
MODELING AND OPTIMIZATION OF FACILITY LAYOUT 

PROBLEM USING NATURE INSPIRED ALGORITHM 
 

By 

SYED HELAL UDDIN 
 

 

 

 

 

 

 

MASTER OF SCIENCE IN INDUSTRIAL AND PRODUCTION 

ENGINEERING 
 

 

 
BUET 

 

DEPARTMENT OF INDUSTRIAL AND PRODUCTION 

ENGINEERING 

 

BANGLADESH UNIVERSITY OF ENGINEERING AND 

TECHNOLOGY (BUET) 

DHAKA, BANGLADESH 

 OCTOBER 2015



ii 

 

MODELING AND OPTIMIZATION OF FACILITY LAYOUT 

PROBLEM USING NATURE INSPIRED ALGORITHM 
 

By 

SYED HELAL UDDIN 
 

A thesis submitted 

to 

The Department of Industrial and Production Engineering 

in partial fulfillment for the degree of 

Master of Science in Industrial and Production Engineering 
 

MASTER OF SCIENCE IN INDUSTRIAL AND PRODUCTION 

ENGINEERING 
 

 
BUET 

 

DEPARTMENT OF INDUSTRIAL AND PRODUCTION 

ENGINEERING 

 

BANGLADESH UNIVERSITY OF ENGINEERING AND 

TECHNOLOGY (BUET) 

DHAKA, BANGLADESH 

OCTOBER 2015 



iii 

 

DECLARATION 
 

It is hereby declared that this thesis or any part of it has not been submitted 

elsewhere for the award of any degree or diploma. 

 

 

Signature of the Candidate 

 

 

------------------------ 

(Syed Helal Uddin) 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

CERTIFICATE OF APPROVAL 
The Thesis titled “ Modeling And Optimization Of Facility Layout Problem Using 

Nature Inspired Algorithm ” submitted by Syed Helal Uddin, Student No: 

0412082005; Session April 2012 has been accepted as satisfactory in partial 

fulfilment of the requirements for the degree of Master of Science in Industrial and 

Production Engineering on 21 October 2015. 

BOARD OF EXAMINERS 

 

 



v 

 

DEDICATION 
 

 

 

 

 

 

 

 

 

To The Almighty 

To my family 
 

 

 

 

 

 

 

 

 

 



vi 

 

ACKNOWLEDGEMENT 
 

All praise to Almighty Allah for giving me the ability to complete this thesis 

successfully. 

I would like to express my sincere gratitude and deep appreciation to my supervisor, 

Dr. Ferdous Sarwar, Assistant Professor, Department of Industrial and Production 

Engineering, BUET. Under his continuous supervision, affectionate guidance, 

valuable suggestions, encouragement and inspiration throughout this work made this 

study possible. 

I also express my profound thanks to the Head of the Department of Industrial and 

Production Engineering of BUET, Tanvir Hossain Bhuiyan, Imtiaz Ahmed, Assistant 

Professor of this department for rendering me assistance during my research work. I 

also like to thank all faculty and other members of the department for their kind 

assistance. 

I am very much grateful to Noman H Chowdhury, Senior Lecturer, BRAC Business 

School, BRAC University, Dhaka, for his constant co-operation and assistance in 

developing the algorithm and computer coding. 

I am thankful to my corps of Electrical and Mechanical Engineering of Bangladesh 

Army for selecting and allowing me to pursue in M.Sc. Engineering in BUET. 

Finally, I like to thank my family whose continuous inspiration, sacrifice and support 

encouraged me to complete my study and research. 
 

 

 

 

 

 



vii 

 

ABSTRACT 
 

Productivity and efficiency of an organization greatly depends on how people plan, 

organize and utilize the facilities in that organization. From an upfront investment and 

recurring project expense, facilities planning are a critical issue in today’s competitive 

manufacturing and service sectors. In addition to the upfront investment involved in 

facilities planning, there are operational issues that make facilities planning a critical 

issue. The most obvious impact is on material handling expenses. The impact of the 

facility layout goes beyond material handling costs. An effective facility layout 

implies that departments with high flow are close together. In facility layout problems, 

objective functions are modeled with different objectives in mind examples of which 

include minimization of cost or flow of materials, maximizations of closeness rewards 

etc. In this thesis, a mathematical model with a continuous representation of distance 

based adjacency matrix is developed. The resulting exact model will consider every 

all-rectangular-department solution. Solution from the new model is compared with 

solutions found from models based on binary based adjacency matrix. In this thesis, 

exact algorithm is used for finding feasible solution set from the total solution space. 

Further research can be done using other heuristic algorithms. In the function 

[adjacency=1/k1*e(k2*x)] proposed in this thesis for generating continuous value 

adjacency matrix has two co-efficient, namely k1(Denominator co-efficient) and k2 

(exponential co-efficient). Unit value for both of the co-efficient was assumed even of 

the fact that, there are strong rationales behind these two having industry specific 

values. There is huge scope of econometrical research to come up with series of 

values of k1 and k2 for different industries. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

The effective utilization of a company’s facility is one of the key challenges facing 

plant managers. Facility utilization encompasses not only the utilization of facility 

space, but also the challenge of providing support for an efficient facility flow 

network. The cornerstone to both of these challenges is the facility layout. As such, 

solving the facility layout problem is a critical component to the competitiveness of a 

company. 

The research outlined in this dissertation aims to provide an improvement in a 

methodology to help companies solve the critical problem of the facility layout 

problem. 

1.2 Motivation 

In the past 20 years, with rapidly increased global competition, elimination of waste 

and continuous productivity improvement have become more and more critical for 

manufacturing companies to run their business effectively and efficiently. Most of the 

business concepts and strategies arising recently, like Enterprise Resource Planning 

(ERP), Supply Chain Management (SCM), Just-In-Time (JIT) Manufacturing, 

Flexible Manufacturing Systems (FMS) and Lean Manufacturing, consider 

eliminating waste and continuous productivity improvement as their foundation. 

The productivity and efficiency of an organization greatly depends on how people 

plan, organize and utilize the facilities in that organization.  Facilities planning 

“determines how an activity’s tangible fixed assets best support achieving the 

activity’s objective” [1]. Thus, facilities planning have a great impact on the 

productivity and efficiency of running an organization. 

“Since 1955, approximately 8% of the gross national product (GNP) has been spent 

annually on new facilities in the United States” [1]. Adding to this figure is the 
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realization that many existing facilities are renovated each year, which yields an 

estimate of $250B spent each year on facilities planning and re-planning [1].  Thus, 

from an upfront investment and recurring project expense, facilities planning are a 

critical issue in today’s competitive manufacturing and service sectors. 

In addition to the upfront investment involved in facilities planning, there are 

operational issues that make facilities planning a critical issue. The most obvious 

impact is on material handling expenses.  As suggested in [1], “effective facilities 

planning can reduce [material handling] costs by 10 to 30%.” 

However, the impact of the facility layout goes beyond material handling costs (which 

are likely to be a rather small cost in the facility).  An effective facility layout implies 

that departments with high flow are close together.  In addition to reducing material 

handling costs, this is also likely to reduce the material handling batch size. By 

reducing the material handling batch size, work-in-process inventory (WIP) will also 

decrease.  Decreasing WIP has a direct cost implication (likely a large one) and is also 

likely to improve the lead time and quality of the product being moved (since 

feedback due to poor quality is shortened along with lead time). Finally, companies 

that are able to simultaneously shorten lead time, improve quality, and reduce their 

costs are much more likely to have increased opportunities for their product. Thus, the 

impact of facilities planning goes significantly beyond the impact on material 

handling expenses (e.g., productivity ratios concerning manufacturing cycle, aisle 

space, and energy [2]. In summary, facilities planning have an impact on many 

aspects of the company, either directly or indirectly. 

1.3 Components and layout 

The main components of facilities planning include facility location, facility system 

design, facility layout design, and material handling system design. As one of the 

critical steps in facilities planning, the facility layout design is “concerned with 

determining the ‘most efficient’ arrangement of interacting departments within a 

designated section of a building subject to constraints imposed by the site plan, the 

building, the departmental area, service requirements, and the decision-maker” [3]. 
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The facility layout problem (FLP) has broad applications, from a new hospital to an 

assembly line, from an existing warehouse to the baggage department in an airport, 

from an office to a retail store. In manufacturing, the facility layout design involves 

the determination of how to design the physical layout of manufacturing facility 

systems to provide the best support for production. 

 

More specifically, the facility layout procedure traditionally includes two phases: the 

block layout phase and the detailed layout phase. The block layout phase specifies the 

relative location and size of each department (see Figure 1.1(a)). Based on the block 

layout output, the detailed layout phase determines exact department locations, aisle 

structures, input/output (I/O) point locations, and the layout within each department 

(see Figure 1.1(b)). 

 

 

Figure 1: Facility Layout Solutions in (a) Block Layout and (b) Detailed Layout 

1.4 Research Objectives 

We state the objectives of our research in this section. 

1. To develop a mathematical model with a continuous representation of distance 

based adjacency matrix. The resulting exact model will consider every all-

rectangular-department solution. 
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2. To compare the performance of the proposed model with previous model based 

on reward functions, where adjacency matrix is constructed with binary 

values. 

3. To develop a MATLAB-based program for implementing and testing the model 

in a real world scenario 

1.5 Outline of Methodology/Experimental Design 

The proposed research methodology is outlined below: 

  At first traditional layout facility problems will be investigated in general to 

understand the types, severity and frequency of the changes in the environment of a 

layout. 

 Based on the methodologies for layout design used in industrial facilities, decision 

variables and constraints will be identified. 

 A Mathematical model for multi objective mixed integer facility layout problem will 

be proposed. 

 MATLAB programming will be used to solve the problem based on a nature 

inspired algorithm. 

 The proposed heuristic will be compared to the results obtained using traditional 

method. 

 The performance of the proposed model will be determined by improvements in 

traditional methods demonstrating the solution of one specially built problem. 

 The improved version of the model will be used to solve a real life facility layout 

problem. 
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CHAPTER 2: LITERATURE REVIEW AND 

THEORETICAL BACKGROUND 

Since an efficient facility layout is critical for high productivity and quality 

manufacturing, a lot of research has been performed — and is still being performed 

— in this area. However, the extremely complicated nature underlying the FLP, 

various application and implementation issues, as well as the continuously increasing 

requirements from industry, lead us to the conclusion that the research in the FLP is 

still far from being “well done.” As a result, research related to the FLP continues to 

be one of the academic focus areas in industrial engineering and operations research. 

Developing some cutting-edge algorithms for the FLP is not only important to 

academia, but also to industry. 

In the FLP research literature, a variety of approaches are proposed to solve this 

combinatorial optimization problem.  These approaches are different in terms of 

layout representation, objective functions, constraints, algorithm search strategies, etc. 

One of the most widely used classification methods for these approaches is to divide 

them into two categories: exact algorithms and heuristics.  Another important 

classification is based on layout representation: discrete or continuous. In this chapter 

we give a detailed literature review of FLP research based on this two-level 

classification.  First, we classify the literature into exact algorithms and heuristics.  

Second, in each of these two categories, the literature is further classified and 

reviewed with respect to their layout representation. 

2.1 Theoretical Background 

2.1.1 Genetic Algorithms for the Facility Layout Problem 

The encoding is done through the structure named chromosomes, where each 

chromosome is made up of units called genes. 
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There are some determining factors that strongly affect the efficiency of genetic 

algorithms: 

1.   The representation of the solutions by strings. 

2.   The generation of the initial population. 

3.   The selection of individuals in an old population (parents) that will be allowed to 

affect the individuals of a new population. 

4.   The genetic operators that are used to recombine the genetic heritage from the 

parents to produce children. The most often-used operators are the crossover and the 

mutation. 

The selection of individuals that will be allowed to affect the following generation is 

based on the fitness of the individuals.  This is done in such a way that individuals 

with better fitness are more likely to be chosen to become parents. The recombination 

of the population consists of the following four operations: 

1. Crossover.  By combining the coded solution strings of two parents two children 

are created. If one considers the biological origin of the genetic algorithms it 

makes sense to denote the coded solution string “genome” and look at this 

procedure as a result of mating.  To avoid chaotic behavior, not all individuals in 

the new population are generated by this operator. The probability of applying this 

operator (crossover rate) is denoted by pc. 

2. Mutation. In order to give the populations new impulses some random changes in 

the genomes are allowed to occur. The mutation operator changes a “gene” in a 

solution with a probability (mutation rate) pm. 

3. Local search. It has proven very efficient to search for locally optimal solutions in 

the neighborhood of the children.  If one is able to find a better solution then it 

will replace the original child as a member of the new population. 

4. Control of new individuals. It is not unlikely that a child will have worse fitness 

than its parents. In that case the child might not be accepted in the new generation. 

Let us note also that a GA implementation requires the specification of certain 

parameters such as population size, and number of generations. Let Pt denote the 
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population at time t.  Then the genetic algorithm procedure can be described as in 

Figure below. 

 

Figure 2: Genetic Algorithm Procedure 

We continue with the description of various implementations of the genetic algorithm 

for the facility layout problem.  

As we have seen in the section of SA for the facility layout problem, Tam [64] uses a 

simulated annealing approach to solve the inter-cell problem.  The same author using 

the same problem formulation and representation of the floor plan layout as a slicing 

tree, attempts a solution approach to the problem using Genetic Algorithms. In 

applying a GA an important part of the implementation is the coding of solutions as 

strings of finite length.  For the problem formulation under consideration, a slicing 

tree can be generated by a string using as its elements the nodes of the tree in a 

sequence which starts from the bottom level nodes and ends at the root of the tree. 

The nodes of the tree represent either facility identifications (operands) or “cut” 

symbols (operators). The proposed GA uses for the recombination of the population 

the crossover and mutation operators, as described for the general genetic algorithm.  

For the selection of the new population the reproduction operator is used.  Under this 

operator the chance of being selected to remain in the new population Pt+1 is 

proportional to the fitness value of the individual.  
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GA was run for 150 generations with 10 different sets of initial solutions.  The best 

and average solution in each generation was gathered. The performance of GA was 

compared with that of a hill climbing method (HC), which searches through a 

neighborhood N, where N is the set of operator sequences generated from changing 

one operator. GA outperformed HC both in terms of minimum and average costs. For 

the 30-facility layout GA improved the minimum cost by 10:5% and the average cost 

by 13%. 

Koakutsu and Hirata [61] propose an interesting combined approach called genetic 

simulated annealing (GSA) for the solution of the floor plan design of VLSI (Very 

Large Scale Integrated) circuits.  The problem involves the arrangement of a given set 

of rectangular modules (with no fixed shapes or dimensions) in the plane, with the 

objective to minimize: 

(1) The area of the enclosing rectangle which should contain all the modules, and (2) 

the total wire length between modules that should be connected in the circuit. The 

main features of the algorithm are the following: 

- Stochastic Optimization: GSA uses the stochastic optimization used in simulated 

annealing so that a neighbor state for which there is an increase of the cost function is 

accepted with a certain probability. 

- Multiple Search Paths: A population of solutions corresponding to the population of 

GAs is used to initialize the search in multiple directions. The stochastic optimization 

is applied to each solution of the population. 

- Selection of search paths: The selection operator replaces solutions which have 

value higher than the average value of the population, with solutions that have lower 

cost value than the average value of the population. This way, paths which are 

expected to reach good solutions are selected. 

- Genetic Operators: A genetic crossover operator is used to generate new solutions. 

The formulation of the problem represents the floor plan layout as a slicing tree.   The 

representation of a solution as a string is similar to the one described previously, using 

in this case, vertical and horizontal cuts with corresponding branching operators. 
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GSA is tested on three floor plan problem instances. The first has 16 modules, each 

one a fixed square of unit area, having wires connecting to its horizontal and vertical 

neighbors. 

The second problem has 16 modules and 25 wires, and the third one has 20 modules 

and 31 wires. For the last two problems the total module area is 100. The proposed 

algorithm was compared to a regular SA algorithm.  Both algorithms run 100 times 

with different initial solutions for each of the above problem instances.  The average 

costs are used for the comparison.  The results show that GA improves the average 

cost by 1.7% - 9.8% compared to the SA within the same computational time. 

More recently Banerjee and Zhou [62] developed a genetic algorithm to solve a 

variation of Montereuil’s mixed integer programming formulation for the FLP [46], 

and in particular for the special case of single loop material flow path configuration.   

They introduce a “knowledge-augmented mutation operator” to determine the flow 

path direction, which appears to perform well for the cases where the layout has very 

low flow path dominance. 

Previous applications of GA for facilities layout design can be found in [63] from the 

same authors and Montreuil. 

Tate and Smith [64] applied GA using an adaptive penalty function to the unequal-

area facility layout problem with shape constraints. The rectangular area in which the 

facilities are to be located is divided into vertical bays of different width and each bay 

is divided into rectangular departments of different length. The encoding of the 

solutions to strings is done with two distinct chromosomes. The first one is the 

sequential chromosome which is represented by a permutation of the set N = {1, 2, 

….., n), where n is the number of departments. The sequence of the permutation starts 

by reading departments bay to bay, from top to bottom and from left to right at the 

rectangular area. The second chromosome 

is the bay chromosome where each gene shows for each bay the number of 

departments contained in the previous bays including the involved one, showing this 

way the breaks that occur in the sequence between bays.  For example, consider 4 

bays having 3, 4, 6 and 2 departments respectively starting from the left bay.  Then 
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using the bay chromosome the solution encoding is (3; 7; 13). Note that the last 

breakpoint at 15 is obvious. The proposed GA uses variants of crossover and mutation 

operators. 

  The variant of the crossover operator works as follows:  using two individuals to be 

the parents, one offspring (child) is generated by the following rules.  For the case 

of GA encoding using the sequential chromosome, each location in the child’ s 

sequence is the department number in the corresponding location from one of the 

parents, both having the same probability to be selected.  This will force the 

common locations in the sequences of the parents to be carried over to the child. 

Also each department must occur only once in the child.  For the bay 

chromosomes, the location and number of bay breaks in the child’s sequence is 

taken from one of the parents, both having equal probabilities to be selected. 

 The mutation uses three different operators. Two of the operators alter the number of 

bays affecting only the bay chromosome and one operator reverses a subsequence 

of the departments affecting the sequence chromosome. 

The evolution parameters, i.e. the population size, and the crossover and mutation 

rates are determined after several trial runs. An adaptive penalty function is used to 

find good feasible solutions. The penalty function is adaptive because during the 

course of the algorithm it uses observed population data to adjust the level of the 

penalty that is applied to the infeasible solutions. Test problems with size ranges from 

10 to 20 departments were used to evaluate the efficiency of the proposed genetic 

algorithm. The proposed approach proved to be the best in terms of quality solution 

when compared with previous published results for the problems under consideration. 

Genetic algorithms are inherently parallel in nature. Several implementations of GA 

in parallel environments have recently appeared, introducing in this way a new group 

of GA, the Parallel Genetic Algorithms (PGA). The population of a parallel genetic 

algorithm is divided into subpopulations.  Then an independent GA is locally 

performed on each of these subpopulations, and the best solutions in each case are 

transferred to all the other subpopulations.  Two types of communication are 

established among the subpopulations. Either among all nodes where the best solution 
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of each subpopulation is broadcasted to all the other subpopulations, or among the 

neighboring nodes, where only the neighboring subpopulations receive the best 

solutions. 

The most important features of PGA, which result in a considerable speedup relative 

to sequential GAs, are the following: 

 Local selection: In sequential GAs the selection operation takes place by considering 

the whole population. In a PGA this operation is performed locally by the 

selection of an individual in a neighborhood. 

 Asynchronous behavior:  It allows the evolution of different population structures at 

different speeds, resulting in an overall improvement of the algorithm in terms of 

computational time. 

 Reliability in computation performance: The computation performance of one 

processor does not affect the performance of the other processors. 

Several implementations of PGA have been proposed for the solution of the quadratic 

assignment problem.  An application of an asynchronous parallel GA called 

ASPARA-GOS has been presented by Muhlenbein [65] for the QAP, introducing a 

poly-sexual voting recombination operator.  The PGA was tested on QAPs of size 30 

and 36 with known solutions. The algorithm found a new optimum for the Steinberg’s 

problem (QAP of size 36). The numbers of processors that were used to run this 

problem were 16, 32 and 64. The 64 processors implementation (on a system with 

distributed memory) gave by far the best results in terms of computational time. 

Furthermore, Huntley and Brown [66] developed a parallel hybrid of SA and GA to 

solve the QAP approximately. A parallel genetic algorithm is used to produce a good 

initial solution for each population and the SA algorithm is used for improving these 

solutions. More recently, Battiti and Tecchiolli in [67] developed parallelization 

schemes of genetic algorithms for quadratic assignment problems presenting 

indicative experimental results. 
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2.1.2 Simulated Annealing for the Facility Layout Problem 

Simulated annealing was first proposed by Kirkpatrick et al. [68] as a method for 

solving combinatorial optimization problems. The name of the algorithm derives from 

an analogy between the simulation of the annealing of solids first proposed by 

Metropolis et al. [69], and the strategy of solving combinatorial optimization 

problems. Annealing refers to a process of cooling material slowly until it reaches a 

stable state. Starting from an initial state, the system is perturbed at random to a new 

state in the neighborhood of the original one, for which a change of ¢E in the 

objective function value (OFV) takes place. In a minimization process if the change 

¢E is negative then the transformation to the new state is accepted. 

If  the transformation is accepted with a certain probability of , 

where T  is a control parameter corresponding to the temperature in the analogy and 

kb is Boltzmann’ s constant.  The change ¢E in the OFV corresponds to the change in 

the energy level (in the analogy) that occurs as the temperature T decreases.  SA gives 

us a mechanism for accepting small increases in the objective function value, 

controlling though the probability of acceptance  through the temperatures.  

Kirkpatrick et al. [68] argue that allowing “hill climbing” moves, one can avoid 

configurations that lead to locally optimal solutions and eventually higher quality 

solutions can be obtained.  So the main advantage of the simulated annealing method 

is its ability to escape from local optima. 

The main features of the SA method are: 

 The temperature T, which is the parameter that controls the probability  of 

accepting a cost-increasing interchange. During the course of the algorithm T is 

decreased in order to steadily reduce the probability of acceptance of 

interchanges that increase the value of the objective function, 

 The equilibrium, i.e. the condition in which a further improvement in the solution 

using additional interchanges is highly unlikely to occur, 

 The annealing schedule that determines when and by how much the temperature 

is to be reduced. 



14 

A pseudo-code of the simulated annealing procedure is given in Figure 1 [54]. 

 

Figure 3: Simulated Annealing Procedure 

Several implementations of the simulated annealing algorithm have been proposed for 

the facility layout problem. We will present the main concepts of the most recent 

approaches and comment on the computational results. 

Heragu and Alfa in [70], present an extensive experimental analysis of two simulated 

Annealing based algorithms, implementing them on two patterns of layout, the single-

row and multi-row facility layouts. The first algorithm uses the standard techniques of 

the SA heuristic.  In the main step the algorithm examines the random exchange of the 

positions of two facilities.  The new solution is accepted if the exchange results in a 

lower OFV. 

Otherwise, the difference  between the OFV of the best solution obtained so far 

and the current solution is computed.  This solution is accepted with probability .  

This step is repeated 100n times or until the number of new solutions accepted is 

equal to 10n, where n is the number of facilities in the layout problem. Next, the 



15 

algorithm decreases the value of temperature T by multiplying it by the cooling ratio r 

and repeats the main step. 

The stopping criterion is a fixed maximum number of temperature change steps. The 

initial temperature T is set as a number sufficiently larger than the largest  

encountered for problems tested with other heuristics. 

The second algorithm presented in the same thesis is a hybrid SA algorithm (HSA), 

which uses a “core” algorithm to generate a “good” initial solution, and then improves 

it using the SA algorithm described before. The core algorithm is a modified penalty 

algorithm (MP) presented in [71]. Eight test problems of size up to 30 (available in 

the literature) are used for the single-row case. Each test problem is solved 10 times 

using the same initial solution. 

For six of the problems the HSA algorithm produces optimal or best-known solutions. 

For the remaining two problems, the solutions are better than those previously 

reported in the literature. A comparison between the HSA and the SA algorithms is 

presented, as well as with three other heuristic algorithms (a 2-way exchange, a 3-way 

exchange and a Wilhem-Ward version of simulated annealing [72]) using 15 equal-

area multi-row FLPs. The HAS in terms of solution quality, performed better than all 

the other algorithms though requiring more computational time than the SA 

algorithm.  Also as the number of annealing runs increases, SA seems to produce 

similar quality solutions with HSA with less computational effort. 

Another implementation of the SA algorithm applied to the cellular layout problem 

can be found in [73].  This problem involves the determination of the relative 

positions of n equi-dimensional manufacturing entities which may represent either the 

set of machines belonging to a cell (intra-cell problem) or the manufacturing cells 

within a shop (inter-cell problem).  The objective of both layout problems is to 

minimize the total material flow (cost) between the manufacturing entities.  The 

method presented in the paper is called CLASS, which stands for Computerized 

Layout Solutions using simulated annealing. The proposed algorithm is a regular 

simulated annealing algorithm with the following most important elements: 
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Solution space:  The solution space consists of an n X n grid, i.e.  n2 positions are 

available to be occupied by the n entities. The distance between all pairs of positions 

is determined using geometric or Manhattan distances. 

Interchanges: The interchange given a solution can be either a move of an entity from 

its current position to an unoccupied position or an “exchange” of the positions of two 

entities.  The two positions from the solution space that are exchanged are selected 

randomly. 

Annealing schedule:  The annealing schedule considers the initial temperature to be 

sufficiently large so that all interchanges are eventually accepted.  The temperature is 

reduced by multiplying it with a constant that takes values between 0 and 1. 

Parameters:  The number of interchanges to be attempted at each temperature, the 

number of accepted interchanges at each step and the total number of temperature 

change steps are 100n, 10n and 100 respectively. 

Interchange Acceptance Criterion: The interchange is accepted if a randomly 

generated number between 0 and 1 is less than the value of  , where  and T are 

respectively the difference in the OFV and the temperature at the current step. 

CLASS was compared to twelve other layout methods in terms of both the quality of 

the solution and the speed of convergence. Eight problems available in the literature 

were used for the comparison of the algorithms, with sizes between n = 5 and n = 30. 

In each case CLASS either equals the performance of, or outperforms each of the 

other methods.  The sensitivity of CLASS to the initial conditions was tested by 

running each of the test problems of sizes 5, 6, 7, and 8, five times, each time with a 

different initial solution. The optimal solution was obtained in each case, indicating 

the insensitivity of the solution quality to the initial conditions. 

For the inter-cell problem Tam describes a SA solution approach which takes into 

consideration the traffic between cells, the geometric constraints of the individual 

cells and any occupied regions on the floor plan. The objective is to find a layout that 

minimizes the weighted flow of parts between the manufacturing cells while 

satisfying the area and shape constraints of the individual cells. There are several 

critical points concerning the problem formulation: 
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 Layout representation: The layout takes the form of a slicing structure, which is 

represented by a slicing tree. This is a binary tree representing the recursive 

partitioning process of a rectangular area, through cuts.  A cut specifies the 

relative position of the departments (left, right, below or above each other) 

through four distinguished branching operators. 

 Solution space: The solution space is defined as the set S which consists of all 

slicing trees that can be generated by rearranging cuts of a given structure.  It is 

shown that , where n is the number of cells and the size of the 

neighborhood N is . 

 Area constraints: The location where a rectangular partition is cut, i.e. the cut point, 

must be chosen so that the split partitions receive their required areas. The cut 

point is determined in a top-down fashion starting from the “root” of the tree. 

 Shape constraints:   The cell’s shape is described using the aspect ratio and the dead 

space ratio.  The first ratio is the height over the width of the partition allocated to 

a cell. The second ratio is used to measure the amount of unusable space within 

the partition allocated to a manufacturing cell. Both ratios have lower and upper 

bounds. 

 Slicing tree construction: Using numerical clustering techniques a slicing tree is 

constructed in such a way that cells with large inter-cell traffic volume are placed 

in close proximity with each other. 

The attractive element of the algorithm is that it exploits the hierarchical 

representation of the layout, so that the probability of selecting a neighborhood state is 

not uniformly distributed (as in a regular SA algorithm), but is dependent on T. More 

particularly, when T is high at the first steps of the annealing procedure, a cut near the 

root of the slicing tree will be selected, causing large swings in the cost function value 

since a large number of cells will have to be relocated.  As T decreases during the 

course of the algorithm, cuts that are located at a lower level in the tree are selected, 

to generate a neighborhood state. So a guided search in the set of neighboring 

solutions is adopted. The algorithm was compared to two other local search methods, 

denoted as HC (a straightforward hill climbing method) and BC (a modified version 
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of HC). Two test problems of size n = 20 and n = 30 were constructed for the 

comparison. Each method was run 10 times with different initial solutions. The 

computation time was kept the same among the three methods. In terms of solution 

quality the proposed SA algorithm outperformed the other two methods, both in 

average and minimum cost. 

Kouvelis and Chiang address the single row layout problem (SRLP) in flexible 

manufacturing systems (FMSs).  The problem deals with the optimal arrangement of 

n machines along a straight track with a material handling device moving jobs from 

one machine to another. The difficulty of the problem is due to the variety of parts to 

be processed in different ranges of operation sequences.  When the sequence of 

operations of a job is not the same as the sequence of the locations of the machines, 

the job sometimes has to travel in reverse (backtrack) in order to receive the required 

operations. The objective of the SRLP is to find the ordering of the machines that 

minimizes the total backtracking distance of the material handling device. If we 

consider n machines and n candidate locations for the machines to be placed, the 

solution to the SRLP is one of the possible permutations of the set S = 

{1,2,….n}defined as the set of the workstation assignment vectors, each one 

representing a configuration of the machines in a single row. The neighborhood of a 

configuration is the set N of configurations resulting by the interchange of the 

locations of two machines. The initial configuration is obtained by randomly 

assigning machines to locations. For the setting of the parameters of the SA 

algorithm, i.e. the initial acceptance probability (through which the initial temperature 

will be calculated), the number of interchanges attempted before the reduction of the 

temperature, the value of the cooling ratio, and the number of steps to reach the 

equilibrium, a sensitivity analysis was performed with respect to each individual 

parameter. For each parameter a range of values is tested while all other parameters 

are held fixed. The best values of the parameters are kept as the final ones to be used 

in the algorithm.  The experimental analysis showed that fine-tuning of the SA 

parameters with respect to each specific application and the selection of the initial 
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solution is very important for the performance of the algorithm in terms of quality 

solution. 

The same authors and J. Fitzsimmons describe two distinct implementations of the 

simulated annealing algorithm for machine layout problems in the presence of zoning 

constraints.  These constraints are restrictions on the arrangement of machines.  

Positive zoning constraints require that certain machines have to be placed near each 

other, while negative zoning constraints do not allow certain machines to be in close 

proximity.  The problem is formulated as a restricted quadratic assignment problem.  

Assuming that the number of candidate locations is equal to the number of machines, 

the objective is to assign the machines to the locations in a way that the cost function 

is minimized with respect to the zoning constraints. The first of the SA algorithms 

called the Compulsion Method takes into consideration the zoning constraints mostly 

during the search for a new layout in the neighborhood of the original one.  The 

second algorithm, the Penalty Method, takes into account the presence of the zoning 

constraints in the objective function through the use of appropriate penalty terms.  For 

each layout that violates any of the zoning constraints, corresponding penalty terms 

are charged in the OFV. The two versions are compared on an extensive set of 

computational experiments using test problems of size ranges from 5 to 30 machines.  

The results showed that the Compulsion Method outperforms the Penalty Method in 

terms of CPU time and solution quality.  The basic advantage of the Penalty Method 

is that it can be easily changed to handle the addition of extra zoning constraints. 

Meller and Bozer describe a Simulated Annealing Based Layout Evaluation algorithm 

(SABLE), which introduces a new generator routine for candidate layout solutions, 

combined with the use of space-filling curves.  The algorithm is implemented on a set 

of single and multiple floor facility layout problems. For the single-floor case test 

problems of sizes 11 to 25 are used.  An average and a worst-case analysis shows that 

the proposed algorithm performs the best in terms of solution quality. Additionally, 

SABLE performed better than Tam’s SA algorithm on a data set of 20 and 30-size 

department single-floor FLPs.  Let us note that regarding the department shapes, 

Tam’s algorithm generally assumes rectangular shapes, while the proposed algorithm 
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tends to generate departments with non-rectangular shapes. For the multi-floor case, 

test problems with up to 4 floors and 40 departments were used to evaluate the 

performance of SABLE. 

The results indicate the robustness of the algorithm to changes in the vertical to 

horizontal ratio. 

For the special case of QAP several SA approaches have been proposed.  Burkard and 

Rend were the first to apply simulated annealing for solving the QAP. They reported 

on rather favorable computational results indicating that the obtained solutions deviate 

only 1-2% from the best known solutions.  Wilhelm and Ward also applied the SA 

algorithm to quadratic assignment problems, by further experimenting on the 

procedure. 

They report on the sensitivity of SA to the control parameters, and evaluate the 

algorithm using problems ranging in size from n = 5 to n = 100.  In particular 

computational results were provided for the test problems in Nugent et al. and for two 

test problems they introduced in the paper.  Connolly discusses the implementation of 

SA on 7 problems.   The computational results indicate that examining sequentially 

generated neighboring solutions, rather than randomly generated ones, makes the SA 

algorithm more efficient. More recently Laursen investigated the performance of the 

SA algorithm by varying two parameters: (1) the number of simulations, and (2) the 

simulation length, while in both cases the algorithm uses the same computational time 

for a specific instance problem.  Laursen concluded that the length of each simulation 

is optimizable and that a large range of its values generate a near-optimal solution 

quality. 
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2.2 Recent Nature Inspired Algorithms 

2.2.1 Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is a population based stochastic optimization 

technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social 

behavior of bird flocking or fish schooling. 

PSO shares many similarities with evolutionary computation techniques such as 

Genetic Algorithms (GA). The system is initialized with a population of random 

solutions and searches for optima by updating generations. However, unlike GA, PSO 

has no evolution operators such as crossover and mutation. In PSO, the potential 

solutions, called particles, fly through the problem space by following the current 

optimum particles.   

Each particle keeps track of its coordinates in the problem space which are associated 

with the best solution (fitness) it has achieved so far. (The fitness value is also stored.) 

This value is called pbest. Another "best" value that is tracked by the particle swarm 

optimizer is the best value, obtained so far by any particle in the neighbors of the 

particle. This location is called lbest. When a particle takes all the population as its 

topological neighbors, the best value is a global best and is called gbest. 

The particle swarm optimization concept consists of, at each time step, changing the 

velocity of (accelerating) each particle toward its pbest and lbest locations (local 

version of PSO). Acceleration is weighted by a random term, with separate random 

numbers being generated for acceleration toward pbest and lbest locations.  

In past several years, PSO has been successfully applied in many research and 

application areas. It is demonstrated that PSO gets better results in a faster, cheaper 

way compared with other methods.   
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Another reason that PSO is attractive is that there are few parameters to adjust. One 

version, with slight variations, works well in a wide variety of applications. Particle 

swarm optimization has been used for approaches that can be used across a wide 

range of applications, as well as for specific applications focused on a specific 

requirement. 

[http://www.swarmintelligence.org/] 

2.2.2 Firefly Algorithm 

Firefly  Algorithm  (FA)  was  first developed  by Xin-She  Yang  in  late  2007  and  

2008  at Cambridge University, which was based on the flashing patterns and 

behavior of fireflies. The theoretical side of this algorithm is explained in Chapter 6. 

2.2.3 Cuckoo search 

Cuckoo search (CS) is an optimization algorithm developed by Xin-she Yang and 

Suash Deb in 2009. It was inspired by the obligate brood parasitism of some cuckoo 

species by laying their eggs in the nests of other host birds (of other species). Some 

host birds can engage direct conflict with the intruding cuckoos. For example, if a 

host bird discovers the eggs are not their own, it will either throw these alien eggs 

away or simply abandon its nest and build a new nest elsewhere. Some cuckoo 

species such as the New World brood-parasitic Tapera have evolved in such a way 

that female parasitic cuckoos are often very specialized in the mimicry in colors and 

pattern of the eggs of a few chosen host species. 

Cuckoo search idealized such breeding behavior, and thus can be applied for various 

optimization problems. It seems that it can outperform other meta-heuristic algorithms 

in applications. 

2.2.4 Cuckoo search (CS) uses the following representations 

Each egg in a nest represents a solution, and a cuckoo egg represents a new solution. 

The aim is to use the new and potentially better solutions (cuckoos) to replace a not-

so-good solution in the nests. In the simplest form, each nest has one egg. The 
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algorithm can be extended to more complicated cases in which each nest has multiple 

eggs representing a set of solutions. 

CS is based on three idealized rules: 

- Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen 

nest; 

- The best nests with high quality of eggs will carry over to the next generation; 

- The number of available hosts nests is fixed, and the egg laid by a cuckoo is 

discovered by the host bird with a probability p_a \in (0, 1). Discovering 

operate on some set of worst nests, and discovered solutions dumped from 

farther calculations. 

In addition, Yang and Deb discovered that the random-walk style search is better 

performed by Lévy flights rather than simple random walk. 

[Wikipedia] 

2.2.4 BAT algorithm 

Bats are fascinating animals. They are the only mammals with wings and they also 

have advanced capability of echolocation. It is estimated that there are about 996 

different species which account for up to 20% of all mammal species.  Their size 

ranges from the tiny bumblebee bat (of about 1.5 to 2g) to the giant bats with 

wingspan of about 2 m and weight up to about 1 kg.  Microbats typically have 

forearm length of about 2.2 to 11cm.  Most bats uses echolocation to a certain degree; 

among all the species, microbats are a famous example as microbats use echolocation 

extensively while megabats do not. 

Microbats use a type of sonar, called, echolocation, to detect prey, avoid obstacles, 

and locate their roosting crevices in the dark.   These bats emit a very loud sound 

pulse and listen for the echo that bounces back from the surrounding objects.  Their 

pulses vary in properties and can be correlated with their hunting strategies, 

depending on the species. Most bats use short, frequency-modulated signals to sweep 

through about an octave, while others more often use constant-frequency signals for 



24 

echolocation. Their signal bandwidth varies depends on the species, and often 

increased by using more harmonics. 

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10 ms), 

however, it has a constant frequency which is usually in the region of 25 kHz to 150 

kHz. The typical range of frequencies for most bat species are in the region between 

25kHz and 100kHz, though some species can emit higher frequencies up to 150 kHz. 

Each ultrasonic burst may last typically 5 to 20 ms, and microbats emit about 10 to 20 

such sound bursts every second. When hunting for prey, the rate of pulse emission can 

be sped up to about 200 pulses per second when they fly near their prey.  Such short 

sound bursts imply the fantastic ability of the signal processing power of bats. In fact, 

studies shows the integration time of the bat ear is typically about 300 to 400 µs.  As 

the speed of sound 

in air is typically v = 340 m/s, the wavelength λ of the ultrasonic sound bursts with a 

constant frequency f is given by λ = v/f, which is in the range of 2mm to 14mm for 

the typical frequency range from 25kHz to 150 kHz. Such wavelengths are in the 

same order of their prey sizes. 

Studies show that microbats use the time delay from the emission and detection of the 

echo, the time difference between their two ears, and the loudness variations of the 

echoes to build up three dimensional scenario of the surrounding. They can detect the 

distance and orientation of the target, the type of prey, and even the moving speed of 

the prey such as small insects. Obviously, some bats have good eyesight, and most 

bats also have very sensitive smell sense. 

In reality, they will use all the senses as a combination to maximize the efficient 

detection of prey and smooth navigation. However, here we are only interested in the 

echolocation and the associated behavior.  Such echolocation behavior of microbats 

can be formulated in such a way that it can be associated with the objective function 

to be optimized, and this makes it possible to formulate new optimization algorithms. 

If we idealize some of the echolocation characteristics of microbats, we can develop 

various bat-inspired algorithms or bat algorithms. In the basic bat algorithm, the 

following approximate or idealized rules were used. 
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1.  All  bats  use  echolocation  to  sense  distance,  and  they  also  ‘know’  the  

difference  between food/prey and background barriers in some magical way; 

2.  Bats fly randomly with velocity vi at position xi with a frequency fmin, varying 

wavelength λ and loudness A0 to search for prey.   They can automatically adjust the 

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission 

r ∈ [0, 1], depending on the proximity of their target; 

3.  Although the loudness can vary in many ways, we assume that the loudness varies 

from a large (positive) A0 to a minimum constant value Amin. 

Another obvious simplification is that no ray tracing is used in estimating the time 

delay and three dimensional topography. Though this might be a good feature for the 

application in computational geometry, however, we will not use this feature, as it is 

more computationally extensive in multidimensional cases. 

In addition to these simplified assumptions, we also use the following approximations, 

for simplicity.  In general the frequency f in a range [fmin, fmax] corresponds to a range 

of wavelengths [λmin, λmax].  For example a frequency range of [20kHz, 500kHz] 

corresponds to a range of wave-lengths from 0.7mm to 17mm in reality. Obviously, 

we can choose the ranges freely to suit different applications. 

2.2.4.1 Bat Motion 

For the bats in simulations, we have to define the rules how their positions xi and 

velocities vi in a d-dimensional search space are updated.  The new solutions   and 

velocities   at time step t are given by 

 
where β ∈ [0, 1] is a random vector drawn from a uniform distribution. Here x∗ is the 

current global best location (solution) which is located after comparing all the 

solutions among all the n bats at each iteration t. As the product λifi is the velocity 

increment, we can use fi  (or λi  ) to adjust the velocity change while fixing the other 

factor λi  (or fi), depending on the type of the problem of interest.  In our 
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implementation, we will use fmin = 0 and fmax = O(1), depending on the domain size of 

the problem of interest. Initially, each bat is randomly assigned a frequency which is 

drawn uniformly from [fmin, fmax]. 

For the local search part, once a solution is selected among the current best solutions, 

a new solution for each bat is generated locally using random walk  

, 

where  is a random number vector drawn from [−1, 1], while  is the 

average loudness of all the bats at this time step. 

The update of the velocities and positions of bats have some similarity to the 

procedure in the standard particle swarm optimization, as fi essentially controls the 

pace and range of the movement of the swarming particles.  To a degree, BA can be 

considered as a balanced combination of the standard particle swarm optimization and 

the intensive local search controlled by the loudness and pulse rate. 

Loudness and Pulse Emission 

Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated 

accordingly as the iterations proceed.  As the loudness usually decreases once a bat 

has found its prey, while the rate of pulse emission increases, the loudness can be 

chosen as any value of convenience.  For example, we can use A0 = 100 and Amin = 1. 

For simplicity, we can also use A0 = 1 and Amin = 0, assuming Amin = 0 means that a 

bat has just found the prey and temporarily stop emitting any sound. Now we have, 

, 

where α and γ are constants. In fact, α is similar to the cooling factor of a cooling 

schedule in the simulated annealing [107]. For any 0 < α < 1 and γ > 0, we have 

 
In the simplest case, we can use α = γ, and we have used α = γ = 0.9 in our 

simulations. 

Preliminary studies by [58] suggested that bat algorithm is very promising for solving 

nonlinear global optimization problems. Now we extend it to solve multi-objective 

optimization problems. 

Multi-objective Bat Algorithm 
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Multi-objective optimization problems are more complicated than single objective 

optimization, and we have to find and/or approximate the optimality fronts.   In 

addition, algorithms have to be modified to accommodate multi-objectives properly. 

2.3 Literature Review 

2.3.1 Exact Algorithms 

Exact algorithms for the FLP represent those algorithms developed to obtain, in 

theory, an optimal solution to the facility layout problem. The major advantage of an 

exact algorithm is that it considers the whole solution space and the optimality of the 

final layout solution can be guaranteed. Unfortunately, these models are not 

necessarily of practical value. This is because they can only consider very small sized 

problems (less than 10 unequal sized departments), which are far from the size of 

common industry-practical problems (30–40 departments). When the size of the 

problem increases, the algorithms become impossible to solve in a practical sense 

because of the computational complexity of the FLP. 

The well-known exact algorithms for the FLP include the quadratic assignment 

problem (QAP) model and the mixed integer programming (MIP) model.  The QAP 

[4], as a special case of distance-based FLP with discrete representation, assumes that 

every department has equal area and that all locations (grids) are fixed and known a 

priori. The QAP formulation assigns every department to one location and at most one 

department to each location, which means a one-to-one matching between 

departments and locations. The cost of placing a department at a particular location is 

dependent on the location of the interacting departments. Although the QAP 

formulation greatly simplifies the FLP and cannot describe the reality of the industrial 

applications, the QAP is still one of the most challenging optimization problems—

recently, a 30-facility QAP required 1000 computers in a massive parallelization 

effort over a seven-day period that lead to an equivalent 6.9 years of computational 

effort.  The size of the QAP that can be solved in a reasonable computational effort is 

around 20 departments [5]. 
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A MIP-based formulation for the facility layout problem (MIP-FLP) was presented by 

Montreuil [6]. He formulates the FLP as a 0-1 mixed integer programming model 

with a distance-based objective function. Because the MIP-FLP model utilizes a 

continuous representation, it is more accurate and realistic than the traditional QAP 

model [6,7]. 

The MIP-FLP has become one of the main focus areas in FLP research in recent 

years. However, since the MIP-FLP is very difficult to solve to optimality (less than 

10 departments), an efficient heuristic that is based on the MIP-FLP needs to be 

developed. 

The QAP was the first exact approach in FLP research.  The QAP was first proposed 

by Koopmans and Beckman in 1957 [4], which was introduced to model interacting 

plants of equal areas. A typical QAP model is given as follows: 

, 

Where cijkl  is the cost incurred by assigning department i in location k and department 

j in location l.  The binary decision variable, xik, is equal to 1 if department i is 

assigned to location k and 0 otherwise. 

As we discussed in Chapter 1, the QAP assumptions include equal-area departments 

and fixed and known locations to place the departments. Utilizing a discrete 

representation, the QAP formulation takes fixed locations as “giant grids” and assigns 

every department to exactly one grid (see (2.2) and (2.3)). The cost of such a one-to-
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one assignment between departments and grid locations depends on the location of the 

interacting departments (see (2.1)). 

An alternative formulation of the QAP considers assigning interdepartmental 

distances to department pairs [14]. The QAP has been proven to be NP-complete [15]. 

Optimal solutions for the QAP model in general cases can only be found for problems 

with less than 18 departments [16]. 

Some modified QAP models [17] were presented to solve the unequal-area FLP by 

breaking departments into small grids with equal area, assigning large artificial flows 

between those grids of the same department to ensure that the departments are not 

split, and solving the resulting QAP. Such approaches actually increase the discrete 

representation resolution (i.e., smaller grids underlying the facility), allowing each 

department to be assigned to more than one grid. However, due to the increase in the 

number of “departments,” it is not possible to solve even small-sized problems with a 

few unequal-area departments.  Moreover, it is shown in [9] that such an approach is 

not effective because it implicitly adds a department shape constraint.  Such a 

constraint limits the solution space in a manner that cannot be known beforehand. 

Some researchers have used QAP in a modified form to solve a specific facility layout 

problem.  For example, [18] developed a QAP model to address the bidirectional 

circular layout problem (Bi-CLP), where the departments are arranged along a simple 

closed-loop aisle and the flow between departments can occur either in the clockwise 

or counterclockwise direction based on whichever is shorter along the aisle. 

Another discrete representation based exact algorithm is the MIP-FLP model 

represented by [19] to solve the process plant layout problem in the chemical industry. 

This model is different from the QAP in the following ways: (1) considering the 

equipment size and orientation; (2) considering both the two-dimension and the three-

dimension layout solutions; and (3) developing a multi-objective function that 

includes not only material handling cost, but also land, piping and floor construction 

costs.  However, this model still suffers from the discrete representation weaknesses 

discussed in Section 1.3.2. 
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2.3.2 Graph Theoretic Approaches 

Graph  theoretic  approaches  assume  that  the  closeness  ratings  between  

departments  are known a priori.   Each department is represented as a node and 

adjacency relationships between departments are represented by an arc connecting the 

two adjacent nodes (departments) in the adjacency graph [8]. There are no underlying 

grids in such a representation, so usually graph theoretic approaches are considered as 

continuous representation based approaches. 

 The optimization objective used in graph theoretic approaches is the closeness rating 

function in (1.1).  This objective function is first translated to obtain a maximal 

weighted planar graph (MWPG).  Secondly, the MWPG is transformed into a dual 

graph.  Finally, a block layout is generated through the dual graph.  Giffin [20] 

showed that MWPG is a NP-complete problem. Like the QAP approach, even small-

sized problems cannot be solved to optimality. As a result, many construction 

heuristics based on graph theoretic models are developed.  Some of them are reviewed 

in the following section.  A thorough review of such heuristics can be found in [21]. 

2.3.3 Mixed Integer Programming Approaches 

A MIP formulation for the FLP was originally presented in 1990 by Montreuil [6].  

This model uses a distance-based objective, but is not based on the traditional QAP 

framework. 

Instead, it utilizes a continuous representation of a layout and considers departments 

with unequal areas. In this model, the locations of, and dimensions of, departments 

are decision variables. A number of binary integer variables are used to avoid 

overlapping departments. 

1A graph is planar if it can be drawn in the plane and each arc intersects no other arcs 

and passes through no other nodes.  A planar sub-graph of an adjacency graph is 

called a maximal planar graph if no arcs can be added without destroying the planarity 

of the graph. 
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This model is commonly referred to as FLP0. One of the problems in FLP0 is that in 

lieu of the exact nonlinear (specifically non-convex and hyperbolic) area constraint, a 

bounded perimeter constraint is used to linearize the model. However, using a 

bounded perimeter constraint instead of an exact area constraint can lead to errors in 

the final area of each department. For the maximum aspect ratio of departments equal 

to 2, 3, 4, and 5, the boundary perimeter constraint used in FLP0 is satisfied even if 

the final area of a department is less than its actual required department by 11%, 25%, 

36% and 44%, respectively. 

A modified MIP-FLP model based on FLP0 was presented in 1999 by Meller, 

Narayanan and Vance [7] to improve the model accuracy and approach efficiency. 

This model is commonly referred to as FLP1.  The bounded perimeter constraint in 

FLP1 is modified, which results in final department areas that are no less than their 

actual area requirements by 2.5%, 2.5%, 6.3% and 14.3% for an aspect ratio equal to 

2, 3, 4, and 5, respectively. More importantly, this modified MIP-FLP model also 

adds some valid inequalities in order to eliminate some infeasible solutions from the 

solution space and to improve the algorithm’s efficiency. 

Numerical results from that literature show that FLP1 is more accurate and effective 

than FLP0 in terms of solution quality and computational efforts. 

This MIP-based model has advantages over the QAP and graphic theoretic 

approaches, especially in terms of department shapes and problem representation. 

However, because of the added complications of unequal areas, varying department 

horizontal and vertical dimensions, and overlapping prohibition constraints, it is 

extremely difficult to solve such MIP-based models to optimality. The literature 

shows that for FLP0 it can only solve very small sized problems (n ≈ 5).  For FLP1, 

even though the authors introduced a number of valid inequalities to the model, the 

increased problem size that can be solved (n ≈ 7) is still far from the size of common 

industry practical problems (30–40 departments). 

The aspect ratio of a department is the ratio of its longest side length over its shortest 

side length. 
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In order to further improve the performance of the MIP-FLP model and algorithm, a 

series of enhancements were presented by [22]. Those new enhancements are based 

on FLP1, including a novel polyhedral outer approximation scheme for the nonlinear 

area constraints, symmetry-avoiding valid inequalities, several surrogate constraints 

and inequalities to prevent the department overlapping,  and a well-designed 

branching variable selection priority scheme.  The computation results from [22] 

show that he efforts and accuracy of final solutions are increased (n ≈ 9) and some 

difficult test cases are solved for the first time in the literature. However, the problem 

size is still limited and not applicable for most industrial applications. 

One of the major difficulties that arises in solving the MIP-FLP is from the disjunctive 

constraints and the large quantity of binary integer variables that prevent departmental 

overlap. Hence, many researchers [23] & [6] have attempted to solve such MIP-FLP 

models by heuristically fixing a subset of those binary integer variables and then 

solving the resulting simplified model. Some of the literature in studying the 

heuristics for the MIP-FLP model is reviewed in the Section 2.2.2. 

2.3.4 Heuristic Approaches 

Because of the computational difficulty in solving the QAP, graph theory models, or 

the MIP-FLP to optimality, a great deal of research has centered on finding “good” 

solutions by implementing heuristic approaches.  There are two types of heuristics:  

construction heuristics and improvement heuristics. Construction-type heuristics build 

a single solution from scratch (typically in an open space) by successively selecting 

and locating a new department until the layout is completed. Alternatively, 

improvement-type heuristics require an initial layout as input, and the algorithm 

improves the initial layout by making use of some improvement mechanism, such as 

pair-wise or multi-pair-wise exchanges, until no further improvements can be found. 

Many improvement routines have been applied (e.g., steepest descent, simulated 

annealing, genetic algorithms, etc.) to improvement-type heuristics. 

In addition to the above classification on the basis of search mechanism, we also 

classify and review the heuristic literature according to the layout solution 
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representation (discrete or continuous). We do so because the focus of this chapter is 

the layout representation used in previous research instead of search strategy. 

2.3.4.1 Heuristics with Discrete Representation 

Montreuil, Ratliff, and Goetschalckx [24] presented an interactive construction-type 

heuristic, MATCH, which utilizes a discrete representation and integer programming 

to solve a b-matching model.  A b-matching problem is to find a maximum weighted 

matching in an edge-weighted graph that each edge has its lower and upper bounds to 

restrict the number of times the edge can be used and each vertex has a integer 

parameter to specify the number of the vertex must be matched with all other 

vertexes.  Their approach tries to find a matching that maximizes the adjacency score 

while satisfying the constraints for number of matches in the adjacency graph. 

SHAPE [25] is a construction-type heuristic based on a discrete representation and 

distance-based objective.   The department entry sequence is determined by each 

department’s flows and a user-defined critical flow value.  The first department is 

placed at the center of the layout.  Subsequent departments are placed based on the 

objective function value increase if placed on each of the four sides of current layout.  

CRAFT [26] is one of the first improvement-type heuristics.   CRAFT searches for the 

improvements by implementing two-way or three-way exchanges of the centroids of 

non-fixed departments. Due to the primitive exchange routine, only departments that 

are either of the same size or adjacent in the current layout may be exchanged. 

The space-filling curve representation is another example of a discrete representation. 

A space-filling curve is a curve visiting the underlying grids contiguously to avoid the 

presence of split departments.  MULTIPLE [3] and SABLE [9] are two algorithms 

based on the space-filling curve representation.  MULTIPLE utilizes a two-way 

exchange to improve the initial layout.  SABLE applies a simulated annealing (SA) 

algorithm to search for “good” layout solutions. Both algorithms are capable of 

solving single-floor and multiple-floor layout problems. 

Some researchers combine meta-heuristics with CRAFT to provide randomness 

mechanism to allow CRAFT to explore additional two-way local optimal solutions.  
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One of the newest research results is presented by [27], named Meta-RaPS CRAFT, 

which is based on a discrete representation and a distance-based objective. Meta-

RaPS is a strategy used to change the priority rules based on the insertion of a random 

element.  In Meta-RaPS CRAFT, the decision of department exchange is based on the 

priority rule, which is determined by Meta-RaPS under a random mechanism. 

2.3.4.2 Heuristics with Continuous Representation 

The delta-hadron approach (DA) [28] is one of the most widely cited construction-

type heuristics.  As a graph-based approach, DA uses the adjacency-based objective 

and generates a layout by determining the entry sequence of nodes (departments) into 

the graph.  At each stage, a node (department) enters the graph to maximize the 

adjacency benefits with the other nodes (departments) in the graph.  A great deal of 

research has been conducted to improve DA’s performance [29,30,31]. Another 

construction-type heuristic based on graph theoretic approaches and the adjacency-

based objective is SPIRAL [32], which utilizes the concept of “relationship tuples” to 

construct an adjacency graph. 

LOGIC [33] is an improvement-type heuristic based on a collection of rectangular 

partitions called a slicing tree. Based on the slicing tree structure, the given facility is 

recursively partitioned. LOGIC can consider fixed and non-fixed departments. 

NLT [34] is an approach based on nonlinear programming and the distance-based 

objective. NLT utilizes a continuous representation and solves the constrained 

nonlinear programming model by transforming the model into an unconstrained form 

by an exterior point quadratic penalty function method. The resulting department 

shapes are all rectangular. 

Some heuristics have been developed to improve the performance of Montreuil’s 

MIP-FLP model. [23] and [35] applied qualitative layout anomalies (QLAs) and 

design skeletons to Montreuil’s MIP-FLP model. The heuristics utilize context-based 

information to reduce the solution tree.  Lacksonen [36] proposed an approach that 

combines the QAP model with Montreuil’s MIP-FLP model.   First, a QAP model is 

solved by applying a cutting plane heuristic.  The result of the QAP is used as an input 
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of approximate location information of departments, which is used to reduce the 

number of binary variables in the MIP model. 

Langevin et el [37] proposed a heuristic approach based on Montreuil’s MIP-FLP 

model to solve the spine layout problem, where a main aisle is used for material 

handling and all departments are located along the both sides of the aisle.  This 

approach first generates an ordered list of departments based on a heuristic proposed 

by Heragu and Kusiak [38] to solve a single row layout problem.  Then, it applies the 

ordered list to the Montreuil’s MIP-FLP model to fix the binary variables and 

transforms Montreuil’s model from an MIP model to a linear programming model.  

The maximum size of test problems presented in [37] is 22 departments. This 

approach uses a heuristically-fixed ordered list as initial input and cannot consider all 

the possible solutions. It is also specifically designed for the spine layout problem. As 

such, it is not suitable for the general FLP. 

Lacksonen [36] proposed a pre-processing heuristic to fix a subset of the total binary 

variables according to a regression formula based on the area of each department and 

material flows associated with each department.  The maximum size of test problems 

is 12 departments. 

Montreuil et al. [39] presented an Ant Zone meta-heuristic based on a continuous 

representation, where an ant colony approach is used to generate the layout code, and 

given a layout code, a zone-based linear programming model is solved to optimize the 

zone-based layout solution. 

Another type of continuous-representation-based heuristic design is focused on 

studying the FLP with fixed-shaped departments and fixed input/output locations, 

where the locations of the departments are represented continuously.  One of the most 

recent research is presented by Kim and Kim [40], where an MIP model is formulated 

and a construction-improvement heuristic is presented based on the MIP model to 

minimize the distance-based objective function for the FLP with pre-specified-shaped 

departments and fixed input/output locations. However, the department shapes are 

restricted to rectangular-shaped only. 
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Irohara and Yamada [41] present a location matrix based heuristic to solve the FLP 

with aisle structure where there are three alternatives for the input/output locations.  

One main limitation for this research is that the approach assigns departments within a 

zone in a sequential-order along either the horizontal direction or vertical direction.  

Therefore, it cannot consider all-possible layout solutions. 

2.3.5 Simulated annealing-based method  

SA  is  a  stochastic  search  process  based  on  the  concept  of  ‘annealing’  [42]. The 

annealing of a solid material is two-phase method. In the first phase, solid material is 

heated up to a certain temperature where its atoms can move freely or randomly in 

material. In second phase, this hot material is allowed to cool slowly so that the atoms 

can rearrange themselves into a lower energy state to form crystal. This second phase 

is also known as crystallization process. Since the crystalline state is the minimum 

energy state of the system, this process can be thought of minimization of free energy 

of the system or solid. It is found that improper heating and/or fast cooling can lead 

solid to an amorphous state with higher energy level. This situation is an analogy of 

reaching a local  minimum  instead  of  global  minimum  of  the  system  energy,  and  

hence  proper schedule for annealing is vital.  

There  are  several  important  analogies  found  in  literature  between  annealing  and 

combinatorial optimization. The system analogies are:  

 The system state at any point of time, that is, at a system energy level is analogous 

to particular solution of the optimization problem the free energy of the system is 

analogous to the decision variables of the objective function the slight 

perturbation imposed on the system to change state analogous to a movement into 

a neighborhood solution with respect to the local search the cooling schedule 

corresponds to the control or iteration mechanism for the search algorithm  

   The crystalline state of the system analogous to the final solution generated by the 

algorithm (single solution).  

The first two analogies stated here-in-before are subjected to minimization.  
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In  case  of  single  objective  optimization  problem  SA  is  guaranteed  to  converge  

in asymptotic time, though the computational time grows exponentially with respect 

to the size of the problem [42]. The disadvantage of SA is that it requires multiple 

runs to defining proper cooling schedule in order to get optimum solution.  

It seems that SA as a method is being preferred by the researchers in the field, staring 

form  manufacturing  cell  design  to  multi-objective  optimization  of  dynamic  and  

static behavior  of  FLP  irrespective  of  whether  it  is  an  equal  or  an  unequal  

sized  facilities [43,44,45,46,47,48]. Concept of Pareto front generation, application of 

non-dominated solution techniques are getting powered by SA-based algorithms [49]. 

Hybrid method of SA with TS [50], SA and GA [51] helps to avoid high 

computational cost [52] and improves the solution, both qualitatively as well as 

quantitatively.  

Table 1: Survey of SA-based FLP literature 

 
A survey of SA-based facility layout literature, done for this research, is tabulated in 

Table 1,  wherein  eight  major  objectives  selected  for  SA-based  solution  are  

tabulated in columns A to G and detailed out as follows:  

A    minimization of Material handling and total closeness rating score  

B    minimizing re-layout cost  
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C    total area optimization and stochastic level of production  

D    vehicle routing  

E     optimization of fixed and variable cost of production  

F     minimization of material handling cost  

G    optimize number and location of elevators  

H    material flow path design.  

2.3.6 Tabu Search-based Method  

TS is an iterative meta-heuristic method where at each iteration, current solution 

moves to the  neighborhood  point  comprising  of  smallest  value  with  respect  to  

the  objective function. One of the main components of TS is its adaptive memory, 

which creates more flexible search behavior for responsive exploration.  

Incorporation of adaptive memory in TS builds its capability that the solution is not 

stuck into local optima. There are four major building blocks of tabu memory 

structure, which is referred to as, recency, frequency, quality and influence. Recency 

and frequency-based memories  are  complementary  in  nature,  and  a  combined  

use  helps  in  recognizing  the replica solutions. Quality-based memory helps to judge 

the goodness of the solution and short moves are taken in neighborhood. Influence-

based memory takes care of system learning during the search process.  

Intensification and diversification strategies are also highly important components of 

TS. Intensification is realized by storing in its memory the historically   found   good   

or   ‘elite’   solution   and   the   corresponding   search   move combinations.  It  helps  

to  concentrate  search  around  the  good  solution  region,  and  also helps the search 

process to escape from bad region. Diversification strategy helps to find out new 

region of solutions, which were not explored during the search and it also helps to get 

away from sticking to local optimal solutions.  

To facilitate these strategies, TS uses a short-term, intermediate-term and long-term 

memory. Short-term memory stores the variable values of the recently visited points 

and marks   them   as   tabu,   meaning   forbidden,   to   avoid   cycling   within   local   

region.  
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Intermediate-term   memory   stores   optimal   or   near   optimal   solution   to   help   

the intensification operation, while the long-term memory keeps track of the under-

explored regions as well as the regions which were already explored exhaustively 

thereby helping the diversification.  

In  case  of  FLP  the  TS  has  been  widely  used  in  optimizing  material  handling  

cost, utilization  of  space,  minimization  of  re-layout  cost  for  both  single-  and  

multi-objective problems [45]. TS is also deployed for optimizing single row FLD 

problem (a special class of FLP). But difficulties  have  been  encountered  when  TS  

was  deployed  for  continuous  search  space due  to  the  approximation  introduced  

on  account  of  digitization  of  continuous  space [42]. SA is to overcome 

computational complexities and difficulties of TS proposed a special different 

intensification   and   diversification   strategies,   which   shows   better   convergence   

of searching   to   get   proper   arrangement   of   facilities.   Improved   TS   

algorithm   with intensification, reconstruction and solution acceptance operation was 

proposed by Singh [53], which gives comparative result with respect to some 

benchmark problems found in QAP-based FLP literature.  

Table 2: Survey of TS-based FLP literature 

 
The survey findings of TS-based facility layout literature undertaken in this work is  

tabulated  in  Table 2,  wherein  four  major  objectives  selected  for  TS-based  

solution  are tabulated in columns A to D, which is as follows:  

A    minimizing total material handling or flow cost  
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B    minimizes size of resulting layout or maximizes utilization of area  

C    minimizing re-layout cost  

D   total area optimisation with stochastic level of production.  

2.3.7 Genetic algorithm-based method 

Search mechanism in GA actually is based on the  mechanism  of  natural  selection  

and natural  genetics.  GA  is  widely  used  in  optimization  problem  due  to  its  

robustness and is a tool in industrial engineering optimization problems deployed in 

the recent past. Building block of GA consists of five major elements:  

1 a genetic representation of solution  

2 a well-defined mechanism to generate initial population  

3 a fitness function to evaluate solution quality  

4 genetic operators, namely crossover and mutation, analogous to biological 

operation to generate offspring  

5 Parameter values. 

An  encoded  representation  of  problem  parameters,  used  as  chromosome,  is  

generally found in the form of string of binary or real numbers. Each variable is 

analogous to the gene of biological chromosome, and such gene values are decoded to 

yield solutions to the problem. Reproduction or selection operator replicates good 

solutions and eliminates bad solutions from the population, while keeping the 

population size unchanged. Roulette wheel and tournament selection process are well 

established for this operation, however tournament selection shows better 

performance in comparison to other selection operators. Crossover operator is used to 

generate offspring from parent chromosome by means of interchanging substring(s). 

No such restriction posed on the exact procedure to  crossover  in  GA;  rather  they  

are  problem  and  domain  specific.  On  the  other  hand, mutation operator is used to 

change a particular allele value by means of replacing this with  its  complement  in  

case  of  binary-coded  GA.  Flexibility is maintained for the mutation rules for 

providing robustness to the algorithm. From the literature review, undertaken in the 

present work, it is observed that GA has rather  frequently  been  used  in  the  recent  
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period  as  an  optimization  tool  for  FLP.  As indicated by application  of  GA  was  

found  to  be  of  significant proportion  in  optimizing  QAP  formulation  for  FLP.  

It is  observed  during  the  present study  undertaken  that  in  most  cases  the  

minimization  of  material  handling  cost  is considered  as  an  objective  function.  

However, relatively fewer reports addressed flexibility of layout with aisle structure, 

inter- and intra-cell material handling in cellular layout, maximum utilization of space 

and minimization of total travelling distance.  Facility  dispositions  and  its  

geometrical  orientations  are  generally encoded  as  slicing  tree,  ordered  set  of  

facilities,  facility  number  order,  x–y  coordinate maps to generate initial population. 

The difficulties of applying classical crossover, mutation operators on FLP were 

addressed.  Different  problem specific  modified  crossover  and  mutation  operation  

were  developed to  achieve  better  efficiency  of  GA. The operators have also been 

modified to preserve elite solutions tested response of different GA crossover,   

mutation   rate, population   size   and   maximum   number of generation on their 

problem. Parallel implementation of SA and GA, where GA used for global search 

and SA applied for local search, is also proposed by developed GA-based software for 

layout design with an easy GUI.  



42 

Table 3: Survey of GA-based FLP literature 

 
Ease  to  hybrid  GA  with  other  algorithms  and  its  ability  of  constraint  handling  

by penalization, as a property has made GA a preferred tool for multi-objective 

optimization for FLP. Generally, hybrid GA with SA or TS method chosen as 

algorithm to optimize multiple  objectives,  such  as  material  handling  cost  and  

space  utilization, placing facilities around an aisle structure and optimization of  

material handling cost,  minimization  of  material  handling  cost  and  re-layout  cost, 

loop layout in flexible manufacturing system. GA in cellular manufacturing has been 

applied in cell formation and group layout, involving optimization of inter and intra-

cell material handling effort. 

GA-based solutions are extended by VR [54] or AutoCAD representation to facilitate 

visualization of quality of solution. 



43 

The survey findings of GA-based facility layout literature, undertaken in this work is 

tabulated  in  Table 3,  wherein  six  major  objectives  selected  for  GA-based  

solution  are tabulated in columns A to F, which is as follows:  

A    minimizing total material handling or flow cost  

B    minimizes size of resulting layout or maximizes utilization of area  

C    generation of flexible layout  

D    minimize material handling cost for inter-cell and intra-cell movement  

E     minimizing total rectilinear distance travel for material  

F     optimization of aisle structure. 

2.3.8 Nature Inspired Algorithms  

Real-world optimization problems are often very challenging to solve, and many 

applications have to deal with NP-hard problems. To solve such problems, 

optimization tools have to be used, though there is no guarantee that the optimal 

solution can be obtained. In fact, for NP-problems, there are no efficient algorithms at 

all.  As a result, many problems have to be solved by trial and errors using various 

optimization techniques. In addition, new algorithms have been developed to see if 

they can cope with these challenging optimization problems. 

Among these new algorithms, many algorithms such as particle swarm optimization, 

cuckoo search and firefly algorithm, have gained popularity due to their high 

efficiency. In the current literature, there are about 40 different algorithms. It is really 

a challenging task to classify these algorithms systematically. Obviously, the 

classifications can largely depend on the criteria, and there is no easy guideline to set 

out the criteria in the literature.  

Sources of Inspiration 

Nature has inspired many researchers in many ways and thus is a rich source of 

inspiration. Nowadays, most new algorithms are nature-inspired, because they have 

been developed by drawing inspiration from nature. Even with the emphasis on the 

source of inspiration, we can still have different levels of classifications, depending on 
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how details and how many sub sources we will wish to use. For simplicity, we will 

use the highest level sources such as biology, physics or chemistry. 

In the most generic term, the main source of inspiration is Nature. Therefore, almost 

all new algorithms can be referred to as nature-inspired. By far the majority of nature-

inspired algorithms are based on some successful characteristics of biological system. 

Therefore, the largest fractions of nature-inspired algorithms are biology-inspired, or 

bio-inspired for short. 

Among bio-inspired algorithms, a special class of algorithms has been developed by 

drawing inspiration from swarm intelligence. Therefore, some of the bio inspired 

algorithms can be called swarm-intelligence-based. In fact, algorithms based on 

swarm intelligence are among the most popular. Good examples are ant colony 

optimization, particle swarm optimization, cuckoo search, bat algorithm, and firefly 

algorithm. 

Obviously, not all algorithms were based on biological systems. Many algorithms 

have been developed by using inspiration from physical and chemical systems. Some 

may even be based on music [59]. In the rest of thesis, we will briefly divide all 

algorithms into different categories, and we do not claim that this categorization is 

unique. This is a good attempt to provide sufficiently detailed references. 

Classification of Algorithms 

It is worth pointing out the classifications here are not unique as some algorithms can 

be classified into different categories at the same time. Loosely speaking, 

classifications depend largely on what the focus or emphasis and the perspective may 

be. For example, if the focus and perspective are about the trajectory of the search 

path, algorithms can be classified as trajectory-based and population-based.  

Simulated annealing is a good example of trajectory-based algorithms, while particle 

swarm optimization and firefly algorithms are population-based algorithms. If our 

emphasis is placed on the interaction of the multiple agents, algorithms can be 

classified as attraction-based or non-attraction-based.  
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2.3.8.1 Firefly algorithms 

Firefly algorithm (FA) is a good example of attraction-based algorithms because FA 

uses the attraction of light and attractiveness of fireflies, while genetic algorithms are 

non-attraction-based since there is no explicit attraction used. On the other hand, if the 

emphasis is placed on the updating equations, algorithms can be divided into rule-

based and equation-based.  For  example,  particle swarm  optimization  and  cuckoo  

search  are  equation-based  algorithms  because  both  use  explicit  updating 

equations, while genetic algorithms do not have explicit equations for crossover and 

mutation. However, in this case, the classifications are not unique. For example, 

firefly algorithm uses three explicit rules and these three rules can be converted 

explicitly into a single updating equation which is nonlinear.  This clearly shows that 

classifications depend on the actual perspective and motivations. Therefore, the 

classifications here are just one possible attempt, though the emphasis is placed on the 

sources of inspiration. 

2.3.8.2 Swarm intelligence based 

Swarm intelligence (SI) concerns the collective, emerging behavior of multiple, 

interacting agents who follow some simple rules.  While each agent may be 

considered as unintelligent, the whole system of multiple agents may show some self-

organization behavior and thus can behave like some sort of collective intelligence. 

Many algorithms have been developed by drawing inspiration from swarm-

intelligence systems in nature. 

All SI-based algorithms use multi-agents, inspired by the collective behavior of social 

insects, like ants, termites, bees, and wasps, as well as from other animal societies like 

flocks of birds or fish. The classical particle swarm optimization (PSO) uses the 

swarming behavior of fish and birds, while firefly algorithm (FA) uses the flashing 

behavior of swarming fireflies. 
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2.3.8.3 Cuckoo search (CS) 

Cuckoo search (CS) is based on the brooding parasitism of some cuckoo species, 

while bat algorithm uses the echolocation of foraging bats. Ant colony optimization 

uses the interaction of social insects (e.g., ants), while the class of bee algorithms are 

all based on the foraging behavior of honey bees. 

SI-based algorithms are among the most popular and widely used. There are many 

reasons for such popularity; one of the reasons is that SI-based algorithms usually 

sharing information among multiple agents, so that self-organization, co-evolution 

and learning during iterations may help to provide the high efficiency of most SI-

based algorithms. Another reason is that multiple agent can be parallelized easily so 

that large-scale optimization becomes more practical from the implementation point 

of view. 

2.3.8.4 Bio-inspired, but not SI based 

Obviously, SI-based algorithms belong to a wider class of algorithms, called bio-

inspired algorithms. In fact, bio-inspired algorithms form a majority of all nature-

inspired algorithms. From the set theory point of view, SI-based algorithms are a 

subset of bio-inspired algorithms, while bio-inspired algorithms are a subset of nature-

inspired algorithms. That is SI-based ⊂ bio-inspired ⊂ nature-inspired. 

Conversely, not all nature-inspired algorithms are bio-inspired, and some are purely 

physics and chemistry based algorithms as we will see below. 

Many bio-inspired algorithms do not use directly the swarming behavior. Therefore, it 

is better to call them bio-inspired, but not SI-based.  For example, genetic algorithms 

are bio-inspired, but not SI-based. However, it  is  not  easy  to  classify  certain  

algorithms  such  as differential  evolution  (DE).  Strictly speaking, DE is not bio-

inspired because there is no direct link to any biological behavior. However, as it has 

some similarity to  genetic algorithms and  also  has  a  key  word  `evolution',  we  

tentatively  put  it  in  the  category  of  bio-inspired algorithms. For  example,  the  

flower  algorithm,  or  flower pollination algorithm, developed by Xin-She Yang in 
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2012 is a bio-inspired algorithm, but it is not a SI-based algorithm because flower 

algorithm tries to mimic the  pollination characteristics  of  flowering plants  and the  

associated  flower  consistency of some pollinating insects. 

2.3.8.5 Physics and Chemistry Based 

Not all meta-heuristic algorithms are bio-inspired, because their sources of inspiration 

often come from physics and chemistry. For the algorithms that are not bio-inspired, 

most have been developed by mimicking certain physical and/or chemical laws, 

including electrical charges, gravity, river systems, etc. As different natural systems 

are relevant to this category, we can even subdivide these into many subcategories 

which is not necessary.  

Though physics and chemistry are two different subjects, however, it is not useful to 

subdivide this subcategory further into physics-based and chemistry. After all, many 

fundamental laws are the same. So we simply group them as physics and chemistry 

based algorithms. 

2.3.8.6 Other algorithms 

When  researchers  develop  new  algorithms,  some may  look  for  inspiration  away  

from  nature.  Consequently, some algorithms are not bio-inspired or 

physics/chemistry-based, it is sometimes difficult to put some algorithms in the above 

three categories, because these algorithms have been developed by using various 

characteristics from different sources, such as social, emotional, etc.  

2.4 Facility Layout Problem 

2.4.1 Facility Layout Problem Objective Functions 

In the facility layout problem (FLP) we are to find an efficient non-overlapping planar 

arrangement of n departments within a given facility.  The efficiency of the facility 

layout is typically measured in terms of material handling costs. In the literature, two 
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common surrogate objectives widely used to approximate material handling costs are 

given as follows [8]: 

2.4.1.1 Closeness Rating Function 

A department adjacency-based objective is defined as follows: 


i j

ijij xr )(max  

where xij  equals 1 if departments i and j are adjacent, and 0 otherwise.  The reward rij 

is a numerical value to represent a closeness rating between departments i and j. Such 

an objective is based on the material handling principle that material handling costs 

are reduced significantly when two departments are adjacent. 

2.4.1.2 Flow Cost Function 

An interdepartmental distance-based objective is defined as follows: 


i j

ijijij dcf )(min  

where fij is the material flow from department i to department j, cij  is the cost to move 

one unit load one distance unit from department i to department j, and dij  is the 

distance from department i to department j. This objective is based on the material 

handling principle that material handling costs increase with the distance the unit load 

must travel. 

There are a variety of ways to measure the distance between a pair of departments 

(dij). The following represents commonly-used distance measures for the FLP. 

2.4.1.3 Centroid-to-Centroid (CTC) Distance 

During the block layout phase where the input/output point and aisle structure are 

unknown, the distance between two departments is often measured with respect to 

their centroid locations. The main short-comings of CTC distance include:  the 

mathematically optimal layout may be one with departments represented as concentric 

rectangles; an algorithm based on CTC attempts to align the department centroids as 
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close as possible, which may make the departments very long and narrow; and L-

shaped departments may have a centroid that falls outside of the department [8]. 

There are some variations to CTC distance measure; e.g., distributed centroid-to-

centroid distances (DCTC) and expected distances (EDIST) [9]. 

2.4.1.4 Contour Distance 

Distance may be measured along the aisles between the input/output points of a pair 

of departments (e.g., see [10,11]). The positive aspect of this measure is that the 

measured distance is accurate. The major drawback of this accurate measure is that 

during the block layout design phase one does not know the exact location of 

input/output points and the aisles, which are to specified during the detailed layout 

design. 

2.4.1.5 Weighted Cost Function 

A weighted cost function represents a trade-off between adjacency-based and 

distance-based objectives. Because there are advantages and disadvantages to 

adjacency-based and distance-based objectives and the optimal solution under one 

objective may not be optimal, or even good, under the other objective, some 

researchers [12] & [13] have combined these two objectives in a weighted criteria 

approach. 

One kind of weighted model is given as follows: 

 
i j

ijij

i j

ijijij xrdcf )()1()(min  ………….. (1.3) 

where α is a weight with a value between 0 and 1. Such an objective leads to research 

in the area of the multiple objective facility layout problems. 

One of the drawbacks of the above equation is that adjacency-based and distance-

based objectives have different scales (mostly since dij >> xij). Thus, it is difficult to 

relate the value of the weighing factor α to some physical aspect of the problem.  For 

example, even α = 0.5 does not mean that the adjacency-based and distance-based 



50 

objectives are weighted equally because they are in different scales.  Meller and Gau 

present a revised objective function to solve this difficulty, which is given as follows: 

 
where the parameter wij  replaces the weighting factor α in (1.3). In order to minimize 

the impact of setting the weighting factor wij correctly. 

2.4.1.6 Facility Layout Problem Representation 

The representation of an FLP solution forms the basis for a mathematical model and 

greatly impacts the structure and efficiency of the applied optimization algorithms.  

There are a variety of FLP representation methods, but most of them fall into two 

main categories: discrete representation and continuous representation. 

 
Figure 4: Layout Solutions with (a) Discrete Representation and (b) Continuous 

Representation. 

Discrete Representation: With a discrete representation, the facility is represented by 

an underlying grid structure with fixed dimensions and all departments are composed 

of an integer number of grids (see Figure 4(a)).  By representing the FLP in a discrete 

fashion, the FLP is simplified, but at the penalty of eliminating many solutions from 

consideration. 

Of course, the grid size can be chosen sufficiently small such that this penalty is 

minimized. 
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However, a smaller grid size (i.e., increasing the resolution) will increase the 

computational effort as well. Most research on the FLP utilizes a discrete 

representation. 

Continuous Representation: In a continuous representation, department dimensions 

are not restricted to an underlying grid structure, but rather, represented continuously 

(i.e., department dimensions may take on non-integer values). For example, the 

discrete layout in Figure 4 (a) could be modeled with a continuous representation as 

shown in Figure 4 (b). 

A continuous representation is more accurate and realistic than a discrete 

representation, and thus, is capable of finding the “real optimal” final layout solution. 

However, the continuous representation also increases the complexity of the FLP. As 

a result, most algorithms based on a continuous representation assume that 

departments are rectangular in shape.  Thus, the “real optimal” layout is restricted as 

well with most algorithms that utilize a continuous representation. 

A mixed-integer programming (MIP) formulation based on a continuous 

representation was presented by Montreuil [6]. This model uses a distance-based 

objective with a continuous representation of a layout and considers departments with 

unequal areas. Both locations and dimensions of departments are decision variables. 

A number of binary integer variables are used to avoid department overlapping. 
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CHAPTER 3: SCOPE AND LEVEL OF 

CONTRIBUTION 

In any facility layout problem, the whole algorithm deals with three spaces, namely, 

search space or problem space, feasible solution space and lastly produce optimal 

solution set. 

Walk through search space 

looking for feasible solutions 

using algorithms i.e. exact, 

heuristics etc

Test for optimality using 

objective functions with goals i.e. 

minimum cost/flow, maximum 

reward etc

This Paper 

contributes in this 

level

Search 

Space

Feasible 

Solution 

Set

Optimal 

Solution 

Set

 

Figure 5: Spaces that are dealt with in an FLP Algorithm 

After defining the search space or problem space, algorithms are run to find feasible 

solution space satisfying constraints. For example, exact algorithm or its derivatives 

tests every possible feasible solution and thus produce a set of feasible solutions. On 

the other hand, heuristic algorithms abide by some heuristics or rules for taking a 

probable solution for feasibility checking, and thus works on narrower space 

compared to exact algorithm. In this manner, the feasible solution set generated from 

heuristic algorithms are smaller for a particular problem. 

After the feasible set is generated, optimality testing is done in order to find the 

optimum most solution based on well-defined objective functions. Objective functions 

may be designed in different ways as such focusing on different kinds of objectives 
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i.e. cost of flow, volume of flow, reward value etc. After evaluating feasible solution 

set, algorithms then provide optimum solution set. 
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Figure 6: Flow of work of a FLP algorithm 

This thesis contributed in the second stage mentioned above, i.e. evaluation stage of 

feasible solutions’ set. More specifically, the problem defined in this thesis is a multi-

objective problem, one of which was maximization of reward value taking 

consideration of adjacency between two departments. 
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CHAPTER 4: MATHEMATICAL MODEL 

4.1 Objective Function 

In the facility layout problem (FLP) we are to find an efficient non-overlapping planar 

arrangement of n departments within a given facility.  The efficiency of the facility 

layout is typically measured in terms of material handling costs. The part of the model 

that calculates the total cost of flow is the cumulative product of interdepartmental 

flow, cost of flow and distance between departments. This objective is based on the 

material handling principle that material handling costs increase with the distance the 

unit load must travel. A department adjacency-based objective is defined as the 

product of reward values and adjacency status. Such an objective is based on the 

material handling principle that material handling costs are reduced significantly when 

two departments are adjacent. 

There are a variety of ways to measure the distance between a pair of departments 

(dij). The following represents commonly-used distance measures for the FLP. 

A weighted cost function represents a trade-off between adjacency-based and 

distance-based objectives. Because there are advantages and disadvantages to 

adjacency-based and distance-based objectives and the optimal solution under one 

objective may not be optimal, or even good. 

So, the actual interpretation of the objective function is:  

 

 
i j

ijij

i j

ijijij xrdcf )()1()(min   

Subject to: 
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4.2 Parameters and decision variables 

α : Weight of objective functions 

i, j : Department indices (i, j = 1, 2, …, n)  

s : Dimension (axis) indices (s = x, y)  

fij : Total flow between departments i and j (multiplied with unit cost values if unit 

material handling cost differs among department pairs)  

cij : Cost of flow between departments i and j  

cx
i : x co-ordinate of center of department i  

cy
i : y co-ordinate of center of department i  

dij : Rectilinear distance between departments i and j  

dx
ij : Rectilinear distance between departments i and j in x axis 

dy
ij : Rectilinear distance between departments i and j in y axis 

Ls  :  Width  (s=x)  and  length  (s=y)  of  the  facility  in  which  the  departments  will  

be placed   

lx
i : length of department i in x axis 

ly
i : length of department i in y axis 

ci : s-axis coordinate of the center of department i  

xij : binary variable showing whether department i is before department j in the 

sequence 
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4.3 Narration of the model 

We have implemented exact algorithms for the FLP that represents those algorithms 

developed to obtain, in theory, an optimal solution to the facility layout problem. The 

major advantage of an exact algorithm is that it considers the whole solution space 

and the optimality of the final layout solution can be guaranteed. The limitation of 

these models is they can only consider very small sized problems (less than 10 

unequal sized departments), which are far from the size of common industry-practical 

problems (30–40 departments). When the size of the problem increases, the 

algorithms become impossible to solve in a practical sense because of the 

computational complexity of the FLP. We have opted for this model as because we 

are not concerned about the feasibility of exact models or comparative analysis of 

exact models with other models, rather we are interested about the practicality of 

methodology used for constructing adjacency matrix in adjacency-reward based 

objective functions. 

The objective function is based on a weighted cost function representing a trade-off 

between adjacency-based and distance-based objectives. Alpha is used for controlling 

the relative weightage of adjacency-based and distance based objectives. 

4.4 Limitation of traditional way of constructing adjacency function 

In models that incorporate adjacency matrix, x denoting adjacency is either 1 or 0 (1 

for completely adjacent departments and 0 for any gap between departments). This 

value is then multiplied with closeness ratings provided as input. The problem with 

this method is, any gap, even if very low, leads the multiplied value (i.e. benefit) to 0 

(even in cases with very close proximity).  

In practical, the benefit due to adjacency between two departments does not go away 

for small gaps. So, null value for adjacency does not go with practicality. Rather, we 

feel that, there might still be benefits of having two departments in very close 

proximity though benefits may diminish with gap in exponential/non-linear fashion as 

in depicted in fig(7); 
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Figure 7: Practical relationship between gaps (between departments) and benefits 

gained from proximity  

(Graph produced by MATLAB) 

For this, the thesis suggests rather a nonlinear function for generating values of 

adjacency matrix. 

4.5 Suggested function for constructing adjacency function 

According to the proposition that we made in the previous point, adjacency value 

practically should not be binary one rather should follow non-linear function. Below 

is provided a outputs from candidate polynomial functions: 
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Figure 8: Outputs of nonlinear function y=k1+k2*xn
 with different co-efficient values 

(Graph produced by MATLAB) 

In the figure(8), the only function that goes best with our proposition is Fig:8. But the 

problem with this function is, the graph has to be plotted against a function that is not 

directly a function of x [i.e. power(x+1,k)] 
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Outputs from some exponential functions are provided below. 

 

 

 

 

Figure 9: Outputs of exponential function y=1/k1*ek2*x
 with different co-efficient 

values (graph produced by MATLAB) 

From the above figure(9), this is evident that, only inverse exponential functions can 

correctly represent practical nature of diminishing benefits due to adjacency.  

So, we can rationally settle with a function like adjacency=1/k1*e(k
2

*x), where k1 and 

k2 are two coefficients that depends on nature of industry and production floor. 
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CHAPTER 5: MODEL VALIDATION 

To illustrate the effectiveness of the model using exponential function we developed a 

program implementing all the constraints mentioned in the model using MATLAB 

programming language. For testing purpose we considered 4 departments with fixed 

dimensions. The details of the input parameters are as follows: 

5.1  Input Parameters 

Number of Departments: 04 (Four) 

Dimension of the facility: 30 X 20 meters 

Dimension of the departments: 2 X 14, 20 X 14, 8 X 20, 22 X 6 meters 

Flow Matrix: 



















80808080
808076080
807608080
80808080

 

Cost of Flow matrix: 



















1111
1111
1111
1111

 

Reward matrix: 



















0000
0000
040000
020000

 

K1=1 and K2=1; 

5.2 Difference in solutions 

From the input parameters, this is evident that flow of materials between department 2 

& 3 is relatively very much higher than any other pairs as well as reward value (in 

reward matrix) for this pair is again relatively higher than the pair of department 1 & 
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3. The rationale behind high reward values for these two pairs may be beyond mere 

cost of flow of materials. Sometimes administrative requirements may cause higher 

reward values between two departments.  

Now, if we strictly follow binary reward values for adjacency matrix (1 for gap 0 

between two departments and 0 for otherwise), the model comes up with a solution 

where department 2 and 3 are essentially located wall-to-wall. These solutions even 

leave department #1 at one corner of the facility even if the department id quite thin 

and have good flow of materials with department #3. The four symmetric solutions 

are depicted in figure (10) below.  

   

   

Figure 10: Solution sets using binary adjacency values (graph produced by 

MATLAB) 

Practically thinking, positioning department #1 (width of which is very small) 

between #2 and #3 does not necessarily cancel out all benefits that are supposed to be 

there if departments #2 & #3 were in completely adjacent. 

After running the same model using proposed exponential function for constructing 

adjacency matrix we get rather more rational solutions with same sets of input 

parameters. The solution sets are depicted in figure(11) below:  
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Figure 11: Solution sets using exponential function for generating adjacency values 

(graph produced by MATLAB) 

So, from the above discussion, this is evident that, proposed model with continuous 

values for adjacency generated from exponential function instead of binary values 

gives better solution in practical consideration.  
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CHAPTER 6: FIREFLY ALGORITHM 

6.1 Theoretical Background 

Firefly  Algorithm  (FA)  was  first developed  by Xin-She  Yang  in  late  2007  and  

2008  at Cambridge University, which was based on the flashing patterns and 

behavior of fireflies. The theoretical side of this algorithm is explained in Chapter 6. 

In essence, FA uses the following three idealized rules: 

• Fireflies are unisex so that one firefly will be attracted to other fireflies regardless of 

their sex. 

• The attractiveness is proportional to the brightness, and they both decrease as their 

distance increases. Thus for any two flashing fireflies, the less bright one will move 

towards the brighter one.  If there is no brighter one than a particular firefly, it will 

move randomly. 

• The brightness of a firefly is determined by the landscape of the objective function. 

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent 

fireflies, we can now define the variation of attractiveness β with the distance r 

by , where  is the attractiveness at r = 0. 

The movement of a firefly i is attracted to another more attractive (brighter) firefly j is 

determined by  

where the second term is due to the attraction.  The third term is randomization with 

αt being the randomization parameter, and  is a vector of random numbers drawn 

from a Gaussian distribution or uniform distribution at time t.  If β0 = 0, it becomes a 

simple random walk. On the other hand, if γ = 0, it reduces to a variant of particle 

swarm optimization. Furthermore, the randomization  can easily be extended to 

other distributions such as L´evy flights. A demo version of firefly algorithm 

implementation by Xin-She Yang, without L´evy flights for simplicity, can be found 

at Mathworks file exchange website 

(www.mathworks.co.uk/matlabcentral/fileexchange/). 
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Parameter Settings 

As αt essentially control the randomness (or, to some extent, the diversity of 

solutions), we can tune this parameter during iterations so that it can vary with the 

iteration counter t. So a good way to express αt is to use,  

where α0 is the initial randomness scaling factor, and δ is essentially a cooling factor.  

For most applications, we can use δ = 0.95 to 0.97. 

Regarding the initial α0, simulations show that FA will be more efficient if α0 is 

associated with the scalings of design variables.  Let L be the average scale of the 

problem of interest, we can set α0 = 0.01L initially. The factor 0.01 comes from the 

fact that random walks requires a number of steps to reach the target while balancing 

the local exploitation without jumping too far in a few steps. 

The parameter β controls the attractiveness, and parametric studies suggest that β0 = 1 

can be used for most applications.  However, γ should be also related to the scaling L.  

In general, we can set γ = 1/√L. If the scaling variations are not significant, then we 

can set 

γ = O(1). 

For most applications, we can use the population size n = 15 to 100, though the best 

range is n = 25 to 40. 

6.2 Test Problem 

Number of Departments: 05 (Five) 

Dimension of the facility: 300 X 200 meters 

Dimension of the departments: 8 X 4, 1 X 8, 8 X 14, 8 X 20 and 20 X 6 meters 

Flow Matrix: 























1010101010
1010101010
1010101010
1010101010
1010101010
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Cost of Flow matrix: 























11111
11111
11111
11111
11111

 

 

Reward matrix: 























00000
00000
00000
05040000
002000

 

6.3 Performance of the algorithm 

6.3.1 Convergence 

The figure 12 below shows the convergence rate of the firefly algorithm across 

different numbers of fireflies. The figures depicts that, the rate is slowest for 

comparatively higher numbers of fireflies. The rate of convergence with 10 fireflies is 

approximately double of that with 40 fireflies. But in all the cases, the result is not 

near to the global optimum, meaning, firefly algorithm is not giving the global 

optimum value. 
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Figure 12: Convergence of the solution with increase of number of fireflies 

Figure(13) shows the convergence rate with the increase of number of iterations. The 

optimum objective function value found with 400 iterations and 200 iterations are 

quite same (2600), whereas the optimum value is more than 3000 with 100 iterations. 

Again, the algorithm fails to give values or results near to global optimum found with 

exact algorithm (1800). 
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Figure 13: Convergence of the solution with increase of number of iterations 

6.3.2 Error rate 

Error rate is calculated as the percentage ratio of error (the gap between optimum 

solution and found solution from the algorithm) and the optimum solution. It is found 

that the error rate of the algorithm is quite high for the firefly algorithm for solving 

facility layout problems with different variations. The following table shows the 

percentage error rates of firefly algorithm for different number of fireflies for 200 

iterations. In the previous section, it was shown that, convergence rate is quite slow 

for higher number of fireflies (40). And thus the error rate with 40 fireflies with 200 

iterations is 123% whereas the same for 10 fireflies is 48%. It is to note here that the 

objective function value of global optimum solution is 1800.    
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Table 4: Error percentage for different number of Fireflies after 200 iterations 

# of fireflies 
Optimum Obj Function 

Value 

Error 

Percentage 

10 2671.31 48% 

20 2973.97 65% 

40 4010.17 123% 

 

 

Figure 14: Error Percentage rate with varying number of FFs 

If number of iterations is increased, keeping number of fireflies constant, then 

comparatively the error percentage value is decreased. For example, as depicted in the 

following table, for 100 iterations with 20 fireflies is 75% whereas the same for 

higher number of iterations (i.e. 200 and 400 iterations) is around 40%. 
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Table 5: Error Percentage for different number of iterations with 20 fireflies 

# of iterations 
Objective function 

Value 
Error Percentage 

400 2561.975 42% 

200 2533.717 41% 

100 3151.209 75% 

 

 

 

Figure 15: Error Percentage rate with varying number of iterations 
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CHAPTER 7: APPLICATION OF PROPOSED 

MODEL FOR FLP 

7.1 British American Tobacco of Bangladesh (BATB) 

BATB is one of the largest multinational companies in the country and has been 

operating for over 100 years.  

BATB has over 1,000 employees and BATB take pride in being one of the preferred 

employers in Bangladesh. Responsibility - to shareholders, employees, business 

partners, customers and any other stakeholders - is at the core of the business and that 

is why BATB believes “success and responsibility go together”. 

BATB is part of the British American Tobacco Group, the world's most international 

tobacco group with brands sold in more than 180 markets. 

7.2 Units at Production Site 

The layout problem that we dealt with had 11 units of different dimensions including 

some maintenance and administrative units. Out of the 11 departments, we ended up 

with 05 production related units only where the maintenance units were merged 

within respective units, for example, rather than considering PMD and its 

maintenance units as two separate units, we considered them as a single unit. This 

consideration is nonetheless very rational as because the maintenance units are no 

way should be placed in distance from respective units. And we also excluded the 

administrative units from our problem as because the units do not have any transfer of 

goods with the production related units and thus these administrative units can be 

placed in group or else in any fashion without hampering the main production 

process. 

Another realistic reason for minimizing our problem definition is, the exact algorithm 

that we used as our base algorithm in this thesis face difficulties as far as time is 

constrained to come up with solution. This is to emphasize here that, the concern of 
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this thesis was not doing performance analysis of exact algorithm with different size 

of problem definition, or even not comparative performance analysis between exact 

algorithm and heuristic algorithms or else. Our findings, rather was at optimality test 

level, rather than in generating feasible solution space level. So, keeping problem 

space manageable, we instead concentrated on comparative analysis between 

traditional binary ways of generating reward values with our proposed function 

dealing with continuous reward values. 

In a word, the algorithm has been applied in getting optimized facility layout for 

production floor comprising mainly of 5 departments. 

In the production floor, as mentioned, are 05 units/departments, dimensions of which 

are as follows: 

Table 6: List of Departments at BATB 

No. Unit Dimension 

1 Leaf Warehouse     L-90’ x W-80’ 

2 PMD   with Maintenance Unit  L-300’ x W-80’ 

3 CTS    L-96’ x W-110’ 

4 SMD with Maintenance Unit  L-330’ x W-110’ 

5 Finish Goods Warehouse   L-148’ x W-71’ 

 

Flow of materials is 1 2   3  4   5 

This requirement regarding flow of materials is incorporated in flow of materials 

matrix:  

 
Relationship requirements 

>    1 & 2 must be close together>    2 & 4 must be close together 

>    3 must be middle of 2 and 4 
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This relationship requirement is reflected in Adjacency Reward matrix: 

 

7.3 Solution Using Exact Algorithm 

The solutions from the exact algorithm both using adjacency function and without 

function are same and provided as follow: 

Objective Function Value = 2260 

And the co-ordinates are:  

(17, 6), (15, 15), (15, 26), (5, 17), (27, 17)  

and  

(17, 6), (15, 18), (15, 26), (5, 17), (27, 17) 

The solutions are provided in the following diagram 

 

 
 Figure 16: Layout Solutions (in diagram) 
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So, unlike the test problem, in the case for BATB problem, the proposed solution with 

adjacency matrix created based on proposed function does not create any difference as 

far as solutions are concerned. 

7.4  Solution Using FF Algorithm 

After running the algorithm for several times, no solution could be found by firefly 

algorithm even with varying number of fireflies. The underlying reason for the 

phenomenon is: unlike exact algorithm, where every possible feasible solution is tried 

in order to get the optimum solution, firefly algorithm starts with some randomly 

generated solutions that in most cases found to be infeasible after checking with 

constraints. This is truer if the problem is tightly constrained, for example, for facility 

problems, if the space is tightly constrained likes the BATB problem. In the BATB 

problem, the dimension of the whole space is 34X30 whereas those of the largest two 

departments are 33X11 and 30X8. 
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CHAPTER 8: CONCLUSION AND 

RECOMMENDATION 

8.1 Concluding Remarks 

The productivity and efficiency of an organization greatly depends on how people 

plan, organize and utilize the facilities in that organization. From an upfront 

investment and recurring project expense, facilities planning are a critical issue in 

today’s competitive manufacturing and service sectors. In addition to the upfront 

investment involved in facilities planning, there are operational issues that make 

facilities planning a critical issue. The most obvious impact is on material handling 

expenses. The impact of the facility layout goes beyond material handling costs. An 

effective facility layout implies that departments with high flow are close together.  

In facility layout problems, objective functions are modeled with different objectives 

in mind examples of which include minimization of cost or flow of materials, 

maximizations of closeness rewards etc. The mathematical model with a continuous 

representation of distance based adjacency matrix proposed in this thesis deems to 

provide more realistic optimal layout.  

8.2 Scope of Future Works 

There are many scopes for future works: 

 - In this thesis, exact algorithm is used for finding feasible solution set from the total 

solution space. Further research can be done using other heuristic algorithms. 

 - In the function [adjacency=1/(k1*ek2*x)] proposed in this thesis for generating 

continuous value adjacency matrix has two co-efficients, namely k1(Denominator co-

efficient) and k2 (exponential co-efficient). We have assumed unit value for both of 

the co-efficient, whereas we strongly believe that, these two has industry specific 

values. There is huge scope of econometrical research to come up with series of 

values of k1 and k2 for different industries. 
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APPENDIX 

Matlab Code: Exact Algorithm 

 

function [N,numSol,L,l,cf]=FLPN_v4()   

k1=1;k2=1; %value of co-effecients in the exponential function  

% Opening Text file and reading dimensions & initializing respective 

% parameters 

fileID=fopen('temp.txt','a+'); 

fprintf(fileID,'\n %s \n',' -- from file --------'); 

fid=fopen('input4.txt'); 

N = fscanf(fid, 'N=%d\n', 1); 

L(1) = fscanf(fid, 'L=%d', 1); 

L(2) = fscanf(fid, '%d\n', 1); 

  

fscanf(fid, '--sizeofDept--\n', 1); 

formatSpec = '%d %d'; 

sizeA = [2 N]; 

l = fscanf(fid,formatSpec,sizeA); 

l=l'; 

for p=1:1:N 

    hl(p,1)=l(p,1)/2; 

    hl(p,2)=l(p,2)/2; 

end 

% Reading Flow matrix  

fscanf(fid, '%*s\n', 1); 

formatSpec = repmat('%d', 1, N); 

sizeA = [N N]; 

flow = fscanf(fid,formatSpec,sizeA); 



83 

flow=flow'; 

% Reading Cost of flow matrix 

fscanf(fid, '%*s\n', 1); 

formatSpec = repmat('%d', 1, N); 

sizeA = [N N]; 

cost_flow = fscanf(fid,formatSpec,sizeA); 

cost_flow=cost_flow'; 

% Reading Reward matrix 

fscanf(fid, '%*s\n', 1); 

formatSpec = repmat('%d', 1, N); 

sizeA = [N N]; 

reward_adj = fscanf(fid,formatSpec,sizeA); 

reward_adj=reward_adj'; 

fclose(fid); 

  

flag_overlap=0; 

cf(:,:,:)=0;  % Matrix for holding final positions of centeroids of departments 

  

%Initilializing matrices for holding intemediate positions of centeroids 

for p=1:1:N 

    c(p,:)=hl(p,:); 

    c_pos(p,:)=hl(p,:); 

end 

% Initializing Gap matrix 

for p=1:1:N 

    for q=1:1:N 

        d(p,q,:)=[500 500 500]; 

    end 

end 

v=0; minval=9999999; sol_num=1; 
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walk2(1); 

  

    function walk2(n)  % Function for walking in the solution space 

    c_pos(n,:)=hl(n,:); 

    while c_pos(n,1)<=L(1)-hl(n,1) 

        c_pos(n,2)=hl(n,2); 

        while c_pos(n,2)<=L(2)-hl(n,2) 

            c(n,:)=c_pos(n,:);  

            if (n>1)  

                anyoverlap(n); 

                if (flag_overlap) % checking if there is any overlap 

                    c_pos(n,2)=c_pos(n,2)+1; continue;  

                end   

            end 

            if (n==N)  

              create_distance_matrix(N)   

              chk_solution(n); 

            end 

            if (n<N) walk2(n+1);end 

            c_pos(n,2)=c_pos(n,2)+1; % move in Y direction 

        end 

        c_pos(n,1)=c_pos(n,1)+1; % move in X direction 

    end 

    c_pos(n,:)=hl(n,:); 

    end 

  

    function anyoverlap(n)  % Function for chcking if there is any overlap 

        flag_overlap=0; 

        for ov=1:1:(n-1) 

            flag_overlap = flag_overlap ||ifoverlap(ov,n,c,hl,L); 
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        end  

    end 

  

    function create_distance_matrix(N)  % Function that builds the gap matrix 

        for p=1:1:N 

            for q=1:1:N 

                d(p,q,:)=[500 500 500]; 

            end 

        end 

         

        for i=1:1:(N-1) 

            for j=(i+1):1:N 

                measure_distance(i,j); 

            end     

        end  

    end 

  

    function measure_distance(i,j)   % Function that measures gap between boundaries 

of two departments 

             if ((c(i,1)+hl(i,1))<=(c(j,1)-hl(j,1)))  

                d(i,j,1) = (c(j,1)-hl(j,1))-(c(i,1)+hl(i,1)); 

             elseif ((c(j,1)+hl(j,1))<=(c(i,1)-hl(i,1))) 

                d(i,j,1) = (c(i,1)-hl(i,1))-(c(j,1)+hl(j,1)); 

             else d(i,j,1)=0; 

             end 

             if ((c(i,2)+hl(i,2))<=(c(j,2)-hl(j,2))) 

                d(i,j,2) =(c(j,2)-hl(j,2))-(c(i,2)+hl(i,2)); 

             elseif ((c(j,2)+hl(j,2))<=(c(i,2)-hl(i,2))) 

                d(i,j,2) =(c(i,2)-hl(i,2))-(c(j,2)+hl(j,2)); 

             else d(i,j,2)=0; 
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             end 

             d(i,j,3)= d(i,j,1)+d(i,j,2); 

     end 

     

     function chk_solution(n)  % check and update solution if new lower objective 

value is reached 

        alpha=0.5; 

        cost=costfun(c,cost_flow,flow,N); 

        reward=rewardfun(d,reward_adj,N); 

        v= alpha*cost-(1-alpha)*reward; 

            if (v==minval)  

                sol_num=sol_num+1; 

                for i=1:1:n 

                    cf(sol_num,i,:)=c(i,:); 

                end 

            end 

            if (v<minval)  

                disp(v); 

                fileID=fopen('temp.txt','a+'); 

                 fprintf(fileID,'old minval:%0.0f ;new minval= %0.0f\n ',minval,v); 

                 fclose(fileID); 

                cf=[]; sol_num=1; 

                minval=v; 

                for i=1:1:n 

                    cf(1,i,:)=c(i,:); 

                end 

            end 

        end 

fileID=fopen('temp.txt','a+'); 

numSol=sol_num; 
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% Writing solution in output file 

for i=1:1:sol_num 

   for n=1:1:N 

   fprintf(fileID,'%2.0f %2.0f ',cf(i,n,1),cf(i,n,2)); 

   end 

fprintf(fileID,'\n'); 

end 

fprintf(fileID,'\n %s \n',' ----- end --------'); 

fclose(fileID); 

fclose('all'); 

end 

%%%%%%%%%%%%%%%%% 

% Check if there is any overlap between two departments 

function isover=ifoverlap(d1,d2,c,hl,L) 

isover=-1; 

    if ((c(d1,1)+hl(d1,1))<=(c(d2,1)-hl(d2,1)))  

        Zijx=1; 

        else Zijx=0; end 

    if ((c(d2,1)+hl(d2,1))<=(c(d1,1)-hl(d1,1)))  

        Zjix=1;  

        else Zjix=0; end 

    if ((c(d1,2)+hl(d1,2))<=(c(d2,2)-hl(d2,2)))  

        Zijy=1;  

        else Zijy=0; end 

    if ((c(d2,2)+hl(d2,2))<=(c(d1,2)-hl(d1,2)))  

        Zjiy=1;  

        else Zjiy=0; end 

     

    if (Zijx+Zjix+Zijy+Zjiy>0)  

        isover=0; 
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        else isover=1; end  

end 

%%%%%%%%%%%%%%%% 

% Calculate the value of flow cost 

function v = costfun(c,cost_flow,flow,N) 

    v=0; 

        for i=1:1:N 

            for j=1:1:N 

                if (i~=j) 

                    v = v+cost_flow(i,j)*flow(i,j)*(abs(c(i,1)-c(j,1))+abs(c(i,2)-c(j,2)));  

                end 

            end 

        end 

end 

%%%%%%%%%%%%%%%% 

% Calculate the value of Reward 

function r = rewardfun(d,reward_adj,N) 

    r=0;k1=1;k2=1; 

        for i=1:1:(N-1) 

            for j=(i+1):1:N 

                if d(i,j,3)==0 adjacency=1; 

                else adjacency = 0;end; 

                %else adjacency = 1/exp(d(i,j,3));end; 

                r = r+reward_adj(i,j)*adjacency;  

            end 

        end 

%disp(r);         

end 

%%%%%%%%%%%%%% 
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Matlab Code: Firefly Algorithm 

 

function [N,num,L,l,cf]=FLPN_v5_FF()   

global g_sol_num;global L; global N; global l; global hl;  

global flow; global cost_flow; global reward_adj; global dist; 

g_sol_num=0;dist=[]; 

k1=1;k2=1; %value of co-effecients in the exponential function  

  

% Opening Text file and reading dimensions & initializing respective 

% parameters 

fid=fopen('input5.txt'); 

N = fscanf(fid, 'N=%d\n', 1); 

L(1) = fscanf(fid, 'L=%d', 1); 

L(2) = fscanf(fid, '%d\n', 1); 

  

fscanf(fid, '--sizeofDept--\n', 1); 

formatSpec = '%d %d'; 

sizeA = [2 N]; 

l = fscanf(fid,formatSpec,sizeA); 

l=l'; 

  

for p=1:1:N 

    hl(p,1)=l(p,1)/2; 

    hl(p,2)=l(p,2)/2; 

end 

% Reading Flow matrix  

fscanf(fid, '%*s\n', 1); 

formatSpec = repmat('%d', 1, N); 

sizeA = [N N]; 

flow = fscanf(fid,formatSpec,sizeA); 
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flow=flow'; 

% Reading Cost of flow matrix 

fscanf(fid, '%*s\n', 1); 

formatSpec = repmat('%d', 1, N); 

sizeA = [N N]; 

cost_flow = fscanf(fid,formatSpec,sizeA); 

cost_flow=cost_flow'; 

% Reading Reward matrix 

fscanf(fid, '%*s\n', 1); 

formatSpec = repmat('%d', 1, N); 

sizeA = [N N]; 

reward_adj = fscanf(fid,formatSpec,sizeA); 

reward_adj=reward_adj'; 

fclose(fid); 

  

ff=20; % number of fireflies 

MaxIteration=40; % number of pseudo time steps 

% --------------------------------------------------- 

alpha=0.25;      % Randomness 0--1 (highly random) 

betamin=0.20;     % minimum value of beta 

gamma=1;         % Absorption coefficient 

% --------------------------------------------------- 

  

dimensions=zeros(1,2*N); halfLengths=zeros(1,2*N); 

i=1; 

for p=1:1:N 

    dimensions(i)=l(p,1); 

    halfLengths(i)=l(p,1)/2; 

    dimensions(i+1)=l(p,2); 

    halfLengths(i+1)=l(p,2)/2; 
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    i=i+2; 

end 

  

Ub=zeros(1,2*N);Lb=zeros(1,2*N); 

  

for i=1:2:N*2 

    Lb(i)= halfLengths(i); 

    Ub(i)= L(1)-halfLengths(i); 

end 

for i=2:2:N*2 

    Lb(i)= halfLengths(i); 

    Ub(i)= L(2)-halfLengths(i); 

end 

noOfVars=N*2; 

fbest=2000000; 

  

for m=1:1:200 

    [centers]=init_ffa(ff,noOfVars,Lb,Ub); 

        

    objVal=zeros(1,ff); 

    for i=1:ff 

        objVal(i)=objFunc(centers(i,:)); 

    end 

  

    for k=1:MaxIteration 

        [centers]=ffa_move(ff,noOfVars,centers,objVal,alpha,betamin,gamma,Lb,Ub); 

        for i=1:ff 

            objVal(i)=objFunc(centers(i,:)); 

        end 

        % Ranking fireflies by their light intensity/objectives 
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        %sorting of new fire flies 

        objVal_temp=objVal; 

        [objVal,Index]=sort(objVal_temp); 

        centers_temp=centers; 

        for i=1:ff, 

            centers(i,:)=centers_temp(Index(i),:); 

        end 

         

    end 

    i=1; 

    while (((objVal(i)<fbest) || ((objVal(i)-fbest)< 0.1*fbest)) && objVal(i) ~= 

2000000) 

        unique=1; 

        for j=1:1:g_sol_num 

            if isequal(ngbest(j,:),centers(i,:))   

                unique=0; 

            end %uniqueness check 

        end 

        if unique==1 

            disp(objVal(i)); 

            g_sol_num=g_sol_num+1; 

            ngbest(g_sol_num,:)=centers(i,:);  

            tot_zngbest(g_sol_num)=objVal(i); 

            fbest=objVal(1); 

            i=i+1; 

        end 

    end 

     

end 

fileID=fopen('tempFF.txt','a+'); 
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fprintf(fileID,'\n %s \n',' -- from file --------'); 

disp(g_sol_num); 

for i=1:1:g_sol_num 

   for n=1:noOfVars 

       fprintf(fileID,'%2.0f ',ngbest(i,n)); 

   end 

   fprintf(fileID,'\n'); 

   fprintf(fileID,'%2.0f ',tot_zngbest(i)); 

   fprintf(fileID,'\n'); 

end 

fprintf(fileID,'\n'); 

fprintf(fileID,'\n %s \n',' ----- end --------'); 

fclose(fileID); 

fclose('all'); 

num=g_sol_num; 

for i=1:1:g_sol_num 

    for j=1:1:N 

        cf(i,j,1)= ngbest(i,j*2-1); 

        cf(i,j,2)= ngbest(i,j*2); 

    end 

end 

end 

  

%%%%%%%%%%%%%% 

% Move all fireflies toward brighter ones 

function [ns]=ffa_move(n,noOfVars,ns,Lightn,alpha,betamin,gamma,Lb,Ub) 

         % Scaling of the system 

scale=abs(Ub-Lb); 

Lighto=Lightn;nso=ns; 

% Updating fireflies 
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for i=1:n, 

% The attractiveness parameter beta=exp(-gamma*r) 

   for j=1:n, 

      r=sqrt(sum((ns(i,:)-ns(j,:)).^2)); 

      % Update moves 

      if Lightn(i)>Lighto(j), % Brighter and more attractive 

            %disp('in if'); 

            beta0=1; beta=(beta0-betamin)*exp(-gamma*r.^2)+betamin; 

            tmpf=alpha.*(rand(1,noOfVars)-0.5).*scale; 

            ns(i,:)=round(ns(i,:).*(1-beta)+nso(j,:).*beta+tmpf); 

            %   nsf(i,:)=nsf(j,:); 

      end 

   end % end for j 

end % end for i 

end 

  

%%%%%%%%%%%%%% 

function objVal=objFunc(centers) 

global N;  

for i=1:1:N 

    c(i,1)= centers(2*i-1); 

    c(i,2)= centers(2*i); 

end 

create_distance_matrix(c); 

isover=0; 

for i=1:1:(N-1) 

    for j=(i+1):1:N 

        isover=isover+ifoverlap(i,j,c); 

    end 

end 
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if isover>0  

    objVal=2000000; 

else 

    alpha=0.5; 

    cost=costfun(c); 

    reward=rewardfun(); 

    %v= alpha*cost; 

    objVal= alpha*cost-(1-alpha)*reward; 

end 

end 

%%%%%%%%%%%%%% 

function create_distance_matrix(c)  % Function that builds the gap matrix 

global dist; global N; 

    for p=1:1:N 

        for q=1:1:N 

            dist(p,q,:)=[500 500 500]; 

        end 

    end 

  

    for i=1:1:(N-1) 

        for j=(i+1):1:N 

            measure_distance(i,j,c); 

        end     

    end  

end 

   

%%%%%%%%%%%%%%% 

function measure_distance(i,j,c)   % Function that measures gap between boundaries 

of two departments 
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    global dist; global hl;  

    if ((c(i,1)+hl(i,1))<=(c(j,1)-hl(j,1)))  

        dist(i,j,1) = (c(j,1)-hl(j,1))-(c(i,1)+hl(i,1)); 

     elseif ((c(j,1)+hl(j,1))<=(c(i,1)-hl(i,1))) 

        dist(i,j,1) = (c(i,1)-hl(i,1))-(c(j,1)+hl(j,1)); 

     else dist(i,j,1)=0; 

     end 

     if ((c(i,2)+hl(i,2))<=(c(j,2)-hl(j,2))) 

        dist(i,j,2) =(c(j,2)-hl(j,2))-(c(i,2)+hl(i,2)); 

     elseif ((c(j,2)+hl(j,2))<=(c(i,2)-hl(i,2))) 

        dist(i,j,2) =(c(i,2)-hl(i,2))-(c(j,2)+hl(j,2)); 

     else dist(i,j,2)=0; 

     end 

     dist(i,j,3)= dist(i,j,1)+dist(i,j,2); 

end 

%%%%%%%%%%%%%%% 

% Calculate the value of Reward 

function r = rewardfun() 

global dist,global reward_adj,global N;     

r=0;k1=1;k2=1; 

        for i=1:1:(N-1) 

            for j=(i+1):1:N 

                if dist(i,j,3)==0 adjacency=1; 

                %else adjacency = 0;end; 

                else adjacency = 1/exp(dist(i,j,3));end; 

                r = r+reward_adj(i,j)*adjacency;  

            end 

        end 

%disp(r);         

end 
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%%%%%%%%%%%%%%%% 

% Calculate the value of flow cost 

function v = costfun(c) 

global cost_flow; global flow; global N;     

v=0; 

    for i=1:1:N 

        for j=1:1:N 

            if (i~=j) 

                v = v+cost_flow(i,j)*flow(i,j)*(abs(c(i,1)-c(j,1))+abs(c(i,2)-c(j,2)));  

            end 

        end 

    end 

end 

 

%%%%%%%%%%%%%%%% 

% Check if there is any overlap between two departments 

function isover=ifoverlap(d1,d2,c) 

global hl; 

    if ((c(d1,1)+hl(d1,1))<=(c(d2,1)-hl(d2,1)))  

        Zijx=1; 

        else Zijx=0; end 

    if ((c(d2,1)+hl(d2,1))<=(c(d1,1)-hl(d1,1)))  

        Zjix=1;  

        else Zjix=0; end 

    if ((c(d1,2)+hl(d1,2))<=(c(d2,2)-hl(d2,2)))  

        Zijy=1;  

        else Zijy=0; end 

    if ((c(d2,2)+hl(d2,2))<=(c(d1,2)-hl(d1,2)))  

        Zjiy=1;  

        else Zjiy=0; end 



98 

     

    if (Zijx+Zjix+Zijy+Zjiy>0)  

        isover=0; 

        else isover=1; end  

end 

  

%%%%%%%%%%%%%%%%% 

% The initial locations of n fireflies (distributions) 

function [ns]=init_ffa(ff,noOfVars,Lb,Ub) 

  % if there are bounds/limits, 

   for i=1:ff, 

   ns(i,:)=round(Lb+(Ub-Lb).*rand(1,noOfVars)); 

   end 

end 


