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ABSTRACT

Let R be a ring. Then the ring R has finite right Goldie dimension if it contains a direct sum

of a finite number of nonzero right ideals. Symbolically, we write .)dim(. RG A ring R is

called a right Goldie ring if it has finite right Goldie dimension and satisfies the ascending

chain condition (ACC) for right annihilators. A module M is called a Goldie module if it has

finite Goldie dimension and if it satisfies the ACC on M-annihilator submodules. In this

thesis, we develop some properties of prime and semi-prime submodules over associative

endomorphism rings by modifying the properties of prime and semi-prime ideals over

associative arbitrary rings. Also, we investigate some properties of prime and semi-prime

Goldie modules over associative endomorphism rings.

.
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CHAPTER I

INTRODUCTION

Ring theory is an important part of algebra. Module theory appears as a generalization of

theory of vector space over a field. In a vector space, the scalars are treated to be the

elements of a field while in a module we will allow the scalars to be the elements of an

arbitrary ring. Every field is a ring and every ring may be considered as a module. Goldie’s

Theorem is a basic structural result in the ring theory, proved by Alfred Goldie in 1950.

Alfred Goldie first used the notion of uniform modules to construct a measure of dimension

for modules, now known as the uniform dimension or Goldie  dimension for modules.

Literature review

Modern ring theory began when Wedderbern (1907) proved his celebrated classification

theorem for finite-dimensional semi-simple algebras over fields. Twenty years later Emmy

Noether and Emil Artin introduced the Ascending Chain Condition ACC) and Descending

Chain Condition (DCC) as substitutes for dimensionality and Artin (1927) proved the

analogue of Wedderbern’s Theorem for general semi-simple rings. Wedderbern’s Theorem

for general semi-simple algebras can be extended successfully for rings satisfying the DCC

on one-sided ideals. The Wedderbern-Artin Theory is the cornerstone of non-commutative

ring theory.

Wedderbern-Artin Theorem: For a ring R, the following conditions are equivalent:

(1) R is a semisimple ring;

(2) Every right ideal I of R is a direct summand of R;

(3) Every left ideal I of R is a direct summand of R;

(4) Every right R-module is semisimple;

(5) Every right R-module is injective;

(6) Every right R-module is projective;

(7) Every cyclic right  R-module is injective;
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(8) Every cyclic right  R-module is projective;

(9) Every simple right  R-module is projective;

Prime ideals take an important role in the structure theory of rings and of major researches.

In 1928, Krull introduced the notion of prime ideals via product of ideals in both the

commutative and non-commutative cases. In the commutative case, there is a close

connection between prime ideals and nilpotent elements. In particular, the intersection of all

prime ideals equals the set of nilpotent elements. In 1929, Krull proved the existence of

minimal primes in commutative case that every prime ideal contains a minimal prime ideal.

The concepts of semi-prime ideals in commutative setting were introduced by Krull in 1929

and by Nagata in 1950. Krull proved that a non-commutative ring is semi-prime if and only if

it has no nonzero nilpotent elements.

In the viewpoint of module theory, ring structures are generalized by considering as a special

case of module structures, so properties are transferred from the category of rings to category

of modules. The concepts of prime submodules are generalized from prime ideals.

In 1983, Goodeatl and Warfield and in 1987, McConnell and Robson introduced the notion

of prime submodules over a non-commutative ring R. They called a left R-module M a prime

module if for any proper submodule X of M, ).()( XannMann RR 

In 2002, Ameri [10] and Gaur et al. [11] introduced the structure of prime submodules in

multiplication modules over commutative rings. Following them, a left R-module M is a

multiplication module if every submodule X is of the form IM for some ideal I of R and M is

called a weak multiplication module if every prime submodule of M is of the form IM for

some ideal I of R.

In 2007, Sanh et al. [15] introduced the new notion of prime submodules. They called a fully

invariant proper submodule X of a right R-module M a prime submodule if for any ideal I of

S and any fully invariant submodule X of M,  if I(X)P then either I(M)P or XP. A

right R-module M is called a prime module if 0 is a prime submodule of M.

A fully invariant submodule X of a right R-module M is called a semi-prime submodule if it

is an intersection of prime submodules. A right R-module M is called a semi-prime module if

0 is a semi-prime submodule of M.
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We study in this thesis together with the related notion of essential and uniform submodules

and applications are made to prime and semi-prime Goldie rings and modules. A non-zero

submodule X of a right R-module M is called an essential submodule of M if for any nonzero

submodule Y of M, .0YX A non-zero module M is called uniform if any two non-zero

submodules of M have non-zero intersection, i.e. if each non-zero submodule of M is

essential in M. A basic tool in the study of Noetherian rings and modules is the Goldie

dimension of a module. A right R-module M is said to have finite Goldie dimension if M

contains a direct sum of a finite number of nonzero submodules. Equivalently, if M has the

finite uniform submodules nUU ,,1  whose sum is direct and essential in M, then M has

finite Goldie dimension. Then the positive integer n is called the Goldie dimension of M and

is denoted by G.dim(M) = n. Also M has finite Goldie dimension if M is Noetherian or

Artinian.

In 2008, Sanh et. al. [15] introduced a new notion of Goldie modules. Let X be a submodule

of a right R-module M and ).(MEndS R Then X is called an M-annihilator if

,)()( 
If

fKerIKerX


 for some .SI  A right R-module M is called a Goldie module if

it has finite Goldie dimension and  satisfies the ACC on M-annihilator submodules. Applying

this new notion we got many results relating to prime and semi-prime Goldie modules.

In this thesis, Chapter I deals with the early history of prime and semi-prime Goldie rings and

modules. All the essential basic definitions, examples and their properties are given in

Chapter II. Chapter III deals with the basic properties of prime and semi-prime Goldie rings

together with some new properties. Also in this chapter, we describe some properties of

prime and semi-prime ideals in associative arbitrary rings by modifying the results on prime

and semi-prime modules investigated by Sanh et al. [14]. In Chapter IV,we investigate some

properties of prime and semi-prime Goldie modules as generalizations of prime and semi-

prime Goldie rings.
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CHAPTER II

BASIC KNOWLEDGE

Overview

Throughout this thesis, all rings are associative with identity and all modules are unitary right

R-modules. A substantial amount of information about a ring can be learned from a study of

the class of modules it admits. Modules actually serve as a generalization of both vector

spaces and abelian groups, and their basis behaviour is quite similar to that of the more

special systems. In this chapter, we introduce the fundamental tools of this study. This

chapter reviews the basic facts about rings, subrings, commutative division rings, integral

domains, endomorphism rings, ideals and modules, homomorphisms and other notions. It

also introduces some of the notations and the examples that will be needed later.

We denote by R an arbitrary ring and by Mod-R, the category of all right R-modules. The

notation RM indicates a right R-module M which when R1 is assumed to be unity, i.e. to

have the property that mm .1 for any Mm . The set ),( NMHomR denotes the set of all

right R-module homomorphisms from the right R-modules M to N. In particular, the

set ),( MMHomR denotes an endomorphism ring of a right R-module M. It is denoted by

).(MEndS R The kernel of any ),( NMHomf R is denoted by Ker(f) and the image of f

by Im(f). A submodule X of M is indicated by writing .MX  Also RRI  means that I is a

right ideal of R and RI R is a left ideal of R. The notion RI is reserved for ideals, i.e.

two-sided ideals. The relation MA e means that A is an essential submodule of M. As usual

the sets N, Z, Q, R, C represent the sets of natural numbers, integers, rational numbers, real

numbers and complex numbers respectively.

2.1 Preliminaries

Before dealing with deeper results on the structure of rings with the help of module theory,

we provide first some essential elementary definitions, examples and properties.
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Definition

Let R be a non-empty set with two binary operations addition(+) and multiplication(  ). Then
the  algebraic structure  ,,R is called a ring if the following conditions hold:

(i)  ,R is an abelian group.

(ii) multiplication is associative, that is,   Rcbacbacba  ,,),( .
(iii) multiplication is distributive over addition

cabacba  )( (left distributive law)
cbcacba  )( (right distributive law) , Rcba  ,, .

Example
(i) The set Z of all integers, is a ring under addition and multiplication. Similarly the sets

CRQ ,, of rational numbers, real numbers and complex numbers respectively are rings under
usual addition and multiplication.

(ii) The set R of all matrices of the form ,where being real numbers, with

matrix addition and multiplication, is a ring.

Definition

Let R be a ring with identity. Then R is called a division ring (or skew-field) if every non-zero

element in R has a multiplicative inverse. A field is a commutative ring with identity in

which every non-zero element has its multiplicative inverse.

Example

The sets CRQ ,, of rational numbers, real numbers and complex numbers respectively are all

a field under addition and multiplication, but the set Z of all integers, is not a field under

addition and multiplication, because its every non-zero element except 1 has no

multiplicative inverse. Therefore, every field a ring, but the converse is not true.

Definition

A ring R is said to be a ring with identity if we can find a multiplicative identity denoted by

1 in R such that a1= 1a = a, for all Ra .

An element x of a ring R is called a left zero divisor if 0xy for some non-zero Ry , right

zero divisor if 0yx for some non-zero Ry and zero divisor if it is both a left or a right

zero divisor.
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Example

(i)   The ring
















 dcba

dc

ba
R ,,,: is a ring with zero divisor, because

if 0
0

00
,0

00

0



















b
B

a
A then, 0

00

00








AB

(ii)  The residue classes on Z modulo 6 }5,4,3,2,1,0{6  is a ring with zero divisor,

because ,063.2  where .03,02 

Definition

A ring R is said to be a ring without zero divisor if 00  aab or ,0b  ., Rba 

A commutative ring R with identity is called an integral domain if it is not possible to find

two non-zero elements in R whose product is zero, i.e., 0xy , Ryx , ,where .0,0  yx

Hence an integral domain is a commutative ring with identity and without zero divisors.

Example

The ring ),,( I is an integral domain where I is the set of all irrational numbers. Also, the

rings ),,( Z , ),,( Q , ),,( C , ),,( R are examples of  integral domains.

Definition

Let R, R be two rings. Then a map RRf : is called a ring homomorphism if Rsr  , ,

we have (i) )()()( sfrfsrf  , (ii) )()()( sfrfrsf  . Then a map f is a called a

monomorphism if and only if f is one-one, an epimorphism if and only if f is onto and an

isomorphism if and only if f is both one-one and onto.

Let RRf : be a homomorphism, then the image of f is denoted by Im( f ) and defined as
,)(:{)(Im xxfRxf  for some }Rx

and kernel of f is denoted by Ker (f ) and  defined as
Ker( f ) = {x :R }0)( xf .

Definition

Let R be a ring and I be a nonzero subring of R. Then the set I is called a right ideal of R if

Iba  , we have .Ira 

Again, I is called a left ideal of R if RrIa  , we have Ira and I is called an ideal

( i.e., two-sided ideal) of R if Ira  and ,Ira ., RrIa  Every ideal in a ring R is a

submodule of R .
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Example

(i) The subring },4,2,0,2,4,{  E of even integers, is an ideal of the ring of integers
},2,1,0,1,2,{  Z .

(ii) Let
















 Zdc,b,a,:

dc

ba
R is a ring. Then

















 Zba,:

0b

0a
S is a left

ideal and
















 Zba

ba
T ,:

00
is a right ideal of R.

Definition

An ideal S of a ring R is called a semi-prime ideal if for any prime ideals JI , of R such that

.JIS 

Example

Let the set Z of all integers be a ring and m, n prime numbers. Then nZmZ , are both

prime ideals and nZmnZmZ  is a semi-prime ideal of Z.

In the ring },2,1,0,1,2,{  Z of all integers, the ideal

},6,4,2,0,2,4,6,{2S   Z and },9,6,3,0,3,6,9,{3T   Z are prime ideals in

Z and },18,12,6,0,6,12,18,{632   ZZZTS is a semi prime ideal of Z .

Definition

Let R be a ring and I be an ideal of R. Then I is called a principal ideal of R if I is generated

by a single element of R, if If I is generated by a, then it is denoted as I = (a), i.e., if ,Ra

then an ideal of the form I = (a) = }:{ RR  rraa is called a principal ideal of R.

Example

In the ring Z },2,1,0,1,2,{   of all integers, the ideal

},10,5,0,5,10,{5)5(I   is a principal ideal of Z generated by 5.

Definition

Let R be a ring and M be an ideal of R such that RM  . Then M is called maximal if for any

ideal N of R such that ,RNM  then either NM  or ,RN  i.e., M is called a maximal

if there exists no idesl of R which lies between M and R.

Example
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Consider the ring Z },2,1,0,1,2,{   of all integers. Choose two ideals

},12,6,0,6,12,{6S   Z and },6,3,0,3,6,{3T   Z of Z. Here S is not a

maximal ideal, because there exists an ideal T which lies between S and Z , i.e., ,ZTS 

But if we choose },10,5,0,5,10,{5(5)S   , then S is a maximal ideal, because

there exists no  ideal of Z which lies between S and Z.

Proposition 2.1.1 Every maximal ideal M of a ring R is a prime ideal.

Proof. If I and J are ideals of R not contained in M then RMI  and .RMJ 

Now MIJMMJIMIJMJMIR  2))(( and hence .MIJ 

Definition

A minimal prime ideal in a ring R is any prime ideal of R that does not properly contain any

other prime ideals. For instance, if R is a prime ring, then 0 is the unique minimal prime ideal

of R.

Example

(i) In a commutative Artinian ring, every maximal ideal is a minimal prime ideal.

(ii) In an integral domain, the only minimal prime ideal is the zero ideal.

Definition

Let I be an ideal of a ring R.  Then the ring }:{ RaIaI
R  is called a quotient ring or

factor ring of R by I defined by

(i) baIbIaI  )()( and

(ii) .,))(( RbaabIbIaI 

2.2 Modules and different kind of submodules

Definition

Let R be a ring with identity and M an additive abelian group. Then M is called a right R-

module if there exists a map MRMf : defined by mrmrf )( satisfying the following

conditions:

(i)  Mmm 21, and ,Rr we have ;)( 2121 rmrmrmm 

(ii)  Mm and  ,, 21 Rrr  we have ;)( 2121 mrmrrrm 

(iii)  Mm and  ,, 21 Rrr  we have ;)()( 2121 rmrrrm 

(iv)  Mm and ,1 R we have .1. mm 
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Similarly, we can define left R- modules by operating to the left side of M. If M is a right R-

module, then it is denoted by RM and if M is a left R-module, then it is denoted by .MR

Example

(i)   Every ring R is an R-module over itself. Since Z is a ring, so Z is a Z-module.

(ii)  Every additive group is a module over the ring Z of intgers. Since Z, Q, R are dditive

group, so they are Z-modules.

(iii)  Let R be a ring and I a left ideal of R, then I is an R-module.

Definition

Let X be a subset of M. Then X is called a submodule of M if  (X, +) is a subgoup of  (M, +)

and it satisfies the following conditions:

XrxhaveweRrXxiiXyxhaveweXyxi  ,)(,)( M

Definition

Let M be a right R- module and ,ML a submodule of M. Then the right R-module L
M is

called a quotient module or factor module of M by L with the operation LMRLMf /: 

defined by  (i) mrrmf ),( and   (ii) .,,)(),( RrMmLmrrLmrLmf 

Let R, S be two rings and M an abelian group. Then M is called an R-S-bimodule if M is a left

R-module, right S-module. It is denoted  by R M S . If for any mM, r  R, s  S, we have

r (ms) = (r m) s.

Theorem 2.2.1 (Modular law) If A, B, C are submodules  of RM and CB  then

.)()( BCACBA 

Proof: Let ,)( CBAcba  where ,,, CcBbAa  then it follows from CB 

that ),( CAbca  thus BCAcba  )( and hence CCACBA  )()(

Conversely, let .),( BbCAd  Since CB  , it follows that ,)( CBAbd  and

thus also that .)()( CBABCA  Hence we get CBABCA  )()(

Therefore, .)()( BCACBA 
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Definition

Let M and N be R-modules.  Then a map NMf : is said to be a homomorphism if

(i)  Mmm , we have ;)()()( mfmfmmf 

(ii)  Mm and  ,Rr we have .)()( rmfmrf 

Let NMf : be a homomorphism. Then image of f is denoted by ,Im f and defined as
fIm = }.,)(:{ MmsomefornmfNn  fIm is a submodule of N.

The kernel of f is denoted by fKer and defined by
ker f = { 0)(:  mfMm }. ker f is a submodule of M.

An R-homomorphism NMf : is called

(i) a monomorphism if for any submodule X of M and any homomorphism :, gh ,MX  we
have .ghgofhof 

(ii) an epimorphism if for any submodule X of M and any homomorphism ,:, XNgh  we
have .ghfogfoh 
(
iii) an isomorphism if f is a monomorphism and an epimorphism.

(iv) an automorphism if f is an isomorphism and NM 

Remarks
(i) NMf : is a monomorphism if and only if f is one-one.

(ii) NMf : is an epimorphism if and only if f is onto.

Definition

Let M and N be two right R-modules. The set ),(Hom NM denotes the set of all right R-

module homomorphisms fromM to N. In particular, ),(Hom MM is the set of all right R-

module homomorphisms from M to M. The abelian group ),(Hom MM becomes a ring if we

use the composition of maps for multiplication. This ring is called the endomorphism ring of

M and it is denoted by S= ).(MEnd R

Definition

Let M be a right R-module and X  M, a subset of M. Then we say that M is generated by X

if }.,3,2,1,,/{)   iRrXxrxXM iiii If X is a fiinite subset, then M is finitely
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generated and we write }.,3,2,1,,/{)
1

kiRrXxrxXM iii

k

i
i  



. A module M is called a

self-generator if it generates all of its submodules. If X is a submodule of M and

X 



Sf

i

i

Mf ),( then M is called a self-generator, where S = ).(MEnd R

Definition

Let M be a right R-module and X, a subset of M. Then the set X ) is called the submodule of

M generated by X, where X ) = { 
 ni

ix
1

r i : x i  X, r i  R, i=1,2 . . .  , n; n  N},

A subset X of RM is called a free set (or linearly independent set) if for any

,,,3,2,1 Xxxxx k  and for any ,,,2,1 Rrrr k  we have





k

i
iii kirrx

1

},...,2,1{,00 . A subset X of RM is called a basis of M if M = X )

and X is a free set. If a module M has a basis, then M is called a free module.

Example

In  6 = { 5,4,3,2,1,0 } = 1),  6 is a  -module. Then

1. 1) =  6 , 2 ) = { 4,2,0 )}= 4 ), 3 ) = { 3,0 }, 3,2 ) = 6 , because x 3 + y 2 = 1 for

some x, y   .

2. { 2 } is not free because 3  2 = 0 , { 3,2 } is not free, because 3  2 + 32 = .0

Hence  6 is a finitely generated  -module.

Definition

A submodule A of RM is called a direct summand of M if there exists a submodule

MB  such that BAM  and }.0{ BA Then M is called a direct sum of A and B or

the sum A + B is direct.In this case, we write .BAM  In general, the sum 



Ii

i MA is

called a direct sum if for any ,Ij we have .0
,




Iiji

ij AA If BAx  and ,bax  then

Aa and Bb and a, b are the the unique elements of A and B respectly.



20

Theorem 2.2.2 If BA is the internal direct sum and A, B are submodules of M, then

.MBA 

Proof. Consider },),{( BbAabaBA  we can consider as BA or  .BA It is

clear that BA is a right R-module but .MBA  Define BABA : by

baba ),( for all Aa and .Bb Then  is an R-homomorphism, because for any

BAbaba  ),(),,( and for any ,Rr we have

 )()(),()),(),(( bbaabbaababa  ),,(),()()( babababa  
and .),()(),()),(( rbarbabrarbrarrba  
Also, ),,(),(),(),( bababbaababababa   showing that 

is a monomorphism. For every ,BAy  bay  where ., BbAa 

Choose .),( BAbax  we have .)( yx  then  is an epimorphism. Thus  is an

isomorphism, i.e., .BABA 

Definition

A submodule X of a right R-module M is called essential or large in M if for any nonzero

submodule U of M, XU 0 . If X is essential in M we denote X Me . A right ideal I of a

ring R is called essential if it is essential in RR . For any right R-module M, we always have M

e M. Any finite intersection of essential submodules of M is again essential in M, but it is

not true in general. For example, consider the ring  of integers. Every nonzero ideal of  is

essential in  but the intersection of all ideals of  is 0 which is not essential in  . Since

any two nonzero submodules of Q have nonzero intersection, so Q is an essential extension.

A submodule X of RM is called superfluous or coessential or small in M if for any

submodule Y of M, we have X + Y = M implies Y = M, or equivalently, Y  M implies X +

Y  M. A right ideal I of a ring R is called superfluous in R if it is a superfluous submodule

of R .R Every module has at least one superfluous submodule, namely 0.

Proposition 2.2.3 In  , every nonzero ideal is essential.

Proof. Let 0  I   . Then  m   : I = m . For any nonzero ideal J  , we can find

an n   : J = n . Thus I  J = m  n = m n , so m n  I  J, and so I  J  0.

Therefore, I e  .
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Proposition 2.2.4 Let M be a right R-module. Then for any submodule A M, A e M

 m  M, m  0,  r R: m r  0 and m r  A.

Proof. Assume that .MA e Choose m  M, m  0. Then ,0mR and so .0mRA

then there exists .0 mRAx 

This means that Ax0 and there exists Rr such that mrx  . Therefore,

.0 Amrx 

Conversely, let U be a nonzero submodule of .M Choose .0 Um By hypothesis, there

exists Rr with 0mr and .Amr But then since ,Umr we have 0mr and

.UAmr  Hence .MA e

Proposition 2.2.5 For any M  Mod-R, let A  B M. If MA e , then (i) BA e , and

(ii) MB e

Proof. (i) Let BU  be such that .0U then U is a submodule of M Since

.0,  AUMeA Hence BA e .

(ii) Let MU  be such that .0U Then ,0 UBUA  because ,0UA and so

MB e

Proposition 2.2.6 Let A and B be essential submodules in .RM Then A  B e M and

A  B e M.

Proof. Let MU  be such that .0U Then .0)()(  BAUBAU

Hence A  B e M. We have A A  B M and A e M, implying that A  B e M .

Note: Every nonzero submodule of M is essential in M, i.e., a non-zero submodule A of M is

called essential in M if A has nonzero intersection with any non-zero submodule of M.

Lemma 2.2.7 Let L be a submodule of a right R-moduleM. Then L is an essential submodule

of M if and only if  for any nonzero  element m  M,  r R: m r  0 and m r  L.

Proof: We assume that e and choose m , o. Then o, and so

Then o This means that and such that

Therfore,
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Conversery , let be a nonzero  submodule of . Choose By hypothesis,

r with and mr But since Y, so we have and

Hence e

Definition

A submodule of RM is called a maximal submodule of M if and for any

submodule Y of M if ,MYX  then either Y = X or Y = M.

Example

Consider the  module Z },2,1,0,1,2,{   of all integers. Choose two submodules

},12,6,0,6,12,{6S   Z and },6,3,0,3,6,{3T   Z of Z. Here S is not a

maximal submodule, because there exists an submodule T which lies between S and Z , i.e.,

,ZTS  But if we choose },10,5,0,5,10,{(5)S   , then S is a maximal

submodule, because there exists no submoduleof Z which lies between S and Z.

Definition

A submodule X of RM is called a minimal (or simple submodule) submodule if and

for any submodule of such that ,0 XY  then or

Theorem 2.2.8 Let N be any proper submodule of  M . Then N is maximal in M if and only

if m , we have

Proof : Suppuse that N is maximal in M . Choose any

Then  .MmRN  By definition ,

Conversely , we suppose that   Then we can find. so, .   So

By assumption,  N+y R = M .  Since YN  and we have  N+ y R .Y It shows

that M = N+ y R Y .M It follows that Y = M or N is maximal in M .

Lemma 2.2.9 Let M be a right R-module and U, X be submodules of M with .XU Then X

is maximal in M if and only if X / U is  maximal in M / U.
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Proof : ( ) Let Y be a submudule of M and ./// UMUYUX  Then X is a submodule of

Y. Since X is maximal in M, we have X = Y implying that and .// UYUX 

Let )( XU .M  and Then // UYUX  ./ UM Since X/U is maximal in

M/U, we have X/U=M/U, showing that X=Y.

Definition

Let M be a right R-module and .Mm Then the submodule of the form }\{ RrmrrmR 

is called a cylic submodule of M and M is cylic if M = mR. A module M is simple if M  0

and only 0 and M are submodules of M. Every simple module M is cyclic, in fact it is

generated by any non-zero mM.

2.3 Noetherian and Artinian Rings and Modules

Definition

A nonempty family Fof submodules of RM is said to satisfy the Ascending Chain Condition

(briefly, ACC) if for any chain   nMMM 21

of submodules in F , there exists a positive integer n such that nn MM 1 for n = 1,2,

A ring which satisfies ACC for right( left) ideals is called a right (left) noetherian ring. A ring

which is both right noetherian and left noetherian is called a noetherian ring.

A module M is called noetherian if ACC holds for . An R-module M is noetherian if

every submodule of M is finitely generated.

Example

(i) Every finitely generated abelian group  ring is noetherian. Since Q [Q =1.Q=\ Q )],

Z,R are finitely generated abelian group, so Q, Z,R are noetherians.

(ii) Any principal ideal domain (PID) is a noetherian ring, because every ideal of PID is

generated by a single element. The set Zof all integers, is a noetherian ring, because it is a

principal ideal domain (PID).

(iii) Every finitely generated abelian group over a noetherian ring is a noetherian module.
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Since Z is a noetherian ring, so the module Z z is noetherian.

Proposition 2.3.1[19] A module is noetherian if and only if every strictly ascending chain of

submodules is finite.

Proof. Let M be noetherian and ......21  MM an ascending chain of submodules. The

submodule 
ii

iM


has a finite number of generators, and all of them must lie in some
0i

M . It

follows that the chain gets stationary at
0i

M . Conversely, it is easy to see that the ascending

chain condition for submodules implies that every submodule has a finite number of

generators.

The `assending chain condition`, i.e. finiteness of all strictly ascending chains, is usually

abbreviated as ACC.

Proposition 2.3.2 [19] Let L be a submodule of M. Then M is noetherian if and only if both L

and M / L are noetherian.

Proof. M is noetherian obviously implies that L is noetherian. It also implies that LM is

noetherian, because the submodules of LM can be written as LM  , there MML  .

Suppose conversely that L and LM are noetherian. If M  is a submodule of ,M then

ML  is finitely generated as a submodule of ,L and LMLMLM )()(  is

finitely generated as a submodule of .LM It follows from Lemma 3.1(ii) ([19], page-11)

that M  is finitely generated. Hence M is noetherian.

The ring R is right noetherian if RR is a noetherian module, i.e. every right ideal of R is

finitely generated.

Proposition 2.3.3 [19] If a ring R is noetherian, then every finitely generated module is

noetherian.

Proof. If RR is noetherian, then every finitely generated free module is noetherian by Prop.

2.3.3, and therefore every finitely generated module is a quotient of a noetherian module and

hence noetherian by Prop. 2.3.3.
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Theorem 2.3.4 [18] Let M be a right R-module and .MA  Then the following conditions

are equivalent:

(1) M is noetherian;

(2) A and M / A are noetherian;

(3) Any ascending chain    nAAA 21 of submodules of M is stationary, i.e., there

exists n such that .1 nn AA This condition is called the ascending chain condition or

ACC.

(4) Every submodule of M is finitely generated.

Proof. :)3()1(  Suppose that every nonempty family of submodules of M has a maximal

element by inclution. Given an ascending chain

  121 nn AAAA

Let }{  iAi . By hypothesis, we can find a maximal element of  by inclusion, say

.kA We can see that for any ., nk AAkn  But then since kA is maximal, .kn AA  Hence

for any ., kn AAkn  This implies that the chain is stationary.

:)1()3(  Let  be a family of submodules of M and let   nAAA 21

be a chain in  . By assumption, this chain is stationary. So, we can find nA such that

,ni AA  for any i. By Zorn’s lemma,  has a maximal element. Then M is noetherian.

:)2()3(  Let   121 nn XXXX

be a chain of submodules in  A. Then this chain is also a chain in M and hence it must be

stationary. So A is noetherian. Now let

  121 nn XXXX ( )

be a chain of submodules in M / A. Then .......,, 2211 AAXAAX  with

.121 MAAAA nn    since M is noetherian, M satisfies (3), and so we can find

0n such that 100  nn AA Hence the chain ( ) is stationary, proving that M / A is

noetherian.

:)3()2(  Assume that A and M / A are noetherian.

Let .................. 121  nn AAAA

be a chain in M. Then AAAAAAAAA nn   .................. 121



26

Since A is noetherian, by (3), there exists 1n such that for any ,0K we have

AAAA nkn  11
. Consider ,/)( AMAAAn  so we have

........)(.......)()( 21 AMAAAAAAAAA n 

Since AM is noetherian, there exists 2n such that for any ,0k we have

AAAAAA nkn )()(
22
 . Hence for any ,0k we have .

22
AAAA nkn 

Put }.,max{ 210 nnn  Then for any ,0nn  we have AAAA knn 
00

for all 0k and

AAAA knn  00
for all .0k Thus for any ,0k we have

.00000000
)()()( nnnnknknknkn AAAAAAAAAAA  

Hence M is noetherian.

:)4()3(  Let MA  and let .0 1 Am  Then .1 ARm  If ,1 ARm  then we are done.

Suppose .1 ARm  we can find RmAm 12  and then .211 ARmRmRm  If

,21 ARmRm  then we are done. Continuing in this way, we have a chain

 RmRmRm 211 ...321  RmRmRm

in A by (3), this chain is stationary. Thus M is finitely generated.

:)3()4(  Let .................. 121   nn AAAA be a chain in M. Then

.:
11

AAA
i

i
i

i 







 So .MA  By (4), A is finitely generated. Then by the property of

finitely generated module, we can find kii ,.......,1 such that .........
1 kii AAA  Let

}.,,.........max{ 1 kiin  Then nAA  proving that the above chain is stationary.

Definition

A nonempty family F of submodules of RM is said to satisfy the DCC if for any chain

.................21  nMMM of submodules in F, there exists a positive integer n such

that nn MM 1 for  n = 1, 2,  …

A ring which satisfies  the DDC(descending chain condition) for right( left) ideals is called a

right( left) artinian ring. A ring which is both right artinian and left artinian is called an

artinian ring.
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Example

(i) Every finite ring is Artinian.

(ii) A module which has only finitely many submodules is artinian. In particular, finite
abelian groups are artinian as module over .

If a ring R is right artinian, then R is right noetherian but the converse is not true. For

example, consider  (northerian), mnnm  and

 ,, 2312321 mmmmmmm 

The chain   n2222 32 is not stationary. So  is not artinian. Thus 

is noetherian but not artinian. we can conclude that the module Z z is noetherian but Z z is not

artinian.

Theorem 2.3.5 [18] Let M be a right R-module and let A be its submodule. Then the

following statements are equivalent:

(a) M is artinian;

(b) A and M / A are artinian;

(c) Any descending chain   nAAA 21 of submodules of M is stationary. This

condition is called the descending chain condition or DCC.

(d) Every factor module of M is finitely co-generated.

(e) Let 00  NML be an exact sequence of right R-modules. Then M is

noetherian (resp. artinian)  L and N are noetherian (resp. artinian).

Corollary 2.3.6 [3] (1) The image of artinian (resp. noetherian) module is also artinian( resp.

noetherian ).

(2)The finite sum of artinian ( resp. noetherian ) submodules of M is also artinian (resp.

noetherian).

(3) The finite direct sum of artinian (resp. noetherian) modules of M is also artinian (resp.

noetherian).

(4) If R is semi-simple, then R is both left and right artinian (resp. noetherian
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2.4 Exact Sequences, Injective and Projective modules

Definition

Let },{ IiAi  be a collection of right R-modules. For each ,Ii let 1:  iii AAf be an R-

homomorphism. Then a sequence
.................. 11321

1321  


nnn f
n

f
n

ffff AAAAA

is called an exact sequence at nA if )Im( 1nf = ).ker( nf The sequence is called an exact

sequence if it is exact at each nA .

An special exact sequence of the form 00  CBA gf is called a short exact

sequence.

Remarks

(i) If the sequence 00  CBA gf is exact, then f is a monomorphism,

g is an epimorphism and ).ker()Im( gf 

(ii) Let ,RModMX  then the inclusion map MX : defined by xx )( for

any Xx is called the embedding homomorphism. Then the sequence

X0  0 XMM  is exact and the map  defined by

Xmm )( for any Mm is called the natural or canonical homomorphism.

Definition

A short exact sequence 00  CBA gf is called split exact if ,)Im( Bf 

(i.e., there exists BfBBB  )Im(: ).

Proposition 2.4.1 [19] The following properties of an exact sequence

0  X  Y  Z  0 are equivalent:

(a) The sequence splits.

(b) There exists a homomorphism  : Y  X such that   = 1 X .

(c) There exists a homomorphism  : Z  Y such that   = 1 Z

Proof. It is clear that (a) implies (b) and (c). Suppose (b) is satisfied. The maps

XY : and ZY : can be used to define ZXY : so that the diagram(1)

commutes.  is an isomorphism by Prop. 1.3 [19]. Hence the sequence splits. The proof of

)()( ac  goes dually.
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A module Y is said to be generated by a family Iix )( of elements of Y if each Yx can be

written 
I

ii axx with all but a finite number of ia equal to 0. It it furthermore is true that

the coefficients ia are uniquely determined by x, then the family Iix )( is a basis for Y . A

module is called free if there exists a basis for it.

Theorem 2.4.2 Let 00  CBA gf be a short exact sequence of right R-

modules. Then the following statements are equivalent:

(a) The given sequence splits;

(b) There exists a homomorphism ;1:: AffABf 

(c)  There exists a homomorphism .1:: CggBCg 

Proof. )()( ba  Suppose that )Im( f is a direct summand of B. Then there exists a

submodule BB  such that BfB  )Im( . We will define a homomorphism .: ABf 

to do this let .Bb Then there exists )Im( fy and Bb  such that b= y + b which is the

unique decomposition. Since f is a monomorphism, there is a unique Aa such that y =

f(a). Let .)( abf  It is clear that f  is a map. We now show that f  is a homomorphism.

To do this, let Bbb 21 , and .Rr  Then 111 byb  and 222 byb  , where

)Im(, 21 fyy  and ., 21 Bbb  Thus  )( 1121 bybb  )( 22 by ).()( 2121 bbyy 

Then there exists Aaa 21 , Such that )( 11 afy  and ).( 22 afy  Then

)()()( 212121 aafafafyy  and so

 )( 21 bbf 21 aa  = ).()( 21 bfbf  For ,Rr if 111 byb  , then rbryrb 111  and

).()( 111 rafrafrb  Hence  rarbf 11 )( ).( 1rbf  To show ,1Aff  let Aa be such

that b = f(a). Then abf  )( and so .)( aaff  Thus .1Aff 

)()( ab  Assume that there is a homomorphism ABf  : such that .1Aff  Let

.)( BfKerB  Then .)Im( BBf  For each ,Bb we have Abf  )( and so

).Im()( fbff  Then ).())(())(( bfbfffbfff 

Hence .)()( BfKerbbff  Then there exists Bb  such that bbbff  )( and so

.)Im()( Bfbbffb  Thus BfB  )Im( and then .)Im( BfB  To prove

0)Im(  Bf let .)Im( Bfb  Then )Im( fb and .Bb  Thus there is a Aa such
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that b = f(a) and .0)(  bf Then .0)()(  bfaffa This implies that b = 0. Therefore,

.)Im( BfB 

Definition

A right R-module E is called an injective module if for any right R-modules L and M, any

monomorphism MLf : and any homomorphism ,: ELg  there exists a

homomorphism h EM : such that h  gf 

ML f0

g h

E (M)

Figure 1

If the above condition is true only for a special module E, then E is called M-injective

module. Thus, a right R-module E is said to be injective if and only if it is M-injective for any

right R-module M. A right R-module M is called quasi-injective if M is M-injective.

Example : ZZ  20

Q

Figure 2

Q and Q/Z are injective Z-modules.

Theorem 2.4.3 Let M be any right R-module. Then the following statements are equivalent:
(1) M is injective;
(2) Any exact sequence of the form 00  BAM splits.
Proof. ).2()1(  Assume that M is injective. Consider the exact sequence

Figure 3
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Since M is injective, there exists MA : such that .1M so we get the sequence is

splits.

).1()2(  Let

Figure 4

Define BMM :1 and BMB :2 by Mmmm  )0,()(1 and ),0()(2 bb 

.Bb Let .}))(),({( BMAaafaH   Consider HBM )(  and define 1 

and 2  .

For every ,Aa  )()( 1 aa  Haa  )0),(())0),((( 

and  )()( 2 afaf  .))(,0())(,0(( Hafaf 

Since ,))()(())(,0()0),(( Hafaafa   we have  Ha )0),(( .))(,0( Haf  We

also have .f  To show that  is a monomorphism. Let ).(Kerm Then

0)(0)( 1  mm  ,0))0,((  m i.e., (m,0) + H = 0 + H and so .)0,( Hm  Then

there exists Aa such that ))()(()0,( afam   which implies that ma )( and f(a) = 0.

Since f is a monomorphism, a = 0 and we have m = ,0)0(  i.e. .0)( Ker Hence  is a

monomorphism. Consider an exact sequence

0)Im())(()(0  
 





HBMHBMM

Then by hypothesis, there exists MHBM  )(: such that .1M Chose


 = . 

Then


 : MB and


 f = f  = .1   M Therefore, M is injective.

Projective module: A right R-module P is called a projective module if for any right R-

modules M and N, for any epimorphism NMf : and any homomorphism ,: NPg 
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there exists a homomorphism h MP: such that hf  g . Then P is called M-

projective module. Thus a right R-module M is called quasi-projective if M is M-projective.

P (M)

h g

ONM f 

Figure 5

Example

(i) Every free mudule is projective but the converse is not true. Consider the ring R=Z/6Z

which can be composed as R .32  The ideals 2 and 3 are projective mudules but  they

are not free.

(ii) For every  nn n /, is quasi- projective but not Z- projective.

Figure 6

(i) 1 o g  = g  projective. (ii) f o i = f injective.

(iii) A right R-module M is called quasi-projective if M is M-projective, so P = M

(iv) A right R-module M is called quasi-injective if M is M-injective, so E = M .
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Proposition 2.4.4 Let M be any right R-module. Then the following statements are

equivalent:

(a) M is projective.

(b) Any exact sequence of the form 00  MYX splits.

Proof. ).2()1(  Assume that M is projective. Consider the exact sequence

00  MYX gf .

Since M is projective, there exists a homomorphism YMg  : such that .1Mgg  so have

the sequence is splits.

).1()2(  Assume that every exact sequence of the form 00  MYX splits. Let

Figure 7

Figure 8

Figure 9

Define )}.()(),{( magmaH  Then .MAH  To show that .MAH  Let

.),(),,( Hmama  Then )()( mag  and ).()( aag  

(i) ).()()()()()( mmmmagagaag   Thus .),( Hmmaa 

(ii) Let Aa and .Rr Then .)()()()()()( rmargrmragmag  
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Then .),(),( Hmrarrma  Therefore, .MAH  Let MAH : be the embedding

map. Put  1 and .2  We first note that  g such that for any ,Hx we have

),( max  with )()( mag  and

)()),(()),(()),(()( 11 agmagmagmagxg   and

).()),(()),(()),(()( 22 mmamamax   Hence Hxxxg  )()(  and

so . g To show that  is an epimorphism. Let Mm . Then Bm )( . Since g is an

epimorphism, there is Aa such that ).()( agm  So Hma ),( and

.),(),(),( 22 mmamama   Hence  is an epimorphism. By assumption, the exact

sequence splits. Then there exists HM  : such that .1M Choose . 


Then

AM 


: and so  


gg = .1   M Therefore, M is projective.

Proposition 2.4.5 Every free right R -module is projective.

Proof. Let F be a free right R-module and Let X be its basis. Then .xRF
Xx
 For ,Xx

we have .)( Bx  we can find Aa such that )()( agx  and we see that we can find

many Aa like that but we choose one and we denote it by .xa

Figure 10

Put .)( xax  For ,Ff  



n

i
ii rxf

1

and .)(
1

Araf
n

i
ixi




 Then  is an R-

homomorphism and . g This shows that F is projective.

Note: M is injective ., RModYX 
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 Figure 11

Figure 12

Proposition 2.4.6 Every projective module is isomorphic to a direct summand of a free

module, and conversely, any direct summand of a free module is projective.

Proof. Let P be a projective right R-module. By the previous lemma, there exists a free
module F such that PF : is an epimorphism. Consider the exact sequence

.)ker(0: PF  
Since P is projective,  splits. Then FIMF  )( for some .)ker( FF   Thus

.)ker( FFFP  
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CHAPTER III

PRIME AND SEMIPRIME GOLDIE RINGS

Overview

In trying to understand the ideal theory of a commutative ring, it is important to first

understand the prime ideals. We recall that a proper ideal P in a commutative ring R is prime

if, whenever two elements a and b in R such that if ,Pab it follows that Pa or .Pb

Equivalently, P is a prime ideal if and only if the factor ring PR / is a domain. The

terminology comes from algebraic number theory.

In the non-commutative setting, we define an integral domain just as we do in the

commutative case (as a nonzero ring in which the product of any two nonzero elements is

nonzero) but it turns out not to be a good idea to concentrate our attention on ideals P such

that PR / is a domain. In fact, many non-commutative rings have no factor rings which are

domains, e.g., a matrix ring over a field. Thus a more relaxed definition for the concept of a

prime ideal in the non-commutative case is desirable. The key is to change the commutative

definition by replacing products of elements with products of ideals, which was first

proposed by Krull in 1928 [24].

In the commutative case, there is a close connection between prime ideals and nilpotent

elements. In particular, the intersection of all prime ideals equals the set of nilpotent

elements. The non-commutative analog of this theory is presented in the opening sections of

this chapter. We then see how prime ideals arise as annihilators, which is responsible for

much of their significance.

3.1 Prime and Semi-prime Rings

Definition

A proper ideal P of a ring R is said to be a prime ideal of R if for any ideals I,J of R, if

PIJ  then either PI  or .PJ  An ideal I of a ring R is called a strongly prime ideal if

for any x, y  R with x y  I, then either x  I or y  I.
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Example: Consider the  set },2,1,0,1,2,{  Z of all integers, is a ring,

},6,4,2,0,2,4,6,{2P   Z , },9,6,3,0,3,6,9,{3I   Z and

},12,8,4,0,4,8,12,{4J   Z are ideals of . .

Now  12IJ P },24,12,0,12,24,{  . Then ,PJ  hence P is a prime ideal of

Z. Therefore, if nppp ..., 21 are prime numbers , then  nppp ..., 21 are prime ideals

of .

Definition

A prime ring is a ring in which 0 ={0} is a prime ideal or equivalently, a  ring R is

called a prime ring if there are no nonzero ideals I and J of R such that I J = 0.

Example : Consider the  set },2,1,0,1,2,{  Z of all integers, is a ring and

two nonzero ideals I, J of , where, },9,6,3,0,3,6,9,{3I   Z ,

},12,8,4,0,4,8,12,{4J   Z

Now  12IJ 0},24,12,0,12,24,{   . Hence . is a prime ring .

Goodearl and Warfield [ 3 ] introduced the following properties for checking the primeness

of an ideal P over an arbitrary ring R.

Proposition 3.1.1 For a proper ideal P in a ring R, the following conditions are equivalent:

(a) P is a prime ideal.

(b) If I and J are any ideals of R such that PI  and ,PJ  then I J  P.

(c) R / P is a prime ring.

(d) If I and J are any right ideals of R such that I J  P, then either I  P or J  P.

(e) If I and J are any left ideals of R such that I J  P, then either I  P or J  P.

(f) If x, y  R with yRx  P, then either x  P or y  P.

Proof. )()( ba  : Follows the definition of prime ideal.

)()( cb  : Let I and J be ideals in PR , where P is a prime ideal of R . Then there exists

ideals PI 1 and PJ 1 in R such that PII /1 and .1 PJJ  Suppose that .0IJ
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Then .11 PJI  Since P is a prime ideal of ,R it follows that either PI 1 or PJ 1 and

so either 0I or .0J

)()( ac  : Let PR be a prime ring and I and J be ideals of R satisfying PIJ  then

PPI )(  and PPJ )(  are ideals in PR whose product is equal to zero. Since PR is a

prime ring, we have 0)(  PPI or .0)(  PPJ Hence PI  or .PJ 

)()( da  :  Since I and J are right ideals of R, .))(( PRIJRJRI  Thus either

PRI  or PRJ  and so PI  or .PJ 

)()( ea  : Since I and J are left ideals of R, .))(( PIJRJRIR  Thus either

PIR  or PJR  and so PI  or .PJ 

)()( fd  : Since ,))(( PyRxR  either PxR  or PyR  and so Px or .Py

)()( af  : For any ideals PI  or ,PJ  choose elements PIa  and .PJb  Then

PaRb  whence .PIJ 

)()( ba  : For any ideals I and J of R, their multiplication is not contained in .P

By induction hypothesis, it follows immediately that if P is a prime ideal in a ring R and

nIII ,,, 21  are right ideals of R such that PIII n 21 then some .PI i 

Sanh et al.[ 14 ] modified the above structure of prime ideals over an arbitrary ring as

follows:

Corollary 3.1.2 For a proper ideal P in a ring R , the following conditions are equivalent:

(a) P is a prime ideal;

(b) If I and J are any ideals of R such that PI  and ,PJ  then I J  P.

(c) If I and J are any right ideals of R such that ,PIJ  either PI  or ;PJ 

(d) If I and J are any left ideals of R such that ,PIJ  either PI  or ;PJ 

(e) If Ryx , with ,PxRy  either Px or ;Py

(f)  For any Ra and any ideal I of R such that ,PaI  either PaR  or ;PI 

(g) PR is a prime ring.
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Definition

A minimal prime ideal in a ring R is any prime ideal of R that does not properly contain any

other prime ideals. For instance, if R is a prime ring, then 0 is the unique minimal prime ideal

of R.

Example

(i) In a commutative artinian ring, every maximal ideal is a minimal prime ideal.

(ii) In an integral domain, the only minimal prime ideal is the zero ideal.

Proposition 3.1.3 [3] Any prime ideal P in a ring R contains a minimal prime ideal.

Proof. Let X be the set of those prime ideals of R which are contained in P. We may use

Zorn’s Lemma going downward in  provided we show that any nonempty chain 

has a lower bound of  .

The set Q is an ideal of R, and it is clear that .PQ  we claim that Q is a prime ideal.

Thus consider any Ryx , such that QxRy  but .Qx Then 1Px for some .1 P For

any 2P such that 12 PP  we have 2Px and ,2PQxRy  whence 2Py . In

particular, .1Py If 2P and ,12 PP  then ,21 PP  and so .2Py Hence, 2Py for

all elements 2P of  , and so ,Qy which proves that Q is a prime ideal.

Now ,Q and Q is a lower bound for . Thus, by Zorn’s Lemma, we can get a prime ideal

2P that is minimal among the ideals in . Since any prime ideal contained in 2P is in

 , we conclude that 2P is a minimal prime ideal of R.

Definition

A semi-prime ideal in a ring R is an intersection of prime ideals. In , the intersection of any

finite list ,1Zp …, Zpn of prime ideals is the ideal Zppp n21 , where ,1p …, np are distinct

prime integers, Hence the nonzero semiprime ideals of  consist of the ideals k Z , where k is

any square-free positive integer including k = 1. A semiprime ring is any ring in which 0 is a

semi-prime ideal.
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Example

Cnosider the ring },2,1,0,1,2,{  Z of all integers.

Then },6,4,2,0,2,4,6,{2  Z and

},9,6,3,0,3,6,9,{3  Z are two prime ideals in Z and

},18,12,6,0,6,12,18,{632   ZZZ is a semi-prime ideal of Z .

Goodearl and Warfield [3] introduced the following properties for checking the semi-

primeness of an ideal over an arbitrary ring R.

Corollary 3.1.4 For an ideal I in a ring R, the following conditions are equivalent:

(a) I is a semiprime ideal.

(b) If J is any ideal of R such that J 2  I, then J  I.

(c) If J is any right ideal of R such that J 2  I, then J  I.

(d) If J is any left ideal of R such that J 2  I, then J  I.

Proof. :)()( da  For any ,Jx we have ,2 IJxRx  whence Ix by theorem 3.7 [3].

Thus .IJ 

:)()( bc  If ,IJ  then JI  properly contains I. But since

,)( 222 IJJIIJIJI 

we have a contradiction to (c). Thus .IJ 

:)()( ab  Given any Rx such that ,IxRx  we have IRxRxRxR 2)( and so

,IRxR  where Ix . By Theorem 3.7[3] is semi-prime.

:)()( ca  By symmetry.

Definition

A right, left or two-sided ideal I of a ring R is called a nil ideal if and only if  a ,I 

Nn such that ,0na nilpotent ideal if and only if Nn such that 0nI . More

generally, I is called a nil ideal if each of its elements is nilpotent. The sum of all nil ideals of

a ring R is called the nil radical of R and is denoted by N(R). The prime radical P(R) of a
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ring R is the intersection of all the prime ideals of R. Hence we can conclude that

).()( RNRP 

Example

Consider the ring ,}8,6,5,4,3,2,1,0{8  integer modilo 8 and the ideal

,0{2 8 I ,2 }.6,4 I is a nil ideal of 8 , because

00 1  , ,02 3 ,042  .063

Again, I is a nilpotent ideal of 8 , because 03 I i. e., 00 3  , ,02 3 ,043  .063

Proposition 3.1.5 [13] A ring R is semiprime if and only if it contains no nonzero nilpotent

elements.

Wisbauer [21] introduced that in a semi-prime ring R, the intersection of prime ideals is zero.

That implies, R is a semi-prime ring if and only if 0 is a semi-prime ideal. If R is a semi-

prime ring, then P(R) = 0.

Lemma 3.1.6 For a ring R with identity, the following conditions are equivalent:

(a) R is a semi-prime ring (i.e., P(R) = 0);

(b) 0 is the only nilpotent ideal in R;

(c) For ideals I, J in R with I J = 0 implies J  I = 0.

Proof. ).()( ba  Let R is prime ring if and only if 0 is prime ideal. R is semi-prime ring if

and only if 0 is a semi-prime ideal. R is semi-prime ring P(R) = 0. In noetherian rings, all nil

one-sided ideals are nilpotent. If R is the non zero ring, it has no prime ideals, and so P(R) =

R. If R is nonzero, at has at least one maximal ideal. A ring is semi-prime if and only if P(R)

= 0. In any case, P(R) is the smallest semi-prime ideal of R, and because P(R) is semi-prime,

it contains all nilpotent one-sided ideals of R. Since all nilpotent (left) ideals of R are

contained in P(R).

).()( cb  If AB = 0 then 0)( 2  ABBA and .0 BA

).()( bc  If AA = 0 then also .0 AAA

).()( ab  Let .0 Ra Then 0)( 2 Ra and with 0aa  there exists .0 001 Raaa 



42

Then also 0)( 2
1 Ra and we find ,0 112 Raaa  and so on. Hence a is not strongly

nilpotent and ).(RPa Therefore P(R) =0.

Let R be a semiprime ring and I,J right ideals of R such that I J = 0. Then (JI) 2 = 0 and

(J  I) 2 = 0. So that JI = 0 and J  I = 0.

and ).(RPa Therefore P(R) =0.

Proof: If PR / is semi-prime and right Artinian, then it is semi-simple by Proposition

10.24[20]. Since PR / is in fact prime, it can have only one simple component. Therefore,

PR / is simple. In other words, P is a maximal ideal.

In commutative ring theory, it is well-known that R is Artinian if and only if R is Noetherian

Definition

Let X be a subset of a ring R. Then the right annihilator of X in R is

 XxxrRrXrR  0|)(

and the left annihilator of X in R is given by

 .0|)( XxrxRrXlR 

Definition

The singular right ideal of a ring R is defined by

Z( R ) = {x R xK = 0, for some essential right ideal K of R}. If Z( R ) = 0, then the

ring R is called a right non-singular ring. Singular left ideals are defined similarly.

Lemma 3.1.7 [3] Let R be a commutative ring. Then the right singular ideal Z(R) of R is zero

if and only if R is semi-prime.

Proof: Suppose that R is a semi-prime ring. Let )(RZz . We will show that z = 0. Set I =

zR  ).(zrR We have zR . )(zrR = 0. In fact, for any t  R and any 1t  )(zrR , we have 1t z =

0. So z t 1t = t 1t z = 0.t 0, showing that for any t  R, zR. )(zrR = 0. We have II 2 = zR

 )(zrR = 0. So 2I = 0. Since R is a semi-prime ring, 0 is a semi-prime ideal. It follows that I

= 0. But )(zrR is an essential right ideal of R. This implies that zR = 0. Thus z = 0.

Conversely, suppose that Z(R) = 0. Let a be an element of R such that 2a = 0. We will show

that a = 0 from which it follows that R has no non-zero nilpotent element. Let 0  x  R.
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Then we need to consider two cases: (i) ax = 0  )(arx R ; (ii) ax  0  a(ax) = 2a x = 0

 ax  )(arR . Hence x R  )(arR  0. Therefore )(arR is an essential right ideal of R.

This implies that a  Z(R). Thus a = 0. This completes the proof.

Singular and nilpoten ideals play a vital role in ring theory. The following theorem sets up a

relation between singulaar and nilpotent ideals.

Theorem 3.1.8 Let R be a ring with the ACC for right annihilators. Then the right singular

ideal Z(R) of R is nilpotent.

Proof: We write Z rather than Z(R) for the right singular ideal of R. Since

,32  ZZZ we have .)()()( 32  ZrZrZr RRR So that there exists a positive

integer n such that ).()( 1 n
R

n
R ZrZr Suppose that .01 nZ We obtain a contradiction.

There is an element Za such that .0aZ n Choose such an element a with )(arR large

enough. Take any ,Zb then )(brR is an essential right ideal of R whence .0)(  aRbrR

Thus there exists an element Rr such that 0ar and ).(brar R We have Zba and

).()( barar RR  But 0ar and .0bar Therefore, )(arR is strictly contained in ).(barR It

follows from the choice of a that .0baZ n But b is an arbitrary element of Z. Hence

01  aZ n and so .0aZ n This completes the proof of the theorem.

Theorem 3.1.9 Let R be a semi-prime ring with the ACC for right annihilators. Then R has

no non-zero nil one-sided ideals.

Proof: Let I be a nonzero one-sided ideal of R and let Ia0 with )(arR as large as

possible. Since R is semi-prime, there is an element Rx such that .0axa Thus axa is a

nonzero element of I such that ).()( axarar RR  So that ).()( axarar RR  We have ,0ax i.e.

).(arx R Thus ).(axarx R So that .0)( 2 ax Hence )(arxax R implying that .0)( 3 ax

Therefore ax and hence also xa is not nilpotent and Iax or .Ixa

Corollary 3.1.10 Let R be a right Noetherian ring. Then each nil one-sided ideal of R is

nilpotent.



44

Proof: Let S be the sum of all the nilpotent right ideals of R. The S is an ideal. Since R is

right Noetherian, S is the sum of a finite number of nilpotent right ideals and hence S is

nilpotent. It follows that the quotient SR / has no nonzero nilpotent right ideals. Let I be a

nil one-sided ideal of R. Then the image of I in SR / is zero. Hence .SI 

3.2 Prime and Semi-prime Goldie Rings

Definition

A ring R has finite right Goldie dimension if it contains a direct sum of finite number of
nonzero right ideals. Symbolically, we write .)dim(. RG A ring R is called a right
Goldie ring if )dim(. RG and satisfies the ACC for right annihilators. Also, every
noetherian ring is a Goldie ring.

Example

Since Q, Z are noetherian rings, so Q, Z are Goldie rings.

Definition

An element c R is called right regular (respectively, left regular) if for any Rr  , cr = 0

implies r =0 (respectively, rc = 0 implies r = 0). If cr =0 = rc, then c is called a regular

element. Every non-zero element of an integral domain is regular.

Theorem 3.2.1 Let R be a ring with finite right Goldie dimension and let c be a right regular

element of R. Then cR is an essential right ideal of R.

Proof. Suppose that cR is not essential in R. Then there exists a nonzero right ideal I of R

such that I  cR = 0. Since ,0I we have 0cI and cI  cR with I  cI = 0. So the

sum I + cI is direct. Consider (I + cI)  2c I. Take any x  (I + cI)  2c I. Then x = 2c t= u

+ cv where t, u, v I. This implies that u = c (ct - v)  I  cR = 0. So u = 0. Also, 2c t =

cv. Then v = ct  I  cI = 0. So x = 0. This shows that the sum I + cI + 2c I is direct. By

induction, the sum I + cI + 2c I + 3c I  is direct. Since R has finite right Goldie

dimension, 


0n

nIc = 0 for some n and since c is right regular, we have I = 0, a contradiction.

Thus cR is an essential right ideal of R.

Theorem 3.2.2 Let R be a semi-prime right Goldie ring and let I be an essential right ideal of

R. Then I contains a regular element of R.
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Proof: First we show that R contains a right regular element. By Theorem 3.1.9, I is not nil.

Let a be a non-nilpotent element of I such that )(arR is as large as possible. We have

)()( 2arar RR  where 2a is a non-nilpotent element of I. By the choice of a, we have

).()( 2arar RR  If ,0)( arR we stop. If not, we have .0)(  IarR Let b be a non-nilpotent

element of IarR )( such that )(brR is as large as possible. Then ).()( 2brbr RR  Let

bsar  for some ., Rsr  Since ,0ab we have .02 ra Therefore, .0ar Hence the sum

bRaR  is direct. The same argument shows that ).()()( brarbar RRR  If

,0)()(  brar RR we stop. Otherwise, let c be a non-nilpotent element of IbarR  )( with

)(crR as large as possible. Then )()( 2crcr RR  and the sum cRbRaR  is direct because

.0 bcacab Thus ).()()()( crbrarcbar RRRR  Since R has finite right Goldie

dimension, this process must stop after a finite number of steps. Then there exist elements

naaa ,,, 21  in I such that .0)( 21  nR aaar 

Chatters and Hajarnavis [13] established the following Lemma over non-singular ring .

Lemma 3.2.3 Let R be a right non-singular ring with finite right Goldie dimension. Then the

right regular elements of R are regular.

Proof. Let c be a right regular element of R. Then by Lemma 3.2.1, .RcR e But l(c) =

l(cR). Take any x l(c). Then xc = 0 = xcR. So that x l(cR) implying that ).()( cRlcl RR 

Again, take any tl(cR). Then t(cR) = 0  tc = 0 ).(clt  Therefore, we have

).()( clcRl RR  Suppose that l(cR)  0. Then there is a tl(cR) with t  0 such that t(cR) =

0. Since cR e R, we have t  Z( RR ) = 0 because R is a right non-singular ring. So t = 0, a

contradiction. Thus l(cR) = 0 and so l(c) = 0. This means that c is left regular and

consequently, c is regular.

Corollary 3.2.4 Let R be a semi-prime right Goldie ring. Then right regular elements of R

are regular.

Proof. Let R be a right Goldie ring. Then it satisfies the ACC for right annihilators. By

Theorem 3.1.8, the right singular ideal Z(R) of R is nilpotent. Since R is semi-prime, by
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Lemma 3.1.6, 0 is the only nilpotent ideal, i.e. .0)( RZ This implies that R is right non-

singular. Let c be a right regular element in R, i.e. .0)( crR Since R has finite right Goldie

dimension, by Lemma 3.25, .0)( clR This completes the proof.

Corollary 3.2.5 [13] Let M be a right R-module and m  M with m  0. If X is an essential

submodule of M, then there is an essential right ideal Y of R such that 0  m Y X.

Lemma 3.2.6 Let R be a right non-singular ring with finite right Goldie dimension. Then R

satisfies ACC and DCC for right annihilators.

Proof. Let A and B be right annihilators in R with BA  . Suppose that .BA e Let b  B.

Then by Corollary 3.2.5, there exists an essential right ideal L of R such that b L  A. This

implies that )(AlR b L = 0. Since R is right non-singular, we have )(AlR b  Z( RR ) = 0. So

)(AlR b = 0 and thus b  Rr ( )(AlR ) = A. Therefore, A = B.

Suppose that BA and A is not essential in B. Then there exists a non-zero right ideal C 

R such that BC  , CA = 0 and CA e B. If CA = B, then we are to finish. If not,

there exists a non-zero right ideal C   R such that CA  C  e B.

Consider a strictly ascending chain of right annihilators of R:

1A  2A   nA  1nA  …

where 2A = 1A  /
2A , 3A = 1A  /

2A  /
3A , …, nA = 1A  /

2A  … /
nA , . . .

But this contradicts the hypothesis that R has finite right Goldie dimension. So the chain must

be stationary. Therefore, nA = 1nA for some n  , i.e. R has the ACC for right

annihilators.

Finally, consider a strictly descending chain of right annihilators of R:

1A  2A … nA  1nA  …

where 1A = 2A  /
1A , 2A = 3A  /

2A  /
1A , . . , nA = 1nA  /

nA   /
2A  /

1A 
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But this contradicts the hypothesis that R has finite right Goldie dimension. So the chain must

be stationary. Therefore, nA = 1nA for some n   . Thus R has the DCC for right

annihilators. This completes the proof.

Corollary 3.2.7 A semi-prime right Goldie ring has the DCC for right annihilators.

Proof. Let R be a semi-prime right Goldie ring. Then R has the ACC for right annihilators.

By Theorem 3.1.8, the right singular ideal Z(R) of R is nilpotent. Since R is semi-prime, by

Lemma 3.1.6, 0 is the only nilpotent ideal, i.e. .0)( RZ This implies that R is right non-

singular. Thus, R has DCC for right annihilators.

Theorem 3.2.8 Let R be a semiprime ring satisfying ACC on right annihilators and let IJ 

be right ideals in R such that )()( JrIr RR  . Then there exists Ix such that 0xI and

.0 JxI In particular, J cannot be essential in I.

Proof. Since R satisfies ACC on right annihilators, it satisfies DCC on left annihilators.

Therefore, there exists a left annihilator A minimal with respect to ).()( JAannAIann ll 

Then 0AI and so ,0AIAI because R is semiprime. Take any Aa and Iy such that

.0AyaI Then 0yaI and so .0ya It suffices to show that 0 JyaI and the desired

element Ix is chosen to be .ya Suppose that 'yay be a nonzero element in J for some

.' Iy  Put ,)'(' AyannA l  then 'A is a left annihilator with

).(')( JAannAAIann ll  But if ,0'  AJAyay then 'AAya  and if AyaI ,0 then

).(IannAya l So, '.)( AIannl  By the minimality of A, we have ,' AA  that is,

).'(yannA l But then 0'Ay which contradicts the fact that .0yaI This completes the

proof of the theorem.

Theorem 3.2.9 Let R be a right non-singular ring with the ACC for right annihilators and let

c be an element of R such that cR is an essential right ideal of R. Then c is right regular.

Proof. Let Rx and let A and B be right annihilators of R such that A is an essential R-

submodule of B. We show that .xBxA e Let Bb with .0xb Then there is an essential

right ideal L of R such that AbL  or xAxbL  . For any ,xbLy we have ,xbly  where

,Ll and so xAy since .AbLbl  If ,0xbL then ),(RZxb because R is right non-
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singular. This implies that ,0xb a contradiction. Thus, .0xbL We see that

.0 xAxbRxbL  It follows that .xBxA e Since BA e and ,xBxA e we have

.)( RcRcRc ee  So .2 RRc e By induction, RRc e
k  for each positive integer k. Since R

has the ACC for right annihilators, the chain  )()()( 32 crcrcr RRR stabilizes. So

)()( 1 n
R

n
R crcr for some n. This implies that .0)(  crRc R

n If ,0)(  crRc R
n for any

),(crRct R
n  we have uct n for Ru and ).(crt R This implies that .0ct So that

.0)( 1   ucucc nn It follows that ).()( 1 n
R

n
R crcru   Therefore, ,01 tucuc nn  a

contradiction. Thus, .0)( crR Hence, c is right regular.

Theorem 3.2.10 Let R be a prime ring with the ACC and DCC for right annihilators, I an

essential right ideal of R and let .Ra Then Ia  contains a regular element of R, where

}.|{ IxxaIa 

Proof. Let Ix with 0)(  xarR as small as possible. Put .xac  Let B be a right ideal

of R with .0 cRB Let ,IBb  then Iabxabxabc  )()( because

.Ibx  Since ,0 bRcR we have ).()()( brcrbcr RRR 

Take any ),( bcrt R  then 00)(  ctbtcttbc and  0bt )(crt R and

)(brt R so that ).()( brcrt RR  Therefore,  )( bcrR ).()( brcr RR  Again, take any

),()( brcru RR  then )(cru R and )(bru R  0cu and 0bu  0)(  ubc and

).( bcru R  Therefore, ).()()( bcrbrcr RRR 

Since ).()( crbcr RR  By the choice of c, we have ).()( crbcr RR  Hence ).()( brcr RR 

This implies that 0)(. crb R for any .IBb  Therefore, .0)()(  crIB R Since R is a

prime ring, we have either 0)( crR or .0 IB If ,0 IB then 0B because I is

essential in R. It follows that .RcR e By Theorem 3..2.9 and Theorem 3.2.8, we can

conclude that .0)( crR So that Ia  contains a right regular element. Take any Iad 

with )(dlR as small as possible. Then there is a right R-submodule Y of I such that

0 dRY and .RdRy e Let A be a left ideal of R with 0 RdA and let .YAy 

We have .0 RyRd So )()( dlydl RR  ).(ylR Also, we have Iayd  and since
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,0 yRdR we have 0)()()(  yrdrydr RRR because .0)( drR Therefore, by the

choice of d, we have ).()( dlydl RR  So ),()( yldl RR  i.e. 0.)( ydlR for any .YAy 

Hence .0)()( YAdlR So 0)( YAdlR because if YA, are right ideals of R, then

.YAYA  Therefore, 0)( YdAlR because R is a semi-prime ring, YdlR )( is an ideal and A

is a left ideal of R. This implies that 0)()( YRddAlR because .YdRY  Since

,RYdR e we have ,0)()(  RZdAlR i.e. R is right nonsingular and is prime. So either

0A or .0)( dlR If ,0A then .RRd e By Theorem 3..2.3 and Theorem 3.2.9, ,0)( dlR

i.e., d is left regular. Thus the result follows.

Theorem 3.2.11 [13] Let R be a semi-prime ring with the ACC (equivalently, DCC) for

annihilator ideals. Then R has only a finite number of minimal prime ideals. If nPP ,,1  are

the minimal prime ideals of R, then .01  nPP  Also, a prime ideal is minimal if and

only if it is an annihilator ideal.
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CHAPTER IV

PRIME AND SEMI-PRIME GOLDIE MODULES

Overview

Prime submodules and prime modules appear in many contexts. By an adaptation of basic

properties of prime ideals, we introduced the notion of prime submoduules and prime

modules and studied their structures. In this thesis, we investigate some properties of prime

and semi-prime submodules over non-commutative rings. Sanh et al. [14] introduced the

notion of prime and semi-prime submodules of a given right R-module. Throughout the

work, all rings are associative with identity and all modules are unitary right R- modules.

)(MEndS R denotes an endomorphisms ring of right R-module M.

4.1 Prime and Semi-Prime Submodules

Definition

A submodule X of M is called a fully invariant submodule of M if for any ,Sf  we have

.)( XXf 

Let M be a right R-module and X be a fully invariant proper submodule of M. Then X is

called a prime submodule if for any ideal I of S and and any fully invariant submodule U of

M, XUI )( implies XMI )( or .XU  Especially, an ideal P of a ring R is a prime

ideal if for any ideals JI , or R, PIJ  implies PI  or .PJ  A right R-module M is

called a prime module if 0 is a prime submodule of M.

A fully invariant submodule X of M is called strongly prime if for any Sf  and any

,Mm Xmf )( implies XMf )( or .Xm Especially, an ideal I of a ring R is

strongly prime if for any Rba , with Iab  implies Ia or .Ib

Example

(i) Let }3,2,1,0{4 Z be the additive group of integers modulo 4. Then  2X is a

prime submodule of the Z -module .4Z If M is simple, then 0 is a prime submodule.

(ii) Every simple module is prime
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Sanh et at.[14] investigated the following theorem as some characterizations of prime

submodules over endomorphism rings similar to the Proposition 3.1.1 for prime ideals over

arbitrary rings. We will use it as a tool for checking the primeness.

Theorem 4.1.1 Let X be a proper fully invariant submodule of M and )(MEndS R , its

endomorphism ring. Then the following conditions are equivalent:

(1) X is a prime submodule of ;M

(2) For any right ideal I of ,S any submodule U of ,M if ,)( XUI  then either

XMI )( or ;XU 

(3) For any S and fully invariant submodule U of M , if ,)( XU  then either

XM )( or ;XU 

(4) For any left ideal I of S and subset A of ,M if ,)( XAIS  then either

XMI )( or ;XA 

(5) For any S and for any ,Mm if ,))(( XmS  then either XM )( or

.Mm Moreover, if M is quasi-projective, then the above conditions are equivalent to:

(6) XM is a prime module.

After investigating the above new Theorem for modules, Sanh et at. found that Proposition

3.1.1 may be developed as follows:

Corollary 4.1.2 For a proper ideal P in a ring R, the following conditions are equivalent:

(a) P is a prime ideal.

(b) If I and J are any ideals of R properly containing P, then I J  P.

(c) R / P is a prime ring.

(d) If I and J are any right ideals of R such that I J  P, then either I  P or J  P.

(e) If I and J are any left ideals of R such that I J  P, then either I  P or J  P.

(f)  If x, y R with x R y  P, then either x P or y P.

(g)  For any x R and any ideal I of R such that x I  P, then either x R  P or I  P.
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Definition

A prime submodule X of a right R-module M is called a minimal prime submodule if it is

minimal in the class of prime submodules of M.

As generalizations of prime ideals, the following results are investigated-

Corollary 4.1.3 [14] If P is a prime submodule of a right R-module M, then P contains a

minimal prime submodule of M.

Lemma 4.1.4 [14] Let M be a right R-module and ).(MEndS R Suppose that X is a fully

invariant submodule of M. Then the set })(:{ XMfSfI X  is a two-sided ideal of .S

Proposition 4.1.5 [16] Let M be a right R-module which is a self-generator. Then we have

the following:

(1) If X is a minimal prime submodule of M, then I X is a minimal prime ideal of S.

(2) If P is a minimal prime ideal of S, then X :=P(M) is a minimal prime submodule of M and

XI = P.

Lemma 4.1.6 [14] Let M be a right R-module, )(MEndS R and X a fully invariant

submodule of M. If X is a prime submodule of M, then XI is a prime ideal of S. Conversely, if

M is a self-generator and if XI is a prime ideal of S, then X is a prime submodule of M.

Lemma 4.1.7 [14] Let M be a prime module. Then its endomorphism ring S is a prime ring.

Conversely, if M is a self-generator and if S is a prime ring, then M is a prime module.

Definition

A fully invariant submodule is called a semi-prime submodule if it is an intersection of prime

submodules. A right R-module M is called a semi-prime module if 0 is a semi-prime

submodule of M. Consequently, a ring R is called semi-prime ring if RR is a semi-prime

module. Every semi-simple module is semi-prime.
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Definition

Let M be a right R-module and X  M, a subset of M. Then we say that M is generated by X

if }.,3,2,1,,/{)   iRrXxrxXM iiii If X is a fiinite subset, then M is finitely

generated and we write }.,3,2,1,,/{)
1

kiRrXxrxXM iii

k

i
i  



. A module M is called a

self-generator if it generates all of its submodules. If X is a submodule of M and

X 



Sf

i

i

Mf ),( then M is called a self-generator, where S = ).(MEnd R

According to Ahmed et al.[16] the new structure of the  Corollary 3.8 [3] for right R-modules

over endomorphism rings is as follows:

Theorem 4.1.8 Let M be a right R-module which is a self-generator. Let X be a fully

invariant submodule of M and )(MEndS R .Then the following conditions are equivalent:

(1) X is a semi-prime submodule of M;

(2) If J is any ideal of S such that (2J M)  X, then J(M)  X;

(3) If J is any ideal of S such that J(M)

 X, then J 2 (M)  X;

(4) If J is any right ideal of S such that J 2 (M)  X, then J(M)  X;

(5) If J is any left ideal of S such that J 2 (M)  X, then J(M)  X.

Using the above results,we investigate the following results for prime and semi-prime

submodules.

Proposition 4.1.9 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator. If M is a Noetherian module, then there exist only finitely many minimal

prime submodules.

Proof. If M is a Noetherian module, then S is a right Noetherian ring. Indeed, suppose that

we have an ascending chain of right ideal of S, say I 1  I 2  Then we have I 1 (M) 

I 2 (M)  is ascending chain of submodules of M. Since M is a Noetherian module, there is

an integer n such that I n (M) = I k (M), for all k > n. Then we have I n = Hom(M, I n (M)) =



54

Hom(M, I k (M)) = I K . Thus the chain I 1  I 2  is stationary, so S is a right Noetherian

ring. By Corollary 3.1.3, S has only finitely many minimal prime ideals .,,1 tPP  By

Lemma 4.1.6, P 1 (M), , P t (M) are the only minimal prime submodules of M.

Lemma 4.1.10 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator and X, a minimal submodule of M. Then I X is a minimal right ideal of S.

Proof. Let J be a right ideal of S such that 0 J  I X . Then J (M) is a nonzero submodule

of M and J(M)  X. Thus J (M) = X and it follows that J = XI .

Proposition 4.1.11 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator. Let X be a minimal submodule of M. Then either I 2
X = 0 or X = f (M) for

some idempotent f  I X .

Proof. Since X is a minimal submodule of M, I X is a minimal right ideal of S, by Lemma

4.1.10. Suppose that I 2
X  0. Then there is g  I X such that g XI  0. Since g I X is a right

ideal of S and g I X  I X , we have g I X = I X . Then there exists f  I X such that g f = g.

Then set I = {h  I X : g h = 0} is a right ideal of S and I is properly contained in I X since f

 I. By the minimality of I X , we must have I = 0. We have f 2 - f  I X and g (f 2 - f) = 0, so

f 2 = f. Since f (M)  X and f (M)  0, we have f (M) = X.

Corollary 4.1.12 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator. Let X be a minimal submodule of M. If M is a semi-prime module, then X = f

(M) for some idempotent f  I X .

Proof. Since M is a semi-prime module, I 2
X  0. Thus X =f (M) for some idempotent

f  I X , by Proposition 4.1.11.

Definition

The singular submodule of a right R-module M is denoted by Z(M) and defined as

Z(M) = {m mKM = 0 for some essential right ideal K of R} Or, equivalently,

Z(M) = {m )(mrM R is an  essential right ideal  of R }, where r R (m) = {r R mr = 0}.
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A right R-module M is called a non-singular module if Z(M) = 0 and a singular module if

Z(M) = M.

For any ),(', MZmm  we have Rmr eR )( and .)'( Rmr eR  Since  )'( mmrR

),'()( mrmr RR  we have .)'()( Rmrmr eRR  So )'( mmrR  .Re Thus ).(' MZmm 

Proposition 4.1.13 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator. Then Z(S) (M)  Z (M) where Z(S) is a singular ideal of S and Z (M) is a

singular submodule of M.

Proof. Let f  Z(S) and x  M. We will show that f(x)  Z (M). Since f  Z(S), there exists

an essential right ideal K of S such that f K = 0. Then f K (M) = 0.

From K is an essential right ideal of S, we have K (M) is an essential submodule of M, and so

x 1 K (M) is an essential right ideal of R. We have f(x) (x 1 K (M)) = f(x(x 1 K (M)))  f K

(M) = 0, proving that f(x)  Z (M).

Corollary 4.1.14 Let M be a quasi-projective, finitely generated right R-module which is a

self-generator. If M is a non-singular module, then S is a right non-singular ring.

We investigate the following Proposition for semi-prime submodule which is similar to

Theorem 3.2.11 for ideals over arbitrary rings.

Proposition 4.1.15 Let M be a right R-module which is a self-generator. If M is a semi-prime

module with the ACC for M-annihilators, then M has only a finite number of minimal prime

submodules. If P 1 , , P n are minimal prime submodules of M, then P 1  , , P n = 0.

Also a prime submodule P of M is minimal if and only if I P is an annihilator ideal of S.

Proof. Since M is a semi-prime module, S is a semi-prime ring. If satisfies the ACC for M-

annihilators, then S satisfies the ACC for right annihilators. By Lemma 3.4[3], S has only a

finite number of minimal prime ideals. Therefore M has only a finite number of minimal

prime submodules, by Lemma 4.1.10 If P 1 , , P n are minimal prime submodules of M, then
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I
,1P , , I

nP are minimal prime ideals of S. Thus ,0,,
1


nPP II  by Theorem 3.2.1. But

I
,1P  , ,  I

nP = I
,1 ,.., nPP   , we have P 1  , ,  P n = 0. Finally, a prime submodule P

of M is minimal if and only if I P is a minimal prime ideal of S. It is equivalent to saying that

I P is an annihilator ideal of S, by Lemma 4.1.10.

4.2 Prime and Semi-prime Goldie Modules

Annihilators

Let M be a right R-module and let ,MX  a subset of M. Then the annihilator of X is the set

}0|{)( XxxrRrXrR  which is a right ideal of R.

Proof. (i) )(0 XrR implies that .)( XrR

(ii) For any )(,, 21 Xrrrr R and for any ,Xx we have 0)( 2121  xrxrrrx so that

).(21 Xrrr R

(iii) For any ,R we have 0.0)()(   xrrx so that ).(Xrr R

Moreover, if X is a submodule of M, then )(XrR is a two-sided ideal of R because then

0)()(  rxrx  for .Xx 

According to S. Ebrahimi Atani and S. Khojasteh G. Ghaleh:

Let R be a ring and X a submodule of an R-module M. Then the set

}:{):( XMrRrMX  is a two-sided ideal of R.

According to Sanh et al. [15],

Let M be a right R-module, )(MEndS R endomorphism ring and ,SI  a subset of S. Then

a submodule X of M is called an M-annihilator if

}0)(:{)()()( IfmfMmfKerIKerIrX
If

M 



For any ),(', Irmm M we have )('0)'(0)'()( Irmmmmfmfmf M and

for any )(Irm M and any ,Rr )('0)'(0)'()( Irmmmmfmfmf M .
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For any )(Irm M and any ,0)(,  mfSIf i.e. )( fKerm for any .If  This implies

that ).()( IKerfKerm
If



 So ).()( IKerIrM  Also, 

If

fKerm


 )( implies that

)( fKerm for any .SIf  So that 0)( mf for any .If  Thus ).(Irm M

Therefore, )()()( IrfKerIKer M
If



 showing that ).()( IKerIrM 

Definition

We denote (.)Sl and (.)Mr to be a subset of M in S and the right annihilator of a subset of S in

M, respectively. A submodule K of M is said to be essential in M if for any nonzero

submodule L of M, we have .0 LK In this case, M is an essential extension of K. It is

easy to show that the intersection of a finite number of essential submodules of M is again

essential in M and any submodule containing an essential submodule is essential.

A nonzero right R-module M is said to be uniform if any two nonzero submodules have

nonzero intersection, i.e. if each nonzero submodule of M is essential in M.

A module M has finite Goldie dimension if it does contain a direct sum of a finite number of

nonzero submodules. A module M has finite Goldie dimension if it is Noetherian orArtinian.

If every nonzero submodule of a module M is esstetial in M, then M has finite Goldie

dimension. A right R-module M is called a Goldie module if M has finite Goldie dimension

and M satisfies the ACC for M-annihilator submodules.

An Artinian ring (Noetherian ring) with unity is always a Goldie ring, because an Artinian

ring is Noetherian and a Noetherian ring is always a Goldie ring and consequently, a Goldie

module but the converse is not true.

Example

(i) The set Q of rational numbers has finite Goldie dimension as a Z-module, because for any

,0 Qq we have .QqZ e

(ii) The set Z of all integers has finite Goldie dimension as a Z-module, because for any

 m0 Z we have .emZ
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Also, Q and Z are both noetherian Z-modules, because every nonzero submodule of them is

finitely generated. Since every noetherian module is a Goldie module, so Q and Z are both

Goldie Z-modules.

If V is a vector space, then )dim(. VG if and only if V has finite dimension in the usual

sense of linear algebra, and in these circumstances, they are equal.

We investigate the following properties for Goldie modules over associative arbitrary and

endomorphism rings.

Lemma 4.2.1 Let M be a quasi-projective, finitely generated right R-module which is a self-

generator. If M is a Goldie module, then S is a right Goldie ring.

Proof. Let M be a Goldie module. Then M has finite Goldie dimension and satisfies the ACC

for M-annihilators. Thus S has ACC for right annihilators. Since M is a quasi-projective,

finitely generated, self-generator and has finite Goldie dimension, we must have S has finite

Goldie dimension. Hence S is right Goldie ring.

We develop the following Proposition for Goldie modules over endomorphism rings which is

similar to Theorem 3.2.1 for ideals over arbitrary rings.

Proposition 4.2.2 Let M be a right R-module with finite Goldie dimension and let

)(MEndSf R be a monomorphism. Then )(Mf is an essential submodule of M.

Proof. Suppose that )(Mf is not an essential submodule of M. Then there exists a nonzero

submodule X of M such that .0)(  XMf Since X is nonzero, we have )(Xf is a nonzero

submodule of )(Mf and .0)(  XfX So the sum )(XfX  is direct. Consider

)())(( 2 XfXfX  and take any ).())(( 2 XfXfXx  Then )()( 2 vfufyx 

where .,, Xvuy  So that  Xuvffufvfy ))(()()(2 0)( Mf implying that

.0y Also, )()(2 ufvf  implies that )()( XfXvfu  .0 So that 0u and

consequently, .0x So that the sum )()( 2 XfXfX  is direct. By induction hypothesis,
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


0

)(
n

n Xf is direct for some n, which is a contradiction. Thus, )(Mf is an essential

submodule of M.

Lemma 4.2.3: For any )(MZm and any ,Rr ).(MZmr

Proof. Let Ω ={ }.| RIRI eR  Consider the following cases:

(i) For any JI , Ω,  JI Ω.

(ii) If RRJI  and I Ω, then J Ω.

Also, for RRI  and ,Rr define }|{)(1 IraRaIr  which is a right ideal of R.

(iii) If I Ω and ,Rr then  )(1 Ir Ω, i.e. if Re RI  and ,Rr then Re RIr  )(1 .

Define a mapping .,: rxxRRf r  Then, we have

.}|{})(|{)( 11 IrIrxxIxfxIf rr
 

We show that for any ,RI e .)(1 RIf er  We know that BCf : and ,BA e then

.)(1 CAf e
 So that if RRf r : and RI e then .)(1 RIf er 

Now we show that )(MZm if and only if there exists RI e such that .0mI

To do this, first assume that ).(MZm Then .0)( mmrR Choose ).(mrI R Then .RI e

Conversely, assume that there exists RI e with .0mI Then for any ,Ir we have

.0mr This implies that ).(mrr R Thus, .)( RmrI R  Since RI e and ,)( Rmr eR 

we have ).(MZm

Finally, we show that for any )(MZm and any ,Rr ).(MZmr Let ),(MZm Rr

and .)( RmrI eR  Consider }.|{)(1 IraRaIrJ   Take any .Ja Then

0)()()(  amrrammrra R and so .0mrJ Hence ).(MZmr

Lemma 4.2.4 Let I be a right ideal of a ring R and M a right R-module. If ,MX e an

essential submodule of M, then I is an essential right ideal of R, where

}.|{ XMrRrI 

Proof. Assume that .MX e Since ,0 XM  then .0 I Thus, .I For any ,, 21 Iss 

we have XMs 1 and .2 XMs  Then XsMsMssM  )()()( 2121 because .MX 

Thus .21 Iss  For any ,, RrIs  we have .XMs  This implies that
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.)()( XXrrMssrM  Thus, .Isr We also can show that I is a left ideal of R. For any

,, RrIs  we have .XMs  Since .)()( XXssMrrsM  So .Irs

Suppose that I is not essential in R. Then there exists RRJ 0 such that .0 JI We

want to show that .0MJMI First we show that .0MJ If ,0MJ then .0 X This

means that ,IJ  which is a contradiction because .0 JI So .0MJ

To show that .0MJMI If ,0MJMI take any nonzero element .MJMIx  Then

jmimx 21  for any Mmm 21 , and .0,0 JjIi  If ,Ij then we have a

contradiction because .0 JI So ,Ij Xjm 2 and so .XMJ  But .2 Mjm  Since

,MX e there exists a Rt such that Xjtm 2 for any .2 Mm  This shows that

XjtM )( and so .Ijt Since ,RRJ  we have .Jjt  Thus, ,0 JI which is a

contradiction. Hence .0MJMI

So ,0MJ MMJ  and .XMJ  Let }.|{ XMJrRrK  Then K is a two-sided

ideal of R. Since ,MX e XMJ  and ,0K so .0 XMJK  This implies that

0,,  JKJJKIJK and so ,0 JI which is a contradiction. Thus, I is an essential

right ideal of R.

Lemma 4.2.5 Let M be a quasi-projective, finitely generated right R-module which is a self-

generator. If X is an essential submodule of M, then })(|{ XMfSfI X  is an essential

right ideal of ).(MEndS R

Proof. Since M is a self-generator and ,0X we have .0XI Let J be a right ideal of S

such that such that .0 JI X By 18.4 [21] we have

 ))(,( MIMHomI XX ),( XMHom and )).(,( MJMHomJ  It would imply that

))(,(),(0 MJMHomXMHomJI X  )).(,( MJXMHom 

It follows that 0)(  MJX because M is a self-generator and hence 0)( MJ proving

that .0J This shows that XI is an essential right ideal of .S

Definition

An element Sf  is called left regular if 0)( flS , where }0:{)(  gfSgflS and is

called right regular if and only if MMf : is monomorphism, where ).(MEndS R
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With this definition, Lemma 3.2.3 may be modified over associative endomorphism rings as

follows:

Lemma 4.2.6 Let M be a non-singular right R-module with finite Goldie dimension. Then

every one to one endomorphism of M is left regular in S.

Proof. Let Sf  be a monomorphism. By Proposition 4.2.2, )(Mf is essential in M. Take

any ).( flg S Then 0gf and hence .0)( Mgf For each ,Mm let

mI )}.(|{ MfmrRr  Then mI is an essential right ideal of R and ).(MfmI m  It

follows that .0)()(  MgfImg m Therefore, .0)()(  MZmg It would imply that ,0g

showing that .0)( flS Hence f is left regular in S.

Lemma 4.2.7 Let M be a quasi-projective, finitely generated right R-module which is a self-

generator. If M is a semi-prime Goldie module, then the left annihilator of every essential

right ideal of a ring S is zero.

Proof. Since M is a semi-prime Goldie module, S is a semi-prime right Goldie ring ry

Lemma 4.2.1. Then the singular ideal Z(S) of S is nilpotent since S satisfies the ACC for right

annihilators. Since S is semi-prime, we have Z(S) = 0. It implies that the left annihilator of

every essential right ideal of S is zero.
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CONCLUSION

In 1928, Krull investigated some properties of prime and semi-prime ideals over

commutative rings. Goodearl and Warfield developed the commutative definitions by

replacing products of elements with products of ideals. Also they investigated some

characterizations of prime and semi-prime rings.

In 2009, Sanh et al. introduced a notion of prime and semi-prime submodules and

investigated some properties of prime and semi-prime Goldie rings and  modules.

In this thesis, we have developed the properties of prime and semi-prime submodules over

associative endomorphism rings by modifying the properties of prime and semi-prime ideals

over associative arbitrary rings.

Finally, we have investigated some characterizations of prime and semi-prime Goldie

modules over endomorphism rings as generalizations of prime and semi-prime ideals over

associative  arbitrary rings.
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