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Abstract

In order to handle the practical situations of real-life applications, a speech enhance-

ment method is needed to be capable of producing optimum results with improved

overall speech quality with maximized intelligibility particularly under low levels of

SNRs. For solving this open problem, this thesis presents a speech enhancement

approach, where an adaptive threshold is statistically determined using the Tea-

ger energy (TE) operated perceptual wavelet packet (PWP) coefficients of noisy

speech. A frame of noisy speech signal is analyzed first in PWP transform domain

to obtain a set of PWP coefficients. TE operation is performed on the PWP coeffi-

cients to increase the separability between clean speech and noise coefficients. The

TE operated PWP coefficients with better time and frequency resolution are then

used to determine an appropriate adaptive threshold based on different statistical

models, namely Gaussian, Laplace, Rayleigh, Poisson and Student t distributions.

The threshold thus obtained is applied upon the PWP coefficients by employing a

custom thresholding function, which is designed based on the presence of noise in

the noisy speech signal. A couple of custom thresholding functions designed in this

thesis can be viewed as a linear combination of the modified hard or µ-law thresh-

olding function and the semisoft thresholding function. The enhanced speech frame

is synthesized by performing the inverse PWP transform on the thresholded PWP

coefficients obtained using the statistically determined threshold and the designed

custom thresholding function. The final enhanced speech signal is reconstructed by

using the standard overlap-and-add method. Extensive Simulations using NOIZEUS

database are carried out considering the presence of car and multi-talker babble

noises to evaluate the performance of the proposed method in terms of standard ob-

jective metrics and subjective listening tests. It is shown that the proposed method

outperforms the reported state-of the-art methods with superior efficacy at high as

well as low levels of SNRs.
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Chapter 1

Introduction

In this chapter, an introduction to speech enhancement, its applications, common

sources of noise that degrade speech and the different types of noise those are gen-

erally considered in speech enhancement problem is provided. The main challenges

and issues related to speech enhancement that motivated us to find out a new solu-

tion, objective of this thesis work along with its organization are also described.

1.1 Fundamentals of speech enhancement

Communication via speech is one of the essential functions of human beings. Hu-

mans possess varied ways to retrieve information from the outside world or to com-

municate with each other and the three most important sources of information are

speech, images and written text. For many purposes, speech stands out as the most

efficient and convenient one. Speech not only conveys linguistic contents, but also

communicates other useful information like the mood of the speaker. When speaker

and listener are near to each other in a quiet environment, communication is gen-

erally easy and accurate. However, at a distance or in a noisy background, the

listener’s ability to understand suffers. In many speech communication systems, the

quality and intelligibility of speech is of greatest importance for ease and accuracy of

information exchange. The speech processing systems used to communicate or store

speech is usually designed for a noise free environment but in a real-world environ-

ment, the presence of background interference in the form of additive background

and channel noise drastically degrades the performance of these systems, causing

inaccurate information exchange and listener fatigue. Over the years, researchers

have developed a number of methods to enhance speech from the degraded speech.

1



Yet, due to complexities of the speech signal, restoring the desired speech signal from

the mixture of speech and background noise still poses a considerable challenge in

speech processing and communication system research.

1.2 Applications of speech enhancement

Speech enhancement deals with processing of noisy speech signals, aiming at im-

proving their perception by human or their correct decoding by machines. Speech

enhancement algorithms attempt to improve the performance of communication sys-

tems when their input or output signals are corrupted by noise. The presence of

background noise causes the quality and intelligibility of speech to degrade. Here,

the quality of speech refers how a speaker conveys an utterance and includes such

attributes like naturalness and speaker recognizability. Intelligibility is concerned

with what the speaker had said, that is, the meaning or information content behind

the words [1]. Therefore, a noisy environment reduces the speaker and listeners

ability to communicate. To reduce the impact of this problem speech enhancement

can be performed. It is usually difficult to reduce noise without distorting speech

and thus, the performance of speech enhancement systems is limited by the tradeoff

between speech distortion and noise reduction [2].

Efforts to achieve higher quality and/or intelligibility of noisy speech may effec-

tively end up improving performance of other speech applications, such as speech

coding/compression and speech recognition, hearing aids, voice communication sys-

tems and so on. The goal of speech enhancement varies according to specific ap-

plications, such as to reduce listener fatigue, to boost the overall speech quality, to

increase intelligibility and to improve the performance of the voice communication

device. Hence speech enhancement is necessary to avoid the degradation of speech

quality and to overcome the limitations of human auditory systems.

1.3 Common Sources Of Noise for speech degra-

dation

For communication systems, two general objectives depend on the nature of the noise

and often on the signal to noise ratio (SNR) of the distorted speech. With medium to

high input SNR, reducing the noise level can produce a subjectively natural speech



signals at a receiver or can obtain reliable transmission. For low SNR, the objective

could be to decrease the noise level, while retaining or increasing the intelligibility

and reducing the fatigue caused by heavy noise for example motor and street noise.

Figure 1.1 shows the factors that affect the speech signal during transmission at

various stages by different noise sources. Sources that degrade speech quality are

noisy environment during acquisition, background noise, multi-speaker effect, noisy

transmission channel and imperfect speech reproduction. In the transmission side,

the effect of background noise are added with the desired signal and the signal

from other speakers are treated as noise for the desired speaker. The signal with

background noise is transmitted through the channel where the transmission channel

noise is also added with the desired signal.

Fig. 1.1: Common sources of noise

1.4 Different types of noise

The nature of the noise is an important factor in deciding on a speech enhancement

method. Therefore, a good model of noise is important for the performance of speech

enhancement system and it is important to analyze how well a speech enhancement

algorithm/model works with different types of noise [3]. Noise can be different

based on various statistical, spectral or spatial properties. Based on the nature

and properties of the noise sources, noise can be classified as additive background

noise, interfering speakers (speech like noise), impulse noise, convolutive noise, and

multiplicative noise. In general, it is more difficult to deal with non-stationary noise,



where there is no prior knowledge available about the characteristics of noise. Since

non-stationary noise is time varying, the conventional method of estimating the noise

from initial intervals by assuming no speech signal is not suitable for estimation.

Noise types, which are similar in temporal, frequency or spatial characteristics to

speech, are also difficult to remove or attenuate. For instance, Multi talker babble

retains some characteristics of speech and poses a particularly difficult problem for

an algorithm intended to isolate speech signal from the background noise.

1.4.1 Additive noise

Additive noises are the noises those get added to the desired signal. In the presence

of additive noise as v[n], a clean speech signal x[n] gets contaminated and produces

noisy speech y[n].

y[n] = x[n] + v[n]; (1.1)

There are different types of additive noises, namely white noise and coloured noise.

White noise

White noise is defined as an uncorrelated noise process with equal power at all

frequencies Fig.1.2. For example, for an audio system with a bandwidth of 10

kHz, any flat-spectrum audio noise with a bandwidth greater than 10 kHz looks

like a white noise. From Fig. 1.2, it is seen that the autocorrelation function of

Fig. 1.2: Illustration of (a) white noise, (b) its autocorrelation, and (c) its power
spectrum.

a continuous-time zero-mean white noise process with a variance of σ2 is a delta



function and white noise has a constant power spectrum.

Coloured Noise

Although the concept of white noise provides a reasonably realistic and mathemati-

cally convenient and useful approximation to some predominant noise processes en-

countered in telecommunication systems, many other noise processes are non-white.

The term coloured noise refers to any broadband noise with a non-white spectrum.

For example most audio frequency noise, such as the noise from moving cars, noise

from computer fans, electric drill noise and people talking in the background, has

a non-white predominantly low-frequency spectrum. Also, a white noise passing

through a channel is ”coloured” by the shape of the channel spectrum.

1.4.2 Multiplicative noise

In signal processing, the term multiplicative noise refers to an unwanted random

signal that gets multiplied into some relevant signal during capture, transmission,

or other processing. In the presence of multiplicative noise as z[n], a clean speech

signal x[n] gets contaminated and produces noisy speech y[n] as given in (1.2)

y[n] = x[n]z[n]; (1.2)

1.4.3 Impulsive Noise

Impulsive noise consists of short-duration ”on/off” noise pulses, caused by a variety

of sources, such as switching noise, adverse channel environment in a communication

system, drop-outs or surface degradation of audio recordings, clicks from computer

keyboards, etc. Fig. 1.3(a) shows an ideal impulse and its frequency spectrum. In

communication systems, a real impulsive-type noise has a duration that is normally

more than one sample long. For example, in the context of audio signals, short-

duration, sharp pulses, of up to 3 milliseconds (60 samples at a 20 kHz sampling

rate) may be considered as impulsive noise. Figs. 1.3(b) and (c) illustrate two

examples of short-duration pulses and their respective spectra. In a communication

system, an impulsive noise originates at some point in time and space, and then

propagates through the channel to the receiver. The received noise is time-dispersed

and shaped by the channel, and can be considered as the channel impulse response.



In general, the characteristics of a communication channel may be linear or non-

linear, stationary or time varying. Furthermore, many communication systems, in

response to a large amplitude impulse, exhibit a non-linear characteristic.

Fig. 1.3: Time and frequency characteristics of: (a) an ideal impulse, (b) and (c)
shortduration pulses.

1.4.4 Stationary and non-stationary noise

In mathematics and statistics, a stationary process (or strictly stationary process

or strongly stationary process) is a stochastic process whose joint probability dis-

tribution does not change when shifted in time. Consequently, parameters, such as

the mean and variance, if they are present, also do not change over time and do not

follow any trends. Stationarity is used as a tool in time series analysis, where the

raw data is often transformed to become stationary; for example, economic data are

often seasonal and/or dependent on a non-stationary price level.

Formally, let {Xt} be a stochastic process and let FX(xt1+τ , . . . , xtk+τ ) represent

the cumulative distribution function of the joint distribution of {Xt} at times t1 +

τ, . . . , tk + τ . Then, {Xt} is said to be stationary if, for all k, for all τ , and for all

t1, . . . , tk,

FX(xt1+τ , . . . , xtk+τ ) = FX(xt1 , . . . , xtk). Since τ does not affect FX(·),FX is not

a function of time. As an example, white noise is stationary. The sound of a cymbal

clashing, if hit only once, is not stationary because the acoustic power of the clash

(and hence its variance) diminishes with time. However, it would be possible to

invent a stochastic process describing when the cymbal is hit, such that the overall



response would form a stationary process. An example of a discrete-time stationary

process where the sample space is also discrete (so that the random variable may

take one of N possible values) is a Bernoulli scheme. Other examples of a discrete-

time stationary process with continuous sample space include some autoregressive

and moving average processes which are both subsets of the autoregressive moving

average model. Models with a non-trivial autoregressive component may be either

stationary or non-stationary, depending on the parameter values, and important

non-stationary special cases are where unit roots exist in the model.

In this thesis, additive non-stationary coloured noises are considered.

1.5 Problem Definition

The speech signal can be acquired from single or multiple channel sensors. The

multiple channel system tend to be more complex and more costly.Hence, between

the two systems, the single channel systems are the most common real-time sce-

nario algorithms, e.g., mobile communication, hearing aids etc. as usually a second

channel is not available in most of such applications. Single channel speech enhance-

ment methods can be divided mainly into three categories based on their domains

of operation. Time domain methods include the subspace approach [4], frequency

domain methods include the spectral subtraction [2], minimum mean square error

(MMSE) estimator [5], Short-time Spectral Amplitude (STSA) estimator [6] and

Wiener filtering [7], and time frequency-domain methods involve the employment

of family of wavelets [8–15]. Time domain subspace method provides a tradeoff be-

tween speech distortion and residual noise but real-time processing is difficult due to

heavy computation load. On the other hand, frequency domain methods provide the

advantage of real-time processing with less computational load. The time-frequency

domain methods, namely Universal threshold [10], WPF [9], BayesShrink [16], and

SURE [17] use thresholding in the wavelet domain as a process of removing noise.

The main challenge in such time-frequency domain wavelet based speech enhance-

ment methods is adjusting the threshold value so that it can prevent distortion in

enhanced speech as well as decrease residual noise. Then, by using the threshold,

the designing of a thresholding function to minimize the effect of wavelet coefficients

corresponding to the noise is another difficult issue. Therefore, determining an ex-



act threshold and designing an appropriate thresholding function for noisy speech

enhancement still remain as challenging tasks in the time-frequency domain.

1.6 Objective of the Thesis

The objectives of this thesis are:

i. To analyze the noisy speech signals in Perceptual Wavelet Packet (PWP) domain

and perform Teager Energy (TE) Operation on PWP coefficients for better time

and frequency resolution.

ii. To determine an appropriate adaptive threshold based on the statistical modeling

of TE operated PWP coefficients.

iii. To develop a custom thresholding function that can operate according to the

noise presence in the noisy speech signal to preserve the speech coefficients as well

as to remove the noise coefficients.

iv. To investigate the performance of the proposed method in comparison with the

state-of-the-art speech enhancement methods.

The outcome of this thesis is the development of a speech enhancement method

based on a statistically determined accurate threshold and a custom thresholding

function thus synthesizing an enhanced speech with improved quality and minimal

distortion in intelligibility under high to even very low levels of SNR.

1.7 Organisation of Thesis

This thesis is organized as follows; The fundamentals and application of speech

enhancement, source and types of noises are introduced in chapter 1. Chapter 2

provides a comprehensive review for the state-of-the-art speech enhancement meth-

ods. Chapter 3 describes a Gaussian model based speech enhancement method in

the PWP domain. A Laplace model based speech enhancement method is discussed

in chapter 4. An approach for enhancing the speech based on Rayleigh modeling is

proposed in chapter 5. Chapter 6 describes a Poisson model based speech enhance-

ment method and an approach for enhancing speech based on Student t modeling

is proposed in chapter 7. Finally, concluding remarks, contribution and suggestions

for future works of the thesis are highlighted in chapter 8.



Chapter 2

Literature Review

2.1 Introduction

Speech enhancement is the term used to describe algorithms or devices whose pur-

pose is to develop some perceptual aspects of speech for the human listener or

to improve the speech signal so that it may be better exploited by other speech

processing algorithms. Development and widespread use of digital communication

systems during the last twenty years have brought increased consideration to the

role of speech enhancement in speech processing problems. Speech enhancement

algorithms have been applied to problems as diverse as correction of reverberation,

pitch modification, rate modification, correction of so-called ”hyperbaric” speech

produced by deep-sea divers breathing a helium-oxygen mixture and correction of

speech that has been distorted due to pathological problems of the speaker [1,18–21].

However, noise reduction is probably the most important and most frequently en-

countered speech enhancement issue. The removal of noise from degraded speech

is the problem addressed in this thesis. In this chapter, a brief description of the

classical methods in speech enhancement are discussed.

2.2 Time Domain Methods

One particular class of time-domain speech enhancement techniques that has gained

a lot of attention is signal subspace filtering [4, 22–25].

9



2.2.1 Fundamentals of Subspace-based speech enhancement
Method

In this approach, a nonparametric linear estimate of the unknown clean-speech sig-

nal is obtained based on a decomposition of the observed noisy signal into mutu-

ally orthogonal signal and noise subspaces. This decomposition is possible under

the assumption of a low-rank linear model for speech and an uncorrelated additive

(white) noise interference. Under these conditions, the energy of less correlated noise

spreads over the whole observation space while the energy of the correlated speech

components is concentrated in a subspace thereof. Also, the signal subspace can be

recovered consistently from the noisy data. Generally speaking, noise reduction is

obtained by nulling the noise subspace and by removing the noise contribution in the

signal subspace. Any noise reduction technique requires assumptions about the na-

ture of the interfering noise signal. Subspace-based speech enhancement also makes

some basic assumptions about the properties of the desired signal (clean speech)

as is the case in many but not all signal enhancement algorithms. Evidently, the

separation of the speech and noise signals will be based on their different charac-

teristics. Since the characteristics of the speech (and also of the noise) signal(s)

are time varying, the speech enhancement procedure is performed on overlapping

analysis frames.

A key assumption in all subspace-based signal enhancement algorithms is that

every short-time speech vectors [s(1), s(2), ..., s(q)]T can be written as a linear com-

bination of p < q linearly independent basis function Mi, i = 1, ..., p, s = Miy where

Mi is a (qp) matrix containing the basis functions (column-wise ordered) and y is a

length-p column vector containing the weights. Both the number and the form of

these basis functions will in general be time varying (frame dependent). An obvious

choice forms are (damped) sinusoids motivated by the traditional sinusoidal model

for speech signals. A crucial observation here is that the consecutive speech vec-

tors s will occupy a (p < q)-dimensional subspace of the q-dimensional Euclidean

space(p equals the signal order). Because of the time-varying nature of speech sig-

nals, the location of this signal subspace (and its dimension) will consequently be

frame-dependent. The additive noise is assumed to be zero-mean, white, and un-

correlated with the speech signal. Its variance should be slowly time varying such



that it can be estimated from noise only segments. Contrarily to the speech signal,

consecutive noise vectors n will occupy the whole q-dimensional space.

Based on the above description of the speech and noise signals, the aforemen-

tioned q-dimensional observation space is split in two subspaces, namely a p-dimensional

(signal + noise) subspace in which the noise interferes with the speech signal, and

a (q-p)-dimensional subspace that contains only noise (and no speech). The speech

enhancement procedure can now be summarised as follows:

1. separate the (signal+noise) subspaces from the (noise only) subspace,

2. remove the (noise-only) subspace,

3. optionally, remove the noise components in the (signal+ noise) subspace.

The first operation is straightforward for the white noise condition under consid-

eration here, but can become complicated for the coloured noise case. The second

operation is applied in all implementations of subspace-based signal enhancements,

whereas the third operation is indispensable to obtain an increased noise reduction.

Nevertheless, the last operation is sometimes omitted because of the introduction

of speech distortion. The latter problem is inevitable since the speech and noise

signals overlap in the signal subspace.

2.2.2 Algorithm of Subspace based Speech Enhancement
Method

Let s[k] represent the clean-speech samples and let n[k] be the zero-mean, additive

white noise distortion that is assumed to be uncorrelated with the clean speech. The

observed noisy speech s[k] is then given by

x[k] = s[k] + n[k] (2.1)

Further, let Rx, Rs,and Rn be (qxq)(with q¿p)true autocorrelation matrices of

x[k],s[k], and n[k], respectively. Due to the assumption of uncorrelated speech and

noise, it is clear that

Rx = Rs +Rn (2.2)

The eigenvalue decomposition (EVD) of Rx, Rs,and Rn can be written as follows:

Rs = V ΛV T (2.3)



Rn = V (σ2
ww)V

T (2.4)

Rx = V (Λ + σ2
w)V

T (2.5)

with Λ diagonal matrix containing the eigenvalues λi, V an orthonormal matrix

containing the eigenvectors vi, σ
2
w the noise variance, and I the identity matrix. A

crucial observation here is that the eigenvectors of the noise are identical to the clean-

speech eigenvectors due to the white noise assumption such that the eigenvectors of

Rs can be found from the EVD of Rx in (2.7). Based on the assumption that the

clean speech is confined to a (p < q)-dimensional subspace 2.1), we know that Rs

has only p nonzero eigenvalues λi. If

λi > σ2
w (2.6)

the noise can be separated from the speech signal, and the EVD of Rx can be

rewritten as

Rx = V ΛV T (2.7)

if we assume that the elements λi of Λ are in descending order. The subscripts p

and q prefer to the signal and noise subspaces, respectively. Regardless of the specific

optimisation criterion, speech enhancement is now obtained by 2.1 restricting the

enhanced speech to occupy solely the signal subspace by nulling its components in

the noise subspace. Mathematically this enhancement procedure can be written as

a filtering operation on the noisy speech vector x = [x(1), x(2), ..., x(q)]

ŝ = Fx (2.8)

with the filter matrix F given by

F = VpGpV
T
p (2.9)

in which the (pxp) diagonal matrix Gp contains the weighting factors gi for the first

p eigenvalues of Rx, while V T and V are known as the Karhunen Loeve transform

matrix and its inverse, respectively. The filter matrix F can be rewritten as

F =

p∑

i=1

giviv
t
i (2.10)

which illustrates that the filtered signal can be seen as the sum of p outputs of a ”filter

bank”. Each filter in this filter bank is solely dependent on one eigenvector vi and



its corresponding gain factor gi. In general, in the subspace method, a mechanism

to obtain a tradeoff between speech distortion and residual noise is proposed with

the cost of a heavy computational load.

2.3 Frequency Domain Methods

2.3.1 Spectral Subtraction

Spectral subtraction is the most prominent method in frequency domain [2,3,26,27].

Let y(n) = x(n) + d(n) be the sampled noisy speech signal consisting of the clean

speech x(n) and the noise signald(n). Taking the short-time Fourier transform of

y(n), we get

Y (ωk) = X(ωk) +D(ωk); (2.11)

for ωk = 2πk
N

and k = 0, 1, 2, .....N − 1, where N is the frame length in samples. To

get the short-term power spectrum of the noisy speech, we multiply Y (ωk) in the

above equation by its conjugate Y ∗(ωk). In doing so, (2.11) becomes

Y (ωk)
2 = |X(ωk)|2 + |D(ωk)|2 +X(ωk).D

∗(ωk)

+X∗(ωk).D(ωk) (2.12)

Using vector to phasor conversion we get,

Y (ωk)
2 = |X(ωk)|2 + |D(ωk)|2 + |X(ωk)|ejθ.|D(ωk)|e−jα

+|X(ωk)|e−jθ.|D(ωk)|ejα (2.13)

Taking common from both sides,

Y (ωk)
2 = |X(ωk)|2 + |D(ωk)|2

+|X(ωk)||D(ωk)|(ejθ.e−jα + e−jθ.ejα) (2.14)

We can write now,

Y (ωk)
2 = |X(ωk)|2 + |D(ωk)|2 + |X(ωk)||D(ωk)|(ejf(θ,α); (2.15)

Y (ωk)
2 = |X(ωk)|2 + |D(ωk)|2 + |Y (ωk)

−D(ωk)||D(ωk)|(ejf(θ,α) (2.16)



So at last, we get formula for the desired signal,

|X(ωk)|2 = Y (ωk)
2 − |D(ωk)|2

+|Y (ωk)−D(ωk)||D(ωk)|ej∠(f(X,D) (2.17)

As X(ωk) is function of Y (ωk) and D(ωk), we can write

|X(ωk)|2 = Y (ωk)
2 − |D(ωk)|2 (2.18)

+|Y (ωk)−D(ωk)||D(ωk)|ej∠(f(Y,D) (2.19)

We can define a gain function in the following way,

|X̂(ωk)|2 = H2(ωk)Y (ωk)
2 (2.20)

where

H(ωk) =

√
1− |D(ωk)|2

|Y (ωk)|2
(2.21)

In (2.28), the right hand side is the spectral gain function of spectral subtraction

method. However, although spectral subtraction method is simple and provides a

tradeoff between speech distortion and residual noise to some extent, it suffers from

an artifact known as ”musical noise” having an unnatural structure that is per-

ceptually annoying, composed of tones at random frequencies and has an increased

variance. It is obvious that the effectiveness of the noise removal process is de-

pendent on obtaining an accurate spectral estimate of the noise signal. The better

the noise estimate, the lesser the residual noise content in the modified spectrum.

However, since the noise spectrum cannot be directly obtained, we are forced to

use an average estimate of the noise. Hence, there are some significant variations

between the estimated noise spectrum and the actual noise content present in the

instantaneous speech spectrum. The subtraction of these quantities results in the

presence of isolated residual noise levels of large variance. These residual spectral

content manifest themselves in the reconstructed time signal as varying tonal sounds

resulting in a musical disturbance of an unnatural quantity. This musical noise can

be even more disturbing and annoying to the listener than the distortions due to

the original noise content. This and other drawbacks of the method neutralize the

improvement in speech quality achieved due to the reduction in noise levels and can

be more annoying than the original noise itself.



2.3.2 Minimum Mean Square Error Estimator

Minimum mean square error (MMSE) estimation of speech signals, which have been

corrupted by statistically independent additive noise, is an important method in

speech enhancement applications [5, 6, 28, 28, 29]. The MMSE estimator is opti-

mal for a large class of difference distortion measures, not only the MSE measure,

provided that the posterior probability density function (PDF) of the clean signal

given the noisy signal is symmetric about its mean. The derivation of the MMSE

estimator may be difficult, especially when complex statistical models for the signal

and noise are used. In this case, the maximum a posterior (MAP) estimator of the

signal, which can be efficiently calculated using the EM (expectation-maximization)

algorithm, can be useful. MAP estimation is an approximate minimum average

distortion estimation method for the uniform difference distortion measure. This

distortion measure assigns zero distortion for estimates in the immediate neighbour-

hood of the clean signal, and uniform distortion for the ones outside this neighbour-

hood.Assuming that the MAP estimator is optimal for this non-convex distortion

measure, then it is also optimal for all symmetric non-decreasing distortion mea-

sures, provided that the posterior PDF of the clean signal given the noisy signal

is unimodal, symmetric about its mean, and both the distortion measure and the

posterior PDF satisfy

lim
d→∞

d(ǫ)PSIX(ǫ|x) = 0 (2.22)

where d(ǫ) is the difference distortion measure, ǫ is the estimator error, and PSIX(ǫ|x)
is the posterior PDF of the clean signal S given the noisy signal X.

A relatively large variance of spectral coefficients is the problem of such an

estimator. While adapting filter gains of the MMSE estimator, spectral outliers

may emerge, that is especially difficult to avoid under noisy conditions. Unlike

magnitude averaging while averaging is performed irrespective of whether the frame

consists speech or noise, the MMSE estimator performs non-linear smoothing only

when the SNR is low, i.e. when the frame predominantly contains noise. The

residual noise present due to this technique has been observed to be colorless. The

method reduces the distortions in the speech parts due to averaging.



2.3.3 Wiener Filter

Almost all of the known speech enhancement algorithms which operate in the Dis-

crete Fourier Transform (DFT) domain assume that the real and the imaginary part

of the clean speech DFT coefficients can be modeled by a Gaussian distribution. The

Gaussian assumption is indeed true in the asymptotic case of large DFT frames when

the span of correlation of the signal under consideration is much shorter than the

DFT frame size [7]. This has been recognized, e.g., by Porter and Boll, who pro-

posed a heuristic method to construct approximately optimal estimators from given

clean speech material. In [29], different speech statistical models are investigated

and based on the speech model, different MMSE estimators are obtained. Different

estimators are out of the scope of this introduction, but for the exact formulas we

can refer to [30]. One of the estimators based on the assumption of speech and noise

being Gaussian leads to the Wiener estimator. The estimator is called a linear or

Wiener filter and the formulation is [30–33],

Ŝ(k) = ESk|Xk =
δ2s

δ2s + δ2n
X =

ξ

1 + ξ
X (2.23)

where δ2s and δ2n are the mean of |S|2 and |N |2 .

In Wiener filter, the a priori knowledge of the speech and noise power spectra

is necessary. The speech power spectrum is estimated using the estimated speech

model parameters. One of the major problems of Wiener filter based methods is the

requirement of obtaining clean speech statistics necessary for their implementation.

Both the MMSE and Wiener estimators have a moderate computational load, but

they offer no mechanism to control tradeoff between speech distortion and residual

noise.

2.3.4 Short Time Spectral Amplitude Estimator

This subsection focuses on the class of speech enhancement systems that exploit

the major importance of the short-time spectral amplitude (STSA) of the speech

signal in its perception. In [6], a system which utilizes a minimum mean-square error

(MMSE) STSA estimator is proposed. In the spectral subtraction algorithm, the

STSA is estimated as the square root of the maximum likelihood (ML) estimator

of each signal spectral component variance. In Wiener filtering systems, though,



the STSA estimator is obtained as the modulus of the optimal minimum mean-

square error (MMSE) estimator of each signal spectral component. These two STSA

estimators were derived under a Gaussian assumption. As we know the spectral

subtraction STSA estimator is derived from an optimal (in the ML sense) variance

estimator, and the Wiener STSA estimator is derived from the optimal MMSE

signal spectral estimator, so both are not optimal spectral amplitude estimators

under the assumed statistical model and criterion. To derive the MMSE STSA

estimator, we should know about the a priori probability distribution of the speech

and noise Fourier expansion coefficients. Here we assume that the Fourier expansion

Coefficients of each process can be modeled as statistically independent Gaussian

random variables. Also the mean of each coefficient is assumed to be zero, since the

processes involved here are assumed to have zero mean. However, due to the speech

non-stationarity, the variance of each speech Fourier expansion coefficient is time-

varying. The Gaussian statistical model is motivated by the central limit theorem, as

each Fourier expansion coefficient is, after all, a weighted sum (or integral) of random

variables resulting from the process samples. Considering the fact that a central limit

theorem exists (under mild conditions) also for strongly mixing processes (i.e., in

which sufficiently separated samples are weakly dependent) encourages the use of the

Gaussian model in the discussed problem. The statistical independence assumption

in the Gaussian model is actually correspondent to the assumption that the Fourier

expansion coefficients are uncorrelated. This latter assumption is justified by the

fact that the normalized correlation between different Fourier expansion coefficients

approaches zero as the analysis frame length tends to infinity. In practice, a proper

window (e.g., Hanning) is applied to the noisy process, which reduces the correlation

between widely separated spectral components, at the expense of increasing the

correlation between adjacent spectral components. This is a consequence of the

wider main lobe but lower side lobes of a window function, in comparison to the

rectangular window. Considering the above statistics, the MMSE estimator Ŝ is

obtained as follows

Ŝ(k) = E{Sk|Xk} (2.24)

Ŝ(k) = τ(1.5)

√
(νk)

γk
exp(−−νk

2
)[(1 + νk)I0(

νk

2
) + νkI1(

νk

2
)]Rk (2.25)



where τ(.) denotes the gamma function, with τ(1.5) =

√
(π)

2
, I0(.) and I1(.) denote

the modified Bessel functions of zero and first order, respectively. νk is defined by:

νk =
ξk

1 + ξk
γk (2.26)

ξk =
λx(k)

λd(k)
(2.27)

γk =
R2

k

λd(k)
(2.28)

where ξk and γk are interpreted as the a priori and a posteriori SNR, respectively.

Here, such MMSE estimation of a complex exponential of the phase which does

not affect the STSA estimation is done, and this constrained complex exponential

estimator is found to be the complex exponential of the noisy phase. In this sec-

tion the problem of estimating the a priori SNR of a spectral component in a given

analysis frame is also addressed. The a priori SNR must be re-estimated in each

analysis frame, due to the non-stationarity of the speech signals. Two approaches

are considered here. In the first, an ML estimator of a speech spectral component

variance is used. The second approach is based on a decision-directed estimation

approach. Both approaches assume a prior knowledge of the noise spectral compo-

nent variance. The ML estimation approach is most commonly used for estimating

an unknown parameter of a given PDF, when no a priori information is available

about it.

2.4 Time-Frequency domain Methods

2.4.1 Discrete Wavelet Transform based methods

Speech can be divided into two very different types of signals, namely voiced speech,

such as vowels, and unvoiced speech, such as consonants. Because voiced speech is

produced by the oscillation of the vocal chords it is periodic in nature. The Fourier

domain is well suited for such signals, and is widely used in speech applications

such as phoneme recognition. Unvoiced sounds, however, are generally not periodic

in nature and the Fourier domain may not be the best way to model such signals

for enhancement purposes. The success of wavelet-based signal/image enhancement



has led researchers to investigate the potential of wavelet-based speech enhancement

methods. Wavelet-based speech enhancement is similar to Fourier-based speech en-

hancement, but instead of calculating the Fourier transform of every consecutive

frame, the wavelet transform is used. Thresholding speech in the wavelet domain

can easily eliminate sections of speech, though, especially when enhancing the noise-

like unvoiced sounds. The algorithm uses voiced/unvoiced detection to solve this

problem. Unvoiced sections of speech are enhanced by only attenuating the coef-

ficients of the highest resolution level, whereas all coefficients are attenuated with

voiced sounds. Bahoara and Rouat [9] proposed a speech enhancement algorithm

by using a time-adaptive threshold in a 16-subband uniform wavelet packet domain.

Bahoara and Rouat reported that that their algorithm improves the global SNR

more than the Ephraim-Malah MMSE STSA algorithm [6], even under heavy noise

conditions.

Hu and Loizou [23] proposed a different approach which also combines short-time

spectral attenuation (STSA) and wavelet-based enhancing techniques. Unlike the

above-mentioned wavelet-based algorithms, which threshold the wavelet coefficients

of the time signal, this algorithm enhances the log multitaper spectra [34]. The

multitaper spectra have good bias and variance properties. These spectral signals

are then transformed to the wavelet domain, enhanced with SureShrink and then

finally inverse transformed back into the log multitaper spectral domain. Wavelet

enhancing of the log multitaper spectra leads to even better (low-variance) spectral

estimates. These refined spectra are then used in an STSA speech enhancement

algorithm, which is a variation of Wiener filtering. The actual speech enhancement

is done in the multitaper spectral domain, whereas the wavelet-based enhancement

step is only used to get more refined spectral estimates, which makes this algorithm

an STSA speech enhancement algorithm. Hu and Loizou showed that their algo-

rithm has little ”musical” noise and it also preserves speech quality better than the

Ephraim-Malah MMSE-LSA algorithm [4].

In the conventional DWT based analysis, only scale space is decomposed, but

wavelet space is not decomposed. An important shortcoming of such analysis when

it is applied to the noisy speech for the purpose of enhancement is the shrinkage

of the unvoiced speech frames which contain many noise-like speech components



leading to a degraded speech quality.

2.4.2 Discrete Wavelet packet Transform based Methods

Unlike DWT based analysis, in Wavelet Packet (WP) based analysis, the wavelet

space is also decomposed thus making the higher frequency band decomposition pos-

sible. Since, both the approximation and the detail WP coefficients are decomposed

into two parts at each level of decomposition, a complete binary tree with superior

frequency localisation can be achieved. Discrete Wavelet Packet Transform (DWPT)

decomposes the signal into a larger number of subbands and produces a multireso-

lution framework that can have finer frequency resolution at high frequencies than

the standard wavelet-transform [8–15].

Cohen [35] proposed an algorithm which uses a weighted Wiener filter to atten-

uate the coefficients of a non-uniform 84-subband redundant DWPT. The subband

spacing approximates the bark frequency scale, which is a perceptual frequency scale

generally used for audio compression purposes. The a priori SNR is estimated by a

variation of the Ephraim Malah decision-directed estimate [4]. Compared to Fourier-

based speech enhancement, the algorithm leads to better results on the segmental

signal-to-noise ratio distortion measure and lower residual noise of enhanced speech.

Fu and Wan [36] proposed a method which uses Fourier-based and wavelet-

based denoising techniques in a series combination. The Ephraim-Malah MMSE

STSA speech enhancement algorithm [4] is used as a pre-processing step to elim-

inate some noise while still retaining speech quality. This enhanced speech signal

is then transformed into the DWPT domain by using an 18-subband critical-band

decomposition. Time and frequency-adaptive thresholds are computed for each sub-

band and time frame by using a variation of the universal threshold. Enhancement

is done with a variation of the Ephraim Malah suppression rule [4]. Fu and Wan

state that combining Fourier-based and wavelet-based enhancement techniques elim-

inates a reasonable amount of ”musical” noise while still retaining speech quality.

The algorithm also shows promising results on the segmental signal-to-noise ratio

distortion measure.



2.5 Conclusion

In this chapter, a brief literature survey of the state-of-the-art speech enhancement

methods are presented. All the methods have their advantages and disadvantages.

In order to handle the practical situations of real life applications, a speech en-

hancement method, apart from providing less computational burden, is needed to

be capable of producing satisfactory results with improved speech intelligibility. Al-

though a series of successful attempt has been taken by many researchers, it is still

a open challenge problem.



Chapter 3

Speech Enhancement Using
Gaussian Modeling of Teager
Energy Operated Perceptual
Wavelet Packet Coefficients

In this chapter, speech enhancement based on Gaussian modeling of TE operated

PWP coefficients is described [37]. An adaptive threshold is determined analytically

using the Gaussian model of TE operated PWP coefficients and then this threshold

is imposed upon the PWP coefficients of noisy speech using pdf dependent cus-

tom thresholding function which is devised as a combination of modified hard and

semisoft thresholding function. Detail simulation is performed to compare the pro-

posed method with the state-of-the art speech enhancement techniques which is

added at the end of this chapter.

3.1 Proposed Method Considering Gaussian Sta-

tistical Model

The block diagram for the proposed method is shown in Fig. 3.1. It is seen from

Fig. 3.1 that PWP transform is first applied to each input speech frame. Then,

the PWP coefficients are subject to TE approximation with a view to determine a

threshold value for performing thresholding operation in the WP domain. On using

a custom thresholding function, an enhanced speech frame is obtained via inverse

perceptual wavelet packet (IPWP) transform.

22



Fig. 3.1: Block diagram for the proposed method

3.1.1 Perceptual Wavelet Packet Transform

The perceptual scale mel scale, named by Stevens, Volkman and Newman in 1937

is a scale of pitches judged by listeners to be equal in distance from one another.

The reference point between this scale and normal frequency measurement is defined

by assigning a perceptual pitch of 1000 mels to a 1000 Hz tone, 40 dB above the

listener’s threshold. Above about 500 Hz, larger and larger intervals are judged by

listeners to produce equal pitch increments. As a result, four octaves on the hertz

scale above 500 Hz are judged to comprise about two octaves on the mel scale.

Formula to convert f hertz into m mel is,

m = 1127log(1 +
f

700
) (3.1)

The conversion of frequency to mel is shown in Fig.3.6.
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Fig. 3.2: Conversion of frequency to perceptual scale mel

The perceptual wavelet packet transform transforms the wavelet coefficients ac-

cording to the frequency division of perceptual scale. The main motivation behind



this transform is the ability to decompose the signal according to human audi-

tory system. At low frequency, where human auditory system can differentiate the

pitches precisely, PWPT decomposes the signal in finer bands. On the other hand,

at high frequency, PWPT creates less number of bands as the human cochlea can

not differentiate small differences in high frequency.

The method introduced here is based on perceptual wavelet packet decomposi-

tion. The key element of the transform is the use of the Mel warping function to

determine the WPT decomposition structure based on a perceptually motivated fre-

quency axis. we propose to decompose a wavelet packet tree into the critical bands

with respect to the Mel frequency warping curve [38]. The frequency division for a

perecptual wavelet packet transform is shown in the Fig. 3.3. The center frequencies

of the wavelet packet transform and perceptual wavelet packet transform are shown

in Table. 3.1.
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Fig. 3.3: Frequecy Structure for Perceptual Wavelet Packet Transform

The clean, noise and noisy PWP coefficients in a subband of a noisy speech frame

at an SNR of 5dB is plotted in Fig. 3.4. It is seen from this figure that for most of

the coefficient indices, clean and noise PWP coefficients are not separable. Based on

similar analysis performed on many speech signals corrupted by different noises, it



Table 3.1: Center Frequency of WPT and PWPT

Filters 1 2 3 4 5 6

PWPT 28 89 154 224 300 383

WPT 31 94 156 219 281 344

Filters 7 8 9 10 11 12

PWPT 472 569 674 787 910 1043

WPT 406 469 563 688 813 938

Filters 13 14 15 16 17 18

PWPT 1187 1343 1512 1694 1892 2106

WPT 1063 1188 1313 1438 1563 1688

Filters 19 20 21 22 23 24

PWPT 2338 2589 2860 3154 3472 3817

WPT 1875 2125 2375 2750 3250 3750

is found that the time and frequency resolution provided by PWP transform is not

sufficient to separate PWP coefficients of clean speech from that of noise even at a

high SNR of 5dB. Since, Teager Energy (TE) operator has better time and frequency

resolution [39] it can be very useful in handling noise. Therefore, we apply discrete

time TE operator on the PWP coeffcients Wk,m.

3.1.2 Teager Energy Operator

Letting Wk,m as the m-th PWP coefficient in the k -th subband, the m-th TE op-

erated coefficient tk,m corresponding to the k -th subband of the PWP transform is

given by

tk,m = T [Wk,m]. (3.2)

Fig. 3.5 presents the clean, noise and noisy TE operated PWP coefficients in

a subband of a noisy speech frame at the same SNR as used in fig.3.4. It is seen

from this figure that at the indices where TE operated PWP coefficients of clean

speech have higher values, the TE operated PWP coefficients of noise show lower

values. As a result, thresholding operation on the noisy PWP coefficients needs a

low threshold value thus removing the noise leaving the speech undistorted. On

the contrary, at the indices, where TE operated PWP coefficients of clean speech



have lower values, the TE operated PWP coefficients of noise exhibit higher values

as expected. Thus thresholding the noisy speech PWP coefficients needs a higher

threshold value and removes the necessary noise without speech distortion at a

significant level. Therefore, TE operation on PWP coefficients is found as more

capable of serving the goal of thresholding operation by reducing the noise as well

as preserving the speech.
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Fig. 3.4: WP Coefficients of a noisy speech subband at an SNR of 5dB
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Fig. 3.5: TE Operated PWP Coefficients of a noisy speech subband at an SNR of
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3.1.3 Proposed Model for TE Operated PWP Coefficients
assuming Gaussian distribution

The outcome of a speech enhancement method based on the thresholding in a trans-

form domain depends mainly on two factors, namely the threshold value and the

thresholding functions. The use of a unique threshold for all the PWP subbands

is not reasonable. As a crucial parameter, the threshold value in each subband

is required to be adjusted very precisely so that it can prevent distortion in the

enhanced speech as well as decrease annoying residual noise. By considering the

probability distributions of the tk,m of the noisy speech, noise and clean speech, a

more accurate threshold value can be obtained using a suitable pattern matching

scheme or similarity measure. Since speech is a time-varying signal, it is difficult

to realize the actual probability distribution function (pdf) of speech or its tk,m.

As an alternative to formulate a pdf of the of speech, we can easily formulate the

histogram of its tk,m and can approximate the histogram by a reasonably close pdf

namely Gaussian distribution. For the tk,ms in a subband of a noisy speech frame,

the empirical histogram along with the Gaussian distributions are superimposed in

Fig. 3.6, 3.7 and 3.8 in presence of car noise at SNRs of −15, 0 and 15 dB. From

this figure, it is obvious that Gaussian distribution fits the empirical histogram very

finely. Similar analysis results are obtained for empirical histogram and Gaussian

distribution of TE operated noise PWP coefficients at the same SNRs as used in

Fig. 3.6, 3.7 and 3.8 and are shown in Fig. 3.9, 3.10 and 3.11.

3.1.4 Proposed Adaptive Threshold Calculation assuming
Gaussian distribution

The entropy of each subband of the PWP coefficients is found different from each

other. So, an entropy measure may be chosen to select a suitable threshold value

adaptive to each subband. Some popular similarity measures that are related to

the entropy functions are the Variational distance, the Bhattacharyya distance, the

Harmonic mean, the Kullback Leibler(K-L) divergence, and the Symmetric K-L di-

vergence. The K-L divergence is always nonnegative and zero if and only if the

approximate Gaussian distribution functions of the pdf of noisy speech and that of

the noise or the approximate Gaussian distribution functions of the pdf of the noisy
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Fig. 3.6: Empirical histogram and Gaussian distribution of TE operated PWP co-
efficients of noisy speech at SNR of −15 dB
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Fig. 3.7: Empirical histogram and Gaussian distribution of TE operated PWP co-
efficients of noisy speech at SNR of 0 dB

speech and that of the clean speech are exactly the same. In order to have a sym-

metric distance between the any two approximate Gaussian distribution functions

as mentioned above, the Symmetric K-L divergence has been adopted in this paper.

The Symmetric K-L divergence is defined as

SKL(p, q) =
KL(p, q) +KL(q, p)

2
, (3.3)
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Fig. 3.8: Empirical histogram and Gaussian distribution of TE operated PWP co-
efficients of noisy speech at SNR of 15 dB
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Fig. 3.9: Empirical histogram and Gaussian distribution of TE operated noise PWP
coefficients at SNR of −15 dB

where p and q are the two approximate Gaussian pdfs calculated from the corre-

sponding histograms each having N number of bins and KL(p, q) is the K-L diver-

gence given by

KL(p, q) =
N∑

i=1

pi(tk,m)ln
pi(tk,m)

qi(tk,m)
. (3.4)
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Fig. 3.10: Empirical histogram and Gaussian distribution of TE operated noise PWP
coefficients at SNR of 0 dB
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Fig. 3.11: Empirical histogram and Gaussian distribution of TE operated noise PWP
coefficients at SNR of 15 dB

In (3.4), pi(tk,m) is the pdf of tk,m of noisy speech given by

pi(tk,m) =
ni

Nc

, (3.5)

where ni is number of coefficients in i -th bin and Nc total number of coefficients in

each subband. Similarly, the approximate Gaussian pdf of the tk,m of the noise and

that of the tk,m of the clean speech can be estimated following (3.5) and denoted

by qi(tk,m) and ri(tk,m), respectively. Below a certain value of threshold λ, the

symmetric K-L divergence between pi(tk,m) and qi(tk,m) is approximately zero, i.e.,



SKL(pi(tk,m), qi(tk,m)) ≈ 0. (3.6)

By solving the above equation, we get a value of λ following [40],

λ(k) =
σn(k)√

γk

√
2(γk + γ2

k)× ln(

√
1 +

1

γk
), (3.7)

where γk is segmental SNR of subband k defined as

γk =
σ2
r(k)

σ2
n(k)

. (3.8)

In this equation, σ2
r(k) is the signal power at k subband and σ2

n(k) is the noise power

at k subband.

3.1.5 Proposed Thresholding Function

We propose a pdf dependent custom thresholding function derived from the modified

hard and the semisoft thresholding functions [41]. Representing λ(k) derived from

(3.7) as λ1(k) and letting λ2(k) = 2λ1(k), the proposed thresholding function is

developed as

(Yk,m)PCT =





α(k,m)sgn(Yk,m)×G, if |(Yk,m)| < λ1(k)

Yk,m, if |(Yk,m)| > λ2(k),

(1− α(k,m))Π1 + α(k,m)Π2, otherwise,

(3.9)

where

G =
|(Yk,m)|β(k,m)

[λ1(k)](β(k,m)−1)
, (3.10)

Π1 = sgn(Yk,m)× λ2(k)
|(Yk,m)| − λ1(k)

λ2(k)− λ1(k)
, (3.11)

Π2 = Yk,m. (3.12)

In (3.9), (Yk,m)PCT stands for the PWP coefficients thresholded by the proposed

custom thresholding function expressed from (3.9)-(3.12) and two shape parameters

of the proposed thresholding function are represented by α(k,m) and β(k,m).

The comparison of the proposed custom thresholding function with the conven-

tional modified hard and semisoft thresholding functions is shown in Fig. 3.12. In

the region between λ1 and λ2, this figure demonstrates the flexibility of the proposed

thresholding operation in a sense that it can be viewed as (1 − α(k,m))(Yk,m)SS +



α(k,m)(Yk,m)MH which is a linear combination of the modified hard and the semisoft

thresholding function. Here, (Yk,m)MH stands for the PWP coefficients thresholded

by the modified hard thresholding function and (Yk,m)SS represents the PWP coef-

ficients thresholded by the semisoft thresholding function. Unlike these functions,

depending on the value of shape parameter α(k,m), it can be verified from (3.9)

that the proposed thresholding function gets the following forms,

lim
α(k,m)→0

(Yk,m)PCT = (Yk,m)SS,

lim
α(k,m)→1

(Yk,m)PCT = (Yk,m)MH .
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Fig. 3.12: Input Output Relation for semisoft, modified hard and proposed custom
thresholding function

Effect of the Shape Parameters on the Proposed Thresholding Function

In order to realize the effect of α(k,m) and β(k,m) on the proposed thresholding

function, the variation of α(k,m) and β(k,m) for different values of R(k,m)
Q(k,m)

are ob-

tained using (7.11) and (7.12) and plotted in Fig.3.13. From this figure, it is seen

that for a large value of R(k,m)
Q(k,m)

, α(k,m) becomes high, i.e., close to 1 that increases

the probability of Yk,m to be a speech coefficient. In this case, (Yk,m)PCT acts like

(Yk,m)MH as expected, since if a coefficient has a high probability to be speech

should not be a thresholded to zero before λ1(k) and should be unchanged after

λ1(k) as done in modified hard thresholding function. It is also found from Fig.



3.13 that for a small value of R(k,m)
Q(k,m)

, α(k,m) becomes low, i.e., close to zero and

(Yk,m)PCT ≈ (Yk,m)SS. It is also expected since if the probability of a PWP coeffi-

cient to be speech becomes low, it should be thresholded to zero before λ1(k) and

thresholded to a small value upto λ2(k) as done in semisoft thresholding function.

From Fig.3.13, it is seen that for a small value of R(k,m)
Q(k,m)

, β(k,m) gets a high value

that increases the probability of Yk,m to be a noise coefficient. In this case, it can

be seen from (3.10) that (Yk,m)PCT in (3.9) tends to zero as expected since a noise

PWP coefficient should be made zero to completely remove the noise. On the other

hand, for a high value of R(k,m)
Q(k,m)

, β(k,m) becomes low that decreases the probability

of Yk,m to be a noise coefficient. Therefore, from (3.10) and (3.9), it can be verified

that (Yk,m)PCT gets a small value instead of being thresholded to zero. This is also

expected since a PWP coefficient that has a less probability to be a noise coefficient

should not be thresholded to zero.
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Fig. 3.13: Plot of α(k,m) and β(k,m) for different values of R(k,m)
q(k,m)

Determination of Shape Parameters

The proposed thresholding function can be adapted to noise characteristics of the

input noisy speech based on the shape parameters α(k,m) and β(k,m) which are

defined as

α(k,m) =
1 +R(k,m)

2(1 +Q(k,m))
, (3.13)



β(k,m) =
2(1 +Q(k,m))

(1 +R(k,m))
, (3.14)

where R(k,m) and Q(k,m) are the speech presence and absence probabilities, re-

spectively, of the m-th coefficient in the k -th subband.

Given two hypotheses,H0 andH1, which indicate respectively speech absence and

presence in the m-th coefficient of the k -th subband, and assuming a complex Gaus-

sian distributions for both speech and noise PWP coefficients [6], the conditional

pdfs of the speech and noise PWP coefficients are given by

f(Y (k,m)|H0(k,m)) =
1

πσ2
n

exp(−|Y (k,m)|2
σ2
n

), (3.15)

f(Y (k,m)|H1(k,m)) =
1

π(σ2
n + σ2

r)
exp(−|Y (k,m)|2

σ2
n + σ2

r

). (3.16)

Using aposteriori and apriori SNRs defined by [6]

Υ(k,m) =
|Y (k,m)|2
σ2
n(k,m)

, (3.17)

η(k,m) =
σ2
r(k,m)

σ2
n(k,m)

, (3.18)

and following (7.13) and (7.14), the conditional pdfs of the aposteriori SNR can be

written as [35]

f(Υ(k,m)|H0(k,m)) = e−Υ(k,m)I2, (3.19)

f(Υ(k,m)|H1(k,m)) =
1

1 + η(k,m)
× exp(− Υ(k,m)

1 + η(k,m)
)I2. (3.20)

In (7.17) and (7.18), I2 = u(Υ(k,m)) is the unit step function. Noting that the

conditional speech presence probability R(k,m) = P (H1(k,m)|Υ(k,m)), applying

Bayes rule and using (7.18), an expression for R(k,m) can be derived as

R(k,m) = [1 +
Q(k,m)

1−Q(k,m)
(1 + η̂(k,m))exp(−v(k,m))]−1, (3.21)

where η̂(k,m) is the estimated apriori SNR obtained as in [35] and

v(k,m) =
η̂(k,m)Υ(k,m)

(1 + η̂(k,m))
. (3.22)



Speech absence probability Q(k,m) in (7.19) can be determined as

Q(k,m) = 1− Rlocal(k,m)Rglobal(k,m)Rsubband(k,m). (3.23)

In (7.21), Rlocal(k,m) and Rglobal(k,m) are the speech presence probabilities in local

and global windows in the PWP domain. Letting τ for representing either “local”

or “global” window, Rτ (k,m) can be given by

Rτ (k,m) =





0, if ξτ (k,m) ≤ ξmin

1, ξτ (k,m) ≥ ξmax,
log(ξτ (k,m)/ξmin)
log(ξmax/ξmin)

, otherwise,

(3.24)

where ξτ (k,m) representing either “local” or “global” average of the apriori SNR

given by

ξτ (k,m) =
i=Wτ∑

i=−Wτ

hτ (i)ξ(k − i,m). (3.25)

In (7.23), hτ is a normalized window of size 2wτ+1 and ξ(k,m) represents a recursive

average of the apriori SNR given by

ξ(k,m) = κξ(k,m− 1) + (1− κ)η̂(k,m− 1), (3.26)

where κ denotes a smoothing constant. Note that in (7.22), ξmin and ξmax are the

two empirical constants representing minimum and maximum values of ξ(k,m) given

in (7.24). Rsubband(k) in (7.21) can be computed as

Rsubband(k) =





0, if ξsubband(k) < ξmin

1, if ξsubband(k) > ξsubband(k − 1)andξsubband(k) > ξmin,

µ(k), otherwise,

(3.27)

where µ(k) is expressed as

µ(k) =





0, if ξsubband(k) ≤ ξpeak(k)ξmin

1, if ξsubband(k) ≥ ξpeak(k)ξmax,
log(ξsubband(k)/ξpeak(k)/ξmin)

log(ξmax/ξmin)
, otherwise.

(3.28)

In (7.26) and (7.25), ξsubband(k) is determined as

ξsubband(k) =
1

Nc

∑

1≪m≪Nc

ξ(k,m) (3.29)



and ξpeak in (7.25) is a confined peak value of ξsubband(k). Thus computing R(k,m)

and Q(k,m) following (7.19) and (7.21), the shape parameters α(k,m) and β(k,m)

can be determined using (7.11) and (7.12), respectively.

3.1.6 Inverse Perceptual Wavelet Packet Transform

For a noisy speech frame, we obtain thresholded PWP coefficients using the proposed

threshold in (3.7) and the proposed thresholding function in (3.9). An enhanced

speech frame r̂[n] is synthesized by performing inverse PWP transform as

r̂[n] = PWP−1(Yk,m)PCT .

The enhanced speech signal is reconstructed by using the standard overlap-and-

add method [18].

3.2 Results Considering Gaussian Statistical Model

In this Section, a number of simulations is carried out to evaluate the performance

of the proposed method considering Gaussian statistical model.

3.2.1 Simulation Conditions

Real speech sentences from the NOIZEUS database are employed for the experi-

ments, where the speech data is sampled at 8 KHz [42]. To imitate a noisy environ-

ment, noise sequence is added to the clean speech samples at different SNR levels

ranging from 15 dB to -15 dB. As in [43], two different types of noises, such as car

and babble are adopted from the NOIZEUS databases [42].

In order to obtain overlapping analysis frames, hamming windowing operation

is performed, where the size of each of the frame is 512 samples with 50% overlap

between successive frames. A 6-level PWP decomposition tree with 10 db bases

function is applied on the noisy speech frames [38], [40] resulting in subbands k =

1, 2, .....24.

The values of used constants to determine the shape parameters in the proposed

thresholding function are given in table 7.1.



Table 3.2: Constants used to determine the shape parameters

Constants Value

β 0.7

ξmin -10 dB

ξmax -5 dB

ξpeak 10 dB

wlocal 1

wglobal 15
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Fig. 3.14: SNRSeg Improvement for different methods in car noise

3.2.2 Comparison Metrics

Standard Objective metrics namely, Segmental SNR (SNRSeg) improvement in

dB, Perceptual Evaluation of Speech Quality (PESQ) and Weighted Spectral Slope

(WSS) are used for the evaluation of the proposed method [1]. The proposed method

is subjectively evaluated in terms of the spectrogram representations of the clean

speech, noisy speech and enhanced speech. Formal listening tests are also carried

out in order to find the analogy between the objective metrics and the subjective

sound quality. The performance of our method is compared with some of the state-

of-the-art speech enhancement methods, such as Universal [10] and SMPO [43] in

both objective and subjective senses.



Table 3.3: PESQ for different methods in car noise
SNR(dB) Universal SMPO Proposed Method

-15 1.16 1.15 1.27

-10 1.23 1.37 1.45

-5 1.32 1.51 1.61

0 1.43 1.69 1.79

5 1.69 2.07 2.13

10 1.93 2.38 2.43

15 2.14 2.60 2.75

3.2.3 Objective Evaluation

Results for Speech signals with Car Noise

SNRSeg improvement, PESQ and WSS for speech signals corrupted with car noise

for Universal, SMPO and proposed methods are shown in Fig.7.10, Table 3.3 and

Fig.7.11.
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Fig. 3.15: SNRSeg Improvement for different methods in car noise

In Fig.7.10, the performance of the proposed method is compared with that of

the other methods at different levels of SNR for car noise in terms of Segmental SNR

improvement. We see, the SNRSeg improvement increases as SNR decreases. At a

low SNR of −15dB, the proposed method yields the highest SNRSeg improvement.

Such larger values of SNRSeg improvement at a low level of SNR attest the capability

of the proposed method in producing enhanced speech with better quality for speech

severely corrupted by car noise.

In Table 3.3, it can be seen that at a low level of SNR, such as −15dB , all
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Fig. 3.16: WSS for different methods in car Noise

the methods show lower values of PESQ scores, whereas the PESQ score is much

higher, as expected, for the proposed method. The proposed method also yields

larger PESQ scores compared to that of the other methods at higher levels of SNR.

Since, at a particular SNR, a higher PESQ score indicates a better speech quality,

the proposed method is indeed better in performance in the presence of a car noise.

Fig.7.11 represents the WSS values as a function of SNR for the proposed method

and that for the other methods. As shown in the figure, the WSS values resulting

from all other methods are relatively larger for a wide range of SNR levels, whereas

the proposed method is capable of producing enhanced speech with better quality

as it gives lower values of WSS even at a low SNR of −15dB.

Results for Speech signals with Multi-talker Babble Noise

SNRSeg improvement, PESQ and WSS for speech signals corrupted with babble

noise for Universal, SMPO and proposed methods are shown in Fig.7.12, 7.14 and

7.13, respectively.

In Fig. 7.12, it can be seen that at a low level of SNR of −15dB, the proposed

method provides a SNRSeg improvement that is significantly higher than that of

the methods of comparison. The proposed method still shows better performance

in terms of SNRSeg improvement for higher SNRs also.

For speech corrupted with babble noise, in Fig.7.13, the mean values of PESQ
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Fig. 3.17: SNRSeg Improvement for different methods in babble noise
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Fig. 3.18: PESQ for different methods in babble noise

with standard deviation obtained using the proposed method is plotted and com-

pared with that of the other methods. From this plot, it is seen that over the whole

SNR range considered, the proposed method continue to provide higher PESQ with

almost non-overlapping standard deviation in the presence of babble noise.

The performance of the proposed method is compared with that of the other

methods in terms of WSS in Fig.7.14 at different levels of SNRs in presence of babble

noise. It is clearly seen from this figure that WSS increases as SNR decreases. At a

low SNR of −15dB, the proposed method yields a WSS that is significantly lower
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Fig. 3.19: WSS for different methods in babble noise

than that of all other methods, which remains lower over the higher SNRs also.

3.2.4 Subjective Evaluation

In order to evaluate the subjective observation of the enhanced speech, spectrograms

of the clean speech, the noisy speech, and the enhanced speech signals obtained by

using the proposed method and all other methods are presented in Fig. 7.15 for car

noise corrupted speech at an SNR of 10 dB. It is evident from this figure that the

harmonics are well preserved and the amount of distortion is greatly reduced in the

proposed method. Thus, the spectrogram observations with lower distortion also

validate our claim of better speech quality as obtained in our objective evaluations

in terms of higher SNR improvement in dB, higher PESQ score and lower WSS

in comparison to the other methods. Another set of spectrograms for babble noise

corrupted speech at an SNR of 10 dB is also presented in Fig.7.16. This figure attests

that the proposed method has a better efficacy in preserving speech harmonics even

in case of babble noise.

Formal listening tests are also conducted, where ten listeners are allowed and

arranged to perceptually evaluate the enhanced speech signals. A full set (thirty

sentences) of the NOIZEUS corpus was processed by Universal, SMPO and pro-

posed method for subjective evaluation at different SNRs. Subjective tests were

performed according to ITU-T recommendation P.835 [42]. In this tests, a listener



Fig. 3.20: Spectrograms of (a) Clean Signal (b) Noisy Signal with 10dB car noise;
spectrograms of enhanced speech from (c) Universal method (d) SMPO method (e)
Proposed Method



Fig. 3.21: Spectrograms of (a) Clean Signal (b) Noisy Signal with 10dB babble noise;
spectrograms of enhanced speech from (c) Universal method (d) SMPO method (e)
Proposed Method



Table 3.4: Mean Score of SIG scale for different methods in presence of car noise at
5 db

Listener Universal SMPO Proposed Method

1 3.6 4.0 4.0
2 3.3 3.9 3.7
3 3.9 4.0 4.2
4 3.4 4.2 4.5
5 3.2 3.8 4.0
6 2.9 3.6 3.9
7 3.8 3.8 4.2
8 3.5 3.7 4.2
9 3.5 3.9 3.8
10 3.7 3.9 4.0

is instructed to successively attend and rate the enhanced speech signal based on

(a) the speech signal alone using a scale of SIG (1 = very unnatural, 5 = very

natural), (b) the background noise alone using a scale of background conspicuous/

intrusiveness (BAK) (1 = very conspicuous, very intrusive; 5 = not noticeable), and

(c) the overall effect using the scale of the mean opinion score (OVRL) (1 = bad,

5 = excellent). More details about the testing methodology can be found in [44].

The mean scores of SIG, BAK, and OVRL scales for the three speech enhancement

methods evaluated in the presence of car noise at an SNR of 5 dB are shown in Ta-

bles 3.4, 3.5, and 3.6. For the three methods evaluated using babble noise-corrupted

speech at an SNR of 10 dB, the mean scores of SIG, BAK, and OVRL scales are also

summarized in Tables 3.7, 3.8, and 3.9. The mean scores in the presence of both

car and babble noises demonstrate that the lower signal distortion (i.e., higher SIG

scores) and the lower noise distortion (i.e., higher BAK scores) are obtained with

the proposed method relative to that obtained by Universal and SMPO methods in

most of the conditions. It is also shown that a consistently better performance in

OVRL scale is offered by the proposed method not only in car but also in babble

noisy conditions at both SNR levels considered in comparison to that provided by

all the methods mentioned above. Overall, it is found that the proposed method

possesses the highest subjective sound quality in comparison to that of the other

methods in case of different noises at various levels of SNRs.



Table 3.5: Mean Score of BAK scale for different methods in presence of car noise
at 5 db

Listener Universal SMPO Proposed Method

1 4.0 4.5 5.0

2 4.3 4.9 4.7

3 4.2 4.4 4.9

4 4.4 4.7 4.8

5 4.2 4.8 4.7

6 3.9 4.6 4.9

7 3.8 3.9 4.4

8 4.4 4.6 4.6

9 3.5 3.8 4.5

10 4.2 4.5 4.8

Table 3.6: Mean Score of OVL scale for different methods in presence of car noise
at 5 db

Listener Universal SMPO Proposed Method

1 2.6 4.0 4.1

2 3.3 3.8 3.7

3 3.9 4.1 4.3

4 3.6 4.2 4.2

5 3.3 3.9 4.1

6 3.9 4.6 4.9

7 3.8 3.8 4.3

8 3.6 4.1 4.2

9 3.5 4.5 4.7

10 3.9 4.6 4.8

Table 3.7: Mean Score of SIG scale for different methods in presence of Babble noise
at 5 db

Listener Universal SMPO Proposed Method

1 3.6 4.0 4.0

2 3.3 3.9 3.7

3 4.2 3.9 4.0

4 3.4 4.2 4.5

5 3.2 3.8 4.0

6 2.9 3.6 3.9

7 3.8 3.8 4.2

8 3.4 3.6 4.1

9 3.5 3.9 3.7

10 3.7 3.8 3.9



Table 3.8: Mean Score of BAK scale for different methods in presence of Babble
noise at 5 db

Listener Universal SMPO Proposed Method

1 4.0 4.5 5.0

2 4.3 4.9 4.7

3 4.2 4.4 4.9

4 4.4 4.7 4.8

5 4.2 4.8 4.7

6 3.9 4.6 4.9

7 3.8 3.9 4.4

8 4.4 4.6 4.7

9 3.5 3.9 4.7

10 4.7 4.8 4.9

Table 3.9: Mean Score of OVL scale for different methods in presence of babble
noise at 5 db

Listener Universal SMPO Proposed Method

1 2.6 4.0 4.1

2 3.3 3.8 3.7

3 3.9 4.1 4.3

4 3.6 4.2 4.2

5 3.3 3.9 4.1

6 3.9 4.6 4.9

7 3.8 3.8 4.3

8 3.6 4.1 4.2

9 3.5 4.5 4.7

10 3.9 4.8 4.9



3.3 Conclusion

In this paper, we developed a Gaussian statistical model-based technique for the TE

operated PWP coefficients of the noisy speech in order to obtain a suitable thresh-

old value. By employing the proposed gaussian pdf dependent custom thresholding

function, the PWP coefficients of the noisy speech are thresholded in order to ob-

tain an enhanced speech. Simulation results show that the proposed method yields

consistently better results in the sense of higher Segmental SNR Improvement in

dB, higher output PESQ, and lower WSS values than those of the existing methods.

The improved performance of the proposed method is also indicated and attested

by the much better spectrogram outputs and in terms of the higher scores in the

formal subjective listening tests.



Chapter 4

Speech Enhancement Using
Laplace Modeling of Teager
Energy Operated Perceptual
Wavelet Packet Coefficients

In this chapter, speech enhancement based on Laplace modeling of TE operated

PWP coefficients is described [45]. An adaptive threshold is determined analytically

using the Laplace model of TE operated PWP coefficients and then this threshold

is imposed upon the PWP coefficients of noisy speech using custom thresholding

function which is devised as a combination of µ-law and semisoft thresholding func-

tions. Detail simulation is performed to compare the proposed method with the

state-of-the art speech enhancement techniques.

4.0.1 Proposed Laplace Distribution Model for TE Oper-
ated PWP Coefficients

Following discussion in chapter 3, As an alternative to formulate a pdf of the t
j
k,m

of speech, we can easily formulate the histogram of the t
j
k,m and approximate the

histogram by a reasonably close probability distribution function, namely Laplace

distribution in place of Gaussian distribution [40]. For the tk,ms in a subband of a

noisy speech frame, the empirical histogram along with the Gaussian and the Laplace

distributions are superimposed in Fig. 4.1, 4.2 and 4.3 in presence of car noise at

SNRs of −15, 0 and 15 dB. From this figure, it is obvious that Laplace distribution

fits the empirical histogram better than the Gaussian distribution. Similar analysis

results are obtained for empirical histogram, Gaussian and Laplace distribution of

TE operated noise PWP coefficients at the same SNRs as used in Fig. 4.1, 4.2

48
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Fig. 4.1: Empirical histogram, Gaussian and Laplace distributions of TE operated
PWP coefficients of noisy speech at SNR of −15 dB

and 4.3 and are shown in Fig. 4.4, 4.5 and 4.6. Such statistical matching between

the Gaussian and Laplace is also explained in terms of AIC index [46]. It can be

noted from [46] that the more negative value of the AIC index indicates the more

matching between two pdfs. Assuming Gaussian and Laplace distributions for tk,m

in a subband of a noisy speech frame, mean values of AIC index obtained using

different speech sentences are shown in Fig. 7.7 for a range of SNR −15dB to

15dB in the presence of car noise. From Fig. 7.7, it is clearly attested that the

Laplace distribution offers better matching with the empirical histogram compared

to the Gaussian distribution not only at SNR of 15dB but also at an SNR as low as

−15dB. The plot representing the values of AIC index for the Gaussian and Laplace

distributions of tk,m of noise at SNR level ranging from −15dB to 15dB is illustrated

in Fig. 7.8. This figure shows that AIC index for tk,m of noise continues to exhibit

more negative values for Laplace distribution thus maintaining better pdf matching

for a wide range of SNR. Therefore, we propose to approximate the histograms of

tk,m of noisy speech, noise and clean speech by Laplace distribution and perform

statistical modeling for calculating the threshold adaptive to different subbands.
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Fig. 4.2: Empirical histogram, Gaussian and Laplace distributions of TE operated
PWP coefficients of noisy speech at SNR of 0 dB
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Fig. 4.3: Empirical histogram, Gaussian and Laplace distributions of TE operated
PWP coefficients of noisy speech at SNR of 15 dB
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Fig. 4.4: Empirical histogram, Gaussian and Laplace distributions of TE operated
PWP coefficients of noise at SNR of −15 dB
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Fig. 4.5: Empirical histogram, Gaussian and Laplace distributions of TE operated
PWP coefficients of noisy speech at SNR of 0 dB
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Fig. 4.6: Empirical histogram, Gaussian and Laplace distributions of TE operated
PWP coefficients of noisy speech at SNR of 15 dB
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Fig. 4.7: Mean values of AIC index of TE operated PWP coefficients of (a) noisy
speech (b) noise assuming Gaussian and Laplace distributions



−10 0 10

0

2000

4000

6000

8000

SNR (dB)

Me
an

 A
IC

 in
de

x

 

 

Laplace distribution
Gaussian distribution

Fig. 4.8: Mean values of AIC index of TE operated PWP coefficients of (a) noisy
speech (b) noise assuming Gaussian and Laplace distributions

4.0.2 Proposed Adaptive Threshold Calculation assuming
Laplace distribution

Following the discussion in chapter 3, laplace distribution pdf for pi(tk,m) can be

written as

pi(tk,m) =
v

2σ2
s

× exp(−|x|
σ2
s

) (4.1)

Where σ2
s represents the power of tk,m of noisy speech.

Letting σ2
r as the power of tk,m of clean speech and σ2

n as the power of tk,m of

noise and using the fact σ2
s = σ2

r + σ2
n, we can write

pi(tk,m) =
v

2
√

σ2
r + σ2

n

× exp(− |x|√
σ2
r + σ2

n

) (4.2)

Following (4.1) in a similar way, laplace pdf for qi(tk,m) can also be written as

qi(tk,m) =
v

2σ2
n

× exp(−|x|
σ2
n

) (4.3)

By substituting (4.2) and (4.3) in (3.6), we obtain

∫ λ

1

[
v

2σ2
s

× exp(−|x|
σ2
s

)− 1

2σ2
n

× exp(−|x|
σ2
n

)]I1dx = 0 (4.4)

where I1 is defined as, I1 = ln(1− v)× exp(− |x|
σ2
s
+ |x|

σ2
n
)



By solving (4.4), value of λ can be derived as

λ(k) =

√
σ2
n(k)(1 + γ(k))× log(1 + γ(k))

γ(k)
(4.5)

where γ(k) is the segmental SNR of subband k defined as

γ(k) =
σ2
r(k)

σ2
n(k)

. (4.6)

The proposed threshold λ(k) in (4.5) derived assuming Laplace pdf is compared

with that obtained assuming Gaussian pdf given by

λ(k) =
σn(k)√

γk

√
2(γk + γ2

k)× ln(

√
1 +

1

γk
) (4.7)

in Fig.4.9. This figure shows that the pattern of the threshold value is similar

for both the pdfs at high as well as low SNRs. In terms of value, although Laplace

pdf shows slightly lower values at high SNRs, but the threshold values are much

lower than that of the Gaussian pdf specially at low SNRs. Therefore, the threshold

derived from the Laplace pdf offers less chance of removing speech coefficients while

performing thresholding operation not only at high SNR but also at difficult low

SNRs.

The proposed threshold as derived in (4.5) is high for higher noise power and

low for lower noise power thus is adaptive to noise power of different subbands. In

this method, voice activity detector is not needed as the threshold is automatically

adapted to the silent and speech frames. At a silent frame, since noise power is

significantly higher than the signal power, the proposed threshold results in a higher

value as seen from (4.5). Such a value imposes more coefficients to be thresholded

thus removing noise coefficients completely at subbands of a silent frame. Note

that, in this paper, noise is estimated using Improved Minima Controlled Recursive

Averaging (IMCRA) method [35].

4.0.3 Proposed Thresholding Function

We propose a custom thresholding function derived from the meu law and the

semisoft thresholding functions [41]. Representing λ(k) derived from (4.5) as λ1(k)

and letting λ2(k) = 2λ1(k), the proposed thresholding function is developed as
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Fig. 4.9: Comparison of threshold values with respect to SNR for Laplace and
Gaussian pdfs

(Yk,m)PCT =





α
sgn(Y j

k,m
).|Y j

k,m
|

µ
[(1 + µ)

|Y
j
k,m

|

λ1(k) − 1], if |(Y j
k,m)| ≤ λ1

Yk,m, if |(Y j
k,m)| ≥ λ2(k),

(1− α)Z1 + αZ2, otherwise

(4.8)

where

Z1 = sgn(Y j
k,m)× λ2(k)

|(Y j
k,m)| − λ1(k)

λ2(k)− λ1(k)
(4.9)

Z2 = Y
j
k,m (4.10)

In (4.8), (Yk,m)PCT stands for the PWP coefficients thresholded by the pro-

posed custom thresholding function expressed and shape parameter of the proposed

thresholding function is represented by α(k,m).

The comparison of the proposed custom thresholding function with the conven-

tional meu law and semisoft thresholding functions is shown in Fig. 4.10. In the

region between λ1 and λ2, this figure demonstrates the flexibility of the proposed

thresholding operation in a sense that it can be viewed as (1 − α(k,m))(Yk,m)SS +

α(k,m)(Yk,m)ML which is a linear combination of the meu law and the semisoft

thresholding function. Here, (Yk,m)ML stands for the PWP coefficients thresholded

by the meu law thresholding function and (Yk,m)SS represents the PWP coefficients



thresholded by the semisoft thresholding function. Unlike these functions, depend-

ing on the value of shape parameter α(k,m), it can be verified from (3.9) that the

proposed thresholding function gets the following forms,

lim
α(k,m)→0

(Yk,m)PCT = (Yk,m)SS

lim
α(k,m)→1

(Yk,m)PCT = (Yk,m)ML
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Fig. 4.10: Input Output Relation for semisoft, µ law and proposed custom thresh-
olding function

The enhanced speech frame is synthesized by performing the inverse PWP trans-

formation PWP−1 on the resulting thresholded PWP coefficients and The final

enhanced speech signal is reconstructed by using the standard overlap-and-add

method.

4.1 Results Considering Laplace Statistical Model

In this Section, a number of simulations is carried out with the same simulation

conditions as described in chapter 3 to evaluate the performance of the proposed

method considering Laplace statistical model. Same comparison metrics are used to

compare the proposed method with the previously mentioned comparison methods.



Table 4.1: PESQ for different methods in Car Noise assuming Laplace distribution
for the proposed method

SNR(dB) SMPO Universal Proposed Method (Laplace)

-15 1.26 1.13 1.27
-10 1.43 1.27 1.45
-5 1.61 1.41 1.61
0 1.77 1.53 1.79
5 2.12 1.77 2.13
10 2.43 1.97 2.43
15 2.66 2.15 2.75

4.1.1 Objective Evaluation

Results for Speech signals with Car Noise

SNRSeg, WSS and PESQ scores for speech signals corrupted with car noise for

Universal, SMPO and proposed method are shown in Fig.4.11, 4.12 and Table. 4.1.
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Fig. 4.11: SNRSeg Improvement for different methods in Car Noise assuming
Laplace distribution for the proposed method

In Figure 4.11, the performance of the proposed method is compared with that of

the other methods at different levels of SNR for car noise in terms of Segmental SNR

inprovement. We see, the SNRSeg improvement increases as SNR decreases. At a

low SNR of −15dB, the proposed method yields the highest SNRSeg improvement.

Such larger values of SNRSeg improvement at a low level of SNR attest the capability

of the proposed method in producing enhanced speech with better quality for speech

severely corrupted by car noise.
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Fig. 4.12: WSS for different methods in Car Noise assuming Laplace distribution
for the proposed method

In Table.4.1, it can be seen that at a low level of SNR, such as −15dB , all

the methods show lower values of PESQ scores, whereas the PESQ score is much

higher, as expected, for the proposed method. The proposed method also yields

larger PESQ scores compared to that of the other methods at higher levels of SNR.

Since, at a particular SNR, a higher PESQ score indicates a better speech quality,

the proposed method is indeed better in performance in the presence of a car noise.

Fig.4.12 represents the WSS values as a function of SNR for the proposed method

and that for the other methods. As shown in the figure, the WSS values resulting

from all other methods are relatively larger for a wide range of SNR levels, whereas

the proposed method is capable of producing enhanced speech with better quality

as it gives lower values of WSS even at a low SNR of −15dB.

Results for Speech signals with Multi-talker Babble Noise

SNRSeg improvement, PESQ and WSS for speech signals corrupted with babble

noise for Universal, SMPO and proposed methods are shown in Fig.4.13, 4.15 and

4.14, respectively.

In Fig. 4.13, it can be seen that at a low level of SNR of −15dB, the proposed

method provides a SNRSeg improvement that is significantly higher than that of

the methods of comparison. The proposed method still shows better performance

in terms of SNRSeg improvement for higher SNRs also.
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Fig. 4.13: SNRSeg Improvement for different methods in Babble Noise assuming
Laplace distribution for the proposed method
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Fig. 4.14: PESQ for different methods in Babble Noise assuming Laplace distribution
for the proposed method

For speech corrupted with babble noise, in Fig.4.14, the mean values of PESQ

with standard deviation obtained using the proposed method is plotted and com-

pared with that of the other methods. From this plot, it is seen that over the whole

SNR range considered, the proposed method continue to provide higher PESQ with

almost non-overlapping standard deviation in the presence of babble noise.

The performance of the proposed method is compared with that of the other

methods in terms of WSS in Fig.4.15 at different levels of SNRs in presence of babble
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Fig. 4.15: WSS for Babble Noise for different methods in Babble Noise assuming
Laplace distribution for the proposed method

noise. It is clearly seen from this figure that WSS increases as SNR decreases. At a

low SNR of −15dB, the proposed method yields a WSS that is significantly lower

than that of all other methods, which remains lower over the higher SNRs also.

4.1.2 Subjective Evaluation

In order to evaluate the subjective observation of the enhanced speech, spectrograms

of the clean speech, the noisy speech, and the enhanced speech signals obtained by

using the proposed method and all other methods are presented in Fig. 4.16 for car

noise corrupted speech at an SNR of 10 dB. It is evident from this figure that the

harmonics are well preserved and the amount of distortion is greatly reduced in the

proposed method. Thus, the spectrogram observations with lower distortion also

validate our claim of better speech quality as obtained in our objective evaluations

in terms of higher SNR improvement in dB, higher PESQ score and lower WSS

in comparison to the other methods. Another set of spectrograms for babble noise

corrupted speech at an SNR of 10 dB is also presented in Fig.4.17. This figure attests

that the proposed method has a better efficacy in preserving speech harmonics even

in case of babble noise.

The mean scores of SIG, BAK, and OVRL scales for the three speech enhance-

ment methods evaluated in the presence of car noise at an SNR of 5 dB are shown

in Tables 4.2, 4.3, and 4.4. For the three methods examined using babble noise-



Fig. 4.16: Spectogram of Output for noisy signal mixed with 10dB car noise for
different methods (a) Clean Signal (b) Noisy Signal (c) SMPO (d) Universal (e)
Proposed Method assuming Laplace distribution



Fig. 4.17: Spectogram of Output for noisy signal mixed with 10dB babble noise
for different methods (a) Clean Signal (b) Noisy Signal (c) SMPO (d) Universal (e)
Proposed Method assuming Laplace distribution



Table 4.2: Mean Score of SIG scale for different methods in presence of car noise at
5 db assuming Laplace distribution for the proposed method

Listener SMPO Universal Proposed Method (Laplace)

1 4.0 3.6 4.0

2 3.9 3.3 3.7

3 4.0 3.9 4.2

4 4.2 3.4 4.5

5 3.8 3.2 4.0

6 3.6 2.9 3.9

7 3.8 3.8 4.2

8 3.7 3.5 4.2

9 3.9 3.5 3.8

10 3.9 3.7 4.0

Table 4.3: Mean Score of BAK scale for different methods in presence of car noise
at 5 db assuming Laplace distribution for the proposed method

Listener SMPO Universal Proposed Method (Laplace)

1 4.5 4.0 5.0

2 4.9 4.3 4.7

3 4.4 4.2 4.9

4 4.7 4.4 4.8

5 4.8 4.2 4.7

6 4.6 3.9 4.9

7 3.9 3.8 4.4

8 4.6 4.4 4.6

9 3.8 3.5 4.5

10 4.5 4.2 4.8

corrupted speech at an SNR of 10 dB, the mean scores of SIG, BAK, and OVRL

scales are summarized in Tables 4.5, 4.6, and 4.7. The mean scores in the presence of

both car and babble noises demonstrate that the lower signal distortion (i.e., higher

SIG scores) and the lower noise distortion (i.e., higher BAK scores) are obtained

with the proposed method relative to that obtained by Universal and SMPO meth-

ods in most of the conditions. It is also shown that a consistently better performance

in OVRL scale is offered by the proposed method not only in car but also in all other

noisy conditions at both SNR levels of considered in comparison to that provided

by all the methods mentioned above. Overall, it is found that the proposed method

possesses the highest subjective sound quality in comparison to that of the other

methods in case of different noises at various levels of SNR.



Table 4.4: Mean Score of OVL scale for different methods in presence of car noise
at 5 db assuming Laplace distribution for the proposed method

Listener SMPO Universal Proposed Method (Laplace)

1 4.0 2.6 4.1

2 3.8 3.3 3.7

3 4.1 3.9 4.3

4 4.2 3.6 4.2

5 3.9 3.3 4.1

6 4.6 3.9 4.9

7 3.8 3.8 4.3

8 4.1 3.6 4.2

9 4.5 3.5 4.7

10 4.6 3.9 4.8

Table 4.5: Mean Score of SIG scale for different methods in presence of Babble noise
at 5 db assuming Laplace distribution for the proposed method

Listener SMPO Universal Proposed Method (Laplace)

1 4.0 3.6 4.0

2 3.9 3.3 3.7

3 4.0 3.9 4.2

4 4.2 3.4 4.5

5 3.8 3.2 4.0

6 3.6 2.9 3.9

7 3.8 3.8 4.2

8 3.6 3.4 4.1

9 3.9 3.5 3.7

10 3.8 3.7 3.9

Table 4.6: Mean Score of BAK scale for different methods in presence of Babble
noise at 5 db assuming Laplace distribution for the proposed method

Listener SMPO Universal Proposed Method (Laplace)

1 4.0 2.6 4.1

2 3.8 3.3 3.7

3 4.1 3.9 4.3

4 4.2 3.6 4.2

5 3.9 3.3 4.1

6 4.6 3.9 4.9

7 3.8 3.8 4.3

8 4.1 3.6 4.2

9 4.5 3.5 4.7

10 4.8 3.9 4.9



Table 4.7: Mean Score of OVL scale for different methods in presence of Babble
noise at 5 db assuming Laplace distribution for the proposed method

Listener SMPO Universal Proposed Method (Laplace)

1 4.0 2.6 4.1

2 3.8 3.3 3.7

3 4.1 3.9 4.3

4 4.2 3.6 4.2

5 3.9 3.3 4.1

6 4.6 3.9 4.9

7 3.8 3.8 4.3

8 4.1 3.6 4.2

9 4.5 3.5 4.7

10 4.8 3.9 4.9

4.2 Conclusion

To solve the problems of speech enhancement, an improved perceptual wavelet

packet based approach using the Laplace pdf of Teager Energy Operated wavelet

Packet coefficients has been presented in this paper. We incorporated a statistical

model-based technique with teager energy operator of the wavelet packet coefficients

to obtain a suitable threshold using symmetric K-L divergence. For solving the equa-

tion of pdf’s, we choose Laplace distribution as an acceptable pdf for noisy speech,

clean speech and noise TE operated PWP coefficients in each sub-band. Unlike the

unique threshold based method, the threshold value here is adapted based on the

speech and silence segments. Then, by employing the proposed custom threshold-

ing function, the PWP coefficients of the noisy speech are thresholded in order to

obtain a cleaner speech. Simulation results show that the proposed method yields

consistently better results in the sense of higher output SNR in dB, higher output

PESQ, and lower WSS values than those of the existing methods, hence results in

a better enhanced speech.



Chapter 5

Speech Enhancement Using
Rayleigh Modeling of Teager
Energy Operated Perceptual
Wavelet Packet Coefficients

In this chapter, speech enhancement based on Rayleigh modeling of TE operated

PWP coefficients is described [47]. An adaptive threshold is determined analytically

using the Rayleigh model of TE operated PWP coefficients and then this threshold

is imposed upon the PWP coefficients of noisy speech using custom thresholding

function which is devised as a combination of modified hard and semisoft thresh-

olding functions. Detail simulation has been performed to compare the proposed

method with the state-of-the art speech enhancement techniques.

5.0.1 Proposed Rayleigh Distribution Model for TE Oper-
ated PWP Coefficients

Following discussion in chapter 3, As an alternative to formulate a pdf of the of

speech, we can easily formulate the histogram of its tk,m and can approximate the

histogram by a reasonably close pdf namely Gaussian and Rayleigh distribution

for10.Forthetk,ms in a subband of a noisy speech frame, the empirical histogram

along with the Gaussian and the Rayleigh distributions are superimposed in Fig. 5.1,

5.2 and 5.3 in presence of car noise at SNRs of −15, 0 and 15 dB. From this figures,

it is obvious that Rayleigh distribution fits the empirical histogram better than the

Gaussian distribution. Similar analysis results are obtained for empirical histogram,

Gaussian and Rayleigh distribution of TE operated noise PWP coefficients at the

same SNRs as used in Fig. 5.1, 5.2 and 5.3 and are shown in Fig. 5.4, 5.5 and

66
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Fig. 5.1: Empirical histogram, Gaussian and Rayleigh distributions of TE operated
PWP coefficients of noisy speech at SNRs of −15 dB

5.6. Such statistical matching between the Gaussian and Rayleigh distribution is

also explained in terms of AIC index [46]. It can be noted from [46] that the more

negative value of the AIC index indicates the more matching between two pdfs.

Assuming Gaussian and Rayleigh distributions for tk,m in a subband of a noisy

speech frame, mean values of AIC index obtained using different speech sentences

are shown in Fig. 7.7 for a range of SNR −15dB to 15dB in the presence of car

noise. From Fig. 7.7, it is clearly attested that the Rayleigh distribution offers better

matching with the empirical histogram compared to the Gaussian distribution not

only at SNR of 15dB but also at an SNR as low as −15dB. The plot representing

the values of AIC index for the Gaussian and Rayleigh distributions of tk,m of noise

at SNR level ranging from −15dB to 15dB is illustrated in Fig. 7.8. This figure

shows that AIC index for tk,m of noise continues to exhibit more negative values

for Rayleigh distribution thus maintaining better pdf matching for a wide range of

SNR. Therefore, we propose to approximate the histograms of tk,m of noisy speech,

noise and clean speech by Rayleigh distribution and perform statistical modeling for

calculating the threshold adaptive to different subbands.

5.0.2 Proposed Adaptive Threshold Calculation assuming
Rayleigh distribution

Following the discussion in chapter 3, Rayleigh pdf for pi(tk,m) can be written as
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Fig. 5.2: Empirical histogram, Gaussian and Rayleigh distributions of TE operated
PWP coefficients of noisy speech at SNRs of 0 dB
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Fig. 5.3: Empirical histogram, Gaussian and Rayleigh distributions of TE operated
PWP coefficients of noisy speech at SNRs of 15 dB
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Fig. 5.4: Empirical histogram, Gaussian and Rayleigh distributions of TE operated
noise PWP coefficients at an SNR of −15 dB
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Fig. 5.5: Empirical histogram, Gaussian and Rayleigh distributions of TE operated
noise PWP coefficients at an SNR of 0 dB
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Fig. 5.6: Empirical histogram, Gaussian and Rayleigh distributions of TE operated
noise PWP coefficients of noisy speech at an SNR of 15 dB
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Fig. 5.7: Mean values of AIC index of TE operated PWP coefficients of noisy speech
assuming Gaussian and Rayleigh distributions
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Fig. 5.8: Mean values of AIC index of TE operated PWP coefficients of noise as-
suming Gaussian and Rayleigh distributions

pi(tk,m) =
x

2σ2
s

× exp(− x

σ2
s

) (5.1)

Where σ2
s represents the power of tk,m of noisy speech.

Letting σ2
r as the power of tk,m of clean speech and σ2

n as the power of tk,m of

noise and using the fact σ2
s = σ2

r + σ2
n, we can write

pi(tk,m) =
x

2(σ2
r + σ2

n)
× exp(− x

σ2
r + σ2

n

) (5.2)

Following (5.1) in a similar way, Rayleigh pdf for qi(tk,m) can also be written as

qi(tk,m) =
x

2σ2
n

× exp(− x

σ2
n

) (5.3)

By substituting (5.2) and (7.6) in (3.6), we obtain

∫ λ

1

[
x

2σ2
s

× exp(− x

σ2
s

)− x

2σ2
n

× exp(− x

σ2
n

)]I1dx = 0 (5.4)

where I1 is defined as,

I1 = ln(
σ2
s

σ2
n

)× exp(− x

σ2
s

+
x

σ2
n

)

By solving (5.4), value of λ can be derived as

λ(k) =

√
2

γk
(1 +

1

γk
)ln(1 + γk) (5.5)



where γk is segmental SNR of subband k defined as

γk =
σ2
r(k)

σ2
n(k)

(5.6)

The proposed threshold λ(k) in (5.5) derived assuming Rayleigh pdf is compared

with that obtained assuming gaussian pdf given by

λ(k) =
σn(k)√

γk

√
2(γk + γ2

k)× ln(

√
1 +

1

γk
) (5.7)

in fig.5.9. This figure shows that the pattern of the threshold value is similar for

both the pdfs at high as well as low SNRs. In terms of value, although Rayleigh

pdf shows slightly lower values at high SNRs, but the threshold values are much

lower than that of the gaussian pdf specially at low SNRs. Therefore, the threshold

derived from the Rayleigh pdf offers less chance of removing speech coefficients

while performing thresholding operation not only at high SNR but also at difficult

low SNRs.

The proposed threshold as derived in (5.5) is high for higher noise power and

low for lower noise power thus is adaptive to noise power of different subbands. In

this method, voice activity detector is not needed as the threshold is automatically

adapted to the silent and speech frames. At a silent frame, since noise power is

significantly higher than the signal power, the proposed threshold results in a higher

value as seen from (5.5). Such a value imposes more coefficients to be thresholded

thus removing noise coefficients completely at subbands of a silent frame. Note

that, in this paper, noise is estimated using Improved Minima Controlled Recursive

Averaging (IMCRA) method [35].

On computing the threshold value as obtained above, the thresholding function

as proposed in chapter 4 is employed on the PWP coefficients. The enhanced speech

frame is synthesized by performing the inverse PWP transformation PWP−1 on

the resulting thresholded PWP coefficients and The final enhanced speech signal is

reconstructed by using the standard overlap-and-add method.

5.1 Results Considering Rayleigh Statistical Model

In this Section, a number of simulations is carried out with the same simulation

conditions as described in chapter 3 to evaluate the performance of the proposed
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Fig. 5.9: Comparison of threshold values with respect to SNR for Rayleigh and
Gaussian pdfs

method considering Rayleigh statistical model. Same comparison metrics are used to

compare the proposed method with the previously mentioned comparison methods.

5.1.1 Objective Evaluation

Results for Speech signals with Car Noise

SNRSeg improvement, PESQ and WSS for speech signals corrupted with car noise

for Universal, SMPO and proposed methods are shown in Fig.7.10, Table 5.1 and

Fig.7.11.
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Fig. 5.10: SNRSeg Improvement for different methods in car noise



Table 5.1: PESQ for different methods in car noise
SNR(dB) SMPO Universal Proposed Method

-15 1.15 1.16 1.21
-10 1.37 1.23 1.38
-5 1.51 1.32 1.54
0 1.69 1.43 1.71
5 2.07 1.69 2.14
10 2.38 1.93 2.48
15 2.60 2.14 2.83
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Fig. 5.11: WSS for different methods in car noise

In Figure 7.10, the performance of the proposed method is compared with that of

the other methods at different levels of SNR for car noise in terms of Segmental SNR

improvement. We see, the SNRSeg improvement increases as SNR decreases. At a

low SNR of −15dB, the proposed method yields the highest SNRSeg improvement.

Such larger values of SNRSeg improvement at a low level of SNR attest the capability

of the proposed method in producing enhanced speech with better quality for speech

severely corrupted by car noise.

In Table 5.1, it can be seen that at a low level of SNR, such as −15dB , all

the methods show lower values of PESQ scores, whereas the PESQ score is much

higher, as expected, for the proposed method. The proposed method also yields

larger PESQ scores compared to that of the other methods at higher levels of SNR.

Since, at a particular SNR, a higher PESQ score indicates a better speech quality,

the proposed method is indeed better in performance in the presence of a car noise.



Fig.7.11 represents the WSS values as a function of SNR for the proposed method

and that for the other methods. As shown in the figure, the WSS values resulting

from all other methods are relatively larger for a wide range of SNR levels, whereas

the proposed method is capable of producing enhanced speech with better quality

as it gives lower values of WSS even at a low SNR of −15dB.

Results for Speech signals with Multi-talker Babble Noise

SNRSeg improvement, PESQ and WSS for speech signals corrupted with babble

noise for Universal, SMPO and proposed methods are shown in Fig.7.12, 7.14 and

7.13, respectively.
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Fig. 5.12: SNRSeg Improvement for different methods in babble noise

In Fig. 7.12, it can be seen that at a low level of SNR of −15dB, the proposed

method provides a SNRSeg improvement that is significantly higher than that of

the methods of comparison. The proposed method still shows better performance

in terms of SNRSeg improvement for higher SNRs also.

For speech corrupted with babble noise, in Fig.7.13, the mean values of PESQ

with standard deviation obtained using the proposed method is plotted and com-

pared with that of the other methods. From this plot, it is seen that over the whole

SNR range considered, the proposed method continue to provide higher PESQ with

almost non-overlapping standard deviation in the presence of babble noise.

The performance of the proposed method is compared with that of the other
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Fig. 5.13: PESQ for different methods in babble noise

−15 −10 −5 0 5 10 15
30

40

50

60

70

80

90

SNR (dB)

W
SS

 

 
Universal
SMPO
Proposed Method

Fig. 5.14: WSS for different methods in babble noise

methods in terms of WSS in Fig.7.14 at different levels of SNRs in presence of babble

noise. It is clearly seen from this figure that WSS increases as SNR decreases. At a

low SNR of −15dB, the proposed method yields a WSS that is significantly lower

than that of all other methods, which remains lower over the higher SNRs also.

5.1.2 Subjective Evaluation

In order to evaluate the subjective observation of the enhanced speech, spectrograms

of the clean speech, the noisy speech, and the enhanced speech signals obtained by



using the proposed method and all other methods are presented in Fig. 7.15 for car

noise corrupted speech at an SNR of 10 dB. It is evident from this figure that the

harmonics are well preserved and the amount of distortion is greatly reduced in the

proposed method. Thus, the spectrogram observations with lower distortion also

validate our claim of better speech quality as obtained in our objective evaluations

in terms of higher SNR improvement in dB, higher PESQ score and lower WSS

in comparison to the other methods. Another set of spectrograms for babble noise

corrupted speech at an SNR of 10 dB is also presented in Fig.7.16. This figure attests

that the proposed method has a better efficacy in preserving speech harmonics even

in case of babble noise.

Formal listening tests are also conducted, where ten listeners are allowed and

arranged to perceptually evaluate the enhanced speech signals. A full set (thirty

sentences) of the NOIZEUS corpus was processed by Universal, SMPO and pro-

posed method for subjective evaluation at different SNRs. Subjective tests were

performed according to ITU-T recommendation P.835 [42]. In this tests, a listener

is instructed to successively attend and rate the enhanced speech signal based on

(a) the speech signal alone using a scale of SIG (1 = very unnatural, 5 = very

natural), (b) the background noise alone using a scale of background conspicuous/

intrusiveness (BAK) (1 = very conspicuous, very intrusive; 5 = not noticeable), and

(c) the overall effect using the scale of the mean opinion score (OVRL) (1 = bad,

5 = excellent). More details about the testing methodology can be found in [44].

The mean scores of SIG, BAK, and OVRL scales for the three speech enhancement

methods evaluated in the presence of car noise at an SNR of 5 dB are shown in Ta-

bles 5.2, 5.3, and 5.4. For the three methods evaluated using babble noise-corrupted

speech at an SNR of 10 dB, the mean scores of SIG, BAK, and OVRL scales are also

summarized in Tables 5.5, 5.6, and 5.7. The mean scores in the presence of both

car and babble noises demonstrate that the lower signal distortion (i.e., higher SIG

scores) and the lower noise distortion (i.e., higher BAK scores) are obtained with

the proposed method relative to that obtained by Universal and SMPO methods in

most of the conditions. It is also shown that a consistently better performance in

OVRL scale is offered by the proposed method not only in car but also in babble

noisy conditions at both SNR levels considered in comparison to that provided by



Fig. 5.15: Spectrograms of (a) Clean Signal (b) Noisy Signal with 10dB car noise;
spectrograms of enhanced speech from (c) Universal method (d) SMPO method (e)
Proposed Method



Fig. 5.16: Spectrograms of (a) Clean Signal (b) Noisy Signal with 10dB babble noise;
spectrograms of enhanced speech from (c) Universal method (d) SMPO method (e)
Proposed Method



Table 5.2: Mean Score of SIG scale for different methods in presence of car noise at
5 db

Listener Universal SMPO Proposed Method

1 3.6 4.0 4.1

2 3.3 3.9 3.8

3 3.9 4.0 4.3

4 3.4 4.2 4.4

5 3.2 3.8 4.1

6 2.9 3.6 3.7

7 3.8 3.8 4.1

8 3.5 3.7 4.3

9 3.5 3.9 3.7

10 3.7 3.9 4.5

Table 5.3: Mean Score of BAK scale for different methods in presence of car noise
at 5 db

Listener Universal SMPO Proposed Method

1 4.0 4.5 4.9

2 4.3 4.9 4.8

3 4.2 4.4 4.5

4 4.4 4.7 4.7

5 4.2 4.8 4.6

6 3.9 4.6 4.8

7 3.8 3.9 4.5

8 4.4 4.6 4.4

9 3.5 3.8 4.6

10 4.2 4.5 4.9

all the methods mentioned above. Overall, it is found that the proposed method

possesses the highest subjective sound quality in comparison to that of the other

methods in case of different noises at various levels of SNRs.

5.2 Conclusions

In this paper, we developed a Rayleigh statistical model-based technique for the

TE operated PWP coefficients of the noisy speech in order to obtain a suitable

threshold value. By employing the proposed custom thresholding function designed

based on the combination of µ-law and semisoft thresholding functions, the PWP

coefficients of the noisy speech are thresholded in order to obtain an enhanced speech.

It is shown through simulation results that the proposed method is able to yield

consistently better results not only for car noise but also for multi-talker babble



Table 5.4: Mean Score of OVL scale for different methods in presence of car noise
at 5 db

Listener Universal SMPO Proposed Method

1 2.6 4.0 4.7

2 3.3 3.8 3.9

3 3.9 4.1 4.5

4 3.6 4.2 4.3

5 3.3 3.9 4.2

6 3.9 4.6 4.8

7 3.8 3.8 4.1

8 3.6 4.1 4.2

9 3.5 4.5 4.3

10 3.9 4.6 4.9

Table 5.5: Mean Score of SIG scale for different methods in presence of Babble noise
at 5 db

Listener Universal SMPO Proposed Method

1 3.6 4.0 4.4

2 3.3 3.9 3.8

3 3.9 4.0 4.3

4 3.4 4.2 4.8

5 3.2 3.8 4.4

6 2.9 3.6 4.0

7 3.8 3.8 4.3

8 3.4 3.6 4.2

9 3.5 3.9 3.8

10 3.7 3.8 3.8

Table 5.6: Mean Score of BAK scale for different methods in presence of Babble
noise at 5 db

Listener Universal SMPO Proposed Method

1 4.0 4.5 4.8

2 4.3 4.9 4.5

3 4.2 4.4 4.8

4 4.4 4.7 4.4

5 4.2 4.8 4.6

6 3.9 4.6 4.8

7 3.8 3.9 4.5

8 4.4 4.6 4.6

9 3.5 3.9 4.5

10 4.7 4.8 4.8



Table 5.7: Mean Score of OVL scale for different methods in presence of Babble
noise at 5 db

Listener Universal SMPO Proposed Method

1 2.6 4.0 4.2

2 3.3 3.8 3.9

3 3.9 4.1 4.4

4 3.6 4.2 4.5

5 3.3 3.9 4.2

6 3.9 4.6 4.8

7 3.8 3.8 4.3

8 3.6 4.1 4.4

9 3.5 4.5 4.8

10 3.9 4.8 4.7

noise corrupted speech signals in the sense of higher Segmental SNR Improvement in

dB, higher output PESQ, and lower WSS values than those of the existing methods.

The improvement in speech enhancement obtained by using the proposed method

is also illustrated by the performance indicators, namely spectrogram outputs and

scores in the formal subjective listening tests.



Chapter 6

Speech Enhancement Using
Poisson Modeling of Teager
Energy Operated Perceptual
Wavelet Packet Coefficients

In this chapter, speech enhancement based on Poisson modeling of TE operated

PWP coefficients is described [48]. An adaptive threshold is determined analytically

using the Poisson model of TE operated PWP coefficients and then this threshold

is imposed upon the PWP coefficients of noisy speech using custom thresholding

function which is devised as a combination of µ-law and semisoft thresholding func-

tions. Detail simulation has been performed to compare the proposed method with

the state-of-the art speech enhancement techniques.

6.0.1 Proposed Poisson Distribution Model for TE Oper-
ated PWP Coefficients

Following discussion in chapter 3, As an alternative to formulate a pdf of the t
j
k,m

of speech, we can easily formulate the histogram of the t
j
k,m and approximate the

histogram by a reasonably close probability distribution function, namely Poisson

distribution in place of Gaussian distribution [40]. For the tk,ms in a subband of a

noisy speech frame, the empirical histogram along with the Gaussian and the Pois-

son distributions are superimposed in Fig. 6.4, 6.5 and 6.6 in presence of car noise

at SNRs of −15, 0 and 15 dB. From this figure, it is obvious that Poisson distri-

bution fits the empirical histogram better than the Gaussian distribution. Similar

analysis results are obtained for empirical histogram, Gaussian and Poisson distri-

bution of TE operated noise PWP coefficients. Such statistical matching between

83
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Fig. 6.1: Empirical histogram, Gaussian and Poisson distribution of TE operated
PWP coefficients of noisy speech at SNR of −15 dB

the Gaussian and Poisson is also explained in terms of AIC index [46]. It can be

noted from [46] that the more negative value of the AIC index indicates the more

matching between two pdfs. Assuming Gaussian and Poisson distributions for tk,m

in a subband of a noisy speech frame, mean values of AIC index obtained using

different speech sentences are shown in fig. 6.7 for a range of SNR −15dB to 15dB

in the presence of car noise. From fig. 6.7, it is clearly attested that the Poisson

distribution offers better matching with the empirical histogram compared to the

Gaussian distribution not only at SNR of 15dB but also at an SNR as low as −15dB.

The plot representing the values of AIC index for the Gaussian and Poisson distri-

butions of tk,m of noise at SNR level ranging from −15dB to 15dB is illustrated in

fig. 6.8. This figure shows that AIC index for tk,m of noise continues to exhibit more

negative values for Poisson distribution thus maintaining better pdf matching for a

wide range of SNR. Therefore, we propose to approximate the histograms of tk,m of

noisy speech, noise and clean speech by Poisson distribution and perform statistical

modeling for calculating the threshold adaptive to different subbands.

6.0.2 Proposed Adaptive Threshold Calculation Assuming
Poisson Distribution

Following the discussion in chapter 3, Poisson pdf for pi(tk,m) can be written as
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Fig. 6.2: Empirical histogram, Gaussian and Poisson distribution of TE operated
PWP coefficients of noisy speech at SNR of 0 dB
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Fig. 6.3: Empirical histogram, Gaussian and Poisson distribution of TE operated
PWP coefficients of noisy speech at SNR of 15 dB
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Fig. 6.4: Empirical histogram, Gaussian and Poisson distribution of TE operated
PWP coefficients of noise at SNR of −15 dB
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Fig. 6.5: Empirical histogram, Gaussian and Poisson distribution of TE operated
PWP coefficients of noise at SNR of 0 dB
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Fig. 6.6: Empirical histogram, Gaussian and Poisson distribution of TE operated
PWP coefficients of noise at SNR of 15 dB
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Fig. 6.7: Mean values of AIC index of TE operated PWP coeffiecients of noisy
speech assuming Gaussian and Poisson distributions

pi(tk,m) =
σ2x
s e−σ2

s

x!
(6.1)

Where σ2
s represents the power of tk,m of noisy speech.

Letting σ2
r as the power of tk,m of clean speech and σ2

n as the power of tk,m of

noise and using the fact σ2
s = σ2

r + σ2
n, we can write

pi(tk,m) =

√
σ2
r + σ2

n

2x
e−(σ2

r+σ2
n)

x!
(6.2)
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Fig. 6.8: Mean values of AIC index of TE operated PWP coeffiecients of noise
assuming Gaussian and Poisson distributions

Following (7.1) in a similar way, laplace pdf for qi(tk,m) can also be written as

qi(tk,m) =
σ2x
n e−σ2

n

x!
(6.3)

By substituting (6.3) in (3.6), we obtain

∫ λ

1

[
σ2x
s e−σ2

s

x!
− σ2x

n e−σ2
n

x!
]I1dx = 0 (6.4)

where I1 is defined as,

I1 = ln(
σ2x
s

σ2x
n

)× e−σ2
s+σ2

n

By solving (6.4), value of λ can be derived as

λ(k) =

√
σ2
r(k)

ln( 1
1+γk

)
(6.5)

where γk is segmental SNR of subband k defined as

γk =
σ2
r(k)

σ2
n(k)

(6.6)

The proposed threshold λ(k) in (6.5) derived assuming Poisson pdf is compared

with that obtained assuming Gaussian pdf given by

λ(k) =
σn(k)√

γk

√
2(γk + γ2

k)× ln(

√
1 +

1

γk
) (6.7)



in fig.6.9. This figure shows that the pattern of the threshold value is similar

for both the pdfs at high as well as low SNRs. In terms of value, although Poisson

pdf shows slightly lower values at high SNRs, but the threshold values are much

lower than that of the Gaussian pdf specially at low SNRs. Therefore, the threshold

derived from the Poisson pdf offers less chance of removing speech coefficients while

performing thresholding operation not only at high SNR but also at difficult low

SNRs.

The proposed threshold as derived in (6.5) is high for higher noise power and

low for lower noise power thus is adaptive to noise power of different subbands. In

this method, voice activity detector is not needed as the threshold is automatically

adapted to the silent and speech frames. At a silent frame, since noise power is

significantly higher than the signal power, the proposed threshold results in a higher

value as seen from (6.5). Such a value imposes more coefficients to be thresholded

thus removing noise coefficients completely at subbands of a silent frame. Note

that, in this paper, noise is estimated using Improved Minima Controlled Recursive

Averaging (IMCRA) method [35].
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Fig. 6.9: Comparison of threshold values with respect to SNR for Poisson and
Gaussian pdfs

On computing the threshold value as obtained above, the thresholding function

as proposed in chapter 3 is employed on the PWP coefficients. Here the shape

parameters are considered as constant values. The enhanced speech frame is syn-



thesized by performing the inverse PWP transformation PWP−1 on the resulting

thresholded PWP coefficients and The final enhanced speech signal is reconstructed

by using the standard overlap-and-add method.

6.1 Results Considering Poisson Statistical Model

In this Section, a number of simulations is carried out with the same simulation

conditions as described in chapter 3 to evaluate the performance of the proposed

method considering Poisson statistical model. Same comparison metrics are used to

compare the proposed method with the previously mentioned comparison methods.

6.1.1 Objective Evaluation

Results for Speech signals with Car Noise

SSNRSeg improvement, PESQ and WSS for speech signals corrupted with car noise

for Universal, SMPO and proposed methods are shown in Fig.6.10, 6.12 and 6.11,

respectively.
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Fig. 6.10: SNRSeg Improvement for different methods in Car Noise assuming Poisson
distribution for the proposed method

In Fig. 6.10, it can be seen that at a low level of SNR of −15dB, the proposed

method provides a SNRSeg improvement that is significantly higher than that of

the methods of comparison. The proposed method still shows better performance

in terms of SNRSeg improvement for higher SNRs also.
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Fig. 6.11: PESQ for different methods in Car Noise assuming Poisson distribution
for the proposed method
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Fig. 6.12: WSS for different methods in Car Noise assuming Poisson distribution for
the proposed method

For speech corrupted with babble noise, in Fig.6.11, the mean values of PESQ

with standard deviation obtained using the proposed method is plotted and com-

pared with that of the other methods. From this plot, it is seen that over the whole

SNR range considered, the proposed method continue to provide higher PESQ with

almost non-overlapping standard deviation in the presence of babble noise.

The performance of the proposed method is compared with that of the other

methods in terms of WSS in Fig.6.12 at different levels of SNRs in presence of babble



Table 6.1: PESQ for different methods in Babble Noise assuming Poisson distribu-
tion for the proposed method

SNR(dB) SMPO Universal Proposed Method (Poisson)

-15 1.26 1.13 1.27
-10 1.43 1.27 1.44
-5 1.61 1.41 1.61
0 1.77 1.53 1.82
5 2.12 1.77 2.14
10 2.43 1.97 2.48
15 2.66 2.15 2.81

noise. It is clearly seen from this figure that WSS increases as SNR decreases. At a

low SNR of −15dB, the proposed method yields a WSS that is significantly lower

than that of all other methods, which remains lower over the higher SNRs also.

Results for Speech signals with Multi-talker Babble Noise

SNRSeg, WSS and PESQ scores for speech signals corrupted with babble noise for

Universal, SMPO and proposed method are shown in Fig.6.13, 6.14 and Table. 6.1.
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Fig. 6.13: SNRSeg Improvement for different methods in Babble Noise assuming
Poisson distribution for the proposed method

In Figure 6.13, the performance of the proposed method is compared with that of

the other methods at different levels of SNR for babble noise in terms of Segmental

SNR inprovement. We see, the SNRSeg improvement increases as SNR decreases. At

a low SNR of −15dB, the proposed method yields the highest SNRSeg improvement.

Such larger values of SNRSeg improvement at a low level of SNR attest the capability
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Fig. 6.14: WSS for different methods in Babble Noise assuming Poisson distribution
for the proposed method

of the proposed method in producing enhanced speech with better quality for speech

severely corrupted by car noise.

In Table.6.1, it can be seen that at a low level of SNR, such as −15dB , all

the methods show lower values of PESQ scores, whereas the PESQ score is much

higher, as expected, for the proposed method. The proposed method also yields

larger PESQ scores compared to that of the other methods at higher levels of SNR.

Since, at a particular SNR, a higher PESQ score indicates a better speech quality,

the proposed method is indeed better in performance in the presence of a car noise.

Fig.6.14 represents the WSS values as a function of SNR for the proposed method

and that for the other methods. As shown in the figure, the WSS values resulting

from all other methods are relatively larger for a wide range of SNR levels, whereas

the proposed method is capable of producing enhanced speech with better quality

as it gives lower values of WSS even at a low SNR of −15dB.

6.1.2 Subjective Evaluation

In order to evaluate the subjective observation of the enhanced speech, spectrograms

of the clean speech, the noisy speech, and the enhanced speech signals obtained by

using the proposed method and all other methods are presented in Fig. 6.15 for car

noise corrupted speech at an SNR of 10 dB. It is evident from this figure that the

harmonics are well preserved and the amount of distortion is greatly reduced in the



Table 6.2: Mean Score of SIG scale for different methods in presence of car noise at
5 db assuming Poisson distribution for the proposed method

Listener SMPO Universal Proposed Method (Poisson)

1 4.0 3.6 4.0

2 3.9 3.3 3.7

3 4.0 3.9 4.2

4 4.2 3.4 4.5

5 3.8 3.2 4.0

6 3.6 2.9 3.9

7 3.8 3.8 4.2

8 3.7 3.5 4.2

9 3.9 3.5 3.8

10 3.9 3.7 4.0

proposed method. Thus, the spectrogram observations with lower distortion also

validate our claim of better speech quality as obtained in our objective evaluations

in terms of higher SNR improvement in dB, higher PESQ score and lower WSS

in comparison to the other methods. Another set of spectrograms for babble noise

corrupted speech at an SNR of 10 dB is also presented in Fig.6.16. This figure attests

that the proposed method has a better efficacy in preserving speech harmonics even

in case of babble noise.

The mean scores of SIG, BAK, and OVRL scales for the three speech enhance-

ment methods evaluated in the presence of car noise at an SNR of 5 dB are shown

in Tables 6.2, 6.3, and 6.4. For the three methods examined using babble noise-

corrupted speech at an SNR of 10 dB, the mean scores of SIG, BAK, and OVRL

scales are summarized in Tables 6.5, 6.6, and 6.7. The mean scores in the presence of

both car and babble noises demonstrate that the lower signal distortion (i.e., higher

SIG scores) and the lower noise distortion (i.e., higher BAK scores) are obtained

with the proposed method relative to that obtained by Universal and SMPO meth-

ods in most of the conditions. It is also shown that a consistently better performance

in OVRL scale is offered by the proposed method not only in car but also in all other

noisy conditions at both SNR levels of considered in comparison to that provided

by all the methods mentioned above. Overall, it is found that the proposed method

possesses the highest subjective sound quality in comparison to that of the other

methods in case of different noises at various levels of SNR.



Table 6.3: Mean Score of BAK scale for different methods in presence of car noise
at 5 db assuming Poisson distribution for the proposed method

Listener SMPO Universal Proposed Method (Poisson)

1 4.5 4.0 5.0

2 4.9 4.3 4.7

3 4.4 4.2 4.9

4 4.7 4.4 4.8

5 4.8 4.2 4.7

6 4.6 3.9 4.9

7 3.9 3.8 4.4

8 4.6 4.4 4.6

9 3.8 3.5 4.5

10 4.5 4.2 4.8

Table 6.4: Mean Score of OVL scale for different methods in presence of car noise
at 5 db assuming Poisson distribution for the proposed method

Listener SMPO Universal Proposed Method (Poisson)

1 4.0 2.6 4.1

2 3.8 3.3 3.7

3 4.1 3.9 4.3

4 4.2 3.6 4.2

5 3.9 3.3 4.1

6 4.6 3.9 4.9

7 3.8 3.8 4.3

8 4.1 3.6 4.2

9 4.5 3.5 4.7

10 4.6 3.9 4.8

Table 6.5: Mean Score of SIG scale for different methods in presence of Babble noise
at 5 db assuming Poisson distribution for the proposed method

Listener SMPO Universal Proposed Method (Poisson)

1 4.0 3.6 4.0

2 3.9 3.3 3.7

3 4.0 3.9 4.2

4 4.2 3.4 4.5

5 3.8 3.2 4.0

6 3.6 2.9 3.9

7 3.8 3.8 4.2

8 3.6 3.4 4.1

9 3.9 3.5 3.7

10 3.8 3.7 3.9



Table 6.6: Mean Score of BAK scale for different methods in presence of Babble
noise at 5 db assuming Poisson distribution for the proposed method

Listener SMPO Universal Proposed Method (Poisson)

1 4.5 4.0 5.0

2 4.9 4.3 4.7

3 4.4 4.2 4.9

4 4.7 4.4 4.8

5 4.8 4.2 4.7

6 4.6 3.9 4.9

7 3.9 3.8 4.4

8 4.6 4.4 4.7

9 3.9 3.5 4.7

10 4.8 4.7 4.9

Table 6.7: Mean Score of OVL scale for different methods in presence of Babble
noise at 5 db assuming Poisson distribution for the proposed method

Listener SMPO Universal Proposed Method (Poisson)

1 4.0 2.6 4.1

2 3.8 3.3 3.7

3 4.1 3.9 4.3

4 4.2 3.6 4.2

5 3.9 3.3 4.1

6 4.6 3.9 4.9

7 3.8 3.8 4.3

8 4.1 3.6 4.2

9 4.5 3.5 4.7

10 4.8 3.9 4.9



Fig. 6.15: Spectogram of Output for noisy signal mixed with 10dB car noise for
different methods (a) Clean Signal (b) Noisy Signal (c) SMPO (d) Universal (e)
Proposed Method assuming Poisson distribution



Fig. 6.16: Spectogram of Output for noisy signal mixed with 10dB babble noise
for different methods (a) Clean Signal (b) Noisy Signal (c) SMPO (d) Universal (e)
Proposed Method assuming Poisson distribution distribution



6.2 Conclusion

To solve the problems of speech enhancement, an improved perceptual wavelet

packet based approach using the Poisson pdf of Teager Energy Operated wavelet

Packet coefficients has been presented in this paper. We incorporated a statistical

model-based technique with teager energy operator of the wavelet packet coefficients

to obtain a suitable threshold using symmetric K-L divergence. For solving the equa-

tion of pdf’s, we choose Poisson distribution as an acceptable pdf for noisy speech,

clean speech and noise TE operated PWP coefficients in each sub-band. Unlike the

unique threshold based method, the threshold value here is adapted based on the

speech and silence segments. Then, by employing the proposed custom threshold-

ing function, the PWP coefficients of the noisy speech are thresholded in order to

obtain a cleaner speech. Simulation results show that the proposed method yields

consistently better results in the sense of higher output SNR in dB, higher output

PESQ, and lower WSS values than those of the existing methods.



Chapter 7

Speech Enhancement Using
Student t Modeling of Teager
Energy Operated Perceptual
Wavelet Packet Coefficients

In this chapter, speech enhancement based on Student t modeling of TE operated

PWP coefficients is described [49]. An adaptive threshold is determined analytically

using the Student t model of TE operated PWP coefficients and then this threshold

is imposed upon the PWP coefficients of noisy speech using pdf dependent cus-

tom thresholding function which is devised as a combination of modified hard and

semisoft thresholding functions. Detail simulation has been performed to compare

the proposed method with the state-of-the art speech enhancement techniques.

7.0.1 Proposed Student t Distribution Model for TE Oper-
ated PWP Coefficients

Following discussion in chapter 3, As an alternative to formulate a pdf of the of

speech, we can easily formulate the histogram of its tk,m and can approximate the

histogram by a reasonably close pdf namely gaussian and student t distribution.

For the tk,ms in a subband of a noisy speech frame, the empirical histogram along

with the gaussian and the student t distributions are superimposed in Fig. 7.1,7.2

and 7.3 in presence of car noise at SNRs of −15, 0 and 15 dB. From this figure, it

is obvious that Student t distribution fits the empirical histogram better than the

Gaussian distribution. Similar analysis results are obtained for empirical histogram,

gaussian and student t distribution of TE operated noise PWP coefficients at the

same SNRs as used in Fig. 7.1,7.2 and 7.3 and are shown in Fig.7.4,7.5 and 7.6.
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Such statistical matching between the gaussian and student t is also explained in

terms of AIC index [46]. It can be noted from [46] that the more negative value of

the AIC index indicates the more matching between two pdfs. Assuming gaussian

and student t distributions for tk,m in a subband of a noisy speech frame, mean

values of AIC index obtained using different speech sentences are shown in fig. 7.7

for a range of SNR −15dB to 15dB in the presence of car noise. From fig. 7.7, it

is clearly attested that the student t distribution offers better matching with the

empirical histogram compared to the gaussian distribution not only at SNR of 15dB

but also at an SNR as low as −15dB. The plot representing the values of AIC index

for the gaussian and student t distributions of tk,m of noise at SNR level ranging

from −15dB to 15dB is illustrated in fig. 7.8. This figure shows that AIC index for

tk,m of noise continues to exhibit more negative values for student t distribution thus

maintaining better pdf matching for a wide range of SNR. Therefore, we propose

to approximate the histograms of tk,m of noisy speech, noise and clean speech by

student t distribution and perform statistical modeling for calculating the threshold

adaptive to different subbands.

It is well known that the more negative the AIC index becomes, the more pdf

matching it indicates. In Fig. 7.7, AIC indices assuming Gaussian as well as Student

t distribution for TE operated PWPT coefficients for a subband of a noisy frame are

shown for SNR of -15 dB to 15 dB. This figure also attests that Student t distribution

offers better matching with the empirical data for all speech files not only at high

SNR but also at low SNR as -15 dB. The plot of index AIC illustrated in Fig. 7.8

for Gaussian and Student t distribution of TE operated PWP coefficients at SNR

level of -15dB to 15 dB continue to show more negative AIC values for Student t

distribution maintaining better pdf matching for a wide level of SNR. Therefore, we

are motivated in this research to perform statistical modeling of PWP coefficients

via Student t distribution.

7.0.2 Proposed Adaptive Threshold Calculation assuming
Student t distribution

Following the discussion in chapter 3, student t distribution pdf for pi(tk,m) can be

written as
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Fig. 7.1: Empirical histogram, Gaussian and Student t distribution of TE operated
PWP coefficients of noisy speech at SNR of −15 dB
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Fig. 7.2: Empirical histogram, Gaussian and Student t distribution of TE operated
PWP coefficients of noisy speech at SNR of 0 dB

pi(tk,m) =
χ1

σs

(1 +
1

ν − 2

x2

σ2
s

)−
ν+1
2 . (7.1)

Where ν denotes the degree of freedom, σ2
s represents the power of tk,m of noisy

speech and χ1 is defined as

χ1 =
γ(ν+1

2
)

γ(ν
2
)
√

π(ν − 2)
(7.2)

Letting σ2
r as the power of tk,m of clean speech and σ2

n as the power of tk,m of
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Fig. 7.3: Empirical histogram, Gaussian and Student t distribution of TE operated
PWP coefficients of noisy speech at SNR of 15 dB
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Fig. 7.4: Empirical histogram, Gaussian and Student t distribution of TE operated
noise PWP coefficients at SNR of −15 dB

noise and using the fact σ2
s = σ2

r + σ2
n, we can write

pi(tk,m) =
χ1√

σ2
r + σ2

n

(1 +
1

ν − 2

x2

σ2
r + σ2

n

)−
ν+1
2 (7.3)

For x2

ν(σ2
r+σ2

n)
≪ 1, Using binomial theorem, (7.3) can be approximated as

pi(tk,m) =
χ1√

σ2
r + σ2

n

(1− χ2
x2

σ2
r + σ2

n

) (7.4)
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Fig. 7.5: Empirical histogram, Gaussian and Student t distribution of TE operated
noise PWP coefficients at SNR of 0 dB
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Fig. 7.6: Empirical histogram, Gaussian and Student t distribution of TE operated
noise PWP coefficients at SNR of 15 dB

where

χ2 =
ν + 1

2(ν − 2)
(7.5)

Following (7.1) to (7.4) in a similar way, student t pdf for qi(tk,m) can also be

written as

qi(tk,m) =
χ1

σn

(1− χ2
x2

σ2
n

) (7.6)

By substituting (7.4) and (7.6) in (3.6), we obtain
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Fig. 7.7: Mean values of AIC index of TE operated PWP coeffiecients of noisy
speech assuming Gaussian and Student t distributions
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Fig. 7.8: Mean values of AIC index of TE operated PWP coeffiecients of noise
assuming Gaussian and Student t distributions

∫ λ

1

[
χ1√

σ2
r + σ2

n

− χ1χ2x
2

√
σ2
r + σ2

n

− χ1

σn

+
χ1χ2x

2

σ2
n

)]I1dx = 0, (7.7)

where I1 = ln( σ2
n√

σ2
r+σ2

n

×
1−χ1

x2

σ2
r+σ2

n

1−χ1
x2

σ2
n

).

By solving (7.7), value of λ can be derived as

λ(k) =

√
σ2
n(k)(1 + γ(k))

(
√
1 + γ(k) + 2 + γ(k))

√
χ2

, (7.8)



where γ(k) is the segmental SNR of subband k defined as

γ(k) =
σ2
r(k)

σ2
n(k)

. (7.9)

The proposed threshold λ(k) in (7.8) derived assuming student t pdf is compared

with that obtained assuming gaussian pdf given by

λ(k) =
σn(k)√

γk

√
2(γk + γ2

k)× ln(

√
1 +

1

γk
) (7.10)

in fig.7.9. This figure shows that the pattern of the threshold value is similar

for both the pdfs at high as well as low SNRs. In terms of value, although student

t pdf shows slightly lower values at high SNRs, but the threshold values are much

lower than that of the gaussian pdf specially at low SNRs. Therefore, the threshold

derived from the student t pdf offers less chance of removing speech coefficients

while performing thresholding operation not only at high SNR but also at difficult

low SNRs.

The proposed threshold as derived in (7.8) is high for higher noise power and

low for lower noise power thus is adaptive to noise power of different subbands. In

this method, voice activity detector is not needed as the threshold is automatically

adapted to the silent and speech frames. At a silent frame, since noise power is

significantly higher than the signal power, the proposed threshold results in a higher

value as seen from (7.8). Such a value imposes more coefficients to be thresholded

thus removing noise coefficients completely at subbands of a silent frame. Note

that, in this paper, noise is estimated using Improved Minima Controlled Recursive

Averaging (IMCRA) method [35].

7.0.3 Proposed Thresholding Function Considering Student
t Statistical Model

We propose a Student t pdf dependent custom thresholding function derived from

the modified hard and the semisoft thresholding functions [41]. Representing λ(k)

derived from (3.7) as λ1(k) and letting λ2(k) = 2λ1(k), the proposed thresholding

function is developed as in 3.9. In this thresholding function, shape parameters

α(k,m) and β(k,m) are determined assuming Student t distribution.
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Fig. 7.9: Comparison of threshold values with respect to SNR for Student t and
Gaussian pdfs

Determination of Shape Parameters assuming Student t distribution

The proposed thresholding function can be adapted to noise characteristics of the

input noisy speech based on the shape parameters α(k,m) and β(k,m) which are

defined as

α(k,m) =
1 +R(k,m)

2(1 +Q(k,m))
, (7.11)

β(k,m) =
2(1 +Q(k,m))

(1 +R(k,m))
, (7.12)

where R(k,m) and Q(k,m) are the speech presence and absence probabilities, re-

spectively, of the m-th coefficient in the k -th subband and determined in the same

method as used in [35].

Given two hypotheses,H0 and H1, which indicate respectively speech absence

and presence in the m-th coefficient of the k -th subband, and assuming a student

t distributions for both speech and noise PWP coefficients, the conditional pdfs of

the speech and noise PWP coefficients are given by

f(Y (k,m)|H0(k,m)) =
χ1

σn

(1 +
1

ν − 2

Y (k,m)2

σ2
n

)−
ν+1
2 (7.13)

f(Y (k,m)|H1(k,m)) =
χ1√

σ2
r + σ2

n

(1 +
1

ν − 2

Y (k,m)2

σ2
r + σ2

n

)−
ν+1
2 (7.14)

Using aposteriori and apriori SNRs defined by [6]



Υ(k,m) =
|Y (k,m)|2
σ2
n(k,m)

, (7.15)

η(k,m) =
σ2
r(k,m)

σ2
n(k,m)

, (7.16)

and following (7.13) and (7.14), the conditional pdfs of the aposteriori SNR can

be written as [35]

f(Υ(k,m)|H0(k,m)) =
χ1

ν
(1 +

Υ(k,m)

ν − 2
)−

ν+1
2 I2 (7.17)

f(Υ(k,m)|H1(k,m)) =
χ1

ν
√
(1 + η(k,m))

(1 +
Υ(k,m)

(ν − 2)(1 + η(k,m))
)−

ν+1
2 I2 (7.18)

In (7.17) and (7.18), I2 = u(Υ(k,m)) is the unit step function. Noting that the

conditional speech presence probability R(k,m) = P (H1(k,m)|Υ(k,m)), applying

Bayes rule and using (7.18), an expression for R(k,m) can be derived as

R(k,m) = [1 +
Q(k,m)

1−Q(k,m)
(
√
1 + η̂(k,m))v(k,m)

ν+1
2 ]−1, (7.19)

where η̂(k,m) is the estimated apriori SNR obtained as in [35] and

v(k,m) = (1 +
Υ(k,m)

ν − 2
)−1(1 +

Υ(k,m)

(ν − 2)(1 + η̂)
), (7.20)

Speech absence probability Q(k,m) in (7.19) can be determined as

Q(k,m) = 1− Rlocal(k,m)Rglobal(k,m)Rsubband(k,m), (7.21)

In (7.21), Rlocal(k,m) and Rglobal(k,m) are the speech presence probabilities in

local and global windows in the PWP domain. Letting τ for representing either

”local” or ”global” window, Rτ (k,m) can be given by

Rτ (k,m) =





0, if ξτ (k,m) ≤ ξmin

1, ξτ (k,m) ≥ ξmax,
log(ξτ (k,m)/ξmin)
log(ξmax/ξmin)

, otherwise

(7.22)

where ξτ (k,m) representing either ”local” or ”global” average of the apriori SNR

given by



ξτ (k,m) =
i=Wτ∑

i=−Wτ

hτ (i)ξ(k − i,m) (7.23)

In (7.23), hτ is a normalized window of size 2wτ + 1 and ξ(k,m) represents a

recursive average of the apriori SNR given by

ξ(k,m) = κξ(k,m− 1) + (1− κ)η̂(k,m− 1) (7.24)

where κ denotes a smoothing constant. Note that in (7.22), ξmin and ξmax are

the two empirical constants representing minimum and maximum values of ξ(k,m)

given in (7.24). Rsubband(k) in (7.21) can be computed as

Rsubband(k) =





0, if ξsubband(k) < ξmin

1, if ξsubband(k) > ξsubband(k − 1)andξsubband(k) > ξmin,

µ(k), otherwise

(7.25)

where µ(k) is expressed as

µ(k) =





0, if ξsubband(k) ≤ ξpeak(k)ξmin

1, if ξsubband(k) ≥ ξpeak(k)ξmax,
log(ξsubband(k)/ξpeak(k)/ξmin)

log(ξmax/ξmin)
, otherwise

(7.26)

In (7.25) and (7.26), ξsubband(k) is determined as

ξsubband(k) =
1

Nc

∑

1≪m≪Nc

ξ(k,m) (7.27)

and ξpeak in (7.26) is a confined peak value of ξsubband(k). Thus computingR(k,m)

and Q(k,m) following (7.19) and (7.21), the shape parameters α(k,m) and β(k,m)

can be determined using (7.11) and (7.12), respectively.

The enhanced speech frame is synthesized by performing the inverse PWP trans-

formation PWP−1 on the resulting thresholded PWP coefficients and The final

enhanced speech signal is reconstructed by using the standard overlap-and-add

method.

7.1 Results Considering Student t Statistical Model

In this Section, a number of simulations is carried out with the same simulation

conditions as described in chapter 3 to evaluate the performance of the proposed



method considering Student t statistical model. Same comparison metrics are used

to compare the proposed method with the previously mentioned comparison meth-

ods.

7.1.1 Simulation Conditions

Real speech sentences from the NOIZEUS database are employed for the experi-

ments, where the speech data is sampled at 8 KHz [42]. To imitate a noisy environ-

ment, noise sequence is added to the clean speech samples at different SNR levels

ranging from 15 dB to -15 dB. As in [43], two different types of noises, such as car

and multi-talker babble are adopted from the NOIZEUS databases [42].

In order to obtain overlapping analysis frames, hamming windowing operation

is performed, where the size of each of the frame is 64 ms (512 samples) with 50%

overlap between successive frames. We get motivated to use 64 ms frame following

the papers in [50] and [40]. A 6-level PWP decomposition tree with 10 db bases

function is applied on the noisy speech frames resulting in subbands k = 1, 2, .....24

[38], [40]. The values of used constants to determine the shape parameters in the

proposed thresholding function are given in Table 7.1.

We have tested our proposed method in a wide range of SNRs and reported

the results in the SNR range of 15dB to −15dB, where a significant difference in

performance is noticed for the proposed method relative to the other comparison

methods. Our main focus was to show the capability of the proposed method at

very low SNR levels, such as −15dB, where the other comparison methods produce

less accurate results but the proposed method successfully enhances the speech with

higher accuracy. On the other hand, in case of very high SNR, such as above 15dB,

although the proposed method consistently demonstrates better performance but the

performance becomes competitive with respect to the other comparison methods.

Therefore, the range of SNR used to present the comparative performance analysis

is chosen from 15dB to −15dB. The parameters in Table I are selected empirically

following [35].



Table 7.1: Constants used to determine the shape parameters

Constants Value of constants

β 0.7

ξmin -10 dB

ξmax -5 dB

ξpeak 10 dB

wlocal 1

wglobal 15

7.1.2 Comparison Metrics

Standard Objective metrics namely, Segmental SNR (SNRSeg) improvement in dB,

Perceptual Evaluation of Speech Quality (PESQ) and Weighted Spectral Slope

(WSS) are used for the evaluation of the proposed method [42]. The proposed

method is subjectively evaluated in terms of the spectrogram representations of

the clean, noisy and enhanced speech signals. Formal listening tests are also car-

ried out in order to find the analogy between the objective metrics and the sub-

jective sound quality. The performance of our method is compared with some

of the state-of-the-art speech enhancement methods, such as Universal [10] and

SMPO [43] in both objective and subjective senses. In SMPO method, speech is

segmented into 20 ms frames and Han-windowed with 50% overlap. We have imple-

mented the methods in [10] and [43] independently using the parameters specified

therein. The implementation codes for [10] and [43] are obtained from very authen-

tic publicly available sources. The Matlab code for [43] has been acquired from

http://ecs.utdallas.edu/loizou/cimplants/ and the Matlab code for [10] developed

by MATLAB Inc. has been used. The used built in function of MATLAB is given

in http://www.mathworks.com/help/wavelet/ref/wden.html.

7.1.3 Objective Evaluation

Results for Speech signals with Car Noise

SNRSeg improvement, PESQ and WSS for speech signals corrupted with car noise

for Universal, SMPO and proposed methods are shown in Fig. 7.10, Table 7.2 and

Fig. 7.11.

In Fig. 7.10, the performance of the proposed method is compared with that of
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Fig. 7.10: SNRSeg Improvement for different methods in car noise

the other methods at different levels of SNR for car noise in terms of Segmental SNR

inprovement. We see, the SNRSeg improvement increases as SNR decreases. At a

low SNR of −15dB, the proposed method yields the highest SNRSeg improvement.

Such larger values of SNRSeg improvement at a low level of SNR attest the capability

of the proposed method in producing enhanced speech with better quality for speech

severely corrupted by car noise.

In Table 7.2, it can be seen that at a low level of SNR, such as −15dB , all the

methods show lower values of PESQ scores, whereas the PESQ score is much higher,

as expected, for the proposed method. The proposed method also yields larger PESQ

scores compared to that of the other methods at higher levels of SNR. Since, at a

particular SNR, a higher PESQ score indicates a better speech quality, the proposed

method is indeed better in performance in the presence of a car noise. For the same

noisy conditions as in Table 7.2, we have also evaluated the PESQ results for the

proposed and other two comparison methods using 20 ms frame size and hamming

window. It is found that the proposed method is also better in performance while

using 20 ms frame size and hamming window in the presence of a car noise.

Fig. 7.11 represents the WSS values as a function of SNR for the proposed

method and that for the other methods. As shown in the figure, the WSS values

resulting from all other methods are relatively larger for a wide range of SNR levels,

whereas the proposed method is capable of producing enhanced speech with better

quality as it gives lower values of WSS even at a low SNR of −15dB.



Table 7.2: PESQ for different methods in car noise

SNR(dB) Universal SMPO Proposed Method

-15 1.16 1.15 1.40

-10 1.23 1.37 1.42

-5 1.32 1.51 1.80

0 1.43 1.69 1.97

5 1.65 2.07 2.28

10 1.93 2.38 2.71

15 2.14 2.60 2.96

In particular, for SMPO method, we have evaluated not only PESQ, but also

other two objective parameters, SNRSeg improvement and WSS in the presence of

car noise using both 20 ms and 64 ms frame size and hamming window. Comparing

the PESQ results using 20 ms and 64 ms, it is found that PESQ results for SMPO

is worse in the later case. But the increased size of frame improves the other two

objective parameters, namely SNRSeg improvement and WSS for SMPO.
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Fig. 7.11: WSS for different methods in car noise

Results for Speech signals with Multi-talker Babble Noise

SNRSeg improvement, PESQ and WSS for speech signals corrupted with babble

noise for Universal, SMPO and proposed methods are shown in Fig. 7.12, 7.14 and

7.13, respectively.

In Fig. 7.12, it can be seen that at a low level of SNR of −15dB, the proposed

method provides a SNRSeg improvement that is significantly higher than that of



the methods of comparison. The proposed method still shows better performance

in terms of SNRSeg improvement for higher SNRs also.

For speech corrupted with babble noise, in Fig. 7.13, the mean values of PESQ

with standard deviation obtained using the proposed method is plotted and com-

pared with that of the other methods. From this plot, it is seen that over the whole

SNR range considered, the proposed method continue to provide higher PESQ with

almost non-overlapping standard deviation in the presence of babble noise.

The performance of the proposed method is compared with that of the other

methods in terms of WSS in Fig. 7.14 at different levels of SNRs in presence of

babble noise. It is clearly seen from this figure that WSS increases as SNR decreases.

At a low SNR of −15dB, the proposed method yields a WSS that is significantly

lower than that of all other methods, which remains lower over the higher SNRs

also.
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Fig. 7.12: SNRSeg Improvement for different methods in babble noise

7.1.4 Subjective Evaluation

In order to evaluate the subjective observation of the enhanced speech, spectrograms

of the clean speech, the noisy speech, and the enhanced speech signals obtained by

using the proposed method and all other methods are presented in Fig. 7.15 for car

noise corrupted speech at an SNR of 10 dB. It is evident from this figure that the

harmonics are well preserved and the amount of distortion is greatly reduced in the

proposed method. Thus, the spectrogram observations with lower distortion also

validate our claim of better speech quality as obtained in our objective evaluations
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Fig. 7.13: PESQ for different methods in babble noise
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Fig. 7.14: WSS for different methods in babble noise

in terms of higher SNR improvement in dB, higher PESQ score and lower WSS in

comparison to the other methods. Another set of spectrograms for babble noise cor-

rupted speech at an SNR of 10 dB is also presented in Fig. 7.16. This figure attests

that the proposed method has a better efficacy in preserving speech harmonics even

in case of babble noise.

Extensive simulations have been carried out and it is seen that proposed method

is capable of preserving the unvoiced or weak speech frames for most of the speech

files of NOIZEUS database in the presence of noises at different SNR levels. The

spectrograms for car and babble noises at 0dB and −10dB are also analyzed and it

is found that the proposed method outperforms the other methods both in removing

noise and preserving the speech quality.
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Fig. 7.15: Spectrograms of (a) Clean Signal (b) Noisy Signal with 10dB car noise;
spectrograms of enhanced speech from (c) Universal method (d) SMPO method (e)
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Formal listening tests are also conducted, where ten listeners are allowed and

arranged to perceptually evaluate the enhanced speech signals. A full set (thirty

sentences) of the NOIZEUS corpus was processed by Universal, SMPO and pro-

posed method for subjective evaluation at different SNRs. Subjective tests were

performed according to ITU-T recommendation P.835 [42]. In this tests, a listener

is instructed to successively attend and rate the enhanced speech signal based on

(a) the speech signal alone using a scale of SIG (1 = very unnatural, 5 = very

natural), (b) the background noise alone using a scale of background conspicuous/

intrusiveness (BAK) (1 = very conspicuous, very intrusive; 5 = not noticeable), and

(c) the overall effect using the scale of the mean opinion score (OVRL) (1 = bad,

5 = excellent). More details about the testing methodology can be found in [44].

The mean scores of SIG, BAK, and OVRL scales for the three speech enhancement

methods evaluated in the presence of car noise at an SNR of 5 dB are shown in Ta-

ble 7.3. For the three methods evaluated using babble noise-corrupted speech at an

SNR of 5 dB, the mean scores of SIG, BAK, and OVRL scales are also summarized

in Table 7.4. The mean scores in the presence of both car and babble noises demon-

strate that the lower signal distortion (i.e., higher SIG scores) and the lower noise

distortion (i.e., higher BAK scores) are obtained with the proposed method relative

to that obtained by Universal and SMPO methods in most of the conditions. It is

also shown that a consistently better performance in OVRL scale is offered by the

proposed method not only in car but also in babble noisy conditions in comparison

to that provided by all the methods mentioned above. Overall, it is found that the

proposed method possesses the highest subjective sound quality in comparison to

that of the other methods in case of different noises.

7.2 Conclusions

In this paper, we developed a Student t statistical model-based technique for the

TE operated PWP coefficients of the noisy speech in order to obtain a suitable

threshold value. Unlike the unique threshold based method, the threshold value

thus obtained is adaptive in nature based on the speech and silence subbands. By

employing the proposed Student t pdf dependent custom thresholding function, the

PWP coefficients of the noisy speech are thresholded in order to obtain an enhanced



Table 7.3: Mean Scores of SIG, BAK and OVL scales for different methods in
presence of car noise at 5 db
Listener Universal SMPO Proposed Method

1 2.6 4.0 4.1
2 3.3 3.8 3.7
3 3.9 4.1 4.3
4 3.6 4.2 4.2
5 3.3 3.9 4.1
6 3.9 4.6 4.9
7 3.8 3.8 4.3
8 3.6 4.1 4.2
9 3.5 4.5 4.7
10 3.9 4.8 4.9

Listener Universal SMPO Proposed Method

1 4.0 4.5 5.0
2 4.3 4.9 4.7
3 4.2 4.4 4.9
4 4.4 4.7 4.8
5 4.2 4.8 4.7
6 3.9 4.6 4.9
7 3.8 3.9 4.4
8 4.4 4.6 4.6
9 3.5 3.8 4.5
10 4.2 4.5 4.8

Listener Universal SMPO Proposed Method

1 3.6 4.0 4.0
2 3.3 3.9 3.7
3 3.9 4.0 4.2
4 3.4 4.2 4.5
5 3.2 3.8 4.0
6 2.9 3.6 3.9
7 3.8 3.8 4.2
8 3.5 3.7 4.2
9 3.5 3.9 3.8
10 3.7 3.9 4.0

Table 7.4: Mean Scores of SIG, BAK and OVL scales for different methods in
presence of babble noise at 5 db
Listener Universal SMPO Proposed Method

1 2.9 4.1 4.3
2 3.6 3.9 3.9
3 3.8 4.3 4.2
4 3.7 4.0 4.1
5 3.6 3.8 4.4
6 3.8 4.4 4.8
7 3.9 3.9 4.4
8 3.6 4.1 4.3
9 3.7 4.4 4.8
10 3.8 4.6 4.8

Listener Universal SMPO Proposed Method

1 3.1 4.0 4.2
2 3.5 3.7 3.8
3 3.8 4.2 4.4
4 3.4 4.1 4.3
5 3.5 3.8 4.3
6 3.7 4.5 4.8
7 3.9 3.9 4.6
8 3.8 4.3 4.4
9 3.7 4.4 4.8
10 3.9 4.7 4.8

Listener Universal SMPO Proposed Method

1 3.6 4.2 4.3
2 3.5 3.9 3.9
3 3.5 4.3 4.4
4 3.6 4.3 4.4
5 3.5 3.8 4.2
6 3.8 4.5 4.8
7 3.7 3.9 4.1
8 3.7 4.2 4.4
9 3.6 4.4 4.6
10 3.8 4.7 4.8



speech. Simulation results show that the proposed method yields consistently better

results in the sense of higher Segmental SNR Improvement in dB, higher output

PESQ, and lower WSS values than those of the existing methods. The improved

performance of the proposed method is also attested by the much better spectrogram

outputs and in terms of the higher scores in the formal subjective listening tests.



Chapter 8

Conclusion

8.1 Concluding Remarks

An improved perceptual wavelet packet transform based approach to solve the prob-

lems of speech enhancement using the Probability distributions of Teager Energy

Operated perceptual wavelet Packet coefficients has been presented in this paper.

We incorporated a statistical model-based techniques with teager energy operation

on the of the perceptual wavelet packet coefficients to obtain a suitable adaptive

threshold using symmetric K-L divergence. We also design custom thresholding

functions to provide better speech enhancement.

8.2 Contribution of the Thesis

The major contributions of this thesis are:

1. Statistical models for determining an adaptive threshold is proposed using

Gaussian, Laplace, Rayleigh, Poisson and Student t distribution functions of

the TE operated perceptual wavelet packet coefficients.

2. Custom thresholding functions are proposed that combine different threshold-

ing techniques and able to provide better thresholding than the thresholding

functions described as in the literature.

3. Detail simulations have been carried out in order to investigate the perfor-

mance of the proposed methods in terms of objective and subjective senses.

4. The performance of our proposed methods is compared with state-of-the-art

methods, namely Universal and SMPO.
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5. Simulation results show that the proposed methods yield consistently better

results in the sense of higher output segmental SNR improvement, in dB,

higher output PESQ, and lower WSS values than those of the existing meth-

ods. The proposed methods are also found consistently better in spectrogram

observations and formal listening tests.

8.3 Scopes for Future Work

However, there are still some scopes for future research, as mentioned below:

1. Available databases other than NOIZEUS may be utilized for testing the effi-

cacy of our proposed methods.

2. The IMCRA method of noise estimation is used in all our methods. A better

noise estimation can be exploited to obtain more effective performances.
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