
MODELING AND OPTIMIZATION OF FACILITY LAYOUT

PROBLEM USING NATURE INSPIRED ALGORITHM

By

SYED HELAL UDDIN

MASTER OF SCIENCE IN INDUSTRIAL AND PRODUCTION

ENGINEERING

BUET

DEPARTMENT OF INDUSTRIAL AND PRODUCTION

ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND

TECHNOLOGY (BUET)

DHAKA, BANGLADESH

 OCTOBER 2015

ii

MODELING AND OPTIMIZATION OF FACILITY LAYOUT

PROBLEM USING NATURE INSPIRED ALGORITHM

By

SYED HELAL UDDIN

A thesis submitted

to

The Department of Industrial and Production Engineering

in partial fulfillment for the degree of

Master of Science in Industrial and Production Engineering

MASTER OF SCIENCE IN INDUSTRIAL AND PRODUCTION

ENGINEERING

BUET

DEPARTMENT OF INDUSTRIAL AND PRODUCTION

ENGINEERING

BANGLADESH UNIVERSITY OF ENGINEERING AND

TECHNOLOGY (BUET)

DHAKA, BANGLADESH

OCTOBER 2015

iii

DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted

elsewhere for the award of any degree or diploma.

Signature of the Candidate

(Syed Helal Uddin)

iv

CERTIFICATE OF APPROVAL
The Thesis titled “ Modeling And Optimization Of Facility Layout Problem Using

Nature Inspired Algorithm ” submitted by Syed Helal Uddin, Student No:

0412082005; Session April 2012 has been accepted as satisfactory in partial

fulfilment of the requirements for the degree of Master of Science in Industrial and

Production Engineering on 21 October 2015.

BOARD OF EXAMINERS

v

DEDICATION

To The Almighty

To my family

vi

ACKNOWLEDGEMENT

All praise to Almighty Allah for giving me the ability to complete this thesis

successfully.

I would like to express my sincere gratitude and deep appreciation to my supervisor,

Dr. Ferdous Sarwar, Assistant Professor, Department of Industrial and Production

Engineering, BUET. Under his continuous supervision, affectionate guidance,

valuable suggestions, encouragement and inspiration throughout this work made this

study possible.

I also express my profound thanks to the Head of the Department of Industrial and

Production Engineering of BUET, Tanvir Hossain Bhuiyan, Imtiaz Ahmed, Assistant

Professor of this department for rendering me assistance during my research work. I

also like to thank all faculty and other members of the department for their kind

assistance.

I am very much grateful to Noman H Chowdhury, Senior Lecturer, BRAC Business

School, BRAC University, Dhaka, for his constant co-operation and assistance in

developing the algorithm and computer coding.

I am thankful to my corps of Electrical and Mechanical Engineering of Bangladesh

Army for selecting and allowing me to pursue in M.Sc. Engineering in BUET.

Finally, I like to thank my family whose continuous inspiration, sacrifice and support

encouraged me to complete my study and research.

vii

ABSTRACT

Productivity and efficiency of an organization greatly depends on how people plan,

organize and utilize the facilities in that organization. From an upfront investment and

recurring project expense, facilities planning are a critical issue in today’s competitive

manufacturing and service sectors. In addition to the upfront investment involved in

facilities planning, there are operational issues that make facilities planning a critical

issue. The most obvious impact is on material handling expenses. The impact of the

facility layout goes beyond material handling costs. An effective facility layout

implies that departments with high flow are close together. In facility layout problems,

objective functions are modeled with different objectives in mind examples of which

include minimization of cost or flow of materials, maximizations of closeness rewards

etc. In this thesis, a mathematical model with a continuous representation of distance

based adjacency matrix is developed. The resulting exact model will consider every

all-rectangular-department solution. Solution from the new model is compared with

solutions found from models based on binary based adjacency matrix. In this thesis,

exact algorithm is used for finding feasible solution set from the total solution space.

Further research can be done using other heuristic algorithms. In the function

[adjacency=1/k1*e(k2*x)] proposed in this thesis for generating continuous value

adjacency matrix has two co-efficient, namely k1(Denominator co-efficient) and k2

(exponential co-efficient). Unit value for both of the co-efficient was assumed even of

the fact that, there are strong rationales behind these two having industry specific

values. There is huge scope of econometrical research to come up with series of

values of k1 and k2 for different industries.

viii

LIST OF ABBREVIATIONS

ERP Enterprise Resource Planning

SCM Supply Chain Management

JIT Just-In-Time

FMS Flexible Manufacturing Systems

WIP Work-in-Process

FLP Facility Layout Problem

QAP Quadratic Assignment Problem

MIP Mixed Integer Programming

DCTC Distributed centroid-to-centroid

Bi-CLP Bidirectional Circular Layout Problem

MWPG Maximal Weighted Planar Graph

BATB British American Tobacco Bangladesh

ix

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ..2

1.1 Introduction ... 2

1.2 Motivation ... 2

1.3 Components and layout ... 3

CHAPTER 2: LITERATURE REVIEW AND THEORETICAL BACKGROUND....6

2.1 Theoretical Background .. 6

2.1.1 Genetic Algorithms for the Facility Layout Problem6

2.1.2 Simulated Annealing for the Facility Layout Problem13

2.2 Recent Nature Inspired Algorithms... 21

2.2.1 Particle swarm optimization (PSO) ...21

2.2.2 Firefly Algorithm ...22

2.2.3 Cuckoo search ..22

2.2.4 BAT algorithm ...23

2.3 Literature Review .. 27

2.3.1 Exact Algorithms ...27

2.3.2 Graph Theoretic Approaches ...30

2.3.3 Mixed Integer Programming Approaches ..30

2.3.4 Heuristic Approaches ...32

2.3.5 Simulated annealing-based method ...36

2.3.6 Tabu Search-based Method..38

2.3.7 Genetic algorithm-based method ...40

2.3.8 Nature Inspired Algorithms ...43

2.4 Facility Layout Problem .. 47

2.4.1 Facility Layout Problem Objective Functions47

2.5 Research Objectives .. 4

2.6 Outline of Methodology/Experimental Design ... 5

CHAPTER 3: SCOPE AND LEVEL OF CONTRIBUTION52

CHAPTER 4: MATHEMATICAL MODEL...54

4.1 Objective Function .. 54

x

4.2 Parameters and decision variables... 55

4.3 Narration of the model .. 56

4.4 Limitation of traditional way of constructing adjacency function 56

4.5 Suggested function for constructing adjacency function 57

CHAPTER 5: MODEL VALIDATION ..60

5.1 Input Parameters .. 60

5.2 Difference in solutions .. 60

CHAPTER 6: FIREFLY ALGORITHM ...63

6.1 Theoretical Background .. 63

6.2 Test Problem ... 64

6.3 Performance of the algorithm .. 65

6.3.1 Convergence ..65

6.3.2 Error rate ..67

CHAPTER 7: APPLICATION OF PROPOSED MODEL FOR FLP.........................70

7.1 BATB .. 70

7.2 Units at Production Site... 70

7.3 Solution Using Exact Algorithm ... 72

7.4 Solution Using FF Algorithm .. 73

CHAPTER 8: CONCLUSION ..74

8.1 Concluding Remarks ... 74

8.2 Scope of Future Works .. 74

REFERENCES ..75

APPENDIX ..82

xi

LIST OF FIGURES

Figure 1: facility layout solutions in (a) block layout and (b) detailed layout 4

Figure 2: Genetic Algorithm Procedure ... 8

Figure 3: Simulated Annealing Procedure ... 14

Figure 4: Layout Solutions With (A) Discrete Representation And (B) Continuous

Representation. ... 50

Figure 5: Spaces That Are Dealt With In An Flp Algorithm 52

Figure 6: Flow Of Work Of A Flp Algorithm ... 53

Figure 7: Practical Relationship Between Gaps (Between Departments) And Benefits

Gained From Proximity .. 57

Figure 8: Outputs Of Nonlinear Function Y=K1+K2*Xn
 With Different Co-Efficient

Values (Graph Produced By Matlab) ... 58

Figure 9: Outputs Of Exponential Function Y=1/K1*Ek2*X
 With Different Co-Efficient

Values (Graph Produced By Matlab) ... 59

Figure 10: Solution Sets Using Binary Adjacency Values (Graph Produced By

Matlab).. 61

Figure 11: Solution Sets Using Exponential Function For Generating Adjacency

Values (Graph Produced By Matlab) ... 62

Figure 12: Convergence Of The Solution With Increase Of Number Of Fireflies 66

Figure 13: Convergence Of The Solution With Increase Of Number Of Iterations 67

Figure 14: Error Percentage Rate With Varying Number Of Ffs 68

Figure 15: Error Percentage Rate With Varying Number Of Iterations 69

xii

LIST OF TABLES

Table 1: Survey Of Sa-Based Flp Literature .. 37

Table 2: Survey Of Ts-Based Flp Literature .. 39

Table 3: Survey Of Ga-Based Flp Literature ... 42

Table 4: Error Percentage For Different Number Of Fireflies After 200 Iterations 68

Table 5: Error Percentage For Different Number Of Iterations With 20 Fireflies 69

Table 6: List Of Departments At Batb ... 71

xiii

LIST OF SYMBOLS AND NOMENCLATURE

 Weight of objective functions α

Universal quantifier 

 Department indices (i, j = 1, 2, …, n) i, j

 Dimension (axis) indices (s = x, y) s

 Total flow between departments i and j (multiplied with unit

 cost values if unit material handling cost differs among

 department pairs)

fij

 Cost of flow between departments i and j cij

 Rectilinear distance between departments i and j dij

Width (s=x) and length (s=y) of the facility in which the

departments will be placed

Ls

 s-axis coordinate of the center of department i ci

Binary variable showing whether department i is before

department j in the sequence

zij

1

MODELING AND OPTIMIZATION OF FACILITY LAYOUT

PROBLEM USING NATURE INSPIRED ALGORITHM

2

CHAPTER 1: INTRODUCTION

1.1 Introduction

The effective utilization of a company’s facility is one of the key challenges facing

plant managers. Facility utilization encompasses not only the utilization of facility

space, but also the challenge of providing support for an efficient facility flow

network. The cornerstone to both of these challenges is the facility layout. As such,

solving the facility layout problem is a critical component to the competitiveness of a

company.

The research outlined in this dissertation aims to provide an improvement in a

methodology to help companies solve the critical problem of the facility layout

problem.

1.2 Motivation

In the past 20 years, with rapidly increased global competition, elimination of waste

and continuous productivity improvement have become more and more critical for

manufacturing companies to run their business effectively and efficiently. Most of the

business concepts and strategies arising recently, like Enterprise Resource Planning

(ERP), Supply Chain Management (SCM), Just-In-Time (JIT) Manufacturing,

Flexible Manufacturing Systems (FMS) and Lean Manufacturing, consider

eliminating waste and continuous productivity improvement as their foundation.

The productivity and efficiency of an organization greatly depends on how people

plan, organize and utilize the facilities in that organization. Facilities planning

“determines how an activity’s tangible fixed assets best support achieving the

activity’s objective” [1]. Thus, facilities planning have a great impact on the

productivity and efficiency of running an organization.

“Since 1955, approximately 8% of the gross national product (GNP) has been spent

annually on new facilities in the United States” [1]. Adding to this figure is the

3

realization that many existing facilities are renovated each year, which yields an

estimate of $250B spent each year on facilities planning and re-planning [1]. Thus,

from an upfront investment and recurring project expense, facilities planning are a

critical issue in today’s competitive manufacturing and service sectors.

In addition to the upfront investment involved in facilities planning, there are

operational issues that make facilities planning a critical issue. The most obvious

impact is on material handling expenses. As suggested in [1], “effective facilities

planning can reduce [material handling] costs by 10 to 30%.”

However, the impact of the facility layout goes beyond material handling costs (which

are likely to be a rather small cost in the facility). An effective facility layout implies

that departments with high flow are close together. In addition to reducing material

handling costs, this is also likely to reduce the material handling batch size. By

reducing the material handling batch size, work-in-process inventory (WIP) will also

decrease. Decreasing WIP has a direct cost implication (likely a large one) and is also

likely to improve the lead time and quality of the product being moved (since

feedback due to poor quality is shortened along with lead time). Finally, companies

that are able to simultaneously shorten lead time, improve quality, and reduce their

costs are much more likely to have increased opportunities for their product. Thus, the

impact of facilities planning goes significantly beyond the impact on material

handling expenses (e.g., productivity ratios concerning manufacturing cycle, aisle

space, and energy [2]. In summary, facilities planning have an impact on many

aspects of the company, either directly or indirectly.

1.3 Components and layout

The main components of facilities planning include facility location, facility system

design, facility layout design, and material handling system design. As one of the

critical steps in facilities planning, the facility layout design is “concerned with

determining the ‘most efficient’ arrangement of interacting departments within a

designated section of a building subject to constraints imposed by the site plan, the

building, the departmental area, service requirements, and the decision-maker” [3].

4

The facility layout problem (FLP) has broad applications, from a new hospital to an

assembly line, from an existing warehouse to the baggage department in an airport,

from an office to a retail store. In manufacturing, the facility layout design involves

the determination of how to design the physical layout of manufacturing facility

systems to provide the best support for production.

More specifically, the facility layout procedure traditionally includes two phases: the

block layout phase and the detailed layout phase. The block layout phase specifies the

relative location and size of each department (see Figure 1.1(a)). Based on the block

layout output, the detailed layout phase determines exact department locations, aisle

structures, input/output (I/O) point locations, and the layout within each department

(see Figure 1.1(b)).

Figure 1: Facility Layout Solutions in (a) Block Layout and (b) Detailed Layout

1.4 Research Objectives

We state the objectives of our research in this section.

1. To develop a mathematical model with a continuous representation of distance

based adjacency matrix. The resulting exact model will consider every all-

rectangular-department solution.

5

2. To compare the performance of the proposed model with previous model based

on reward functions, where adjacency matrix is constructed with binary

values.

3. To develop a MATLAB-based program for implementing and testing the model

in a real world scenario

1.5 Outline of Methodology/Experimental Design

The proposed research methodology is outlined below:

 At first traditional layout facility problems will be investigated in general to

understand the types, severity and frequency of the changes in the environment of a

layout.

 Based on the methodologies for layout design used in industrial facilities, decision

variables and constraints will be identified.

 A Mathematical model for multi objective mixed integer facility layout problem will

be proposed.

 MATLAB programming will be used to solve the problem based on a nature

inspired algorithm.

 The proposed heuristic will be compared to the results obtained using traditional

method.

 The performance of the proposed model will be determined by improvements in

traditional methods demonstrating the solution of one specially built problem.

 The improved version of the model will be used to solve a real life facility layout

problem.

6

CHAPTER 2: LITERATURE REVIEW AND

THEORETICAL BACKGROUND

Since an efficient facility layout is critical for high productivity and quality

manufacturing, a lot of research has been performed — and is still being performed

— in this area. However, the extremely complicated nature underlying the FLP,

various application and implementation issues, as well as the continuously increasing

requirements from industry, lead us to the conclusion that the research in the FLP is

still far from being “well done.” As a result, research related to the FLP continues to

be one of the academic focus areas in industrial engineering and operations research.

Developing some cutting-edge algorithms for the FLP is not only important to

academia, but also to industry.

In the FLP research literature, a variety of approaches are proposed to solve this

combinatorial optimization problem. These approaches are different in terms of

layout representation, objective functions, constraints, algorithm search strategies, etc.

One of the most widely used classification methods for these approaches is to divide

them into two categories: exact algorithms and heuristics. Another important

classification is based on layout representation: discrete or continuous. In this chapter

we give a detailed literature review of FLP research based on this two-level

classification. First, we classify the literature into exact algorithms and heuristics.

Second, in each of these two categories, the literature is further classified and

reviewed with respect to their layout representation.

2.1 Theoretical Background

2.1.1 Genetic Algorithms for the Facility Layout Problem

The encoding is done through the structure named chromosomes, where each

chromosome is made up of units called genes.

7

There are some determining factors that strongly affect the efficiency of genetic

algorithms:

1. The representation of the solutions by strings.

2. The generation of the initial population.

3. The selection of individuals in an old population (parents) that will be allowed to

affect the individuals of a new population.

4. The genetic operators that are used to recombine the genetic heritage from the

parents to produce children. The most often-used operators are the crossover and the

mutation.

The selection of individuals that will be allowed to affect the following generation is

based on the fitness of the individuals. This is done in such a way that individuals

with better fitness are more likely to be chosen to become parents. The recombination

of the population consists of the following four operations:

1. Crossover. By combining the coded solution strings of two parents two children

are created. If one considers the biological origin of the genetic algorithms it

makes sense to denote the coded solution string “genome” and look at this

procedure as a result of mating. To avoid chaotic behavior, not all individuals in

the new population are generated by this operator. The probability of applying this

operator (crossover rate) is denoted by pc.

2. Mutation. In order to give the populations new impulses some random changes in

the genomes are allowed to occur. The mutation operator changes a “gene” in a

solution with a probability (mutation rate) pm.

3. Local search. It has proven very efficient to search for locally optimal solutions in

the neighborhood of the children. If one is able to find a better solution then it

will replace the original child as a member of the new population.

4. Control of new individuals. It is not unlikely that a child will have worse fitness

than its parents. In that case the child might not be accepted in the new generation.

Let us note also that a GA implementation requires the specification of certain

parameters such as population size, and number of generations. Let Pt denote the

8

population at time t. Then the genetic algorithm procedure can be described as in

Figure below.

Figure 2: Genetic Algorithm Procedure

We continue with the description of various implementations of the genetic algorithm

for the facility layout problem.

As we have seen in the section of SA for the facility layout problem, Tam [64] uses a

simulated annealing approach to solve the inter-cell problem. The same author using

the same problem formulation and representation of the floor plan layout as a slicing

tree, attempts a solution approach to the problem using Genetic Algorithms. In

applying a GA an important part of the implementation is the coding of solutions as

strings of finite length. For the problem formulation under consideration, a slicing

tree can be generated by a string using as its elements the nodes of the tree in a

sequence which starts from the bottom level nodes and ends at the root of the tree.

The nodes of the tree represent either facility identifications (operands) or “cut”

symbols (operators). The proposed GA uses for the recombination of the population

the crossover and mutation operators, as described for the general genetic algorithm.

For the selection of the new population the reproduction operator is used. Under this

operator the chance of being selected to remain in the new population Pt+1 is

proportional to the fitness value of the individual.

9

GA was run for 150 generations with 10 different sets of initial solutions. The best

and average solution in each generation was gathered. The performance of GA was

compared with that of a hill climbing method (HC), which searches through a

neighborhood N, where N is the set of operator sequences generated from changing

one operator. GA outperformed HC both in terms of minimum and average costs. For

the 30-facility layout GA improved the minimum cost by 10:5% and the average cost

by 13%.

Koakutsu and Hirata [61] propose an interesting combined approach called genetic

simulated annealing (GSA) for the solution of the floor plan design of VLSI (Very

Large Scale Integrated) circuits. The problem involves the arrangement of a given set

of rectangular modules (with no fixed shapes or dimensions) in the plane, with the

objective to minimize:

(1) The area of the enclosing rectangle which should contain all the modules, and (2)

the total wire length between modules that should be connected in the circuit. The

main features of the algorithm are the following:

- Stochastic Optimization: GSA uses the stochastic optimization used in simulated

annealing so that a neighbor state for which there is an increase of the cost function is

accepted with a certain probability.

- Multiple Search Paths: A population of solutions corresponding to the population of

GAs is used to initialize the search in multiple directions. The stochastic optimization

is applied to each solution of the population.

- Selection of search paths: The selection operator replaces solutions which have

value higher than the average value of the population, with solutions that have lower

cost value than the average value of the population. This way, paths which are

expected to reach good solutions are selected.

- Genetic Operators: A genetic crossover operator is used to generate new solutions.

The formulation of the problem represents the floor plan layout as a slicing tree. The

representation of a solution as a string is similar to the one described previously, using

in this case, vertical and horizontal cuts with corresponding branching operators.

10

GSA is tested on three floor plan problem instances. The first has 16 modules, each

one a fixed square of unit area, having wires connecting to its horizontal and vertical

neighbors.

The second problem has 16 modules and 25 wires, and the third one has 20 modules

and 31 wires. For the last two problems the total module area is 100. The proposed

algorithm was compared to a regular SA algorithm. Both algorithms run 100 times

with different initial solutions for each of the above problem instances. The average

costs are used for the comparison. The results show that GA improves the average

cost by 1.7% - 9.8% compared to the SA within the same computational time.

More recently Banerjee and Zhou [62] developed a genetic algorithm to solve a

variation of Montereuil’s mixed integer programming formulation for the FLP [46],

and in particular for the special case of single loop material flow path configuration.

They introduce a “knowledge-augmented mutation operator” to determine the flow

path direction, which appears to perform well for the cases where the layout has very

low flow path dominance.

Previous applications of GA for facilities layout design can be found in [63] from the

same authors and Montreuil.

Tate and Smith [64] applied GA using an adaptive penalty function to the unequal-

area facility layout problem with shape constraints. The rectangular area in which the

facilities are to be located is divided into vertical bays of different width and each bay

is divided into rectangular departments of different length. The encoding of the

solutions to strings is done with two distinct chromosomes. The first one is the

sequential chromosome which is represented by a permutation of the set N = {1, 2,

….., n), where n is the number of departments. The sequence of the permutation starts

by reading departments bay to bay, from top to bottom and from left to right at the

rectangular area. The second chromosome

is the bay chromosome where each gene shows for each bay the number of

departments contained in the previous bays including the involved one, showing this

way the breaks that occur in the sequence between bays. For example, consider 4

bays having 3, 4, 6 and 2 departments respectively starting from the left bay. Then

11

using the bay chromosome the solution encoding is (3; 7; 13). Note that the last

breakpoint at 15 is obvious. The proposed GA uses variants of crossover and mutation

operators.

 The variant of the crossover operator works as follows: using two individuals to be

the parents, one offspring (child) is generated by the following rules. For the case

of GA encoding using the sequential chromosome, each location in the child’ s

sequence is the department number in the corresponding location from one of the

parents, both having the same probability to be selected. This will force the

common locations in the sequences of the parents to be carried over to the child.

Also each department must occur only once in the child. For the bay

chromosomes, the location and number of bay breaks in the child’s sequence is

taken from one of the parents, both having equal probabilities to be selected.

 The mutation uses three different operators. Two of the operators alter the number of

bays affecting only the bay chromosome and one operator reverses a subsequence

of the departments affecting the sequence chromosome.

The evolution parameters, i.e. the population size, and the crossover and mutation

rates are determined after several trial runs. An adaptive penalty function is used to

find good feasible solutions. The penalty function is adaptive because during the

course of the algorithm it uses observed population data to adjust the level of the

penalty that is applied to the infeasible solutions. Test problems with size ranges from

10 to 20 departments were used to evaluate the efficiency of the proposed genetic

algorithm. The proposed approach proved to be the best in terms of quality solution

when compared with previous published results for the problems under consideration.

Genetic algorithms are inherently parallel in nature. Several implementations of GA

in parallel environments have recently appeared, introducing in this way a new group

of GA, the Parallel Genetic Algorithms (PGA). The population of a parallel genetic

algorithm is divided into subpopulations. Then an independent GA is locally

performed on each of these subpopulations, and the best solutions in each case are

transferred to all the other subpopulations. Two types of communication are

established among the subpopulations. Either among all nodes where the best solution

12

of each subpopulation is broadcasted to all the other subpopulations, or among the

neighboring nodes, where only the neighboring subpopulations receive the best

solutions.

The most important features of PGA, which result in a considerable speedup relative

to sequential GAs, are the following:

 Local selection: In sequential GAs the selection operation takes place by considering

the whole population. In a PGA this operation is performed locally by the

selection of an individual in a neighborhood.

 Asynchronous behavior: It allows the evolution of different population structures at

different speeds, resulting in an overall improvement of the algorithm in terms of

computational time.

 Reliability in computation performance: The computation performance of one

processor does not affect the performance of the other processors.

Several implementations of PGA have been proposed for the solution of the quadratic

assignment problem. An application of an asynchronous parallel GA called

ASPARA-GOS has been presented by Muhlenbein [65] for the QAP, introducing a

poly-sexual voting recombination operator. The PGA was tested on QAPs of size 30

and 36 with known solutions. The algorithm found a new optimum for the Steinberg’s

problem (QAP of size 36). The numbers of processors that were used to run this

problem were 16, 32 and 64. The 64 processors implementation (on a system with

distributed memory) gave by far the best results in terms of computational time.

Furthermore, Huntley and Brown [66] developed a parallel hybrid of SA and GA to

solve the QAP approximately. A parallel genetic algorithm is used to produce a good

initial solution for each population and the SA algorithm is used for improving these

solutions. More recently, Battiti and Tecchiolli in [67] developed parallelization

schemes of genetic algorithms for quadratic assignment problems presenting

indicative experimental results.

13

2.1.2 Simulated Annealing for the Facility Layout Problem

Simulated annealing was first proposed by Kirkpatrick et al. [68] as a method for

solving combinatorial optimization problems. The name of the algorithm derives from

an analogy between the simulation of the annealing of solids first proposed by

Metropolis et al. [69], and the strategy of solving combinatorial optimization

problems. Annealing refers to a process of cooling material slowly until it reaches a

stable state. Starting from an initial state, the system is perturbed at random to a new

state in the neighborhood of the original one, for which a change of ¢E in the

objective function value (OFV) takes place. In a minimization process if the change

¢E is negative then the transformation to the new state is accepted.

If the transformation is accepted with a certain probability of ,

where T is a control parameter corresponding to the temperature in the analogy and

kb is Boltzmann’ s constant. The change ¢E in the OFV corresponds to the change in

the energy level (in the analogy) that occurs as the temperature T decreases. SA gives

us a mechanism for accepting small increases in the objective function value,

controlling though the probability of acceptance through the temperatures.

Kirkpatrick et al. [68] argue that allowing “hill climbing” moves, one can avoid

configurations that lead to locally optimal solutions and eventually higher quality

solutions can be obtained. So the main advantage of the simulated annealing method

is its ability to escape from local optima.

The main features of the SA method are:

 The temperature T, which is the parameter that controls the probability of

accepting a cost-increasing interchange. During the course of the algorithm T is

decreased in order to steadily reduce the probability of acceptance of

interchanges that increase the value of the objective function,

 The equilibrium, i.e. the condition in which a further improvement in the solution

using additional interchanges is highly unlikely to occur,

 The annealing schedule that determines when and by how much the temperature

is to be reduced.

14

A pseudo-code of the simulated annealing procedure is given in Figure 1 [54].

Figure 3: Simulated Annealing Procedure

Several implementations of the simulated annealing algorithm have been proposed for

the facility layout problem. We will present the main concepts of the most recent

approaches and comment on the computational results.

Heragu and Alfa in [70], present an extensive experimental analysis of two simulated

Annealing based algorithms, implementing them on two patterns of layout, the single-

row and multi-row facility layouts. The first algorithm uses the standard techniques of

the SA heuristic. In the main step the algorithm examines the random exchange of the

positions of two facilities. The new solution is accepted if the exchange results in a

lower OFV.

Otherwise, the difference between the OFV of the best solution obtained so far

and the current solution is computed. This solution is accepted with probability .

This step is repeated 100n times or until the number of new solutions accepted is

equal to 10n, where n is the number of facilities in the layout problem. Next, the

15

algorithm decreases the value of temperature T by multiplying it by the cooling ratio r

and repeats the main step.

The stopping criterion is a fixed maximum number of temperature change steps. The

initial temperature T is set as a number sufficiently larger than the largest

encountered for problems tested with other heuristics.

The second algorithm presented in the same thesis is a hybrid SA algorithm (HSA),

which uses a “core” algorithm to generate a “good” initial solution, and then improves

it using the SA algorithm described before. The core algorithm is a modified penalty

algorithm (MP) presented in [71]. Eight test problems of size up to 30 (available in

the literature) are used for the single-row case. Each test problem is solved 10 times

using the same initial solution.

For six of the problems the HSA algorithm produces optimal or best-known solutions.

For the remaining two problems, the solutions are better than those previously

reported in the literature. A comparison between the HSA and the SA algorithms is

presented, as well as with three other heuristic algorithms (a 2-way exchange, a 3-way

exchange and a Wilhem-Ward version of simulated annealing [72]) using 15 equal-

area multi-row FLPs. The HAS in terms of solution quality, performed better than all

the other algorithms though requiring more computational time than the SA

algorithm. Also as the number of annealing runs increases, SA seems to produce

similar quality solutions with HSA with less computational effort.

Another implementation of the SA algorithm applied to the cellular layout problem

can be found in [73]. This problem involves the determination of the relative

positions of n equi-dimensional manufacturing entities which may represent either the

set of machines belonging to a cell (intra-cell problem) or the manufacturing cells

within a shop (inter-cell problem). The objective of both layout problems is to

minimize the total material flow (cost) between the manufacturing entities. The

method presented in the paper is called CLASS, which stands for Computerized

Layout Solutions using simulated annealing. The proposed algorithm is a regular

simulated annealing algorithm with the following most important elements:

16

Solution space: The solution space consists of an n X n grid, i.e. n2 positions are

available to be occupied by the n entities. The distance between all pairs of positions

is determined using geometric or Manhattan distances.

Interchanges: The interchange given a solution can be either a move of an entity from

its current position to an unoccupied position or an “exchange” of the positions of two

entities. The two positions from the solution space that are exchanged are selected

randomly.

Annealing schedule: The annealing schedule considers the initial temperature to be

sufficiently large so that all interchanges are eventually accepted. The temperature is

reduced by multiplying it with a constant that takes values between 0 and 1.

Parameters: The number of interchanges to be attempted at each temperature, the

number of accepted interchanges at each step and the total number of temperature

change steps are 100n, 10n and 100 respectively.

Interchange Acceptance Criterion: The interchange is accepted if a randomly

generated number between 0 and 1 is less than the value of , where and T are

respectively the difference in the OFV and the temperature at the current step.

CLASS was compared to twelve other layout methods in terms of both the quality of

the solution and the speed of convergence. Eight problems available in the literature

were used for the comparison of the algorithms, with sizes between n = 5 and n = 30.

In each case CLASS either equals the performance of, or outperforms each of the

other methods. The sensitivity of CLASS to the initial conditions was tested by

running each of the test problems of sizes 5, 6, 7, and 8, five times, each time with a

different initial solution. The optimal solution was obtained in each case, indicating

the insensitivity of the solution quality to the initial conditions.

For the inter-cell problem Tam describes a SA solution approach which takes into

consideration the traffic between cells, the geometric constraints of the individual

cells and any occupied regions on the floor plan. The objective is to find a layout that

minimizes the weighted flow of parts between the manufacturing cells while

satisfying the area and shape constraints of the individual cells. There are several

critical points concerning the problem formulation:

17

 Layout representation: The layout takes the form of a slicing structure, which is

represented by a slicing tree. This is a binary tree representing the recursive

partitioning process of a rectangular area, through cuts. A cut specifies the

relative position of the departments (left, right, below or above each other)

through four distinguished branching operators.

 Solution space: The solution space is defined as the set S which consists of all

slicing trees that can be generated by rearranging cuts of a given structure. It is

shown that , where n is the number of cells and the size of the

neighborhood N is .

 Area constraints: The location where a rectangular partition is cut, i.e. the cut point,

must be chosen so that the split partitions receive their required areas. The cut

point is determined in a top-down fashion starting from the “root” of the tree.

 Shape constraints: The cell’s shape is described using the aspect ratio and the dead

space ratio. The first ratio is the height over the width of the partition allocated to

a cell. The second ratio is used to measure the amount of unusable space within

the partition allocated to a manufacturing cell. Both ratios have lower and upper

bounds.

 Slicing tree construction: Using numerical clustering techniques a slicing tree is

constructed in such a way that cells with large inter-cell traffic volume are placed

in close proximity with each other.

The attractive element of the algorithm is that it exploits the hierarchical

representation of the layout, so that the probability of selecting a neighborhood state is

not uniformly distributed (as in a regular SA algorithm), but is dependent on T. More

particularly, when T is high at the first steps of the annealing procedure, a cut near the

root of the slicing tree will be selected, causing large swings in the cost function value

since a large number of cells will have to be relocated. As T decreases during the

course of the algorithm, cuts that are located at a lower level in the tree are selected,

to generate a neighborhood state. So a guided search in the set of neighboring

solutions is adopted. The algorithm was compared to two other local search methods,

denoted as HC (a straightforward hill climbing method) and BC (a modified version

18

of HC). Two test problems of size n = 20 and n = 30 were constructed for the

comparison. Each method was run 10 times with different initial solutions. The

computation time was kept the same among the three methods. In terms of solution

quality the proposed SA algorithm outperformed the other two methods, both in

average and minimum cost.

Kouvelis and Chiang address the single row layout problem (SRLP) in flexible

manufacturing systems (FMSs). The problem deals with the optimal arrangement of

n machines along a straight track with a material handling device moving jobs from

one machine to another. The difficulty of the problem is due to the variety of parts to

be processed in different ranges of operation sequences. When the sequence of

operations of a job is not the same as the sequence of the locations of the machines,

the job sometimes has to travel in reverse (backtrack) in order to receive the required

operations. The objective of the SRLP is to find the ordering of the machines that

minimizes the total backtracking distance of the material handling device. If we

consider n machines and n candidate locations for the machines to be placed, the

solution to the SRLP is one of the possible permutations of the set S =

{1,2,….n}defined as the set of the workstation assignment vectors, each one

representing a configuration of the machines in a single row. The neighborhood of a

configuration is the set N of configurations resulting by the interchange of the

locations of two machines. The initial configuration is obtained by randomly

assigning machines to locations. For the setting of the parameters of the SA

algorithm, i.e. the initial acceptance probability (through which the initial temperature

will be calculated), the number of interchanges attempted before the reduction of the

temperature, the value of the cooling ratio, and the number of steps to reach the

equilibrium, a sensitivity analysis was performed with respect to each individual

parameter. For each parameter a range of values is tested while all other parameters

are held fixed. The best values of the parameters are kept as the final ones to be used

in the algorithm. The experimental analysis showed that fine-tuning of the SA

parameters with respect to each specific application and the selection of the initial

19

solution is very important for the performance of the algorithm in terms of quality

solution.

The same authors and J. Fitzsimmons describe two distinct implementations of the

simulated annealing algorithm for machine layout problems in the presence of zoning

constraints. These constraints are restrictions on the arrangement of machines.

Positive zoning constraints require that certain machines have to be placed near each

other, while negative zoning constraints do not allow certain machines to be in close

proximity. The problem is formulated as a restricted quadratic assignment problem.

Assuming that the number of candidate locations is equal to the number of machines,

the objective is to assign the machines to the locations in a way that the cost function

is minimized with respect to the zoning constraints. The first of the SA algorithms

called the Compulsion Method takes into consideration the zoning constraints mostly

during the search for a new layout in the neighborhood of the original one. The

second algorithm, the Penalty Method, takes into account the presence of the zoning

constraints in the objective function through the use of appropriate penalty terms. For

each layout that violates any of the zoning constraints, corresponding penalty terms

are charged in the OFV. The two versions are compared on an extensive set of

computational experiments using test problems of size ranges from 5 to 30 machines.

The results showed that the Compulsion Method outperforms the Penalty Method in

terms of CPU time and solution quality. The basic advantage of the Penalty Method

is that it can be easily changed to handle the addition of extra zoning constraints.

Meller and Bozer describe a Simulated Annealing Based Layout Evaluation algorithm

(SABLE), which introduces a new generator routine for candidate layout solutions,

combined with the use of space-filling curves. The algorithm is implemented on a set

of single and multiple floor facility layout problems. For the single-floor case test

problems of sizes 11 to 25 are used. An average and a worst-case analysis shows that

the proposed algorithm performs the best in terms of solution quality. Additionally,

SABLE performed better than Tam’s SA algorithm on a data set of 20 and 30-size

department single-floor FLPs. Let us note that regarding the department shapes,

Tam’s algorithm generally assumes rectangular shapes, while the proposed algorithm

20

tends to generate departments with non-rectangular shapes. For the multi-floor case,

test problems with up to 4 floors and 40 departments were used to evaluate the

performance of SABLE.

The results indicate the robustness of the algorithm to changes in the vertical to

horizontal ratio.

For the special case of QAP several SA approaches have been proposed. Burkard and

Rend were the first to apply simulated annealing for solving the QAP. They reported

on rather favorable computational results indicating that the obtained solutions deviate

only 1-2% from the best known solutions. Wilhelm and Ward also applied the SA

algorithm to quadratic assignment problems, by further experimenting on the

procedure.

They report on the sensitivity of SA to the control parameters, and evaluate the

algorithm using problems ranging in size from n = 5 to n = 100. In particular

computational results were provided for the test problems in Nugent et al. and for two

test problems they introduced in the paper. Connolly discusses the implementation of

SA on 7 problems. The computational results indicate that examining sequentially

generated neighboring solutions, rather than randomly generated ones, makes the SA

algorithm more efficient. More recently Laursen investigated the performance of the

SA algorithm by varying two parameters: (1) the number of simulations, and (2) the

simulation length, while in both cases the algorithm uses the same computational time

for a specific instance problem. Laursen concluded that the length of each simulation

is optimizable and that a large range of its values generate a near-optimal solution

quality.

21

2.2 Recent Nature Inspired Algorithms

2.2.1 Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is a population based stochastic optimization

technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social

behavior of bird flocking or fish schooling.

PSO shares many similarities with evolutionary computation techniques such as

Genetic Algorithms (GA). The system is initialized with a population of random

solutions and searches for optima by updating generations. However, unlike GA, PSO

has no evolution operators such as crossover and mutation. In PSO, the potential

solutions, called particles, fly through the problem space by following the current

optimum particles.

Each particle keeps track of its coordinates in the problem space which are associated

with the best solution (fitness) it has achieved so far. (The fitness value is also stored.)

This value is called pbest. Another "best" value that is tracked by the particle swarm

optimizer is the best value, obtained so far by any particle in the neighbors of the

particle. This location is called lbest. When a particle takes all the population as its

topological neighbors, the best value is a global best and is called gbest.

The particle swarm optimization concept consists of, at each time step, changing the

velocity of (accelerating) each particle toward its pbest and lbest locations (local

version of PSO). Acceleration is weighted by a random term, with separate random

numbers being generated for acceleration toward pbest and lbest locations.

In past several years, PSO has been successfully applied in many research and

application areas. It is demonstrated that PSO gets better results in a faster, cheaper

way compared with other methods.

22

Another reason that PSO is attractive is that there are few parameters to adjust. One

version, with slight variations, works well in a wide variety of applications. Particle

swarm optimization has been used for approaches that can be used across a wide

range of applications, as well as for specific applications focused on a specific

requirement.

[http://www.swarmintelligence.org/]

2.2.2 Firefly Algorithm

Firefly Algorithm (FA) was first developed by Xin-She Yang in late 2007 and

2008 at Cambridge University, which was based on the flashing patterns and

behavior of fireflies. The theoretical side of this algorithm is explained in Chapter 6.

2.2.3 Cuckoo search

Cuckoo search (CS) is an optimization algorithm developed by Xin-she Yang and

Suash Deb in 2009. It was inspired by the obligate brood parasitism of some cuckoo

species by laying their eggs in the nests of other host birds (of other species). Some

host birds can engage direct conflict with the intruding cuckoos. For example, if a

host bird discovers the eggs are not their own, it will either throw these alien eggs

away or simply abandon its nest and build a new nest elsewhere. Some cuckoo

species such as the New World brood-parasitic Tapera have evolved in such a way

that female parasitic cuckoos are often very specialized in the mimicry in colors and

pattern of the eggs of a few chosen host species.

Cuckoo search idealized such breeding behavior, and thus can be applied for various

optimization problems. It seems that it can outperform other meta-heuristic algorithms

in applications.

2.2.4 Cuckoo search (CS) uses the following representations

Each egg in a nest represents a solution, and a cuckoo egg represents a new solution.

The aim is to use the new and potentially better solutions (cuckoos) to replace a not-

so-good solution in the nests. In the simplest form, each nest has one egg. The

23

algorithm can be extended to more complicated cases in which each nest has multiple

eggs representing a set of solutions.

CS is based on three idealized rules:

- Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen

nest;

- The best nests with high quality of eggs will carry over to the next generation;

- The number of available hosts nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability p_a \in (0, 1). Discovering

operate on some set of worst nests, and discovered solutions dumped from

farther calculations.

In addition, Yang and Deb discovered that the random-walk style search is better

performed by Lévy flights rather than simple random walk.

[Wikipedia]

2.2.4 BAT algorithm

Bats are fascinating animals. They are the only mammals with wings and they also

have advanced capability of echolocation. It is estimated that there are about 996

different species which account for up to 20% of all mammal species. Their size

ranges from the tiny bumblebee bat (of about 1.5 to 2g) to the giant bats with

wingspan of about 2 m and weight up to about 1 kg. Microbats typically have

forearm length of about 2.2 to 11cm. Most bats uses echolocation to a certain degree;

among all the species, microbats are a famous example as microbats use echolocation

extensively while megabats do not.

Microbats use a type of sonar, called, echolocation, to detect prey, avoid obstacles,

and locate their roosting crevices in the dark. These bats emit a very loud sound

pulse and listen for the echo that bounces back from the surrounding objects. Their

pulses vary in properties and can be correlated with their hunting strategies,

depending on the species. Most bats use short, frequency-modulated signals to sweep

through about an octave, while others more often use constant-frequency signals for

24

echolocation. Their signal bandwidth varies depends on the species, and often

increased by using more harmonics.

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10 ms),

however, it has a constant frequency which is usually in the region of 25 kHz to 150

kHz. The typical range of frequencies for most bat species are in the region between

25kHz and 100kHz, though some species can emit higher frequencies up to 150 kHz.

Each ultrasonic burst may last typically 5 to 20 ms, and microbats emit about 10 to 20

such sound bursts every second. When hunting for prey, the rate of pulse emission can

be sped up to about 200 pulses per second when they fly near their prey. Such short

sound bursts imply the fantastic ability of the signal processing power of bats. In fact,

studies shows the integration time of the bat ear is typically about 300 to 400 µs. As

the speed of sound

in air is typically v = 340 m/s, the wavelength λ of the ultrasonic sound bursts with a

constant frequency f is given by λ = v/f, which is in the range of 2mm to 14mm for

the typical frequency range from 25kHz to 150 kHz. Such wavelengths are in the

same order of their prey sizes.

Studies show that microbats use the time delay from the emission and detection of the

echo, the time difference between their two ears, and the loudness variations of the

echoes to build up three dimensional scenario of the surrounding. They can detect the

distance and orientation of the target, the type of prey, and even the moving speed of

the prey such as small insects. Obviously, some bats have good eyesight, and most

bats also have very sensitive smell sense.

In reality, they will use all the senses as a combination to maximize the efficient

detection of prey and smooth navigation. However, here we are only interested in the

echolocation and the associated behavior. Such echolocation behavior of microbats

can be formulated in such a way that it can be associated with the objective function

to be optimized, and this makes it possible to formulate new optimization algorithms.

If we idealize some of the echolocation characteristics of microbats, we can develop

various bat-inspired algorithms or bat algorithms. In the basic bat algorithm, the

following approximate or idealized rules were used.

25

1. All bats use echolocation to sense distance, and they also ‘know’ the

difference between food/prey and background barriers in some magical way;

2. Bats fly randomly with velocity vi at position xi with a frequency fmin, varying

wavelength λ and loudness A0 to search for prey. They can automatically adjust the

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission

r ∈ [0, 1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies

from a large (positive) A0 to a minimum constant value Amin.

Another obvious simplification is that no ray tracing is used in estimating the time

delay and three dimensional topography. Though this might be a good feature for the

application in computational geometry, however, we will not use this feature, as it is

more computationally extensive in multidimensional cases.

In addition to these simplified assumptions, we also use the following approximations,

for simplicity. In general the frequency f in a range [fmin, fmax] corresponds to a range

of wavelengths [λmin, λmax]. For example a frequency range of [20kHz, 500kHz]

corresponds to a range of wave-lengths from 0.7mm to 17mm in reality. Obviously,

we can choose the ranges freely to suit different applications.

2.2.4.1 Bat Motion

For the bats in simulations, we have to define the rules how their positions xi and

velocities vi in a d-dimensional search space are updated. The new solutions and

velocities at time step t are given by

where β ∈ [0, 1] is a random vector drawn from a uniform distribution. Here x∗ is the

current global best location (solution) which is located after comparing all the

solutions among all the n bats at each iteration t. As the product λifi is the velocity

increment, we can use fi (or λi) to adjust the velocity change while fixing the other

factor λi (or fi), depending on the type of the problem of interest. In our

26

implementation, we will use fmin = 0 and fmax = O(1), depending on the domain size of

the problem of interest. Initially, each bat is randomly assigned a frequency which is

drawn uniformly from [fmin, fmax].

For the local search part, once a solution is selected among the current best solutions,

a new solution for each bat is generated locally using random walk

,

where is a random number vector drawn from [−1, 1], while is the

average loudness of all the bats at this time step.

The update of the velocities and positions of bats have some similarity to the

procedure in the standard particle swarm optimization, as fi essentially controls the

pace and range of the movement of the swarming particles. To a degree, BA can be

considered as a balanced combination of the standard particle swarm optimization and

the intensive local search controlled by the loudness and pulse rate.

Loudness and Pulse Emission

Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated

accordingly as the iterations proceed. As the loudness usually decreases once a bat

has found its prey, while the rate of pulse emission increases, the loudness can be

chosen as any value of convenience. For example, we can use A0 = 100 and Amin = 1.

For simplicity, we can also use A0 = 1 and Amin = 0, assuming Amin = 0 means that a

bat has just found the prey and temporarily stop emitting any sound. Now we have,

,

where α and γ are constants. In fact, α is similar to the cooling factor of a cooling

schedule in the simulated annealing [107]. For any 0 < α < 1 and γ > 0, we have

In the simplest case, we can use α = γ, and we have used α = γ = 0.9 in our

simulations.

Preliminary studies by [58] suggested that bat algorithm is very promising for solving

nonlinear global optimization problems. Now we extend it to solve multi-objective

optimization problems.

Multi-objective Bat Algorithm

27

Multi-objective optimization problems are more complicated than single objective

optimization, and we have to find and/or approximate the optimality fronts. In

addition, algorithms have to be modified to accommodate multi-objectives properly.

2.3 Literature Review

2.3.1 Exact Algorithms

Exact algorithms for the FLP represent those algorithms developed to obtain, in

theory, an optimal solution to the facility layout problem. The major advantage of an

exact algorithm is that it considers the whole solution space and the optimality of the

final layout solution can be guaranteed. Unfortunately, these models are not

necessarily of practical value. This is because they can only consider very small sized

problems (less than 10 unequal sized departments), which are far from the size of

common industry-practical problems (30–40 departments). When the size of the

problem increases, the algorithms become impossible to solve in a practical sense

because of the computational complexity of the FLP.

The well-known exact algorithms for the FLP include the quadratic assignment

problem (QAP) model and the mixed integer programming (MIP) model. The QAP

[4], as a special case of distance-based FLP with discrete representation, assumes that

every department has equal area and that all locations (grids) are fixed and known a

priori. The QAP formulation assigns every department to one location and at most one

department to each location, which means a one-to-one matching between

departments and locations. The cost of placing a department at a particular location is

dependent on the location of the interacting departments. Although the QAP

formulation greatly simplifies the FLP and cannot describe the reality of the industrial

applications, the QAP is still one of the most challenging optimization problems—

recently, a 30-facility QAP required 1000 computers in a massive parallelization

effort over a seven-day period that lead to an equivalent 6.9 years of computational

effort. The size of the QAP that can be solved in a reasonable computational effort is

around 20 departments [5].

28

A MIP-based formulation for the facility layout problem (MIP-FLP) was presented by

Montreuil [6]. He formulates the FLP as a 0-1 mixed integer programming model

with a distance-based objective function. Because the MIP-FLP model utilizes a

continuous representation, it is more accurate and realistic than the traditional QAP

model [6,7].

The MIP-FLP has become one of the main focus areas in FLP research in recent

years. However, since the MIP-FLP is very difficult to solve to optimality (less than

10 departments), an efficient heuristic that is based on the MIP-FLP needs to be

developed.

The QAP was the first exact approach in FLP research. The QAP was first proposed

by Koopmans and Beckman in 1957 [4], which was introduced to model interacting

plants of equal areas. A typical QAP model is given as follows:

,

Where cijkl is the cost incurred by assigning department i in location k and department

j in location l. The binary decision variable, xik, is equal to 1 if department i is

assigned to location k and 0 otherwise.

As we discussed in Chapter 1, the QAP assumptions include equal-area departments

and fixed and known locations to place the departments. Utilizing a discrete

representation, the QAP formulation takes fixed locations as “giant grids” and assigns

every department to exactly one grid (see (2.2) and (2.3)). The cost of such a one-to-

29

one assignment between departments and grid locations depends on the location of the

interacting departments (see (2.1)).

An alternative formulation of the QAP considers assigning interdepartmental

distances to department pairs [14]. The QAP has been proven to be NP-complete [15].

Optimal solutions for the QAP model in general cases can only be found for problems

with less than 18 departments [16].

Some modified QAP models [17] were presented to solve the unequal-area FLP by

breaking departments into small grids with equal area, assigning large artificial flows

between those grids of the same department to ensure that the departments are not

split, and solving the resulting QAP. Such approaches actually increase the discrete

representation resolution (i.e., smaller grids underlying the facility), allowing each

department to be assigned to more than one grid. However, due to the increase in the

number of “departments,” it is not possible to solve even small-sized problems with a

few unequal-area departments. Moreover, it is shown in [9] that such an approach is

not effective because it implicitly adds a department shape constraint. Such a

constraint limits the solution space in a manner that cannot be known beforehand.

Some researchers have used QAP in a modified form to solve a specific facility layout

problem. For example, [18] developed a QAP model to address the bidirectional

circular layout problem (Bi-CLP), where the departments are arranged along a simple

closed-loop aisle and the flow between departments can occur either in the clockwise

or counterclockwise direction based on whichever is shorter along the aisle.

Another discrete representation based exact algorithm is the MIP-FLP model

represented by [19] to solve the process plant layout problem in the chemical industry.

This model is different from the QAP in the following ways: (1) considering the

equipment size and orientation; (2) considering both the two-dimension and the three-

dimension layout solutions; and (3) developing a multi-objective function that

includes not only material handling cost, but also land, piping and floor construction

costs. However, this model still suffers from the discrete representation weaknesses

discussed in Section 1.3.2.

30

2.3.2 Graph Theoretic Approaches

Graph theoretic approaches assume that the closeness ratings between

departments are known a priori. Each department is represented as a node and

adjacency relationships between departments are represented by an arc connecting the

two adjacent nodes (departments) in the adjacency graph [8]. There are no underlying

grids in such a representation, so usually graph theoretic approaches are considered as

continuous representation based approaches.

 The optimization objective used in graph theoretic approaches is the closeness rating

function in (1.1). This objective function is first translated to obtain a maximal

weighted planar graph (MWPG). Secondly, the MWPG is transformed into a dual

graph. Finally, a block layout is generated through the dual graph. Giffin [20]

showed that MWPG is a NP-complete problem. Like the QAP approach, even small-

sized problems cannot be solved to optimality. As a result, many construction

heuristics based on graph theoretic models are developed. Some of them are reviewed

in the following section. A thorough review of such heuristics can be found in [21].

2.3.3 Mixed Integer Programming Approaches

A MIP formulation for the FLP was originally presented in 1990 by Montreuil [6].

This model uses a distance-based objective, but is not based on the traditional QAP

framework.

Instead, it utilizes a continuous representation of a layout and considers departments

with unequal areas. In this model, the locations of, and dimensions of, departments

are decision variables. A number of binary integer variables are used to avoid

overlapping departments.

1A graph is planar if it can be drawn in the plane and each arc intersects no other arcs

and passes through no other nodes. A planar sub-graph of an adjacency graph is

called a maximal planar graph if no arcs can be added without destroying the planarity

of the graph.

31

This model is commonly referred to as FLP0. One of the problems in FLP0 is that in

lieu of the exact nonlinear (specifically non-convex and hyperbolic) area constraint, a

bounded perimeter constraint is used to linearize the model. However, using a

bounded perimeter constraint instead of an exact area constraint can lead to errors in

the final area of each department. For the maximum aspect ratio of departments equal

to 2, 3, 4, and 5, the boundary perimeter constraint used in FLP0 is satisfied even if

the final area of a department is less than its actual required department by 11%, 25%,

36% and 44%, respectively.

A modified MIP-FLP model based on FLP0 was presented in 1999 by Meller,

Narayanan and Vance [7] to improve the model accuracy and approach efficiency.

This model is commonly referred to as FLP1. The bounded perimeter constraint in

FLP1 is modified, which results in final department areas that are no less than their

actual area requirements by 2.5%, 2.5%, 6.3% and 14.3% for an aspect ratio equal to

2, 3, 4, and 5, respectively. More importantly, this modified MIP-FLP model also

adds some valid inequalities in order to eliminate some infeasible solutions from the

solution space and to improve the algorithm’s efficiency.

Numerical results from that literature show that FLP1 is more accurate and effective

than FLP0 in terms of solution quality and computational efforts.

This MIP-based model has advantages over the QAP and graphic theoretic

approaches, especially in terms of department shapes and problem representation.

However, because of the added complications of unequal areas, varying department

horizontal and vertical dimensions, and overlapping prohibition constraints, it is

extremely difficult to solve such MIP-based models to optimality. The literature

shows that for FLP0 it can only solve very small sized problems (n ≈ 5). For FLP1,

even though the authors introduced a number of valid inequalities to the model, the

increased problem size that can be solved (n ≈ 7) is still far from the size of common

industry practical problems (30–40 departments).

The aspect ratio of a department is the ratio of its longest side length over its shortest

side length.

32

In order to further improve the performance of the MIP-FLP model and algorithm, a

series of enhancements were presented by [22]. Those new enhancements are based

on FLP1, including a novel polyhedral outer approximation scheme for the nonlinear

area constraints, symmetry-avoiding valid inequalities, several surrogate constraints

and inequalities to prevent the department overlapping, and a well-designed

branching variable selection priority scheme. The computation results from [22]

show that he efforts and accuracy of final solutions are increased (n ≈ 9) and some

difficult test cases are solved for the first time in the literature. However, the problem

size is still limited and not applicable for most industrial applications.

One of the major difficulties that arises in solving the MIP-FLP is from the disjunctive

constraints and the large quantity of binary integer variables that prevent departmental

overlap. Hence, many researchers [23] & [6] have attempted to solve such MIP-FLP

models by heuristically fixing a subset of those binary integer variables and then

solving the resulting simplified model. Some of the literature in studying the

heuristics for the MIP-FLP model is reviewed in the Section 2.2.2.

2.3.4 Heuristic Approaches

Because of the computational difficulty in solving the QAP, graph theory models, or

the MIP-FLP to optimality, a great deal of research has centered on finding “good”

solutions by implementing heuristic approaches. There are two types of heuristics:

construction heuristics and improvement heuristics. Construction-type heuristics build

a single solution from scratch (typically in an open space) by successively selecting

and locating a new department until the layout is completed. Alternatively,

improvement-type heuristics require an initial layout as input, and the algorithm

improves the initial layout by making use of some improvement mechanism, such as

pair-wise or multi-pair-wise exchanges, until no further improvements can be found.

Many improvement routines have been applied (e.g., steepest descent, simulated

annealing, genetic algorithms, etc.) to improvement-type heuristics.

In addition to the above classification on the basis of search mechanism, we also

classify and review the heuristic literature according to the layout solution

33

representation (discrete or continuous). We do so because the focus of this chapter is

the layout representation used in previous research instead of search strategy.

2.3.4.1 Heuristics with Discrete Representation

Montreuil, Ratliff, and Goetschalckx [24] presented an interactive construction-type

heuristic, MATCH, which utilizes a discrete representation and integer programming

to solve a b-matching model. A b-matching problem is to find a maximum weighted

matching in an edge-weighted graph that each edge has its lower and upper bounds to

restrict the number of times the edge can be used and each vertex has a integer

parameter to specify the number of the vertex must be matched with all other

vertexes. Their approach tries to find a matching that maximizes the adjacency score

while satisfying the constraints for number of matches in the adjacency graph.

SHAPE [25] is a construction-type heuristic based on a discrete representation and

distance-based objective. The department entry sequence is determined by each

department’s flows and a user-defined critical flow value. The first department is

placed at the center of the layout. Subsequent departments are placed based on the

objective function value increase if placed on each of the four sides of current layout.

CRAFT [26] is one of the first improvement-type heuristics. CRAFT searches for the

improvements by implementing two-way or three-way exchanges of the centroids of

non-fixed departments. Due to the primitive exchange routine, only departments that

are either of the same size or adjacent in the current layout may be exchanged.

The space-filling curve representation is another example of a discrete representation.

A space-filling curve is a curve visiting the underlying grids contiguously to avoid the

presence of split departments. MULTIPLE [3] and SABLE [9] are two algorithms

based on the space-filling curve representation. MULTIPLE utilizes a two-way

exchange to improve the initial layout. SABLE applies a simulated annealing (SA)

algorithm to search for “good” layout solutions. Both algorithms are capable of

solving single-floor and multiple-floor layout problems.

Some researchers combine meta-heuristics with CRAFT to provide randomness

mechanism to allow CRAFT to explore additional two-way local optimal solutions.

34

One of the newest research results is presented by [27], named Meta-RaPS CRAFT,

which is based on a discrete representation and a distance-based objective. Meta-

RaPS is a strategy used to change the priority rules based on the insertion of a random

element. In Meta-RaPS CRAFT, the decision of department exchange is based on the

priority rule, which is determined by Meta-RaPS under a random mechanism.

2.3.4.2 Heuristics with Continuous Representation

The delta-hadron approach (DA) [28] is one of the most widely cited construction-

type heuristics. As a graph-based approach, DA uses the adjacency-based objective

and generates a layout by determining the entry sequence of nodes (departments) into

the graph. At each stage, a node (department) enters the graph to maximize the

adjacency benefits with the other nodes (departments) in the graph. A great deal of

research has been conducted to improve DA’s performance [29,30,31]. Another

construction-type heuristic based on graph theoretic approaches and the adjacency-

based objective is SPIRAL [32], which utilizes the concept of “relationship tuples” to

construct an adjacency graph.

LOGIC [33] is an improvement-type heuristic based on a collection of rectangular

partitions called a slicing tree. Based on the slicing tree structure, the given facility is

recursively partitioned. LOGIC can consider fixed and non-fixed departments.

NLT [34] is an approach based on nonlinear programming and the distance-based

objective. NLT utilizes a continuous representation and solves the constrained

nonlinear programming model by transforming the model into an unconstrained form

by an exterior point quadratic penalty function method. The resulting department

shapes are all rectangular.

Some heuristics have been developed to improve the performance of Montreuil’s

MIP-FLP model. [23] and [35] applied qualitative layout anomalies (QLAs) and

design skeletons to Montreuil’s MIP-FLP model. The heuristics utilize context-based

information to reduce the solution tree. Lacksonen [36] proposed an approach that

combines the QAP model with Montreuil’s MIP-FLP model. First, a QAP model is

solved by applying a cutting plane heuristic. The result of the QAP is used as an input

35

of approximate location information of departments, which is used to reduce the

number of binary variables in the MIP model.

Langevin et el [37] proposed a heuristic approach based on Montreuil’s MIP-FLP

model to solve the spine layout problem, where a main aisle is used for material

handling and all departments are located along the both sides of the aisle. This

approach first generates an ordered list of departments based on a heuristic proposed

by Heragu and Kusiak [38] to solve a single row layout problem. Then, it applies the

ordered list to the Montreuil’s MIP-FLP model to fix the binary variables and

transforms Montreuil’s model from an MIP model to a linear programming model.

The maximum size of test problems presented in [37] is 22 departments. This

approach uses a heuristically-fixed ordered list as initial input and cannot consider all

the possible solutions. It is also specifically designed for the spine layout problem. As

such, it is not suitable for the general FLP.

Lacksonen [36] proposed a pre-processing heuristic to fix a subset of the total binary

variables according to a regression formula based on the area of each department and

material flows associated with each department. The maximum size of test problems

is 12 departments.

Montreuil et al. [39] presented an Ant Zone meta-heuristic based on a continuous

representation, where an ant colony approach is used to generate the layout code, and

given a layout code, a zone-based linear programming model is solved to optimize the

zone-based layout solution.

Another type of continuous-representation-based heuristic design is focused on

studying the FLP with fixed-shaped departments and fixed input/output locations,

where the locations of the departments are represented continuously. One of the most

recent research is presented by Kim and Kim [40], where an MIP model is formulated

and a construction-improvement heuristic is presented based on the MIP model to

minimize the distance-based objective function for the FLP with pre-specified-shaped

departments and fixed input/output locations. However, the department shapes are

restricted to rectangular-shaped only.

36

Irohara and Yamada [41] present a location matrix based heuristic to solve the FLP

with aisle structure where there are three alternatives for the input/output locations.

One main limitation for this research is that the approach assigns departments within a

zone in a sequential-order along either the horizontal direction or vertical direction.

Therefore, it cannot consider all-possible layout solutions.

2.3.5 Simulated annealing-based method

SA is a stochastic search process based on the concept of ‘annealing’ [42]. The

annealing of a solid material is two-phase method. In the first phase, solid material is

heated up to a certain temperature where its atoms can move freely or randomly in

material. In second phase, this hot material is allowed to cool slowly so that the atoms

can rearrange themselves into a lower energy state to form crystal. This second phase

is also known as crystallization process. Since the crystalline state is the minimum

energy state of the system, this process can be thought of minimization of free energy

of the system or solid. It is found that improper heating and/or fast cooling can lead

solid to an amorphous state with higher energy level. This situation is an analogy of

reaching a local minimum instead of global minimum of the system energy, and

hence proper schedule for annealing is vital.

There are several important analogies found in literature between annealing and

combinatorial optimization. The system analogies are:

 The system state at any point of time, that is, at a system energy level is analogous

to particular solution of the optimization problem the free energy of the system is

analogous to the decision variables of the objective function the slight

perturbation imposed on the system to change state analogous to a movement into

a neighborhood solution with respect to the local search the cooling schedule

corresponds to the control or iteration mechanism for the search algorithm

 The crystalline state of the system analogous to the final solution generated by the

algorithm (single solution).

The first two analogies stated here-in-before are subjected to minimization.

37

In case of single objective optimization problem SA is guaranteed to converge

in asymptotic time, though the computational time grows exponentially with respect

to the size of the problem [42]. The disadvantage of SA is that it requires multiple

runs to defining proper cooling schedule in order to get optimum solution.

It seems that SA as a method is being preferred by the researchers in the field, staring

form manufacturing cell design to multi-objective optimization of dynamic and

static behavior of FLP irrespective of whether it is an equal or an unequal

sized facilities [43,44,45,46,47,48]. Concept of Pareto front generation, application of

non-dominated solution techniques are getting powered by SA-based algorithms [49].

Hybrid method of SA with TS [50], SA and GA [51] helps to avoid high

computational cost [52] and improves the solution, both qualitatively as well as

quantitatively.

Table 1: Survey of SA-based FLP literature

A survey of SA-based facility layout literature, done for this research, is tabulated in

Table 1, wherein eight major objectives selected for SA-based solution are

tabulated in columns A to G and detailed out as follows:

A minimization of Material handling and total closeness rating score

B minimizing re-layout cost

38

C total area optimization and stochastic level of production

D vehicle routing

E optimization of fixed and variable cost of production

F minimization of material handling cost

G optimize number and location of elevators

H material flow path design.

2.3.6 Tabu Search-based Method

TS is an iterative meta-heuristic method where at each iteration, current solution

moves to the neighborhood point comprising of smallest value with respect to

the objective function. One of the main components of TS is its adaptive memory,

which creates more flexible search behavior for responsive exploration.

Incorporation of adaptive memory in TS builds its capability that the solution is not

stuck into local optima. There are four major building blocks of tabu memory

structure, which is referred to as, recency, frequency, quality and influence. Recency

and frequency-based memories are complementary in nature, and a combined

use helps in recognizing the replica solutions. Quality-based memory helps to judge

the goodness of the solution and short moves are taken in neighborhood. Influence-

based memory takes care of system learning during the search process.

Intensification and diversification strategies are also highly important components of

TS. Intensification is realized by storing in its memory the historically found good

or ‘elite’ solution and the corresponding search move combinations. It helps

to concentrate search around the good solution region, and also helps the search

process to escape from bad region. Diversification strategy helps to find out new

region of solutions, which were not explored during the search and it also helps to get

away from sticking to local optimal solutions.

To facilitate these strategies, TS uses a short-term, intermediate-term and long-term

memory. Short-term memory stores the variable values of the recently visited points

and marks them as tabu, meaning forbidden, to avoid cycling within local

region.

39

Intermediate-term memory stores optimal or near optimal solution to help

the intensification operation, while the long-term memory keeps track of the under-

explored regions as well as the regions which were already explored exhaustively

thereby helping the diversification.

In case of FLP the TS has been widely used in optimizing material handling

cost, utilization of space, minimization of re-layout cost for both single- and

multi-objective problems [45]. TS is also deployed for optimizing single row FLD

problem (a special class of FLP). But difficulties have been encountered when TS

was deployed for continuous search space due to the approximation introduced

on account of digitization of continuous space [42]. SA is to overcome

computational complexities and difficulties of TS proposed a special different

intensification and diversification strategies, which shows better convergence

of searching to get proper arrangement of facilities. Improved TS

algorithm with intensification, reconstruction and solution acceptance operation was

proposed by Singh [53], which gives comparative result with respect to some

benchmark problems found in QAP-based FLP literature.

Table 2: Survey of TS-based FLP literature

The survey findings of TS-based facility layout literature undertaken in this work is

tabulated in Table 2, wherein four major objectives selected for TS-based

solution are tabulated in columns A to D, which is as follows:

A minimizing total material handling or flow cost

40

B minimizes size of resulting layout or maximizes utilization of area

C minimizing re-layout cost

D total area optimisation with stochastic level of production.

2.3.7 Genetic algorithm-based method

Search mechanism in GA actually is based on the mechanism of natural selection

and natural genetics. GA is widely used in optimization problem due to its

robustness and is a tool in industrial engineering optimization problems deployed in

the recent past. Building block of GA consists of five major elements:

1 a genetic representation of solution

2 a well-defined mechanism to generate initial population

3 a fitness function to evaluate solution quality

4 genetic operators, namely crossover and mutation, analogous to biological

operation to generate offspring

5 Parameter values.

An encoded representation of problem parameters, used as chromosome, is

generally found in the form of string of binary or real numbers. Each variable is

analogous to the gene of biological chromosome, and such gene values are decoded to

yield solutions to the problem. Reproduction or selection operator replicates good

solutions and eliminates bad solutions from the population, while keeping the

population size unchanged. Roulette wheel and tournament selection process are well

established for this operation, however tournament selection shows better

performance in comparison to other selection operators. Crossover operator is used to

generate offspring from parent chromosome by means of interchanging substring(s).

No such restriction posed on the exact procedure to crossover in GA; rather they

are problem and domain specific. On the other hand, mutation operator is used to

change a particular allele value by means of replacing this with its complement in

case of binary-coded GA. Flexibility is maintained for the mutation rules for

providing robustness to the algorithm. From the literature review, undertaken in the

present work, it is observed that GA has rather frequently been used in the recent

41

period as an optimization tool for FLP. As indicated by application of GA was

found to be of significant proportion in optimizing QAP formulation for FLP.

It is observed during the present study undertaken that in most cases the

minimization of material handling cost is considered as an objective function.

However, relatively fewer reports addressed flexibility of layout with aisle structure,

inter- and intra-cell material handling in cellular layout, maximum utilization of space

and minimization of total travelling distance. Facility dispositions and its

geometrical orientations are generally encoded as slicing tree, ordered set of

facilities, facility number order, x–y coordinate maps to generate initial population.

The difficulties of applying classical crossover, mutation operators on FLP were

addressed. Different problem specific modified crossover and mutation operation

were developed to achieve better efficiency of GA. The operators have also been

modified to preserve elite solutions tested response of different GA crossover,

mutation rate, population size and maximum number of generation on their

problem. Parallel implementation of SA and GA, where GA used for global search

and SA applied for local search, is also proposed by developed GA-based software for

layout design with an easy GUI.

42

Table 3: Survey of GA-based FLP literature

Ease to hybrid GA with other algorithms and its ability of constraint handling

by penalization, as a property has made GA a preferred tool for multi-objective

optimization for FLP. Generally, hybrid GA with SA or TS method chosen as

algorithm to optimize multiple objectives, such as material handling cost and

space utilization, placing facilities around an aisle structure and optimization of

material handling cost, minimization of material handling cost and re-layout cost,

loop layout in flexible manufacturing system. GA in cellular manufacturing has been

applied in cell formation and group layout, involving optimization of inter and intra-

cell material handling effort.

GA-based solutions are extended by VR [54] or AutoCAD representation to facilitate

visualization of quality of solution.

43

The survey findings of GA-based facility layout literature, undertaken in this work is

tabulated in Table 3, wherein six major objectives selected for GA-based

solution are tabulated in columns A to F, which is as follows:

A minimizing total material handling or flow cost

B minimizes size of resulting layout or maximizes utilization of area

C generation of flexible layout

D minimize material handling cost for inter-cell and intra-cell movement

E minimizing total rectilinear distance travel for material

F optimization of aisle structure.

2.3.8 Nature Inspired Algorithms

Real-world optimization problems are often very challenging to solve, and many

applications have to deal with NP-hard problems. To solve such problems,

optimization tools have to be used, though there is no guarantee that the optimal

solution can be obtained. In fact, for NP-problems, there are no efficient algorithms at

all. As a result, many problems have to be solved by trial and errors using various

optimization techniques. In addition, new algorithms have been developed to see if

they can cope with these challenging optimization problems.

Among these new algorithms, many algorithms such as particle swarm optimization,

cuckoo search and firefly algorithm, have gained popularity due to their high

efficiency. In the current literature, there are about 40 different algorithms. It is really

a challenging task to classify these algorithms systematically. Obviously, the

classifications can largely depend on the criteria, and there is no easy guideline to set

out the criteria in the literature.

Sources of Inspiration

Nature has inspired many researchers in many ways and thus is a rich source of

inspiration. Nowadays, most new algorithms are nature-inspired, because they have

been developed by drawing inspiration from nature. Even with the emphasis on the

source of inspiration, we can still have different levels of classifications, depending on

44

how details and how many sub sources we will wish to use. For simplicity, we will

use the highest level sources such as biology, physics or chemistry.

In the most generic term, the main source of inspiration is Nature. Therefore, almost

all new algorithms can be referred to as nature-inspired. By far the majority of nature-

inspired algorithms are based on some successful characteristics of biological system.

Therefore, the largest fractions of nature-inspired algorithms are biology-inspired, or

bio-inspired for short.

Among bio-inspired algorithms, a special class of algorithms has been developed by

drawing inspiration from swarm intelligence. Therefore, some of the bio inspired

algorithms can be called swarm-intelligence-based. In fact, algorithms based on

swarm intelligence are among the most popular. Good examples are ant colony

optimization, particle swarm optimization, cuckoo search, bat algorithm, and firefly

algorithm.

Obviously, not all algorithms were based on biological systems. Many algorithms

have been developed by using inspiration from physical and chemical systems. Some

may even be based on music [59]. In the rest of thesis, we will briefly divide all

algorithms into different categories, and we do not claim that this categorization is

unique. This is a good attempt to provide sufficiently detailed references.

Classification of Algorithms

It is worth pointing out the classifications here are not unique as some algorithms can

be classified into different categories at the same time. Loosely speaking,

classifications depend largely on what the focus or emphasis and the perspective may

be. For example, if the focus and perspective are about the trajectory of the search

path, algorithms can be classified as trajectory-based and population-based.

Simulated annealing is a good example of trajectory-based algorithms, while particle

swarm optimization and firefly algorithms are population-based algorithms. If our

emphasis is placed on the interaction of the multiple agents, algorithms can be

classified as attraction-based or non-attraction-based.

45

2.3.8.1 Firefly algorithms

Firefly algorithm (FA) is a good example of attraction-based algorithms because FA

uses the attraction of light and attractiveness of fireflies, while genetic algorithms are

non-attraction-based since there is no explicit attraction used. On the other hand, if the

emphasis is placed on the updating equations, algorithms can be divided into rule-

based and equation-based. For example, particle swarm optimization and cuckoo

search are equation-based algorithms because both use explicit updating

equations, while genetic algorithms do not have explicit equations for crossover and

mutation. However, in this case, the classifications are not unique. For example,

firefly algorithm uses three explicit rules and these three rules can be converted

explicitly into a single updating equation which is nonlinear. This clearly shows that

classifications depend on the actual perspective and motivations. Therefore, the

classifications here are just one possible attempt, though the emphasis is placed on the

sources of inspiration.

2.3.8.2 Swarm intelligence based

Swarm intelligence (SI) concerns the collective, emerging behavior of multiple,

interacting agents who follow some simple rules. While each agent may be

considered as unintelligent, the whole system of multiple agents may show some self-

organization behavior and thus can behave like some sort of collective intelligence.

Many algorithms have been developed by drawing inspiration from swarm-

intelligence systems in nature.

All SI-based algorithms use multi-agents, inspired by the collective behavior of social

insects, like ants, termites, bees, and wasps, as well as from other animal societies like

flocks of birds or fish. The classical particle swarm optimization (PSO) uses the

swarming behavior of fish and birds, while firefly algorithm (FA) uses the flashing

behavior of swarming fireflies.

46

2.3.8.3 Cuckoo search (CS)

Cuckoo search (CS) is based on the brooding parasitism of some cuckoo species,

while bat algorithm uses the echolocation of foraging bats. Ant colony optimization

uses the interaction of social insects (e.g., ants), while the class of bee algorithms are

all based on the foraging behavior of honey bees.

SI-based algorithms are among the most popular and widely used. There are many

reasons for such popularity; one of the reasons is that SI-based algorithms usually

sharing information among multiple agents, so that self-organization, co-evolution

and learning during iterations may help to provide the high efficiency of most SI-

based algorithms. Another reason is that multiple agent can be parallelized easily so

that large-scale optimization becomes more practical from the implementation point

of view.

2.3.8.4 Bio-inspired, but not SI based

Obviously, SI-based algorithms belong to a wider class of algorithms, called bio-

inspired algorithms. In fact, bio-inspired algorithms form a majority of all nature-

inspired algorithms. From the set theory point of view, SI-based algorithms are a

subset of bio-inspired algorithms, while bio-inspired algorithms are a subset of nature-

inspired algorithms. That is SI-based ⊂ bio-inspired ⊂ nature-inspired.

Conversely, not all nature-inspired algorithms are bio-inspired, and some are purely

physics and chemistry based algorithms as we will see below.

Many bio-inspired algorithms do not use directly the swarming behavior. Therefore, it

is better to call them bio-inspired, but not SI-based. For example, genetic algorithms

are bio-inspired, but not SI-based. However, it is not easy to classify certain

algorithms such as differential evolution (DE). Strictly speaking, DE is not bio-

inspired because there is no direct link to any biological behavior. However, as it has

some similarity to genetic algorithms and also has a key word `evolution', we

tentatively put it in the category of bio-inspired algorithms. For example, the

flower algorithm, or flower pollination algorithm, developed by Xin-She Yang in

47

2012 is a bio-inspired algorithm, but it is not a SI-based algorithm because flower

algorithm tries to mimic the pollination characteristics of flowering plants and the

associated flower consistency of some pollinating insects.

2.3.8.5 Physics and Chemistry Based

Not all meta-heuristic algorithms are bio-inspired, because their sources of inspiration

often come from physics and chemistry. For the algorithms that are not bio-inspired,

most have been developed by mimicking certain physical and/or chemical laws,

including electrical charges, gravity, river systems, etc. As different natural systems

are relevant to this category, we can even subdivide these into many subcategories

which is not necessary.

Though physics and chemistry are two different subjects, however, it is not useful to

subdivide this subcategory further into physics-based and chemistry. After all, many

fundamental laws are the same. So we simply group them as physics and chemistry

based algorithms.

2.3.8.6 Other algorithms

When researchers develop new algorithms, some may look for inspiration away

from nature. Consequently, some algorithms are not bio-inspired or

physics/chemistry-based, it is sometimes difficult to put some algorithms in the above

three categories, because these algorithms have been developed by using various

characteristics from different sources, such as social, emotional, etc.

2.4 Facility Layout Problem

2.4.1 Facility Layout Problem Objective Functions

In the facility layout problem (FLP) we are to find an efficient non-overlapping planar

arrangement of n departments within a given facility. The efficiency of the facility

layout is typically measured in terms of material handling costs. In the literature, two

48

common surrogate objectives widely used to approximate material handling costs are

given as follows [8]:

2.4.1.1 Closeness Rating Function

A department adjacency-based objective is defined as follows:


i j

ijij xr)(max

where xij equals 1 if departments i and j are adjacent, and 0 otherwise. The reward rij

is a numerical value to represent a closeness rating between departments i and j. Such

an objective is based on the material handling principle that material handling costs

are reduced significantly when two departments are adjacent.

2.4.1.2 Flow Cost Function

An interdepartmental distance-based objective is defined as follows:


i j

ijijij dcf)(min

where fij is the material flow from department i to department j, cij is the cost to move

one unit load one distance unit from department i to department j, and dij is the

distance from department i to department j. This objective is based on the material

handling principle that material handling costs increase with the distance the unit load

must travel.

There are a variety of ways to measure the distance between a pair of departments

(dij). The following represents commonly-used distance measures for the FLP.

2.4.1.3 Centroid-to-Centroid (CTC) Distance

During the block layout phase where the input/output point and aisle structure are

unknown, the distance between two departments is often measured with respect to

their centroid locations. The main short-comings of CTC distance include: the

mathematically optimal layout may be one with departments represented as concentric

rectangles; an algorithm based on CTC attempts to align the department centroids as

49

close as possible, which may make the departments very long and narrow; and L-

shaped departments may have a centroid that falls outside of the department [8].

There are some variations to CTC distance measure; e.g., distributed centroid-to-

centroid distances (DCTC) and expected distances (EDIST) [9].

2.4.1.4 Contour Distance

Distance may be measured along the aisles between the input/output points of a pair

of departments (e.g., see [10,11]). The positive aspect of this measure is that the

measured distance is accurate. The major drawback of this accurate measure is that

during the block layout design phase one does not know the exact location of

input/output points and the aisles, which are to specified during the detailed layout

design.

2.4.1.5 Weighted Cost Function

A weighted cost function represents a trade-off between adjacency-based and

distance-based objectives. Because there are advantages and disadvantages to

adjacency-based and distance-based objectives and the optimal solution under one

objective may not be optimal, or even good, under the other objective, some

researchers [12] & [13] have combined these two objectives in a weighted criteria

approach.

One kind of weighted model is given as follows:

 
i j

ijij

i j

ijijij xrdcf)()1()(min  ………….. (1.3)

where α is a weight with a value between 0 and 1. Such an objective leads to research

in the area of the multiple objective facility layout problems.

One of the drawbacks of the above equation is that adjacency-based and distance-

based objectives have different scales (mostly since dij >> xij). Thus, it is difficult to

relate the value of the weighing factor α to some physical aspect of the problem. For

example, even α = 0.5 does not mean that the adjacency-based and distance-based

50

objectives are weighted equally because they are in different scales. Meller and Gau

present a revised objective function to solve this difficulty, which is given as follows:

where the parameter wij replaces the weighting factor α in (1.3). In order to minimize

the impact of setting the weighting factor wij correctly.

2.4.1.6 Facility Layout Problem Representation

The representation of an FLP solution forms the basis for a mathematical model and

greatly impacts the structure and efficiency of the applied optimization algorithms.

There are a variety of FLP representation methods, but most of them fall into two

main categories: discrete representation and continuous representation.

Figure 4: Layout Solutions with (a) Discrete Representation and (b) Continuous

Representation.

Discrete Representation: With a discrete representation, the facility is represented by

an underlying grid structure with fixed dimensions and all departments are composed

of an integer number of grids (see Figure 4(a)). By representing the FLP in a discrete

fashion, the FLP is simplified, but at the penalty of eliminating many solutions from

consideration.

Of course, the grid size can be chosen sufficiently small such that this penalty is

minimized.

51

However, a smaller grid size (i.e., increasing the resolution) will increase the

computational effort as well. Most research on the FLP utilizes a discrete

representation.

Continuous Representation: In a continuous representation, department dimensions

are not restricted to an underlying grid structure, but rather, represented continuously

(i.e., department dimensions may take on non-integer values). For example, the

discrete layout in Figure 4 (a) could be modeled with a continuous representation as

shown in Figure 4 (b).

A continuous representation is more accurate and realistic than a discrete

representation, and thus, is capable of finding the “real optimal” final layout solution.

However, the continuous representation also increases the complexity of the FLP. As

a result, most algorithms based on a continuous representation assume that

departments are rectangular in shape. Thus, the “real optimal” layout is restricted as

well with most algorithms that utilize a continuous representation.

A mixed-integer programming (MIP) formulation based on a continuous

representation was presented by Montreuil [6]. This model uses a distance-based

objective with a continuous representation of a layout and considers departments with

unequal areas. Both locations and dimensions of departments are decision variables.

A number of binary integer variables are used to avoid department overlapping.

52

CHAPTER 3: SCOPE AND LEVEL OF

CONTRIBUTION

In any facility layout problem, the whole algorithm deals with three spaces, namely,

search space or problem space, feasible solution space and lastly produce optimal

solution set.

Walk through search space

looking for feasible solutions

using algorithms i.e. exact,

heuristics etc

Test for optimality using

objective functions with goals i.e.

minimum cost/flow, maximum

reward etc

This Paper

contributes in this

level

Search

Space

Feasible

Solution

Set

Optimal

Solution

Set

Figure 5: Spaces that are dealt with in an FLP Algorithm

After defining the search space or problem space, algorithms are run to find feasible

solution space satisfying constraints. For example, exact algorithm or its derivatives

tests every possible feasible solution and thus produce a set of feasible solutions. On

the other hand, heuristic algorithms abide by some heuristics or rules for taking a

probable solution for feasibility checking, and thus works on narrower space

compared to exact algorithm. In this manner, the feasible solution set generated from

heuristic algorithms are smaller for a particular problem.

After the feasible set is generated, optimality testing is done in order to find the

optimum most solution based on well-defined objective functions. Objective functions

may be designed in different ways as such focusing on different kinds of objectives

53

i.e. cost of flow, volume of flow, reward value etc. After evaluating feasible solution

set, algorithms then provide optimum solution set.

Exact

Algorithm

Heuristic

Algorithm
Genetic

ACO

Cuckoo

SA

Firefly

Etc.

Other

Algorithm

S
e
a

rc
h

S
p
a

c
e

A
lg

o
ri
th

m
s
 f
o
r

g
e
n
e

ra
ti
n
g

fe
a
s
ib

le
 s

o
lu

ti
o
n

 s
e

ts

F
e
a
s
ib

le

S
o
l
S

e
t

Evaluating

Objective

Function

Cost basedObj

function

Flow basedObj

function

Reward basedObj

function

Single Objective

Multiple Objective

O
p
ti
m

a
lit

y
 t
e
s
t

Etc...

O
p
ti
m

a
l

S
o
l
S

e
t

Figure 6: Flow of work of a FLP algorithm

This thesis contributed in the second stage mentioned above, i.e. evaluation stage of

feasible solutions’ set. More specifically, the problem defined in this thesis is a multi-

objective problem, one of which was maximization of reward value taking

consideration of adjacency between two departments.

54

CHAPTER 4: MATHEMATICAL MODEL

4.1 Objective Function

In the facility layout problem (FLP) we are to find an efficient non-overlapping planar

arrangement of n departments within a given facility. The efficiency of the facility

layout is typically measured in terms of material handling costs. The part of the model

that calculates the total cost of flow is the cumulative product of interdepartmental

flow, cost of flow and distance between departments. This objective is based on the

material handling principle that material handling costs increase with the distance the

unit load must travel. A department adjacency-based objective is defined as the

product of reward values and adjacency status. Such an objective is based on the

material handling principle that material handling costs are reduced significantly when

two departments are adjacent.

There are a variety of ways to measure the distance between a pair of departments

(dij). The following represents commonly-used distance measures for the FLP.

A weighted cost function represents a trade-off between adjacency-based and

distance-based objectives. Because there are advantages and disadvantages to

adjacency-based and distance-based objectives and the optimal solution under one

objective may not be optimal, or even good.

So, the actual interpretation of the objective function is:

 
i j

ijij

i j

ijijij xrdcf)()1()(min 

Subject to:

55



























 Otherwise 0
direction sin i preceeds j if)2/()2/(
direction sin j preceeds i if)2/()2/(

 other wise e1/k
0 is j&ibetween gap if 1

,;2/2/

,|;|

;,;

2k
1

jjii

iijj

s

ij

gapij

s

i

ss

i

s

i

s

j

s

i

s

ij

y

ij

x

ijij

lclc

lclc

gap

x

silLcl

jiccd

jijiddd

ij

4.2 Parameters and decision variables

α : Weight of objective functions

i, j : Department indices (i, j = 1, 2, …, n)

s : Dimension (axis) indices (s = x, y)

fij : Total flow between departments i and j (multiplied with unit cost values if unit

material handling cost differs among department pairs)

cij : Cost of flow between departments i and j

cx
i : x co-ordinate of center of department i

cy
i : y co-ordinate of center of department i

dij : Rectilinear distance between departments i and j

dx
ij : Rectilinear distance between departments i and j in x axis

dy
ij : Rectilinear distance between departments i and j in y axis

Ls : Width (s=x) and length (s=y) of the facility in which the departments will

be placed

lx
i : length of department i in x axis

ly
i : length of department i in y axis

ci : s-axis coordinate of the center of department i

xij : binary variable showing whether department i is before department j in the

sequence

56

4.3 Narration of the model

We have implemented exact algorithms for the FLP that represents those algorithms

developed to obtain, in theory, an optimal solution to the facility layout problem. The

major advantage of an exact algorithm is that it considers the whole solution space

and the optimality of the final layout solution can be guaranteed. The limitation of

these models is they can only consider very small sized problems (less than 10

unequal sized departments), which are far from the size of common industry-practical

problems (30–40 departments). When the size of the problem increases, the

algorithms become impossible to solve in a practical sense because of the

computational complexity of the FLP. We have opted for this model as because we

are not concerned about the feasibility of exact models or comparative analysis of

exact models with other models, rather we are interested about the practicality of

methodology used for constructing adjacency matrix in adjacency-reward based

objective functions.

The objective function is based on a weighted cost function representing a trade-off

between adjacency-based and distance-based objectives. Alpha is used for controlling

the relative weightage of adjacency-based and distance based objectives.

4.4 Limitation of traditional way of constructing adjacency function

In models that incorporate adjacency matrix, x denoting adjacency is either 1 or 0 (1

for completely adjacent departments and 0 for any gap between departments). This

value is then multiplied with closeness ratings provided as input. The problem with

this method is, any gap, even if very low, leads the multiplied value (i.e. benefit) to 0

(even in cases with very close proximity).

In practical, the benefit due to adjacency between two departments does not go away

for small gaps. So, null value for adjacency does not go with practicality. Rather, we

feel that, there might still be benefits of having two departments in very close

proximity though benefits may diminish with gap in exponential/non-linear fashion as

in depicted in fig(7);

57

Figure 7: Practical relationship between gaps (between departments) and benefits

gained from proximity

(Graph produced by MATLAB)

For this, the thesis suggests rather a nonlinear function for generating values of

adjacency matrix.

4.5 Suggested function for constructing adjacency function

According to the proposition that we made in the previous point, adjacency value

practically should not be binary one rather should follow non-linear function. Below

is provided a outputs from candidate polynomial functions:

58

Figure 8: Outputs of nonlinear function y=k1+k2*xn
 with different co-efficient values

(Graph produced by MATLAB)

In the figure(8), the only function that goes best with our proposition is Fig:8. But the

problem with this function is, the graph has to be plotted against a function that is not

directly a function of x [i.e. power(x+1,k)]

59

Outputs from some exponential functions are provided below.

Figure 9: Outputs of exponential function y=1/k1*ek2*x
 with different co-efficient

values (graph produced by MATLAB)

From the above figure(9), this is evident that, only inverse exponential functions can

correctly represent practical nature of diminishing benefits due to adjacency.

So, we can rationally settle with a function like adjacency=1/k1*e(k
2

*x), where k1 and

k2 are two coefficients that depends on nature of industry and production floor.

60

CHAPTER 5: MODEL VALIDATION

To illustrate the effectiveness of the model using exponential function we developed a

program implementing all the constraints mentioned in the model using MATLAB

programming language. For testing purpose we considered 4 departments with fixed

dimensions. The details of the input parameters are as follows:

5.1 Input Parameters

Number of Departments: 04 (Four)

Dimension of the facility: 30 X 20 meters

Dimension of the departments: 2 X 14, 20 X 14, 8 X 20, 22 X 6 meters

Flow Matrix:



















80808080
808076080
807608080
80808080

Cost of Flow matrix:



















1111
1111
1111
1111

Reward matrix:



















0000
0000
040000
020000

K1=1 and K2=1;

5.2 Difference in solutions

From the input parameters, this is evident that flow of materials between department 2

& 3 is relatively very much higher than any other pairs as well as reward value (in

reward matrix) for this pair is again relatively higher than the pair of department 1 &

61

3. The rationale behind high reward values for these two pairs may be beyond mere

cost of flow of materials. Sometimes administrative requirements may cause higher

reward values between two departments.

Now, if we strictly follow binary reward values for adjacency matrix (1 for gap 0

between two departments and 0 for otherwise), the model comes up with a solution

where department 2 and 3 are essentially located wall-to-wall. These solutions even

leave department #1 at one corner of the facility even if the department id quite thin

and have good flow of materials with department #3. The four symmetric solutions

are depicted in figure (10) below.

Figure 10: Solution sets using binary adjacency values (graph produced by

MATLAB)

Practically thinking, positioning department #1 (width of which is very small)

between #2 and #3 does not necessarily cancel out all benefits that are supposed to be

there if departments #2 & #3 were in completely adjacent.

After running the same model using proposed exponential function for constructing

adjacency matrix we get rather more rational solutions with same sets of input

parameters. The solution sets are depicted in figure(11) below:

62

Figure 11: Solution sets using exponential function for generating adjacency values

(graph produced by MATLAB)

So, from the above discussion, this is evident that, proposed model with continuous

values for adjacency generated from exponential function instead of binary values

gives better solution in practical consideration.

63

CHAPTER 6: FIREFLY ALGORITHM

6.1 Theoretical Background

Firefly Algorithm (FA) was first developed by Xin-She Yang in late 2007 and

2008 at Cambridge University, which was based on the flashing patterns and

behavior of fireflies. The theoretical side of this algorithm is explained in Chapter 6.

In essence, FA uses the following three idealized rules:

• Fireflies are unisex so that one firefly will be attracted to other fireflies regardless of

their sex.

• The attractiveness is proportional to the brightness, and they both decrease as their

distance increases. Thus for any two flashing fireflies, the less bright one will move

towards the brighter one. If there is no brighter one than a particular firefly, it will

move randomly.

• The brightness of a firefly is determined by the landscape of the objective function.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent

fireflies, we can now define the variation of attractiveness β with the distance r

by , where is the attractiveness at r = 0.

The movement of a firefly i is attracted to another more attractive (brighter) firefly j is

determined by

where the second term is due to the attraction. The third term is randomization with

αt being the randomization parameter, and is a vector of random numbers drawn

from a Gaussian distribution or uniform distribution at time t. If β0 = 0, it becomes a

simple random walk. On the other hand, if γ = 0, it reduces to a variant of particle

swarm optimization. Furthermore, the randomization can easily be extended to

other distributions such as L´evy flights. A demo version of firefly algorithm

implementation by Xin-She Yang, without L´evy flights for simplicity, can be found

at Mathworks file exchange website

(www.mathworks.co.uk/matlabcentral/fileexchange/).

64

Parameter Settings

As αt essentially control the randomness (or, to some extent, the diversity of

solutions), we can tune this parameter during iterations so that it can vary with the

iteration counter t. So a good way to express αt is to use,

where α0 is the initial randomness scaling factor, and δ is essentially a cooling factor.

For most applications, we can use δ = 0.95 to 0.97.

Regarding the initial α0, simulations show that FA will be more efficient if α0 is

associated with the scalings of design variables. Let L be the average scale of the

problem of interest, we can set α0 = 0.01L initially. The factor 0.01 comes from the

fact that random walks requires a number of steps to reach the target while balancing

the local exploitation without jumping too far in a few steps.

The parameter β controls the attractiveness, and parametric studies suggest that β0 = 1

can be used for most applications. However, γ should be also related to the scaling L.

In general, we can set γ = 1/√L. If the scaling variations are not significant, then we

can set

γ = O(1).

For most applications, we can use the population size n = 15 to 100, though the best

range is n = 25 to 40.

6.2 Test Problem

Number of Departments: 05 (Five)

Dimension of the facility: 300 X 200 meters

Dimension of the departments: 8 X 4, 1 X 8, 8 X 14, 8 X 20 and 20 X 6 meters

Flow Matrix:























1010101010
1010101010
1010101010
1010101010
1010101010

65

Cost of Flow matrix:























11111
11111
11111
11111
11111

Reward matrix:























00000
00000
00000
05040000
002000

6.3 Performance of the algorithm

6.3.1 Convergence

The figure 12 below shows the convergence rate of the firefly algorithm across

different numbers of fireflies. The figures depicts that, the rate is slowest for

comparatively higher numbers of fireflies. The rate of convergence with 10 fireflies is

approximately double of that with 40 fireflies. But in all the cases, the result is not

near to the global optimum, meaning, firefly algorithm is not giving the global

optimum value.

66

Figure 12: Convergence of the solution with increase of number of fireflies

Figure(13) shows the convergence rate with the increase of number of iterations. The

optimum objective function value found with 400 iterations and 200 iterations are

quite same (2600), whereas the optimum value is more than 3000 with 100 iterations.

Again, the algorithm fails to give values or results near to global optimum found with

exact algorithm (1800).

67

Figure 13: Convergence of the solution with increase of number of iterations

6.3.2 Error rate

Error rate is calculated as the percentage ratio of error (the gap between optimum

solution and found solution from the algorithm) and the optimum solution. It is found

that the error rate of the algorithm is quite high for the firefly algorithm for solving

facility layout problems with different variations. The following table shows the

percentage error rates of firefly algorithm for different number of fireflies for 200

iterations. In the previous section, it was shown that, convergence rate is quite slow

for higher number of fireflies (40). And thus the error rate with 40 fireflies with 200

iterations is 123% whereas the same for 10 fireflies is 48%. It is to note here that the

objective function value of global optimum solution is 1800.

68

Table 4: Error percentage for different number of Fireflies after 200 iterations

of fireflies
Optimum Obj Function

Value

Error

Percentage

10 2671.31 48%

20 2973.97 65%

40 4010.17 123%

Figure 14: Error Percentage rate with varying number of FFs

If number of iterations is increased, keeping number of fireflies constant, then

comparatively the error percentage value is decreased. For example, as depicted in the

following table, for 100 iterations with 20 fireflies is 75% whereas the same for

higher number of iterations (i.e. 200 and 400 iterations) is around 40%.

69

Table 5: Error Percentage for different number of iterations with 20 fireflies

of iterations
Objective function

Value
Error Percentage

400 2561.975 42%

200 2533.717 41%

100 3151.209 75%

Figure 15: Error Percentage rate with varying number of iterations

70

CHAPTER 7: APPLICATION OF PROPOSED

MODEL FOR FLP

7.1 British American Tobacco of Bangladesh (BATB)

BATB is one of the largest multinational companies in the country and has been

operating for over 100 years.

BATB has over 1,000 employees and BATB take pride in being one of the preferred

employers in Bangladesh. Responsibility - to shareholders, employees, business

partners, customers and any other stakeholders - is at the core of the business and that

is why BATB believes “success and responsibility go together”.

BATB is part of the British American Tobacco Group, the world's most international

tobacco group with brands sold in more than 180 markets.

7.2 Units at Production Site

The layout problem that we dealt with had 11 units of different dimensions including

some maintenance and administrative units. Out of the 11 departments, we ended up

with 05 production related units only where the maintenance units were merged

within respective units, for example, rather than considering PMD and its

maintenance units as two separate units, we considered them as a single unit. This

consideration is nonetheless very rational as because the maintenance units are no

way should be placed in distance from respective units. And we also excluded the

administrative units from our problem as because the units do not have any transfer of

goods with the production related units and thus these administrative units can be

placed in group or else in any fashion without hampering the main production

process.

Another realistic reason for minimizing our problem definition is, the exact algorithm

that we used as our base algorithm in this thesis face difficulties as far as time is

constrained to come up with solution. This is to emphasize here that, the concern of

71

this thesis was not doing performance analysis of exact algorithm with different size

of problem definition, or even not comparative performance analysis between exact

algorithm and heuristic algorithms or else. Our findings, rather was at optimality test

level, rather than in generating feasible solution space level. So, keeping problem

space manageable, we instead concentrated on comparative analysis between

traditional binary ways of generating reward values with our proposed function

dealing with continuous reward values.

In a word, the algorithm has been applied in getting optimized facility layout for

production floor comprising mainly of 5 departments.

In the production floor, as mentioned, are 05 units/departments, dimensions of which

are as follows:

Table 6: List of Departments at BATB

No. Unit Dimension

1 Leaf Warehouse L-90’ x W-80’

2 PMD with Maintenance Unit L-300’ x W-80’

3 CTS L-96’ x W-110’

4 SMD with Maintenance Unit L-330’ x W-110’

5 Finish Goods Warehouse L-148’ x W-71’

Flow of materials is 1 2   3  4   5

This requirement regarding flow of materials is incorporated in flow of materials

matrix:

Relationship requirements

> 1 & 2 must be close together> 2 & 4 must be close together

> 3 must be middle of 2 and 4

72

This relationship requirement is reflected in Adjacency Reward matrix:

7.3 Solution Using Exact Algorithm

The solutions from the exact algorithm both using adjacency function and without

function are same and provided as follow:

Objective Function Value = 2260

And the co-ordinates are:

(17, 6), (15, 15), (15, 26), (5, 17), (27, 17)

and

(17, 6), (15, 18), (15, 26), (5, 17), (27, 17)

The solutions are provided in the following diagram

 Figure 16: Layout Solutions (in diagram)

73

So, unlike the test problem, in the case for BATB problem, the proposed solution with

adjacency matrix created based on proposed function does not create any difference as

far as solutions are concerned.

7.4 Solution Using FF Algorithm

After running the algorithm for several times, no solution could be found by firefly

algorithm even with varying number of fireflies. The underlying reason for the

phenomenon is: unlike exact algorithm, where every possible feasible solution is tried

in order to get the optimum solution, firefly algorithm starts with some randomly

generated solutions that in most cases found to be infeasible after checking with

constraints. This is truer if the problem is tightly constrained, for example, for facility

problems, if the space is tightly constrained likes the BATB problem. In the BATB

problem, the dimension of the whole space is 34X30 whereas those of the largest two

departments are 33X11 and 30X8.

74

CHAPTER 8: CONCLUSION AND

RECOMMENDATION

8.1 Concluding Remarks

The productivity and efficiency of an organization greatly depends on how people

plan, organize and utilize the facilities in that organization. From an upfront

investment and recurring project expense, facilities planning are a critical issue in

today’s competitive manufacturing and service sectors. In addition to the upfront

investment involved in facilities planning, there are operational issues that make

facilities planning a critical issue. The most obvious impact is on material handling

expenses. The impact of the facility layout goes beyond material handling costs. An

effective facility layout implies that departments with high flow are close together.

In facility layout problems, objective functions are modeled with different objectives

in mind examples of which include minimization of cost or flow of materials,

maximizations of closeness rewards etc. The mathematical model with a continuous

representation of distance based adjacency matrix proposed in this thesis deems to

provide more realistic optimal layout.

8.2 Scope of Future Works

There are many scopes for future works:

 - In this thesis, exact algorithm is used for finding feasible solution set from the total

solution space. Further research can be done using other heuristic algorithms.

 - In the function [adjacency=1/(k1*ek2*x)] proposed in this thesis for generating

continuous value adjacency matrix has two co-efficients, namely k1(Denominator co-

efficient) and k2 (exponential co-efficient). We have assumed unit value for both of

the co-efficient, whereas we strongly believe that, these two has industry specific

values. There is huge scope of econometrical research to come up with series of

values of k1 and k2 for different industries.

75

REFERENCES

[1] Tompkins, J. A., White, J. A., Bozer, Y. A., and Tanchoco, J. M. A., Facilities

Planning, Wiley, New York, New York, 3rd edition (2003).

[2] Sule, D. R., Manufacturing Facilities Location, Planning, and Design, PWS

Publishing, Boston, MA (1994).

[3] Bozer, Y. A., Meller, R. D., and Erlebacher, S. J., “An Improvement-Type

Layout Algorithm for Single and Multiple Floor Facilities,” Management Science, 40,

7, 918–932 (1994)

[4] Koopmans, T. C., and Beckman, M., “Assignment Problems and the Location of

Economic Activities,” Econometrica, 25, 53–76 (1957)

[5] Drezner, Z., Hahn, P. M., and Taillard, E. D., “Recent Advances for the Quadratic

Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-

heuristic Methods,” The Annals of Operations Research: State of the Art and Recent

Advances in Integer Programming (2004), accepted for publication.

[6] Montreuil, B., “A Modelling Framework for Integrating Layout Design and Flow

Network Design,” In Proceedings from the Material Handling Research Colloquium,

pp.43–58, Hebron, Kentucky (1990).

[7] Meller, R. D., Narayanan, V., and Vance, P. H., “Optimal Facility Layout

Design,” Operations Research Letters, 23, 117–127 (1998).

[8] Meller, R. D., and Gau, K.-Y., “The Facility Layout Problem: Recent and

Emerging Trends and Perspectives,” Journal of Manufacturing Systems, 15, 5, 351–

366 (1996).

[9] Bozer, Y. A., and Meller, R. D., “A Reexamination of the Distance-Based Facility

Layout Problem,” IIE Transactions on Design and Manufacturing, 29, 7, 549–560

(1997).

[10] Norman, B. A., Arapoglu, R. A., and Smith, A. E., “Integrated Facilities Design

using a Contour Distance Metric,” IIE Transactions on Design & Manufacturing, 33,

4, 337–344 (2001)

76

[11] Arapoglu, R. A., Norman, B. A., and Smith, A. E., “Locating Input and Output

Points in Facilities Design: A Comparison of Constructive, Evolutionary and Exact

Methods,” IEEE Transactions on Evolutionary Computation, 5, 192–203 (2001)

[12] Rosenblatt, M. J., “The Facilities Layout Problem: A Multi-Goal Approach,”

International Journal of Production Research, 17, 4, 323–332 (1979)

[13] Dutta, K. N., and Sahu, S., “A Multi-Goal Heuristic for Facilities Design

Problems: MUGHAL,” International Journal of Production Research, 20, 147–154

(1982).

[14] Rosenblatt, M. J., and Golany, B., “A Distance Assignment Approach to the

Facility Layout Problem,” European Journal of Operational Research, 57, 253–270

(1992).

[15] Garey, M. R., and Johnson, D. S., Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman and Company, New York, New York

(1979).

[16] Kettani, O., and Oral, M., “Reformulating Quadratic Assignment Problems for

Efficient Optimization,” IIE Transactions, 25, 97–107 (1993)

[17] Liao, T. W., “Design of Line Type Cellular Manufacturing Systems for

Minimum Operating and Total Material Handling Costs,” International Journal of

Production Research, 32, 2, 387–397 (1993)

[18] Bozer, Y. A., and Rim, S. C., “A Branch and Bound Method for Solving the

Bidirectional Circular Layout Problem,” Applied Mathematical Modelling, 20, 342–

351 (1996).

[19] Mitchell, M., “An Introduction to Genetic Algorithms”, MIT Press, Cambridge,

MA (1999)

[20] Giffin, J. W., Graph Theoretic Techniques for Facility Layout, PhD thesis,

University of Canterbury, Christchurch, New Zealand (1984)

[21] Hassan, M. M. D., and Hogg, G. L., “A Review of Graph Theory Applications to

the Facilities Layout Problem,” Omega, 15, 4, 291–300 (1987)

77

[22] Sherali, H. D., Fraticelli, B. M. P., and Meller, R. D., “Enhanced Model

Formulations for Optimal Facility Layout,” Operations Research, 51, 4, 629–644

(2003).

[23] Banerjee, P., Montreuil, B., Moodie, C. L., and Kashyap, R. L., “A Modelling of

Interactive Facilities Layout Designer Reasoning Using Qualitative Patterns,”

International Journal of Production Research, 30, 3, 433–453 (1992).

[24] Montreuil, B., Ratliff, H. D., and Goetschalckx, M., “Matching Based Interactive

Facility Layout,” IIE Transactions, 19, 3, 271–279 (1987).

[25] Hassan, M. M. D., Hogg, G. L., and Smith, D. R., “SHAPE: A Construction

Algorithm for Area Placement Evaluation,” International Journal of Production

Research, 24, 1283–1295 (1986).

[26] Armour, G. C., and Buffa, E. S., “A Heuristic Algorithm and Simulation

Approach to Relative Allocation of Facilities,” Management Science, 9, 294–309

(1963).

[27] DePuy, G. W., Usher, J. S., and Miles, T., “Facilities Layout Using a CRAFT

Meta-Heuristic,” In Proceedings of the 2004 Industrial Engineering Research

Conference (2004).

[28] Foulds, L. R., and Robinson, D. F., “Graph Theoretic Heuristics for the Plant

Layout Problem,” International Journal of Production Research, 16, 1, 27–37 (1978).

[29] Tompkins, Al-Hakim, L. A., “A Modified Procedure for Converting a Dual

Graph to a Block Layout,” International Journal of Production Research, 30, 10,

2467–2476 (1992).

[30] Boswell, S. G., “TESSA – A New Greedy Algorithm for Facilities Layout

Planning,” International Journal of Production Research, 30, 8, 1957–1968 (1992).

[31] Leung, J., “A New Graph-Theoretic Heuristic for Facility Layout,” Management

Science, 38, 4, 594–605 (1992)

[32] Goetschalckx, M., “An Interactive Layout Heuristic Based on Hexagonal

Adjacency Graphs,” European Journal of Operational Research, 63, 304–321 (1992)

78

[33] Tam, K. Y., “A Simulated Annealing Algorithm for Allocating Space to

Manufacturing Cells,” International Journal of Production Research, 30, 63–87

(1992).

[34] van Camp, D. J., Carter, M. W., and Vannelli, A., “A Nonlinear Optimization

Approach for Solving Facility Layout Problems,” European Journal of Operational

Research, 57, 174–189 (1991).

[35] Montreuil, B., Venkatadri, U., and Ratliff, H. D., “Generating a Layout from a

Design Skeleton,” IIE Transactions, 25, 1, 3–15 (1993).

[36] Lacksonen, T. A., “Preprocessing for Static and Dynamic Facility Layout

Problems,” International Journal of Production Research, 35, 4, 1095–1106 (1997).

[37] Langevin, A., Montreuil, B., and Riopel, D., “Spine Layout Design,”

International Journal of Production Research, 32, 2, 429–442 (1994).

[38] Heragu, S. S., and Kusiak, A., “Machine Layout Problem in Flexible

Manufacturing Systems,” Operations Research, 36, 2, 258–268 (1988).

[39] Montreuil1, B., Ouazzani, N., Brotherton, E., and Nourelfath, M., “Antzone

Layout Metaheuristic: Coupling Zone-Based Layout Optimization, Ant Colony

System and Domain Knowledge,” In Proceedings of the 2004 IMHRC (2004).

[40] Kim, J. G., and Kim, Y. D., “Layout planning for facilities with xed shapes and

input and output points,” International Journal of Production Research, 38, 4635–

4653 (2000).

[41] Irohara, T., and Yamada, T., “Location Matrix Based Design Methodology for

the Facility Layout Problem Including Aisles and Door Locations,” In Proceedings of

the 2004 IMHRC (2004).

[42] Coello Coello, C.A., Lamont, G.B. and Van Veldhuizen, D.A. (2007)

Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, New York.

[43] Castillo, I. and Peters, B.A. (2003) ‘An extended distance-based facility

layout problem’, Int. J. Production Research, Vol. 41, No. 11, pp.2451–2479.

[44] Dong, M., Wu, C. and Hou, F. (2009) ‘Shortest path based simulated

annealing algorithm for dynamic facility layout problem under dynamic business

environment’, Expert Systems with Applications, Vol. 36, No. 8, pp.11221–11232.

79

[45] McKendall Jr., A.R., Shanga, J. and Kuppusamy, S. (2006) ‘Simulated annealing

heuristics for the dynamic facility layout problem’, Computers and Operations

Research, Vol. 33, pp.2431–2444.

[46] Sùahin, R. and Türkbey, O. (2009) ‘A simulated annealing algorithm to find

approximate Pareto optimal solutions for the multi-objective facility layout

problem’, Int. J. Advanced Manufacturing Technology, Vol. 41, pp.1003–1018.

[47] Sahin, R., Ertog˘ral, K. and Türkbey, O. (2010) ‘A simulated annealing heuristic

for the dynamic layout problem with budget constraint’, Computers and Industrial

Engineering, Vol. 59, pp.308–313.

[48] Souilah, A. (1995) ‘Simulated annealing for manufacturing systems layout

design’, European Journal of Operational Research, Vol. 82, pp.592–614.

[49] Ioannou, G. (2007) ‘An integrated model and a decomposition-based approach

for concurrent layout and material handling system design’, Computers and Industrial

Engineering, Vol. 52, pp.459–485.

[50] Sugiyono, A. (2006) ‘Cellular manufacturing system application on redesign

production layout with using heuristics algorithm’, In 2006 IEEE International

Conference on Management of Innovation and Technology, pp.940–944.

[51] Matsuzaki, K., Irohara, T. and Yoshimoto, K. (1999) ‘Heuristic algorithm to

solve the multi-floor layout problem with the consideration of elevator

utilization’, Computers and Industrial Engineering, Vol. 36, pp.487–502.

[52] Mir, M. and Imam, M.H. (2001) ‘A hybrid optimization approach for layout

design of unequal-area facilities’, Computers and Industrial Engineering, Vol. 39,

pp.49–63.

[53] Singh, S.P. (2009) ‘Solving facility layout problem: three-level tabu search

meta-heuristic approach’, Int. J. Recent Trends in Engineering, Vol. 1, No. 1, pp. 73–

77.

[54] Wang, G., Yan, Y., Zhang, X., Shangguan, J. and Xiao, Y. (2008a) ‘Integrating

simulation optimization with VR for facility layout evaluation’, Proceedings of the

2008 IEEE IEEM.

80

[55] Eklund, N.H.W., Embrechts, M.J. and Goetschalckx, M. (2006) ‘Efficient

chromosome encoding and problem-specific mutation methods for the flexible

bay facility layout problem’, IEEE Transactions on Systems, Man, and

Cybernetics-PART C: Applications and Reviews, Vol. 36, No. 4, pp.495–502.

[56] Wu, Y. and Appleton, E. (2002) ‘The optimization of block layout and aisle

structure by a genetic algorithm’, Computers and Industrial Engineering, Vol. 41,

pp.371–387.

[57] Osman, H.M., Georgy, M.E. and Ibrahim, M.E. (2003) ‘A hybrid CAD-based

construction site layout planning system using genetic algorithms’, Automation

in Construction, Vol. 12, pp.749–764.

[58] X.S. Yang. A new meta-heuristic bat-inspired algorithm. Nature Inspired

Cooperative Strategies for Optimization (NICSO 2010), pages 65–74, 2010.

[59] Zong Woo Geem, Joong Hoon Kim, and GV Loganathan. A new heuristic

optimization algorithm: harmony search. Simulation, 76(2):60–68, 2001.

[60] J.H. Holland, Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, MI, 1975.

[61] S. Koakutsu, and H. Hirata, “Genetic Simulated Annealing for Floor plan

Design”, Chiba University, Japan, 1992.

[62] P. Banerjee, and Y. Zhou, “Facilities Layout Design Optimization with Single

Loop Material Flow Path Configuration”, International Journal of Production

Research, 33, 1995, pp. 183-203.

[63] P. Banerjee, Y. Zhou, and B. Montreuil, “Genetically Induced Optimization of

Facilities Layout Design”, Technical Report TR-92-18, Dept. of Mechanical

Engineering, University of Illinois, Chicago, 1992.

[64] D.M. Tate, and A.E. Smith, “Unequal-Area Facility Layout by Genetic Search”,

IIE Transactions, 27, 1995, pp. 465-472.

[65] H. Muhlenbein, “Parallel Genetic Algorithms, Population Genetics and

Combinatorial Optimization”, Lecture Notes in Computer Science, 565, 1989, pp.

398-406.

81

[66] C.L. Huntley, and D.E. Brown, “A Parallel Heuristic for Quadratic Assignment

Problem”, Computers and OR, 18, 1991, pp. 275-289.

[67] R. Battiti and G. Tecchiolli, “Parallel Biased Search for Combinatorial

Optimization: Genetic Algorithms and TABU”, Microprocessors and Microsystems,

16, 1992, pp. 351-367.

[68] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by Simulated

Annealing”, Science, 220, 1983, pp. 671-680.

[69] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation

of State Calculations by Fast Computing Machines”, Journal of Chemical Physics, 21,

1953, pp. 1087-1092.

[70] S.S. Heragu, and A.S. Alfa, “Experimental Analysis of Simulated Annealing

based Algorithms for the Layout Problem”, European Journal of Operational

Research, 57, 1992, pp. 190-202.

[71] S.S. Heragu, and A. Kusiak, “Efficient Models for the Facility Layout Problem”,

European Journal of Operational Research, 53, 1991, pp. 1-13.

[72] M.R. Wilhelm, and T.L. Ward, “Solving Quadratic Assignment Problems by

Simulated Annealing”, IIE Transactions, 19, 1987, pp. 107-119.

[73] S. Jajodia, I. Minis, G. Harhalakis, and J.M. Proth, “CLASS: Computerized

Layout Solutions using Simulated Annealing”, International Journal of Production

Research, 30, 1, 1992, pp. 95-108.

82

APPENDIX

Matlab Code: Exact Algorithm

function [N,numSol,L,l,cf]=FLPN_v4()

k1=1;k2=1; %value of co-effecients in the exponential function

% Opening Text file and reading dimensions & initializing respective

% parameters

fileID=fopen('temp.txt','a+');

fprintf(fileID,'\n %s \n',' -- from file --------');

fid=fopen('input4.txt');

N = fscanf(fid, 'N=%d\n', 1);

L(1) = fscanf(fid, 'L=%d', 1);

L(2) = fscanf(fid, '%d\n', 1);

fscanf(fid, '--sizeofDept--\n', 1);

formatSpec = '%d %d';

sizeA = [2 N];

l = fscanf(fid,formatSpec,sizeA);

l=l';

for p=1:1:N

 hl(p,1)=l(p,1)/2;

 hl(p,2)=l(p,2)/2;

end

% Reading Flow matrix

fscanf(fid, '%*s\n', 1);

formatSpec = repmat('%d', 1, N);

sizeA = [N N];

flow = fscanf(fid,formatSpec,sizeA);

83

flow=flow';

% Reading Cost of flow matrix

fscanf(fid, '%*s\n', 1);

formatSpec = repmat('%d', 1, N);

sizeA = [N N];

cost_flow = fscanf(fid,formatSpec,sizeA);

cost_flow=cost_flow';

% Reading Reward matrix

fscanf(fid, '%*s\n', 1);

formatSpec = repmat('%d', 1, N);

sizeA = [N N];

reward_adj = fscanf(fid,formatSpec,sizeA);

reward_adj=reward_adj';

fclose(fid);

flag_overlap=0;

cf(:,:,:)=0; % Matrix for holding final positions of centeroids of departments

%Initilializing matrices for holding intemediate positions of centeroids

for p=1:1:N

 c(p,:)=hl(p,:);

 c_pos(p,:)=hl(p,:);

end

% Initializing Gap matrix

for p=1:1:N

 for q=1:1:N

 d(p,q,:)=[500 500 500];

 end

end

v=0; minval=9999999; sol_num=1;

84

walk2(1);

 function walk2(n) % Function for walking in the solution space

 c_pos(n,:)=hl(n,:);

 while c_pos(n,1)<=L(1)-hl(n,1)

 c_pos(n,2)=hl(n,2);

 while c_pos(n,2)<=L(2)-hl(n,2)

 c(n,:)=c_pos(n,:);

 if (n>1)

 anyoverlap(n);

 if (flag_overlap) % checking if there is any overlap

 c_pos(n,2)=c_pos(n,2)+1; continue;

 end

 end

 if (n==N)

 create_distance_matrix(N)

 chk_solution(n);

 end

 if (n<N) walk2(n+1);end

 c_pos(n,2)=c_pos(n,2)+1; % move in Y direction

 end

 c_pos(n,1)=c_pos(n,1)+1; % move in X direction

 end

 c_pos(n,:)=hl(n,:);

 end

 function anyoverlap(n) % Function for chcking if there is any overlap

 flag_overlap=0;

 for ov=1:1:(n-1)

 flag_overlap = flag_overlap ||ifoverlap(ov,n,c,hl,L);

85

 end

 end

 function create_distance_matrix(N) % Function that builds the gap matrix

 for p=1:1:N

 for q=1:1:N

 d(p,q,:)=[500 500 500];

 end

 end

 for i=1:1:(N-1)

 for j=(i+1):1:N

 measure_distance(i,j);

 end

 end

 end

 function measure_distance(i,j) % Function that measures gap between boundaries

of two departments

 if ((c(i,1)+hl(i,1))<=(c(j,1)-hl(j,1)))

 d(i,j,1) = (c(j,1)-hl(j,1))-(c(i,1)+hl(i,1));

 elseif ((c(j,1)+hl(j,1))<=(c(i,1)-hl(i,1)))

 d(i,j,1) = (c(i,1)-hl(i,1))-(c(j,1)+hl(j,1));

 else d(i,j,1)=0;

 end

 if ((c(i,2)+hl(i,2))<=(c(j,2)-hl(j,2)))

 d(i,j,2) =(c(j,2)-hl(j,2))-(c(i,2)+hl(i,2));

 elseif ((c(j,2)+hl(j,2))<=(c(i,2)-hl(i,2)))

 d(i,j,2) =(c(i,2)-hl(i,2))-(c(j,2)+hl(j,2));

 else d(i,j,2)=0;

86

 end

 d(i,j,3)= d(i,j,1)+d(i,j,2);

 end

 function chk_solution(n) % check and update solution if new lower objective

value is reached

 alpha=0.5;

 cost=costfun(c,cost_flow,flow,N);

 reward=rewardfun(d,reward_adj,N);

 v= alpha*cost-(1-alpha)*reward;

 if (v==minval)

 sol_num=sol_num+1;

 for i=1:1:n

 cf(sol_num,i,:)=c(i,:);

 end

 end

 if (v<minval)

 disp(v);

 fileID=fopen('temp.txt','a+');

 fprintf(fileID,'old minval:%0.0f ;new minval= %0.0f\n ',minval,v);

 fclose(fileID);

 cf=[]; sol_num=1;

 minval=v;

 for i=1:1:n

 cf(1,i,:)=c(i,:);

 end

 end

 end

fileID=fopen('temp.txt','a+');

numSol=sol_num;

87

% Writing solution in output file

for i=1:1:sol_num

 for n=1:1:N

 fprintf(fileID,'%2.0f %2.0f ',cf(i,n,1),cf(i,n,2));

 end

fprintf(fileID,'\n');

end

fprintf(fileID,'\n %s \n',' ----- end --------');

fclose(fileID);

fclose('all');

end

%%%%%%%%%%%%%%%%%

% Check if there is any overlap between two departments

function isover=ifoverlap(d1,d2,c,hl,L)

isover=-1;

 if ((c(d1,1)+hl(d1,1))<=(c(d2,1)-hl(d2,1)))

 Zijx=1;

 else Zijx=0; end

 if ((c(d2,1)+hl(d2,1))<=(c(d1,1)-hl(d1,1)))

 Zjix=1;

 else Zjix=0; end

 if ((c(d1,2)+hl(d1,2))<=(c(d2,2)-hl(d2,2)))

 Zijy=1;

 else Zijy=0; end

 if ((c(d2,2)+hl(d2,2))<=(c(d1,2)-hl(d1,2)))

 Zjiy=1;

 else Zjiy=0; end

 if (Zijx+Zjix+Zijy+Zjiy>0)

 isover=0;

88

 else isover=1; end

end

%%%%%%%%%%%%%%%%

% Calculate the value of flow cost

function v = costfun(c,cost_flow,flow,N)

 v=0;

 for i=1:1:N

 for j=1:1:N

 if (i~=j)

 v = v+cost_flow(i,j)*flow(i,j)*(abs(c(i,1)-c(j,1))+abs(c(i,2)-c(j,2)));

 end

 end

 end

end

%%%%%%%%%%%%%%%%

% Calculate the value of Reward

function r = rewardfun(d,reward_adj,N)

 r=0;k1=1;k2=1;

 for i=1:1:(N-1)

 for j=(i+1):1:N

 if d(i,j,3)==0 adjacency=1;

 else adjacency = 0;end;

 %else adjacency = 1/exp(d(i,j,3));end;

 r = r+reward_adj(i,j)*adjacency;

 end

 end

%disp(r);

end

%%%%%%%%%%%%%%

89

Matlab Code: Firefly Algorithm

function [N,num,L,l,cf]=FLPN_v5_FF()

global g_sol_num;global L; global N; global l; global hl;

global flow; global cost_flow; global reward_adj; global dist;

g_sol_num=0;dist=[];

k1=1;k2=1; %value of co-effecients in the exponential function

% Opening Text file and reading dimensions & initializing respective

% parameters

fid=fopen('input5.txt');

N = fscanf(fid, 'N=%d\n', 1);

L(1) = fscanf(fid, 'L=%d', 1);

L(2) = fscanf(fid, '%d\n', 1);

fscanf(fid, '--sizeofDept--\n', 1);

formatSpec = '%d %d';

sizeA = [2 N];

l = fscanf(fid,formatSpec,sizeA);

l=l';

for p=1:1:N

 hl(p,1)=l(p,1)/2;

 hl(p,2)=l(p,2)/2;

end

% Reading Flow matrix

fscanf(fid, '%*s\n', 1);

formatSpec = repmat('%d', 1, N);

sizeA = [N N];

flow = fscanf(fid,formatSpec,sizeA);

90

flow=flow';

% Reading Cost of flow matrix

fscanf(fid, '%*s\n', 1);

formatSpec = repmat('%d', 1, N);

sizeA = [N N];

cost_flow = fscanf(fid,formatSpec,sizeA);

cost_flow=cost_flow';

% Reading Reward matrix

fscanf(fid, '%*s\n', 1);

formatSpec = repmat('%d', 1, N);

sizeA = [N N];

reward_adj = fscanf(fid,formatSpec,sizeA);

reward_adj=reward_adj';

fclose(fid);

ff=20; % number of fireflies

MaxIteration=40; % number of pseudo time steps

% ---

alpha=0.25; % Randomness 0--1 (highly random)

betamin=0.20; % minimum value of beta

gamma=1; % Absorption coefficient

% ---

dimensions=zeros(1,2*N); halfLengths=zeros(1,2*N);

i=1;

for p=1:1:N

 dimensions(i)=l(p,1);

 halfLengths(i)=l(p,1)/2;

 dimensions(i+1)=l(p,2);

 halfLengths(i+1)=l(p,2)/2;

91

 i=i+2;

end

Ub=zeros(1,2*N);Lb=zeros(1,2*N);

for i=1:2:N*2

 Lb(i)= halfLengths(i);

 Ub(i)= L(1)-halfLengths(i);

end

for i=2:2:N*2

 Lb(i)= halfLengths(i);

 Ub(i)= L(2)-halfLengths(i);

end

noOfVars=N*2;

fbest=2000000;

for m=1:1:200

 [centers]=init_ffa(ff,noOfVars,Lb,Ub);

 objVal=zeros(1,ff);

 for i=1:ff

 objVal(i)=objFunc(centers(i,:));

 end

 for k=1:MaxIteration

 [centers]=ffa_move(ff,noOfVars,centers,objVal,alpha,betamin,gamma,Lb,Ub);

 for i=1:ff

 objVal(i)=objFunc(centers(i,:));

 end

 % Ranking fireflies by their light intensity/objectives

92

 %sorting of new fire flies

 objVal_temp=objVal;

 [objVal,Index]=sort(objVal_temp);

 centers_temp=centers;

 for i=1:ff,

 centers(i,:)=centers_temp(Index(i),:);

 end

 end

 i=1;

 while (((objVal(i)<fbest) || ((objVal(i)-fbest)< 0.1*fbest)) && objVal(i) ~=

2000000)

 unique=1;

 for j=1:1:g_sol_num

 if isequal(ngbest(j,:),centers(i,:))

 unique=0;

 end %uniqueness check

 end

 if unique==1

 disp(objVal(i));

 g_sol_num=g_sol_num+1;

 ngbest(g_sol_num,:)=centers(i,:);

 tot_zngbest(g_sol_num)=objVal(i);

 fbest=objVal(1);

 i=i+1;

 end

 end

end

fileID=fopen('tempFF.txt','a+');

93

fprintf(fileID,'\n %s \n',' -- from file --------');

disp(g_sol_num);

for i=1:1:g_sol_num

 for n=1:noOfVars

 fprintf(fileID,'%2.0f ',ngbest(i,n));

 end

 fprintf(fileID,'\n');

 fprintf(fileID,'%2.0f ',tot_zngbest(i));

 fprintf(fileID,'\n');

end

fprintf(fileID,'\n');

fprintf(fileID,'\n %s \n',' ----- end --------');

fclose(fileID);

fclose('all');

num=g_sol_num;

for i=1:1:g_sol_num

 for j=1:1:N

 cf(i,j,1)= ngbest(i,j*2-1);

 cf(i,j,2)= ngbest(i,j*2);

 end

end

end

%%%%%%%%%%%%%%

% Move all fireflies toward brighter ones

function [ns]=ffa_move(n,noOfVars,ns,Lightn,alpha,betamin,gamma,Lb,Ub)

 % Scaling of the system

scale=abs(Ub-Lb);

Lighto=Lightn;nso=ns;

% Updating fireflies

94

for i=1:n,

% The attractiveness parameter beta=exp(-gamma*r)

 for j=1:n,

 r=sqrt(sum((ns(i,:)-ns(j,:)).^2));

 % Update moves

 if Lightn(i)>Lighto(j), % Brighter and more attractive

 %disp('in if');

 beta0=1; beta=(beta0-betamin)*exp(-gamma*r.^2)+betamin;

 tmpf=alpha.*(rand(1,noOfVars)-0.5).*scale;

 ns(i,:)=round(ns(i,:).*(1-beta)+nso(j,:).*beta+tmpf);

 % nsf(i,:)=nsf(j,:);

 end

 end % end for j

end % end for i

end

%%%%%%%%%%%%%%

function objVal=objFunc(centers)

global N;

for i=1:1:N

 c(i,1)= centers(2*i-1);

 c(i,2)= centers(2*i);

end

create_distance_matrix(c);

isover=0;

for i=1:1:(N-1)

 for j=(i+1):1:N

 isover=isover+ifoverlap(i,j,c);

 end

end

95

if isover>0

 objVal=2000000;

else

 alpha=0.5;

 cost=costfun(c);

 reward=rewardfun();

 %v= alpha*cost;

 objVal= alpha*cost-(1-alpha)*reward;

end

end

%%%%%%%%%%%%%%

function create_distance_matrix(c) % Function that builds the gap matrix

global dist; global N;

 for p=1:1:N

 for q=1:1:N

 dist(p,q,:)=[500 500 500];

 end

 end

 for i=1:1:(N-1)

 for j=(i+1):1:N

 measure_distance(i,j,c);

 end

 end

end

%%%%%%%%%%%%%%%

function measure_distance(i,j,c) % Function that measures gap between boundaries

of two departments

96

 global dist; global hl;

 if ((c(i,1)+hl(i,1))<=(c(j,1)-hl(j,1)))

 dist(i,j,1) = (c(j,1)-hl(j,1))-(c(i,1)+hl(i,1));

 elseif ((c(j,1)+hl(j,1))<=(c(i,1)-hl(i,1)))

 dist(i,j,1) = (c(i,1)-hl(i,1))-(c(j,1)+hl(j,1));

 else dist(i,j,1)=0;

 end

 if ((c(i,2)+hl(i,2))<=(c(j,2)-hl(j,2)))

 dist(i,j,2) =(c(j,2)-hl(j,2))-(c(i,2)+hl(i,2));

 elseif ((c(j,2)+hl(j,2))<=(c(i,2)-hl(i,2)))

 dist(i,j,2) =(c(i,2)-hl(i,2))-(c(j,2)+hl(j,2));

 else dist(i,j,2)=0;

 end

 dist(i,j,3)= dist(i,j,1)+dist(i,j,2);

end

%%%%%%%%%%%%%%%

% Calculate the value of Reward

function r = rewardfun()

global dist,global reward_adj,global N;

r=0;k1=1;k2=1;

 for i=1:1:(N-1)

 for j=(i+1):1:N

 if dist(i,j,3)==0 adjacency=1;

 %else adjacency = 0;end;

 else adjacency = 1/exp(dist(i,j,3));end;

 r = r+reward_adj(i,j)*adjacency;

 end

 end

%disp(r);

end

97

%%%%%%%%%%%%%%%%

% Calculate the value of flow cost

function v = costfun(c)

global cost_flow; global flow; global N;

v=0;

 for i=1:1:N

 for j=1:1:N

 if (i~=j)

 v = v+cost_flow(i,j)*flow(i,j)*(abs(c(i,1)-c(j,1))+abs(c(i,2)-c(j,2)));

 end

 end

 end

end

%%%%%%%%%%%%%%%%

% Check if there is any overlap between two departments

function isover=ifoverlap(d1,d2,c)

global hl;

 if ((c(d1,1)+hl(d1,1))<=(c(d2,1)-hl(d2,1)))

 Zijx=1;

 else Zijx=0; end

 if ((c(d2,1)+hl(d2,1))<=(c(d1,1)-hl(d1,1)))

 Zjix=1;

 else Zjix=0; end

 if ((c(d1,2)+hl(d1,2))<=(c(d2,2)-hl(d2,2)))

 Zijy=1;

 else Zijy=0; end

 if ((c(d2,2)+hl(d2,2))<=(c(d1,2)-hl(d1,2)))

 Zjiy=1;

 else Zjiy=0; end

98

 if (Zijx+Zjix+Zijy+Zjiy>0)

 isover=0;

 else isover=1; end

end

%%%%%%%%%%%%%%%%%

% The initial locations of n fireflies (distributions)

function [ns]=init_ffa(ff,noOfVars,Lb,Ub)

 % if there are bounds/limits,

 for i=1:ff,

 ns(i,:)=round(Lb+(Ub-Lb).*rand(1,noOfVars));

 end

end

