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ABSTRACT

Let R bearing. Then thering R has finite right Goldie dimension if it contains a direct sum

of afinite number of nonzero right ideals. Symbolically, we write G.dim(R) < . A ring Ris

called aright Goldie ring if it has finite right Goldie dimension and satisfies the ascending
chain condition (ACC) for right annihilators. A module M is called a Goldie module if it has
finite Goldie dimension and if it satisfies the ACC on M-annihilator submodules. In this
thesis, we develop some properties of prime and semi-prime submodules over associative
endomorphism rings by modifying the properties of prime and semi-prime ideals over
associative arbitrary rings. Also, we investigate some properties of prime and semi-prime

Goldie modules over associative endomorphism rings.
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CHAPTERII

INTRODUCTION

Ring theory is an important part of algebra. Module theory appears as a generalization of
theory of vector space over a field. In a vector space, the scalars are treated to be the
elements of a field while in a module we will allow the scalars to be the elements of an
arbitrary ring. Every field is a ring and every ring may be considered as a module. Goldie’s
Theorem is a basic structural result in the ring theory, proved by Alfred Goldie in 1950.
Alfred Goldie first used the notion of uniform modules to construct a measure of dimension

for modules, now known as the uniform dimension or Goldie dimension for modules.
Literaturereview

Modern ring theory began when Wedderbern (1907) proved his celebrated classification
theorem for finite-dimensional semi-simple algebras over fields. Twenty years later Emmy
Noether and Emil Artin introduced the Ascending Chain Condition ACC) and Descending
Chain Condition (DCC) as substitutes for dimensionality and Artin (1927) proved the
analogue of Wedderbern’s Theorem for general semi-simple rings. Wedderbern’s Theorem
for general semi-simple algebras can be extended successfully for rings satisfying the DCC
on one-sided ideals. The Wedderbern-Artin Theory is the cornerstone of non-commutative

ring theory.
Wedderbern-Artin Theorem: For aring R, the following conditions are equivalent:
(1) Risasemisimplering;
(2) Everyrightidea I of Risadirect summand of R;
(3) Everyleftidea | of Risadirect summand of R;
(4) Everyright R-moduleis semisimple;
(5) Every right R-module isinjective;
(6) Everyright R-moduleis projective;

(7) Every cyclicright R-moduleisinjective;



(8) Every cyclicright R-moduleis projective;
(9) Every smpleright R-moduleis projective;

Prime ideals take an important role in the structure theory of rings and of mgor researches.
In 1928, Krull introduced the notion of prime ideals via product of ideals in both the
commutative and non-commutative cases. In the commutative case, there is a close
connection between prime ideals and nilpotent elements. In particular, the intersection of all
prime ideals equals the set of nilpotent elements. In 1929, Krull proved the existence of
minimal primes in commutative case that every prime ideal contains a minimal prime ideal.
The concepts of semi-prime ideals in commutative setting were introduced by Krull in 1929
and by Nagata in 1950. Krull proved that a non-commutative ring is semi-prime if and only if

it has no nonzero nilpotent elements.

In the viewpoint of module theory, ring structures are generalized by considering as a special
case of module structures, so properties are transferred from the category of rings to category

of modules. The concepts of prime submodules are generalized from prime ideals.

In 1983, Goodeatl and Warfield and in 1987, McConnell and Robson introduced the notion
of prime submodules over a non-commutative ring R. They called aleft R-module M a prime

module if for any proper submodule X of M, ann;(M) < ann, (X).

In 2002, Ameri [10] and Gaur et al. [11] introduced the structure of prime submodules in
multiplication modules over commutative rings. Following them, a left R-module M is a
multiplication module if every submodule X is of the form IM for someidea | of Rand M is
called a weak multiplication module if every prime submodule of M is of the form IM for
someideal | of R.

In 2007, Sanh et al. [15] introduced the new notion of prime submodules. They called a fully
invariant proper submodule X of aright R-module M a prime submodule if for any ideal | of
Sand any fully invariant submodule X of M, if I(X)C P then either I(M)CP or XCP. A

right R-module M is called a prime moduleif O is a prime submodule of M.

A fully invariant submodule X of aright R-module M is called a semi-prime submodule if it
is an intersection of prime submodules. A right R-module M is called a semi-prime module if

0 is a semi-prime submodule of M.
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We study in this thesis together with the related notion of essential and uniform submodules
and applications are made to prime and semi-prime Goldie rings and modules. A non-zero
submodule X of aright R-module M is called an essential submodule of M if for any nonzero
submodule Y of M, X nY = 0. A non-zero module M is called uniform if any two non-zero
submodules of M have non-zero intersection, i.e. if each non-zero submodule of M is
essential in M. A basic tool in the study of Noetherian rings and modules is the Goldie
dimension of a module. A right R-module M is said to have finite Goldie dimension if M
contains a direct sum of a finite number of nonzero submodules. Equivalently, if M has the

finite uniform submodules U,,...,U  whose sum is direct and essential in M, then M has

finite Goldie dimension. Then the positive integer n is called the Goldie dimension of M and
is denoted by G.dim(M) = n. Also M has finite Goldie dimension if M is Noetherian or

Artinian.

In 2008, Sanh et. al. [15] introduced a new notion of Goldie modules. Let X be a submodule
of a right R-module M andS=End,(M).Then X is caled an M-annihilator if

X =Ker(l)= ﬂKer(f), for some | = s. A right R-module M is called a Goldie module if

fel

it has finite Goldie dimension and satisfies the ACC on M-annihilator submodules. Applying
this new notion we got many results relating to prime and semi-prime Goldie modules.

In thisthesis, Chapter | deals with the early history of prime and semi-prime Goldie rings and
modules. All the essential basic definitions, examples and their properties are given in
Chapter I1. Chapter 111 deals with the basic properties of prime and semi-prime Goldie rings
together with some new properties. Also in this chapter, we describe some properties of
prime and semi-prime ideals in associative arbitrary rings by modifying the results on prime
and semi-prime modules investigated by Sanh et a. [14]. In Chapter IV ,we investigate some
properties of prime and semi-prime Goldie modules as generalizations of prime and semi-

prime Goldie rings.
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CHAPTERIII
BASIC KNOWLEDGE

Overview

Throughout thisthesis, all rings are associative with identity and all modules are unitary right
R-modules. A substantial amount of information about a ring can be learned from a study of
the class of modules it admits. Modules actualy serve as a generalization of both vector
gpaces and abelian groups, and their basis behaviour is quite similar to that of the more
gpecial systems. In this chapter, we introduce the fundamental tools of this study. This
chapter reviews the basic facts about rings, subrings, commutative division rings, integral
domains, endomorphism rings, ideals and modules, homomorphisms and other notions. It
also introduces some of the notations and the examples that will be needed later.

We denote by R an arbitrary ring and by Mod-R, the category of al right R-modules. The

notation M indicates a right R-module M which when 1€ R is assumed to be unity, i.e. to
have the property that 1.m = m for any me M . The set Hom, (M, N) denotes the set of al

right R-module homomorphisms from the right R-modules M to N. In particular, the

set Hom, (M, M) denotes an endomorphism ring of a right R-module M. It is denoted by
S=End,(M).Thekernel of any f € Hom,(M,N) is denoted by Ker(f) and the image of f
by Im(f). A submodule X of M isindicated by writing X <M. Also | <R, meansthat | isa
right ideal of Rand | < ;R isaleft idea of R. The notion |1<R is reserved for ideals, i.e.

two-sided ideals. Therelation A<, M meansthat A is an essential submodule of M. As usual

thesets N, Z, Q, R, C represent the sets of natural numbers, integers, rational numbers, real

numbers and complex numbers respectively.
2.1 Preliminaries

Before dealing with deeper results on the structure of rings with the help of module theory,

we provide first some essential elementary definitions, examples and properties.
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Definition
Let R be a non-empty set with two binary operations addition(+) and multiplication(e ). Then
the algebraic structure (R, +,¢) iscalled aring if the following conditions hold:

(i) (R, +) isanabelian group.
(i) multiplication is associative, that is, (aeb)ec=ae(bec),va,b,ceR.
(iif) muiltiplication is distributive over addition
ae(b+c)=aeb+aec (left distributive law)
(a+b)ec=aec+bec (right distributive law) ,Va,b,c € R.

Example
(i) The setZ of al integers, is a ring under addition and multiplication. Similarly the sets
Q,R,C of rational numbers, real numbers and complex numbers respectively are rings under

usual addition and multiplication.

(i) The set R of al matrices of the form [“

' g] \where a, b, c,d being real numbers, with
c i

matrix addition and multiplication, isaring.

Definition

Let Rbe aring with identity. Then Ris caled adivision ring (or skew-field) if every non-zero
element in R has a multiplicative inverse. A field is a commutative ring with identity in
which every non-zero element has its multiplicative inverse.

Example

The sets Q, R,C of rational numbers, real numbers and complex numbers respectively are all

afield under addition and multiplication, but the set Z of all integers, is not afield under
addition and multiplication, because its every non-zero element except 1 has no

multiplicative inverse. Therefore, every field aring, but the converseis not true.

Definition
A ring Ris said to be a ring with identity if we can find a multiplicative identity denoted by
linRsuchthat al= la= a,foral aeR.

An element x of aring Riscalled aleft zero divisor if xy =0 for some non-zero y € R, right
zero divisor if yx=0 for some non-zero y e R and zero divisor if it is both aleft or aright

zero divisor.

13



Example

ab
() Thering R:{L d} : a,b, c,dez} isaring with zero divisor, because

) a o0 00 00
if A= #0, B= # 0 then, AB =
0O 0 b 00

(i) The residue classes on Z modulo 6 Zs ={ 0.1,

0

N

,3,4,5 } isaring with zero divisor,

because 2.3=6=0,where 2#0, 3 0.

Definition

A ring Ris said to be aring without zero divisor if ab=0=a=00r b=0,V a,be R

A commutative ring R with identity is called an integral domain if it is not possible to find
two non-zero elements in R whose product is zero, i.e., xy =0,V X,y € R,wherex = 0,y = 0.
Hence an integral domain is a commutative ring with identity and without zero divisors.
Example

Thering (I,+,) isanintegra domain where | is the set of all irrational numbers. Also, the
rngs (Z,+,),(Q,+,),(C+,),(R,+,) areexamplesof integral domains.

Definition

Let R, R'betwo rings. Thenamap f : R— R is called a ring homomorphism if Vr,se R,
we have (i) f(r+s)=1f(r)+f(s), (ii) f(rs)=1(r)f(s). Then a mapf is a caled a
monomorphism if and only if f is one-one, an epimorphism if and only if f is onto and an
isomorphismif and only if f isboth one-one and onto.

Let f:R— R beahomomorphism, then the image of f is denoted by Im( ) and defined as
Im(f)={x"eR": f(x) =X/, for some xe R}

and kernel of f isdenoted by Ker (f) and defined as
Ker(f)={xeR: f(x)=0}.

Definition

Let Rbearing and | be anonzero subring of R. Thentheset | iscalled aright ideal of Rif

Va,belwehave ar el.
Agan,| iscaledaleftideal of Rif Vael,Vre Rwehaverael and | iscalled anideal
(i.e,two-sidedideal) of Rif arel and rael,Vael,VreR Everyidea inaringRisa

submoduleof R.
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Example

(i) Thesubring E={---,-4,-2,0,2,4,--} of even integers, is an idea of the ring of integers
Z={-2-1012-}.

a 0
(i) Let R={ c d ia,b,C,dEZ}isaring. Then S_{b O}iabez} is a left

idealandT={

ra,be Z} isaright ideal of R.

Definition

Anidea Sof aring Ris called a semi-prime ideal if for any prime idealsl, J of R such that
S=1nJ.

Example

Let the set z of al integers be aring and m, n prime numbers. Then mZ , nZ are both
primeidealsand mZ nnZ = mnZ isasemi-primeideal of 7.

Inthering Z ={---,-2,-1,0,1,2,--} of all integers, the ideal
S=2Z={---,-6,-4,-2,0,24,6,--}and T=3Z ={---,-9,-6,-3,0,3,6,9,--} areprimeidealsin
Zand SNT=2Z2n3Z=6Z={...,-18,-12,-6,0,6,12,18,...} isasemi primeideal of Z .
Definition

Let Rbearingand| beanideal of R. Then! iscalled aprincipal ideal of Rif | isgenerated
by asingle element of R, if If | isgenerated by a, thenitisdenotedas | = (a), i.e, if aeR,
then anideal of theform| =(a) = aR ={ ar:r e R} iscaled aprincipal ideal of R.
Example

Inthering Z ={---,—2,-1,0,1,2,--} of al integers, the ideal

| =(5)=5Z={--,-10,-5,0,510,--} isaprincipal idea of Z generated by 5.

Definition

Let Rbearing and M be anideal of Rsuchthat M # R. Then M is called maximal if for any
ideal N of Rsuchthat M — N — R,theneither M =N or N=R, i.e, M iscaled amaximal
if there exists no idesl of Rwhich lies between M and R.

Example

15



Consider thering Z ={---,-2,-1,01,2,--} of al integers. Choose two ideals
S=6Z={---,-12-6,0,612,--} and T=3Z ={---,-6,-3,0,36,--} of Z. Here Sisnot a
maximal ideal, because there existsanideal T which liesbetween Sand Z ,i.e,ScT c Z,
But if we choose S= (5)=5Z ={---,-10,-5,0,5,10,--} , then Sisamaximal ideal, because
there existsno ideal of Z which lies between Sand Z.

Proposition 2.1.1 Every maximal ideal M of aring Risaprimeideal.

Proof. If | and J areideds of R not contained in M then | +M =R and J+M =R
Now R=(I +M)(J+M)=1J+IM+MI+M? c1J+M andhence 1J ¢ M.

Definition

A minimal primeideal inaring Risany primeidea of R that does not properly contain any
other primeideals. For instance, if Ris aprimering, then O is the unique minimal prime ideal
of R

Example

(i) In acommutative Artinian ring, every maximal ideal isaminimal prime ideal.

(i) In anintegral domain, the only minimal prime ideal isthe zero ideal.

Definition

Letl beanidea of aringR. Thenthering I%:{a+l rae R} iscalled aquotient ring or

factor ring of R by | defined by

(i) I +a)+(l +b)=1+a+b and

@) (I+a)(l +b)y=1+ab VabeR

2.2 Modules and different kind of submodules

Definition

Let R be a ring with identity and M an additive abelian group. Then M is called a right R-
module if thereexistsamap f : M xR— M defined by f (mr) = mr satisfying the following
conditions:

(i) vm,meMand VreR wehave (m +m,)r=mr+m,r;

(i) vmeM and Vr,r, e R, wehave m(r, +r,)=mr, +nr,;

(i) YVmeMand V r,r, e R, wehave m(r,r,) = (mr)r,;

(iv) VmeM and 1€ R, wehave m1l=m

16



Similarly, we can define left R- modules by operating to the left side of M. If M isaright R-
module, then it is denoted by M ;and if M isaleft R-module, then it is denoted by M.

Example
(i) Everyring Risan R-module over itself. Since Zisaring, so ZisaZ-module.

(i) Every additive group is a module over the ring Z of intgers. Since Z, Q, R are dditive

group, so they are Z-modules.

(iii) Let Rbearing and | aleft ideal of R, then | isan R-module.

Definition

Let X be asubset of M. Then Xiscaled asubmoduleof M if (X, +)isasubgoup of (M, +)
and it satisfies the following conditions:

(i) VxyeXwehave x+ye X (ii) VxeX, VreR we have xre X <M
Definition

Let M bearight R- module and L< M, asubmodule of M. Then the right R-module M is
called a quotient module or factor module of M by L with the operation f :M/LxR—> M /L
definedby (i) f(m,r)=mr and (ii) f(m+L,r)=(m+L)r=mr+L,VvmeM, VreR
Let R, Sbetwo rings and M an abelian group. Then M is called an R-S-bimodule if M is aleft

R-module, right Smodule. It isdenoted by ;Mg. If forany meM,r € R, s € S we have
r(ms)=(rm)s.

Theorem 2.2.1 (Modular law) If A, B, C are submodules of M, and B<C then
(A+B)nC=(AnC)+B.

Proof: Let a+b=ce(A+B)nC,where ac A be B, ceC, then it follows from B<C

that a=c—be(AnC),thusa+b=ce(AnC)+B and hence (A+B)nC<(ANC)+C

Conversdly, let d e (AnC),be B. Since B<C, itfollowsthat d +be (A+ B)nC, and
thusalsothat (AnC)+B<(A+B)nC. Henceweget (AnC)+B<(A+B)nC

Therefore, (A+B)nC=(ANC)+B.

17



Definition

Let M and N be R-modules. Thena map f : M — N issaid to be a homomorphism if

(i) YmmeM wehave f(m+m’)=f(m)+ f(m’);

(i) V meM and V r e R,wehave f(mr)=f(m)r.

Let f :M — N beahomomorphism. Then image of f isdenoted by Im f, and defined as

Imf ={neN: f(m)=n, forsomeme M}.Imf isasubmodule of N.

Thekerndl of f isdenoted by Kerf and defined by
kerf={meM : f(m)=0}.kerf isasubmodule of M.

An R-homomorphism f:M — N iscalled

(i) amonomorphismif for any submodule X of M and any homomorphism h,g: X — M, we
have foh=fog=h=g.

(i) an epimorphism if for any submodule X of M and any homomorphism h,g: N — X, we
have hof =gof = h=qg.

(

i) anisomorphismif f isamonomorphism and an epimorphism.
(iv) anautomorphismif f isanisomorphismand M = N

Remarks
(i) f:M — Nisamonomorphismif and only if f isone-one.

(i) f:M — N isanepimorphismif and only if f isonto.

Definition

Let M and N be two right R-modules. The set Hom(M, N) denotes the set of all right R-
module homomorphisms fromM to N. In particular, Hom(M,M)is the set of al right R-
module homomorphisms from M to M. The abelian group Hom(M , M) becomes aring if we
use the composition of maps for multiplication. Thisring is called the endomorphism ring of
M and it is denoted by S= End, (M).

Definition

Let M be aright R-module and X C M, asubset of M. Then we say that M is generated by X

if M =\X)={ Z)gri I x eX, reR i=123-}. If Xisafiinite subset, then M is finitely

18



generated and we write M =|X)={ ix r/xeX reR i=123-k}. A module M is caled a
i=1
self-generator if it generates all of its submodules. If X is a submodule of M and

X=>" f (M), then M is called aself-generator, where S=End . (M).
fieS
Definition
Let M be aright R-module and X, a subset of M. Then the set |X) is called the submodul e of

Mgeneratedbe,where|X):{ inri X, e X;r,eR i=L2... ,n;ne N},

I<i<n

A subset X of M iscalled afree set (or linearly independent set) if for any

X X, X3,..., X € X,andforany r,r,,...,r, € R, wehave

k

> xr=0=r1=0,Vie{l2..,Kk. A subset X of M iscaledabasisof Mif M= |X)
i=1

and X isafree sat. If amodule M has abasis, then M is called afree module.

Example

L )=z,

2)={0,2,4)}= ‘Z), ‘é) ={0,3}, [23)=Z , because x3 +y2 =1 for
somex,y e Z.
2. {2} isnot freebecause 3 x 2 =0, { 2,3} isnot free, because 3 x 2 + 2x3 = 0.

Hence Z  isafinitely generated Z-module.

Definition
A submodule A of My is cdled a direct summand of M if there exists a submodule

B<M suchthat M = A+B and AnB={0}. Then M is called a direct sum of A and B or

the sum A + B is direct.In this case, we write M = A® B. In general, the sum ZA <Mis

iel

caled adirect sumif forany j e l,wehaveA; N ZA =0. If xe A®Band x=a+b,then

i=jiel

ae A and b e B and a, b are the the unique elements of A and B respectly.

19



Theorem 2.2.2 If A® B is the internal direct sum and A, B are submodules of M, then

A®B<M.
Proof. Consider AxB={(a,b)lae Arbe B}, we can consider as A] [Bor A[[B. It is

clear that AxBis a right R-module but AxBz_ M. Define j : AxB—> A®B by
j (a,b)=a+b for al ac Aand be B. Then | is an R-homomorphism, because for any
(a,b),(a’,b") e AxBand for any r € R, we have

j (&b)+(@,b))=j (a+a’,b+b)=(a+a)+(b+b)=(a+b)+(a’ +b)=j (a,b)+j (a’,b"),
andj ((a,b)r) =j (ar,br)=ar +br =(a+b)r =j (a,b)r.
Also, j (a,b)=j (a',b)= a+b=a"+b"=a=a"Ab=b"= (a,b)=(a’,b"), showing that |

isamonomorphism. For every ye A® B, y=a+b where ae AbeB.

Choose x=(a,b) e AxB. we have j (X)=y. then J is an epimorphism. Thus ] is an
isomorphism, i.e.,, AxB= A® B.

Definition

A submodule X of aright R-module M is called essential or large in M if for any nonzero
submodule U of M, X U= 0. If Xis essential in M we denote X<, M . A right ideal | of a
ring Ris called essential if it is essential in R, . For any right R-module M, we always have M
<. M. Any finite intersection of essential submodules of M is again essential in M, but it is
not true in general. For example, consider thering Z of integers. Every nonzero ideal of Z is
essential in Z but the intersection of al ideals of Z is 0 which is not essential in Z. Since
any two nonzero submodules of Q have nonzero intersection, so Q is an essential extension.
A submodule X of M is called superfluous or coessential or small in M if for any
submodule Y of M, we have X + Y =M impliesY = M, or equivalently, Y = M implies X +
Y # M. Aright ideal | of aring Ris called superfluous in Rif it is a superfluous submodule
of R;. Every module has at |east one superfluous submodule, namely 0.

Proposition 2.2.3 In Z, every nonzero ideal is essential.

Proof. LetO# | ¢ Z.Then3d me Z :1=mZ. For any nonzeroidea J — Z, we can find
anne Z:J=nZ.Thusl nJ=mZ nnZ=mnZ,somnelnJandsol nJ=0.

Therefore, | <, Z.
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Proposition 2.2.4 Let M be a right R-module. Then for any submodule A <M, A <M

SVmeM,m=0 IreRmr # 0andmr € A

Proof. Assume that A<, M. Choosem € M, m = 0. Then mR=0, and so AnmR=0.

then thereexists 0 xe AnmR.

This means that 0% xe A and there exists reR such that x=nmr. Therefore,
O=x=mreA

Conversdly, let U be a nonzero submodule of M. Choose 0+ meU. By hypothesis, there

exists re R with mr 0 and nr € A But then ssnce mr eU, we have mr #0 and

mr e AnU. Hence A<, M.

Proposition 2.2.5 Forany M € Mod-R, let A < B <M. If A<, M, then(i) A<, B, and
(i) B<, M

Proof. (i) Let U<B be such that U =#0. then U is a submodule of M Since
A<eM,UnA=0.Hence A<, B.

(i) Let U <M besuchthat U 0. Then 0 AnU < BNnU, because AnU # 0,and so
B<, M

Proposition 2.2.6 Let A and B be essential submodulesin M. ThenA @ B <M and

AN B<, M.

Proof. Let U <M besuchthat U #0. ThenU n(AnB)=U NA) nB=0.

HenceA n B <, M. Wehave A<A ® B <M and A <, M, implyingthat A ® B < M.

Note: Every nonzero submodule of M is essential in M, i.e., anon-zero submodule A of M is

called essential in M if A has nonzero intersection with any non-zero submodule of M.

Lemma 2.2.7 Let L be asubmodule of aright R-moduleM. Then L is an essential submodule

of M if and only if for any nonzero elementme M, 3r eR mr = Oandmr e L.

Proof: We assume that L<_M and choose m € M, m # 0. Then mR # 0, and SO
LNnmR +0.Then3 o#x€ LNnmR. Thismeansthat 0 #x €L and 3 = € R such that

x = mr. Therfore, 0= x = mr e L.
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Conversery , let ¥ be anonzero submodule of M. Choose 0 #+ m € ¥. By hypothesis, 3
re R with mr=0 and mrmr € L. But since mre€ Y, so we have mr# 0 and
mr EL NY. Hence L M.

Definition

A submodule X of M;is caled a maximal submodule of M if X =M and for any
submodule Y of M if X <Y <M, theneither Y=X or Y=M.

Example

Consider the module Z ={---,-2,-1,0,1,2,---} of al integers. Choose two submodules
S=6Z={---,-12-6,0,612,--} and T=3Z ={---,-6,-3,0,36,--} of Z. Here Sisnot a
maximal submodule, because there exists an submodule T which liesbetween Sand Z , i.e,,
ScTc Z,Butif wechoose S= (5) ={---,-10,-5,0,5,10,-- } , then Sis a maximal
submodule, because there exists no submoduleof Z which lies between Sand Z.

Definition

A submodule X of M iscalled aminimal (or simple submodule) submodule if X + 0 and
for any submodule ¥ of M suchthat 0<Y < X, then Y=0o0r ¥ = X.

Theorem 2.2.8 Let N be any proper submodule of M . Then N ismaximal in M if and only

it vmeM/, wehave mr +N = m.

Proof : Suppusethat N is maximal in M . Choose any m & M/N.
Then Nc> # N+ mR< M. By definition, N +mN = M.
Conversely , we suppose that ¥ < # Y < M. Then we can find. so, ¥ € Y/N. Soy € M/N.

By assumption, N+y R=M . Since N<Y and y €Y, wehave N+y R <Y. It shows
that M =N+yR <Y <M. ItfollowsthatY =M or N ismaximal inM .

Lemma2.2.9 Let M be aright R-module and U, X be submodules of M with Uc X. Then X

ismaximal in M if and only if X/ U is maximal in M/ U.
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Proof : (=) Let Y beasubmuduleof M and X/UcY/UcM/U. Then X is asubmodule of
Y. Since X ismaximal in M, we have X =Y implying that and X/U=Y/U.

Let (<) USX c_# M. and Then X/USY/U < # M /U .Since X/U is maximal in
M/U, we have X/U=M/U, showing that X=Y.

Definition

Let M be aright R-module and me M. Then the submodule of theform mR={mrr \ r e R}

iscaled acylic submodule of M and M iscylicif M = mR. A module M issimpleif M =0
and only 0 and M are submodules of M. Every simple module M iscyclic, infactitis

generated by any non-zero me M.

2.3 Noetherian and Artinian Ringsand Modules

Definition

A nonempty family Fof submodules of M, is said to satisfy the Ascending Chain Condition
(briefly, ACC) if for any chain M, c M, c...c M, c...

of submodulesin F , there exists apositive integer nsuchthat M., =M forn=12,...

A ring which satisfies ACC for right( left) idealsis called aright (Ieft) noetherian ring. A ring
which is both right noetherian and left noetherian is called a noetherian ring.

A module M is called noetherian if ACC holdsfor M. An R-module M is noetherian if

every submodule of M isfinitely generated.

Example

(i) Every finitely generated abelian group ring is noetherian. SinceQ[Q =1.Q=\Q)],
Z,R arefinitely generated abelian group, so Q, Z,R are noetherians.

(i) Any principa ideal domain (PID) is a noetherian ring, because every ideal of PID is
generated by a single element. The set Zof all integers, is a noetherian ring, because it is a
principa ideal domain (PID).

(iii) Every finitely generated abelian group over a noetherian ring is a noetherian module.
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Since Z isa noetherian ring, so the module Z ; is noetherian.

Proposition 2.3.1[19] A module is noetherian if and only if every strictly ascending chain of

submodulesisfinite.

Proof. Let M be noetherianand M, c M, c....... an ascending chain of submodules. The

submodule U M; has afinite number of generators, and all of them must liein someM, . It

follows that the chain gets stationary at M, . Conversely, it is easy to see that the ascending
chain condition for submodules implies that every submodule has a finite number of
generators.

The “assending chain condition’, i.e. finiteness of al strictly ascending chains, is usually
abbreviated as ACC.

Proposition 2.3.2 [19] Let L be a submodule of M. Then M is noetherian if and only if both L

and M / L are noetherian.

Proof. M is noetherian obviously implies that L is noetherian. It also implies that M/L is
noetherian, because the submodules of M/L can be written asM’/L, there LcM'c M .
Suppose conversely that L and M/L are noetherian. If M’ is a submodule of M, then
LAM"' is finitely generated as a submodule of L,and M'//(LAM')=(L+M')/L is
finitely generated as a submodule of M/L. It follows from Lemma 3.1(ii) ([19], page-11)
that M’ isfinitely generated. Hence M is noetherian.

The ring R is right noetherian if R, is a noetherian module, i.e. every right ideal of R is
finitely generated.

Proposition 2.3.3 [19] If aring R is noetherian, then every finitely generated module is
noetherian.

Proof. If R; is noetherian, then every finitely generated free module is noetherian by Prop.
2.3.3, and therefore every finitely generated module is a quotient of a noetherian module and

hence noetherian by Prop. 2.3.3.
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Theorem 2.3.4 [18] Let M be aright R-module and A< M. Then the following conditions
are equivalent:

(1) M is noetherian;

(2) A and M/ A are noetherian;

(3) Any ascending chain A <A, <...c_ A, <...of submodules of M is stationary, i.e., there

exists ne N such that A, = A,,, This condition is called the ascending chain condition or

ACC.
(4) Every submodule of M isfinitely generated.

Proof. (1) = (3): Suppose that every nonempty family of submodules of M has a maximal
element by inclution. Given an ascending chain

A<A<..<A<A LS.
Let Y :{A| i € N}. By hypothesis, we can find a maximal element of Y by inclusion, say
A.. We can see that for any n>k, A <A,. But then since A is maximal, A, <A . Hence
forany n>k, A, = A. Thisimpliesthat the chain is stationary.
3= (D :Let X beafamily of submodulesof Mandlet A c A, c...A c...
be a chain in X . By assumption, this chain is stationary. So, we can find A, such that
A c A,, foranyi. By Zorn’s lemma, X hasamaximal element. Then M is noetherian.
(3= (2): Let X, <X, < <X X, <.
be a chain of submodulesin A. Then this chain is aso a chain in M and hence it must be
stationary. So A is noetherian. Now let

XX, 2.2 X, X, ;<. (*)

n+l1 —**
be a chan of submodules in M / A Then X, =A/AX,=A/A....with
A<A<...<A LA, c....<M.since M isnoetherian, M satisfies (3), and so we can find
n, e N such that A=A, Hence the chain () is stationary, proving that M / A is

noetherian.
(2) = (3) : Assumethat A and M / A are noetherian.

Let A<A <..... SA <AL S
beachaininM. Then A nA<A NA<........ <A NASA  NAL.. <A
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Since A is noetherian, by (3), there exists n, e N such that for any K >0, we have
A« NA=A N A.Consider (A +A)/Ac, M/A sowehave

(A+A)/AS (A +A)/AS.....c (A +A)/AL....SM/A
Since M/A is noetherian, there exists n, e N such that for any k>O0,we have
(A, +A/A=(A, +A)/A.Henceforany k>0, wehave A, + A=A, +A
Put n, = max{n;,n,}. Then for any n>n,, we have A, nA=A A for dl k>0 and
A, +A=A +Aforadl k>0.Thusforany k >0, we have

A = Ak V(AL A= AN (A + A = A (A NA) = A
Hence M is noetherian.

B=(4): Let A<Mandlet 0m € A Then mR<A If mR=A then we are done.
Suppose mR=Awe can find m,e A/mR and then mRc. mR+m,R<AIf
m,R+ m,R= A, then we are done. Continuing in this way, we have achain

mRc. mR+mR<mR+mR+mR< ..
in Aby (3), thischain is stationary. Thus M isfinitely generated.
4)=>03): Lt A<A<.... c. ASALS be a chan in M. Then

0

UA =ZA = A S0 Ac_ M. By (4), A is finitely generated. Then by the property of

i=1 i=1

finitely generated module, we can find i,.....i,such that A=A +.... +A . Let
N=max{i,,...... i }. Then A= A, proving that the above chain is stationary.
Definition

A nonempty family F of submodules of M is said to satisfy the DCC if for any chain
M, oM, 5. DM, o.. of submodules in F, there exists a positive integer n such
that M., =M for n=1,2, ...

A ring which satisfies the DDC(descending chain condition) for right( left) idealsis called a

right( left) artinian ring. A ring which is both right artinian and left artinian is called an

artinian ring.
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Example
(i) EveryfiniteringisArtinian.

(i) A module which has only finitely many submodules is artinian. In particular, finite
abelian groups are artinian as module over Z.

If aring Risright artinian, then Ris right noetherian but the converseis not true. For

example, consider Z (northerian), MZ < nZ <> n|m and

mZcmZcmZc...sm/m,m/m,...

The chain 22 52°Z52°Z>...52"Z > ...isnot stationary. So Z is not artinian. Thus Z

is noetherian but not artinian. we can conclude that the module Z , is noetherian but Z 7 is not
artinian.

Theorem 2.3.5 [18] Let M be a right R-module and let A be its submodule. Then the
following statements are equivalent:

(&) M isartinian;

(b) Aand M / A are artinian;

(c) Any descending chain A, o A, o...o A, o... of submodules of M is stationary. This

condition is called the descending chain condition or DCC.

(d) Every factor module of M isfinitely co-generated.

(e) Let 0O>L—>M —>N-—>0 be an exact sequence of right R-modules. Then M is
noetherian (resp. artinian) < L and N are noetherian (resp. artinian).

Corollary 2.3.6 [3] (1) The image of artinian (resp. noetherian) module is aso artinian( resp.
noetherian ).

(2)The finite sum of artinian ( resp. noetherian ) submodules of M is aso artinian (resp.
noetherian).

(3) The finite direct sum of artinian (resp. noetherian) modules of M is aso artinian (resp.
noetherian).

(4) If Rissemi-simple, then Ris both left and right artinian (resp. noetherian
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2.4 Exact Sequences, | njective and Projective modules

Definition

Let {A,i €1} be acollection of right R-modules. For each i el,let f,:A > A, beanR-
homomaorphism. Then a sequence

'A& f1 N A2 f2 N % fs N foa N A] fa N A1 o1 N
7 7 7 ssssssnnnns 7 7 +1 7 sssssas
is called an exact sequence at A, if Im(f ;)= ker(f,). The sequence is called an exact

sequence if itisexact at each A, .
An specia exact sequence of the form 0 > A——»>B—9>C — 0 is caled a short exact

sequence.

Remarks
(1) If the sequence 0 > A——B—9>C — 0 isexact, then f is amonomorphism,
gisan epimorphism and Im(f) = ker(qg).
(i) Let X <M e Mod - R, thentheinclusionmap i : X — M defined by i (x) = x for
any x e X iscalled the embedding homomorphism. Then the sequence
0> X —5M—"35M/X - 0isexact andthemap n defined by
n(m)=m+ X forany me M iscaled the natural or canonical homomorphism.
Definition
A short exact sequence 0 > A——>B—2>C — 0 iscaled split exact if Im(f)<® B,
(i.e, thereexists B'<B:B=Im(f)® B').
Proposition 2.4.1[19] The following properties of an exact sequence

0> X —25Y 257 - Oareequivalent:

(a) The sequence splits.

(b) There existsahomomorphismj : Y — Xsuchthat) a =1,.

(c) There existsahomomorphismy :Z — Y suchthat b y =1,

Proof. It is clear that (@) implies (b) and (c). Suppose (b) is satisfied. The maps
j :Y—>Xand b:Y —>Z can be used to define m:Y > X ®Z so that the diagram(1)
commutes. m is an isomorphism by Prop. 1.3 [19]. Hence the sequence splits. The proof of

(c) = (a) goes dualy.
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A module Y is said to be generated by a family (x ), of elementsof Y if each xeY can be

written x = iney with all but afinite number of a equal to 0. It it furthermore is true that
|

the coefficients a are uniquely determined by x, then the family (x;), isabasisfor Y. A
moduleis called free if there exists abasis for it.

Theorem 242 Let 0> A——>B—95>C — 0 be a short exact sequence of right R-
modules. Then the following statements are equival ent:

(a) The given sequence splits;

(b) There exists ahomomorphism f':B— A: ff =1,;

(c) Thereexistsahomomorphism g':C —» B:gg’' =1..

Proof. (a) = (b) Supposethat Im(f)isadirect summand of B. Then there existsa
submodule B’ —_ B suchthat B=Im(f)® B'. Wewill defineahomomorphism f : B — A
todothislet be B. Thenthereexists y e Im(f)and b’ € B' such that b=y + b" whichisthe

unique decomposition. Since f is a monomorphism, thereisaunique ae A suchthaty =

f(a). Let f'(b)=a. Itisclear that f' isamap. We now show that f’ isahomomorphism.
Todothis, let b,b,eB andreR Thenb =y, +b/ and b, =y, +b,, where

Vi, Y, €elm(f)and b/,b, € B". Thus b, +b, = (y, + b)) + (y, +b}) = (y, + Y,) + (b} + b)).
Then there exists a,,a, € A Suchthat y, = f(a,)and y, = f(a,). Then
v,+y,="f(a)+f(a,)=f(a +a,) andso

f'(b,+b,)=a,+a,= f'(b)+f'(b,). ForreR if b=y, +b/,then br=y,r+br and
br=f(a)r="f(ar). Hence f'(br)=ar = f'(lhr). Toshow ff'=1,, let ac A besuch
that b = f(a). Then f'(b)=a andso ff'(a)=a. Thus ff'=1,.

(b) = (a) Assume that there is a homomorphism f':B— A such that ff'=1,. Let
B'=Ker(f')c, B. Then Im(f)®B'c_ B. For each be B, we have f'(b)e A and so
ff'(b) e Im(f). Then f'(ff'(b)) = ff(f'(b)) = f'(b).

Hence ff'(b)—be Ker(f')=B'. Then there exists b’ € B’ such that ff'(b)—b=b" and so
b= ff'(b)-b'eIm(f)+B’. Thus BcIm(f)+B' and then B=Im(f)+B’. To prove
Im(f)nB'=0 let beIm(f)nB.Then beIm(f)and be B. Thusthereisa ae A such

29



that b= f(a) and f'(b)=0. Then a= ff(a)= f'(b) =0. Thisimpliesthat b = 0. Therefore,
B=Im(f)® B

Definition

A right R-module E is called an injective module if for any right R-modules L and M, any
monomorphism f : L — M and any homomorphism g: L — E, thereexistsa
homomorphism h: M — E suchthat ho f =g

0—sL—"5M

g h

E (M)
Figure 1

If the above condition is true only for a special module E, then E is caled M-injective
module. Thus, aright R-module E is said to be injective if and only if it is M-injective for any

right R-module M. A right R-module M is called quasi-injectiveif M is M-injective.

Example: 0——»2Z——7Z

Q

Figure 2
Q and Q/Z areinjective Z-modules.
Theorem 2.4.3 Let M be any right R-module. Then the following statements are equivalent:
(1) Misinjective;
(2) Any exact sequence of thefoom 0 > M - A— B — 0 splits.
Proof. () = (2). Assumethat M isinjective. Consider the exact sequence

>M—%>a L 55 >0
LU
B
M
Figure 3
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Since M is injective, there exists a’: A— M such that a'a =1,,.s0 we get the sequence is

splits.
2= (. Let
O—— A f —>B
%
P MxB Jﬂ
} Vv
o ™~
‘e ~ MxB/H
o-(’

Figure 4
Define i,:M ->MxB and i,:B—>MxB by i,(m)=(m0)vmeM and i,(b)=(0,b)
VbeB. Let H ={{ (a),—f(a))|ae Al . M xB. Consider (M xB)/H and define a =ni,

and b =ni,.
Forevery ac A, aj (a)=ni,j (a)=n(( (),0)=( (a),00+H
and bf (a) =ni, f(a)=n((0, f(a)) = (0, f(a))+ H.

Since(j (a),00—-(0,f(a))=( (&)— f(a))eH,we have ( (a),0)+H= (0, f(a))+H. We
aso have aj =bf. To show that a is a monomorphism. Let me Ker(a).Then
a(m=0=ni,(mM=0 =n((m0))=0, i.e, (MO + H=0+ H andso (m0) e H. Then
thereexists a e A such that (m,0) =(j (a)— f(a)) which impliesthat j (a) = m and f(a) = 0.
Since f isamonomorphism,a= 0andwehavem=j (0)=0, i.e. Ker(a)=0. Hencea isa
monomorphism. Consider an exact sequence

0— Mi(M xB)/H — ((M xB)/H)/Im@) — 0

Then by hypothesis, thereexistsa’': (M xB)/H —- M suchthat a'a =1,,. Chose jf =ahb.

Then j_: B—->M and j_f= abf =a'aj =1,,j =j . Therefore, M isinjective.

Projective module: A right R-module P iscalled a projective module if for any right R-

modules M and N, for any epimorphism f : M — N and any homomorphism g: P — N,
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there exists ahomomorphism h: P —- M suchthat f o h=g. ThenPiscaled M-

projective module. Thusa right R-module M is called quasi-projective if M is M-projective.
P (M)

h lg
M—3SN——>O

Figure5

Example

(i) Every free mudule is projective but the converse is not true. Consider the ring R=2/6Z
which can be composed as R =2 @ 3. Theideals 2 and 3 are projective mudules but they

are not free.

(i) Forevery ne N, Z,=Z/nZ isquasi- projective but not Z- projective.

P
gl
" ‘::..
0 > ——> M > M/ X ——>0
Fa 7T,
<
f 2 f
g
E
Figure 6

(i) p,0 g’ =g projective. (ii) f'oi = f injective.
(iii) A right R-module M is called quasi-projective if M is M-projective,so P = M
(iv) A right R-module M is called quasi-injectiveif M isM-injective,so E = M .
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Proposition 2.4.4 Let M be any right R-module. Then the following statements are

equivalent:

(&) M is projective.

(b) Any exact sequence of theform 0 > X - Y - M — 0 splits.

Proof. (1) = (2). Assumethat M is projective. Consider the exact sequence

0> X—"53Y—935M —0.

Since M is projective, there exists a homomorphism g’': M — Y such that g'g =1,,. so have

the sequenceis splits.

(2) = (1). Assume that every exact sequence of theform 0 > X - Y - M — Ogsplits. Let

™M

Figure7
M

4

A B O

g
Figure 8

O——>Ker g8 H M @)

O(WEW

AXM

A/”l B

Figure 9

Define H ={(a,m)|g(a) =y (M)}.Then H < AxM. To show that H <, AxM.

(a,m),(a’,m)H. Then g(a) =y (m)and g(a’) =y (a’).
() gla+a)=g(@)+g(@)=y (m+y (m)=y (m+m’).Thus (a+a’,m+m’) e H.
(i) Let ac Aand r e RThen g(a) =y (m) = g(a)r =y (mr = g(ar) =y (m)r.
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Then(a,m)r = (ar,mr) € H.Therefore, H ¢, AxM. Leti:H — AxM bethe embedding
map. Put a =p,i and b =p.i.Wefirst notethat ga =y b suchthat for any x e H, we have
x = (a,m) with g(a) =y (m)and

ga (x) = g(a(a,m) = g(p,i(a,m)) = g(p,(a,m)) = g(a) and

yb(x)=y (b(a,m) =y (p.(am)=y (p,(a,m) =y (m).Hence ga(x) =y b(x)vxe H and
so ga =yb. Toshow that b isan epimorphism. Let me M . Theny (m) € B. Sincegisan
epimorphism, thereis a € Asuchthaty (m) = g(a). So (a,m) e H and

b(a,m)=p,i(a,m)=p,(am)=mHence b isan epimorphism. By assumption, the exact
sequence splits. Then thereexists b': M — H such that bb'=1,,. Chooseyﬁ =ab’. Then

yﬁ M — Aand so g;f =gab’'=ybb’'=y 1, =y . Therefore, M is projective.

Proposition 2.4.5 Every freeright R-moduleis projective.

Proof. Let F be a free right R-module and Let X beits basis. Then F = @ xR For xe X,

xeX

we have y (x) e B. we can find ae A such that y (x) = g(a) and we see that we can find

many a € A like that but we choose one and we denoteit by a, .

F
R
A -~ B - 0
g
Figure 10

Put y (X)=a,. For feF, f=Yxr ady(f)=YarecA Theny isa R
i=1 i=1

homomorphism and gy =y . Thisshowsthat F is projective.

Note: M isinjective < VX,Y € Mod - R
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©
B,

b
e T R
1—31"-,

M
Figure 12

Proposition 2.4.6 Every projective module is isomorphic to a direct summand of a free
module, and conversely, any direct summand of afree moduleis projective.

Proof. Let P be a projective right R-module. By the previous lemma, there exists a free
module F such that j :F —> P is an epimorphism. Consider the exact sequence

e:0-kerj ) ——>F—1—>P.
Since P is projective, esplits. Then F=IM({)@F’ for some F'<=ker( )®F'". Thus

P=F/ker( )=F'<°F.
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CHAPTER 111
PRIME AND SEMIPRIME GOLDIE RINGS

Overview
In trying to understand the ideal theory of a commutative ring, it is important to first
understand the prime ideals. We recall that a proper ideal P in a commutative ring R is prime

if, whenever two elements a and b in R such that if abe P, it followsthat ae P or be P.

Equivaently, P is a prime idea if and only if the factor ring R/P is a domain. The
terminology comes from algebraic number theory.

In the non-commutative setting, we define an integra domain just as we do in the
commutative case (as a nonzero ring in which the product of any two nonzero elements is
nonzero) but it turns out not to be a good idea to concentrate our attention on ideals P such
that R/P isadomain. In fact, many non-commutative rings have no factor rings which are
domains, e.g., amatrix ring over afield. Thus a more relaxed definition for the concept of a
prime ideal in the non-commutative case is desirable. The key is to change the commutative
definition by replacing products of elements with products of ideals, which was first
proposed by Krull in 1928 [24].

In the commutative case, there is a close connection between prime ideals and nilpotent
elements. In particular, the intersection of all prime ideas equals the set of nilpotent
elements. The non-commutative analog of this theory is presented in the opening sections of
this chapter. We then see how prime ideals arise as annihilators, which is responsible for
much of their significance.

3.1 Prime and Semi-prime Rings

Definition

A proper ideal P of aring Ris said to be a prime ideal of R if for any ideals 1,J of R, if
IJ < P theneither | c Por J < P. Anideal | of aring Ris called a strongly prime ideal if

foranyx,y € R withxy e I, theneitherx e | or y e I.
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Example: Consider the set Z ={---,-2,-1,0,1,2,---} of all integers, isaring,
P=2Z={--6-4-20246,-}, 1=3Z ={---,-9,-6,-30,369,-} and

J=47 ={----12,-8-4,0,4,8,12,--} areideals of Z..

Now 1) =127 ={---,-24,-12,0,12, 24,--} = P. Then J = P,hence Pis aprimeideal of

7 Therefore if P P,--P,a€primenumbers, then p,Z, p,Z...p,Z are primeideals

of Z.
Definition
A prime ring is aring in which 0 ={0} is a prime idea or equivaently, a ring Ris

called aprimering if there are no nonzero ideals | and J of Rsuch that | J= 0.

Example: Consider the set Z={--,-2-1012,--}of adl integers, isaring and
two nonzeroideals I, Jof Z, where, | =3Z ={---,-9,-6,-3,0,3,6,9,--},

J=47 ={----12,-8-4,0,4,8,12,--}
Now 1J =127 ={---,-24,-12, 0,12, 24,--} #0. Hence Z.is aprimering.

Goodearl and Warfield [ 3 ] introduced the following properties for checking the primeness

of anideal P over an arbitrary ring R.

Proposition 3.1.1 For aproper idea P inaring R, the following conditions are equivalent:

(@) Pisaprimeideal.

(b) If  and Jare any idealsof Rsuchthat | o Pand J > P, thenl J « P.

(c) R/ Pisaprimering.

(d) If  and J areany right ideals of Rsuchthat | J < P, theneither | c Por J < P.

(e) If  and Jareany left idealsof Rsuchthat 1 J < P, then either | < Por J < P.

() If x,y € Rwith xRy c P, theneither xe Por y e P.

Proof. (a) = (b) : Follows the definition of primeideal.

(b)=(c): Letl and J beidedsinR/P, where Pis aprime idea of R. Then there exists

ideals I, oP and J,oP inRsuchthat | =1,/P and J=J,/P. Suppose that 1J =0.
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Then I,J, < P. Since P isaprimeidea of R,it follows that either I, <P or J,c P and
soether  =0or J=0.

()= (a): Let R/P be aprimering and | and J be ideals of Rsatisfying 1J < P then
(I +P)/P and (J +P)/P areidealsinR/P whose product is equa to zero. Since R/P isa
primering, we have (I + P)/P=0or (J+P)/P=0. Hence | cP or Jc P.

(8= (d): Since | and J arerightidealsof R, (RI)(RJ)=RIJ c P. Thuseither
RRcPoRIcPadsol cPorJcP.

(@)= (e) : Since | and J areleftidealsof R, (IR)(JR) = [JRc P. Thuseither
IRcPorJRcPandsol cPorJcP.

(d) = (f): Since (xR)(YyR) < P, either XRc P or yRc Pandso xe P or ye P.
(fy=(a): Foranyideals | ¢ P or J ¢ P, choose elements ac| —P and be J-P. Then
arRb ¢ P whence 1J ¢ P.

(@) = (b): Forany ideals | and J of R, their multiplication is not contained in P.

By induction hypothesis, it follows immediately that if P is a prime idea in aring R and
l,,1,,...,1, areright idealsof Rsuch that I,l1,---1 € P thensome |, c P.

Sanh et a.[ 14 ] modified the above structure of prime ideals over an arbitrary ring as
follows:

Corollary 3.1.2 For aproper ideal P inaringR, the following conditions are equivalent:
(@ P isaprimeided,;

(b) If  and Jare any idealsof Rsuchthat | o Pand J > P, thenl J « P.

(©)If I and J areany rightidealsof R suchthat 1J c P, either | cP or J < P;

(d)If I and J areany leftidedsof R suchthat 1J < P, either | c P or J c P

(e) If X,y e R with xRy c P, either xe P or ye P;

(f) Forany ac R andanyideal | of R suchthat al — P, either aRc P or |  P;

(9) R/P isaprimering.
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Definition

A minimal primeideal inaring Risany primeidea of R that does not properly contain any
other prime ideals. For instance, if Risaprimering, then O is the unique minimal prime ideal
of R

Example

(i) In acommutative artinian ring, every maximal ideal isaminimal prime ideal.

(i) In anintegral domain, the only minimal prime ideal is the zero ideal.

Proposition 3.1.3 [3] Any primeideal P inaring R containsaminimal primeideal.

Proof. Let X be the set of those prime ideals of R which are contained in P. We may use
Zorn’s Lemma going downward in X provided we show that any nonempty chain Y < X
has alower bound of X.

Theset Q=nNY isanided of R, anditisclear that Q — P. weclamthat Q isaprime ideal.

Thus consider any x,y € R such that xRy < Q but x¢ Q. Then x¢ P, forsome P, € Y. For
any P,eY such that P,c P, we have x¢ P, and xRycQc P,, whence yeP,. In
particular, ye B. If P,eY and P,z B, then B c P,, and so ye P,. Hence, ye P, for
al elements P, of Y, andso y € Q, which provesthat Q isaprimeideal.

Now Q€ X, and Qisalower bound for Y. Thus, by Zorn’s Lemma, we can get a prime ideal
P, € X that is minimal among the idealsin X. Since any prime idea contained in P, isin

X, we conclude that P, isaminimal primeideal of R.

Definition
A semi-primeidea inaring Ris an intersection of primeideals. InZ, the intersection of any
finitelist pZ, ..., p,Zof primeideasistheidea p,p,:--p,Z,where p,..., p, are distinct

prime integers, Hence the nonzero semiprime ideals of Z consist of theidealskZ , wherekis
any square-free positive integer including k= 1. A semiprimeringisany ringinwhichOisa

semi-prime ideal.
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Example
Cnosider thering Z ={---,-2,-1,0,1,2,--} of all integers.

Then 2Z ={---,—6,-4,-2,0,2,4,6,--} and
3Z ={---,-9,-6,-3,0,3,6,9,--} aretwo primeidealsin Z and
2Z n3Z=6Z={...,-18,-12,-6,0,6,12,18,..} isasemi-primeidea of Z .

Goodearl and Warfield [3] introduced the following properties for checking the semi-

primeness of an ideal over an arbitrary ring R.

Corollary 3.1.4 For anidea | inaring R, the following conditions are equival ent:
(@) I isasemiprimeideal.

(b) If Jisany ideal of Rsuchthat J* c I, thenJ c |I.

(c) If Jisany right ideal of Rsuchthat J*> < I, thenJ c I.

(d) If Jisany left ideal of Rsuchthat J> < I, thenJ c I.

Proof. (a) = (d) : For any xe J,wehave xRxc J® c |, whence x| by theorem 3.7 [3].
Thus J c I.
€)= M): If Iz 1, then | +J properly contains|. But since
(I1+)*=1"+13+d +J° ],
we have a contradiction to (c). Thus J c I.
(b) = (a): Given any xe R such that xRxc |, we have (RxR)>=RxRxc | and so
RXRc |, wherex e | . By Theorem 3.7[3] is semi-prime.
(a) < (c): By symmetry.
Definition
A right, left or two-sided ideal | of aring R is called a nil ideal if and only if Vael, 3
ne N such thata" =0, nilpotent ideal if and only if 3neNsuch thatl" =0. More

generaly, | iscaled anil ideal if each of its elements is nilpotent. The sum of al nil ideals of
aring Ris called the nil radical of R and is denoted by N(R). The prime radical P(R) of a
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ring R is the intersection of al the prime ideals of R. Hence we can conclude that
P(R) = N(R).

Example
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Again, | isanilpotent ideal of Z,, because 1° =0 i. e, 0°=0, 2°=0, 4°=0, 6°=0.
Proposition 3.1.5 [13] A ring R is semiprime if and only if it contains no nonzero nilpotent
elements.

Wisbauer [21] introduced that in a semi-primering R, the intersection of primeidealsis zero.
That implies, R is a semi-prime ring if and only if O is a semi-prime ideal. If R is a semi-
primering, then P(R) = 0.

Lemma 3.1.6 For aring R with identity, the following conditions are equivalent:
(a) Risasemi-primering (i.e., P(R) = 0);

(b) Oisthe only nilpotent ideal in R;

(c) Foridedsl, JinRwith1 J=0impliesJ Nl = 0.

Proof. (a) = (b).Let Ris primering if and only if O is prime ided. R is semi-prime ring if
and only if O isasemi-primeidea. Ris semi-prime ring P(R) = 0. In noetherian rings, al nil
one-sided ideals are nilpotent. If Risthe non zero ring, it has no prime ideals, and so P(R) =
R. If Risnonzero, at has at least one maximal ideal. A ring is semi-prime if and only if P(R)
= 0. In any case, P(R) is the smallest semi-prime ideal of R, and because P(R) is semi-prime,
it contains all nilpotent one-sided ideas of R. Since al nilpotent (left) ideals of R are
contained in P(R).

(b) = (c).If AB= 0then (AnB)*> c AB=0and AnB=0.

(c)= (b).If AA=Othenaso An A= A=0.

(b) = (a).Let 0= ae R Then (Ra)® # 0and with a = a,thereexists 0 # a, € a,Ra,.
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Then also (Ra,)? # 0and wefind 0+ a, € a,Ra,, and so on. Hence a is not strongly

nilpotent and a ¢ P(R). Therefore P(R) =0.

Let Rbe asemiprime ring and 1,J right ideals of Rsuch that | J= 0. Then (JI)? = 0 and
JN1)?=0.SthatJ =0andJ NIl =0.
and a ¢ P(R). Therefore P(R) =0.
Proof: If R/P is semi-prime and right Artinian, then it is semi-simple by Proposition
10.24[20]. Since R/Pisin fact prime, it can have only one simple component. Therefore,
R/ Pissimple. In other words, P isamaximal ideal.
In commutative ring theory, it iswell-known that Ris Artinian if and only if Ris Noetherian
Definition
Let X be asubset of aring R. Then the right annihilator of XinRis
(X)={reR|xr=0V xe X}
and the left annihilator of X in Risgiven by
l.(X)={reR|rx=0V xe X}
Definition
The singular right ideal of aring Ris defined by
Z(R)={xe R|xK =0, for some essentia right ideal K of R}. If Z( R) = O, then the

ring Ris called aright non-singular ring. Singular left ideals are defined similarly.

Lemma 3.1.7 [3] Let R be acommutative ring. Then the right singular ideal Z(R) of Ris zero
if and only if Ris semi-prime.

Proof: Suppose that R is a semi-prime ring. Let ze Z(R). We will show that z= 0. Set | =
ZR N ry(2).Wehave zZR .ry(z) = 0. Infact, foranyt € Rand any t, € ry(z), we have t, z=
0.So ztt,=tt,z=t.0=0, showing that for any t € R, ZR.r,(2) =0. Wehave | > c | =zR
M r(2) =0. S0 1?=0. Since Risasemi-primering, 0 is asemi-primeidedl. It follows that |

= 0. But r;(2) isanessentia right ideal of R. Thisimpliesthat zZR= 0. Thusz= 0.

Conversely, suppose that Z(R) = 0. Let a be an element of R such that a®>= 0. We will show

that a = 0 from which it follows that R has no non-zero nilpotent element. Let 0 # X € R.
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Then we need to consider two cases: (i) ax= 0 = xer,(a); (i) ax #0 = a(ax) = a®*x=0
= ax ery(a). Hence x R nry(a) # 0. Therefore ry(a) is an essential right ideal of R.

Thisimpliesthat a € Z(R). Thusa = 0. This completes the proof.

Singular and nilpoten ideals play a vital role in ring theory. The following theorem sets up a
relation between singulaar and nilpotent ideals.

Theorem 3.1.8 Let R be aring with the ACC for right annihilators. Then the right singular
ideal Z(R) of Ris nilpotent.

Proof: We write Z rather than Z(R) for the right singular ideal of R. Since
Z52°22%5--, wehave ry(Z) c ry(Z?) c ry(Z%) < ---. So that there exists a positive
integer n such that ry(Z") =r,(Z™"). Suppose that Z"™* = 0. We obtain a contradiction.
There is an element ae Z such that Z"a = 0. Choose such an element a with r;(a)large
enough. Take any b e Z,then r(b)is an essential right ideal of R whence r,(b) naR = 0.
Thus there exists an element r € R such that ar =0 and ar € ry(b). We have ba e Z and
r=(a) c ry(ba). But ar =0 and bar = 0. Therefore, r;(a)is strictly contained in r;(ba). It
follows from the choice of a that Z"ba=0. But b is an arbitrary element of Z. Hence

Z""a =0 and so Z"a = 0. This completes the proof of the theorem.

Theorem 3.1.9 Let R be a semi-prime ring with the ACC for right annihilators. Then R has
Nno non-zero nil one-sided ideals.

Proof: Let | be a nonzero one-sided ideal of R and let 0= ae | with r;(a)as large as
possible. Since R is semi-prime, there is an element x € Rsuch that axa # 0. Thus axa isa
nonzero element of | such that r,(a) c ry(axa). Sothat r,(a) = ry (axa). We have ax = 0,i.e.
X & r,(a). Thus X ¢ r,(axa).So that (ax)® = 0. Hence xax ¢ r.(a) implying that (ax)® = 0.

Therefore ax and hence also xa isnot nilpotent and axe | or xae |.

Corollary 3.1.10 Let R be a right Noetherian ring. Then each nil one-sided ideal of R is

nilpotent.



Proof: Let S be the sum of all the nilpotent right ideals of R. The Sis an ideal. Since R is
right Noetherian, S is the sum of a finite number of nilpotent right ideals and hence Sis
nilpotent. It follows that the quotient R/ S has no nonzero nilpotent right ideals. Let | be a
nil one-sided ideal of R. Thentheimage of | in R/S iszero. Hence | < S.

3.2 Prime and Semi-prime Goldie Rings

Definition

A ring R has finite right Goldie dimension if it contains a direct sum of finite number of
nonzero right ideals. Symbolically, we write G.dim(R) <. A ring R is caled a right

Goldie ring if G.dim(R) <«wand satisfies the ACC for right annihilators. Also, every
noetherian ring isa Goldiering.

Example

Since Q, Z are noetherian rings, so Q, Z are Goldierings,

Definition

An eement ceRiscalled right regular (respectively, left regular) if forany re R, cr = 0

implies r =0 (respectively, rc = 0 impliesr = 0). If cr =0 = rc, then c is called a regular

element. Every non-zero element of an integral domain isregular.

Theorem 3.2.1 Let R be aring with finite right Goldie dimension and let ¢ be aright regular
element of R. Then cRis an essentia right ideal of R.
Proof. Suppose that cR is not essential in R. Then there exists a nonzero right ideal | of R

such that | mcR= 0. Since | #0,we have cl #0 and cl < cR withl n cl = 0. So the
sum | + cl isdirect. Consider (I + cl) n ¢®l. Takeany x € (I + cl) N c?l. Thenx=c’t=u
+ cvwheret, u, ve |. Thisimpliesthat u= c(ct-v) e | n cR= 0. Sou= 0. Also, c’t =
ov. Thenv=ct € | n cl =0.Sox= 0. This shows that thesum | + cl + c?| is direct. By

induction, the sum | + cl + c®l + c®l+--- is direct. Since R has finite right Goldie

dimension, Zc”l =0 for some n and since c isright regular, we have | = 0, a contradiction.
n=0

Thus cRisan essentia right ideal of R.

Theorem 3.2.2 Let R be a semi-prime right Goldie ring and let | be an essential right ideal of

R. Then | contains aregular element of R.



Proof: First we show that R contains a right regular element. By Theorem 3.1.9, | is not nil.
Let a be a non-nilpotent element of | such that ry(a) is as large as possible. We have
r.(a) c ry(a®) where a* is a non-nilpotent element of 1. By the choice of a, we have
r.(a) = ry(a®). If ry(a) =0, we stop. If not, we have ry(a) N1 = 0. Let b be a non-nilpotent
element of ry(a)~ 1 such that ry(b) is as large as possible. Then ry(b) =r.(b?). Let
ar = bsfor some r,se R Since ab=0, we have a’r = 0. Therefore, ar = 0. Hence the sum
aR+bRis direct. The same argument shows that ry(a+b)=rg(@)Nrg(d). If
r:(a) Nry(b) =0, we stop. Otherwise, let ¢ be a non-nilpotent element of ry(a+b) N1 with
r(C) as large as possible. Then r,(c) = r,(c®) and the sum aR+ bR+ cRis direct because
ab=ac=bc=0. Thus ry(a+b+c)=rgz(a) nrg(b) nry(c). Since R has finite right Goldie
dimension, this process must stop after a finite number of steps. Then there exist elements

a,8,,...,a, inl suchthat r.(a, +a,+---+a,) =0.

Chatters and Hajarnavis [13] established the following Lemma over non-singular ring .

Lemma 3.2.3 Let R be aright non-singular ring with finite right Goldie dimension. Then the
right regular elements of R are regular.

Proof. Let c be aright regular element of R. Then by Lemma 3.2.1, cR<, R But I(c) =
[(cR). Take any xel(c). Then xc = 0 = xcR. So that x l(cR) implying that |;(c) < I;(cR).
Again, take any tel(cR). Then t(cR) = 0 = tc = 0 = tel(c). Therefore, we have
Iz(cR) c I5(c). Suppose that [(CR) = 0. Then thereisatel(cR) witht = O such that t(cR) =
0. Since cR<, R, we havet € Z(R;) = 0 because Ris aright non-singular ring. Sot= 0, a
contradiction. Thus I(cR) = 0 and so I(c) = 0. This means that c is left regular and
consequently, cisregular.

Corollary 3.2.4 Let Rbeasemi-prime right Goldie ring. Then right regular elements of R
areregular.

Proof. Let R be a right Goldie ring. Then it satisfies the ACC for right annihilators. By
Theorem 3.1.8, the right singular ideal Z(R) of R is nilpotent. Since R is semi-prime, by
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Lemma 3.1.6, O is the only nilpotent idedl, i.e. Z(R)=0. This implies that R is right non-
singular. Let c be aright regular element in R, i.e. r;(c) =0. Since R has finite right Goldie

dimension, by Lemma 3.25, I;(c) = 0. This completes the proof.

Corollary 3.2.5[13] Let M be aright R-module and m € M with m = 0. If X is an essential
submodule of M, then thereis an essential right ideal Y of Rsuchthat 0 = mY < X.

Lemma 3.2.6 Let R be aright non-singular ring with finite right Goldie dimension. Then R
satisfies ACC and DCC for right annihilators.

Proof. Let A and B be right annihilators in R with Ac B. Supposethat A<, B. Letb € B.
Then by Corollary 3.2.5, there exists an essential right ideal L of Rsuchthat b L < A. This
implies that |1;(A)b L = 0. Since Ris right non-singular, we have I;(A)b € Z(R;) =0. So
[o(A)b=0andthusb e r,(I1;(A)) = A. Therefore, A = B.

Supposethat Ac B and A is not essential in B. Then there exists anon-zero right ideal C —
Rsuchthat Cc B, AnC =0and A®C <_B. If A®C = B, then we are to finish. If not,

there existsanon-zeroright ideal C' = Rsuchthat A@C © C' <_B.

Consider a strictly ascending chain of right annihilators of R:
AchAcchAchA,c..

whee A=A @ A, A=A D AD®A,..A=ADA®.0A,...

But this contradicts the hypothesis that R has finite right Goldie dimension. So the chain must

be stationary. Therefore, A, = A, for some ne N, i.e. R has the ACC for right

annihilators.

Finally, consider a strictly descending chain of right annihilators of R:

A>A>.oA D>A,;,D..
where A=A,® A, AZADADA, A=A BAD - DADA® -
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But this contradicts the hypothesis that R has finite right Goldie dimension. So the chain must
be stationary. Therefore, A, = A, for some n € N. Thus R has the DCC for right

annihilators. This completes the proof.

Corollary 3.2.7 A semi-prime right Goldie ring has the DCC for right annihilators.

Proof. Let R be a semi-prime right Goldie ring. Then R has the ACC for right annihilators.
By Theorem 3.1.8, the right singular idea Z(R) of R is nilpotent. Since R is semi-prime, by
Lemma 3.1.6, O is the only nilpotent idedl, i.e. Z(R)=0. This implies that R is right non-

singular. Thus, R has DCC for right annihilators.

Theorem 3.2.8 Let R be a semiprime ring satisfying ACC on right annihilatorsand let J c |
be right ideals in R such that r,(l) < rg(J) . Then there exists xe | such that xl = 0and

xI N J =0. In particular, J cannot be essentia inl.
Proof. Since R satisfies ACC on right annihilators, it satisfies DCC on left annihilators.
Therefore, there exists a left annihilator A minimal with respect to ann, (1) ¢ A< Aann, (J).

Then Al =0 and so AlAI = 0, because Ris semiprime. Takeany ac A and y e | such that
Ayal #0. Then yal = 0and so ya= 0. It suffices to show that yal nJ = Oand the desired
element xe | is chosen to be ya. Suppose that yay' be a nonzero element in J for some
y'el. Put A=ann (y)nA then Ais a Ileft annihilator ~ with
ann, (1) c A'c Ac Aann,(J). But if Ayay'c AJ =0, then Ayac A" and if Ayal =0, then
Ayaz ann (). So, ann/(l)= A. By the minimaity of A, we have A'= A that is,
Ac ann, (y'). But then Ay'=0 which contradicts the fact that yal = 0. This completes the

proof of the theorem.

Theorem 3.2.9 Let R be aright non-singular ring with the ACC for right annihilators and let
¢ be an element of R such that cRis an essentia right ideal of R. Then cisright regular.
Proof. Let xe Rand let A and B be right annihilators of R such that A is an essential R-
submodule of B. We show that xA<, xB. Let be B with xb = 0. Then there is an essential
right ideal L of Rsuch that bL — A or xbL — xA. For any y e xbL, we have y = xbl, where

lel, andso ye xA since bl ebL < A If xbL =0, then xbe Z(R), because Ris right non-
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singular. This implies that xb=0, a contradiction. Thus, xbL=0. We see that
0= xbL — xbRN xA It follows that xA<,xB. Since A<,B and xA<, xB, we have
c(cR) <, cR<, R So c’R<, R By induction, c“R<_ R for each positive integer k. Since R
has the ACC for right annihilators, the chain ry(c) < ry(c?) c ry(c®) < -+~ stabilizes. So

n+l

re(c") =rg(c™) for some n. This implies that c"Rnr,(c)=0. If c"Rnrg(c) =0, for any

tec"Rnrg(c), we have t=c"u for ue R and t ery(c). Thisimplies that ct =0. So that

n+1,

c(c"u)=c"™u=0. It follows that uery(c")=r(c"). Therefore, c"™'u=0=c'u=t, a

contradiction. Thus, ry(c) =0. Hence, cisright regular.

Theorem 3.2.10 Let R be a prime ring with the ACC and DCC for right annihilators, I an
essential right ideal of Rand let ae R. Then a+1 contains a regular element of R, where
a+1 ={a+x]|xel}.

Proof. Let xe | with ry(a+ x) =0as small as possible. Put c=a+ x. Let B be aright ideal
of Rwith BncR=0. Let beBnI, then c+b=(a+x)+b=a+(x+b)ea+| because
X+bel.Since cRNbR=0, wehave ry(c+Db)=rg(c) Nry(b).

Take any terg(c+b), then (c+b)t=0=ct+bt= ct=0 and bt=0=terg(c) and
tery(b) so that terg(c)nry(b). Therefore, ry(c+b)c rg(c)rg(b). Again, take any
uerg(c)nrg(b), then uerg(c)and uery(b) = cu=0 and bu=0= (c+bju=0 and
uerg(c+b). Therefore, ry(c) Nry(b) < ry(c+Db).

Since rgz(c+b) c ry(c). By the choice of c, we have ry(c+b) =r(c). Hence ry(c) c rx(b).
This implies that b.r,(c)=0 for any be BN I. Therefore, (BN 1) ry(c)=0. Since Ris a
prime ring, we have either ry(c)=0 or BNl =0. If BNl =0, then B=0 because | is
essential in R. It follows that cR<, R By Theorem 3..2.9 and Theorem 3.2.8, we can
conclude that ry(c) =0. So that a+ 1 contains a right regular element. Take any d e a+ |
with I;(d) as small as possible. Then there is a right R-submodule Y of | such that

YNdR=0 and y®dR<_ R Let Abealeftideal of Rwith AnRd=0and let ye ANY.

Wehave RdnRy=0. So I,(d+y)=Ig(d) nl;(y). Also, wehave d+yea+| andsince

48



dRNyR=0, we have ry(d+Yy)=rz(d)nrg(y)=0 because ry(d)=0. Therefore, by the
choice of d, we have I,(d +y) =1,(d). So I,(d) cI;(y), i.e. I5(d).y=0 forany ye ANY.
Hence |;(d)(ANnY)=0. So Iz(d)YA=0 because if AYare right ideals of R, then
YAc ANY. Therefore, Al (d)Y =0because Risasemi-primering, |;(d)Yisanideal and A
is a left ideal of R. This implies that Al,(d) (dR®Y)=0 because Y c dR@®Y. Since
dRA®Y <, R, we have Al;(d) e Z(R)=0, i.e. Risright nonsingular and is prime. So either
A=0or I;(d)=0. If A=0,then Rd <, R By Theorem 3..2.3 and Theorem 3.2.9, I;(d) =0,

i.e., disleft regular. Thusthe result follows.

Theorem 3.2.11 [13] Let R be a semi-prime ring with the ACC (equivalently, DCC) for

annihilator ideals. Then R has only a finite number of minimal prime ideds. If B,...,P, are
the minimal prime ideals of R, then P,n---n P, =0. Also, a prime ideal is minimal if and

only if it isan annihilator ideal.
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CHAPTER IV
PRIME AND SEMI-PRIME GOLDIE MODULES

Overview

Prime submodules and prime modules appear in many contexts. By an adaptation of basic
properties of prime ideals, we introduced the notion of prime submoduules and prime
modules and studied their structures. In this thesis, we investigate some properties of prime
and semi-prime submodules over non-commutative rings. Sanh et a. [14] introduced the
notion of prime and semi-prime submodules of a given right R-module. Throughout the
work, al rings are associative with identity and all modules are unitary right R- modules.
S = End, (M) denotes an endomorphisms ring of right R-module M.

4.1 Prime and Semi-Prime Submodules

Definition

A submodule X of M is called a fully invariant submodule of M if for any f € S, we have
f(X) < X.

Let M be a right R-module and X be a fully invariant proper submodule of M. Then X is
called a prime submodule if for any ideal | of Sand and any fully invariant submodule U of
M, I(U)c X implies I(M)c X or U c X. Especialy, anideal P of aring Ris a prime
ideal if for any ideals 1,J or R, IJ c P implies | c P or J c P. A right Rmodule M is
called aprime moduleif O is a prime submodule of M.

A fully invariant submodule X of M is caled strongly prime if for any f € S and any
meM, f(m)e X implies f(M)c X or me X. Especidly, an idea | of aring R is
strongly primeif for any a,b e Rwith ab e | impliesael or bel.

Example

(i) Let Z, ={0,1,2,3} be the additive group of integersmodulo 4. Then X =<2> isa

prime submodule of the Z -module Z,. If M issimple, then O is a prime submodule.

(ii) Every ssmple moduleis prime

50



Sanh et at.[14] investigated the following theorem as some characterizations of prime
submodules over endomorphism rings similar to the Proposition 3.1.1 for prime ideals over

arbitrary rings. We will useit asatool for checking the primeness.

Theorem 4.1.1 Let X be a proper fully invariant submodule of M and S= End,(M), its

endomorphism ring. Then the following conditions are equivalent:

(1) X isaprime submodule of M;
(2) For any right ideal 1 of S, any submodule U of M, if I(U) < X, then either
I((M)c X orU c X;
(3) Forany j €S and fully invariant submodule U of M ,if j (U) < X, then either
] (M)c X orU c X;
(4) For any leftideal 1 of S andsubset A of M, if IS(A) c X, then either
[((M)c X or Ac X;
(B5) Foranyj € S andforany me M, if j (S(m)) c X, thenetherj (M)c X or
me M. Moreover, if M is quasi-projective, then the above conditions are equivalent to:

(6) M/X isaprime module.

After investigating the above new Theorem for modules, Sanh et at. found that Proposition
3.1.1 may be developed as follows:

Corollary 4.1.2 For aproper ideal P inaring R, the following conditions are equivalent:
(@) Pisaprimeideal.

(b) If I and J are any ideals of R properly containing P, then | J & P.

(c) R/ Pisaprimering.

(d) If  and Jareany right idealsof Rsuchthat | J < P, theneither| « PorJ < P.

(e) If  and Jare any left idealsof Rsuchthat | J < P, theneither | « PorJ < P.

() fx,y € RwithxRy < P, theneitherx € Pory € P.

(g) Forany x € Rand any idedl | of Rsuchthat x| < P, theneither xR < Por | < P.
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Definition

A prime submodule X of a right R-module M is called a minimal prime submodule if it is
minimal in the class of prime submodules of M.

As generalizations of prime ideals, the following results are investigated-

Corollary 4.1.3 [14] If P is a prime submodule of a right R-module M, then P contains a

minimal prime submodule of M.

Lemma 4.1.4 [14] Let M be aright R-module and S= End;(M). Suppose that X is a fully
invariant submodule of M. Thentheset I, ={f € S: f(M) c X} isatwo-sided ideal of S.

Proposition 4.1.5 [16] Let M be a right R-module which is a self-generator. Then we have
the following:

(1) If Xisaminimal prime submodule of M, then |, isaminimal primeidea of S

(2) If Pisaminima primeideal of S then X :=P(M) isaminimal prime submodule of M and
I, =P.

Lemma 4.1.6 [14] Let M be a right R-module, S=End,(M) and X a fully invariant
submodule of M. If Xisaprime submodule of M, then |, isaprimeideal of S Conversely, if

M isaself-generator and if 1, isaprimeideal of S then Xisaprime submodule of M.

Lemma 4.1.7 [14] Let M be a prime module. Then its endomorphism ring Sis a prime ring.

Conversdly, if M isaself-generator and if Sisaprimering, then M is a prime module.

Definition
A fully invariant submodule is called a semi-prime submodule if it is an intersection of prime
submodules. A right R-module M is called a semi-prime module if O is a semi-prime

submodule of M. Consequently, a ring R is called semi-prime ring if R;is a semi-prime

module. Every semi-simple module is semi-prime.
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Definition
Let M be aright R-module and X C M, asubset of M. Then we say that M is generated by X

if M =\X)={ Z)gri I x eX, reR i=123-}. If Xis afiinite subset, then M is finitely

generated and we write M =|X)={ ix r/xeX reR i=,23-k}. A module M is caled a
i1

self-generator if it generates all of its submodules. If X is a submodule of M and

X=Z f. (M), then M is called a self-generator, where S=End, (M).

f,eS

According to Ahmed et al.[16] the new structure of the Corollary 3.8 [3] for right R-modules
over endomorphism ringsis as follows:
Theorem 4.1.8 Let M be a right R-module which is a self-generator. Let X be a fully

invariant submodule of M and S = End,(M).Then the following conditions are equivalent:

(1) Xisasemi-prime submodule of M;
(2) If Jisany ideal of Ssuch that J?(M) c X, then J(M) c X;
(3) If Jisany ideal of Ssuch that J(M) o X, thenJ*(M) & X;

(4) If Jisany right ideal of Ssuch that J%(M) c X, then J(M) c X;
(5) If Jisany left idea of Ssuch that J* (M) < X, then J(M) < X.

Using the above results,we investigate the following results for prime and semi-prime
submodules.

Proposition 4.1.9 Let M be a quasi-projective, finitely generated right R-module which is a
self-generator. If M is a Noetherian module, then there exist only finitely many minimal
prime submodules.

Proof. If M is a Noetherian module, then Sis a right Noetherian ring. Indeed, suppose that

we have an ascending chain of right ideal of S say I, < |, —... Then we havel,(M) c
I,(M) c...isascending chain of submodules of M. Since M is a Noetherian module, there is

an integer nsuch that 1 , (M) = I, (M), for al k> n. Then we have | , = Hom(M, | ,(M)) =
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Hom(M, I, (M)) = I .. Thusthechainl, c |, c—...isstationary, so Sis aright Noetherian
ring. By Corollary 3.1.3, S has only finitely many minima prime ideas P,,...,R. By

Lemma4.1.6, P, (M),..., P, (M) are the only minimal prime submodules of M.

Lemma 4.1.10 Let M be a quasi-projective, finitely generated right R-module which is a
self-generator and X, aminimal submodule of M. Then | , isaminimal right ideal of S

Proof. Let J be aright ideal of Ssuch that 0= J — I, . Then J (M) is a nonzero submodule
of Mand J(M) < X. ThusJ (M) = Xandit followsthat J=1, .

Proposition 4.1.11 Let M be a quasi-projective, finitely generated right R-module which is a
self-generator. Let X be a minimal submodule of M. Then either 1% = 0 or X = f (M) for
someidempotent f e I, .

Proof. Since X is a minimal submodule of M, |, isaminima right ideal of S by Lemma
4.1.10. Supposethat 15 # 0. Thenthereisg e |, suchthatg |, # 0.Sincegl, isaright
ideal of Sandgl, < I,,wehavegl, =1,.Thenthereexistsf e |, suchthatgf=g.
Thensetl={h e l,:gh=0}isaright ideal of Sand | is properly contained in | , since f
¢ |. By the minimality of I , , we must have | = 0. Wehavef? -f e I, andg (f* -f)= 0, s0

f2 =f.Sincef (M) c Xandf (M) = 0, we havef (M) = X.

Corollary 4.1.12 Let M be a quasi-projective, finitely generated right R-module which is a
self-generator. Let X be aminimal submodule of M. If M is a semi-prime module, then X = f
(M) for someidempotent f e I, .

Proof. Since M is a semi-prime module, 13 = 0. Thus X =f (M) for some idempotent
fel,,byProposition4.1.11.

Definition

The singular submodule of aright R-module M is denoted by Z(M) and defined as
ZM)={meM | mK =0 for some essential right ideal K of R} Or, equivalently,

Z(M) = {m e M|rg(m) isan essential rightideal of R}, wherer (m)={r e R|nmr =0}.
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A right R-module M is called a non-singular module if Z(M) = 0 and asingular module if
Z(M) = M.
Forany mm'e Z(M),we have r,(m) <, R and ry(m’) <, R. Since ry(m+m") o

r=(MNrg(mM'), wehave ry(m) Nrg(M) <, R So r,(m+m’) <, R Thus m+m'e Z(M).

Proposition 4.1.13 Let M be a quasi-projective, finitely generated right R-module which is a
self-generator. Then Z(S) (M) < Z (M) where Z(S) is asingular ideal of Sand Z (M) isa
singular submodule of M.

Proof. Letf € Z(S) and x € M. We will show that f(x) € Z (M). Sincef € Z(S), there exists
an essentia right ideal K of Ssuch that f K= 0. Thenf K (M) = 0.

From K is an essential right ideal of S, we have K (M) is an essential submodule of M, and so
x" K (M) is an essential right ideal of R. We have f(x) (x * K (M)) = f(x(x " K (M))) c fK
(M) = 0, proving that f(x) € Z (M).

Corollary 4.1.14 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator. If M isanon-singular module, then Sisaright non-singular ring.

We investigate the following Proposition for semi-prime submodule which is similar to

Theorem 3.2.11 for ideals over arbitrary rings.

Proposition 4.1.15 Let M be aright R-module which is a self-generator. If M is a semi-prime
module with the ACC for M-annihilators, then M has only a finite number of minimal prime

submodules. If P,,..., P, are minimal prime submodules of M, thenP;, n,...,n P, = 0.

Also aprime submodule P of M isminimal if and only if I , isan annihilator ideal of S

Proof. Since M is a semi-prime module, Sis a semi-prime ring. If satisfies the ACC for M-
annihilators, then S satisfies the ACC for right annihilators. By Lemma 3.4[3], Shas only a
finite number of minimal prime ideals. Therefore M has only a finite number of minimal

prime submodules, by Lemma4.1.10 If P,...,P, are minima prime submodules of M, then
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lg s...y I'p @eminima prime ideas of S Thus I, N,...,nlI, =0, by Theorem 3.2.1. But

lg Ny L = we have P, n,...,n P, = 0. Finally, a prime submodule P

) I PN By 2
of Misminimal if and only if | , isaminimal primeidea of S It isequivalent to saying that
| isan annihilator ideal of S by Lemma4.1.10.

4.2 Prime and Semi-prime Goldie Modules

Annihilators
Let M bearight R-moduleand let X < M, asubset of M. Then the annihilator of X is the set

r(X)={r e R|xr =0V xe X}whichisaright idea of R.

Proof. (i) 0ery(X) impliesthat r(X) =f .
(if) For any r,r,,r, e rg(X) and for any x e X, wehave x(r, +r,) = xr, + xr, = 0 so that

r,+r, € rg(X).

(iii) Forany | € R, wehave x(rl )= (xr)l =0l =0 sothat rl ery(X).

Moreover, if X is a submodule of M, then r;(X)is a two-sided ideal of R because then
X(Ir)y=(x)r=0 for xI € X.

According to S. Ebrahimi Atani and S. Khojasteh G. Ghaleh:

Let Rbe aring and X a submodule of an R-module M. Then the set
(X:M)={reR:Mr c X} isatwo-sided ideal of R.

According to Sanh et al. [15],
Let M be aright R-module, S= End,(M) endomorphismring and | — S, asubset of S Then
asubmodule X of M is called an M-annihilator if

X=r,()= Ker(l):ﬂKer(f):{meM f(m=0Vvfel}

fel
For any mmer, (1), we have f(m)=f(m)=0= f(m+m)=0=m+mer, (1) and

forany mer, (1) andanyreR, f(m=f(M)=0= f(m+m)=0=>m+mer,(l).
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Forany mer, (I)andany f el S, f(m)=0,i.e. me Ker(f)forany f el. Thisimplies

that me[\Ker(f)=Ker(l). So r,(I)cKer(l). Also, me[|Ker(f)implies that

fel fel

me Ker(f)forany f el = S. Sothat f(m)=0 forany f el. Thus mer,, (1).
Therefore, Ker(I) ="\ Ker(f) < r, (1) showing that r,, (1) = Ker(l).

fel

Definition

Wedenote |(.) and r,, (.) to beasubset of M in Sand the right annihilator of a subset of Sin
M, respectively. A submodule K of M is said to be essential in M if for any nonzero
submodule L of M, we have K nL # 0. In this case, M is an essential extension of K. It is
easy to show that the intersection of a finite number of essential submodules of M is again

essential in M and any submodul e containing an essential submodule is essential.

A nonzero right R-module M is said to be uniform if any two nonzero submodules have
nonzero intersection, i.e. if each nonzero submodule of M is essential in M.

A module M has finite Goldie dimension if it does contain a direct sum of afinite number of
nonzero submodules. A module M has finite Goldie dimension if it is Noetherian orArtinian.
If every nonzero submodule of a module M is esstetial in M, then M has finite Goldie
dimension. A right R-module M is called a Goldie module if M has finite Goldie dimension
and M satisfies the ACC for M-annihilator submodules.

An Artinian ring (Noetherian ring) with unity is always a Goldie ring, because an Artinian
ring is Noetherian and a Noetherian ring is always a Goldie ring and consequently, a Goldie
module but the converse is not true.

Example

(i) Theset Q of rational numbers has finite Goldie dimension as a Z-module, because for any
0=qeQ, wehave gqZ <,

(if) The set Z of al integers has finite Goldie dimension as a Z-module, because for any

0#£meZwehave mZ<, Z.
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Also, Q and Z are both noetherian Z-modules, because every nonzero submodule of them is
finitely generated. Since every noetherian module is a Goldie module, so Q and Z are both

Goldie Z-modul es.

If Visavector space, then G.dim(V) <« if and only if V has finite dimension in the usual

sense of linear algebra, and in these circumstances, they are equal.

We investigate the following properties for Goldie modules over associative arbitrary and

endomorphism rings.

Lemma 4.2.1 Let M be a quasi-projective, finitely generated right R-module which is a self-
generator. If M is a Goldie module, then Sisaright Goldie ring.

Proof. Let M be a Goldie module. Then M has finite Goldie dimension and satisfies the ACC
for M-annihilators. Thus S has ACC for right annihilators. Since M is a quasi-projective,
finitely generated, self-generator and has finite Goldie dimension, we must have S has finite

Goldie dimension. Hence Sisright Goldie ring.

We develop the following Proposition for Goldie modules over endomorphism rings which is
similar to Theorem 3.2.1 for ideals over arbitrary rings.

Proposition 4.2.2 Let M be a right R-module with finite Goldie dimension and let
f € S=End,(M)beamonomorphism. Then f(M)isan essential submodule of M.

Proof. Suppose that f(M)is not an essential submodule of M. Then there exists a nonzero
submodule X of M such that f (M) X =0.Since X is nonzero, we have f(X)isanonzero

submodule of f(M)and XN f(X)=0.So the sum X+ f(X)is direct. Consider
(X + f(X) f3(X)and take any xe (X + f(X))n f?(X).Then x=y+ f(u)=f*()
where y,u,ve X. Sothat y=f?(v)— f(u)=f(f(V)—u)e X f(M)=0 implying that
y=0. Also, f?(v)=f(u) implies that u=f(v)e X f(X)=0. So that u=0 and

consequently, x=0. So that the sum X + f(X)+ f?(X)is direct. By induction hypothesis,
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Zf”(X) is direct for some n, which is a contradiction. Thus, f(M)is an essential
n=0

submodule of M.

Lemma4.2.3: Forany me Z(M)andany r e R, mr € Z(M).
Proof. Let Q={| < R; |l <, R}. Consider the following cases:
()Forany 1,Je€eQ, 1 nJ eQ.
(iflcdJcRyand | €Q, then J Q.
Also, for | c R, and r e R, define r (1) ={ae R|rae I} whichisaright idea of R
(ii)If leQandreR, thenr*(1)eQ,ie.if | < Ryand r e R, then r*(I1) <, R;.
Defineamapping f, : R— R, X rx. Then, we have

fr) ={x|f.(X)el}={x|rxel}=r"1.
We show that for any | <, R, f*(1)<, R We know that f:C — B and A<_ B, then
f*(A) <, C. Sothatif f :R—>Rand 1<, Rthen f (1)<, R
Now we show that me Z(M) if and only if thereexists | <, R such that ml = 0.
To do this, first assume that me Z(M). Then mry(m) =0. Choose | =r;(m). Then | <, R
Conversely, assume that there exists | <, R with ml =0. Then for any r €1, we have
mr =0. Thisimpliesthat r e ry(m). Thus, | cr,(mc R Since | <, R and ry(m) <, R,
wehave me Z(M).
Finally, we show that for any me Z(M)andany r e R, nr € Z(M). Let me Z(M), r eR
and | =ry,(m<, R Condder J=r'(l)={acR|racl}. Teke any aeJ. Then
raerg(m) =m(ra) =(mr)a=0 andso mrd =0. Hence mr € Z(M).
Lemma 4.2.4 Let | be aright ideal of aring R and M aright R-module. If X <, M, an
essential submodule of M, then | isan essential right ideal of R, where

| ={r e R|Mr c X}.

Proof. Assume that X <, M. Since MOc X, then Oel. Thus, | #f. For any s,s, €1,
we have Ms, c X and Ms, c X. Then M(s, +5s,) =M(s,)+ M(s,) c X because X <M.

Thus s +s,el. For any sel,reR, we have Msc X. This implies that
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M(sr) = (Ms)r c Xr ¢ X. Thus, sr e I. Weaso can show that | isaleft ideal of R. For any
sel,re Rwehave Msc X. Since M(rs) =(Mr)sc Xsc X. Sorsell.

Suppose that | is not essential in R. Then there exists 0= J c R; such that | nJ =0. We
want to show that Ml nMJ = 0. First we show that MJ = 0. If MJ =0, then 0 X. This
meansthat J — |, whichisacontradiction because | N J =0. So MJ = 0.

To show that MI " MJ =0. If MI " MJ = 0, take any nonzero element x e Ml " MJ. Then
X=mi=m,j for any mym,eM and O=iel0=jed. If jel, then we have a
contradiction because | nJ=0. S0 j¢l, m,jg X andso MJ ¢ X. But m,j e M. Since
X <, M, there exists a te R such that m,jte X for any m, e M. This shows that
M(jt)c X and s0 jtel. Since J < R;, we have jteJ. Thus, | nJ =0, which is a

contradiction. Hence Ml nMJ = 0.
So MIJ#0, MJcMand MJ ¢ X. Let K={reR|MJrc X}. Then K is a two-sided

ideal of R. Since X<, M, MJg X and K=#0, so 0= MJIK < X. This implies that
JKcl,IKcJ,JK-0andso | nJ =0, which is a contradiction. Thus, | is an essentid

right ideal of R.
Lemma 4.2.5 Let M be a quasi-projective, finitely generated right R-module which is a self-

generator. If X is an essential submodule of M, then |, ={f € S| f(M) < X} is an essential
rightideal of S=End,(M).
Proof. Since M isaself-generator and X =0, wehave |, #0. Let Jbearight ideal of S
such that such that I, N J = 0. By 18.4 [21] we have
I, =Hom(M, I, (M))=Hom(M, X)and J = Hom(M,J(M)). It would imply that

0=1, nJ=Hom(M, X)nHom(M,J(M)) = Hom(M, X nJ(M)).
It follows that X nJ(M) =0 because M is a self-generator and hence J(M) =0 proving
that J = 0. Thisshowsthat |, isan essential right ideal of S.
Definition
An element f € S is called left regular if 1(f)=0, where I(f)={geS:gf =0 and is

caled right regular if and only if f :M — M is monomorphism, where S= End;(M).
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With this definition, Lemma 3.2.3 may be modified over associative endomorphism rings as

follows:

Lemma 4.2.6 Let M be a non-singular right R-module with finite Goldie dimension. Then
every one to one endomorphism of M isleft regular in S.

Proof. Let f e Sbe a monomorphism. By Proposition 4.2.2, f(M) is essentia in M. Take
any gelg(f). Then of =0 and hence gf(M)=0. For each meM, let
l,={reR|mre f(M)}. Then | is an essentia right ideal of Rand ml,, < f(M). It
followsthat g(m)l, < gf (M) =0. Therefore, g(m) e Z(M) =0. It would imply that g =0,
showing that I(f) = 0. Hencef isleft regularin S

Lemma 4.2.7 Let M be a quasi-projective, finitely generated right R-module which is a self-
generator. If M is a semi-prime Goldie module, then the left annihilator of every essential

right ideal of aring Sis zero.

Proof. Since M is a semi-prime Goldie module, S is a semi-prime right Goldie ring ry
Lemma4.2.1. Then the singular ideal Z(S) of Sis nilpotent since S satisfies the ACC for right
annihilators. Since Sis semi-prime, we have Z(S) = 0. It implies that the left annihilator of

every essentia right ideal of Sis zero.
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CONCLUSION

In 1928, Krull investigated some properties of prime and semi-prime ideals over
commutative rings. Goodearl and Warfield developed the commutative definitions by
replacing products of elements with products of ideals. Also they investigated some

characterizations of prime and semi-prime rings.

In 2009, Sanh et a. introduced a notion of prime and semi-prime submodules and
investigated some properties of prime and semi-prime Goldieringsand modules.

In this thesis, we have developed the properties of prime and semi-prime submodules over
associative endomorphism rings by modifying the properties of prime and semi-prime ideals
over associative arbitrary rings.

Finally, we have investigated some characterizations of prime and semi-prime Goldie

modules over endomorphism rings as generalizations of prime and semi-prime ideals over
associative arbitrary rings.
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