles. On the other hand, the irreversibility of the system 

and the regular behavior of the flow are presented in both convergent and divergent channels 

for various values of the physical flow parameters. 

Comparisons with available results stated in literature review are made and the results show 

excellent agreement.         
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Chapter I 

Introduction 

 

In this chapter, the main terminologies used in the thesis are defined. The hydrodynamic 

stability and singularity in fluid flow are quantitatively discussed. A detailed review of the 

magnetohydrodynamics and nanofluids with applications is given. The general idea of the 

irreversibility in the system is also explained.  

1.1 Hydrodynamic Stability 

Hydrodynamic stability concerns the stability and instability of motions of fluids according 

to Drazin (2002).  The concept of stability of a state of a physical or mathematical system 

was understood in the eighteenth century, and Clerk Maxwell Campbell & Garnett (1882) 

expressed the qualitative concept clearly in the nineteenth: When an infinitely small 

variation of the present state will alter only by an infinitely small quantity the state at some 

future time, the condition of the system, whether at rest or in motion, is said to be stable; but 

when an infinitely small variation of the present state may bring about a finite difference in 

the state of the system in a finite time, the condition of the system is said to be unstable.  

So hydrodynamic stability is an important part of fluid mechanics, because an unstable flow 

is not observable. An unstable flow being in practice broken down rapidly by some ‘small 

variation’ or another. Also unstable flows often evolve into an important state of motion 

called turbulence, with a chaotic three dimensional vorticity field with broad spectrum of 

small temporal and spatial scales called turbulence.   

The essential problems of fluid dynamics stability were recognized and formulated in the 

nineteenth century, notably by Helmholtz, Kelvin, Rayleigh and Reynolds. It is difficult to 

introduce these problems more clearly than in Osborne Reynolds’s (1883) own description 

of his classic series of experiments on the instability of flow in a pipe. Reynolds went on to 

show that the laminar flow, the smooth flow through the pipe, breaks down when 
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ν
Va exceeds a certain critical value, V being the maximum velocity of the water in the pipe, 

a the radius of the pipe, and ν the kinematic viscosity of water at the appropriate 

temperature. This dimensionless number ν
Va , now called the Reynolds number (Re). The 

series of experiments gave the critical value cRe  of the Reynolds number as nearly 13000. 

However, the critical velocity was very sensitive to disturbance in the water before entering 

the pipes. Different types of instabilities occur around us in daily aspects of life are shown in 

Figures 1.1-1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Water flow from a tap by V. Shankar (2014). 

Unstable systems are not observed in nature, they have to be constructed. Usually the 

unstable systems explode and the explosion to occur sooner rather than later. We are 

interested in when and how laminar flows break down and eventually turn into turbulent 

flows. Singularities in the solution of problems of fluid dynamics can often be associated to 

hydrodynamic instability.      

The modeling of physical phenomena usually results in nonlinear problems for some 

unknown function or functions depending on one or many variables. A value of the 

independent variable for which a function is unbounded or not unique locally is known as a 
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singularity of the function. In this thesis, as is commonly done in the literature, we shall 

sometimes also use the same word to refer to the local behavior of a function near a 

singularity. In the context of mathematical modeling, real singularities often have a physical 

interpretation. Hence their study is of great practical interest. 

Very few nonlinear problems can be solved exactly, but it is sometimes possible to expand a 

solution in powers of some parameters. The summation of power series is widely used to 

approximate functions in many areas of mathematics. Particularly in the study of critical 

phenomena Guttmann (1981), the most valuable and widely used tool has been the 

calculation and analysis of series. Over the last quarter century, highly specialized 

techniques have been used to extract the series coefficients, and a variety of methods have 

been devised for extracting the required information on the singularities from a finite 

number of series coefficients. Series analysis plays an important role in many areas, 

particularly in fluid dynamics, where, as mentioned earlier, the presence of real singularities 

in the solution may reflect some change in the nature of the flow. This is the theme of the 

thesis. 

 

 

 

 

 

 

 

Figure 1.2: Smoke from an incense stick by V. Shankar (2014). 
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1.1.1 Overview of series 

Consider a function ( )xu  which can be represented by a power series 

( ) ∑
∞

=

=
0i

i
i xaxU  as 0→x .                                      (1.1.1) 

Let us suppose the Nth  partial sum is 

( ) ∑
−

=

=
1

0

N

i

i
iN xaxU                                                                                (1.1.2) 

The series is said to be convergent if the sequence of the partial sums converges. When the 

series converges, the sum ( )xU  can be approximated by the partial sum ( )xU N and the error 

is defined by 

( ) ( ) ( )xUxUxe NN −= ,                                                                                (1.1.3) 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.3: A layer heated liquid by V. Shankar (2014). 

 

The absolute error is defined by 

( ) ( )
( )xU

xexe N
N =/ , provided  ( ) .0≠xU                                                           (1.1.4) 
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The number of accurate decimals for some particular value of x  is given by 

NN e10log−=ρ . 

It is said that the error decays exponentially if there exists a positive constant ε  such that 

εε →N  as ∞→N , where 

N
eN

N
ln

−=ε .                                                                          (1.1.5) 

We say that the error decays superexponentially if there exists a positive constant ς such 

that ςς →N   as ∞→N , where 

NN
eN

N ln
ln

−=ς .                                                                          (1.1.6) 

An important characteristic of a series is its domain of convergence. If the series ( )xU  

converges for some cx  it also converges absolutely in the open disc  

                                        { }cxxx <:   

with centre at the origin. The largest such disc is called the disc of convergence of the series 

and the radius, say R , of the disc is called the radius of convergence of the series ( )xU . 

1.1.2 Singularity analysis 

Singularities are crucial points of a function, because the expansion of a function into a 

power series depends on the nature of singularities of the function. Several types of 

singularities may arise in physical (nonlinear) problems. For the purpose of this thesis, we 

are interested to analyze those functions, which have several types of singularities. 

Practically, one of these singularities dominates the function. Therefore it is important to 

know about this singular point to analyze the critical behavior of the function around this 

point. The rate of convergence of the sequence of partial sums depends crucially on the 

singularities of the function represented by the series. The dominating singularity behavior 

of the function ( )xu  represented by a series may be written as  
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as ,cxx → where A and B are some constants and cx is the critical point with the critical 

exponentδ . If δ  is a negative integer then the singularity is a pole; otherwise if it is a 

nonnegative rational number then the singularity is a branch point. We can include the 

correction terms with the dominating part in (1.1.7) to estimate the degree of accuracy of the 

critical points. It can be as follows 
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ccc x
xA

x
xA

x
xAxu ,      as cxx →                (1.1.8) 

Where ....0 21 <<< δδ  and ,.....,, 21 AAA are constants. If Ni ∉+δδ  for some i , then the 

correction terms are called confluent. Sometimes the correction terms can be logarithmic. 

e.g.,  

( )
⎭
⎬
⎫

⎩
⎨
⎧

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

cc x
xA

x
xAxu 1ln11~ 1

δ

   as    cxx → .                                                 (1.1.9) 

The sign pattern of the series coefficients may indicate the location of the singularity. If all 

the terms are positive or negative the dominant singular point lies on the positive x-axis. If 

the terms take alternately positive and negative signs then the singular point is on the 

negative x-axis. On the other hand, if the coefficients are periodic with period 4 then the 

dominant singularity may be on the imaginary x-axis. But in most problems of a physical 

origin, the series has an aperiodic sign pattern.  

1.1.3 Elementary bifurcation theory 

An investigation of some nonlinear problems in fluid dynamics is made in this thesis. The 

essences of the general forms of bifurcation, i.e., the common types of change of regime of 

flow, are introduced in this thesis. And these bifurcations occur where instability occurs will 

also be shown later. Solutions of nonlinear problems arising in the modeling of physical 

phenomena, often involve one or more parameters. A bifurcation occurs when a small 



7 

 

smooth change made to the parameter values (the bifurcation parameters) of a system causes 

a sudden 'qualitative' or topological change in its behaviour. The bifurcation occurs where 

the solution set of a nonlinear system alter their qualitative behavior at a certain value of the 

parameter. In particular, bifurcation theory shows how the number of steady solutions of a 

system depends on parameters. Examples of bifurcation are: Simple turning points, in which 

two real solutions become complex conjugate solutions, and pitchforks, in which the number 

of real solutions changes discontinuously from one to three (or vice versa). We intend to 

discuss some basic concepts of bifurcation theory.  

 

 

 

 

 

 

 

 

Figure 1.4: Period‐halving bifurcations (L) leading to order, followed by period doubling bifurcations 
(R) leading to chaos. (Image source: Wikipedia website) 

Consider a functional map ℜ→ℜ×ℜ:F . We seek for the solutions ( )xUu =  of  

( ) 0, =uxF .                                                                                                     (1.1.10) 

The solutions can be visualized by means of a bifurcation diagram in which the solution 

curves are drawn in the ( )ux, -plane. Let ( )00 ,ux  be a solution of equation (1.1.10), i.e. 

( ) 0, 00 =uxF                                                                                                      (1.1.11) 

then, F can be expanded in a Taylor series about ( )00 ,ux  and we can study the solution set 

in that neighborhood provided that F is smooth. Thus we obtain  

( )uxF ,0 =  

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ...,
2
1,,, 00

2
000000000 +−+−+−+= uxFuuuxFxxuxFuuuxF uuxu       (1.1.12) 

If, we assume that, ( ) 0, 00 ≠uxFu , then 
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( ) ( ) ( )
( ) ( ),

,
,

0
00

00
00 xxO

uxF
uxFxxuxu

u

x −+−−=          as 0xx → .                                   (1.1.13)   

This gives only one solution curve in the neighborhood of the point ( )0 0,x u  in the 

bifurcation diagram. However, if ( )0 0,x u  is replaced with ( ),c cx u , where  

( ) ( ) 0,,0, == ccucc uxFuxF ,                                                                                 (1.1.14) 

then the expansion (1.1.12) shows that there are at least two solution curves in the 

neighborhood of ( )cc ux , . The point ( )cc ux ,  is called a bifurcation point. The formation of 

the bifurcation diagram in the neighbourhood of a bifurcation point depends on the first term 

of the Taylor series (1.1.12) that does not vanish. Although the solutions cannot be expanded 

in a Taylor series in that neighbourhood, it is often possible to expand them in a fractional 

power series of the form  

δ)(
0

c
n

n xxuu −= ∑
∞

=

                                                                                                  (1.1.15) 

for some Q∈δ  

A period halving bifurcation is a bifurcation in which the system switches to a new behavior 

with half the period of the original system. A series of period-halving bifurcations leads the 

system from chaos to order. A period doubling bifurcation is a bifurcation in which a slight 

change in a parameter value in the system's equations leads to the system switching to a new 

behavior with twice the period of the original system. Figure 1.4 represents the cases of 

Phillips curve that period halving bifurcations turning to order and then period doubling 

bifurcations leading to chaos.  

 

Example 1.1: A turning point. Consider a simple model problem for descriptive purposes, or 

‘toy’ problem from Drazin (2002), the quadratic equation 

 ,0)( 2
0 =−− VVlx  

where )Re(Re chx −= , for some constants 0,0,0 Vlh ≠> . Here V may be considered as 

representing a given component of the velocity of the fluid at some point of a steady flow as 

a function of the Reynolds number Re and cRe is the critical value of Re. A toy problem can 
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be helpful to know about a complicated property of fluid motion if the simple toy problem 

describes that property. Then 

lhVV c )Re(Re0 −±= . 

There are two solutions when ,0)Re(Re >− lh c one when ,ReRe c= and none 

when .0)Re(Re <− lh c  In Figure 1.5, the velocity V is plotted against Re for the case 

.0>hl It is seen that there is a simple turning point, fold or a saddle-node bifurcation at 

,ReRe c= .0VV =  This is called a bifurcation point because the number (and behaviour) of 

the solutions changes there. 

 

 

 

 

 

 

 

 

Figure 1.5: The bifurcation diagram for the turning point in the (Re, V)‐plane for the case  .0>l  

Example 1.2: A transcritical bifurcation. As another very simple model of bifurcation of 

solution of steady flow, the following quadratic equation is considered 

,02 =− lVxV  

Then 

0=V  or lhlxV c )Re(Re−== , 
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Hence there are two solutions for all .ReRe c≠  There is a bifurcation at 

,ReRe c= 0=V which is an example of a transcritical point shown in Figure 1.6 below. 

 

 

 

 

 

 

Figure 1.6: The bifurcation diagram for the transcritical point in the (Re, V)‐plane for the case  .0>l  

Example 1.3: Pitchfork bifurcation. Consider the model equation 

,03 =− lVxV  

which is typical for the first bifurcation of flows with symmetry in .V± Then 

,0=V  or lhV c )Re(Re−±=  if  .0)Re(Re >− lh c  

The bifurcation at ,ReRe c= 0=V is said to be pitchfork bifurcation. It is observed that 

there is symmetry breaking at ,ReRe c= in the sense that if ,0>hl then there is a unique 

symmetric solution for ,ReRe c< but there is also a pair of asymmetric solutions for 

cReRe >  which is seen in Figure 1.7. 
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Figure 1.7: The bifurcation diagram for the pitchfork in the (Re, V)‐plane for the case  .0>l  

1.2 Magnetohydrodynamics (MHD) 

Magnetohydrodynamics (MHD) is the branch concerned with the dynamics of electrically 

conducting fluids in a magnetic field. These fluids include salt water, liquid metals (such as 

Mercury, gallium, molten Iron) and ionized gases or plasmas (such as solar atmosphere). 

The term MHD is comprised of the words magneto – meaning magnetic, hydro – meaning 

fluids, and dynamics – meaning movement. The field of MHD was initiated by the Swedish 

Physicist Hannes Alfvén (1908-1995), who received the Nobel Prize in Physics in 1970 for 

fundamental work and discoveries in magnetohydrodynamics with fruitful applications in 

different parts of plasma physics. 

Magnetohydrodynamics exhibits the phenomena, where, in an electrically conducting fluid, 

the velocity field V  and the magnetic field B  are coupled. The magnetic field induces an 

electric current of density j  in the moving conductive fluid (electromagnetism). The 

induced current creates forces on the liquid and also changes the magnetic field. Each unit 

volume of the fluid having magnetic field B  experiences an MHD force Bj ×  known as 

Lorentz force. This Lorentz force tends to oppose the fluid motion near the leading edge. As 
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the velocity is very small, so that the magnetic force that is proportional to the magnitude of 

the longitudinal velocity and acts in the opposite direction is also very small. The set of 

equations which describe MHD flows are a combination of Navier-Stokes equation of fluid 

dynamics and Maxwell’s equations of electromagnetism.  

1.2.1 Application of MHD  

Many natural phenomena and engineering problems are susceptible to MHD analysis. In 

natural phenomena, since magnetic field exists everywhere in the world, it follows that 

MHD phenomena must occur whenever conducting fluids are available. Electrically 

conducting fluids are abundant in nature, although their conductivities vary greatly. On the 

other hand, MHD is of special technical significance because of its frequent occurrence in 

many industrial applications such as MHD generators, pumps, cooling of nuclear reactors, 

geothermal energy extractors, thermal insulators, nuclear waste disposal, heat exchangers, 

petroleum and polymer technology, and heat transfers involving metallurgical processes.   

1.3 Heat Transfer 

Heat can be defined as the form of energy that is transferred from one system to another as a 

result of temperature difference. The science that deals with the determination of the rates of 

such energy transfers is the heat transfer. Temperature variations may exist within a fluid 

because of temperature differences between boundaries or between a boundary and an 

ambient fluid. Temperature variations can also arise from a variety of causes such as 

radioactivity, absorption of thermal radiation and release of latent heat as fluid vapor 

condenses. Heat transfer is the generation, exercise, conversion and exchange of thermal 

energy and heat between the physical systems which occurs as a result of a temperature 

gradient. Heat transfer is commonly encountered in engineering systems and daily features 

of life. There are three modes of heat transfer: conduction, convection and radiation. The 

heat transfer by thermal radiation in the flow through channel is studied in this thesis.  
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Figure 1.8: Combined conduction, convection and radiation heat transfer (Image source: Wikipedia) 

1.3.1 Thermal Radiation 

The theoretical foundation of radiation was established in 1864 by physicist James Clerk 

Maxwell, who postulated that accelerated charges or changing electric currents give rise to 

electric and magnetic fields. These rapidly moving fields are called electromagnetic waves. 

Thermal radiation process by which energy, in the form of electromagnetic waves, is emitted 

by a heated surface in all directions and travels directly to its point of absorption at the speed 

of light; thermal radiation does not require an intervening medium to carry it. Also, radiation 

transfer occurs in solids as well as liquids and gases. Thermal radiation ranges in wavelength 

from the longest infrared rays through the visible-light spectrum to the shortest ultraviolet 

rays. The intensity and distribution of radiant energy within this range is governed by the 

temperature of the emitting surface. The total radiant heat energy emitted by a surface is 

proportional to the fourth power of its absolute temperature (the Stefan–Boltzmann law). 

The rate at which a body radiates (or absorbs) thermal radiation depends upon the nature of 

the surface as well. Objects that are good emitters are also good absorbers (Kirchhoff’s 

radiation law). A blackened surface is an excellent emitter as well as an excellent absorber. 

If the same surface is silvered, it becomes a poor emitter and a poor absorber. A blackbody 

is one that absorbs all the radiant energy that falls on it. Such a perfect absorber would also 
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be a perfect emitter. The heating of the Earth by the Sun is an example of transfer of energy 

by radiation. The heating of a room by an open-hearth fireplace is another example. 

Radiation plays an important role in a variety of heat transfer systems. Combustion 

processes associated with furnaces, ovens, and internal combustion engines are strongly 

influenced by radiation heat transfer. Radiation is important in energy production systems, 

such as boilers and nuclear reactors. Radiation plays a major role in the cooling of 

electronics in high altitude aircraft, where convection effects are weak due to low air 

density.     

1.3.2 Temperature dependent Thermal Conductivity 

Thermal conductivity of a material can be defined as the rate of heat transfer through a unit 

area per unit temperature difference. The thermal conductivity of a material is a measure of 

the ability of the material to conduct heat. However, it is known that this physical property 

may change significantly with temperature. When the variation of thermal conductivity with 

temperature in a particular temperature interval is large, however, it may be necessary to 

account for this variation to minimize the error. For a liquid, it has been found that the 

thermal conductivity κ varies with temperature in an approximately linear manner in the 

range from 0 to 4000F, as Kay (1966). For example, 607.0=κ W/m 0C for water and 

2.80=κ W/m 0C for iron at room temperature, which indicates that iron conducts heat more 

than 100 times faster than water can. Thus it implies that water is a poor heat conductor 

relative to iron, although water is an excellent medium to store thermal energy. Note that 

material such as copper and silver that are good electric conductors, and have high values of 

thermal conductivity. Accounting for the variation of the thermal conductivity with 

temperature, in general, complicates the analysis. But in simple one-dimensional case, heat 

transfer relations can be obtained in a straightforward manner. 

When the variation of thermal conductivity with temperature )(Tκ is known, the average 

value of the thermal conductivity in the temperature range between 1T and 2T can be 

determined from 
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This relation is based on the requirement that the rate of heat transfer through a medium 

with constant average thermal conductivity avgκ equals the rate of heat transfer through the 

same medium with variable conductivity )(Tκ . The variation in the thermal conductivity of 

a material with temperature in the temperature range of interest may often be approximated 

as a linear function and expressed as  

)1()( 0 TT τκκ +=  

where τ  is called the temperature coefficient of thermal conductivity.                                                             

1.4 Nanofluids 

Fluid is a substance that deforms continuously under the application of shear stress. 

Convectional heat transfer fluids such as water, minerals oil and ethylene glycol play an 

important role in many industrial sectors including power generation, chemical production, 

air-conditioning, transportation and microelectronics. Although various techniques have 

been applied to enhance their heat transfer, their performance is often limited by their low 

thermal conductivities which obstruct the performance enhancement and compactness of 

heat exchangers.  For example, copper (Cu) has a thermal conductivity 700 times greater 

water and 3000 times greater than engine oil. With the rising demands of modern technology 

for process intensification and device miniaturization, there is need to develop new types of 

fluids that are more effective in terms of heat exchange performance. In order to achieve 

this, it has been recently proposed to disperse small amounts of nanometer-sized (10-50 nm) 

solid particles (nanoparticles) in base fluids, resulting into what is commonly known as 

nanofluids. The term “nanofluid” was coined by Choi (1995) who was working with the 

group at the Argonne National Laboratory (ANL), USA, in 1995. The nanoparticles used are 

ultrafine, therefore, nanofluids appear to behave more like a single-phase fluid than a solid-

liquid mixture. The commonly used materials for nanoparticles made of chemically stable 

metals (Al, Cu, Ag, Au, Fe), nonmetals (graphite, carbon nanotubes), oxides ceramics 

(Al2O3, CuO, TiO2, SiO2), carbides (SiC), layered (Al+, Al2O3, Cu+C). The base fluids is 
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usually a conductive fluid, such as water, (or other coolants), oil (and other lubricants), 

polymer solutions, bio-fluids and other common fluids, such as paraffin. Some advantages 

of nanofluids which make them useful are a tiny size, along with a large specific surface 

area, less clogging and abrasion. Investigations have shown that nanofluids possess 

enhanced thermophysical properties such as thermal conductivity, thermal diffusivity, 

viscosity and convective heat transfer coefficients compared to those of base fluids like oil 

or water done by Choi (2009), Yu et al. (2008), Tyler et al. (2006), Das et al. (2006), Liu et 

al. (2005), Choi et al. (2004). There are two techniques used in production of nanofluids; the 

single-step method in which nanoparticles are evaporated directly into the base fluid and the 

two-step method in which nanoparticles are first prepared by either the inert gas 

condensation technique or chemical vapor deposition method and then dispersed into the 

base fluid.   

Studies have shown that the particle volume fraction, which is the volumetric concentration 

of the nanoparticles in the nanofluid has effects on the thermal conductivity of the nanofluid. 

Experimental results of nanofluids with small nanoparticles volume fractions showed that 

thermal conductivity significantly increased when compared to the base fluid. Masuda et al. 

(1993) measured the thermal conductivity of nanofluids containing Al2O3 (13 nm), SiO2 (12 

nm), and TiO2 (27 nm) nanoparticles, with water as the base fluid. They observed an 

enhancement of 32.4% for the effective thermal conductivity of 4.3% volume of Alumina-

water nanofluid at Co85.31 .    

1.4.1 Nanoparticles solid volume fraction 

The volume fraction φ is defined as the volume of a nanoparticles divided by the volume of 

all constituents of the nanofluid. The volume fraction coincides with the volume 

concentration in ideal solutions where the volumes of the constituents are additive (the 

volume of the solution is equal to the sum of the volumes of its ingredients). 

The sum of all volume fractions of a mixture is equal to 1: 

     1
1

=∑
=

i

N

i
φ  
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1.4.2 Application of Nanofluids 

Nanofluids have an unprecedented combination of the four characteristic features desired in 

energy systems (fluid and thermal systems); increased thermal conductivity at low 

nanoparticle concentrations, Strong temperature dependent thermal conductivity, non-linear 

increase in thermal conductivity with nanoparticles concentration and increase in boiling 

critical heat flux. These distinctive features enhance nanofluid’s potential applications to 

improve heat transfer and energy efficiency in industrial and engineering areas including 

industrial coolants, smart fluids, nuclear reactors coolant, extraction of geothermal power, 

nanofluids in automobile fuels, brake fluids, car radiator coolant, microelectronics cooling, 

bio and pharmaceutical industry as Wang and Fan (2010), Kaufui and Omar (2010), 

Senthilraja et al. (2010). 

 Generally, industrial coolants are used in public utilities; the oil and gas industry, the 

food and beverage processing industry, the chemicals and plastics industry, solar 

energy conversion to electricity and in buildings for heating, ventilation, and air 

conditioning (HVAC) systems. 

 In case of energy saving and the widespread use of battery operated devices, such as 

cell phones and laptops, have accented the necessity for a smart technological 

handling of energetic resources. Smart materials have one or more properties that can 

be dramatically altered, eg, smart material with variable viscosity may turn from a 

fluid which flows easily to a solid. Nanofluids have been demonstrated to be able to 

handle this role in some instances as a smart fluid. 

 When extracting energy from the earth’s crust that varies in length between 5 to 10 

km and temperature between 5000C and 10000C, nanofluids can be employed to cool 

the pipes exposed to such high temperatures. When drilling, nanofluids can serve in 

cooling the machinery and equipment working in high friction and high temperature 

environment. 

 A principal limitation on developing smaller high density microchips is the heat 

dissipation problem. Advanced electronic devices face thermal management 
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challenges from the high level of heat generation and the reduction of available 

surface area for heat removal. Nanofluids can be used for liquid coolant of computer 

processors due to their high thermal conductivity and increased heat transfer 

coefficient. 

 Nanofluids are been used in automobile for applications such as coolant, fuel 

additives, lubricant, shock absorber and refrigerant. The current engine oils, 

automatic transmission fluids, lubricants, and other synthetic high temperature heat 

transfer fluids found in conventional truck thermal systems radiators, engines 

heating, ventilation and air-conditioning (HVAC) have inherently poor heat transfer 

properties. These could benefit from the high thermal conductivity offered by 

nanofluids.  

 Cryosurgery is a procedure that uses freezing to destroy undesired tissues. Although, 

it cannot be regarded as a routine method for cancer treatment, Cryosurgery is 

becoming a popular alternative to traditional therapies because of its important 

clinical advantages. According to simulations performed by Yan and Liu (2008), 

intentional loading of nanoparticles with high thermal conductivity into the target 

tissues can reduce the final temperature, increase the maximum freezing rate, and 

enlarge the ice volume obtained in the absence of nanoparticles. The concepts of 

nanocyrosurgery may offer new opportunities for future tumor treatment.      

1.5 The second law of Thermodynamics 

The first law of thermodynamics provides the basic definition of thermodynamic energy, 

also called internal energy, associated with all thermodynamic systems, but unknown in 

classical mechanics, and states the rule of conservation of energy in nature. The concept of 

energy in the first law does not, however, account for the observation that natural processes 

have a preferred direction of progress. The first law is symmetrical with respect to the initial 

and final states of an evolving system. But the second law asserts that a natural process runs 

only in one sense, and is not reversible. For example, heat always flows spontaneously from 

hotter to colder bodies, and never the reverse, unless external work is performed on the 

system. The key concept for the explanation of this phenomenon through the second law of 
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thermodynamics is the definition of a new physical quantity, the entropy. It also states that 

all spontaneous processes, both chemical and physical, proceed to maximize entropy, that is, 

to become more randomized and convert energy into a less available form. A basic corollary 

of the second law of thermodynamics is the statement that the sum of the entropy change of 

a system and that of the surroundings will always increase over time and must be positive, 

i.e., the universe is constrained to become forever more disordered and to proceed towards 

thermodynamics equilibrium with some absolute maximum value of entropy.   

1.5.1 Entropy Generation 

The idea of irreversibility is central to the understanding of entropy. Everyone has an 

intuitive understanding of irreversibility - if one watches a movie of everyday life running 

forward and in reverse, it is easy to distinguish between the two. The movie running in 

reverse shows impossible things happening - water jumping out of a glass into a pitcher 

above it, smoke going down a chimney, water "unmelting" to form ice in a warm room, 

crashed cars reassembling themselves, and so on. Entropy analysis is a medium to quantify 

the thermodynamics irreversibility in any fluid flow process. Entropy generation is a 

measure of the account of irreversibility associated to the real processes. As entropy 

generation takes place, the quality of energy decreases. According to the second law of 

thermodynamics the entropy of an isolated system never decreases; such a system will 

spontaneously evolve toward thermodynamic equilibrium, the configuration with maximum 

entropy. Systems that are not isolated may decrease in entropy, provided they increase the 

entropy of their environment by at least that same amount. Since entropy is a state function, 

the change in the entropy of a system is the same for any process that goes from a given 

initial state to a given final state, whether the process is reversible or irreversible. However 

irreversible processes increase the combined entropy of the system and its environment. In 

order to preserve the quality of energy in a fluid flow process or at least to reduce the 

entropy generation, it is important to study the distribution of the entropy generation within 

the fluid volume. The optimal design for any thermal system can be achieved by minimizing 

entropy generation in the systems. Entropy generation in thermal engineering systems 

destroys available work and thus reduces its efficiency. Many studies have been published to 

assess the sources of irreversibility in components and systems. Bejan (1996) studies the 
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entropy generation for forced convective heat transfer due to temperature gradient and 

viscosity effect in a fluid. Bejan (1979) also presented various reasons behind entropy 

generation in applied thermal engineering where the generation of entropy destroys the 

available work called exergy of a system. The general equation for the entropy generation 

per unit volume is given by 

  Φ+∇=
ww

m
T

T
T

S µκ 2
2 )(  

the first term in the equation is the irreversibility due to heat transfer and the second term is 

the entropy generation due to viscous dissipation. The entropy flowing out of an adiabatic 

system is always larger than the entropy flowing into the system, the difference arising due 

to entropy produced by irreversible processes within the system.  

1.6 Channel Flow 

Channel flow constitutes a very important class of flows in fluid dynamics due to its several 

applications in biological and engineering systems. Therefore, it is necessary to study the 

characteristics of this flow. We are particularly interested about the stability of the flow 

through channel by the effects of changing physical properties of the nanofluid. In this 

respect, we shall consider two types of channel flows, namely parallel flow and convergent-

divergent flow. In the late 19th century, Maurice Marie Alfred Couette, a Professor of 

Physics at the French university of Angers discovered the laminar flow of a viscous fluid in 

the space between two parallel plates channel, one of which is moving relative to the other. 

The flow is driven by virtue of viscous drag force acting on the fluid and the applied 

pressure gradient parallel to the plates named as Couette flow. Steady viscous fluid flow 

between two parallel stationary plates due to an imposed constant pressure gradient is 

generally known as Poiseuille flow, since it was first studied experimentally by 

J.L.M. Poiseuille in 1838. The flow between two planes that meet at an angle was first 

analyzed by Jeffery (1915) and Hamel (1916), which is called classical Jeffery-Hamel flow 

through convergent-divergent channel. The study of flows in converging-diverging channel 

is very important due to its industrial, aerospace, chemical, civil, environmental, mechanical 

and bio- mechanical engineering applications. Various applications of this type of 

mathematical model are to understand the flow of rivers and canals, enhancing heat transfer 
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of heat exchangers for milk flowing, cold drawing operation in polymer industry, extrusion 

of molten polymers through converging dies and the blood flow in the human body. The 

theoretical study of MHD channel has been a subject of great interest due to its extensive 

applications in designing cooling systems with liquid metals, MHD generators, accelerators, 

pumps, and flow meters (Cha et al. (2002), Tendler (1983)).  

1.7 Literature Review 

The flow and heat transfer between parallel plates channel has been studied by a number of 

authors Arpaci et al. (2000), Makinde (2008) and Sahin (1999) and occur in many 

technological applications, such as in biomedical engineering, material processing, as well 

as the food and petro-chemical industries. In the past few years, several simple flow 

problems associated with classical hydrodynamics have received new attention within the 

more general context of magnetohydrodynamics (MHD). A survey of MHD studies in the 

technological fields can be found in Moreau (1990). The small disturbance stability of MHD 

plane-Poiseuille flow was investigated by Makinde and Motsa (2001). Makinde (2003) 

analysed magnetohydrodynamic stability of Plane Poiseuille flow using multideck 

asymptotic technique. It is observed in his analysis that the magnetic field has a stabilizing 

effect on the flow and that this stability increases with an increase in Hartmann number. 

Heat transfer acts a significant role in many fields where the heating and cooling processes 

involved. Any substance with a temperature above absolute zero transfers heat in the form of 

radiation. Thermal radiation always exits and can strongly interact with convection in many 

situations of engineering interest. However, radiative heat transfer has a key impact in high 

temperature regime. Many technological processes occur at high temperature and good 

working knowledge of radiative heat transfer plays an instrumental role in designing the 

relevant equipment. Convection in a channel in the presence of thermal radiation draw the 

attention because of its importance in many practical applications like a furnace, combustion 

chamber, cooling tower, rocket engine, and solar collector as Chang et al (1983). In Cogley 

et al. (1968), the differential approximation for radiative heat transfer in a nonlinear 

equation for gray gas near equilibrium was proposed. Chawla and Chan (1980) studied the 

effect of radiative heat transfer on thermally developing Poiseuille flow with scattering. The 
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interaction of thermal radiation with conduction and convection in thermally developing, 

absorbing–emitting, non-gray gas flow in a circular tube was investigated by Tabanfar and 

Modest (1987). The thermal conductivity of the fluid had been assumed to be constant in 

many studies. However, it is known that this physical property may change significantly 

with temperature. For a liquid, it has been found that the thermal conductivity κ varies with 

temperature in an approximately linear manner, as Kay (1966). Yasir et al (2011) analyzed 

the effects of variable viscosity and thermal conductivity on the flow and heat transfer in a 

laminar liquid film on a horizontal stretching sheet. Pinarbasi et al. (2011) investigates the 

effect of variable viscosity and thermal conductivity of a non-isothermal, incompressible 

Newtonian fluid flowing under the effect of a constant pressure gradient at constant 

temperatures in plane Poiseuille flow using Chebyshev pseudospectral method. Sadik et al. 

(2011) studied the effect of variable thermal conductivity and viscosity on single phase 

convective heat transfer in slip flow. Makinde (2008) studied the steady state solutions for 

viscous reactive flows through channels with a sliding wall. Patra et al. (2014) examined 

radiation effect on MHD fully developed mixed convection in a vertical channel with 

asymmetric heating where they observed that an increase in radiation parameter leads to a 

decrease in the fluid temperature in the channel. Meanwhile, the thermal boundary layer 

equation for variable conductivity fluid in the presence of thermal radiation composes a 

nonlinear problem.  The theory of nonlinear differential equations is quite elaborate and 

their solution remains an extremely important problem of practical relevance in science and 

engineering. In the last few decades quite a few numerical methods have developed, e. g. 

finite difference, spectral method, shooting method, etc to tackle this type of problem. 

Moreover, the models on classical semi-analytical methods have experienced a revival, in 

connection with the scheme of new hybrid numerical-analytical techniques for nonlinear 

differential equations, such as Hermite–Padé approximation method, which demonstrated 

itself as a powerful benchmarking tool and a prospective substitute to traditional numerical 

techniques in various applications in science and engineering. Makinde (2008) analysed the 

entropy generation analysis for variable-viscosity channel flow with non-uniform wall 

temperature. Makinde (2009) investigated the variable viscosity and thermal radiation 

effects on entropy generation rate in the flow of a temperature dependent variable viscosity 

optically thin fluid through a channel with isothermal walls using Hermite–Padé semi-
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analytical approach. Kwak and Kim (2005) showed that heat transfer efficiency can be 

improved by increasing the thermal conductivity of the working fluid. Recent advances in 

nanotechnology have allowed authors to study the next generation heat transfer of 

nanofluids, a term first introduced by Choi (1995). Nanofluids are engineered dilute 

colloidal dispersions of nano-sized (less than 100 nm) particles in a base fluid as Das et al. 

(2007). Nanoparticles have unique chemical and physical properties and have better thermal 

conductivity with radiative heat transfer compared to the base fluid only as Oztop and Abu-

Nada (2008). Mah et al. (2012) studied the entropy generation characteristics in a fully-

developed forced convection flow of Al2O3-water nanofluid in a circular micro-channel. The 

results showed that when viscous dissipation effects are taken into account, the addition of 

nanoparticles increases the entropy generation rate and reduces the heat transfer effect since 

the greater thermal conductivity and viscosity of the nanofluid enhances both the heat 

transfer irreversibility and the fluid friction irreversibility. Chen et al. (2014) studied heat 

transfer and entropy generation in fully-developed mixed convection nanofluid flow in 

vertical channel. They analysed the effects of viscous dissipation on the entropy generation 

within vertical asymmetrically heated channels containing mixed convection flow.  

The flow and heat transfer in porous tubes or channels has been studied by a number of 

authors (Wernert et al. (2005), Jafari et al. (2009), Goerke (2002)). Berman (1953) described 

an exact solution of the Navier-Stokes equation for steady two-dimensional laminar flow of 

a viscous, incompressible fluid in a channel with parallel rigid porous walls driven by 

uniform suction or injection at the walls. Sheikholeslami (2013) investigated analytically the 

laminar nanofluid flow in a semi-porous channel in the presence of transverse magnetic field 

using Homotopy perturbation method. Abiodun et al. (2011) investigated entropy generation 

in a steady flow of viscous incompressible fluids between two infinite parallel porous plates 

for two different physical situations Couette flow and pressure-driven Poiseuille flow. 

Makinde and Eegunjobi (2013) analysed the combined effects of convective heating and 

suction/injection on entropy generation rate in a channel with permeable walls. 

The study of flows in convergent-divergent channel is very important due to its industrial, 

aerospace, chemical, civil, environmental, mechanical and bio-mechanical engineering 

applications. Various applications of this type of mathematical model are to understand the 
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flow of rivers and canals and the blood flow in the human body. Jeffery (1915) and Hamel 

(1916) first studied the two-dimensional steady motion of a viscous fluid through 

convergent-divergent channels which is called classical Jeffery-Hamel flow in fluid 

dynamics. Later, this problem is extensively studied by various researchers. The classical 

Jeffery-Hamel problem was extended in Axford (1961) to include the effects of external 

magnetic field on conducting fluid. A survey of information on this problem through 

divergent channel can be found in Esmaili et al. (2008). Recently, the three analytical 

methods such as Homotopy analysis method, Homotopy perturbation method and 

Differential transformation method (DTM) were used by Joneidi et al. (2010) to find the 

analytical solution of Jeffery-Hamel flow. Motsa et al. (2010) found the solution of the 

nonlinear equation for the MHD Jeffery-Hamel problem through divergent channel by using 

novel hybrid spectral-Homotopy analysis method. Moghimi et al. (2011) also solved the 

Jeffery-Hamel flow problem by using the homotopy perturbation method. Moreover, the 

effects of magnetic field and nanoparticles on the Jeffery-Hamel flow using a powerful 

analytical method called the Adomian decomposition method were studied by 

Sheikholeslami et al. (2012). More recently, Moradi et al. (2013) investigates the effect of 

three types of nanoparticles Cu, TiO2 and Al2O3 on Jeffery-Hamel flow using Differential 

Transformation Method (DTM). They found that the influence of solid volume fraction of 

nanoparticles on the velocity and skin friction was more enunciated when compared with the 

type of nanoparticles. Also, the skin friction coefficient for Al2O3 was observed maximum in 

comparison to the other two nanoparticles. Fraenkel (1962) investigated the laminar flow in 

symmetrical channels with slightly curved walls. In his analysis the velocity field of the flow 

was obtained as a power series in small curvature parameter where the leading term is the 

Jeffery-Hamel solution. Sobey and Drazin (1986) studied some instabilities and bifurcations 

of two-dimensional Jeffery-Hamel flows using analytical, numerical and experimental 

methods. Banks et al. (1988) extended the analysis of perturbation theory of pitchfork 

bifurcation of the Jeffery-Hamel flows and used as a basis to investigate the spatial 

development of arbitrary small steady two-dimensional perturbations of Jeffery-Hamel flow 

both linearly and nonlinearly for nearly plane walls. They found that there is a strong 

communication between the disturbances up and downstream when the angle between the 

planes exceeds a critical value, which depends on the value of the Reynolds number. 
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Moreover, the steady flow of a viscous incompressible fluid in a slightly asymmetrical 

channel was studied by Makinde (1997). He expanded the solution into a Taylor series with 

respect to the Reynolds number and performed a bifurcation study. Makinde (2006) 

investigated the magnetohydrodynamic (MHD) flows in convergent- divergent channels 

which was an extension of the classical Jeffery-Hamel flows to MHD. He interpreted that 

the effect of external magnetic field works as a parameter in solution of the MHD flows in 

convergent - divergent channels. Kayvan et al. (2007) analysed the applicability of magnetic 

field for controlling hydrodynamic separation in Jeffrey-Hamel flows of viscoelastic fluids. 

Assuming a purely symmetrical radial flow, they obtained a third-order nonlinear ODE as 

the single equation governing the MHD flow through converging-diverging channels by 

similarity analysis. With three physical boundary conditions available, they used Chebyshev 

collocation-point method to solve this ODE numerically. The effect of magnetic field was 

found to be more striking such that it is predicted to force fluid elements near the wall to 

exceed centerline velocity in converging channels and to suppress separation in diverging 

channels. Makinde (2007) investigated the temporal development of small disturbances in 

MHD Jeffery-Hamel flows to understand the stability of hydromagnetic steady flows in 

convergent-divergent channels at very small magnetic Reynolds number Rm using 

Chebyshev spectral collocation method. However, a numerical investigation of the effect of 

arbitrary magnetic Reynolds number on steady flow of an incompressible conducting 

viscous liquid in convergent-divergent channels under MHD was presented by Makinde 

(2008). He solved the non-linear 2D Navier-Stokes equations modeling the flow field using 

a perturbation technique applying the special type of Hermite-Pade´ approximation method 

and a bifurcation study was also performed. The increasing values of magnetic Reynolds 

number cause a general decrease in the fluid velocity around the central region of the 

channel whereas the flow reversal control is also observed by increasing magnetic field 

intensity. Alam and Khan (2010) studied the critical behavior of the MHD flow in 

convergent-divergent channels. The convergence of critical values and the change in 

bifurcation graph for flow Reynolds number and channel angle by the positive effect of 

magnetic parameter and the critical relationship among the parameters was discussed in their 

study. Moreover, the effects of heat transfer and viscous dissipation on the Jeffery-Hamel 

flow of nanofluids are investigated by Moradi et al. (2015). Finally, Syed et al. (2015) 
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studied the effects of velocity and temperature slip on the flow between converging and 

diverging channels using variational iteration and variation of parameters methods. 

1.8 Significance of the Present Study 

Instability of flows and their transition to turbulence are widespread phenomena in 

engineering, natural environment, and are also important in applied mathematics, 

astrophysics, biology, geophysics, meteorology, oceanography and physics. Therefore, 

hydrodynamic stability is an important part of fluid mechanics, because an unstable flow is 

not observable. Also unstable flows often evolve into an important state of motion called 

turbulence, with a chaotic three dimensional vorticity field with broad spectrum of small 

temporal and spatial scales. Magnetohydrodynamic stability is a new dimension to 

hydrodynamic stability considering magnetic effects. Many natural phenomena and 

engineering problems are susceptible to MHD analysis. In natural phenomena, since 

magnetic field exists everywhere in the world and magnetohydrodynamics (MHD) occurs 

whenever conducting fluids are available. MHD is of great significance in the design of 

many industrial applications such as MHD generators, pumps, flow meters, cooling of 

nuclear reactors, geothermal energy extractors, nuclear waste disposal, heat exchangers, 

controlling flows of liquid metals for metallurgical processing and other applications. 

Further importance of MHD is illustrated by the recent advancement of its application in 

plasma confinement. The study of MHD flows with heat transfer has also received 

considerable attention due to its wide application in astrophysical problems. The recent 

discovery of nanofluids, provides a solution to cooling technology. This is because 

nanofluids have fascinating features; high thermal conductivity at very low nanoparticles 

concentration and considerable enhancement of forced convective heat transfer. Nanofluids 

are also used as coolants for computers and nuclear reactors. Their cooling properties are 

used in many industrial applications. The main driving force for nanofluids research lies in a 

wide range of applications. The optimal design for any thermal system can be achieved by 

minimizing entropy generation in the systems, so it is important to study the distribution of 

the entropy generation within the fluid volume. However, it is necessary to take into account 

the variation of thermal radiation and thermal conductivity to obtain a better estimation of 
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the flow and heat transfer behavior, because these properties must have a significant change 

with temperature. 

1.9 Objectives of the Present Study 

The objective of this study is to investigate numerically the stability of the 

magnetohydrodynamic flow and heat transfer in a channel filled with water based 

nanofluids. Then it is extended considering buoyancy force, viscous dissipation, thermal 

radiation and temperature dependent thermal conductivity on the flow field. The basic non-

linear equations are transformed to dimensionless ordinary differential equations using 

suitable transformations, which are solved numerically using power series with the aid of 

Hermite-Padé approximation method. Solutions are obtained and analysed for bifurcation 

study of the critical parameters, irreversibility analysis of the system, the velocity and 

temperature profiles for the effect of a set of parameters namely thermal conductivity 

variation parameter, radiation parameter, magnetic parameter, Grashof number, Brinkman 

number, nanoparticles volume fraction, porosity parameter, Reynolds number, channel 

angle, Prandtl number, Eckert number. The major objectives are as follows: 

 To construct a 2D mathematical model for magnetohydrodynamic flows through channel 

with water based nanofluids.  

 To solve the above model for a number of different problems with different boundary 

conditions using power series with the aid of Hermite- Padé approximation method. 

 To perform the stability of the solution by showing the dominating singularity behaviour 

for each of the problems as well as the existence of dual solution branches. 

 To test the effects of pertinent governing physical parameters (such as: Reynolds 

number, Radiation parameter, thermal conductivity variation parameter, Hartmann 

number, channel angle, solid volume fraction,  porosity parameter) in each of the 

problems. 

 To compare the results of the present investigation with similar available works in the 

literature. 
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1.10  Organization of the Thesis 

In Chapter I, a brief introduction is presented with significances and objectives of the study. 

This chapter consists of a physical phenomenon of hydrodynamic stability, 

magnetohydrodynamic, nanofluids, entropy generation, thermal radiation and temperature 

dependent thermal conductivity with applications. An extensive literature review of the past 

studies on the above physical facts is included. 

The basic governing equations for the flow field and heat transfer are shown in standard 

vector form and mathematical modeling of the problem for various cases are discussed in 

Chapter II. The numerical procedures for solving nonlinear dimensionless governing 

equations are presented in Chapter III.   

The radiative heat transfer on the entropy generation of variable thermal conductivity 

optically thin viscous Cu–water nanofluid with an external magnetic field through a parallel 

isothermal plate channel has been studied in Chapter IV. The influences of the governing 

flow parameters namely thermal conductivity variation parameter, radiation parameter, 

magnetic parameter, Grashof number and Brinkman number on velocity, temperature 

profiles, and entropy generation with Bejan distribution are discussed quantitatively both 

numerically and graphically. A stability analysis has been performed for the local rate of 

heat transfer. 

In Chapter V, the entropy generation of the MHD radiative flow of variable thermal 

conductivity optically thin viscous three different types of nanofluids through a porous 

parallel channel is investigated. The fluid temperature in the channel varies due to the 

asymmetric heating of the walls as well as viscous dissipation. The numerical analysis on 

stability for the local rate of heat transfer is done. Moreover, the entropy generation of the 

system at the two porous plates is presented with the dominance effect of both the fluid 

friction and heat transfer irreversibility. 

In Chapter VI, the effects of Cu-water nanoparticles on the entropy generation of the 

nonlinear magnetohydrodynamic Jeffery-Hamel flow are analysed. The velocity profiles, 

temperature distributions and entropy generation rates with Bejan profiles are presented in 

divergent channel for various values of nanoparticles solid volume fraction, Hartmann 
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number, Eckert number, Reynolds number and channel angle. The dominating singularity 

behavior of the problem is analysed numerically and graphically. The critical relationship 

between the parameters is studied to observe the instability of the problem for nanofluid. 

The effects of three different nanoparticles and magnetic field on the nonlinear Jeffery-

Hamel flow through convergent - divergent channel are analysed in Chapter VII. The results 

are presented in convergent-divergent channels for various values of nanoparticles solid 

volume fraction, Hartmann number, Prandtl number, Eckert number, Reynolds number and 

channel angle. The comparison of the present numerical results in tabular form with those 

obtained by Fraenkel (1962) and Makinde (2008) are also presented. The dominating 

singularity behavior of the problem is analysed numerically and graphically. The critical 

relationships among the parameters are studied to observe the instability of the problem for 

nanofluid.  

A summary of major conclusions and some schemes of further work are expressed in 

Chapter VIII.  

The next chapter discusses the basic governing equations of the problem namely continuity, 

momentum, energy and Maxwell’s equations.   
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Chapter II 

Governing Equations of the Problem 

 

 

The basic governing equations for the flow and thermal fields in standard vector form and 

the mathematical modeling of the problem for various cases with different coordinate 

systems are represented in this chapter.  

2.1 Introduction 

The basis of computational fluid dynamics is the basic fluid dynamical governing equations; 

the continuity, momentum (Navier-Stokes equation) and the energy equations. These 

equations depict the physics of various flows. They are the mathematical statements of the 

three fundamental laws or principles upon which fluid dynamics is based: 

(1) Mass is conserved for a system; 

(2) Second law of Newton; 

(3) First law of Thermodynamics; Energy is conserved.  

2.2 Continuity Equation 

The continuity equation is based on the mass conservation principle, which states that mass 

can neither be created nor be destroyed. Conservation of mass is inherent to a control mass 

system (closed system). The above law is stated mathematically as: 

,0=∆
∆

t
m                                                                     (2.2.1) 

where m = mass of the system. 

The equation of continuity in vector form is written as 

,0)( =⋅∇+
∂
∂ V

t
ρρ

                                                             (2.2.2) 

where kwjviuV ++= is the velocity of the fluid at a point and ρ is the density of the fluid. 
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For a steady flow, ,0=
∂
∂

t
ρ thus  

.0)( =⋅∇ Vρ                                                                    (2.2.3) 

For incompressible fluid flow, =ρ constant, hence the continuity equation becomes 

.0=⋅∇ V                                                                   (2.2.4) 

2.3 Momentum Equation (Navier-Stokes Equation) 

This equation is formed by applying another fundamental physical principle to a model of 

the flow, namely Physical principle. Newton’s second law on the moving fluid element, 

states that the net force on the fluid element equals its mass times the acceleration of the 

element. 

amF =                                                                              (2.3.1) 

The momentum equations are called the Navier-Stokes equations in honour of two men- the 

Frenchman M. Navier and the Englishmen G. Stokes, who independently obtained the 

equations in the first half of the nineteenth century. 

The Navier-Stokes equation for viscous incompressible fluid with constant viscosity in 

vector form is expressed as 

MVpgVV
t
V

+∇+∇−=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ 2)( µρρ                                        (2.3.2) 

where g denote the body force per unit mass acting on the fluid element, p is the pressure,
 

µ is the viscosity of the fluid and M is the other external force. 

2.4  Energy Equation 

The energy equation is obtained from the first law of thermodynamics which states that the 

amount of heat added to a system dQ is equal to change in internal energy dE plus the 

amount of energy lost due to work done on the system dW. This implies that energy can 

neither be created nor destroyed; it can only change in form.  

The energy equation under the first law of thermodynamics in vector form is 
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rp qTTV
t
Tc .2 ∇−Φ+∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ κρ                                        (2.4.1) 

HereΦ is the dissipation function,T is the temperature of the fluid,κ is the thermal 

conductivity of the fluid,
 

rq is the radiative heat flux and pc be the specific heat at constant 

volume. 

2.5  The Governing equations in Cartesian coordinate system 

The governing equations (2.2.2), (2.3.2) and (2.4.1) in vector form are transformed into the 

following equations in Cartesian form.  

Mass Conservation (Continuity) equation 

0)()()(
=

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

z
w

y
v

x
u

t
ρρρρ

 

For incompressible steady fluid flow; 
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Energy Equation 
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and vu,  and w  are the velocity components in the zyx ,, directions respectively. 
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2.6  The Governing equations in Cylindrical coordinate system 

The del operator in cylindrical coordinate system is defined as 
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The governing equations (2.2.2), (2.3.2) and (2.4.1) in vector form are transformed into the 

following equations in cylindrical coordinate system.  

Mass Conservation (Continuity) equation 

.0)()(1)(1
=

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

zr v
z

v
r

rv
rrt

ρρ
θ

ρρ
θ

 
For incompressible steady fluid flow; 
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where θvvr ,  and zv be the velocity components in the zr ,,θ  directions respectively.

 

Momentum (Navier-Stokes) Equations                                                                                       
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where, θggr , and zg are the components of the body force in the zr ,,θ  directions 
respectively.
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2.7 Maxwell’s Equations 

Magnetohydrodynamic equations are the ordinary electromagnetic and hydrodynamic 

equations modified to take account of the interaction between the motion of the fluid and the 

electromagnetic field. Formulation of the electromagnetic theory is known as Maxwell’s 

equations. Maxwell’s basic equations show the relation of basic field quantities and their 

construction. The Maxwell’s equations are: 

Charge continuity 

eD ρ=⋅∇                                                                   (2.7.1) 
Current continuity 

t
J e

∂
∂

−=⋅∇
ρ                                         (2.7.2) 

Magnetic field continuity 

0=⋅∇ B                                      (2.7.3) 

Ampere’s Law 

t
DJB
∂
∂

+=×∇ 0                                  (2.7.4) 

Faraday’s Law 

t
BE
∂
∂

−=×∇                                      (2.7.5) 

Constitutive equations for D and B   

ED ε=  and 0BB eµ=                             (2.7.6) 

Total current density flow 

VBVEJ eρσ +×+= )(                                  (2.7.7) 

The equations (2.7.1) to (2.7.7) are Maxwell’s equations where D is the electron 

displacement, eρ  is the charge density, E is the electric field, B is the magnetic field, 0B is 

the magnetic field intensity, J  is the current density, 
t
D
∂
∂ is the displacement current 

density, ε is the electric permeability of the medium, eµ is the magnetic permeability of the 

medium, V is the velocity vector, σ is the electrical conductivity and Veρ is the convection 

current due to charge moving with the field. 
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In MHD, a fluid is considered as grossly neutral. Then the charge density eρ in Maxwell’s 

equations is interpreted as an excess charge density, which is generally not large. If the 

excess charge density is ignored, then the displacement current is also ignored. In most 

problems the current due to convection of the excess charge are small. Therefore, the 

electromagnetic equations can be reduced to the following form: 

Charge continuity 

0=⋅∇ D                                                                      (2.7.8) 
Current continuity 

0=⋅∇ J                                                     (2.7.9) 

Ampere’s Law 

JB =×∇ 0                                          (2.7.10) 

Total current density flow 

)( BVEJ ×+=σ                                       (2.7.11) 

 

2.8  General Equations Governing Magnetohydrodynamic Nanofluid flow 

2.8.1 The Continuity Equation 

The MHD continuity equation for viscous incompressible electrically conductive nanofluid 

remains as that of usual continuity equation 

0=⋅∇ V                                                (2.8.1) 

2.8.2 The Momentum (Navier-Stokes) Equation 

The equation of momentum (2.3.2) governing the flow of a nanofluid is expressed as 

MgVpVV
t
V

nfnfnf ++∇+−∇=⎥⎦
⎤

⎢⎣
⎡ ∇⋅+
∂
∂ ρµρ 2)(                                         (2.8.2) 

where M is other external forces acting on the flow. 

Taking into account the force due to gravity, thermal expansion and the force per unit 

volume when an electric current density J flows through the fluid i.e. the Lorentz force 

BJ ×  due to the presence of magnetic field, the Navier-Stokes equation (2.8.2) becomes, 

[ ] )(11)( 2 BJTgVpVV
t
V

nf
nfnf

nf
×+∆+∇+∇−=∇⋅+

∂
∂

ρ
βµ

ρ
                                       (2.8.3) 
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where V  is velocity vector, p is pressure, nfρ  is the density of the nanofluid, nfµ  is the 

dynamic viscosity of the nanofluid and nfβ  is the thermal expansion coefficient of 

nanofluid. 

2.8.3 The Energy Equation 

The energy equation (2.4.1) for a viscous incompressible nanofluid can be written as: 

 ( ) Φ+∇−∇=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ qTTV

t
Tc nfnfp

2κρ                                                 (2.8.4) 

where V  is velocity vector, T is local temperature of the nanofluid, ( )
nfpcρ  is heat 

capacitance of the nanofluid, nfκ  is the thermal conductivity of the nanofluid, Φ is viscous 

dissipation  and q∇  is radiative heat flux. 

Following Sheikholeslami et al. (2012), the relationship between the thermophysical 

properties of the nanofluid and the conventional base fluid together with nanoparticles are 

given as: 

,
)1( 5.2φ
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where fρ density of the base fluid, sρ  is density of the nanoparticles, φ is the volume 

fraction of the nanoparticles, fβ is the base fluid thermal expansion coefficient, sβ is the 

nanoparticles thermal expansion coefficient, fµ is the dynamic viscosity of base fluid, fκ is 

the thermal conductivity of the base fluid, fσ is the electric conductivity of the base fluid, 

sκ is the thermal conductivity of the nanoparticles, sσ is the electric conductivity of the 

nanoparticles, ( )
fpcρ  is heat capacitance of the base fluid, ( )

spcρ  is heat capacitance of 

the nanoparticles. 
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Chapter III 

Approximant Methods 

 

The numerical procedures as Approximant method for solving nonlinear dimensionless 

governing equations of the problems are presented in this chapter. 

3.1 Introduction 

This thesis is concerned with the techniques for summing power series that can be described 

collectively as approximant methods to reveal the local behavior of a series around its 

singular point and the critical relationship among the solution parameters. 

The approximation methods are widely used to approximate functions in many areas of 

applied mathematics. A function is said to be approximant for a given series if its Taylor 

series expansion reproduces the first few terms of the series.   

Padé (1892) and Hermite (1893) introduced a very efficient solution method, known as 

Hermite-Padé approximants. Blanch (1964) evaluated continued fractions numerically. 

Brezinski (1990) studied history of continued fraction and Padé approximants. Also the 

applications of continued fractions and their generalizations to problems in approximation 

theory have been studied by Khovanskii (1963). Baker and Graves-Morris (1996) studied 

Padé approximants and its properties. Algebraic and Differential approximants (1978) are 

some useful generalizations of Padé approximants. Khan (2001) analysed singularity 

behavior by summing power series. Khan (2002) also introduced a new model of 

Differential approximant for single independent variable for the summation of power series 

called High-order differential approximant (HODA). The method is a special type of 

Hermite-Padé class and it is one of the best methods of singularity analysis for the problems 

of single independent variable. High-order partial differential approximants discussed in 

Rahman (2004) is a multivariable differential approximants. 
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3.2 Hermite- Padé Approximants 

The entire one variable approximants that are used or discussed throughout this thesis 

belong to the Hermite- Padé class. In its most general form, this class is concerned with the 

simultaneous approximation of several independent series and there is some advantage in 

first describing the Hermite- Padé class from that point of view.  

Let ∈d Ν and let the )1( +d  power series  

( ) ( ) ( )xUxUxU d,...,, 10  

are given. We say that the ( )1+d -tuple of polynomials  

[ ] [ ] [ ]},...,,{ 10 d
NNN PPP , 

where  
[ ] [ ] [ ] ,deg...degdeg 10 NdPPP d

NNN =++++                      (3.2.1) 

is a Hermite- Padé form of these series if 

[ ]( ) ( ) ( )N
d

i
i

i
N xOxUxP =∑

=0
          as    .0→x                                  (3.2.2) 

Here ( ) ( ) ( )xUxUxU d,...,, 10  may be independent series or different form of a unique series. 

We need to find the polynomials [ ]i
NP  that satisfy the equations (3.2.1) and (3.2.2). These 

polynomials are completely determined by their coefficients. So, the total number of 

unknowns in equation (3.2.2) is  

[ ] 11deg
0

+=++∑
=

NdP
d

i

i
N                               (3.2.3) 

Expanding the left hand side of equation (3.2.2) in powers of x, it is found that equation 

(3.2.2) is equivalent to equating the first N terms in the expansion to zero. We get a system 

of N linear homogeneous equations for the unknown coefficients of the polynomials. To 

calculate the coefficients of the Hermite- Padé polynomials we require some sort of 

normalization, such as 

  [ ]( ) 10 =i
NP  for some di ≤≤0 .                                  (3.2.4)  

The equation (3.2.3) simply ensures that the coefficient matrix associated with the system is 

square. One way to construct the Hermite- Padé polynomials is to solve the system of linear 
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equations by any standard method such as Gaussian elimination or Gauss-Jordan 

elimination. The computational complexity of this approach is 

       )( 3NO  (work), )( 2NO   (storage)   as .∞→N  

It is important to emphasize that the only input required for the calculation of the Hermite- 

Padé polynomials are the first N coefficients of the series dUUU ,...,, 10 . 

3.3 Padé Approximants 

Padé approximant is a technique for summing power series that is widely used in applied 

mathematics as Van Dyke (1975). In the Padé method, the approximant is sought in the class 

of rational functions. Padé approximant can be described from the Hermite- Padé class in 

the following sense.   

In the Hermite- Padé class, let 1=d  and the polynomials [ ]0
NP  and [ ]1

NP  satisfy equations 

(3.2.1) and (3.2.2). One can define an approximant ( )xuN  of the series ( )xU  by  

[ ] [ ] 001 =− NNN PuP ,                                          (3.3.1) 

Where, UU =1  and 10 −=U . 

Then we select the polynomials  

[ ]( ) ∑
=

=
n

i

i
iN xbxP

0

0  and [ ]( ) ∑
=

=
m

i

i
iN xcxP

0

1 .                         (3.3.2)  

Such that ( ) Nmn ≤+ , the constants ib ’s and ic ’s are unknowns to be determined. So that,  

( ) [ ]( ) [ ]( ) ( )101 ++=− mn
NNN xOxPxPxu .                       (3.3.3)  

Equating the first ( )mn +  equations of (3.3.3) equal to zero and the normalization condition 

in equation (3.2.4), we find the values of ib ’s and ic ’s. Then, the rational approximant 

known as Padé approximant denoted as  

( )
[ ]( )
[ ]( )xP

xPxu
N

N
N 1

0
= ,                                     (3.3.4) 

Padé approximants have often been used to obtain information about the singularity 

structure of a function from its series coefficients. The main idea is to examine the 

behaviour of the zeros of the denominator [ ]1
NP .  The Padé approximants also have been used 
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in tackling slowly convergent, divergent and asymptotic series. The zeroes of the 

denominator [ ]1
NP  give the singular point such as pole of the function ( )xu  if it exists. If a 

sequence of zeroes approaches a limit as N increases, then the limit is almost certainly a 

singularity of ( )xU . 

3.4 Algebraic Approximants 

Algebraic approximant is a special type of Hermite- Padé approximants. In the Hermite- 

Padé class, we take  
d

d UUUUUd ===≥ ......,,1,1 10 . 

An Algebraic approximant ( )xuN  of the series ( )xU  can be defined as the solution of the 

equation 
[ ]( ) [ ]( ) ( ) [ ]( ) ( ) [ ]( ) ( ) 0...2210 =++++ xuxPxuxPxuxPxP d

N
d

NNNNNN                 (3.4.1) 

Since the equation (3.4.1) is a polynomial of the partial sum ( )xuN in degree d, the 

Algebraic approximant ( )xuN , is in general a multivalued function with d  branches. At 

first this may appear to be an undesirable feature of the method, in that case we have the 

problem of identifying the particular branch that approximates ( )xU . On the other hand, the 

series ( )xU is the expansion of a particular type of function ( )xu that is itself multivalued. 

For Algebraic approximants, one uses the partial sum ( )xuN to construct the 

( )1+d polynomials 

[ ] [ ] [ ] )}(.....,),(),({ 10 xPxPxP d
NNN  

such that 

 [ ]( ) ( ) ( )N
d

i

i
N

i
N xOxuxP =∑

=0
                             (3.4.2) 

and  [ ] NdP i
N

d

i
=+∑

=0
deg .   

The total number of unknowns in the equation (3.4.2) is  
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[ ]( )∑
=

+=++
d

i

i
N NdxP

0
11deg .                           (3.4.3) 

In order to determine the coefficients of the polynomials [ ]i
NP  one can set [ ]( ) 100 =NP  for 

normalization, without loss of generality. The discriminant of the equation (3.4.1) 

approximates the singularity of function ( )xu . 

3.5 Drazin -Tourigney Approximants  

As it is seen in the previous section that if the function has a countable infinity of branches, 

then the error of Algebraic approximation converges to zero faster with increasing d. So it 

might be a good idea to let d increase with N, rather than keeping it fixed as ∞→N .  Drazin 

and Tourigney in (1996) implemented the idea that ( )NOd =  as ∞→N .Their method is 

simply a particular kind of Algebraic approximant, satisfying the equation (3.4.1). In this 

method they considered 
[ ] idP i
N −=deg                                  (3.5.1) 

and  

( )23
2
1 2 −+= ddN .                               (3.5.2) 

There is a recurrence relation for the calculation of the Drazin-Tourigny polynomials, but its 

order increases with N (see Drazin and Tourigney (2000)). At present, nothing is known 

about the convergence of these approximants. However, Drazin and Tourigney (2000) 

presents some numerical results that suggest that the error for the series of (3.4.1) decays 

superexponentially.  

Drazin and Tourigney initial motivation in (1996) was to solve boundary value problems for 

nonlinear systems of ordinary and partial differential equations. 

3.6 Differential Approximants 

Differential approximants is an important member of the Hermite- Padé class. It is obtained 

by taking 

DUUUUUd ===≥ 210 ,,1,2  …….. UDU d
d

1−= ,             (3.6.1) 
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where 
dx
dD ≡  is the differential operator, a differential approximant ( )xuN  of the series 

( )xU  can be defined as the solution of the differential equation  

[ ] [ ] [ ] [ ] 0... 1210 =++++ −
N

dd
NNNNNN uDPDuPuPP .                  (3.6.2) 

A popular variant is obtained by taking 

UDUDUUUUd 2
210 ,,,1 ===≥  ……..  UDU d

d = ,                       (3.6.3) 

instead of (3.6.1). This gives the homogeneous linear differential equation 
[ ] [ ] [ ] [ ] 0...2210 =++++ N

dd
NNNNNNN uDPuDPDuPuP                                       (3.6.4) 

for the approximant.  

In this thesis, unless otherwise stated, the name “differential approximant” will refer to the 

non-homogeneous form of the method, i.e. Equations (3.6.1) and (3.6.2). 

Here (3.6.2) is a linear differential equation of order ( )1−d  with polynomial coefficients. 

There are )1( −d linearly independent solutions, but only one of them has the same first few 

Taylor coefficients as the given series ( )xU . When 2>d , the usual method for solving such 

an equation is to construct a series solution. 

Differential approximants are used chiefly for series analysis. They are powerful tools for 

locating the singularities of a series and for identifying their nature. In this respect, the key is 

to note that it is not necessary to solve the differential equation (3.6.2) in order to find the 

singularities of ( )xuN . The only singularities of ( )xU  are located at the zeroes of the leading 

polynomial [ ]( )xP d
N . Hence, some of the zeroes of [ ]( )xP d

N  may provide approximations of 

the singularities of the series ( )xU . For instance, if ( )xuN has a singularity at Nc,λλ =  of the 

algebraic type 

N
NcNNN uuu αλλ )(~ ,,1,0 −+ , 

then the exponent Nα  is given by the simple formula 

( )
( )Nc

d
N

Nc
d

N
N DP

P
d

,
)(

,
)1(

2
λ

λ
α

−

−−=  
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3.7 High-Order Differential Approximants (HODA) 

Khan (2002) introduced an extension of differential approximant, which he mentioned as 

High-order differential approximant. When the function has a countable infinity of branches, 

then the fixed low-order differential approximants may not be useful. So, for these cases he 

considered d  increase with N. It leads to a particular kind of differential 

approximant ( )xuN , satisfying equation (3.6.2), i.e. 

[ ] [ ] [ ] [ ] 0... 1210 =++++ −
N

dd
NNNNNN uDPDuPuPP  

where  

)3(
2
1

+= ddN                                                                                     (3.7.1) 

and  
[ ] iP i
N =deg .                                       (3.7.2) 

From (3.7.2) he deduced that there are  

)2)(1(
2
1)1(

1

10
++==+ ∑∑

+

==
ddii

d

i

d

i
 

unknown parameters in the definition of the Hermite- Padé form. In order to determine those 

parameters, the N equations are used that follow from (3.2.2) 

[ ]( ) [ ]( ) ( ) ( )Ni
d

i

i
NN xOxUDxPxP =+ −

=
∑ 1

1

0  as 0→x . 

In addition one can normalize by setting [ ]( ) 10 =d
NP . Then there remain as many equations as 

unknowns. One of the roots, say Ncx , , of the coefficient of the highest derivative, i.e.  

[ ]( ) 0, =Nc
d

N xP ,  

gives an approximation of the dominant singularity cx  of the series U . If the singularity is 

of algebraic type, then the exponent α  may be approximated by  
[ ]( )
[ ]( )Nc
d

N

Nc
d

N
N xDP

xP
d

,

,
1

2
−

−−=α .                                                                    (3.7.3) 

It is worth noting that the formulae for the location and the exponent of the dominant 

singularity involve only the coefficients of the highest derivatives in the differential equation 
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that defines the approximant. This motivates the choice (3.7.2) with its emphasis on those 

very coefficients. 

3.8 High-Order Partial Differential Approximants (HPDA) 

Consider the function ),( yxf of two independent variables, represented by its power series  

ji

i j
ij yxcyxU ∑∑

∞

=

∞

=
=

0 0
),(       )0,0(),( →yx                                                              (3.8.1) 

and the partial sum 

ji
N

i

N

j
ijN yxcyxU ∑∑

−

=

−

=
=

1

0

1

0
),(                                                                         (3.8.2) 

By using that partial sum, the following )12( +d polynomials can be constructed 

],0[]0,[]1,0[]0,1[]0,0[ ,....,..........,, dd PPPPP                                                     (3.8.3) 

in x and y such that  

ji

i j
ijd

N
d

dd
N

d

d
NN

N yxe
y
UP

x
UP

y
UP

x
UPUP ∑∑

∞

=

∞

=
=

∂
∂

+
∂
∂

++
∂
∂

+
∂
∂

+
0 0

],0[]0,[]1,0[]0,1[]0,0[ .......     

                                        (3.8.4) 

Where                     0=ije     for 13 −=<+ dNji                                           (3.8.5) 

By equating the coefficients of the variables and their powers from (3.8.5), one can obtain a 

total of  

2
)13(3 −

=
ddNe                                                                                (3.8.6) 

equations to determine the unknown coefficients of the polynomials in (3.8.3), the 

normalization condition can be imposed 

,1]0,0[ =P or 1]0,[ =dP or 1],0[ =dP  for )0,0(),( =yx .                               (3.8.7) 

Thus the remaining unknowns 

)116(
3
1 2 ++= dddNu                                                                        (3.8.8) 

must be found by the use of eN  equations. 
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It would be helpful to write the system of linear equations 0, =jie  into the matrix form with 

the 1×uN  unknown matrix x . 

Thus the non-homogeneous system of eN  linear equations with uN  unknowns can be 

written in matrix form as 

bxA =                                                                                               (3.8.9) 

where A is ue NN ×  matrix and b  is the non-zero column matrix of order 1×eN . Thus 

system will be solvable if  

ue NN ≤ .                                                                                     (3.8.10) 

However, the system may be consistent or inconsistent. If the system is consistent, then the 

system can be solved by converting the augmented matrix ][ bA to row echelon or reduced 

row echelon form by using the Gaussian elimination or Gauss-Jordan elimination. It is to 

note that, there will exist some free variables. Naturally the values of the free variables in 

the multivariable approximant methods can be chosen at random. There is no particular 

reason to pick up these particular numbers. It might for instance seek a solution such that the 

polynomials in (3.8.3) have as few high-order terms as possible. Usually the accuracy of the 

method does not depend critically on the particular choice made. Once the polynomials 

(3.8.3) have been found, it is more practical to find the singular points by solving either of 

the polynomials coefficients of the highest derivatives 

0),(]0,[ =yxPd   or 0),(],0[ =yxP d  or both simultaneously. 

 

The effects of thermal radiation and variable thermal conductivity on entropy generation of 

MHD nanofluid flow through vertical channel are analysed in the next chapter.  
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Chapter IV 

Entropy Generation Analysis for MHD Radiative Variable Thermal 

Conductivity Nanofluid Flow through Vertical Channel1  

 

In this chapter the radiative heat transfer on the entropy generation of variable thermal 

conductivity optically thin viscous Cu–water nanofluid with an external magnetic field 

through a vertical parallel isothermal plate channel has been studied. Here the approach 

uses the power series from the governing non-linear differential equations for small values 

of thermal conductivity variation parameter which are then analysed by various 

generalizations of Hermite- Padé approximation method. The influences of the pertinent 

flow parameters on velocity, temperature, thermal conductivity criticality conditions and 

entropy generation of the system are discussed quantitatively graphically. A stability 

analysis has been performed for the local rate of heat transfer which signifies that the lower 

solution branch is stable and physically acceptable, whereas the upper solution branch is 

unstable. 

4.1  Introduction 

The flow and heat transfer between parallel plates channel has been studied by a number of 

authors (Arpaci et al. (2000), Makinde (2008), Sahin (1999)) and occur in many 

technological applications. Heat transfer plays a major role in many fields where the heating 

and cooling processes are involved. Any substance with a temperature above absolute zero 

transfers heat in the form of radiation. Thermal radiation always exits and can strongly 

interact with convection in many situations of engineering interest. However, radiative heat 

                                                            
1 This work is accepted for publication as a Journal paper: Md. S. Alam, M. A. H. Khan and  

M. A. Alim, “Radiative Heat transfer and Entropy generation analysis for variable thermal 

conductivity MHD flow through channel with nanofluid”, Journal of Applied Fluid Mechanics, Vol. 

9, No. 4 (2016). 
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transfer has a key impact in high temperature regime. Many technological processes occur at 

high temperature and good working knowledge of radiative heat transfer plays an 

instrumental role in designing the relevant equipment. In Cogley et al. (1968), the 

differential approximation for radiative heat transfer in a nonlinear equation for gray gas 

near equilibrium was proposed. The thermal conductivity of the fluid had been assumed to 

be constant in many studies. However, it is known that this physical property may change 

significantly with temperature. Pinarbasi et al. (2011) investigates the effect of variable 

viscosity and thermal conductivity of a non-isothermal, incompressible Newtonian fluid 

flowing under the effect of a constant pressure gradient at constant temperatures in plane 

Poiseuille flow using Chebyshev pseudospectral method. Sadik et al. (2011) studied the 

effect of variable thermal conductivity and viscosity on single phase convective heat transfer 

in slip flow.  

Studies of electrically conducting viscous fluids within channels or ducts are important from 

a practical point of view in MHD generators and accelerators. Moreau (1990) studies a 

survey of MHD in the technological fields. The small disturbance stability of MHD plane-

Poiseuille flow was investigated by Makinde and Motsa (2001). Makinde (2003) analysed 

magnetohydrodynamic stability of Plane Poiseuille flow using multideck asymptotic 

technique. It is observed in his analysis that the magnetic field has a stabilizing effect on the 

flow and that this stability increases with an increase in Hartmann number. Patra et al. 

(2014) examined radiation effect on MHD fully developed mixed convection in a vertical 

channel with asymmetric heating where they observed that an increase in radiation 

parameter leads to a decrease in the fluid temperature in the channel.  

Kwak and Kim (2005) showed that heat transfer efficiency can be improved by increasing 

the thermal conductivity of the working fluid. Due to heat transfer mostly used fluids such 

as water, ethylene glycol, and engine oil have relatively low thermal conductivities 

compared to the thermal conductivity of solids. High thermal conductivity of solids can be 

used to increase the thermal conductivity of a fluid by adding small solid particles to that 

fluid. The feasibility of the usage of such suspensions of solid particles with sizes on the 

order of millimeters or micrometers was investigated by various researchers. Recent 

advances in nanotechnology have allowed authors to study the next generation heat transfer 

nanofluids, a term first introduced by Choi (1995). Nanofluids are engineered dilute 
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colloidal dispersions of nano-sized (less than 100 nm) particles in a base fluid as Das et al. 

(2007). Nanoparticles have unique chemical and physical properties in Oztop and Abu-Nada 

(2008) and have better thermal conductivity and radiative heat transfer compared to the base 

fluid only.  

Entropy generation provides a measure of the amount of irreversibility associated with real 

process. Bejan (1996) studied the entropy-generation for forced convective heat transfer due 

to temperature gradient and viscosity effects in a fluid. Bejan (1979) also presented various 

reasons for entropy generation in applied thermal engineering where the generation of 

entropy destroys the available work of a system. The effect of thermal radiation and variable 

viscosity on entropy generation rate in the flow of optically thin fluid through channel was 

analysed by Makinde (2009) using Hermite–Padé approximation method.  Mah et al. (2012) 

studied the entropy generation characteristics in a fully-developed forced convection flow of 

Al2O3-water nanofluid in a circular micro-channel. The results showed that when viscous 

dissipation effects are taken into account, the addition of nanoparticles increases the entropy 

generation rate and reduces the heat transfer effect, since the greater thermal conductivity 

and viscosity of the nanofluid enhances both the heat transfer irreversibility and the fluid 

friction irreversibility. Chen et al. (2014) studied heat transfer and entropy generation in 

fully-developed mixed convection nanofluid flow in vertical channel. They analysed the 

effects of viscous dissipation on the entropy generation within vertical asymmetrically 

heated channels containing mixed convection flow.  

The main objective of this chapter is to investigate numerically the effect of variable thermal 

conductivity and thermal radiation on entropy generation rate in the flow of MHD 

conducting viscous nanofluid through a channel with non-uniform wall temperature 

applying Hermite- Padé approximation scheme. A stability analysis is also performed to 

show the physically realizable solution branch in practice of local Nusselt number due to 

thermal conductivity criticality. Confining the analysis to optically thin limit, results of the 

velocity, temperature, volumetric entropy generation rate and Bejan number for various 

values of the involved parameters are presented graphically. 
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4.2.  Model Configuration 

Consider the steady laminar magnetohydrodynamic variable thermal conductivity flow of an 

electrically conducting incompressible optically thin viscous Cupper-water nanofluid 

through an open-ended vertical channel. A uniform magnetic field 0B  is acting in the 

direction normal to the right wall at a distance 2b apart from the left wall. The origin is taken 

at the centre of the channel and the axis of x′  in the direction to the plates. 

 

 

 

 

 

 

 

 

 

 

                                                              

 

Figure 4.1: Geometry of the problem 

A two-dimensional Cartesian coordinate system is used and the flow is chosen along the x′ -

direction under constant pressure gradient. The left and right wall temperatures are non-

uniform under radiative heat transfer and the fluid has constant properties except the density 

changes which produce buoyancy force. 

4.3  Mathematical Formulation 

The equations of continuity, momentum and energy considering viscous dissipation and 

buoyancy force for the problem are 
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Where, according to Kay (1966), the variable thermal conductivity is expressed as 
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and ∞k  is the thermal conductivity at the ambient temperature 0T , τ  is defined by 
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),( vu ′′ are the velocity components of the nanofluid in the ),( yx ′′ directions respectively, 

p′ is the fluid pressure. The dynamic viscosity nfµ , effective density nfρ , effective thermal 

conductivity nfκ , heat capacity nfpc )(ρ and effective electrical conductivity nfσ of the 

nanofluid are defined by equation (2.8.5) in chapter 2.  

Since the velocity is only along x′ -direction and .0=′v  
 

Eq. (4.3.1) reduces to ,0=
′∂
′∂

x
u which implies that u′  depends on y′only.  

For simplicity  .0,0 2

2

=
′∂

∂
=

′∂
∂

x
T

x
T  Equations (4.3.2) and (4.3.4) takes the form 

0)(1 0
2

0
2

2

=
−

+′−
′
′

−
′
′

nfnf

nf

nf

TTgu
B

xd
pd

yd
ud

ν
β

µ
σ

µ
                           (4.3.6) 

( ) 01
2

2

2
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′
′

+
′

−
′ yd

ud
yd

dq
yd

Td
c nf

r
nf

nfp
µκ

ρ
                                (4.3.7)   

The boundary conditions are: 
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An algebraic approximation is usually used for the differential radiative flux term yqr ′∂∂ , 

since, it can be very complex to physical model. Cogley et al. (1968) established a compact 

and numerically agreeable expression for non-gray fluid. They confirmed that in the 

optically thin limit, the fluid is not self-absorbing but will absorb radiation emitted by the 

confining boundaries (i.e. right vertical wall) and the radiative flux gradient near equilibrium 

can be approximated as 
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where aKλ is the radiation absorption coefficient, λ is the wave length and λbe is the Planks’ 
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where U is the mean velocity, R′ is radiation parameter, aH ′ is Hartmann number, rG ′ is 

Grashof number, rB ′ is Brinkman number and τ is thermal conductivity variation parameter. 

The non-dimensional form of the Esq. (4.3.6)-(4.3.7) is 
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andφ is the nanoparticles solid volume fraction.  
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The boundary conditions in dimensionless form 
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Esq. (4.3.14)-(4.3.15) will be solved using both power series and Hermite- Padé 

approximation method. 

The local Nusselt number Nu and heat transfer rate are 
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From equations (4.3.10) and (4.3.16), the Nusselt number results in the following form 
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4.4   Series Analysis 

The following power series expansions are considered in terms of the parameter τ as 

equation (4.3.15) is non-linear for temperature field 
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The non-dimensional governing equations (4.3.14) and (4.3.15) are then solved into series 

solutions by substituting the Eq. (4.4.1) and equating the coefficients of powers ofτ . With 

the help of algebraic programming language MAPLE, we have computed the first 18 

coefficients for the series of the temperature )(τθ and velocity )(τu  in terms 
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of CBANBrGrRHa ,,,,,,,,τ  respectively. The first few coefficients of the series for )(τθ  

and )(τu are as follows: 
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The obtained power series solutions are valid for very small values ofτ . Therefore, the 

series are analysed applying Hermite- Padé approximation method. 

4.5   Entropy Generation 

Flow properties inside a channel with isothermal walls in the presence of thermal radiation 

and MHD effect are irreversible. The exchange of energy and momentum within the fluid 

and at solid boundaries causes inequilibrium conditions which leads to continuous entropy 

generation. Following Bejan (1996) the volumetric entropy generation rate is given as 
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Where the first term on the right side of equation (4.5.1) is the irreversibility due to heat 

transfer and the second term is the irreversibility due to viscous dissipation. The entropy 

generation number can be expressed in dimensionless form as 
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In general, the entropy generation number sN given in Eq. (4.5.2) provides a useful means of 

producing entropy generation profiles. However, it gives no indication as to the relative 

contributions of the fluid heat transfer and fluid friction effects. Thus, the parameter, Bejan 

number Be is commonly used in its place. 

The Bejan number is given as  
SN

NBe 1=  

It is noteworthy that the Bejan number ranges from 0 to 1 and 0=Be is the limit where the 

irreversibility is dominated by fluid friction effects. 1=Be is the limit where the 

irreversibility due to heat transfer dominates the flow system because of finite temperature 

differences. The contributions of heat transfer and fluid friction to entropy generation are 

equal when 2
1=Be . 

4.6   Results and Discussion 

In this chapter we focus on the combined effect of thermal radiation and temperature 

dependent variable thermal conductivity on the entropy generation of MHD nanofluid flow 

in a channel. The minimum entropy conditions provide the possibility of achieving the 

maximum available work.  

In the present study, the nanoparticle volume fraction is specified in the range of 

%,10%0 −=φ where a value of 0=φ indicates the pure base fluid. In addition, the thermal 

conductivity variation parameter is assigned in the range of 9.01.0 ≤≤− τ , the radiation 

parameter 100 ≤≤ R , the Brinkman number 501 ≤≤ Br , the Hartmann number 

40 ≤≤ Ha . The Grashof number and dimensionless pressure gradient are kept fixed at 
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.1,1 == NGr  Table 4.1 represents the thermo physical properties of the pure base water 

and Cu-nanoparticles respectively. 

Table 4.1 Thermo physical properties of base water and Cu‐nanoparticles as Sheikholeslami (2013). 

Physical properties Base fluid (water) Cu 
ρ  998.1 8933 

pC  4179 385 

κ  0.613 401 

σ  0.05 71096.5 ×  

 

4.6.1 Stability Analysis 

For the analysis, we choose the series (4.4.2) for the following functional form 
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which is related to the local rate of heat transfer at the right hot wall of the channel. The 

singularities have the form  

( )δττ cBANu −+~  

where A, B are constants and δ  represents the critical exponent of the singular point cτ .  

Table 4.2 represents that the critical values of the thermal conductivity variation parameter 

cτ increase with a positive increase in the values of radiation parameter R and the values of 

δ indicate that cτ is a branch point. Therefore, it is significant to notice from the table that as 

the radiation effect increases, the progress of thermal runaway enhances and the thermal 

instability in the system improves. While the negative values of radiation parameter may 

lessen the value of the criticality parameter and reduce thermal runaway in the system. 

However, in presence of nanofluid ( %5=φ ), both the rate of heat transfer Nu and 

cτ enhances as R increases. This implies that the heat transfer performance is higher in 
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nanofluid than base fluid. Finally the values of cτ in Table 4.2 give an idea about the onset 

of thermal instability and its nature numerically. 

Table 4.2 Numerical calculations showing thermal conductivity criticality for different parameter 

values using High‐order Differential Approximants at  1,1,1,1 ==== NHaGrBr .

R  φ  cτ  δ  Nu 

0.5 0 -0.72295638183 0.489985004 -0.1897709072 

1 0 -0.53565727924 0.464278610 0.1864302964 

2 0 -0.37733219733 0.449667446 0.5561558067 

5 0 -0.21641937233 0.456544910 1.130723424 

2 0.05 -0.37328441444 0.449147585 0.6115499181 

5 0.05 -0.21567016329 0.453808805 1.154478277 

 

A segment of bifurcation diagram for different values of d in the ),( Nuτ plane is noticed in 

Figure 4.2(a) using Drazin-Tourigny Approximants. We say that there is a simple turning 

point, fold or a saddle-node bifurcation at .cττ =  It is interesting to notice that there are 

two solution branches (I and II) of Nusselt number when ,cττ > one solution 

when ,cττ = and no solution when ,cττ < where cτ is the critical value of τ for which the 

solution exists. A stable solution is denoted by a continuous curve and an unstable solution 

by a broken curve. The stability analysis indicates that the lower solution branch (II) is 

stable and physically realizable. For different values of d, the upper solution branch (I) is 

unstable and physically unacceptable as shown in Figure 4.2(a). Figure 4.2(b) represents the 

effect of radiation parameter R on the bifurcation diagram in the way that the bifurcating 

point increases as R increases uniformly and produces more instability to the upper solution 

branch (I). The numerical values in Table 4.2 are also consistent with the lower solution 

branch of Nu as R increases for negative values of τ in Figure 4.2(b). Moreover, the local 
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rate of heat transfer decreases very slowly in lower solution (II) as R increases due to 

radiative heat loss for positive increase ofτ . 

 

 

                                                (a) 
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Figure 4.2: Approximate bifurcation diagrams against τ  in the  ))1(,( Nuτ  plane (a) for different d 

and (b) for different R obtained by Drazin‐Tourigny method (1996) 

for 3,1,1,1,1,1 ====== dRHaBrGrN . 



58 

 

4.6.2  Effect of Thermal Conductivity variation parameter 

Figures 4.3-4.4 represent the effects of thermal conductivity variation parameter on velocity 

profiles, temperature distribution, entropy generation rate sN and distribution of Bejan 

number Be respectively. It is observed in Figure 4.3(a) that increasing value of τ  results in 

slow increment in fluid velocity and for nanofluid there is a significant improvement in fluid 

motion approximately by %20 along the centerline region as τ increases. As the thermal 

conductivity increases, the heat is more readily transferred particularly in nanofluid which 

leads to enhancement of fluid velocity within the centerline. A decrease in the fluid 

temperature around the central region of the channel is observed in Figure 4.3(b) due to the 

escalating values ofτ . The increases of thermal conductivity variation parameter produce 

more heat transfer within the channel centerline region and reduce dimensionless 

temperature distribution. Furthermore, due to the higher thermal conductivity coefficient of 

the nanofluid, the heat is more keenly transferred. Generally, the value of 2N i.e., the entropy 

generated by fluid friction is larger than that of 1N i.e., the entropy produced by fluid heat 

transfer. As a result, SN  is contributed mainly by 2N throughout the entire flow field. 

However, in the areas of the flow field characterized by a faster flow rate, the velocity 

gradient is reduced, and thus 2N also reduces. In the present parallel channel, SN gradually 

reduces to zero at 5.0−=y as shown in Figure 4.4(a). In this particular region of the flow 

field, the velocity gradient becomes less, and thus SN  is contributed mainly by 1N . Figure 

4.4(a) illustrates the entropy generation rate whenτ is increasing and other parameters 

remain constant. The entropy production number SN  closely similar from left wall to 

centerline and then to the right wall for lesser values of τ , but for rising values of 

τ , SN increases rapidly in base fluid and further in nanofluid in the region from the 

centerline to the hot wall. However, in the region from the centerline to the cold 

wall SN decreases asτ increases, because the dominant effect of heat transfer occurs at the 

right hot wall. Figure 4.4(b) displays the distribution of the Bejan number (Be) versus the 

channel width for thermal conductivity variation parameterτ . It is noticed that Be has a 

value of less than 1 on either side of the channel since, as discussed previously, the velocity 
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gradient is increased at the cold and hot sides of the channel, and hence SN  is contributed 

initially by 2N . 
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Figure 4.3 (a) Velocity profiles (b) Temperature profiles for different values of τ at 

1,1,1,1,1 ===== HaBrGrNR . 
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Figure 4.4 (a) Entropy generation rates (b) Bejan number for different values ofτ : 

.1,1,1,1,1 ===== RHaBrGrN  

In the central region of the flow field, Be increases to a maximum value of 1 due to the 

reduction in the velocity gradient and the corresponding increase in the contribution of 1N to 

the overall entropy generation. It is to be seen that the heat transfer irreversibility dominates 
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the flow process within the channel centerline region, while the little influence of fluid 

friction irreversibility can be observed at the walls. It is also seen in Figure 4.4(b) that from 

left cold wall to centerline region Be decreases asτ increases and conversely from centerline 

region to right hot wall Be increases asτ increases. 

4.6.3  Effect of Radiation parameter 

The influences of radiation parameter on velocity profiles, temperature distribution, entropy 

generation rate sN and distribution of Bejan number Be are depicted in Figures.4.5-4.6. 

Figure 4.5(a) shows that the velocity slowly decreases as R increases and a decrement of 

nearly %12 in the velocity at centerline is seen for nanofluid when R increases due to 

radiative heat loss. The temperature decrease is further strengthened with rising values of the 

radiation parameter R for base fluid and nanofluid shown in Figure 4.5(b). As R increases, 

the rate of heat loss accelerates around the center of the channel that generates the reduction 

of the temperature profiles. As nanofluid exhibits higher rate of heat transfer, the reduction 

of the temperature profile becomes faster in nanofluid as shown in Figure 4.5(b). Figure 

4.6(a) depicts the similar conjecture for SN  as τ when R increases except the reduction 

of SN in nanofluid around the right hot wall due to the lesser viscous dissipation effect. It is 

to be noted from Figure 4.6(b) that heat transfer irreversibility dominates the flow process 

within the channel centerline region, while the little influence of fluid friction irreversibility 

can be observed at the walls. It is also seen in Figure 4.6(b) that from left cold wall to 

centerline region Be decreases as R increases and conversely from centerline region to right 

hot wall Be increases as R increases. 

4.6.4 Effect of Hartmann number 

Figures 4.7(a, b, c) represent the flow characteristics with entropy generation due to the 

effect of Hartmann number. In Figure 4.7(a) it is depicted that the velocity decreases for the 

positive changes of Ha and a reduction of around %40 in centerline velocity is found for the 

variation of 0=Ha  to 4=Ha . The variation of Ha leads to the variation of the Lorentz force 

due to magnetic field and the Lorentz force produces more resistance to the fluid velocity. It 

is seen from Figure 4.7(b) that Hartmann number Ha acts to reduce the entropy generation 
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rate uniformly and SN  is lowest within the channel centerline that increases towards the 

both walls particularly more at the right wall.  

 

 

           (a) 

 

 

 

 

 

 

 

 

 

                       

 

 

 

             (b) 

 

 

 

 

 

 

             

 

Figure 4.5 (a) Velocity profiles (b) Temperature profiles for different values of R 

at ,1,1,1,1 ==== HaBrGrN 1.0=τ . 
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Figure 4.7(c) demonstrates that as Hartmann number Ha increases, the fluid friction 

irreversibility at the walls decreases significantly and further in nanofluid. The Lorentz force 

due to magnetic field produces more resistance to the fluid friction irreversibility and hence 

enhances the dominance effect of heat transfer irreversibility. 
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Figure 4.6 (a) Entropy generation rates (b) Bejan number for different values of R 

at ,1,1,1,1 ==== HaBrGrN .1.0=τ  
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Figure 4.7 (a) Velocity profiles (b) Entropy generation rates and (c) Bejan number for   different 

values of Ha at  ,1,1,1,1 ==== RBrGrN 1.0=τ . 
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4.6.5 Effect of Nanoparticles solid volume fraction 

The control of nanoparticles volume fraction on flow field and entropy generation are 

presented in Figures 4.8 (a, b, c). In Figure 4.8 (a), a uniform reduction in fluid velocity is 

observed as φ increases. The equivalent thermal expansion coefficient of the nanofluid is 

less than that of base water. As a result, the buoyancy force acting on the nanofluid is also 

less than that acting on the pure water, and hence the dimensionless velocity is reduced. In 

addition, since the density and viscosity of the nanofluid are greater than those of base 

water, the velocity distribution within the channel is more uniform for nanofluid. Figure 

4.8(b) shows the effect of an increase in volume fraction of nanoparticles on entropy 

generation rate. A uniform reduction is observed at the walls to SN when φ increases. 

Therefore, nanofluid is suitable to reduce the entropy generation rate and to enhance the 

efficiency of the system. The mounting values of φ  causes an identical increment of Be at 

the two walls symmetrically indicating governance effect of heat transfer irreversibility for 

nanofluid as shown in Figure 4.8(c).  

4.6.6 Effect of Brinkman number 

The dimensionless velocity distribution of the flow field has a direct effect on the 

dimensionless temperature distribution as the effects of viscous dissipation are taken into 

consideration in the present problem. It is noticed from Figure 4.9 that the fluid temperature 

increases with increasing parametric values of viscous heating parameter Br but a minor 

reduction is seen in presence of nanoparticles. The velocity gradient of the pure working 

fluid is greater than that of the nanofluid due to the lower viscosity which results in more 

viscous dissipation effect. Furthermore, due to the higher thermal conductivity coefficient of 

the nanofluid, the heat is more intensely transferred. Hence, the dimensionless temperature 

of the nanofluid is less than that of the base fluid in Figure 4.9.  
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Figure 4.8 (a) Velocity profiles (b) Entropy generation rates and (c) Bejan number for different 

values φ at .1,1.0,1,1,1,1 ====== RHaBrGrN τ  
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Figure 4.9 Temperature profiles for different values of Br 

at .1.0,1,1,1,1 ===== τRGrNHa  

Thus thermal radiation and variable thermal conductivity play an imperative role to fluid 

friction and heat transfer irreversibility in modeling boundary layer flows with nanofluids 

through a channel. Physically the variation of thermal conductivity controls the rate of heat 

transfer. Moreover, the point of existence of two solution branches of which the lower one is 

physically acceptable, is determined by temperature dependent variable thermal 

conductivity. Finally, thermal radiation in presence of nanofluids has a key impact on the 

physical solution. 

4.7.   Conclusion 

A numerical investigation is performed to the radiative heat transfer performance, 

temperature varied thermal conductivity effects and entropy generation characteristics of 

MHD Cu-water nanofluid flow through a channel with asymmetric heated wall applying 

Hermite-Padé approximants method. The dominating singularity behaviour due to the 

thermal conductivity variation parameter and the thermal stability conditions for two 
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solution branches are analysed with the effect of Radiation parameter. An increase in the 

thermal conductivity variation parameter advances fluid velocity along centerline and 

reduces temperature distribution. Radiation parameter reduces both the fluid velocity and 

temperature distribution due to faster heat loss. Increasing Hartmann number and 

nanoparticles solid volume fraction cause the reduction of fluid velocity near the centerline 

uniformly because of the acting of Lorentz force and reduction of buoyancy force 

respectively. For regions of the flow field at a greater velocity gradient, i.e., adjacent to the 

hot and cold walls, the total entropy generation rate is dominated by the effects of fluid 

friction. Conversely, in the regions of the flow field at a higher and more uniform velocity 

distribution, i.e., the central region of the channel, the total entropy generation rate is 

dominated by the effects of fluid heat transfer. 

 

In the next section, a case study regarding MHD radiative flow through a channel with left 

sliding wall is represented.  
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4.8 A Special Case Study: MHD Radiative Flow of Variable Thermal Conductivity 

Fluid through Vertical Channel with a sliding wall2 

 

The combined effect of variable thermal conductivity and radiative heat transfer on steady 

flow of a conducting optically thin viscous fluid through a vertical channel with left sliding 

wall and non-uniform wall temperatures under the influence of an externally applied 

homogeneous magnetic field are analyzed in this study. The similarity transformation 

reduces the governing equations for momentum and thermal energy into a set of coupled 

ordinary differential equations which are solved using power series together with Hermite- 

Padé approximation. The dimensionless velocity profiles, temperature profiles and thermal 

criticality conditions are presented numerically and graphically to interpret the effect of 

various physical parameters of the problem.  

4.8.1  Mathematical Model 

Consider a steady two-dimensional laminar incompressible flow of electrically conducting 

non-gray optically thin viscous fluid through a vertical channel with the left sliding wall. An 

externally homogeneous magnetic field is applied in normal direction to the right wall of the 

channel and the wall temperatures are non-uniform under radiative heat transfer. A Cartesian 

coordinate system is used and the flow is chosen along the x′ -direction under constant 

pressure gradient which is driven solely by uniform velocity at the left wall, i.e. the velocity 

profile is linear with zero at the right fixed wall and maximum value at the left moving wall. 

Consider all the physical properties of the fluid constant except the thermal conductivity and 

density which varies linearly with temperature. The reduced momentum and energy 

equations considering buoyancy force and neglecting the viscous dissipation are as follows: 

                                                            
2 This work consists of a Journal paper: Md. S. Alam, M. A. H. Khan, “Hermite- Padé 

projection to thermal radiative and variable conductivity MHD flows through channel with a 

sliding wall”, International Journal of Engineering, Science and Technology, Vol. 6, No. 1, 

pp. 88-97, (2014). 
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The appropriate boundary conditions of the problem are 

01, TTuu ==′   at  ,0=′y                                (4.8.3) 
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Figure 4.8.1 Geometry of the problem 

According to Cogley et al. (1968), the radiative heat flux for optically thin fluid is given by   
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where aKλ is the radiation absorption coefficient, λ is the wave length and λbe  is the Planks’ 
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Dimensionless quantities and parameters are initiated in the problem as follows 
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The governing equations (4.8.1) and (4.8.2) are reduced to the following dimensionless form    
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θτκ
2

2,,1 HaHaRR ==+= , 

The dimensionless form of the corresponding boundary conditions is 

,1,0 == θu   at   1=y                             (4.8.10) 

,0,1 == θu   at   0=y                          

4.8.2  Series Analysis 

The following power series expansions are considered in terms of the parameter τ as 

equations (4.8.8) and (4.8.9) are non-linear for velocity field and temperature distribution 
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The non-dimensional governing equations are then solved into series solutions by 

substituting the Eq. (4.8.11) into Eqs. (4.8.8) and (4.8.9) and equating the coefficients of 

powers ofτ .  
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1,0 00 == θu           at  1=y                                                                (4.8.13)  

0,1 00 == θu           at  0=y                                                    (4.8.14) 
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With the help of MAPLE, we have computed the first 18 coefficients for the series of the 

velocity u and temperature field θ  in terms ofτ , Ha , R, Gr, N . The first few coefficients of 

the series for u and θ are as follows: 
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4.8.3  Results and Discussion 

The main objective of the study is to analyze the singularity behaviour of MHD radiative 

variable thermal conductivity viscous incompressible flow through the parallel plate channel 

using Hermite-Padé approximants. The regular effect of the governing physical parameters 

namely thermal conductivity variation parameter, Radiation parameter, Hartmann number 

and Grashof number on the dimensionless velocity and temperature profiles are depicted 

graphically. A stability analysis as dual solution branch for the local rate of heat transfer is 

also performed. 

4.8.3.1  Stability Analysis 

For the analysis, we choose the series (4.8.19) for the following functional form  

1=

−=
ydy

dNu θ                                                                                                           (4.8.20) 

which is related to the local rate of heat transfer at the right hot wall of the channel The 

singularities have the form  
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( )δττ cBANu −+~  

where A, B are constants and δ  represents the critical exponent of the singular point cτ . 

Table 4.8.1 displays that the critical thermal conductivity variation parameter cτ increases 

uniformly for the increases of radiation parameter R with 0=Ha  at 4=d  taking .18=N  

On the other hand, the values of δ confirm that cτ  is a branch point using HODA. The 

values of cτ  in Table 4.8.1 (neglecting viscous dissipation) and Table 4.2 (considering 

viscous dissipation) both at 1=R for pure base fluid are 

 9240.53565727- and  0310.8095725-  respectively. By considering the effect of viscous 

dissipation, the dimensionless velocity distribution of the flow field has a direct effect on the 

dimensionless temperature distribution. As a result, there occur early thermal runaway and 

progress of thermal instability in the system. Employing the algebraic approximation 

method to the series (4.8.20) we have obtained the bifurcation diagram againstτ in Figure 

4.8.2 It is interesting to notice again as in Figure 4.2 at the previous section that there are 

two solution branches (I and II) of local Nusselt number when ,cττ > one solution 

when ,cττ = and no solution when ,cττ < where cτ is the critical value of τ for which the 

solution exists.  

Table 4.8.1 Numerical values of thermal conductivity criticality cτ  and corresponding exponent δ at 

various values of R at 0=Ha  . 

R cτ  δ  

1 -0.8095725031 0.4976501741 

2 -0.6702408724 0.4926654350 

4 -0.5160126951 0.4995668656 

6 -0.4281462458 0.4996975550 

8 -0.3694196308 0.4985993397 

10 -0.3270367744 0.4995634864 
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Figure 4.8.2 Approximate bifurcation diagram againstτ  in the  )( Nu−τ plane for different values of 

R with 4=d  at 0=Ha  . 

As the values of R increase, the bifurcation points increase uniformly shown in Figure 4.8.2. 

The conjecture of Figure 4.8.2 is consistent with the results shown in Table 4.8.1 using 

differential approximation.   

4.8.3.2  Effect of Thermal Conductivity variation parameter 

Figures 4.8.3 (a)-(b) illustrate the effect of thermal conductivity variation parameter τ on 

temperature distributions and velocity profiles respectively. It is observed from the Figure 

4.8.3(a) that an increase in the thermal conductivity variation parameter τ  leads to decrease 

in the temperature field across the center line region particularly for 1>τ  due to more 

rapidly heat transfer. The velocity profile by the effect of τ is observed in Figure 4.8.3(b) 

generally with maximum value at the left sliding wall and minimum value along the right 

fixed wall. It is clear that an increasing presence of τ gives a minor and uniform reduction in 

the fluid velocity as demonstrated particularly around the left cold wall. In the vicinity 

of 0=y , the fluid contacts the low temperature wall and shrinks accordingly, and in absence 

of viscous dissipation effect, the density increases, while the buoyancy force reduces. 
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Figure 4.8.3 (a) Temperature distributions and (b) Velocity profiles for different values of τ at 
1=Gr1,=Ha1,=N1,=R . 

4.8.3.3  Effect of Radiation parameter 

A significant influence of Radiation parameter on velocity and temperature field is depicted 

in Figures 4.8.4(a-b). We observe from Figure 4.8.4(a) that the fluid temperature decreases 

around the centerline region of the channel with increasing values of R as a result of 
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radiative heat loss. Meanwhile, the minimum temperature is generally seen along the 

channel centerline and then increases gradually to the prescribed value at the right wall. 
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Figure 4.8.4 (a) Temperature distributions and (b) Velocity profiles for different values of R at 

1=Gr1,=1,=N1,=Ha τ . 
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As R increases, the rate of heat loss accelerates around the center of the channel that 

generates the reduction of the velocity profiles which is seen in Figure 4.8.4(b). 

4.8.3.4  Effect of Hartmann number 

 

 

 

     

 

 

 

 

 

 

Figure 4.8.5 Velocity profiles for different values of Ha at  1=Gr1,=1,=R1,=N τ . 

It is seen from Figure 4.8.5, a uniform reduction in the centerline velocity at the positive 

variation of Hartman number Ha. The presence of magnetic field decreases the 

dimensionless velocity due to Lorentz force. 

4.8.3.5  Effect of Grashof number 

There is a significant and uniform incretion is seen to the fluid velocity around the channel 

centerline in Figure 4.8.6 when the Grashof number Gr increases. The pure water with low 

density has more thermal expansion coefficient than other fluids. As a consequence, it is 

more affected by the higher buoyancy force in the flow region, and thus the velocity 

increases as Gr increases.   
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Figure 4.8.6 Velocity profiles for different values ofGr at 1=Ha1,=1,=R1,=N τ . 

4.8.3.6 Effect of Pressure Gradient parameter 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.7  Velocity profiles for different values of N at  1=Gr1,=1,=R1,=Ha τ . 
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From Figure 4.8.7, it is noticed that the velocity profile exhibits significant increments along 

the centerline region at every increasing values of N. As N increases, the pressure gradient 

and viscosity of the fluid decreases which leads to enhancement of fluid velocity in the 

channel. 

4.8.4 Conclusion 

The influences of thermal radiation on MHD flow of an optically thin variable thermal 

conductivity viscous incompressible fluid through a vertical channel with sliding wall of 

non-uniform wall temperatures are investigated using a special type of Hermite-Pade′ 

approximation technique. The dominating singularity behaviour of the solution of the 

problem is analysed with the effect of variable thermal conductivity and radiation. The 

velocity and temperature profiles are obtained analytically to observe the effect of the 

parameters of the solution. Our results generally represent that increasing thermal radiation 

and conductivity reduces centerline velocity and temperature field while increasing 

magnetic parameter causes decrease in the magnitude of centerline dimensionless velocity.  

The next chapter investigates the entropy generation of MHD radiative flow of different 
nanofluids through a porous channel.  
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Chapter V 

Entropy Generation for MHD Radiative Variable Thermal Conductivity 

Flow in Porous Channel with different Nanoparticles3 

 

 

The entropy generation on radiative heat transfer performance in the flow of variable 

thermal conductivity optically thin viscous water-based nanofluid with an external magnetic 

field through a porous vertical channel is investigated in this chapter. Three types of 

nanoparticles as Cu, TiO2 and Al2O3 are used to observe their performance. The fluid 

temperature in the channel varies due to the asymmetric heating of the walls as well as 

viscous dissipation. Here the approach uses the power series from the governing non-linear 

differential equations for small values of thermal conductivity variation parameter which 

are then analysed by various generalizations of Hermite- Padé approximation method. The 

influences of the pertinent governing flow parameters on velocity, temperature, thermal 

conductivity criticality conditions and entropy generation are discussed extensively both 

numerically and graphically. A stability analysis has been performed for the local rate of 

heat transfer which signifies that the lower solution branch is stable and physically 

realizable, whereas the upper solution branch is unstable. It is interesting to remark that the 

entropy generation of the system increases at the two porous plates whereas the fluid 

friction irreversibility is dominant there. 

5.1 Introduction 

The flow and heat transfer of magnetohydrodynamic nanofluid flow in porous tubes or 

channels has various applications in biomedical engineering, material processing, as well as 

the food and petro-chemical industries. These include; magnetics drug targeting, MHD 

blood flow meters, production of magneto-rheostatic (MR) materials known as smart fluids.  

                                                            
3 The content of this chapter is accepted for publication as a paper in the Journal of Porous 

Media, Begell House Inc., USA, Vol. 19 (2016). 
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In recent years, we find several applications in polymer industries, cooling of metallurgical 

materials, cooling of microchips in computers and other electronics which use microfluidic 

applications, cooling of automobile engine, wire drawing. The nanofluid containing 

magnetic nanoparticles also acts as a super-paramagnetic fluid, which, in an alternating 

electromagnetic field, absorbs energy and produces a controllable hyperthermia. Berman 

(1953) described an exact solution of the Navier-Stokes equation for steady two-dimensional 

laminar flow of a viscous, incompressible fluid in a channel with parallel rigid porous walls 

driven by uniform suction or injection at the walls.  

Heat transfer efficiency can be improved by increasing the thermal conductivity of the 

working fluid as Kwak and Kim (2005). Due to heat transfer mostly used fluids such as 

water, ethylene glycol, and engine oil have relatively low thermal conductivities compared 

to the thermal conductivity of solids. High thermal conductivity of solids can be used to 

increase the thermal conductivity of a fluid by adding small solid particles to that fluid. The 

feasibility of the usage of such suspensions of solid particles with sizes on the order of 

millimeters or micrometers was investigated by various researchers. Recent advances in 

nanotechnology have allowed authors to study the next generation heat transfer nanofluids, a 

term first introduced by Choi (1995). Nanoparticles have unique chemical and physical 

properties Oztop and Abu-Nada (2008) and have better thermal conductivity and radiative 

heat transfer compared to the base fluid only. Nanofluids are engineered dilute colloidal 

dispersions of nano-sized (less than 100 nm) particles in a base-fluid Das et al. (2007). 

Sheikholeslami (2013)  investigated analytically the laminar nanofluid flow in a semi-porous 

channel in the presence of transverse magnetic field using Homotopy perturbation method.  

However, the thermal boundary layer equation for variable thermal conductivity fluids in the 

presence of thermal radiation construct a nonlinear problem and the solution behavior will 

present a looming into physical process of thermal instability in the system. Abiodun et al. 

(2011) investigated entropy generation in a steady flow of viscous incompressible fluids 

between two infinite parallel porous plates for two different physical situations Couette flow 

and pressure-driven Poiseuille flow. Makinde and Eegunjobi (2013) analysed the combined 

effects of convective heating and suction/injection on entropy generation rate in a channel 

with permeable walls. 
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Taking into account the significance of variable thermal conductivity and thermal radiation 

effect on entropy generation rate in the flow of MHD conducting viscous nanofluid through 

a porous channel with non-uniform wall temperature is studied applying Hermite- Padé 

approximation method. A stability analysis is also performed to show the physically 

realizable solution in practice of local Nusselt number due to thermal conductivity 

criticality. Results for the velocity, temperature, volumetric entropy generation rate and 

Bejan profile for various values of the solution parameters are presented graphically.    

5.2. Physical Model 

A two-dimensional steady, incompressible and laminar variable thermal conductivity flow 

for three different nanofluids in a porous vertical channel is considered. The left and right 

walls of the channel at a distance of 2b apart are assumed to be porous as injection and 

suction respectively so that )0,,( vuV ′′= where vu ′′and are the horizontal and vertical 

(injection/suction) components of velocity respectively. The flow is chosen along the x′ -

direction under constant pressure gradient and depends on y′  alone. The left and right wall 

temperatures are non-uniform under radiative heat transfer and an externally homogeneous 

magnetic field is applied in normal direction to the right hot wall.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Schematic diagram of the problem 
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The fluid has constant properties except the thermal conductivity and density changes which 

produce buoyancy force. 

5.3  Formulation of Mathematical Equations  

The basic equations of the problem considering viscous dissipation and buoyancy force are 
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Where p′  is the fluid pressure. The dynamic viscosity nfµ , effective density nfρ , effective 

thermal conductivity nfκ , heat capacity nfpc )(ρ and effective electrical conductivity nfσ of 

the nanofluid are defined by equation (2.8.5) in chapter 2.  

As the velocity is only along x′ -direction, it is assumed that 
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By integrating Eqn (5.3.1) reduces to .0vv =′  Equations (5.3.2) and (5.3.3) then take the form 
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Eqs. (5.3.4)- (5.3.5) are subjected to the boundary conditions are: 
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The radiative heat flux gradient of optically thin non-gray fluid near equilibrium according 

to Cogley (1968) is given by  
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where aKλ is the radiation absorption coefficient, λ is the wave length and λbe  is the 
Planks’ function. 
According to Kay (1966), the variable thermal conductivity is 
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Introduce the following transformations to seek for a similarity solution of Eqs. (5.3.4)-

(5.3.5) 
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where sR ′ is the porosity parameter, aH ′ is Hartmann number, rG ′ is Grashof number, R′  is 

radiation parameter, eP ′ is Peclet number and rB ′ is Brinkman number.  

Equations (5.3.4)-(5.3.5) reduced in non-dimensional form are as follows 
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The boundary conditions in Eqn (5.3.6) reduce to following dimensionless form 
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Because of simplicity in calculation, the dimensionless numbers in Eqs (5.3.9)-(5.3.10) are 

rescaled as   
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The dimensionless Eqs (5.3.9)-(5.3.10) now get the form 
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The local Nusselt number Nu and heat transfer rate are 
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From equations (5.3.8) and (5.3.15), the Nusselt number results in the following form 
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5.4  Series Analysis 

The power series expansions are considered in terms of the parameter τ as equations 

(5.3.13) and (5.3.14) are non-linear for velocity field and temperature distribution 
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The non-dimensional governing equations (5.3.13) and (5.3.14) are then solved into series 

solutions by substituting the Eq. (5.4.1) and equating the coefficients of powers ofτ . The 

first 12 coefficients for the series of the temperature )(τθ  and velocity )(τu  in terms of 

CBAPeRsNBrGrRHa ,,,,,,,,,,τ are computed respectively. The first few coefficients of 

series for )(τθ is given below: 
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The above power series solutions are valid for very small values ofτ . Therefore, the series 

are analysed applying Hermite- Padé approximation method. 

 

5.5.  Irreversibility Analysis   

The characteristics of the flow field inside a porous channel with isothermal walls in the 

presence of thermal radiation with viscous dissipation and MHD effect are irreversible. The 

exchange of energy and momentum within the fluid and at the boundaries causes 

inequilibrium conditions which leads to continuous entropy generation. Following Bejan 

(1996) the volumetric entropy generation rate is given as 
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Where the first term on the right side of equation (5.5.1) is the irreversibility due to heat 

transfer and the second term is the irreversibility due to viscous dissipation. The entropy 

generation number can be expressed in dimensionless form as, 
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In general, the entropy generation number sN given in Eq. (5.5.2) provides a useful means 

of producing entropy generation profiles. However, it gives no indication as to the relative 

contributions of the fluid heat transfer and fluid friction effects. Thus, the parameter, Bejan 

number Be is commonly used in its place. 

The Bejan number is given as  
SN

NBe 1=  

It is noteworthy that the Bejan number ranges from 0 to 1 and 0=Be is the limit where the 

irreversibility is dominated by fluid friction effects. 1=Be is the limit where the 

irreversibility due to heat transfer dominates the flow system because of finite temperature 

differences. The contributions of heat transfer and fluid friction to entropy generation are 

equal when 2
1=Be .In the present work, second law analysis is investigated between a 

porous channel. 

5.6.  Results and Discussion 

The influences of thermal radiation and temperature dependent variable thermal 

conductivity on the entropy generation of nanofluid flow through a porous channel under 

viscous dissipation effect in the presence of uniform magnetic field is studied in this chapter. 

The numerical computations of series for the temperature )(τθ  and velocity )(τu  are 

carried out at various values of the physical parameters Pr, R, Br, Gr, Rs, Pe, Ha and τ to 

obtain the condition under which the dual (upper and lower branch) solutions may exist. The 

minimum entropy conditions provide the possibility of achieving the maximum available 

work. In the present study, the nanoparticle volume fraction is specified in the range of 

%,5%0 −=φ where a value of 0=φ indicates the pure base fluid. In addition, the thermal 

conductivity variation parameter is assigned in the range of 2.01.0 ≤≤− τ , the porosity 

parameter 80 ≤≤ Rs , the radiation parameter 100 ≤≤ R , the Brinkman number 

1001 ≤≤ Br , the Hartmann number 50 ≤≤ Ha . The Grashof number and dimensionless 

pressure gradient are kept fixed at .1,1 == NGr  Table 5.1 shows the comparison of our 

results with those of Makinde and Eegunjobi (2013) with 

1,1,0,0,0 ===== NRsGrHaBr  for pure base fluid. The results in Table 5.1 imply that 

there is a good agreement of the values of velocity profile between the present study and 
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Makinde and Eegunjobi (2013) from the left injected wall ( 1−=y ) towards the centerline 

( 0=y ) and then to the right suctioned wall ( 1=y ) of the channel.  

  

Table 5.1 Comparison of numerical values for velocity with available literature 
when .1,1,0,0,0,0 ====== NRsGrHaBr φ  

y  Present Study Makinde and Eegunjobi  
(2013) 

Relative 
Difference 

-1.0 0 0  

-0.8 0.03894655 0.03879297 0.4% 

-0.6 0.07258247 0.07114875 1.3% 

-0.4 0.09765518 0.09639032 2% 

-0.2 0.11658237 0.11376948 2.4% 

0 0.12939390 0.12245933 5.3% 

0.2 0.12553130 0.12154600 3.2% 

0.4 0.11508405 0.11001953 4.4% 

0.6 0.09134248 0.08676372 5% 

0.8 0.05172775 0.05054498 2.3% 

1.0 0 0  

5.6.1 Stability Analysis 

Table 5.2 displays that the critical values of thermal conductivity variation parameter 

cτ increase with a positive increase in the values of radiation parameter R in absence of 

suction/injection parameter and the values of δ indicates that cτ is a branch point. On the 

other hand, the presence of porosity parameter )3( =Rs  increases cτ positively. Therefore, it 

is significant to notice from the table that the progress of thermal runaway enlarges and 

develops thermal instability in the system when radiation effect enhances in porous walls. 

Moreover, the rate of heat transfer Nu enhances as R increases. Finally the values of cτ in 

Table 5.2 give an idea about the onset of thermal instability and its nature numerically. A 

segment of bifurcation diagram for different values of R in the ),( Nuτ plane is noticed in 
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Figure 5.2(a) using Drazin-Tourigny Approximants at 0=Rs . A simple turning point, fold 

or a saddle-node bifurcation at cττ = is shown in Figure 5.2. It is interesting to notice that 

there are two solution branches (I and II) of Nusselt number when ,cττ > one solution 

when ,cττ = and no solution when ,cττ < where cτ is the critical value of τ for which the 

solution exists. The stability analysis indicates that the lower solution branch (II) is stable 

and physically realizable. For different values of R, the upper solution branch (I) is unstable 

and physically unacceptable shown in Figure 5.2(a). 

Table 5.2 Numerical calculations showing thermal conductivity criticality for different parameter 

values using High‐order Differential Approximants at 1,1,0,1,1 ===== NHaGrBr φ  for .3=d  

 

Meanwhile, the positive variation of thermal conductivity parameter slowly decreases the 

rate of heat transfer and as R increases the bifurcating point increases and produces more 

instability to the upper solution branch (I). The numerical values in Table 5.2 are also 

consistent with the lower solution branch of Nu as R increases in Figure 5.2(a). Figure 5.2(b) 

represents the effect of three different nanoparticles on the bifurcation diagram in such a 

way at 2,1.0 == Rsφ that the bifurcating points almost coincide. However, they produce 

instability to the upper solution branch (I) and the value of Nusselt number decreases in Cu-

nanoparticles than TiO2 and Al2O3-nanopaticles. 

 

R  Rs  cτ  δ  Nu 

1 0 -0.53565727924096 0.4642786109 0.1864302965 

2 0 -0.37733219733189 0.4496674465 0.5561558070 

5 0 -0.21641937233523 0.4565449106 1.130723424 

1 3 0.008001204075356 0.4566547116 5.920689257 

5 3 0.009206845176432 0.4487675475 6.014179785 
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Figure 5.2 Approximate bifurcation diagrams againstτ  in the  ))1(,( Nuτ  plane (a) for different 

values of R with  0,0 == Rsφ and (b) for different nanoparticles with  2,1.0 == Rsφ obtained by 

Drazin‐Tourigny method (1996) at 1,1,1,1,3 ===== BrGrHaNd . 
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5.6.2 Effect of Porosity parameter 

Figures 5.3(a, b), 5.4(a, b) describes the effect of porosity parameter on flow characteristics 

with entropy generation within the channel. Figure 5.3(a) reveals that the velocity decreases 

with an increase in injection parameter as Rs near the left wall )1( −=y  and the maximum 

velocity also develops towards the right wall when Rs increases due to suction.  
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Figure 5.3 Effect of porosity parameter on (a) velocity profiles and (b) temperature distributions 

respectively at .1,1,1.7Pr,1,1.0,1,1.7 ======= RHaNGrBr τ  



92 

 

 

 

 

 

 

 

                        (a) 

 

 

 

 

 

      

 

 

 

 

           (b) 

 

 

 

          

                              

Figure 5.4 Effect of porosity parameter on (a) entropy generation rates and (b) Bejan profiles 

respectively at  .1.0,1,1,1,1.7,1,1.7Pr ======= τHaRNBrGr  

In absence of suction/injection parameter )0( =Rs , the velocity profile is parabolic and 

symmetrically distributed inside the channel; it however becomes skewed with increase in 

suction/injection parameter. Meanwhile, there occur backflow at the left porous wall for 
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large values of Rs. Figure 5.3(b) demonstrates a significant reduction in fluid temperature 

inside the channel when suction/injection parameter as Rs increases. This is physically true 

since injection of fluid increases the fluid velocity around centerline thereby increases the 

heat transfer rate within the channel. Generally, the value of 2N i.e., the entropy generated by 

fluid friction is larger than that of 1N i.e., the entropy produced by fluid heat transfer. As a 

result, SN  is contributed mainly by 2N throughout the entire flow field. However, in the 

areas of the flow field characterized by a faster flow rate, the velocity gradient is reduced, 

and thus 2N also reduces. In the present porous channel, SN gradually reduces to zero 

at 0=y as shown in Figure 5.4(a). In this particular region of the flow field, fluid friction 

effects play only a minor role, and thus SN  is contributed mainly by 1N .The figure reveals a 

minor decrease in sN when Rs increase near the cold porous wall, whereas SN increases 

rapidly in base fluid and further in nanofluid in the region above the centerline to the right 

hot porous wall. Since the dominant effect of heat transfer occurs at the right hot wall. 

Figure 5.4(b) displays the distribution of the Bejan number (Be) versus the channel width for 

porosity parameter. It is noticed that Be has a value of zero at the left cold wall and close to 

zero at the right hot wall of the channel since, as discussed previously, the velocity gradient 

is increased at the walls due to suction/injection, and hence SN  is contributed mainly by 

2N . In the central region of the flow field, Be increases to a maximum value of 1 due to the 

reduction in the velocity gradient and the corresponding increase in the contribution of 1N to 

the overall entropy generation. It is to be seen that the heat transfer irreversibility dominates 

the flow process within the channel centerline region, while the influence of fluid friction 

irreversibility can be observed at the two porous walls. 

5.6.3 Effect of Thermal Conductivity variation parameter 

The influences of thermal conductivity variation parameter on temperature distribution, 

entropy generation rate sN and distribution of Bejan number Be are depicted in Figures 

5.5(a, b, c). A decrease in the fluid temperature around the central region of the channel is 

observed in Figure 5.5(a) due to the positive escalating values of τ . The temperature profile 

is further decreased in nanofluid than base fluid as τ increases.     
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Figure 5.5 Effect of thermal conductivity variation parameter on (a) temperature profiles, (b) 

entropy generation rates and (c) Bejan profiles respectively at 

.1,1,1,1,1.7,1,1.7Pr ======= RHaRsNBrGr  

 

The increases of thermal conductivity variation parameter produce more heat transfer within 

the channel centerline region and reduce dimensionless temperature distribution. 
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Furthermore, due to the higher thermal conductivity coefficient of the nanofluid, the heat is 

more keenly transferred. Figure 5.5(b) indicates the effect of thermal conductivity variation 

parameter on entropy generation number inside the channel. From this figure, it is observed 

that near the cold porous wall, sN decreases slightly with the increase of τ while it increases 

with the increase of τ toward the hot porous wall. The influence of thermal conductivity 

variation parameter on Bejan profile is seen in Figure 5.5(c). It can be noted from this figure 

that fluid friction irreversibility dominates entropy generation near the porous walls while 

heat transfer irreversibility is the dominant contributor near the channel centerline. It is 

observed that asτ  increases, the dominance of heat transfer irreversibility near the hot wall 

increases especially for nanofluid while the dominance of fluid friction irreversibility near 

the cold porous wall is insensitive to change inτ .                  

5.6.4 Effect of Radiation parameter 

Figures 5.6(a, b, c) represent the thermal field with entropy generation due to the effect of 

Radiation parameter. The effect of Radiation parameter R on fluid temperature in Figure 

5.6(a) shows that temperature near the channel centre line reduces uniformly by the positive 

increase of R due to radiative heat loss. Also nanofluid enhances the rate of heat transfer 

which leads to more reduction in temperature as reflect in Figure 5.6(a). Entropy generation 

due to the effect of radiation parameter R is shown in Figure 5.6(b). The figure reveals a 

small decrease in sN when R increase near the cold porous wall, whereas sN increases 

significantly toward the hot porous wall because of the sole contribution of heat transfer 

effect. Figure 5.6(c) displays the distribution of Bejan number for different values of 

Radiation parameter R. The figure instructed that as R increases, there is enhanced 

dominance of heat transfer irreversibility near the hot porous wall where nanofluid exhibits 

the maximum. There is an absolute dominance of heat transfer irreversibility )1( =Be for 

varying values of R near the centerline of the channel while there absolute dominance of 

fluid friction irreversibility )0( =Be near the cold porous wall. 
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Figure 5.6 Effect of Radiation parameter on (a) temperature profiles, (b) entropy generation rates 

and (c) Bejan profiles respectively at  .1.0,1,1,1,1.7,1,1.7Pr ======= τHaRsNBrGr  
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5.6.5  Effect of Prandtl number 

The effects of Prandtl number on temperature distribution, entropy generation rate sN and 

distribution of Bejan number Be are depicted in Figures 5.7(a, b, c). Prandtl number is the 

ratio of viscous force and thermal force. Therefore, increasing values of Pr increases 

viscosity and decreases thermal action of the fluid. The dimensionless temperature of fluid 

inside the channel decreases rapidly for base water and further in Cu-water nanofluid than 

air or other gases due to higher thermal conductivity coefficient as observed in Figure 5.7(a). 

The effect of Prandtl number Pr on entropy generation rate is noticed in Figure 5.7(b). The 

figure reveals an increase in sN as Pr increases near the porous walls. This is due to the 

increase in temperature gradient as Pr increases which is also further in nanofluid. In Figure 

5.7(c), Bejan number is represented for various values of Prandtl number Pr. It is noticed 

from the figure that the dominance effect of both fluid friction and heat transfer 

irreversibilities near the two walls almost similar. On the other hand, the dominance effect 

of fluid friction irreversibility is absolute near the porous walls and the dominance of heat 

transfer irreversibility decreases as Pr increases for base water and Cu-water nanofluid. The 

conjecture of Figures 5.7 (b, c) has a good agreement with those results of Abiodun et al. 

(2011). 

5.6.6  Effect of Hartmann number 

Figure 5.8 represents that in absence of magnetic field velocity achieves its maximum value, 

while increasing values of Ha produces reduction of the velocity near the channel centerline 

region. The variation of Ha leads to the variation of the Lorentz force due to magnetic field 

and the Lorentz force produces more resistance to the fluid velocity. 

5.6.7  Effect of nanoparticles volume fraction 

The influence of nanoparticles volume fraction φ on velocity is depicted in Figure 5.9 

at 1=Rs . In Figure 5.9, a uniform reduction in fluid velocity is observed as φ increases. The 

equivalent thermal expansion coefficient of the nanofluid is less than that of base water. As 

a result, the buoyancy force acting on the nanofluid is also less than that acting on the pure 

water, and hence the dimensionless velocity is reduced. In addition, since the density and 
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viscosity of the nanofluid are greater than those of base water, the velocity distribution 

within the channel is more uniform.  
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Figure 5.7 Effect of Prandtl number on (a) temperature profiles, (b) entropy generation rates and 

(c) Bejan profiles respectively at .1.0,1,1,1,1.7,1,1 ======= τHaRsNBrGrR  
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Figure 5.8 Effect of Hartmann number on velocity profiles at  ,1.0,1,1.7 === τGrBr  

.0,1.7Pr,1,1 ==== φRRs  

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 5.9 Effect of nanoparticles volume fraction on velocity profiles at 
,1.0,1,1.7 === τGrBr .1,1.7Pr,1,1 ==== HaRRs  
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5.6.8  Effect of Brinkman number 

The dimensionless velocity distribution of the flow field has a direct effect on the 

dimensionless temperature distribution as the effects of viscous dissipation are taken into 

consideration in the present problem. It is noticed from Figure 5.10 that the fluid 

temperature increases with increasing parametric values of viscous heating parameter Br but 

a minor reduction is seen in presence of nanoparticles. The velocity gradient of the pure 

working fluid is greater than that of the nanofluid due to the lower viscosity which results in 

more viscous dissipation effect. Furthermore, due to the higher thermal conductivity 

coefficient of the nanofluid, the heat is more intensely transferred. Hence, the dimensionless 

temperature of the nanofluid is less than that of the base fluid in Figure 5.10.   

   

                                                                                           

 

 

 

 

 

 

 

Figure 5.10 Effect of Brinkman number on temperature profiles at .1.0,1,1 === τHaRs  

1.7Pr,1,1,1 ==== NGrR  

 

5.7.  Conclusion 

In this chapter we investigate the entropy generation of a steady laminar radiative variable 

thermal conductivity flow and heat transfer with viscous dissipation of three various 

nanofluids through a vertcal porous channel in the presence of transverse magnetic field. 



101 

 

The numerical simulation is carried out applying Hermite- Padé approximation method to 

examine the dominating singularity behaviour of the problem as well as the existence of the 

dual solutions of the rate of heat transfer. It is observed that suction/injection of fluid exerts 

a significant influence on the velocity and temperature distribution, which transitively 

affects the entropy generation within the channel. The major conclusions of the present 

problem are 

 For ,cττ > the solution of local rate of heat transfer has two branches, namely, an 

upper branch and a lower branch. It is found that at the lower solution branch which 

is physically acceptable, the value of Nusselt number decreases with the increase of 

radiation parameter.  

 At the region of the left porous wall, there occur backflow as the porosity parameter 

Rs increases. An increase in the thermal conductivity variation parameter and 

Radiation parameter reduces temperature distribution due to faster heat loss. 

Increasing Hartmann number and nanoparticles solid volume fraction cause the 

reduction of fluid velocity near the centerline uniformly because of the acting of 

Lorentz force and reduction of buoyancy force. 

 For regions of the flow field at a greater velocity gradient, i.e., adjacent to the porous 

walls, the total entropy generation rate is dominated by the effects of fluid friction. 

Moreover, in the regions of the flow field at a higher and more uniform velocity 

distribution, i.e., the central region of the channel, the total entropy generation rate is 

dominated absolutely by the effects of fluid heat transfer. 

 

The stability of MHD Jeffery-Hamel nanofluid flow through divergent channel is studied in 

the next chapter. 
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Chapter VI 

Stability of Magnetohydrodynamic Jeffery-Hamel Nanofluid Flow 

through Divergent Channel4 

 

 

The effects of Cu-water nanofluid on the entropy generation of the nonlinear 

magnetohydrodynamic Jeffery-Hamel flow through divergent channel are analyzed in the 

present study. The basic governing equations are solved into series solution using a semi-

numerical analytical technique called Hermite- Padé approximation. The velocity profiles, 

temperature distributions and entropy generation rates with Bejan profiles are presented in 

divergent channel for various values of nanoparticles solid volume fraction, Hartmann 

number, Eckert number, Reynolds number and channel angle. The dominating singularity 

behavior of the problem is analysed numerically and graphically. The critical relationship 

between the parameters is studied to observe the instability of the problem for nanofluid. 

6.1  Introduction 

The study of flows through non parallel walls, inclined at an angle, i.e., in convergent-

divergent channel is very important due to its industrial, aerospace, chemical, civil, 

environmental, mechanical and bio- mechanical engineering applications. Jeffery (1915)  

and Hamel (1916)  first studied the two-dimensional steady motion of a viscous fluid 

through convergent-divergent channels which is called classical Jeffery-Hamel flow in fluid 

dynamics. 

The theory of MHD is inducing current in a moving conductive fluid in the presence of 

magnetic field; such induced current results force on ions of the conductive fluid. Damping 

and controlling of electrically conducting fluid can be achieved by means of an 

electromagnetic body force (Lorentz force), which is produced by the interaction of an 
                                                            
4 Part of this chapter appears as a published paper: International Journal of Engineering, 

Transaction A, Vol. 28, No.4, pp. 599-607(2015).  
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applied magnetic field and an electric current that is usually externally supplied. The 

theoretical study of MHD channel has been a subject of great interest due to its extensive 

applications in designing cooling systems with liquid metals, MHD generators, accelerators, 

pumps, and flow meters (Cha et al. (2002), Tendler(1983)). The classical Jeffery-Hamel 

problem was extended in Axford (1961) to include the effects of external magnetic field on 

conducting fluid. Motsa et al. (2010) found the solution of the nonlinear equation for the 

MHD Jeffery-Hamel problem by using novel hybrid spectral-homotopy analysis method. 

Moghimi et al. (2011) also solved the Jeffery-Hamel flow problem by using the homotopy 

perturbation method. Taking into account the rising demands of modern technology, 

including chemical production, power station, and microelectronics, there is a need to 

develop new types of fluids that will be more effective in terms of heat exchange 

performance. The term ‘nanofluid’ was envisioned to describe a fluid in which nanometer-

sized particles were suspended in conventional basic fluids by Choi (1995). These 

nanoparticles are good conductors of heat and enable the base fluids to enhance their 

thermal properties. The effects of magnetic field and nanoparticles on the Jeffery-Hamel 

flow using a powerful analytical method called the Adomian decomposition method were 

studied by Sheikholeslami et al. (2012). Moradi et al. (2013) investigate the effect of three 

types of nanoparticles Cu, TiO2 and Al2O3 on Jeffery-Hamel flow using Differential 

Transformation Method (DTM). Moreover, the effects of heat transfer and viscous 

dissipation on the Jeffery-Hamel flow of nanofluids are investigated by Moradi et al. (2015). 

Finally, a study of velocity and temperature slip effects on flow of water based nanofluids in 

converging and diverging channels was done by Syed et al. (2015). 

For any thermal system, as the entropy generation increases, the energy decreases. Thus, to 

enhance the efficiency of the system, the rate of entropy generation must be effectively 

controlled. Bejan (1996) studied the entropy generation for forced convective heat transfer 

due to temperature gradient and viscosity effects in a fluid. Bejan (1979) also presented 

various reasons for entropy-generation in applied thermal engineering where the generation 

of entropy destroys the available work of a system. 

In this study, our objective is to investigate the stability and entropy generation on 

magnetohydrodynamic Jeffery-Hamel nanofluid flow through divergent channel considering 

viscous dissipation effect. Using an appropriate similarity transformation, the well-known 



104 

 

governing partial differential equations are reduced to ordinary differential equations. The 

resulting equations are solved applying the power series along with Hermite–Padé 

approximation (HPA). The effects of various thermophysical parameters on velocity field, 

temperature distributions, entropy generation rate with Bejan profiles are discussed in detail.  

The change in singular points for channel angle and flow Reynolds number by the effect of 

nanofluids and the critical relationship between the parameters is an extension of the 

available literature. A comparative study between the previously published results and the 

present results in a limiting sense reveals excellent agreement between them.  

6.2  Physical Configuration 

Consider a steady two-dimensional laminar incompressible flow of electrically 

conducting viscous Cu-water nanofluid from a source or sink between two channel walls 

intersect at an angle 2α in the axis of z. A cylindrical coordinate system ),,( zr ϕ is used and 

assume that the velocity is purely radial and depends on r and ϕ so that there is no change in 

the flow parameter along the z-direction.  

 

 

 

 

 

      

                                     

Figure 6.1 Geometry of the problem 

The top and bottom walls of the channel are heated with uniform temperature aT . It is 

presumed that there is a magnetic field acting in the vertical downward direction to the top 

wall of the channel.  

r  

α

U  ϕ

0B  

Source or Sink 

0, == uTT a  

0, == uTT a  
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6.3  Mathematical Formulation 

The continuity equation, the Navier-Stokes equation and energy equation considering 

viscous dissipation in reduced polar coordinates are  
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∂
∂ ϕ
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Where 0B is the electromagnetic induction, σ is the conductivity of the fluid, ),( ϕru is the 

velocity along radial direction, T is the dimensional temperature, p is the fluid pressure.  

 

The boundary conditions are as follows: 

At the centerline of the channel: 0=ϕ  

UrurTru
==

∂
∂

=
∂

∂ ),(,0),(,0),( ϕ
ϕ
ϕ

ϕ
ϕ   

At the boundary of the channel: αϕ =  

aTTru == ,0),( ϕ  
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The effective density nfρ , the effective dynamic viscosity nfµ , and the kinematic viscosity 

nfν of the nanofluid are given as Sheikholeslami et al. (2013) 
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Hereφ is the solid volume fraction. 

The corresponding effective thermal conductivity and heat capacity of nanofluid are 
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Considering purely radial flow, the continuity Eq. (6.3.1) implies that   

),()( ϕϕ rruf =                                                            (6.3.7) 

The dimensionless form of the velocity and temperature can be obtained according to Hamel 

(1916) as 
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Where α is the channel angle and ϕ is any angle. 

Substituting Eqn. (6.3.8) into Eqns. (6.3.2-6.3.4) and eliminating the pressure term p, the 

nonlinear ordinary differential equations in terms of velocity profile )(ηf  and temperature 

field )(ηθ can be written as  
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Where Prandtl number Pr, Eckert number Ec, Hartmann number Ha, Reynolds number Re 

and channel angleα . 
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The local Nusselt number Nu and heat transfer rate are 
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From equations (6.3.8) and (6.3.13), the Nusselt number results in the following form 
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6.4  Series Analysis 

The following power series expansions are considered in terms of the parameter α as 

equations (6.3.9) and (6.3.10) are non-linear for velocity and temperature fields. 
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The non-dimensional governing equations are then solved into series solutions by 

substituting the series (6.4.1) into Eqns. (6.3.9), (6.3.10) and the boundary conditions 

(6.3.11) and equating the coefficients of powers ofα . With the help of MAPLE, we have 

computed the first 42 coefficients for the series of the velocity )(ηf  and temperature 

)(ηθ in terms ofα , Ha , Re, Pr, Ec,φ , 1A , 2A , 3A  . The first few coefficients of the series for 

)(ηf  and )(ηθ are as follows: 
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The obtained power series solutions are valid for very small values ofα . Then, the series are 

analysed applying Hermite- Padé approximation method. 

 

6.5  Entropy Generation   

The flow characteristics within the channel with isothermal walls in the presence of 

magnetic field and viscous dissipation are irreversible. The exchange of energy and 

momentum within the fluid and at solid boundaries causes inequilibrium conditions which 

leads to continuous entropy generation. Following Bejan (1996), the volumetric entropy 

generation rate for fully developed flow in cylindrical coordinates is given as 
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Where the first term on the right side of equation (6.5.1) is the irreversibility due to heat 

transfer and the second term is the irreversibility due to viscous dissipation. The entropy 

generation number can be expressed in dimensionless form as, 
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The Bejan number is given as  
SN

NBe 1=  

It is noteworthy that the Bejan number ranges from 0 to 1 and 0=Be is the limit where the 

irreversibility is dominated by fluid friction effects. 1=Be is the limit where the 

irreversibility due to heat transfer dominates the flow system because of finite temperature 
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differences. The contributions of heat transfer and fluid friction to entropy generation are 

equal when 2
1=Be . 

6.6  Results and Discussion 

The main objective of the current study is to analyze the effect of nanoparticles and 

magnetic field on the irreversibility of Jeffery-Hamel flow of viscous incompressible 

conducting fluid by using Hermite-Pade' approximants. The effects of pertinent physical 

parameters namely nanoparticles volume fractionφ , channel angleα , Prandtl number Pr, 

Eckert Ec, Reynolds number Re and Hartman number Ha on velocity and temperature field 

are discussed quantitatively.   

Table 6.1 Comparison of numerical values of local Nusselt number α Nu 

at .4.0,2.6Pr,0 === EcHa  

1.0=φ  2.0=φ  

Re Present 

study 

Moradi et al. 

(2013) 

Relative 

Difference 

Present 

study 

Moradi et al. 

(2013) 

Relative 

Difference

10 4.11539 4.11857 0.08 % 5.40418 5.50722 1.9 % 

30 3.77336 3.77626 0.08 % 4.93999 5.03454 1.9 % 

50 3.65216 3.655 0.08 % 4.82152 4.91475 1.9 % 

 

 

Table 6.1 represents a comparison of the local Nusselt number obtained in the present work 

for different volume fractions of nanofluids with 4.0,2.6Pr,0 === EcHa and obtained by 

Moradi et al. (2013) which indicated that there is an excellent agreement between these two 

results. In order to validate the accuracy of our numerical procedure, the velocity in absence 

of nanofluids and magnetic field effects is considered as shown in Table 6.2. Our results 
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agreed perfectly with the one reported by Sheikholeslami et al. (2012) at 
o5,25Re == α  

and Motsa et al. (2010) at 
o5,50Re == α respectively.  

Table 6.2 Comparison of numerical values for velocity obtained in the present work with available 

literature when 0,0 == Haφ  

 o5,25Re == α  o5,50Re == α  

η  Present 

Study 

Sheikholeslami 

et al. (2012) 

Relative 

Difference

Present 

Study 

Motsa et al. 

(2010) 

Relative 

Difference

0.0 1.000000 1.000000 0 % 1.000000 1.000000 0 % 

0.1 0.986667 0.986637 0.003 % 0.982427 0.982431 0.0004 % 

0.2 0.947244 0.947127 0.012 % 0.931211 0.931225 0.0015 % 

0.3 0.883391 0.883146 0.028 % 0.850581 0.850609 0.0033 % 

0.4 0.797654 0.797259 0.05 % 0.746745 0.746788 0.0058 % 

0.5 0.693175 0.692638 0.078 % 0.626890 0.626945 0.0088 % 

0.6 0.573358 0.572716 0.11 % 0.498170 0.498231 0.012 % 

0.7 0.441526 0.440850 0.15 % 0.366903 0.366964 0.017 % 

0.8 0.300617 0.300013 0.2 % 0.238071 0.238122 0.021 % 

0.9 0.152943 0.152552 0.25 % 0.115120 0.115151 0.027 % 

1.0 0.000000 0.000000 0 % 0.000000 0.000000 0 % 
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6.6.1 Singularity Analysis 

For the analysis, we choose the series (6.4.2) for the functional form as follows 

( )2
1=ηf  

which is related to the centerline velocity of the divergent channel. From the results shown 

in Table 6.3 it appears that there is a pair of complex conjugate singularities along the 

imaginary axis in the complex α plane. The singularities have the form  

( ) ( )δααη cBAf ±+= ~2
1  

with, .21=δ  The values of δ confirm that cα  is a branch point using HODA. Moreover, it 

is seen from Table 6.4 that the critical channel semi-angle cα decreases uniformly for the 

increasing values of nanoparticles volume fractionφ .  

A similar phenomenon is observed in Table 6.5 that there is a pair of complex conjugate 

singularities of the flow Reynolds number along the imaginary axis in the complex Re plane 

and it is a branch point verified by the values ofδ . Table 6.6 represents that cRe also 

diminishes rapidly for the rising values of φ  with 1=Ha . Hence, nanofluids act in a similar 

manner for both types of singular points, i.e., the enhancement of nanoparticles volume 

fraction reduces the magnitudes of the singular points.  

The High-order Differential Approximant (2002) is applied to the series (6.4.2) in order to 

determine the critical relationship between the parameters Reandα . Figure 6.2 displays the 

critical relation between the channel angular width α and flow Reynolds number Re for 

various values ofφ . It is found that as α  increases then Re  decreases and conversely 

Re increases whenα decreases. This implies that both channel angle and Reynolds number 

are inversely proportional to each other which is an excellent agreement with the classical 

Jeffery-Hamel flow when 0=φ . There is a notable variation in the curves at 1.0=φ and 

2.0=φ  than in the curve at 0=φ . Therefore, nanofluid has a significant impact on the 

stability of Jeffery-Hamel flow. 
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Table 6.3 Estimates of critical angles  cα  and corresponding exponentδ at  0,1,20Re === φHa . 

d N cα  cα  δ  

2 7 i6584999.03182866.0 ±  0.73138813 i114586.00.466261±  

3 12 i6026430.03251003.0 ±  0.68473998 i007775.00.499587 ±  

4 18 i6006401.03259369.0 ±  0.68337648 i001907.00.500438 ±  

 

Table 6.4 Variation of critical angles  cα  and corresponding exponent δ for different φ at 

.1,20Re == Ha  

φ  cα  cα  δ  

0 i6006401.03259369.0 ±  0.68337648 i001907.00.500438 ±  

0.05 i4944919.02568848.0 ±  0.55723614 i004736.00.496772 ±  

0.1 i4426434.02259055.0 ±  0.49695731 i005297.00.495870 ±  

0.15 i4187484.02122295.0 ±  0.46945887 i005544.00.495435 ±  

Table 6.5 Estimates of critical Reynolds number  cRe  and corresponding exponent δ at 

.0,1,0.1 === φα Ha  

d N cRe  cRe  δ  

2 7 i133.67837257.144629 ±  145.380245 i36868.066719.0 ±  

3 12 i123.84452758.149392 ±  136.816734 i00667.048726.0 ±  

4 18 i124.06752558.425688 ±  137.136107 i00297.048691.0 ±  
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Table 6.6 Numerical values of critical  cRe  and corresponding exponent δ at  1,0.1 == Haα for 

different values of  .φ  

φ  cRe  cRe  δ  

0 i124.06752558.425688 ±  137.136107 i00297.048691.0 ±  

0.05 i100.92338847.524761 ±  111.553275 i00297.047691.0 ±  

0.1 i944903.9842.353306 ±  99.417745 i00298.047690.0 ±  

0.15 i948378.84998962.93 ±  93.894323 i00299.047690.0 ±  

 

 

 

 

 

 

 

 

 

Figure 6.2 Critical relation between α  and Re for different values ofφ  at  1=Ha  obtained by HODA 

for 7=d . 

6.6.2 Effect of Channel Angle 

The combined effects of channel angle and magnetic field on velocity profiles are observed 

in Figure 6.3. Figure 6.3 (a) exhibits no significant change in the velocity curve due to the 

increase of Hartmann number for lower channel angle.  For increasing values in opening 

channel angle in Figure 6.3 (b), the boundary layer thickness increases and the velocity near 
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the upper wall increases minorly when Ha increases.  However, the backflow occur in 

diverging channel for higher values of 010=α at a fixed Reynolds number when 0=Ha  

seen in Figure 6.3(c). Whereas to diminish the backflow an increased Ha is required. It can 

be concluded from Figure 6.3 (c) that as channel angle increases, the variation of velocity is 

observed more with the changing values of Ha.  

 

 

                        

       (a) 1.0,5.2 == φα o  

                                                                                     (b) 1.0,5 == φα o  

 

 

 

 

 

 

   

       

                                      (c) 1.0,10 == φα o  

 

 

 

Figure 6.3 Velocity profiles in divergent channel with different values of α  and Ha at  .50Re =  
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Figure 6.4 Effect of channel angle on (a) temperature distributions, (b) Entropy rates, (c) Bejan 

profiles respectively at  ,1.7Pr,5.0 ==Ec 100,50Re,1.0 === Haφ . 

 

The velocity curves show that the rate of alteration is significantly reduced with the increase 

of Hartmann number. Thus, the transverse magnetic field opposes the alteration phenomena 
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clearly. As the variation of Ha leads to the variation of the Lorentz force due to magnetic 

field and the Lorentz force produces more resistance to the alternation phenomena. Figure 

6.4 represents the consequences of channel angle on temperature distribution, entropy 

generation rate and Bejan number respectively. As we are taking water as the base fluid, 

therefore, the value of Prandtl number Pr is fixed as 7.1. Figure 6.4 (a) is sketched to see the 

effects of increasing angleα on temperature field. Because of an increase in the gap between 

the walls, the temperature of the fluid is seen to be getting higher. This increase is major at 

the centreline of the channel. Also, the temperature is seen to be higher for nanofluid and the 

larger value of thermal conductivity coefficient is a major cause for this increment in 

temperature. The entropy generated by fluid friction 2N is usually more than that of 1N , the 

entropy produced by fluid heat transfer. Thus, SN  is contributed mainly by 2N throughout 

the entire flow field. However, in the areas of the flow field characterized by a faster flow 

rate, the velocity gradient reduces and hence 2N also decreases. Figure 6.4 (b) illustrates the 

entropy generation rate with the effect of increasing angle ,α where sN is close to zero at 

centerline of the channel as discussed above, but sN increases gradually to the upper hot 

wall. Moreover, as α increases, sN increases at the hot wall due to the rising of temperature 

as discussed in Figure 6.4 (a). Figure 6.4(c) displays the distribution of Bejan number (Be) 

with the effect ofα . It is noticed from the figure that Be has a value of zero at the channel 

centerline region since, as discussed previously, fluid friction irreversibility is dominant 

there because of faster flow rate. At the top heated wall, Be increases to a maximum value of 

approximately 1 due to the increase in the contribution by 1N to the overall entropy 

generation. It is to be seen that the heat transfer irreversibility dominates the flow process at 

the hot wall of the channel and Be increases uniformly asα increases at that region. 

6.6.3  Effect of flow Reynolds number 

Figure 6.5 represents the effect of Reynolds number on velocity profiles 

at 1.0,5 == φα o with different values of Hartmann number. In Figure 6.5(a) for 50Re = , 

the velocity increases gradually when Hartmann number increases and no backflow is 

observed.  It can be seen from Figure 6.5(b) that backflow starts when magnetic field is 
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absent at 100Re =  and these properties are reduced with the rising values of Hartmann 

number. The backflow enlarges at high Reynolds number and hence the larger magnetic 

field is required to abolish it.  

 

                        

                

              (a) 50Re =                                                                                     (b) 100Re =  

    

 

 

 

 

 

 

                                         

                                (c) 125Re =                                                         (d) 150Re =  

   

 

 

 

 

Figure 6.5 Velocity profiles in divergent channel with different values of Re and Ha at 

1.0,5 == φα o . 

Moreover, it is detected from Figure 6.5(c) at 125Re =  that the backflow is lessened at 

,200=Ha whereas there occurs backflow for each values of Hartmann number. A reverse 
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phenomenon is observed in Figure 6.5(d) beyond the critical Reynolds number 

at ,5.0=η such that the back flow enlarges due to the increasing values of Ha which is 

contradictory to the previous cases. The effect of Reynolds number on temperature field is 

shown in Figure 6.6(a) in such a way that an increase in the values of Re generates 

enhancement of the temperature of the fluid particularly more at the centreline of the 

channel. It implies that the increase of viscous force is also responsible for an increase in the 

temperature. On the other hand, in the areas of the flow field characterized by a faster flow 

rate, the velocity gradient reduces and hence entropy generate rate sN also decreases. Figure 

6.6 (b) demonstrates that the entropy generation rate reduces to zero at the centerline with 

the increasing values of Re as mentioned above, whereas sN increases gradually to the upper 

hot wall. It is remarkable to notice that the behaviour of sN  is irregular at 150Re = which is 

beyond the critical Reynolds number. Almost identical behavior for the Bejan number is 

observed in Figure 6.6(c) for rising Re like channel angleα . The fluid friction irreversibility 

is dominant at the centerline whereas the heat transfer irreversibility is dominant at the hot 

wall of the channel.  

6.6.4  Effect of Nanoparticles volume fraction 

A Cu-water nanofluid flow is considered and the effects of nanoparticles volume fraction on 

velocity and temperature distributions, irreversibility of the system are analysed in this 

section. It is assumed that the base fluid and the nanoparticles are in thermal equilibrium and 

no slip occurs between them. Figure 6.7 deal with the effect of nanoparticles volume 

fraction ( 2.0,1.0,05.0,0=φ ) on the velocity profiles with the variation of channel angle 

( oo 5,5.2=α ) and Reynolds number ( 150,100Re = ).The equivalent thermal expansion 

coefficient of the nanofluid is less than that of base water. As a result, the buoyancy force 

acting on the nanofluid is also less than that acting on the pure water, and hence the velocity 

decreases as nanoparticles volume fraction increases. In addition, since the density and 

viscosity of the nanofluid are greater than those of base water, the velocity distribution 

within the channel is more uniform for nanofluid. The characteristics of velocity profiles are 

similar as φ  increases in both Figure 6.7 (a, b) at fixed Reynolds number 100Re = in 

absence of magnetic field, although there occurs back flow at increasing values of α as 
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noted in Figure 6.7 (b) and this back flow extended for increasing values of φ . Whereas 

there observed an irregular behaviour of the velocity field in Figure 6.7 (c) at 150Re =  just 

exceeding the critical values of Re with the increasing values of 2.0,1.0=φ . 
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Figure 6.6 Effect of Reynolds number on (a) temperature distributions, (b) Entropy rates, (c) Bejan 

profiles respectively at  ,5,1.7Pr,5.0 0=== αEc 1.0,100 == φHa . 
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Figure 6.7 Effects of nanoparticles volume fraction on velocity profiles for various values of α and 
Re at 0=Ha . 

 
Therefore, increasing volume fraction of nanoparticles in the nanofluid forms instability in 

the fluid flow at high Reynolds number.  
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Figure 6.8 Velocity profiles for several values of Hartmann number and solid volume fraction 

at 50Re,5 == oα . 

Figure 6.8 predicts the combined effects of magnetic field and nanoparticles volume fraction 

on the velocity field for divergent channel with fixed Reynolds number. The figure 

represents a sensible increases in the velocity with rising Hartmann number for both viscous 

and nanofluid near the wall that coincide with those results of Sheikholeslami et al. (2012).  

It is also observed that for all Hartmann numbers there is no backflow in the viscous 

fluid 0=φ , nevertheless backflow starts for nanofluid with 0=Ha at 50Re,5 == oα and 

this phenomenon is reduced with the rising values of Hartmann number. Figures 6.9 (a, b, c) 

illustrate the effect of nanoparticles volume fraction φ on the development of temperature 

distribution, entropy generation rate and Bejan profiles respectively which are plotted for 

Prandtl number 1.7Pr = , Reynolds number 50Re = , Hartmann number 100=Ha  and 

angle o5=α . From Figure 6.9 (a), it is seen that an increase in the nanoparticles volume 

fraction leads to an homogeneous increase in the temperature field across the centerline 

region of the channel. The entropy generation rate sN  is almost linear in pure base fluid 

while there is an identically minor increases of sN for the escalating values of φ  as shown in 
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Figure 6.9 (b). The Bejan profiles in Figure 6.9 (c) depict that the dominant effect of heat 

transfer irreversibility at the heated wall improves by the increases ofφ . The thermal 

conductivity of nanofluid is higher than base water and it becomes more by the increases 

ofφ , which enhances the dominant effect of heat transfer irreversibility.   
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Figure 6.9 Effect of nanoparticles volume fraction on (a) temperature distributions, (b) Entropy 

rates, (c) Bejan profiles respectively at  ,50Re,1.7Pr,50 ===α 100=Ha . 
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6.6.5  Effect of Eckert number 

The temperature profiles and entropy generation with Bejan profiles are plotted against 

channel half width in divergent channel for different values of Eckert number Ec with  

100and50Re,5,1.7Pr 0 ==== Haα in Figure 6.10.  
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Figure 6.10 Effect of Eckert number on (a) temperature distributions, (b) Entropy rates, (c) Bejan 

profiles respectively at  ,1.0,5,1.7Pr 0 === φα 100,50Re == Ha . 
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The temperature field is affected directly by the dimensionless velocity distribution of the 

flow field when the effects of viscous dissipation are taken into consideration. It is noticed 

from Figure 6.10 (a) that the fluid temperature increases with increasing parametric values 

of viscous heating parameter Ec. The entropy generate rate raises rapidly towards the hot 

wall of the channel as Eckert number increases noticed in Figure 6.10 (b) which is expected 

as mentioned above. Also, the value of Bejan number is higher at the hot wall by the 

increases of Ec in Figure 6.10 (c) indicates the dominance of heat transfer irreversibility. 

6.7  Conclusion 

The entropy generation of magnetohydrodynamic Jeffry-Hamel flow with nanofluid is 

investigated using a special type of Hermite-Padé approximation technique. A comparison is 

made between the available results and the present approximate solutions.The accurate 

numerical approximation of the critical parameters of the flow is obtained.  The numerical 

study indicates that HPA is a powerful approach for solving this problem. The influences of 

various physical parameters on the velocity field, temperature distribution and entropy 

generation rate with Bejan profile are discussed in detail. The basic conclusions are as 

follows:  

 The dominating singularity behaviour of the wall divergence semi-angle and flow Reynolds 

number is analysed with the effect of nanoparticles volume fraction. The critical relationship 

between the parameters with the effect of nanoparticles coincides with the conjecture of 

classical Jeffery-Hamel flow. 

 Increasing channel angle and Reynolds number leads to backflow near the wall of the 

channel. Increasing Hartmann number produces to backflow reduction. High Hartmann 

number is required to decline of backflow for larger angles or Reynolds numbers. The 

velocity decreases as nanoparticles volume fraction increases. 

 The increasing values of the pertinent physical parameters namely channel angle, flow 

Reynolds number, Eckert number enhances temperature field along the channel centerline 

region. Also temperature increases uniformly as nanoparticles volume fraction increases.  

 Entropy generation is higher near the hot solid wall in comparison to the channel centerline. 

Fluid friction irreversibility dominates the entropy generation near the channel centerline 

while heat transfer irreversibility dominates near the hot solid wall. Fluid friction 
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irreversibility is the sole contributor to the total entropy generation along the channel’s 

centerline. Nanofluid enhances the dominant effect of heat transfer irreversibility in entropy 

generation of the system. 

 

The following chapter discusses the stability of magnetohydrodynamic flow through 

convergent-divergent channel for different nanofluids. 
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Chapter VII 

 

Stability of Magnetohydrodynamic Jeffery-Hamel Flow through 

Convergent-Divergent Channel with different Nanoparticles5 

 

 

The effects of three different nanoparticles and magnetic field on the entropy generation of 

the nonlinear Jeffery-Hamel flow through convergent-divergent channel are analyzed in the 

present study. A similarity transform has been employed to reduce the nonlinear partial 

differential equations to a system of nonlinear ordinary differential equations which are 

then solved using power series coupled with a semi-numerical analytical technique called 

Hermite- Padé approximation. The velocity profiles, temperature distributions and entropy 

generation rates with Bejan profiles are presented in convergent-divergent channels for 

various values of nanoparticles solid volume fraction, Hartmann number, Eckert number, 

Reynolds number and channel angle. The dominating singularity behavior of the problem is 

analysed numerically and graphically for nanofluid. The critical relationships among the 

parameters are also performed qualitatively with the effect of different nanoparticles. 

7.1  Introduction 

The two dimensional flow of a viscous, incompressible fluid between converging/diverging 

channels separated by a fixed angle and driven by a source or sink at the apex is known as 

the classical Jeffery-Hamel flow which was studied first by Jeffery (1915) and Hamel 

(1916). It has important applications particularly in fluid mechanics, chemical, mechanical 

and bio-mechanical engineering. 

Many available studies have considered different properties related to this problem and have 

tried to investigate the flow characteristics by varying the angle between the walls 

                                                            
5  Part of this chapter is accepted for publication as paper in Journal of Applied Fluid 

Mechanics, Vol. 9, No. 2 (2016). 
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(Rosenhead (1940), Batchelor (1967), Sadri (1997), Hamadiche (1994)). These flows have 

discovered similarity solutions of the Navier-Stokes equations depending on two non-

dimensional parameters, the flow Reynolds number and channel angular width. Fraenkel 

(1962) then investigated the laminar flow in symmetrical channels with slightly curved 

walls. In his analysis the velocity field of the flow was obtained as a power series in small 

curvature parameter where the leading term is the Jeffery-Hamel solution. Sobey and Drazin 

(1986) studied some instabilities and bifurcations of two-dimensional Jeffery-Hamel flows 

using analytical, numerical and experimental methods. Moreover, the steady flow of a 

viscous incompressible fluid in a slightly asymmetrical channel was studied by Makinde 

(1997). He expanded the solution into a Taylor series with respect to the Reynolds number 

and performed a bifurcation study.  

Meanwhile, the study of electrically conducting viscous fluid flowing through 

convergent/divergent channels under the influence of an external magnetic field is not only 

fascinating theoretically, but also finds applications in mathematical modelling of several 

industrial and biological systems. Clearly, the motion in the region with intersecting walls 

may represent a local transition between two parallel channels with different cross-sections, 

an expansion or a contraction of the flow. Makinde (2006) investigated the MHD flows in 

convergent- divergent channels which was an extension of the classical Jeffery-Hamel flows 

to MHD. He interpreted that the effect of external magnetic field works as a parameter in 

solution of the MHD flows in convergent - divergent channels. Makinde (2007) investigated 

the temporal development of small disturbances in MHD Jeffery-Hamel flows to understand 

the stability of hydromagnetic steady flows in convergent-divergent channels at very small 

magnetic Reynolds number Rm using Chebyshev spectral collocation method. However, a 

numerical investigation of the effect of arbitrary magnetic Reynolds number on steady flow 

of an incompressible conducting viscous liquid in convergent-divergent channels under 

MHD was presented by Makinde (2008). He solved the non-linear 2D Navier-Stokes 

equations modeling the flow field using a perturbation technique applying the special type of 

Hermite-Pade´ approximation method and a bifurcation study was also performed. The 

increasing values of magnetic Reynolds number cause a general decrease in the fluid 

velocity around the central region of the channel whereas the flow reversal control is also 

observed by increasing magnetic field intensity.  
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Presently there is an increasing attention of the researchers in the analysis of nanofluids.  

The word nanofluid was introduced by Choi (1995). In fact a nanofluid is a dilute 

suspension of solid nanoparticles with the average size below 100 nm in a base fluid, such 

as: water, oil and ethylene glycol. These nanoparticles are good conductors of heat and 

enable the base fluids to enhance their thermal properties. The effects of magnetic field and 

nanoparticles on the Jeffery-Hamel flow using a powerful analytical method called the 

Adomian decomposition method were studied by Sheikholeslami et al. (2012). Moreover, 

the effects of heat transfer and viscous dissipation on the Jeffery-Hamel flow of nanofluids 

are investigated by Moradi et al. (2015). Finally, a study of velocity and temperature slip 

effects on flow of water based nanofluids in converging and diverging channels was done by 

Syed et al. (2015). 

The purpose of this study is to investigate the stability and entropy generation analysis on 

magnetohydrodynamic Jeffery-Hamel nanofluid flow through convergent - divergent 

channel considering viscous dissipation effect. The resulting problem is solved applying the 

power series along with Hermite–Padé approximation (HPA). The effects of various 

thermophysical parameters namely nanoparticles volume fractionφ , Hartmann number Ha, 

Eckert number Ec and channel angle on velocity fields, temperature distributions, entropy 

generation rates with Bejan profiles are discussed in detail.  The critical values and 

bifurcation diagrams of channel angle and flow Reynolds number with the effect of φ for 

Cu, 322 OAl,TiO -nanoparticles are studied numerically and graphically. The critical 

relationships among the parameters are also shown to interpret the effect of nanoparticles 

solid volume fraction as an extension of the available literature. A comparative study 

between the previously published results and the present results in a limiting sense reveals 

excellent agreement between them.  

7.2  Derivation of Mathematical Equation 

 Consider a steady two-dimensional laminar incompressible viscous nanofluid flow from a 

source or sink between two channel walls intersect at an angle 2 .α A cylindrical coordinate 

system ),,( zr ϕ is used and assumed that the velocity is purely radial depends on r and ϕ so 

that there is no change in the flow parameter along the z-direction. Further it is presumed 
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that there is an external magnetic field acting vertically downward to the top wall. Letα be 

the semi-angle and the domain of the flow be αϕα <<− . The continuity equation, the 

Navier-Stokes equations and energy equation considering viscous dissipation in reduced 

polar coordinates are 
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Figure 7.1 Geometry of the problem 
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The flow is assumed to be symmetrically radial, so that 0=v . Then the volumetric flow rate 

through the channel is                           

ϕ
α

α
durQ ∫−=                                                                                        (7.2.5) 

The boundary conditions are  

aTTru == ,0),( ϕ   at αϕ ±=                                                                  (7.2.6) 

Where 0B is the electromagnetic induction, σ is the conductivity of the fluid, u is the 

velocity along radial direction and p is the fluid pressure. The effective density nfρ , the 

effective dynamic viscosity nfµ , and the kinematic viscosity nfν of the nanofluid are given as 

Sheikholeslami et al. (2013).  
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The corresponding effective thermal conductivity and heat capacity of nanofluid are 
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Here, φ is the solid volume fraction of the nanoparticles.  

If it requires ,0≥Q then for 0>α the flow is diverging from a source at 0=r . 

Let ),( ϕψψ r= be the stream function, then 
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Introducing the dimensionless variables 
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The governing equations (7.2.2-7.2.4) reduce to the following ordinary differential equations 
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The boundary conditions are reduced as follows: 

1,0,1 ==′±= θFF  at 1±=η                                                               (7.2.11) 
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Where Reynolds number Re, Prandtl number Pr, Eckert number Ec, Hartmann number Ha 

and channel angleα . Here 
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7.3  Series Analysis 

The following power series expansions are considered in terms of the parameter α as 

equations (7.2.9-7.2.10) are non-linear for stream function and temperature profile  
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The non-dimensional governing equations are then solved into series solution by substituting 

the Eq. (7.3.1) into Eqs. (7.2.9) and (7.2.10) with boundary conditions (7.2.11) and equating 

the coefficients of powers of α .  
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With the help of algebraic programming language MAPLE, we have computed the first 18 

coefficients for the series of the stream function )(ηF and temperature )(ηθ in terms 
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ofα , Ha , Re, Pr, Ec,φ , 1A , 2A , 3A . The first few coefficients of the series for )(ηF and )(ηθ  

are as follows: 
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Applying differential and algebraic approximant methods to the series above, we determine 

the comparison between the present and previous published results and the changes in 

bifurcation graphs for the channel angle and flow Reynolds number by the positive effect of 

nanoparticles volume fraction. The effect of magnetic field and nanofluid on velocity field, 

temperature profile and entropy generation are also shown graphically using differential 

approximant method.  

7.4  Irreversibility of the System   

The properties of flow in a convergent-divergent channel with isothermal walls in the 

presence of magnetic field and viscous dissipation are irreversible. The inequilibrium 

conditions arise due to the exchange of energy and momentum within the fluid and at solid 

boundaries which produces continuous entropy generation. Following Bejan (1996), the 

volumetric entropy generation rate for fully developed flow in cylindrical coordinates is 

given as 
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Where the first term on the right side of equation (7.4.1) is the irreversibility due to heat 

transfer and the second term is the irreversibility due to viscous dissipation. The entropy 

generation number can be expressed in dimensionless form as, 
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The Bejan number is given as  
SN

NBe 1=  

It is notable that the Bejan number ranges from 0 to 1 and 0=Be is the limit where the 

irreversibility is dominated by fluid friction effects. The irreversibility due to heat transfer 

dominates the flow system at the limit 1=Be because of finite temperature differences. The 

contributions of heat transfer and fluid friction to entropy generation are equal 

when 2
1=Be . 

7.5  Results and Discussion 

The current work analyzed the stability and irreversibility analysis of Jeffery-Hamel flow of 

viscous incompressible nanofluid with the effect of an external magnetic field using 

Hermite-Padé approximants. Three different types of nanoparticles are considered namely 

Cu, 322 OAl,TiO -nanoparticles. The understanding of the flow physics is achieved through 

a combination of numerical studies. There are six parameters of interest in the present 

problem, the effects of nanoparticles volume fractionφ , channel angleα , Prandtl number 

Pr, Eckert Ec, Reynolds number Re and Hartman number Ha.   
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7.5.1 Stability Analysis 

As mentioned earlier, we have computed for investigation the centre line axial velocity and 

radial velocity as two series in powers ofα , Re,φ , 1A  and Ha  by differentiating series 

(7.3.6) at 0=η and for all η  respectively in the following functional form. 

),,Re,,;0( 1AHaF φαη =′                                                                       (7.5.1) 

),,Re,,;( 1AHaF φαη′                                                                              (7.5.2) 

The dominating singularity behavior of the function ( )αF ′  represented by a series (7.5.1) 

may be written as 
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as ,cαα → where A and B are some constants and cα is the critical point with the critical 

exponentδ . If δ is a negative integer then the singularity is a pole; otherwise it represents a 

branch point singularity.     

The series (7.5.1) is analyzed by High-order differential approximant method (2002) to 

show the comparison between present results and the results of Fraenkel (1962) in Tables 

7.1-7.2 and the variation in the critical values cα and cRe with critical exponent δ for 

various values of nanoparticles solid volume fraction significantly. Table 7.1 exhibits the 

decreases of critical channel semi-angle cα  for four different increasing values of 

2.0,1.0,05.0,0=φ  as Cu-nanoparticles with water is the base fluid by considering 4=d  

and 18=N . The values of δ confirm that cα  is a branch point using HODA. Moreover, 

Table 7.2 implies that cRe decreases as significantly and uniformly for different increasing 

values of φ  and cRe  is a branch point verified by the values ofδ . The results of Tables 7.1-

7.2 show a good agreement with those results of Fraenkel (1962) and Makinde (2008) 

for .0=φ Hence the obtained results indicate that the presence of nanofluids forms early 

development in the instability of the flow process.  
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Table 7.1 Numerical values of critical angles  cα  and corresponding exponent δ at  20Re = and 

1=Ha for various values of  .φ  

 Present study  Fraenkel 

(1962) 

Makinde (2008) 

 

φ  cα  δ  cα  cα  

0 0.2691819115000 0.49515872313 0.269 0.269162 

0.05 0.2122678984825 0.49785814583 _ _ 

0.1 0.1963360739593 0.50387522948 _ _ 

0.2 0.1828175409234
 

0.49803815751 _ _ 

 

Table 7.2 Numerical values of critical  cRe  and corresponding exponent δ at  0.1=α and 1=Ha for 

various values of  .φ  

 Present study  Fraenkel (1962) Makinde (2008) 

φ  cRe  δ  cRe  cRe  

0 54.47285679258 0.5071160433 54.61 54.4717 

0.05 44.31499529952 0.4985570114 _ _ 

0.1 39.49239826450 0.4996886803 _ _ 

0.2 36.73956809792 0.4990504907 _ _ 

 

It is seen from Table 7.3 that the values of cα increases uniformly for 

322 OAlandTiOCu, nanoparticles respectively with different values of volume fraction as 

the nanoparticles are arranged in descending order of density. The similar behavior of the 

above three nanoparticles are observed in Table 7.4 for critical Reynolds number cRe . 
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Table 7.3 Variation of critical angles  cα  and corresponding exponent δ at  20Re = and  1=Ha for 

different types of nanoparticles. 

cα  δ  

φ  Cu 2TiO  32OAl   

0 0.2691819115000 0.2691819115000 0.2691819115000 0.49515872313 

0.05 0.2199306158629 0.2632195331417 0.2661882689428 0.49785814583 

0.1 0.1963360739593 0.2641976761310 0.2697502648509 0.50387522948 

0.2 0.1828175409234
 

0.2839251923510 0.2935579643072 0.49803815751 

 

Table 7.4 Variation of critical  cRe  and corresponding exponent δ at  0.1=α and 1=Ha for 

different types of nanoparticles. 

cRe  δ  

φ  Cu 2TiO  32OAl   

0 54.47285679258 54.47285679258 54.47285679258 0.5071160433

0.05 44.31499529952 53.25377222292 53.90465402042 0.4985570114

0.1 39.49239826450 53.46867304615 54.60503673870 0.4996886803

0.2 36.73956809792 57.61325087441 59.63881039190 0.4990504907

 

Employing the algebraic approximation method to the series (7.5.1) we have obtained the 

bifurcation graphs ofα and Re. Figure 7.2(a) shows the bifurcation diagram of α  with the 

effect of Cu-water nanofluid. We say that there is a simple turning point, fold or a saddle-

node bifurcation at .cαα =  It is interesting to notice that there are two solution branches of 

velocity when ,cαα < one marginal solution when ,cαα = and no solution when 

,cαα > where cα is the critical value of α for which the solution exists. It can be also noted 

here that the bifurcation points change from 150.26918191≈α  to 840.21226789≈α  and 
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then to 390.19633607≈α  for different values of nanoparticles volume fraction respectively 

at 1,20Re == Ha .  
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Figure 7.2 Approximate bifurcation diagrams against α  in the  ))0(,( F ′α  plane at  20Re,1 ==Ha  

(a) with different values of φ  for Cu‐water nanofluid and (b) for various types of nanoparticles at 

05.0=φ obtained by Drazin‐Tourigny method (1996) for 4=d . 
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Figure 7.3 Approximate bifurcation diagrams against Re  in the  ))0((Re, F ′  plane at 

1.0,1 == αHa (a) with different values of φ  for Cu‐water nanofluid and (b) for various types of 

nanoparticles at  05.0=φ obtained by Drazin‐Tourigny method (1996) for 4=d . 
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Figure 7.4 Critical relation between α  and Re at  1=Ha  (a) for different values ofφ  for Cu‐water 

nanofluid and (b) for various types of nanoparticles at  05.0=φ obtained by HPDA (2004) for 5=d . 
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Figure 7.5 Critical relation between α  and Ha for different values ofφ  at  02Re =  obtained by 

HPDA (2004) for 4=d . 

 

 

 

 

 

 

 

 

Figure 7.6 Critical relation between Re  and Ha for different values ofφ  at  1.0=α  obtained by 

HPDA (2004) for 4=d . 
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On the other hand, it is noticed from Figure 7.2(b) that the bifurcation curves of 

322 OAlandTiO -nanoparticles almost coincide whereas there is a significant variation for 

Cu-nanoparticles due to higher respective densities. Moreover, from Figure 7.3 (a) it is 

observed that the flow also bifurcates at cReRe = . Moreover, the bifurcation points 

decreases uniformly for three different values of nanoparticles volume fraction 

at 1,1.0 == Haα . Figure 7.3(b) represents the effect of three different nanoparticles on the 

bifurcation diagram of Re remarkably.  The conjecture of Figures 7.2 and 7.3 is consistent 

with the results shown in Tables 7.1 - 7.4 using differential approximation. One major 

finding is that, as nanoparticles volume fraction increases the critical channel angle and flow 

Reynolds number decreases. The temporal and spatial complexity of the observed flows 

changes in a succession of bifurcations until the onset of instability. Each bifurcation is 

marked by the onset of instability of one flow and followed by equilibrium to another stable 

flow.   

The High-order partial Differential Approximant HPDA (2004) is applied to the series 

(7.5.1) in order to determine the critical relationships among the 

parameters Reand, Haα with the effect of nanofluid. Figure 7.4 (a) displays the critical 

relation between the channel angular width α and flow Reynolds number Re for three 

various values of Cu-nanoparticles volume fraction. It is found that as α  increases then Re  

decreases and conversely Re increases whenα decreases. This implies that both channel 

angle and Reynolds number are inversely proportional to each other which is an excellent 

agreement with the previously established results obtained by Fraenkel (1962) for 0=φ  in 

classical Jeffery-Hamel flow. A significant variation is observed in the relationship curves 

for Cu-nanoparticles at 1.0&05.0 == φφ . Moreover, from Figure 7.4(b) it is found that Cu-

nanoparticles produce a clear difference in the relationship curve than 322 OAlandTiO -

nanoparticles due to the effective densities. Figure 7.5 depicts the relationship between 

α and Hartmann number Ha with different volume fraction of Cu-nanoparticles in divergent 

channel. It is seen from the figure that α increases as Ha increases and the rate of increase is 

lower in Cu-water nanofluid than pure base fluid. Also, α decreases as φ increases. Finally, 

in Figure7.6, the flow Reynolds number Re increases with rising Ha in absence of nanofluid 
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but then the tendency of increase becomes slower for 1.0&05.0 == φφ . The conjecture of 

both the Figures 7.5 and 7.6 coincides with those results of Alam and Khan (2010) at 

.0=φ Therefore, nanofluid diminishes the alternation phenomenon in the relationship graphs 

among the parameters. Series analysis plays an important role in many areas, particularly in 

fluid dynamics, where, as mentioned earlier, the presence of real singularities in the solution 

may reflect some changes in the nature of the flow. The criticality of channel angle and flow 

Reynolds number lead to instability in the fluid flow with a significant effect of nanofluid.   

7.5.2  Effect of Channel Angle             

Figures 7.7(a, b) show the effect of channel angle on the velocity profiles in divergent 

channel for both base fluid and nanofluid respectively. It is seen from Figure 7.7(a) that the 

velocity increases moderately at the centerline of the channel whereas decreases gradually 

near the two walls with a rising values of α at 1,7Re == Ha for base fluid ( )0=φ  but the 

differences between the velocity profiles are more noticeable at larger angles. However, the 

backflow is detected in diverging channel for higher values of 4πα = . In Figure 7.7(b), the 

presence of Cu-nanoparticles ( )05.0=φ accelerates the increment of centerline velocities 

more rapidly, while there occurs major backflow near the walls at large value of 4πα = . 

The flow breaks the symmetry, with most of the fluid going in a thin layer along the walls as 

channel angle increases. The fluid is prevented from utilizing the whole area of the 

expanding channel by a recirculation vortex which blocks the exit. In addition, secondary 

instabilities driven by this vertical motion develop in this flow. The effect of increasing α on 

the temperature of the fluid is seen in the Figure 7.8 (a) in a way that the temperature rises 

massively at the centerline of the channel due to the faster flow rate. The entropy generation 

rate sN by the effect of α is shown in Figure 7.8 (b) such that the irreversibility of the 

system is absolutely zero at center of the channel whether symmetrically increases towards 

the fixed two hot walls. The maximum velocity at the center leads to approximately zero 

velocity gradient, also the temperature distribution observed in Figure 7.8 (a) is very high at 

the center which turns the temperature gradient to zero. As a result, the contribution of both 

fluid friction 2N  and heat transfer 1N to the total entropy sN  become zero at the center of 
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the channel. Moreover, the increasing values of α  accelerates sN  near the walls because of 

the formation of back flow over there. 
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Figure 7.7 Velocity profiles in divergent channel with different values of α at  1,7Re == Ha  for (a) 

base fluid and (b) Cu‐water nanofluid. 
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For the same reason it is noticed from Figure 7.8 (c) in the Bejan profile that fluid friction 

irreversibility is dominant at the center and heat transfer irreversibility is dominant at the 

two hot walls. Increases of α  has a significant influence on the dominance effect of heat 

transfer irreversibility at the walls.       
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Figure 7.8 Effect of channel angle on (a) temperature distributions, (b) Entropy rates, (c) Bejan 

profiles respectively at 1and,7Re,1.7Pr,1.0 ==== HaEc . 
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7.5.3 Effect of Reynolds Number 

The influences of flow Reynolds number on velocity profile is presented in Fgure 7.9(a, b) 

significantly for both divergent and convergent channels. A similar characteristic in the 

velocity profile is observed for divergent channel ( o10=α ) in Figure 7.9(a) as in Figure 7.7 

(a) for channel angle when the flow Reynolds number Re increases. The velocity along the 

centerline increases rapidly when Re increases, because the volumetric flow rate accelerates 

which faster the maximum velocity at the center of the channel. On the other hand, flow 

reversal forms and then enlarges at the two walls when Re increases. Figure 7.9(b) shows the 

velocity profile in convergent channel ( o10−=α ) with the effect of Reynolds number. A 

symmetrical but contrary phenomenon is seen in the convergent channel such that the 

velocity deceases at the center of the channel and increases at the walls when Re increases 

because of the negative volumetric flow rate towards the sink at 0=r . At larger values of 

Reynolds number, back flow produces at the centerline of the channel, which we have seen 

in Figure 7.9(a) at the walls for divergent channel. The effect of Reynolds number on 

temperature distribution is noticed in Figure 7.10 (a) that the temperature at the center of the 

channel increases rapidly with increases of Re due to the faster flow rate at that region. It is 

seen from figure 7.10 (b) for divergent channel that the entropy generation rate goes faster at 

the two walls for the rising values of Re, which is consistent with the results shown in Figure 

7.9 (a) that flow reversal produces at that region. A symmetrical behaviour of Bejan profile 

for Reynolds number is observed in Figure 7.10 (c) in comparison of channel angle that the 

dominance of fluid friction irreversibility occurs at the centerline whereas the heat transfer 

irreversibility is dominant at the two hot walls. 

 

7.5.4 Effect of Hartmann number 

The velocity curves in Figure 7.11(a) show that the rate of alteration is significantly and 

uniformly reduced with increase of Hartmann number Ha in absence of 

nanoparticles ( )0=φ . The transverse magnetic field opposes the alteration phenomena 

clearly. The variation of Ha leads to the variation of the Lorentz force due to magnetic field 

and the Lorentz force produces more resistance to the alternation phenomena within the 

channel. It can be noted also from Figure 7.11(b) that the centerline velocity decreases 
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reasonably with rising Ha in presence of nanofluid ( )05.0=φ  at a large 

angle 4πα = with .7Re =  Figure 7.12 predicts the combined effects of magnetic field and 

nanoparticles volume fraction on the velocity field for divergent channel with fixed 

Reynolds number.  
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Figure 7.9 Velocity profiles in (a) divergent channel and (b) convergent channel with different 

values of Re at  1=Ha  for Cu‐water nanofluid. 
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Figure 7.10 Effect of Reynolds number on (a) temperature distributions, (b) Entropy rates, (c) Bejan 

profiles respectively at 1and,10,1.7Pr,1.0 ==== HaEc oα . 
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Figure 7.11 Velocity profiles in divergent channel with different values of  Ha at  4,7Re πα == for 

(a) base fluid and (b) Cu‐water nanofluid. 
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Figure 7.12 Combined effects of Hartmann number and solid volume fraction of Cu‐nanoparticles 

on velocity profile for 7Re,4 == πα . 

The figure represents sensible decreases in the centerline velocity with rising Hartmann 

number for both base fluid and nanofluid that coincide with those results of Sheikholeslami 

et al. (2012). It is also observed that for all values of Hartmann number there is no backflow 

in the base fluid ( )0=φ , nevertheless backflow starts for nanofluid with 0=Ha at 

7Re,4 == πα and this phenomenon is decreased with the rising values of Hartmann 

number.  

7.5.4  Effect of Nanoparticles volume fraction 

Figure 7.13 represents the consequences of solid volume fraction on velocity profiles at 

fixed Reynolds number in both convergent-divergent channels. In Figure 7.13(a) 

at 4πα = for divergent channel as φ increases, the center line velocity increases and on the 

other side the backflow is observed near the walls. Conversely, Figure 7.13(b) for 

convergent channel ( )4πα −=  represents that backflow starts at the centerline 

when ( )05.0=φ whether there is no sign of backflow in absence of nanoparticles ( )0=φ  and 
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these properties are enhanced with rising values of 1.0=φ . Therefore, the state of backflow 

in convergent channel is completely opposite in comparison to divergent channel. 
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Figure 7.13 Velocity profiles with different values of φ  (a) divergent channel and (b) convergent 

channel at 1,7Re == Ha  for Cu‐water nanofluid. 

Figures 7.14 (a, b) explain the variations of dimensionless temperature with increasing 

nanoparticle volume fraction φ for both divergent and convergent channel respectively. A 
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definite and uniform rise in temperature is seen in Figure 7.14(a) for divergent channel 

because of an increase in the gap between the walls. This explains also the influence of 

higher thermal conductivity and specific heat.  
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Figure 7.14 Temperature profiles for different values of φ  (a) in divergent channel and (b) in 

convergent channel at 1and7Re,1.0,1.7Pr ==== HaEc . 
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Figure 7.15 Effect of nanoparticles volume fraction on (a) Entropy rates and (b) Bejan profiles 

respectively at 1and,1.7Pr,1.0 === HaEc . 

Also, copper nanoparticles are much more efficient to control the rise in temperature for 

various practical situations as compared to pure base fluid. The temperature field in 
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convergent channel presented by Figure 7.14 (b) is decreasing uniformly by the positive 

change ofφ . Since the gap between the walls reduces rapidly towards the sink at 0=r , 

which produces reduction of temperature at the centerline region. Figures 7.15 (a, b) depict 

the entropy generation with Bejan number with the control of nanoparticles volume fraction 

correspondingly. The properties of total entropy rate sN in Figure 7.15 (a) is almost similar 

as in Figures 7.8(b) and 7.10(b), whereas the effect of φ on sN is insignificant in the 

divergent channel. It can be noted from Figure 7.15(b) that the dominant effect of heat 

transfer irreversibility enhances due to the escalating values ofφ . As it is already discussed 

previously that the higher thermal conductivity and specific heat of nanofluid generates 

more heat transfer.       

7.5.5 Effect of Eckert number 

The effect of Eckert number on temperature field within the channel for convergent and 

divergent is discussed in Figures 7.16(a, b). Eckert number describes the effects due to the 

dissipation term in energy equation. Since Eckert number is the ratio of the square of 

maximum velocity and specific heat. As a result, when the value of Eckert number 

increases, the fluid flow rate along the centerline becomes more faster.  It is noticed from 

Figure 7.16 (a, b) that the fluid temperature increases successively with increasing values of 

viscous heating parameter Ec for both convergent and divergent channels. Furthermore, due 

to the higher thermal conductivity coefficient of the nanofluid, the heat is more intensely 

transferred. The consequences of Eckert number on irreversibility of the system is analysed 

in Figures 7.17 (a, b). The entropy generation rate sN increases promptly and symmetrically 

near the two hot walls with the growing values of Ec due to viscous dissipation effect as 

seen in Figure 7.17 (a). Moreover, the positive variation of Eckert number has a key impact 

on the dominant effect of heat transfer irreversibility at the two heated walls shown in Figure 

7.17(b).    
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Figure 7.16 Temperature profiles for different values of Eckert number Ec (a) in divergent channel 

and (b) in convergent channel at 1and7Re,1.7Pr === Ha . 
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Figure 7.17 Effect of Eckert number Ec on (a) Entropy rates and (b) Bejan profiles respectively 

at 1and,1.7Pr,10 === Haoα . 

7.7  Conclusion  

The entropy generation of magnetohydrodynamic Jeffry-Hamel flow with three different 

types of nanoparticles as water is the base fluid is investigated using a special type of 
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Hermite-Padé approximation technique. A comparison is made between the available results 

and the present approximate solutions. The influences of various physical parameters on the 

velocity field, temperature distribution and entropy generation rate with Bejan profile are 

discussed in detail. The basic conclusions are as follows:  

 The dominating singularity behaviour is a branch point singularity with the critical 

exponent half for both the wall divergence semi-angle α and flow Reynolds number 

Re is found with the effect of various types of nanoparticles volume fraction. The 

critical relationships among the parameters with the effect of nanofluid coincide with 

the conjecture of classical Jeffery-Hamel flow. 

 Increasing channel semi angle and Reynolds number leads to enrichment of fluid 

centerline velocity and flow reversal near the walls in the divergent channel for both 

base fluid and nanofluid. Increasing Hartmann number reduces fluid flow in the 

channel centerline and produces the backflow reduction near the walls for both base 

fluid and nanofluid. The velocity increases as nanoparticles volume fraction 

increases along the centerline whereas increasing volume fraction generates 

backflow near the walls. Behaviour of the flow for changing of the physical 

parameters in convergent channel is quite opposite to the one seen in divergent 

channel.   

 The increasing values of the pertinent physical parameters namely channel angle, 

flow Reynolds number, Eckert number enhances temperature field along the channel 

centerline region. Also temperature increases uniformly as nanoparticles volume 

fraction increases.  

 Entropy generation rate is higher near the hot solid walls in comparison to the channel 

centerline region. Fluid friction irreversibility dominates the entropy generation 

absolutely near the channel centerline while the heat transfer irreversibility 

dominates at the hot solid walls. Heat transfer irreversibility is the sole contributor to 

the total entropy generation at the hot solid walls. Nanofluid enhances the dominant 

effect of heat transfer irreversibility in the entropy generation of the system. 
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Chapter VIII 

Conclusion and Recommendations 

 

 

8.1  Conclusion 

The thesis has investigated numerically the stability of a steady magnetohydrodynamic flow 

of viscous incompressible nanofluids through channel. The governing partial differential 

equations for mass, momentum and energy are derived according to the physical model of 

the problem. These governing equations with boundary conditions are then made 

dimensionless form using suitable transformations. The resulting dimensionless nonlinear 

differential equations are solved numerically using power series with Hermite-Padé 

approximation method.  

 The dominating singularity behaviour of the flow as well as the existence of the dual 

solution branches of the systems are examined to study the stability of the fluid flow.  

 The irreversibility of the system due to the effect of governing physical parameters 

and the influences of the parameters on the velocity and temperature distributions are 

discussed in detail.  

A general conclusion on the works is presented below in brief: 

 The thermal stability conditions for dual solution branches are analysed with the 

effect of Radiation parameter in both solid and porous surfaces for parallel channel. 

As the thermal conductivity variation parameter exceeds the critical value, the 

solution of local rate of heat transfer has two branches, namely, an upper branch and 

a lower branch.  

 It is found that at the lower solution branch which is physically acceptable, the value 

of Nusselt number decreases with the increase of radiation parameter. It is observed 
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that suction/injection of fluid exerts a significant influence on the thermal stability 

condition. 

 Next, in convergent-divergent channel, the dominating singularity behaviour as a 

branch point singularity with the critical exponent half for both the channel semi-

angle and flow Reynolds number is found numerically and shown in bifurcation 

diagrams with the effect of nanoparticles volume fraction.  

 The critical relationships among the parameters with the effect of nanofluid coincide 

with the conjecture of classical Jeffery-Hamel flow. 

 Increasing Hartmann number and nanoparticles solid volume fraction cause the 

reduction of fluid velocity near the centerline uniformly in parallel channel.  

 An increase in the thermal conductivity variation parameter advances fluid velocity 

and reduces temperature distribution along the centerline region of the channel.  

 Radiation parameter reduces both fluid velocity and temperature distribution due to 

faster heat loss.  

 At the region of the left porous wall in parallel channel, there occurs backflow as the 

porosity parameter increases.  

 For the regions of the flow field adjacent to the porous walls, the total entropy 

generation rate is dominated by the effects of fluid friction and it is dominated at the 

centerline region by the effects of heat transfer.  

 Hence the suction/injection of fluid exerts a significant influence on the velocity and 

temperature distributions, which transitively affects the entropy generation within the 

channel. 

• Increasing channel semi angle and flow Reynolds number lead to enrichment of fluid 

centerline velocity and produce flow reversal near the walls in the convergent-

divergent channel for both base fluid and nanofluid.  
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• Increasing Hartmann number produces backflow reduction at the two walls for 

convergent-divergent channel and large values of Hartmann number is required for 

decline of the backflow.  

• The velocity increases as nanoparticles volume fraction increases along the centerline 

of the channel whereas increasing volume fraction generates backflow near the 

walls.  

• Behaviour of the flow for changing of the physical parameters in convergent channel 

is quite opposite to the one seen in divergent channel.  

• The increasing values of the pertinent physical parameters namely channel angle, 

flow Reynolds number, Eckert number, Prandtl number enhance temperature field 

along the channel centerline region. Also temperature increases uniformly as 

nanoparticles volume fraction increases.  

• Entropy generation is higher near the walls in comparison to the centerline region in 

convergent-divergent channel. Fluid friction irreversibility dominates the entropy 

generation absolutely near the channel centerline while the heat transfer 

irreversibility dominates at the hot solid walls. It is found that Nanofluid enhances 

the dominant effect of heat transfer irreversibility at the hot walls. 

We numerically provide a guidance on the concepts of magnetohydrodynamic stability of 

several channel flows for nanofluid using Hermite-Padé approximation that should be 

chosen for many problems in fluid mechanics and similar subjects. The computational cost 

of the series coefficients of the solution is very high in these problems. Hermite-Padé 

approximation technique could produce better and accurate results if more terms of the 

series were computed using highly powerful computer.  

8.2  Relevancy of the Work to Physical Applications 

 The three dimensional stability analysis of noncohesive particles under two-

dimensional flow in the downstream hydraulic geometry of alluvial channels, in 

terms of bank-full width, average flow depth, mean flow velocity, and channel slope. 
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The flow conditions may unstable for meandering to braided, sand-bed and gravel-

bed rivers with flow depths and channel widths varying. The conditions can be 

analytically defined by combining four governing equations: flow rate, resistance to 

flow, secondary flow, and particle mobility.  

 The stability analysis of a river channel by investigating the role of phase shift angle 

between the secondary current and the channel axis displacement. The secondary 

currents perpendicular to the primary direction of motion form a helical motion in 

which the water in the upper part of the river is driven outward, whereas the water 

near the bottom is driven inward in a bend.  The instability arises and transition from 

straight to meandering and then from meandering to braiding occurs when phase 

shift angle is reduced. Therefore any factor that triggers the formation of secondary 

currents will have a major contribution in interfering with the stability of a river 

channel. Some of these factors are: (i) change in slope; (ii) change in channel width; 

and (iii) formation of ripples among others. 

8.3  Possible Future Works based on this Thesis 

The present study can be extended by considering the following cases: 

 Temperature dependent physical properties like viscosity, Prandtl number with 

different physics like heat generation/absorption, stress work may be considered. 

 The study can be extended considering velocity and temperature slip effects. 

 One can consider steady three-dimensional flow, unsteady two-dimensional flow and 

unsteady three-dimensional flow. 

 Considering stretchable, porous wall of the convergent-divergent channel, this work 

can be extended. 

 Investigation can be carried out on the interaction of magnetic field and nanofluids 

for turbulent flow.  

 

 

 



161 

 

References 

Arpaci, V. S., Selamet, A. and Kao, S. H., (2000): “Introduction to Heat Transfer”, Prentice-
Hall, New York. 

Abiodun, O. A., Basant, K. J. and Andrew, O., (2011): “Entropy generation under the effect 
of suction/injection”, Applied Mathematical Modelling, Vol. 35, pp. 4630-4646.  
 
Axford, W. I., (1961): “The Magnetohydrodynamic Jeffrey–Hamel problem for a weakly 
conducting fluid”, Q. J. Mech. Appl. Math., Vol. 14, pp. 335–351.  
 
Alam, M. S. and Khan, M. A. H.,  (2010): “Critical behaviour of the MHD flow in 
convergent-divergent channels”, Journal of Naval Architecture and Marine Engineering, 
Vol. 7, No. 2, pp. 83 - 93. 
 
Banks, W. H. H., Drazin, P. G. and Zaturska, M. B., (1988): “On perturbation of Jeffery-
Hamel flow”, Journal of Fluid Mechanics., Vol. 186, pp. 559-581. 
 
Berman, A. S., (1953): “Laminar flow in channels with porous walls”, Journal of Applied 
Physics, Vol. 24, No. 9, pp. 1232-1235.  
 
Bejan, A., (1996): “Entropy-generation minimization”, CRC Press, New York. 
 
Bejan, A., (1979): “A study of entropy generation in fundamental convective heat transfer”, 
J. Heat Transfer, Vol. 101, pp. 718-725. 
 
Brezinski, C., (1990): “History of Continued fraction and Pade′ Approximants.” Springer, 
Berlin. 
 
Blanch, G., (1964): “The numerical evaluation of continued fractions”, SIAM Rev., Vol. 6, 
pp. 383-421. 
 
Bender, C. and Orszag, S. A., (1978): “Advanced Mathematical Methods for Scientists and 
Engineers”, Mcgraw-Hill, New York. 
 
Baker, G. A. Jr. and Graves-Morris, P., (1996): “Pade' Approximants”, Second edition, 
Cambridge University Press, Cambridge. 
 
Batchelor, K., (1967): “An Introduction to Fluid Dynamics”, Cambridge University Press, 
Cambridge. 



162 

 

Cha, J. E., Ahn, Y. C. and Kim, M. H., (2002): “Flow measurement with an electromagnetic 
flow meter in two-phase bubbly and slug flow regimes”, Flow Measurement and 
Instrumentation, Vol. 12, No. (5-6), pp. 329–339. 
 
Chawla, T. C. and Chan, S. H., (1980): “Combined radiation and convection in thermally 
developing Poiseuille flow with scattering”, J. Heat Transfer, Vol. 102, pp. 297–302. 
 
Cogly, A. C. L., Vincenti, W. G. and Gilles, E. S., (1968): “Differential approximation for 
radiative heat transfer in a nonlinear equations grey gas near equilibrium”, Am. Inst. 
Aeronaut. J., Vol. 6, pp. 551-553. 
 
Choi, S. U. S., (1995): “Enhancing thermal conductivity of fluids with nanoparticles”, In 
Proceedings of the 1995 ASME International Mechanical Engineering Congress and 
Exposition, Vol. 66, San Francisco, USA, pp. 99–105. 
 
Chang, L. C., Yang, K. T. and Lloyd, J. R., (1983): “Radiation-natural convection 
interaction in two-dimensional complex enclosure”, J. Heat Transfer, Vol. 105, pp. 89–95. 
 
Chen, C. K., Chen, B. S. and Liu, C. C., (2014): “Heat transfer and entropy generation in 
fully-developed mixed convection nanofluid flow in vertical channel”, Int. J. Heat Mass 
Transfer, Vol. 79, pp. 750-758. 
 
Cha, J. E., Ahn, Y. C. and Kim, M. H., (2002): “Flow measurement with an electromagnetic 
flow meter in two-phase bubbly and slug flow regimes,” Flow Measurement and 
Instrumentation, Vol. 12, No. (5-6), pp. 329–339. 
 
Choi, S. U. S., (2009): “Nanofluids: from vision to reality through research”, Journal of Heat 
Transfer, Vol. 131, No. 3, pp. 1-9. 
 
Choi, S. U. S., Zhang, Z. G. and Keblinski, P., (2004): “Nanofluids in Encyclopedia of 
Nanoscience and Nanotechnology”, American Scientific, Vol. 6, pp. 757-737.  
 
Das, S. R., Choi, S. U. S. and Patel, H. E., (2006): “Heat transfer in nanofluids-a review. 
Heat Transfer Engineering”, Vol. 27, No. 10, pp. 3-19. 
 
Drazin, P. G. and Tourigny, Y., (1996): “Numerically study of bifurcation by analytic 
continuation of a function defined by a power series”, SIAM Journal of Applied 
Mathematics, Vol. 56, pp. 1-18. 
 
Das, S. K., Choi, S. U. S., Yu, W. and Pradeep, T., (2007):  “nanofluids: Science and 



163 

 

Technology”, Wiley, New York. 
 
Drazin, P. G., (2002): “Introduction to Hydrodynamic Stability”, Cambridge University 
Press, U.S.A. 
 
Esmaili, Q., Ramiar, A., Alizadeh, E. and Ganji, D. D., (2008): “An approximation of the 
analytical solution of the Jeffery–Hamel flow by decomposition method”, Physics Letters A, 
Vol. 372, pp. 3434–3439.  
 
Fraenkel, L. E., (1962): “Laminar flow in symmetrical channels with slightly curved walls. 
I: On the Jeffery-Hamel solutions for flow between plane walls”, Proceeding of the Royal 
Society of London, Vol. 267, pp. 119 - 138. 
 
Goerke, A. R., Leung, J. and Wickramasinghe, S. R., (2002): “Mass and momentum transfer 
in blood oxygenators”, Chemical Engineering Science, Vol. 57, No. 11, pp. 2035-2046. 
 
Guttmann, A. J., (1981): “Asymptotic Analysis of Power Series Expansions”, Academic 
Press. 
 
Hamel, G., (1916): “Spiralförmige Bewgungen Zäher Flüssigkeiten”, Jahresbericht der 
Deutschen Math. Vereinigung, Vol. 25, pp. 34-60. 
 
Hamadiche, M., Scott, J. and Jeandel, D., (1994): “Temporal stability of Jeffery-Hamel 
flow”, J. Fluid Mech, Vol. 268, pp. 71-88.  
 
Hermite, C., (1893): “Sur la généralisation des fractions continues algébriques”, Annali di  
Mathematica Pura e Applicata, Vol. 21, No. 2, pp. 289-308. 
 
Jafari, A., Zamankhan, P., Mousavi, S. and Kolari, P., (2009): “Numerical investigation of 
blood flow, Part II: in capillaries”, Communications in Nonlinear Science and Numerical 
Simulation, Vol. 14, No. 4, pp. 1396-1402. 
 
Jeffery, G. B., (1915): “The two-dimensional steady motion of a viscous fluid”, 
Philosophical Magazine, Vol. 6, pp. 455-465. 
 
Joneidi, A. A., Domairry, G. and Babaelahi, M., (2010): “Three analytical methods applied 
to Jeffery–Hamel flow”, Commun. Nonlinear Sci. Numer. Simulat, Vol. 15, pp. 3423–3434.   
 
Kay, W. M., (1966): “Convective heat and mass transfer”, Mc-Graw Hill, New York. 



164 

 

Khan, M. A. H., (2002): “High-Order Differential Approximants”, Journal of Computational 
and Applied Mathematics, Vol.149, pp. 457-468.  
 
Khovanskii, A. N., (1963): “The application of Continued Fractions and their 
Generalizations to problems in Approximation Theory”, P. Noordhoff N. V., Groninger. 
 
Khan, M. A. H., (2001): “Singularity analysis by summing power series”, Ph.D. Thesis, 
University of Bristol, U. K. 
 
Kwak, K. and Kim, C., (2005): “Viscosity and thermal conductivity of copper nanofluid 
dispersed in ethylene  glycol”, Korea–Aust. Rheol. J., Vol. 17, pp. 35–40. 
 
Kaufui, V. W. and Omar, D. L., (2010): “Applications of Nanofluids: Current and Future”, 
Advances in Mechanical engineering, Article ID 519659, 11 pages. 
 
Kayvan, S., Navid, K. and Seyed-Mohammad, T., (2007): “Magnetohydrodynamic (MHD) 
flows of viscoelastic fluids in converging-diverging channels”, International Journal of 
Engineering Science, Vol.45, No.11, pp. 923-938. 
 
Liu, M., Lin, M. C., Huang, I. and Wang, C., (2005): “Enhancement of thermal conductivity 
with carbon nanotube for nanofluids”, International Communication in Heat and Mass 
Transfer, Vol. 32, No. 9, pp. 1202-1210.   
 
Masuda, H., Ebata, A., Teramea, K. and Hishinuma, N., (1993): “Alternation of thermal 
conductivity and viscosity of liquid by dispersing ultra-fine particles”, Netsu Bussei, Vol. 4, 
pp. 227-233. 
 
Moreau, R., (1990): “Magnetohydrodynamics”, Kluwer Academic Publishers, Dordrecht. 

Makinde, O. D., (2003): “Magneto-hydrodynamic stability of plane-Poiseuille flow using 
multi-deck asymptotic technique”, Math. Comput. Model, Vol. 37, No. (3-4), pp. 251–259. 

Makinde, O. D. and Motsa, S. S., (2001): “Hydromagnetic stability of plane Poiseuille flow 
using Chebyshev spectral collocation method”, J. Ins. Math. Comput. Sci., Vol. 12, No. 2, 
pp. 175–183. 
 
Makinde, O. D., (2008): “Thermal criticality in viscous reactive flows through channels with 
a sliding wall: An exploitation of the Hermite-Padé approximation method”, Math. and 
Comp. Modelling, Vol. 47, pp. 312-317. 
 



165 

 

Makinde, O. D., (2009): “Hermite-Padè approach to thermal radiation effect on inherent 
irreversibility in a variable viscosity channel flow” Comp. and Math. with Applications, 
Vol. 58, pp. 2330-2338. 
 
Makinde, O. D., (2008): “Entropy-generation analysis for variable-viscosity channel flow 
with non-uniform wall temperature”, Appl. Energy, Vol. 85, pp. 384–393. 
 
Mah, W. H., Hung, Y. M. and Guo, N. Q., (2012): “Entropy generation of viscous 
dissipative nanofluid in microchannels”, Int. J. Heat Mass Transfer, Vol. 55, No. (15-16), 
pp. 4169-4182.  
 
Makinde, O. D. and Eegunjobi, A. S., (2013): “Effects of convective heating on entropy 
generation rate in a channel with permeable walls”, Entropy, Vol. 15, pp. 220-233.  
 
Motsa, S. S., Sibanda, P., Awad, F. G. and Shateyi, S., (2010): “A new spectral-homotopy 
analysis method for the MHD Jeffery–Hamel problem”, Computers & Fluids, Vol. 39, pp. 
1219–1225.  
 
Moghimia, S. M., Ganji, D. D., Bararnia, H., Hosseini, M. and Jalaal, M., (2011): 
“Homotopy perturbation method for nonlinear MHD Jeffery–Hamel Problem”, Computers 
and Mathematics with Applications, Vol. 61, pp. 2213–2216.  
 
Moradi, A., Alsaedi, A., Hayat, T., (2013): “Investigation of Nanoparticles effect on the 
Jeffery-Hamel Flow”, Arab J. Sci. Eng., Vol. 38, pp. 2845-2853. 
 
Makinde, O. D., (1997): “Steady flow in a linearly diverging asymmetrical channel”, 
Computer Assisted Mechanics and Engineering Sciences, Vol. 4, pp. 157 - 165. 
 
Makinde, O. D. and Mhone P. Y., (2006): “Hermite-Pade' Approximation approach to 
Hydromagnetic flows in convergent-divergent channels”, Applied Mathematics and 
Computations, Vol. 181, No. 2, pp. 966 – 972.  
 
Makinde, O. D. and Mhone, P. Y., (2007): “Temporal stability of small disturbances in 
MHD Jeffery-Hamel flows”, Computers & Mathematics with Application, Vol. 53, pp.128 – 
136. 
 
Makinde, O. D., (2008): “Effect of arbitrary magnetic Reynolds number on MHD flows in 
convergent-divergent channels” International Journal of Numerical Methods for Heat & 
Fluid Flow, Vol. 18, No. 6, pp. 697 - 707. 
 



166 

 

Moradi, A., Alsaedi, A. and Hayat, T., (2015): “Investigation of heat transfer and viscous 
dissipation effects on the Jeffery-Hamel flow of nanofluids”, Thermal Science, Vol. 19, No. 
2, pp. 563-578. 
 
Oztop, H. F. and Abu-Nada, E., (2008): “Numerical study of natural convection in partially 
heated rectangular enclosures filled with nanofluids”, Int. J. Heat Fluid Flow, Vol. 29, pp. 
1326–1336. 
 
Patra, R., Das, S. and Jana, R. N., (2014): “Radiation effect  on MHD fully developed mixed 
convection in a vertical channel with asymmetric heating”, J. Applied Fluid Mechanics, Vol. 
7, No. 3, pp. 503-512. 
 
Pinarbasi, A., Coskun, O. and Selim, D., (2011): “Influence of variable thermal conductivity 
and viscosity for nonisothermal fluid flow”, Physics of Fluids, Vol. 17, No. 3, pp. 109-114. 
 
Padé, H., (1892): “Sur la représentation approchée d'une fonction pour des fractions 
rationnelles”, Ann. Sci. École Norm. Sup. Suppl., Vol. 9, pp. 1-93. 
 
Rahman, M. M., (2004): “A New Approach to Partial Differential Approximants”, M. Phil 
thesis, Bangladesh University of Engineering & Technology, Dhaka. 
 
Rosenhead, L., (1940): “The steady two-dimensional radial flow of viscous fluid between 
two inclined plane walls”, Proc. R. Soc. A, Vol. 175, pp. 436-467.  
 
Sadri, R., (1997): “Channel entrance flow”, Ph.D. thesis, Dept. Mechanical Engineering, the 
University of Western Ontario. 
 
Sadik, K., Almila, G., Yazicioglu, and Arif, C. G., (2011):  “Effect of variable thermal 
conductivity and viscosity on single phase convective heat transfer in slip flow”, Heat and 
Mass Transfer, Vol.47, No. 8, pp. 879-891. 
 
Sheikholeslami, M., Soleimani, S., Gorji-Bandpy, M., Ganji, D. and Seyyedi, S., (2012): 
“Natural convection of nanofluids in an enclosure between a circular and a sinusoidal 
cylinder in the presence of magnetic field”, Int. Com. in Heat and Mass transfer, Vol. 39, 
No. 9, pp. 1435-1443. 
 
Sahin, A. Z., (1999): “Effect of variable viscosity on the entropy generation and pumping 
power in a laminar fluid flow through a duct subjected to constant heat flux”, Heat Mass 
Transfer, Vol. 35, pp. 499-506. 
 



167 

 

Senthilraja, S., Karthikeyan, M. and Gangadevi, R., (2010): “Nanofluid applications in 
future automobiles: comprehensive review of existing data”, Nano-Micro let. Vol. 2, pp. 
306-310. 
 
Sheikholeslami, M., Ganji, D. D., Ashorynejad, H. R. and Rokni, H. B., (2012): “Analytical 
investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian 
decomposition method”, Appl. Math.  Mech.  Engl. Ed., Vol.33, pp. 25–36. 
 
Sheikholeslami, M., Ganji, D. D. and Rokni, H. B., (2013): “Nanofluid flow in a semi-
porous channel in the presence of uniform magnetic field”, Int. J. of Engineering, Vol. 26, 
No. 6, pp. 653-662. 
 
Syed, T. M., Khan, U., Ahmed, N. and Sikander, W., (2015): “A study of Velocity and 
Temperature slip effects on flow of water based nanofluids in Converging and Diverging 
Channels”, Int. J. Appl. Comput. Math, DOI 10.1007/s40819-015-0032-z. 
 
Sobey, I. J. and Drazin, P. G., (1986): “Bifurcations of two-dimensional channel flows”, 
Journal of Fluid Mechanics, Vol. 171, pp. 263 – 287. 
 
Tyler, T., Shenderova, O., Cunningham, G., Walsh, J., Drobnik, J. and McGuire, G., (2006): 
“Thermal transport properties of diamond based nanofluids and nanocomposites, Diamond 
and related Materials”, Vol. 15, No. (11-12), pp. 2078-2081. 
 
Tendler, M., (1983): “Confinement and related transport in extrap geometry,” Nuclear 
Instruments and Methods in Physics Research, Vol. 207, No. (1-2), pp. 233–240. 
 
Tourigny, Y. and Drazin, P. G., (2000): “The asymptotic behavior of Algebraic 
approximants” Proc. Roy. Soc. London A, Vol. 456, pp. 1117-1137. 
 
Tabanfar, S. and Modest, M. F., (1987): “Combined radiation and convection in absorbing, 
emitting, nongray gas-particulate tube flow”, J. Heat Transfer, Vol. 109, pp. 478–484. 
 
Van Dyke, M., (1975): “Computer extension of perturbation series in fluid mechanics”, 
SIAM J. Appl. Math., Vol. 28, pp. 720-734. 
  
Wernert, V., Schaf, O., Ghobarkar, H. and Denoyel, R., (2005): “Adsorption properties of 
zeolites for artificial kidney applications”, Microporous and Mesoporous materials, Vol. 83, 
No. 1, pp. 101-113. 
 



168 

 

Wang, L. and Fan, J., (2010): “Nanofluids Research: key issues”, Nanoscale Research 
Letters, Vol. 5, pp. 1241-1252. 
 
Yasir, K., Qingbiao, W., Naeem, F. and Ahmet, Y., (2011): “The effects of variable 
viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet”, 
Computers & Mathematics with Applications, Vol. 61, No. 11, pp.3391-3399. 
 
Yu, W., France, D. M., Routbort, J. L. and Choi, S. U. S., (2008): “Review and comparison 
of nanofluid thermal conductivity and heat transfer enhancements”, Heat Transfer 
Engineering, Vol. 29, No. 5, pp. 432-460. 
 
Yan, J. F. and Liu, J., (2008): “Nanocryosurgery and its mechanisms for enhancing freezing 
efficiency of tumor tissues”, Nanomedicine, Vol. 4, No. 1, pp. 9-87. 
 


