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ABSTRACT 

 

 

The existing road traffic accident (RTA) analysis system in Bangladesh is more focused 

onto record management and basic data analysis i.e. characteristics analysis purposes 

rather than using it as a source of intelligence. Although MAAP based accident database 

constitute the respiratory for RTA information of the country, its application is 

constrained by a number of limitations. However, most of the previous studies focused 

on a few risk factors, some specific road users or certain types of crashes; and therefore 

the important factors affecting injury or crash severity have not been completely 

recognized yet.   

 
Data mining (DM) has the potential to eliminate RTA data related deficiencies as well 

as statistical limitations. Even DM is able to quantify multiple relationships, which 

provides the insight for policy level decisions. Therefore, DM has been utilized in this 

thesis to elicit reasonable, novel, and interesting facts and also to confirm some 

perceived facts using RTA data (1998-2010) from ARI, BUET. Several DM algorithms 

have been adopted for the study. At first, hierarchical clustering (HC) methodology was 

employed to form natural data groups and to identify hazardous clusters; then random 

forest (RF) was applied to identify, rank, and thus select a subset of variables from a 

large variable space, to be considered for this study. Finally, classification and 

regression trees (CART) have been allowed to investigate the accident severity 

mechanism of the hazardous clusters.    

 
Nearly 10 percent of the pedestrian accidents are triggered by other accident/collision 

types, which indicate that may be pedestrians are not only the victims but also a 

stimulating factor for some accidents. Dividers in urban areas have been found quite 

effective in reducing fatal (38.23% fatal vs 57.78% fatal where there are no dividers) 

pedestrian accidents. Traffic control systems especially police controlled traffic control 

system in urban areas have been identified as persuasive in reducing pedestrian fatal 

accidents (in some cases 0% fatal incidences). Geometric sections without police 

controlled traffic control system have been acknowledged as a bracing factor for fatal 

pedestrian accidents.  
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Straight and flat geometric sections of roadways have generated more double vehicle 

fatal accidents (more than 80% accidents are fatal) than other types (e.g. curve only, 

slope only, curve and slope and crest) of geometric sections (nearly 70% fatal 

accidents). The latter part of the previous finding got worse when the sections were 

associated with head on, right angle, overturn, hit object in road and hit animal type of 

collisions (76.22% fatal); or occurred on national and regional highways or feeder roads 

(71% fatal); or during dawn/dusk and night (unlit) lighting condition (90.91% fatal); or 

in daylight or night (lit) light condition but with no or centerline marking traffic control 

system (75.21% fatal).  

 
Head on, right angle, side swipe, hit object in road, and hit object off road collision 

types affiliated with curve only, slope only, and curve and slope geometric sections of 

the roadways produced 85.29 percent fatal single vehicle crashes. Dawn/dusk and night 

(unlit) lighting condition attributed 87.88 percent single vehicle fatal accidents. Brick 

and earthen road surfaces have generated 86.67% fatal single vehicle crashes even in 

daylight and night (lit) condition. On the contrary, sealed surface even affiliated with 

rainy weather has ensued less fatal single vehicle crashes (58.82% non-fatal 

crashes).Wet and flooded surface conditions of roads have resulted in 94.74 percent 

fatal single vehicle crashes. Nevertheless, one-way routes concomitant with dry and 

muddy surface prompted only 20 percent fatal cases as always perceived; whereas in 

case of two-way roads it shoots up to 86.54 percent fatal single vehicle accidents.  
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Background and Motivation 

Road traffic accidents (RTAs) are a major public health concern, resulting over 1.2 

million deaths and between 20 and 50 million non-fatal injuries worldwide each year. 

Low-income and middle-income countries have higher road traffic fatality rates (21.5 

and 19.5 per 1,00,000 population, respectively) than high-income countries (10.3 per 

1,00,000). Over 90 percent of the world’s fatalities on roads occur in low-income and 

middle-income countries, which have only 48 percent of the world’s registered vehicles. 

The global losses due to road traffic injuries are estimated to be US$ 518 billion and 

cost governments between 1% and 3% of their gross national product – more than the 

total amount that these countries receive in development assistance. While road traffic 

death rates in many high-income countries have stabilized or declined in recent decades, 

data suggest that in most regions of the world the global epidemic of traffic injuries is 

still increasing. It has been estimated that, unless immediate action is taken, road deaths 

will rise to the fifth leading cause of death by 2030, resulting in an estimated 2.4 million 

fatalities per year [WHO, 2009]. 

 
Bangladesh in particular experiences one of the highest rate of such accidents. 

According to police reported statistics around 4,000 people die through RTAs in 

Bangladesh each year. It is estimated that the actual fatalities could well be 10,000–

12,000 each year taking consideration of underreporting and definitional 

inconsistencies. In economic terms, road accidents in Bangladesh are costing the 

community nearly 2 percent of GDP. This is, of course, a huge sum that the nation can 

ill afford to lose [Hoque et al., 2008]. Thus, methods to reduce accident severity are of 

great interest to traffic agencies and to public at large.  

 
Research based on comprehensive analysis of the causes of accidents and design of 

appropriate engineering solution is the key to successful endeavor. Scientific 

investigations and implementation of commensurate technical measures are contingent 
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upon the availability of ample information on accident which includes data on vehicle, 

roadway, environment, users and victims as well. In Bangladesh police is the core 

organization for accident data collection and storage [Alam et al., 2006]. Their accident 

database system is computerized through the application of Microcomputer Accident 

Analysis Package (MAAP) which is developed by the Transport Research Laboratory 

(TRL) of the United Kingdom (UK) specifically for the storage and analysis of accident 

data. The Accident Research Institute (ARI) of Bangladesh University of Engineering 

and Technology (BUET) essentially uses the MAAP database for research purposes. 

This database was transferred to the institute with institutional collaboration of the Road 

Safety Cell (RSC) of Bangladesh Road Transport Authority (BRTA) and the Police 

Department. Current road safety research and investigation works have been based on 

this database.  

 
It is revealed that about 70 percent of road accident fatalities occur in rural areas 

including rural sections of national highways. Almost 80 percent of the fatalities involve 

vulnerable road users e.g. pedestrians, bicyclists and motorcyclists. Pedestrian-vehicle 

conflicts are found to be the greatest problem with significant involvement of trucks and 

buses. It has been observed that up to 62 percent of urban road accident deaths comprise 

pedestrians, and in Dhaka city, it is about 70 percent. Of the total reported accidents 

nearly 50 percent occur on national and regional highways. Accidents and fatalities on 

national highways can be characterized as clustered on some selected sections, 

identified as Hazardous Road Locations (HRLs). Nearly 40 percent of accidents are 

concentrated on around 2 percent of the highway network, demonstrating that accidents 

are amenable to site specific treatments. Accident type analysis shows ‘hit pedestrian’ 

as the dominant accident type both for urban and rural areas of which 45 percent 

resulted in fatal accidents. Other common accident types are rear end collision (16.5%), 

head on collision (13.2%) and overturning (9.3%). Heavy vehicles such as trucks and 

buses including minibuses are major contributors to road accidents (buses and 

minibuses 33%, trucks 27%), and in fatal accidents their shares are 35 percent and 29 

percent respectively. About 2.5 percent of the reported accidents occur on bridges and 

culverts [Hoque et al., 2010]. 

 
Various studies comprising on-site field investigations, systematic safety checks and 

audits, comprehensive analyses of accident reports, eyewitness and victim interviews, 
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drivers’ observations and opinion surveys, and expert opinion surveys, have been 

conducted by different organizations to identify the causative factors of road accidents. 

These studies reveal that the principal contributing factors to accidents are deficiencies 

in land-use and road network planning, adverse roadway and roadside environments, 

absence of or inappropriate pedestrian facilities, defective bridges and bridge 

approaches, inappropriate intersection designs, reckless driving, vehicle defects, 

presence of non-standard informal vehicles on main roads and unauthorized vehicle 

modifications. In addition, driver incompetency, road users’ low level of awareness of 

the safety problem, and inadequate traffic law enforcement and sanctions were also 

among the major causes of accidents. However, it is difficult to quantify which factors 

are responsible for how many accidents due to the fact that a large number of 

contributory factors are not covered by the current accident reporting system [Mahmud 

et al., 2009]. 

 
Although MAAP based accident database constitutes the only repository for road traffic 

accident information of the country, its application is constrained by a number of 

limitations such as underreporting specially in case of lower severity, wrong 

transcription of Accident Report Forms (ARFs), improper recording of ARFs, etc. It is 

well recognized that road traffic accidents are usually under reported. Extent and spatial 

distortion of underreporting might cause inappropriate design of counter-measures and 

disproportion of resources. Even in case of recorded accidents, erroneous information 

can be evolved from improper transcription of ARFs. Also, improper recording of 

ARFs, lack of training and other demand at the accident scene induce internal 

inaccuracy in accident database [Alam et al., 2006].  
 
In the field of transportation engineering large amounts of data may need to be handled, 

specially during studies on accident analysis and when general traffic accident data are 

heterogeneous. Moreover, in Bangladesh accident data are sometimes biased and such 

limitations cannot be overcome by general statistical methods. Statistics tables and 

ordinary charting techniques are not sufficient for present day requirements and this 

causes difficulties in the effective visualization of results and patterns. So, it is 

unrealistic to draw conclusions based on these data. Another disadvantage is that 

ordinary methods limit human involvement in the exploration tasks due to large sample, 

missing data, computational difficulty, etc. 
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The existing road accident analysis system in Bangladesh is more focused onto record 

management and basic data analysis. The road accident data are yet to be fully utilized 

for decision making and performance monitoring because the existing system is unable 

to perform extensive and detailed analysis on road safety. Accident data are often kept 

just for record keeping purposes rather than using it as a source of intelligence. 

However, most of the previous studies focused on a few risk factors, some specific road 

users or certain types of crashes; and so the important factors affecting injury or crash 

severity have not been yet completely recognized. The prerequisite to improve road 

safety is to have a comprehensive road accident database and analysis system. 

Advanced road accident analysis system is needed to help strategize road safety 

initiative as well as inculcate better understanding of road accident causation. 

Furthermore, accident data are critical to monitor and evaluate the effectiveness of road 

safety interventions introduced by the government and road authorities.  

 
Advanced data analysis system has the potential to take advantage of the available 

accident data. Better structured data will create conditions for deeper analysis, aiding in 

the formulation of evidence-based research on road safety and enabling better road 

safety interventions as well as performance monitoring. The system will use the road 

accident database as the source of intelligence, to help determine accident causation and 

provide a clearer picture of the issues and potential intervention to improve the road 

safety condition. Data mining is such an approach that focuses on searching for new and 

interesting hypotheses than confirming the present ones. It includes various tools, 

techniques and applications that can be applied to eliminate the road accident data 

related deficiencies as well as statistical limitations. Therefore, it has been utilized for 

finding yet unrecognized and unsuspected facts especially in the field of road safety. 

This gives the basis to conduct this research. 

 
Progress in digital data acquisition and storage technology has resulted in the growth of 

huge databases. This has occurred almost everywhere, from the mundane (such as 

supermarket transaction data, credit card usage records, telephone call details, and 

government statistics) to the more exotic (such as images of astronomical bodies, 

molecular databases, and medical records) areas of human endeavor. Little wonder, 

then, that interest has grown in the possibility of tapping these data, of extracting from 

them information that might be of value to the owner of the database. The discipline 
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concerned with this task has become known as data mining. Defining a scientific 

discipline is always a controversial task; researchers often disagree about the precise 

range and limits of their fields of study. Bearing this in mind, and accepting that others 

might disagree about the details, working definition of data mining can be adopted as: 

‘data mining is the analysis of (often large) observational data sets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and 

useful to the data owner’ [Hand et al., 2001]. 

 
The relationships and summaries derived through a data mining exercise are often 

referred to as models or patterns. Examples include linear equations, rules, clusters, 

graphs, tree structures, and recurrent patterns in time series. The definition above refers 

to observational data, as opposed to experimental data. Data mining typically deals with 

data that have already been collected for some purpose other than the data mining 

analysis. This means that the objectives of the data mining exercise play no role in the 

data collection strategy. This is one way in which data mining differs from much of 

statistics, in which data are often collected by using efficient strategies to answer 

specific questions. For this reason, data mining is often referred to as secondary data 

analysis. The definition also mentions that the data sets examined in data mining are 

often large. If only small data sets were involved, we would merely be discussing 

classical exploratory data analysis as practiced by statisticians. When we are faced with 

large bodies of data, new problems arise. Some of these relate to housekeeping issues of 

how to store or access the data, but others relate to more fundamental issues, such as 

how to determine the representativeness of the data, how to analyze the data in a 

reasonable period of time, and how to decide whether an apparent relationship is merely 

a chance occurrence not reflecting any underlying reality [Hand et al., 2001]. 

 
Ideally in statistical analysis, one designs and conducts experiments and then tests the 

validity of hypotheses from data collected. One gains an understanding of the properties 

of the data from the underlying distributions. The validity of a hypothesis is established 

from analyzing the distributions. In many cases, the data does not represent the outcome 

of a structured experiment. In such cases, methods that allow for the discovery of 

patterns in the data are needed. Methods for determining dominant patterns in data are 

usually referred to as ‘Data Mining’. Furthermore, the data from these unstructured 
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experiments tend to be enormous. Data mining methods typically make or require 

assumptions in order to control computational complexity [Ekhaus, 2003]. 

 
The two approaches of learning from data or turning data into knowledge are 

complementary. The information obtained from a bottom-up analysis (data mining), 

which identifies important relations and tendencies, can not explain why these 

discoveries are useful and to what extent they are valid. The confirmatory tools of top-

down analysis (statistics) can be used to confirm the discoveries and evaluate the quality 

of decisions based on those discoveries.  Performing a top-down analysis, we may think 

of possible explanations for the observed behavior and let those hypotheses dictate the 

data to be analyzed. Then, performing a bottom-up analysis, we let the data suggest new 

hypotheses to test [Statoo Consulting, Switzerland].  

 
In this research, an attempt has been made to study the feasibility and utility of data 

mining methods in the context of road traffic safety of Bangladesh. As data mining 

covers a large and versatile set of methods for large-scale data analysis, exploratory and 

descriptive methods have been emphasized in this study. The intention was to find out 

whether robust clustering together with association and item sets mining techniques 

were able to elicit reasonable, and hopefully novel, unsuspected and interesting facts 

from road traffic accident data. 

 

 

1.2 Purpose and Objectives 

The purpose of the research was to investigate the feasibility and utility of data mining 

methods in the context of road traffic safety in Bangladesh, using RTA data (1998-

2010) from ARI, BUET. The specific objectives for this research were:  

 
 To employ Hierarchical Clustering (HC) to form natural data groups and 

identify the hazardous clusters; 

 To identify the high impact variables using Random Forest (RF) to facilitate 

calculation and reduce the complexity of the study; and 

 To carry out an in-depth analysis on the hazardous clusters with Classification 

and Regression Tree (CART) method using the predictors determined by RF.  
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1.3 Scope of the Research 

This study is concerned about the application of data mining in figuring multiple 

predictors’ relationships towards accident severity. The study reveals how the accident 

severity is related to different predictors of accident events or which predictors trigger 

what kind of accident severity. However, in-depth analyses of the data mining findings 

required for developing countermeasures and policy level decisions were beyond the 

scope of this thesis.  

 

 

1.4 Thesis Outline 

The thesis has been organized into six chapters. 

 
Chapter 1 has explained the background and motivation, purpose and objectives as well 

as the scope of the research. 

 
Chapter 2 has been dedicated to review the relevant literature to formulate the concept 

of data mining in the context of this study.  

 
Chapter 3 has illustrated the fundamentals of various methods in data mining that have 

been applied in this thesis. These include Hierarchical Clustering (HC), Random Forest 

(RF), and Classification and Regression Tree (CART). The descriptions are brief yet 

self-containing.  

 
Chapter 4 has been dedicated to introduce the present road traffic accident database 

system of Bangladesh. It also accommodates a short preliminary statistical analysis of 

the data. The limitations of the present system have been highlighted as well. 

 
Chapter 5 has addressed the detailed analysis and interpretation of results regarding data 

mining methodologies. The source of accident data and how it was incorporated in this 

study has also been discussed in this chapter.     

 
Chapter 6 has presented the findings of the thesis along with its limitations and future 

scopes. 
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CHAPTER 2 

LITERATURE REVIEW 
 

 

2.1 Introduction 

Data mining is quite a new addition to the ever growing efforts of transportation 

researchers to improve road traffic safety in Bangladesh. Being at its nascent stage, the 

study can still be considered as a distinct effort. This chapter commences by defining 

data mining from different perspectives. Later, it proceeds by clarifying the concept 

from transportation point of views. Then it summarizes the existing relevant literatures 

and thereby conducts a thorough review on the purpose, directions and progresses made 

in this emerging and increasingly important research field. It presents the cutting edge 

method data mining by systematically combining the thoughts of different researchers 

which helps in understanding how this thesis has contributed in both scientific and 

practical fields.  

 

 

2.2 Data Mining 

Data mining (DM) is used to discover patterns and relationships in data, with an 

emphasis on large observational databases. It sits at the common frontiers of several 

fields including database management, artificial intelligence, machine learning, pattern 

recognition, and data visualization. From a statistical perspective it can be viewed as 

computer automated exploratory data analysis of usually large complex datasets. This 

field is having a major impact on business, industry, and science. It also affords 

enormous research opportunities for new methodological developments. Despite the 

obvious connections between data mining and statistical data analysis, most of the 

methodologies used in data mining have so far originated in fields other than statistics 

[Friedman, 1997]. The definition of data mining largely depends on the background and 

views of the definer. Following are a few definitions taken from different sources 

[Friedman, 1997]: 
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From pattern recognition viewpoint: Data mining is the nontrivial process of 

identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data – Fayyad. 

 
From database view point: Data mining is the process of extracting previously 

unknown, comprehensible, and actionable information from large databases and 

using it to make crucial business decisions – Zekulin. 

 
From machine learning view point: Data Mining is a set of methods used in the 

knowledge discovery process to distinguish previously unknown relationships 

and patterns within data – Ferruzza. 

 
Data mining is the process of discovering advantageous patterns in data – John. 

 
Data mining is a decision support process where we look in large databases for 

unknown and unexpected patterns of information – Parsaye. 

 
Data mining and statistics are disciplines which are largely defined by the methods they 

use, rather than the problems they solve. Although their methods mostly do not overlap, 

both subjects deal with data. It seems pragmatic to utilize methods from any discipline 

that would help answer our questions. The differences are somewhat exacerbated by a 

certain lack of rigor among data mining methodologies, at least from the view point of 

statistics. Alternatively, traditional statistical methods do not handle the data volumes 

that data mining typically deals with. Today’s computers store enormous volumes of 

data and the rate at which it is growing is ever increasing. It is reasonable to expect new 

computational methods to be developed to address these growing needs. Data mining is 

useful for discovering relationships and statistics is useful for analyzing relationships. 

The two disciplines need to coexist and methods that bridges the gaps between the two 

are needed [Ekhaus, 2003]. 

 

 

2.3 Data Mining in Transportation Engineering 

In the field of transportation engineering large volume of data are generated during the 

studies of traffic management, accident analysis, pavement conditions, roadway feature 
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inventory, traffic signals and signal inventory, bridge maintenance, road characteristics 

inventory, etc. Based on these data decision makers arrive at a decision to solve a 

respective problem. Decision makers are always on lookout for ways to ease the pain in 

obtaining access to and applying disparate datasets. The basic requirements include the 

ability to identify what data are available, determine the characteristics of the data, 

extract the data of interest, and transform the data into formats necessary for 

applications. In real life situation of transportation domain, diverse fields of data need to 

be collected to integrate and to arrive at solutions. Data mining approaches have opened 

a new horizon for decision makers in transportation engineering [Barai, 2003]. 

 
There is a broad spectrum of engineering problems where computational intelligence is 

becoming an essential part in many advanced systems. Hence new techniques for 

extracting important knowledge from raw data are required to handle the components 

efficiently. Data mining is a step in this knowledge process. Basic steps of data mining 

and knowledge discovery are depicted in Figure 2.1 [Barai, 2003]. Detailed explanation 

can be found in Fayyad et al., 1996. 

 

 
Figure 2.1. Data mining and knowledge discovery process. 
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2.4 Relevant Studies 

In the late 90's and the beginning of this century there have been several attempts to use 

data mining techniques in the area of traffic safety. In particular, frequent patterns in 

accident data have been searched by implementing spatial data mining [Zeitouni and 

Chelghoum, 2001], clustering techniques [Ljubic et al, 2002; Geurts et al., 2003; 

Bayam et al., 2005], rule induction [Geurts et al., 2003; Geurts et al., 2005, Kavsek et 

al., 2006], decision trees [Strnad et al., 1998; Clarke et al., 1998; Bayam et al., 2005] 

and neural networks [Mussone et al., 1999; Bayam et al., 2005]. Some applications 

have combined data mining techniques with technological enhancements [Ng et al., 

2002], for example a combination of cluster analysis, regression analysis and 

geographical information system (GIS) platforms to group homogeneous accident data, 

to estimate the number of accidents and to assess the crash risk. 

 
In recent years there has been a growing body of research exploring whether data 

mining techniques are potentially more suitable than classical econometric models to 

uncover relations between the variables that affect accidents, such as road 

characteristics, driver characteristics and attitudes, vehicle features and seasonal factors. 

Clustering methods seemed an important tool when analyzing traffic accidents as these 

methods are able to identify groups of road users, vehicles and road segments which 

would be suitable targets for countermeasures [Cameron, 1997]. Lee et al. (2002) 

presented a review and discussed limitations of classical econometric models that had 

been widely used to analyze road crashes. Chen and Jovanis (2002) showed that certain 

problems might arise when using classic statistical analysis on datasets with large 

dimensions, namely the exponential increase in the number of parameters as the number 

of variables increases and the invalidity of statistical tests as a consequence of sparse 

data in large contingency tables. Chang and Chen (2005) compared prediction 

performances of decision trees and negative binomial regressions to determine that 

decision trees were a better method for analyzing freeway accident frequencies. Chong 

et al. (2005) evaluated the performance of four machine learning paradigms applied to 

modeling the severity of injury that occurred during traffic accidents: neural networks, 

support vector machines, decision trees and a hybrid model involving decision trees and 

neural networks. 
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Kim (1995) developed a log-linear model to clarify the role of driver characteristics and 

behaviors in the causal sequence leading to more severe injuries. They found that driver 

behaviors of alcohol or drug use and lack of seat belt use greatly increase the odds of 

more severe crashes and injuries. 

 
Shankar (1996) applied a nested logic formulation for estimating accident severity 

likelihood conditioned on the occurrence of an accident. The study found that there is a 

greater probability of evident injury or disabling injury/fatality relative to no evident 

injury if at least one driver did not use a restraint system at the time of the accident. 

 
Dia (1997) used real-world data for developing a multilayered NN freeway incident 

detection model. They compared the performance of the neural network model and the 

incident detection model in operation on freeways. 

 
Abdalla et al. (1997) also studied the relationship between casualty frequency and the 

distance of an accident from residential zones. Not surprisingly, casualty frequencies 

were higher in accidents that occurred nearer to residential zones, possibly due to higher 

exposure. The casualty rates among residents from relatively deprived areas were 

significantly higher than those from relatively affluent areas. 

 
Yang (1999) used NN approach to detect safer driving patterns that have less chances of 

causing death and injury when a car crash occurs. Evanco (1999) conducted a 

multivariate population-based statistical analysis to determine the relationship between 

fatalities and accident notification times. The analysis demonstrated that accident 

notification time is an important determinant of the number of fatalities for accidents on 

rural roadways. 

 
Mussone et al. (1999) used neural networks to analyze vehicle accidents that occurred at 

intersections in Milan, Italy. They used feed-forward multilayer perception (MLP) with 

BP learning. The model had 10 input nodes for eight variables: day/night, traffic flows 

in the intersection, number of virtual and real conflict points, intersection type, accident 

type, road surface condition, and weather condition. The output node (accident index) 

was calculated as the ratio between the number of accidents at a given intersection and 

at the most dangerous intersection. Results showed that the highest accident index for 

the running over of pedestrians occurred at non-signalized intersections at nighttime. 
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Ossenbruggen et al. (2001) used a logistic regression model to identify the prediction 

factors of crashes and crash-related injuries, using models to perform a risk assessment 

of a given region. These models included attributes describing a site by its land use 

activity, roadside design, use of traffic control devices, and traffic exposure. Their study 

illustrated that village sites were less hazardous than residential or shopping sites. 

 
Sohn and Hyungwon (2001) conducted research on pattern recognition in the 

framework of RTA severity in Korea. They observed that an accurately estimated 

classification model for several RTA severity types as a function of related factors 

provided crucial information for accident prevention. Their research used three data 

mining techniques, neural network, logistic regression, and decision tree, to select a set 

of influential factors and to construct classification models for accident severity. Their 

three approaches were then compared in terms of classification accuracy. They found 

that accuracy did not differ significantly for each model, and that the protective device 

was the most important factor in the accident severity variation. 

 
Bedard (2002) applied a multivariate logistic regression to determine the independent 

contribution of driver, crash, and vehicle characteristics to drivers’ fatality risk. It was 

found that increasing seatbelt use, reducing speed, and reducing the number and severity 

of driver side impacts might prevent fatalities.  

 
Ossiander (2002) used Poisson regression to analyze the association between the fatal 

crash rate (fatal crashes per vehicle mile traveled) and the speed limit increase and 

found that the speed limit increase was associated with a higher fatal crash rate and 

more deaths on freeways. 

 
To analyze the relationship between RTA severity and driving environment factors, 

Sohn and Lee (2002) used various algorithms to improve the accuracy of individual 

classifiers for two RTA severity categories. Using neural network and decision tree 

individual classifiers, three different approaches were applied: classifier fusion based on 

the Dempster–Shafer algorithm, the Bayesian procedure, and logistic model; data 

ensemble fusion based on arcing and bagging; and clustering based on the k-means 

algorithm. Their empirical results indicated that a clustering-based classification 

algorithm works best for road traffic accident classification in Korea. 
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Ng, Hung and Wong (2002) used a combination of cluster analysis, regression analysis, 

and geographical information system (GIS) techniques to group homogeneous accident 

data, estimate the number of traffic accidents, and assess RTA risk in Hong Kong. Their 

resulting algorithm displayed improved accident risk estimation compared to estimates 

based on historical accident records alone. The algorithm was more efficient, especially 

for fatality and pedestrian related accident analyses. The authors claimed that the 

proposed algorithm could be used to help authorities effectively identify areas with high 

accident risk, and serve as a reference for town planners considering road safety. 

 
Chang and Chen (2005) conducted data mining research focusing on building tree-based 

models to analyze freeway accident frequency. Using the 2001- 2002 accident data of 

National Freeway 1 in Taiwan, the authors developed classification and regression tree 

(CART) and negative binomial regression models to establish the empirical relationship 

between traffic accidents and highway geometric variables, traffic characteristics, and 

environmental factors. CART is a powerful tool that does not require any pre-defined 

underlying relationship between targets (dependent variables) and predictors 

(independent variables). The authors found that the average daily traffic volume and 

precipitation variables were the key determinants of freeway accident frequency. 

Furthermore, a comparison of their two models demonstrated that CART is a good 

alternative method for analyzing freeway accident frequencies. 

 
Beshah (2005) analyzed historical RTA data, including 4,658 accident records at the 

Addis Ababa Traffic Office, to investigate the application of data mining technology to 

the analysis of accident severity in Addis Ababa, Ethiopia. Using the decision tree 

technique and applying the Knowledge SEEKER algorithm of the Knowledge STUDIO 

data mining tool, the developed model classified accident severity into four classes: 

fatal injury, serious injury, slight injury, and property damage. Accident cause, accident 

type, road condition, vehicle type, light condition, road surface type, and driver age 

were the basic determinant variables for injury severity level. The classification 

accuracy of this decision tree classifier was reported to be 87.47 percent. 

 
Chang and Wang (2006) applied non-parametric classification tree techniques to 

analyze accident data from the year 2001 for Taipei, Taiwan. A CART model was 

developed to establish the relationship between injury severity and driver/vehicle 
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characteristics, highway/environment variables, and accident variables. The most 

important variable associated with crash severity was the vehicle type, with pedestrians, 

motor-cyclers, and bicyclists having the highest injury risks of all driver types in the 

RTAs. 

 
Using one clustering (Simple K-Means) and three classification (J48, naïve Bayes, and 

One R) algorithms, Srisuriyachai (2007) analyzed road traffic accidents in the Nakhon 

Pathom province of Bangkok. Considering the descriptive nature of the results and 

classification performance, the J48 algorithm was sufficiently useful and reliable. The 

outcome of the research was traffic accident profiles, which the author presented as a 

useful tool for evaluating RTAs in Nakhon Pathom. 

 
Wong and Chung (2008) used a comparison of methodology approaches to identify 

causal factors of accident severity. Accident data were first analyzed with rough set 

theories to determine whether they included complete information about the 

circumstances of their occurrence according to an accident database. Derived 

circumstances were then compared. For those remaining accidents without sufficient 

information, logistic regression models were employed to investigate possible 

associations. Adopting the 2005 Taiwan single-auto-vehicle accident data set, the 

results indicated that accident fatality resulted from a combination of unfavorable 

factors, rather than from a single factor. Moreover, accidents related to rules with high 

or low support showed distinct features. 

 
Following Beshah’s (2005) work, Zelalem (2009) conducted a data mining study to 

classify driver responsibility levels in traffic accidents in Addis Ababa. The study 

focused on identifying the important factors influencing the level of driver 

responsibility, and used the RTA dataset of the Addis Ababa Traffic Control and 

Investigation Department (AATCID). The WEKA data mining tool was used to build 

the decision tree (using the ID3 and J48 algorithms) and MLP (back propagation 

algorithm) predictive models. Rules representing patterns in the accident dataset were 

extracted from the decision tree, revealing important relationships between variables 

influencing a driver’s level of responsibility (e.g., age, license grade, education, driving 

experience, and other environmental factors). The accuracies of these models were 
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88.24% and 91.84%, respectively, with the decision tree model found to be more 

appropriate for the problem type under consideration. 

 
Getnet (2009) investigated the potential application of data mining tools to develop 

models supporting the identification and prediction of major driver and vehicle risk 

factors that cause RTAs. The research used the WEKA version 3-5-8 tool to build the 

decision tree (using the J48 algorithm) and rule induction (using PART algorithm) 

techniques. Performance of the J48 algorithm was slightly better than that of the PART 

algorithm. The license grade, vehicle service year, vehicle type, and experience were 

identified as the most important variables for predicting accident severity. 

 
Liu (2009) developed a decision support tool for liability authentications of two-vehicle 

crashes, based on self-organizing feature maps (SOM) and data mining models. 

Although the study used a small data sample, the decision support system provided 

reasonably good liability attributions and references on the given cases. 

 

 

2.5 Recent Advancements 

Researchers over the past two decades have conducted significant number of studies to 

identify factors influencing crash [Fridstrom et al., 1995; Miaou and Song, 2005] and 

developed crash prediction models to calculate the frequency and associated severity of 

crash on conventional expressways [Khan et al., 1999; Caliendo et al., 2007]. Several 

analogous studies have underscored positive correlations between traffic flow variables 

and road crashes [Cedar and Livneh, 1982; Cedar, 1982; Frantzeskakis and Iordanis, 

1987] that brought long-term safety benefits by improving geometric designs, road side 

environment and helping in decision making for budget allocation, albeit the 

countermeasures were rather reactive in nature [Oh et al., 2001; Lee et al., 2003]. They 

also ignored the complex interaction among traffic flow variables that may have abetted 

crashes. This is as they employed highly aggregated traffic data (e.g., hourly, daily or 

yearly flow) which could not capture the suddenly developed hazardous traffic 

conditions that could lead to a road crash [Hossain and Muromachi, 2013].  
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Recently, with the enhanced data collection, storage and analysis capabilities, 

researchers have started paying attention in developing proactive road safety 

management systems for expressways using high-resolution real time traffic data. 

Several real-time crash prediction models have been proposed based on the hypothesis 

that the probability of a crash on a specific road section can be predicted for a very short 

time window using the instantaneous traffic flow data [Lee et al., 2002, 2003; Golob et 

al., 2003; Pande and Abdel-Aty, 2005]. This opened the possibility to develop proactive 

road safety management systems which may even be able to prevent some crashes that 

would have taken place otherwise [Lee et al., 2002, 2003; Abdel-Aty and Pande, 2004; 

Abdel-Aty and Abdalla, 2004; Oh et al., 2005a,b; Abdel-Aty et al., 2006a,b; Dias et al., 

2009; Hossain and Muromachi, 2010b].  

 
Jang et al. (2012) extended the study horizon by introducing a real-time collision 

warning system for the intersections where conditions related to vulnerable line of site 

and/or traffic violation can be observed. Christoforou et al. (2012) in their studies have 

determined crash probability along with associated crash severity. However, these 

studies were focused on improving the prediction capability rather than providing 

insight into crash phenomena. Among the studies related to identifying the traffic 

variables leading to crash, Abdel-Aty et al. (2005) ascertained that crashes occur in high 

speed and low speed scenarios. While the former is caused by quick formation and 

subsequent dissipation of queues causing a backward shock wave, the latter is due to a 

disruption in the downstream that propagates a shock wave to the upstream impending 

driving errors. 

 
With a similar approach but including only rear-end crash data, Pande and Abdel-Aty 

(2006a) affirmed that crashes are related to coefficient of variation in speed and average 

occupancy under extended congestion. They also found that the high speed crashes were 

more explainable with average speed and occupancy in a downstream detector. They 

mentioned that presence of ramp in the downstream have impact on crash but did not 

shed light on the types of ramps and their relative vicinity. Two simultaneous studies 

were conducted on the same study area (I-4, Ontario, FL, USA) for lane-changing 

related collisions and it was found that average speeds at upstream and downstream 

together with difference in occupancy on adjacent lanes and standard deviation of 
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volume and speed at a location downstream of the crash point are the major contributing 

factors [Pande and Abdel-Aty, 2006b; Lee et al., 2006].  

 
Dias et al. (2009) introduced level of congestion rather than the aggregated speed of 

vehicles as a predictor and affirmed a positive correlation between congestion and crash 

risk. Zheng et al. (2010) considered only congested traffic condition and used matched 

control logistic regression to prove that traffic oscillations contribute to crash. 

Christoforou et al. (2011) utilized real-time traffic data to associate different traffic 

parameters with various crash types. Xu et al. (2012) suggested that traffic 

characteristics leading to crash vary substantially between congested and uncongested 

situations.  

 
The studies existing were more concerned about identifying the factors and placed little 

or no concentration on why and how these factors contribute to a crash. They in most 

cases did not verify if the factors vary for the basic freeway segments (BFS) and ramp 

areas. McCartt et al. (2002) found different crash types and characteristics dominating 

different types of ramps. Chen et al. (2009, 2010) found significant safety impact even 

for off ramps of freeways when they had different number and arrangements of lanes. 

Due to high variation in ramp density between conventional expressways and urban 

expressways, the relevance and transferability of the findings of these studies to urban 

expressways may not be justified adequately. Thus, it was important to investigate if the 

existing findings were generic to all kinds of expressways or whether they differ 

significantly [Hossain and Muromachi, 2013]. 

 
Hossain and Muromachi (2013) in their study employed high resolution detector data to 

identify the traffic patterns impending hazardous driving conditions. Unlike the 

previous studies, their study separated the road sections of the urban expressways into 

five groups – the basic freeway segments (BFS) and areas near downstream (d/s) and 

upstream (u/s) of the on (entrance) and off (exit) ramps and attempts to identify generic 

crash prone traffic patterns for each of these groups. They came up with the fact that the 

high risk clusters in all the five groups of the road sections had substantially high 

differences in their congestion indexes which indicated either the downstream or the 

upstream traffic conditions were at least partially congested. Thus, it was easier to 

explain the crash mechanism under low speed operation. This was also logical to 
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believe that many high speed crashes might be associated with unsafe driving rather 

than traffic condition which was hazardous and thus hard to explain with traffic flow 

variables. Therefore, education and enforcement related interventions are required as 

well. 

 

 

2.6 Summary 

Relevant literatures have highlighted enormous scopes regarding the application of data 

mining (DM) on road traffic accident database. The studies have outlined that DM has 

the potential to quantify multiple predictors’ relationships towards accident instances. 

DM is such an approach that focuses on searching for new and interesting hypotheses 

than confirming the present ones. It includes various tools, techniques and applications 

that can be applied to eliminate the road accident data related deficiencies as well as 

statistical limitations. Therefore, it has been utilized for finding yet unrecognized and 

unsuspected facts especially in the field of road safety.  
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CHAPTER 3 

RESEARCH METHODOLOGY 
 

 

3.1 Introduction 

This study involves handling large variable spaces of accident predictors, clustering 

them into major sub-groups, finding their relative importance, understanding their 

interaction that can predict the underlying factors of accident severities. To achieve 

these, representing knowledge properly and making decisions based on the data are very 

important. Hence, several data mining methods have been employed in this research 

along with general statistical tables and graphs. This chapter provides a brief but self-

containing description of these methods along with their applicability. The chapter also 

elaborates the data collection and data preparation processes for this research. 

 

 

3.2 Methods and Work Flow of the Study 

The analytical part of this thesis can be separated broadly into two phases – 

understanding present road safety status of the country, and applying data mining to 

come up with some novel, unsuspected, and reasonable facts from road traffic accident 

data. The first phase comprises with general statistical analysis i.e. generating tables and 

graphs through SQL at MS Access using ARI’s accident database. It also outlined the 

present analytical practice of RTA data in Bangladesh. The second phase is the 

respiratory part of this research.  Three data mining methods have been applied for this 

phase. At first, hierarchical clustering methodology was employed to form natural data 

groups and to identify hazardous clusters; then random forest was applied to identify, 

rank, and thus select a subset of variables from a large variable space, to be considered 

for this study. Finally, classification and regression trees have been allowed to 

investigate the accident severity mechanism of the hazardous clusters. Following 

sections describe the methods sequentially.  
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3.3 Hierarchical Clustering (HC) 

Selection of a clustering methodology depends on data type. The data used in cluster 

analysis can be categorical/nominal (e.g. name/category i.e. data cannot be added, 

subtracted, multiplied or divided), ratio (data can be added, subtracted, multiplied or 

divided), interval (difference meaningful but cannot be multiplied or divided), and 

ordinal (e.g. good, very good, excellent). However, having a mixture of different types 

of variable makes the analysis more complicated. This is because in cluster analysis we 

need to have some way of measuring the distance between observations, and the type of 

measure used will depend on what type of data we have. Accident data is usually mixed 

type i.e. a single accident event is recorded with different types (categorical, ratio, 

interval and ordinal) of variable, and essentially in this research, the mixed attribute 

type is being considered [http://cran.r-project.org/web/packages/cluster/cluster.pdf]. 

 
There are a number of different methods that can be used to carry out a cluster analysis. 

The main reason for having many clustering methods is the fact that the notion of 

‘cluster’ is not precisely defined [Estivill-Castro, 2000]. Consequently many clustering 

methods have been developed, each of which uses a different induction principle. Farley 

and Raftery (1998) suggest dividing the clustering methods into two main groups: 

hierarchical and partitioning (non-hierarchical e.g. k-means, expectation maximization) 

methods. Han and Kamber (2001) suggest categorizing the methods into additional 

three main categories: density-based methods, model-based clustering and grid-based 

methods. An alternative categorization based on the induction principle of the various 

clustering methods is presented in [Estivill-Castro, 2000]. Each clustering method has 

its own advantages and disadvantages. However, for mixed attribute type, HC is 

preferred in researcher community.  

 
HC constructs the clusters by recursively partitioning the instances in either a top-down 

or bottom-up fashion. These methods can be subdivided as follows [Internet Links]: 

 
Agglomerative hierarchical clustering: each object initially represents a cluster 

of its own i.e. subjects start in their own separate cluster. The two ‘closest’ (most 

similar) clusters are then combined and this is done repeatedly until all subjects 

are in one cluster. Finally, the desired cluster structure is derived. 
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Divisive hierarchical clustering: all objects initially belong to one cluster. Then 

the cluster is divided into sub-clusters, which are successively divided into their 

own sub-clusters (i.e. the previous strategy is applied but in reverse order). This 

process continues until the desired cluster structure is obtained. 

 
However, agglomerative methods are used more often than divisive methods, so this 

dissertation will concentrate on the former rather than the latter. The result of the 

hierarchical methods is a dendrogram, representing the nested grouping of objects and 

similarity levels at which groupings change. A clustering of the data objects is obtained 

by cutting the dendrogram at the desired similarity level. 

 
Merging or division of clusters is performed according to some similarity measure, 

chosen so as to optimize some criterion (such as a sum of squares).  HC methods could 

be further divided according to the manner that the similarity measure is calculated [Jain 

et al., 1999]. These methods are elucidated in the following [Internet Links]: 

 
Single-link clustering (also called the connectedness, the minimum method or 

the nearest neighbor method): in this method the distance between two clusters 

is defined to be the distance between the two closest members, or neighbors 

(Figure 3.1). This method is relatively simple but is often criticized because it 

does not take account of cluster structure and can result in a problem called 

chaining whereby clusters end up being long and straggly. However, it is better 

than the other methods when the natural clusters are not spherical or elliptical in 

shape. Interested readers are requested to consult Sneath and Sokal (1973).  

 

 

 

 

 

 

 

 

 

Figure 3.1. Single-link clustering. 
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Complete-link clustering (also called the diameter, the maximum method or the 

furthest neighbor method): in this case the distance between two clusters is 

defined to be the maximum distance between members — i.e. the distance 

between the two subjects that are furthest apart (Figure 3.2). This method tends 

to produce compact clusters of similar size but, as for the nearest neighbor 

method, does not take account of cluster structure. It is also quite sensitive to 

outliers. Interested readers are requested to consult King (1967). 

 

 

 

 

 

 

 

 

 

Figure 3.2. Complete-link clustering. 
 

Average-link clustering (also called minimum variance method, sometimes 

referred to as UPGMA): in this method the distance between two clusters is 

calculated as the average distance between all pairs of subjects in the two 

clusters (Figure 3.3). This is considered to be a fairly robust method. Interested 

readers are requested to consult Ward (1963) and Murtagh (1984). 

 

 

 

 

 

 

 

 

 
 

Figure 3.3. Average-link clustering. 
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Centroid method: here the centroid (mean value for each variable) of each 

cluster is calculated and the distance between centroids is used. Clusters whose 

centroids are closest together are merged. This method is also fairly robust. 

                  
Ward’s method: in this method all possible pairs of clusters are combined and 

the sum of the squared distances within each cluster is calculated. This is then 

summed over all clusters. The combination that gives the lowest sum of squares 

is chosen. This method tends to produce clusters of approximately equal size, 

which is not always desirable. It is also quite sensitive to outliers. Despite this, it 

is one of the most popular methods. 

 
All the above mentioned methods have their own advantages and disadvantages. 

Interested readers are requested to consult Guha et al. (1998). Considering all the 

options, the complete linkage method has been adopted for this thesis. 

 
The complete-link hierarchical clustering method is exemplified for clear understanding 

in the following [Source: http://www.econ.upf.edu/~michael/stanford/maeb7.pdf]: 

 
Let us consider Table 3.1 as the desired dissimilarity (distance) matrix.  

 
Table 3.1. Dissimilarity matrix 

 

 

 

 

 

 

 

 

 

 
The first step in the hierarchical clustering process is to look for the pair of samples that 

are the most similar and closest in the sense of having the lowest dissimilarity – this is 

the pair B and F (Table 3.1), with dissimilarity equal to 0.2000. These two samples are 

then joined at a level of 0.2000 in the first step of the dendrogram, or clustering tree (see 
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first part of Figure 3.4, and the vertical scale of 0 to 1 which calibrates the level of 

clustering). The point at which they are joined is called a node. 

 
 

 

 

 

 

 

 

Figure 3.4. First step in dendrogram. 
 

 
This step has been repeated, but the problem remains how to calculate the dissimilarity 

between the merged pair (B,F), and the other samples. This decision is dependent on the 

type of hierarchical clustering intended to perform, and there are several choices. For 

the moment, one of the most popular ones is chosen, called the maximum or complete 

linkage method - the dissimilarity between the merged pair and the others will be the 

maximum of the pair of dissimilarities in each case. For example, the dissimilarity 

between B and A is 0.5000, while the dissimilarity between F and A is 0.6250. Hence 

the maximum of the two, 0.6250, is chosen to quantify the dissimilarity between the 

merged pair (B,F) and A. Thus a new dissimilarity matrix is attained (Table 3.2). 

 
Table 3.2. Dissimilarity matrix after first merging 
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The process is now repeated: finding the smallest dissimilarity in Table 3.2, which is 

0.2500 for samples A and E, and then cluster these at a level of 0.25, as shown in the 

second part of Figure 3.4. Then recomputed the dissimilarities between the merged pair 

(A,E) and the rest to obtain Table 3.3. For example, the dissimilarity between the 

merged pairs (A,E) and (B,F), is the maximum of 0.6250 (A to (B,F)) and 0.7778 (E to 

(B,F)). 

Table 3.3. Dissimilarity matrix after second merging 
 

 

 

 

 

 

 
In the next step the lowest dissimilarity in Table 3.3 is 0.3333, for C and G – these are 

merged, as shown in the first diagram of Figure 3.5, to obtain Table 3.4. Now the 

smallest dissimilarity is 0.4286, between the pairs, (A,E) and (B,G), and they are shown 

merged in the second diagram of Figure 3.5. Table 3.5 shows the last two dissimilarity 

matrices in this process, and Figure 3.6 the final two steps of the construction of the 

dendrogram, also called a binary tree because at each step two objects (or clusters of 

objects) are merged. As 7 objects are to be clustered in this case, there are 6 steps in the 

sequential process (i.e. one less) to arrive at the final tree where all objects are in a 

single cluster. The botanists may consider this is as an upside-down tree.  

 

 

 

 

 

 

 

 
Figure 3.5. Second step in dendrogram. 



27 

 

Table 3.4. Dissimilarity matrix after third merging 
 

 

 

 

 

  
Table 3.5. Dissimilarity matrices in last step 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Final step in dendrogram. 

 
The dendrogram on the right side of Figure 3.6 is the final result of the cluster analysis. 

In the clustering of n objects, there are n–1 nodes (i.e. 6 nodes in this case). 

 
This study uses cluster package, daisy function, gower metric, hclust function, and 

cutree function of the R program to form the dissimilarity matrix, to perform the 

hierarchical clustering, to construct the dendrogram and to cut the tree to an appropriate 

size.  

 



28 

 

3.4 Random Forest (RF) 

Random forest (RF) is one of the new methods in ensemble learning that can perform 

classification and regression as well as numerically rank the importance of the 

predictors in the model. Currently, RF is considered as one of the latest and most 

efficient methods in evaluating and ranking variable importance [Harb et al., 2009]. It 

has demonstrated high capability in handling multicolinearity issue of large feature 

spaces by using two well-known methods in ensemble learning that are applied in 

classification trees – boosting [Shapire et al., 1998] and bagging [Breiman, 1996] 

coupled with the idea of random variable selection. In case of boosting, the successive 

trees associate extra weight to points misclassified by earlier predictors. Finally, a 

weighted vote is taken for prediction. Whereas in bagging the earlier trees do not 

influence the successive trees and each is independently constructed based on a 

bootstrap sample (bootstrapping constructs a number of re-samples of the original 

dataset, each equal to the size of the original dataset, where each re-sample is produced 

by random sampling with replacement from the original dataset) of the dataset. Lastly, 

prediction is performed by conducting a simple majority voting [Liaw and Wiener, 

2002]. RF adds an additional layer of randomness to bagging. To elaborate more, RF 

generates a given number of CART trees with a different bootstrap sampling for each 

tree. However, it differs slightly in the process of growing the tree through splitting. 

Instead of finding the best splitter at each node from all the available variables, it 

calculates the best splitter from a subset of variables randomly chosen from complete 

variables space [Hossain, 2011]. The study employed 'random forest' package of R 

program to implement random forest.  

 
The major steps of the RF algorithm are [Hossain, 2011]:  

 
(i) Let L be the complete dataset with M predictors and N records and B the total 

number of CART trees in the RF. Let Lb be the b-th bootstrap sample created by 

randomly selected n samples with replacement from L. Rest of the data, i.e., L-Lb, 

are called the out of bag data (OOB) of b-th bootstrap sample. 

 
(ii) Next, for the b-th tree Tb, instead of growing a CART tree with M predictors, m 

predictors are randomly selected from M predictor space (M > m) at every node and 
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the best splitter among m capable of producing two maximum pure nodes is used to 

split the node at each level. 

 
(iii) Predicting from new data: run down the new data through each and every (here 

B number of trees) tree and the class of the new data is the class of the leaf of each 

tree where it ended up. The final class of the data is calculated by aggregating the 

predictions of the B trees. In case of classification trees, it is achieved by majority 

voting. 

 
(iv) Estimating OOB error rate: at each and every bootstrap iteration the L-Lb 

datasets are used to calculate the misclassification rate rb of tree Tb (this 

misclassification rate rb is used for calculating the variable importance as well). 

This is achieved by running down the L-Lb dataset into Tb grown in step (ii). The 

class of each of the data points are decided based on majority voting (can be 

weighted). This majority voting is required only for estimating the OOB error rate 

(not for variable importance). In another way it can be said that lastly the rb of all 

the B trees are aggregated to calculate the OOB error rate.  

 
(v) Variable importance: the idea of variable importance in RF differs from 

conventional statistical approaches. Here, it is measured by permuting the values of 

each variable (one variable at a time) and then calculating the new error rate. The 

permuted variable with the highest error rate is considered as the most important 

variable as any error in measuring its value has the highest impact on the 

classification performance of RF. Thus, the values of the j-th predictor of M 

predictors in L-Lb are permuted and the new dataset is used to calculate the 

misclassification rate r j
b. Here, |rb – r j

b| is the variable importance Vj of the j-th 

variable in the b-th tree. The process is repeated for B trees and the final variable 

importance is calculated by averaging the Vj of each variable (j = 1 to M). 

 
The study employed 'randomForest' package of R program [Dalgaard, 2008] to 

implement random forest. Interested readers are requested to consult Breiman (2001) to 

acquire in-depth knowledge on random forest. 
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3.5 Classification and Regression Tree (CART) 

Classification and Regression Tree (CART) is a method of generating decision trees 

developed by Breiman et al. (1984) that can be applied for knowledge discovery and 

classifying new data. In case of problem domains with large feature space, it may not be 

wise to opt for a global single predictive linear or polynomial regression model for the 

entire data space. On the contrary, CART is nonparametric by nature and partitions the 

data space into subdivisions in a recursive manner and brings it down to small 

manageable chunks containing data of only one dominant class. Its tree type structure is 

specially helpful to gain insight about the problem domain and facilitates identifying the 

most important predictors, too. The methodology has three major activities. First, it 

grows a decision tree of maximum depth in such a way that each end node, often 

referred as leaf, contains data of a pure class. The second step prunes the tree to an 

appropriate size and obtains a sequence of nested sub-trees. Lastly, the best 

classification tree is chosen and the model is ready for classifying new data [Hossain, 

2011]. Although there are many algorithms available for the job, this research will 

explain Gini splitting rule to split the nodes and cross validation to prune the trees as the 

software will be used in this study uses these methods (rpart package of R program). 

 
Let the learning dataset have M number of predictors xi, where i = 1 to M. Let tp be a 

parent node and tl, tr the left and the right child nodes after splitting. In CART, the 

splitting rule aims to separate the data into two chunks with maximum homogeneity. 

The algorithm ascertains the splitting value xi
R in such a way that for all splitting values 

of all the variables, xi
R ensures maximum homogeneity of the child nodes. This is 

calculated by defining an impurity function I(t). The idea accents that xi
R will maximize 

the difference between the impurity of the parent node and the child nodes as presented 

in Equation 3.1 [Hossain, 2011]:   

 
           arg max [△I(t) = I(tp) – Pl*I(tl) – Pr*I(tr)] (3.1) 

 

where Pl and Pr are the proportions of data in left and right nodes. Several algorithms 

are available for defining the impurity functions that can satisfy Equation 3.1 to find the 

appropriate value of xi
R. 
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However, it has been ascertained that the final tree is insensitive to the algorithm 

selected. This study adopts Gini index based splitting algorithm for node splitting. If the 

outcome variable has K number of categories then the Gini index will vary between zero 

and (1-1/K). The minimum value is observed when a node is pure, i.e., data of one class 

only and the maximum value is yielded when the outcome classes are equally 

distributed in the node. Gini index at any node t can be defined as [Hossain, 2011]: 

 
 

                                                                                                                                    

 

where j and l are the categories of the outcome variable and p(j|t) is the proportion of 

outcome class j in node t. Now, the change in impurity can be calculated by plugging 

Equation 3.2 into Equation 3.1. The change in impurity can be maximized by 

minimizing [Pl*I(tl) + Pr*I(tr)]. Using this splitting algorithm, tree is grown up to the 

maximum depth through recursive splitting until every node contains a pure class. 

Subsequently, the tree is pruned through a trade off between the complexity of the tree 

and the misclassification error. It is achieved by minimizing a compound function called 

cost-complexity (cp) function as shown in Equation 3.3. 

 
         min Rα(T) = R(T) + α(T') (3.3) 

 
 
where R(T) is the misclassification error of tree T; T' is the total sum of terminal nodes 

in the tree T and α(T') is the complexity measure. The cross-validation method 

calculates the value of α by repeatedly taking a part of the data as learning sample to 

build the tree and using the other part to test the classification accuracy [Hossain, 2011]. 

 
The value of α can be calculated in many ways but the final tree is insensitive to the 

algorithm selected. Another method is explained in the following for easy 

understanding. Let us assume that the complexity parameter’s initial value is zero. Now 

for every tree (including the first, containing only the root node), compute the value for 

the function defined as the costs for the tree plus the complexity parameter times the 

tree size. Increase the complexity parameter continuously until the value of the function 

for the largest tree exceeds the value of the function for a smaller-sized tree to be the 

new largest tree, continue increasing the complexity parameter continuously until the 

(3.2) 
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value of the function for the largest tree exceeds the value of the function for a smaller-

sized tree, and continue the process until the root node is the largest tree. Those who are 

familiar with numerical analysis will recognize the use of a penalty function in this 

algorithm. The function is a linear combination of the costs, which generally decrease 

with tree size, and tree size, which increases linearly. As the complexity parameter is 

increased, larger trees are penalized for their complexity more and more, until a discrete 

threshold is reached at which a smaller-sized tree’s higher cost is overweighed by the 

largest tree’s higher complexity [Hill et al., 2006].  

 
The sequence of largest trees obtained by this algorithm has a number of interesting 

properties. They are nested, because successively pruned trees contain all the nodes of 

the next smaller tree in the sequence. Initially many nodes are often pruned going from 

one tree to the next smaller tree in the sequence, but fewer nodes tend to be pruned as 

the root node is approached. The sequence of the largest trees is optimally pruned, 

because for every size of the tree in the sequence, there is no other tree of the same size 

with lower costs. Proofs and/or explanations of these properties can be found in 

Breiman et al. (1984). 

 
Apart from visualizing the problem domain in a graphical form, the final tree can be 

used to make inference for new data, too. Every data point can be run down the tree 

using the splitting criteria and the class of the data will be the dominating class of the 

node where it ends up. This study uses rpart package of the R program [Dalgaard, 2008] 

to conduct the activities related to CART. Interested readers are requested to consult 

Soman et al. (2006) for further details. 

 

 

3.6 Summary 

The following figure (Figure 3.7) summarizes sequentially the work flow and 

methodical steps of this thesis. 
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Figure 3.7. Work flow of the study. 

Statistical analysis through SQL following present analytical practices to 
create the platform for comparison between statistics and data mining

Objective 1: To form natural data groups and identify the hazardous 
clusters through hierarchical clustering (HC)

Objective 2: To identify high impact variables through random forest 
(RF)

Objective   3:  To carry out an in-depth analysis on the hazardous clusters 
with the identified high impact variables through  classification and 

regression trees (CART) 

To investigate the feasibility and utility of data mining 

Chapter 4

Chapter 5

Chapter 6
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CHAPTER 4 

ROAD SAFETY IN BANGLADESH AT A GLANCE 
 

 

4.1 Introduction 

Although the official road accident data of Bangladesh indicated the meliorating 

scenario of this sector, the actual impression is just the opposite. Road accident 

incidences have made an enduring place in print and electronic media with other 

headline creating news. WHO (2009) estimates the actual fatalities from road crashes 

could well be 20,000 each year taking consideration of underreporting and definitional 

inconsistencies while in the police reported statistics it is around 3,000 each year. In 

economic terms, road crashes in Bangladesh are costing the community nearly 2 percent 

of GDP.  

 
In Bangladesh underreporting of road accidents remains a huge problem in the country 

and the situation is even worse with regard to non-fatal injuries. Furthermore, improper 

transcription and recording of accident report forms (ARFs), lack of training and other 

demand at the accident scene and posterior induce internal inaccuracy in accident 

database. Moreover, the present ARF is inadequate to provide detail, in-depth and real 

scenario of crashes. Therefore, it becomes difficult to quantify the actual magnitude, 

trend, characteristics and identify the factors responsible through general statistical 

tools. 

 
However, in this chapter an attempt has been made to depict magnitude, trends, and 

characteristics of prevailing road safety situation through the existing general statistical 

analytical practices (viz. cross tabulations, graphs etc.) in Bangladesh. Additionally, the 

accident database was analyzed dividing it into four major parts viz. pedestrian accident 

database, double vehicle accident database, single vehicle accident database and multi 

vehicle accident database for ease in comparison and interpretation of results with data 

mining outcomes as outlined in Chapter 3. The basic framework for road accident 

database is also explicated in brief along with its constraints for better understanding of 

data limitations.  
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4.2 Road Accident Database System in Bangladesh 

In Bangladesh police is responsible for road accident data collection and storage as they 

are the most widespread organization and able to reach remote parts of the country. 

Before 1996, there was no specific format for accident data collection. At that time, 

information had been collected by police stations, locally known as thanas. The 

information were then accumulated in the form of aggregate reports and passed on to 

districts and metropolitan police offices on a monthly basis. Finally the data were 

assembled in the police headquarters (HQ) for official road accident statistics.  The 

statistics were extremely limited in scope to be used in research or engineering 

purposes.  

 
Bangladesh Police, in collaboration with Institutional Development Component (IDC), 

introduced a new ARF which was experimentally inaugurated into the northern division 

of Dhaka Metropolitan Police (DMP) area in June 1995. IDC of the Second Road 

Rehabilitation and Maintenance Project (RRMP2) was funded by Department for 

International Development (DFID) of British Government. By the end of 1996 all the 

police stations of DMP were brought under the network. The new scheme resulted in 

substantial betterment in accident information system of the country. The whole system 

was computerized through the application of Microcomputer Accident Analysis 

Package (MAAP) developed by the Transport Research Laboratory (TRL) of the United 

Kingdom (UK) specifically for storage and analysis of road accident data. This 

reporting system has been in use throughout the country since 1997 and it has become a 

mandatory responsibility [Regulation 254(b)] of police from September 1999.  

 
For any type of accident, First Information Report (FIR) is filed by a sub-inspector of 

police. In case of road traffic accident this officer needs to complete an ARF 

additionally after visiting the accident spot and clarifying the information. The ARF is 

then dispatched to the respective Accident Data Units (ADU) where the information of 

ARF and location of the accident is incorporated in MAAP. Ten regional ADUs were 

established during early 1998. These units are responsible for processing and analysis of 

road accident data in their jurisdictions. Recently two more ADUs have been 

established but they are yet to become functional (Table 4.1).    
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Table 4.1. Regional ADUs and their jurisdictions 

 
Location of ADUs Zonal Jurisdiction 

DMP Dhaka Metropolitan Area 

Dhaka Range Dhaka Division (Except DMP Area) 

CMP Chittagong Metropolitan Area 

Chittagong Range Chittagong Division (Except CMP Area) 

RMP Rajshahi Metropolitan Area 

Rajshahi Range Rajshahi Division (Except RMP Area) 

KMP Khulna Metropolitan Area 

Khulna Range Khulna Division (Except KMP Area) 

Sylhet Range Sylhet Division  

Barisal Range Barisal Division  

SMP Yet to become functional 

BMP Yet to become functional 

 

To assemble the national accident database and to analyze the data an additional ADU 

was established at the police HQ. Data are collected from the regional ADUs in soft 

(MAAP) format for preservation and to use as a source of intelligence.  

 
The Accident Research Institute (ARI) of Bangladesh University of Engineering and 

Technology (BUET) essentially uses the MAAP database for research purposes. This 

database was transferred to ARI with institutional collaboration of the Road Safety Cell 

(RSC) of Bangladesh Road Transport Authority (BRTA) and the police department. 

Current road safety research and investigation works have been based on this database. 

However, to strengthen the database information, ARI collects the hard copies (ARFs) 

and soft copies (MAAP) from ADUs, add Road User Movement (RUM) codes to 

facilitate data analysis and modify, validate and fill up the missing information into 

MAAP as extracted from corrected ARFs. Bengali format of the ARF (currently in use), 

its English format, and the instruction guide for filling up the ARF is enclosed in 

Appendix A, Appendix B, and Appendix C sequentially for clear understanding of the 

present road accident database system in Bangladesh.  
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4.3 Road Safety Status and Analytical Practices in Bangladesh 

In this section of the thesis an attempt has been made to present the road safety status of 

the country during 1998-2010 through general statistical practices. These analytical 

practices include generating tables, producing graphs, etc. and it is to be noted that these 

crude techniques have been the only analytical basis for road traffic accident analysis in 

the country so far. This study is concerned about how accident severities are related to 

road and roadway environment, and operating conditions. Therefore, predictors related 

to these issues have been analyzed against years through SQL to represent the 

magnitude, trends, and characteristics of the accidents. The outcomes are presented in 

the following sections according to the ARF’s variables sequence. However, the source 

of accident data and how it is incorporated in this study is outlined in Chapter 5. 

 
Additionally, the accident database have been analyzed dividing it into four major parts 

viz. pedestrian accident database, double vehicle accident database, single vehicle 

accident database and multi vehicle accident database for ease in comparison and 

interpretation of results and the generated tables are incorporated in Appendix D to 

Appendix G consecutively.  

 

4.3.1 Year-wise accident severities 

Accident severity analysis (Tables 4.2, 4.3, 4.4 and 4.5) revealed an interesting fact 

about the accident database. For all four cases (pedestrian accident, double vehicle 

accident, single vehicle accident and multi vehicle accident) fatal accident percentage is 

found to be the highest (80.39%, 54.03%, 67.55% and 41.26% chronologically). It is 

supposed to be in the reverse order i.e.  motor collision/property damage only (PDOs) 

accidents should have been of the highest percentages. Except multi vehicle accidents, 

all other accidents are decreasing in recent years according to the database, which is 

quite farfetched. Thus it becomes clear that accidents with hefty consequences and a 

certain percentage of fatal accidents are reported and accordingly recorded in the 

accident database. Furthermore, it is to be noted that pedestrian accidents especially 

pedestrian fatal accidents are of great concerns for the country. However, these 

statistical tables failed to provide any further information regarding these accident 

events. 
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Table 4.2. Year-wise pedestrian accident severities 

 

Year Accident Severity Total 
F G S M 

2010 835 116 10 NA 961 
2009 1044 174 21 NA 1239 
2008 1490 257 48 NA 1795 
2007 1849 288 49 NA 2186 
2006 1208 193 28 NA 1429 
2005 981 170 31 NA 1182 
2004 1375 250 50 NA 1675 
2003 1334 274 44 NA 1652 
2002 1527 362 38 NA 1927 
2001 1087 240 28 NA 1355 
2000 1400 395 49 NA 1844 
1999 1386 385 75 NA 1846 
1998 1160 454 39 NA 1653 
Total 16676 3558 510 NA 20744 

 
Note: F=Fatal accident, G=Grievous accident, S=Simple injury accident, M=Motor 

collision/property damage only (PDO) accident, NA=Not applicable. 

 
Table 4.3. Year-wise double vehicle accident severities 

 

Year Accident Severity Total F G S M 
2010 493 147 27 44 711 
2009 626 188 33 88 935 
2008 806 299 70 111 1286 
2007 726 296 86 140 1248 
2006 569 200 48 98 915 
2005 463 210 41 96 810 
2004 622 297 109 135 1163 
2003 707 374 100 135 1316 
2002 684 397 111 201 1393 
2001 488 280 69 93 930 
2000 712 501 105 158 1476 
1999 656 457 174 170 1457 
1998 552 536 111 159 1358 
Total 8104 4182 1084 1628 14998 

 
Note: F=Fatal accident, G=Grievous accident, S=Simple injury accident, M=Motor 

collision/property damage only (PDO) accident. 
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Table 4.4. Year-wise single vehicle accident severities 

 

Year Accident Severity Total 
F G S M 

2010 155 29 7 11 202 
2009 225 42 8 9 284 
2008 306 62 22 15 405 
2007 313 91 37 25 466 
2006 243 58 22 16 339 
2005 246 56 20 13 335 
2004 287 67 45 14 413 
2003 373 114 67 19 573 
2002 387 145 50 33 615 
2001 315 76 27 17 435 
2000 398 127 52 47 624 
1999 388 133 52 45 618 
1998 277 126 40 41 484 
Total 3913 1126 449 305 5793 

 
Note: F=Fatal accident, G=Grievous accident, S=Simple injury accident, M=Motor 

collision/property damage only (PDO) accident. 

 
Table 4.5. Year-wise multi vehicle accident severities 

 

Year Accident Severity Total F G S M 
2010 10 2 3 2 17 
2009 9 4 3 3 19 
2008 5 4 0 1 10 
2007 5 4 0 1 10 
2006 3 1 1 0 5 
2005 4 4 0 0 8 
2004 17 4 3 1 25 
2003 6 4 0 4 14 
2002 1 0 1 4 6 
2001 0 5 1 3 9 
2000 7 6 3 2 18 
1999 7 11 4 5 27 
1998 11 21 3 3 38 
Total 85 70 22 29 206 

 
Note: F=Fatal accident, G=Grievous accident, S=Simple injury accident, M=Motor 

collision/property damage only (PDO) accident. 
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4.3.2 Year-wise accidents by day of week, month of year and time of occurrence 

Analyses of accidents with respect to different temporal variables have been presented 

in Figures 4.1, 4.2 and 4.3. No significant trend of accidents has been identified with 

respect to day of week and month of year. However, it is perceived that when number of 

samples comes down the fluctuation increases. On the other hand, accident analysis 

with respect to time of occurrence has identified 10 am to 1 pm and 3 pm to 6 pm have 

been the most crucial hours of accident events for pedestrian accidents, double vehicle 

accidents and single vehicle accidents; yet multi vehicle accidents did not provide any 

noteworthy scenario.  

 
 
4.3.3 Year-wise accidents by junction type 

Mid-block sections of roads are more accident prone than junctions as depicted by 

Figure 4.4 and this is valid for all four categories of accidents i.e. pedestrian accidents, 

double vehicle accidents, single vehicle accidents and multi vehicle accidents. More 

than 62 percent of these accidents have taken place at not junction sections. Other 

junction type has been identified as the second most susceptible segments for accidents. 

But it might be due to the fact that the concerned personnel were unable to fill the 

information correctly. Tee junctions have been prioritized as the third junction in this 

sequence and the recent trend is on rising side for this type.  

 
 
4.3.4 Year-wise accidents by traffic control system and collision type 

More than 72 percent of accidents have been clustered in places where there is no traffic 

control system available followed by other type and police controlled traffic control 

system (Figure 4.5). Even police controlled along with traffic light type traffic control 

system is also found quite ineffective in reducing accidents. On the other hand, collision 

type analysis identified different types of collision along with hit pedestrian accidents 

(90.5%) are contributing in pedestrian fatalities (Figure 4.6). For double vehicle 

accidents, rear end and head on; for single vehicle accidents overturn, other type and hit 

object off road; for multi vehicle accidents rear end and side swipe types of collisions 

have been found as dominant types (Figure 4.6).  
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    Note: 1= Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 7=Sunday 

Figure 4.1. Year-wise accidents vs day of week. 
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         Note: 1=January, 2=February, 3=March, 4=April, 5=May, 6=June, 7=July, 8=August, 9=September, 10=October, 11=November, 12=December 

Figure 4.2. Year-wise accidents vs month of year. 

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12

Y
ea

rw
ise

 D
ou

bl
e 

V
eh

ic
le

 A
cc

id
en

ts

Month of Year

Yearwise Double Vehicle Accidents Vs Month of Year

2010

2009

2008

2006

2005

2004

2003

2002

2001

2000

1999

1998

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12

Y
ea

rw
ise

 P
ed

es
tri

an
 A

cc
id

en
ts

Month of Year

Yearwise Pedestrian Accidents Vs Month of Year

2010

2009

2008

2006

2005

2004

2003

2002

2001

2000

1999

1998

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12

Y
ea

rw
ise

 S
in

gl
e 

V
eh

ic
le

 A
cc

id
en

ts

Month of Year

Yearwise Single Vehicle Accidents Vs Month of Year

2010

2009

2008

2006

2005

2004

2003

2002

2001

2000

1999

1998 -1

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

Y
ea

rw
ise

 M
ul

ti 
V

eh
ic

le
 A

cc
id

en
ts

Month of Year

Yearwise Multi Vehicle Accidents Vs Month of Year

2010

2009

2008

2006

2005

2004

2003

2002

2001

2000

1999

1998



43 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  Note: 25=?/Blank data field 

Figure 4.3. Year-wise accidents vs time of occurrence. 
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               Note: 1=Not at junction, 2=Cross junction, 3=Tee junction, 4=Staggered junction, 5=Roundabout, 6=Railway/Level crossing, 7=Other, 8=?/Blank data field 

Figure 4.4. Year-wise accidents vs junction type. 
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Note: 1=No control, 2=Centerline marking, 3=Pedestrian crossing, 4=Police controlled, 5=Traffic lights, 6=Police+Traffic lights, 7=Stop/Give way sign, 8=Other, 9=?/Blank 

Figure 4.5. Year-wise accidents vs traffic control system. 
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             Note: 1=Head on, 2=Rear end, 3=Right angle, 4=Side swipe, 5=Overturn, 6=Hit object in road, 7=Hit object off road, 8=Hit parked vehicle, 9=Hit pedestrian, 
                       10=Hit animal, 11=Other, 12=?/Blank data field 

Figure 4.6. Year-wise accidents vs collision type. 
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4.3.5 Accidents by traffic movement and presence of road dividers 

Database revealed that more than 80 percent of road traffic accidents are occurring in 

two-way (movement) roads (Figure 4.7); and nearly 75 percent of these accidents have 

taken place in roads without dividers (Figure 4.8). Year-wise detail distribution of these 

accidents (pedestrian accidents, double vehicle accidents, single vehicle accidents, and 

multi vehicle accidents) is presented in Appendix D to Appendix G in Tables 7 and 8. 

 
 
4.3.6 Accidents by weather and light condition 

Fair weather and daylight have been identified as stimulating factors for all types of 

accidents (Figures 4.9 and 4.10).  General statistics have been effective here only to find 

out the percentages of crash occurrence in different meteorological conditions but failed 

to give an insight into the actual scenarios.  This highlights the scope limitations in 

normal charting techniques and graph generations which is able to elicit the general 

trends only.   

 
 
4.3.7 Accidents by road geometry, and surface condition, type and quality 

Analyses of pedestrian accidents, double vehicle accidents, and multi vehicle accidents 

unveiled that more than 90 percent of these accidents are affiliated with straight and flat 

road geometry, and dry, sealed and good road surface conditions (Figures 4.11, 4.12, 

4.13 and 4.14). For single vehicle accidents the same is true for more than 82 percent 

cases (Figures 4.11–4.14). Year-wise detail trends of these predictors for accident 

occurrence are encompassed in Appendix D to Appendix G in Tables 11, 12, 13 and 14. 

 
 
4.3.8 Accidents by road class, road feature, and location  

In case of pedestrian accidents, national highways (38.54%) and city roads (25.35%) 

have been spotted with highest percentages of accidents (Figure 4.15). In addition, these 

accidents are associated with normal road features (96.17% cases, Figure 4.16) and 

distributed quite similarly (Figure 4.17) in rural (nearly 60%, decreasing trend) and 

urban areas (nearly 40%, increasing trend). Detail trends are incorporated in Appendix 

D in Tables 15, 16 and 17. 
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              Note: 1=One-way movement, 2=Two-way movement, 3=?/Blank data field 

Figure 4.7. Year-wise accidents vs traffic movement. 
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      Note: 1=Yes, 2=No, 3=?/Blank data field 

Figure 4.8. Year-wise accidents vs presence of divider in roads. 
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            Note: 1=Fair, 2=Rain, 3=Wind, 4=Fog, 5=?/Blank data field 

Figure 4.9. Year-wise accidents vs weather condition. 
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             Note: 1=Daylight, 2=Dawn/Dusk, 3=Night (lit), 4=Night (unlit), 5=?/Blank data field 

Figure 4.10. Year-wise accidents vs light condition. 
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        Note: 1=Straight+Flat, 2=Curve only, 3=Slope only, 4=Curve+Slope, 5=Crest, 6=?/Blank data field 

Figure 4.11. Year-wise accidents vs geometric condition of road. 
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        Note: 1=Dry, 2=Wet, 3=Muddy, 4=Flooded, 5=Other, 6=?/Blank data field 

Figure 4.12. Year-wise accidents vs road surface condition. 
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           Note: 1=Sealed, 2=Brick, 3=Earth, 4=?/Blank data field 

Figure 4.13. Year-wise accidents vs road surface type. 
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        Note: 1=Good, 2=Rough, 3=Under repair, 4=?/Blank data field 

Figure 4.14. Year-wise accidents vs surface quality of road. 
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        Note: 1=National highway, 2=Regional highway, 3=Feeder road, 4=Rural road, 5=City road, 6=?/Blank data field 

Figure 4.15. Year-wise accidents vs road class. 
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        Note: 1=None, 2=Bridge, 3=Culvert, 4=Narrowing/Restriction, 5=Speed breakers, 6=?/Blank data field 

Figure 4.16. Year-wise accidents vs road feature. 
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            Note: 1=Urban area, 2=Rural area, 3=?/Blank data field 

Figure 4.17. Year-wise accidents vs location. 
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Double vehicle accidents have also been found huddled in national highways (43.08%) 

and city roads (28.04%). Furthermore, these accidents are affiliated with normal 

roadway features (96.15%) and are distributed quite similarly in rural (57.61%, 

decreasing trend) and urban areas (41.25%, increasing trend). Yearly details are unified 

in Figures 4.15, 4.16 and 4.17 and in Appendix E in Tables 15, 16 and 17. 

 
On the other hand, feeder roads (20.51% accidents) have been identified as vulnerable 

carriageways along with national highways (42.86% accidents) for single vehicle 

accidents (Figure 4.15). Again, it has been underscored that this type of accidents are 

more prone to rural areas (78.34% accidents; Appendix F, Table 17). Multi vehicle 

accidents have followed the same trends (in case of road class and road feature) as 

pedestrian accidents and double vehicle accidents. But they are more prone to urban 

areas (67.96%, Figures 4.15, 4.16, 4.17 and Tables 15, 16 and 17 in Appendix G) than 

rural areas.  

 

From the statistical analyses presented above, a gross idea regarding the current 

analytical techniques of road traffic accidents along with a general status about the 

present state of the problem have been generated. This has served as the platform/basis 

for comparison between statistical outcomes and data mining findings for this thesis.  

 

 

4.4 Constraints in Present Accident Database System 

The current road traffic accident database system of Bangladesh has a number of 

limitations. These drawbacks can be broadly classified into three main categories –

constraints in accident reporting and recording system, weaknesses of the ARF, and 

limitations of MAAP software regarding in-depth analyses. A brief description of these 

issues has been discoursed here for clear understanding of data limitations. 

 
Constraints in accident reporting and recording:  this issue has several spectra, viz. 

underreporting, reported but not accumulated in the database, wrong transcription and 

interpretation, improper recording of ARFs, lack of proper training, etc. 
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Underreporting – it has been perceived that if somebody does not inform police 

regarding a particular accident, it is quite unexpected for the police to take steps 

willfully to report and record an accident event. And this is particularly true for non-

fatal injuries; even sometimes police tries to avoid recording a road traffic accident 

case or provides the counseling service in negotiation or does not know about the 

importance of reporting and recording of an accident event. Therefore, only the fatal 

cases whose consequences cannot be avoided are reported and recorded. However, it 

is not ensured that all the fatal accidents are properly reported even; especially the 

non-fatal injuries of a fatal accident are the most neglected portion in reporting.   

 
Reported but not accumulated in the database – in case of any bad incidence police 

files a First Information Report (FIR); and for road accident cases they need to fill up 

an ARF which is expected to be recorded in MAAP later. A comparison between FIR 

and MAAP shows that even all the FIRs concerning road accidents are not 

accumulated in MAAP (Table 4.6) and may be the lower severities are being ignored 

in most cases. 

 
Table 4.6. Comparison of FIR and MAAP 

 

Year 

No. of  No. of  No. of  Total  
Accidents Fatalities  Injuries Casualties 

FIR MAAP 
Variation  

FIR MAAP FIR MAAP FIR MAAP 
Variation  

(%) (%) 
2011 2667 NA NA 2467 NA 1641 NA 4108 NA NA 
2010 2827 2437 14 2646 2443 1803 1706 4449 4149 7 
2009 3381 2815 17 2958 2703 2686 1746 5644 4449 21 
2008 4426 3800 14 3764 3570 3284 2416 7048 5986 15 
2007 4869 3954 19 3749 3341 3273 2431 7022 5772 18 
2006 3794 3566 6 3193 3250 2409 2412 5602 5662 -1 
2005 3955 3322 16 3187 2960 2755 2570 5942 5530 7 
2004 3917 3566 9 2968 3150 2752 3026 5720 6176 -8 
2003 4749 4114 13 3289 3334 3818 3740 7107 7074 0 
2002 4918 3941 20 3398 3053 3772 3285 7170 6338 12 
2001 4091 2925 29 3109 2388 3127 2565 6236 4953 21 
2000 4357 3970 9 3430 3058 1911 3485 5341 6543 -23 
1999 4916 3948 20 3314 2893 3453 3469 6767 6362 6 
1998 4769 3533 26 3085 2358 3997 3297 7082 5655 20 

       
Notes: NA= Not Available, Variation % = {(FIR-MAAP)×100} ÷ FIR  
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Wrong transcription and interpretation – even in case of recorded accident, erroneous 

information can evolve from improper transcription and interpretation of ARFs. A 

comparison between controlled transcription of ARF at ARI and MAAP data reveals 

that there exits significant differences between the two. Double-entry of same 

information is found quite common [Alam et al., 2006]. 

 
Improper recording of ARF – caused due to lack of time and resources. ARFs are 

filled improperly thereby causing erroneous data. Many variables are not filled at all 

viz. location, mileage of the roadway which creates misperception [Alam et al., 

2006].   

 
Lack of proper training – lack of training of police officers makes it difficult for them 

to properly record an accident in ARF. The form is not plug and play type; without 

proper training it is quite difficult to fill up correctly.  

 
Weaknesses of ARF: the present ARF is not up to date. The information recorded in this 

form can provide only an abstract idea about an accident but cannot able to pin point the 

actual scenario. For example, only 17 reasons of an accident occurrence are provided in 

the form that can be incorporated correctly; but these reasons are not adequate to 

elucidate the actual event. Even these 17 reasons will not provide the micro-level 

information that is required to produce a concrete conclusion. An accident may happen 

due to vehicle defect or may be due to tyre bursting, but the form does not provide the 

place to include what kind of vehicle defect it was or which tyre it was. Again the 

inventory that is in use to identify the accident locations is based on 1998’s status, 

which fails to provide present aspects needed for the analysis. There are a number of 

these types of shortcomings which necessitates making this form restructured.  

 
Limitations of MAAP software: the MAAP5 software that is in use can produce cross 

tabulations with 2 fields of information at best. In some cases a couple of conditions 

may be added. This means it is possible to get  67C2 number of cross tabulations (as ARF 

can lodge 67 fields of information so is MAAP5), but MAAP5 cannot accommodate 

more than 2 variables at a time. Therefore, even if all correct information is 

incorporated in MAAP5, it is not possible to get the best possible outcome.  
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CHAPTER 5 

DATA MINING OF ACCIDENT DATABASE 
 

 

5.1 Introduction 

This chapter starts with the source of accident data and how it was incorporated for data 

mining applications in road traffic accident (RTA) analysis. Then the data mining 

applications are organized broadly into three sections. The first section explains the 

components of HC, which is to form natural data groups and to identify the hazardous 

clusters. The second section i.e. RF identifies the high impact variables and discusses 

the steps of choosing the proper variables for this study. Third section presents the 

CART analysis, results and explanation of the findings. 

 

 

5.2 Data Collection 

The RTA data for the period of 1998-2010 were collected from the Accident Research 

Institute (ARI), BUET. ARI uses Micro-computer Accident Analysis Package five 

(MAAP5) software for accident data storage and analysis purpose. The data format of 

MAAP5 is not compatible with R, which is the primary software for this research. 

Therefore, a conversion was required. M. D. Alam, ex-assistant programmer of ARI 

developed a tool that was able to convert the MAAP5 database to MS Excel. This tool 

was used for the required transformation. However, it is found that the conversion tool 

can not convert the whole database to Excel. Some accident records were found as 

garbage in the converted database and this occurrence was found as random events. Out 

of total 45,891 accident records, 41,741 were transferred properly; i.e. 91 percent data 

were successfully converted, which is adequate for the application of data mining.  
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5.3 Data Preparation 

The Excel database extracted from MAAP5 database needed some further processing to 

be used for data mining. At first, the Excel format was converted to CSV (comma 

delimited) format; so that it can be imported by the R software. Later, it was found that 

the computer that was designated for the data mining operations could not handle this 

huge database. Therefore, it became urgent to reduce the size of this accident database. 

 
Then a two phase approach was adopted. In the first phase, the total database was 

divided into four major divisions. These are pedestrian accident database (all pedestrian 

related accidents were brought under this division), double vehicle accident database, 

single vehicle accident database and multi vehicle accident database. Even after this 

split, the available computers could not process the required dissimilarity (distance) 

matrix of pedestrian accident database for hierarchical clustering.  

 
So in the second phase, the study period was reduced to 2006-2010; ARI’s last 5 years 

modified database. Even after these two differentiations, the four databases (pedestrian 

7,610; double vehicle 5,095; single vehicle 1,696; and multi vehicle 61) were sufficient 

for data mining applications. However, for the general statistical analysis through SQL 

at MS Access (Chapter 4) the whole converted Excel database had been used. 

 
The databases even after so many alterations were not smooth. It was difficult to pick a 

column of same accident variables after the roads and roadway environment and their 

operating condition variable related columns. It was required to modify the database 

manually or to develop a new tool for MAAP5 database conversion. As these two tasks 

were beyond this study’s limit, therefore the research scope was limited to how the 

severities of RTAs are related to roads and roadway environment and their operating 

conditions.  

 
However, the research approach applied in this thesis can be used as a framework for 

any type of data mining studies with high configuration computers for any size of 

databases. 
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5.4 Application of HC 

The accident database was divided into four major parts viz. pedestrian accident 

database, double vehicle accident database, single vehicle accident database and multi 

vehicle accident database for ease in analysis and interpretation of results as outlined in 

data preparation section. HC was applied to each of these four databases separately. The 

cluster package of R program was used for this purpose. To reduce the complexity of 

the study, the algorithm was set in such a way that it evolved four dendrograms for each 

of the databases i.e. in total sixteen dendrograms were developed. These dendrograms 

were extracted in database format to proceed for RF and CART.  

 
However, after formation of these natural data groups; identification of hazardous 

cluster was carried out at this stage. The result of HC is summarized in Table 5.1. Table 

5.1 is self-explanatory. The red highlighted groups are identified as most hazardous 

clusters followed by yellow highlighted groups. The decisions are based on sample size 

and fatal percentage contribution in the groups. Due to low sample size multi vehicle 

accident clusters were discarded for CART (marked by red shades in Table 5.2) but 

included for RF. The final selection of clusters is summarized and highlighted with blue 

sheds in Table 5.2.  
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Table 5.1. Summary of hierarchical clustering 

 

Accident 
Group Cluster # 

Accident Severity # 
Sample % Sample # 

Accident Severity % 
F G S M Total Grand Total F G S M Total 

Pedestrian 

Cluster_1 5749 987 138 NA 6874 

7610 

90 6874 84 14 2 NA 100 
Cluster_2 161 10 6 NA 177 2 177 91 6 3 NA 100 
Cluster_3 184 17 6 NA 207 3 207 89 8 3 NA 100 
Cluster_4 332 14 6 NA 352 5 352 94 4 2 NA 100 

Double          
Vehicle 

Cluster_1 1454 118 79 29 1680 

5095 

33 1680 87 7 5 2 100 
Cluster_2 808 508 74 80 1470 29 1470 55 35 5 5 100 
Cluster_3 832 477 103 367 1779 35 1779 47 27 6 21 100 
Cluster_4 126 27 8 5 166 3 166 76 16 5 3 100 

Single            
Vehicle 

Cluster_1 891 181 59 51 1182 

1696 

70 1182 75 15 5 4 100 
Cluster_2 90 52 11 22 175 10 175 51 30 6 13 100 
Cluster_3 114 34 22 0 170 10 170 67 20 13 0 100 
Cluster_4 147 15 4 3 169 10 169 87 9 2 2 100 

Multi              
Vehicle 

Cluster_1 1 10 4 3 18 

61 

30 18 6 56 22 17 100 
Cluster_2 17 1 2 0 20 33 20 85 5 10 0 100 
Cluster_3 14 1 0 4 19 31 19 74 5 0 21 100 
Cluster_4 0 3 1 0 4 7 4 0 75 25 0 100 

 

          Note: F= Fatal accident, G=Grievous accident, S=Simple injury accident, M=Motor collision/Property damage only (PDO) accident 
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Table 5.2. Cluster selection for CART 

 

Accident 
Group Cluster # 

Accident Severity # Sample 
% 

Sample 
# 

Non-fatal 
Accident 

# 

Non-fatal 
Accident 

% 

Accident Severity % 

F G S M Total Grand Total F G S M Total 

Pedestrian 

Cluster_1 5749 987 138 NA 6874 

7610 

90 6874 1125 16 84 14 2 NA 100 
Cluster_2 161 10 6 NA 177 2 177 16 9 91 6 3 NA 100 
Cluster_3 184 17 6 NA 207 3 207 23 11 89 8 3 NA 100 
Cluster_4 332 14 6 NA 352 5 352 20 6 94 4 2 NA 100 

Double          
Vehicle 

Cluster_1 1454 118 79 29 1680 

5095 

33 1680 226 13 87 7 5 2 100 
Cluster_2 808 508 74 80 1470 29 1470 662 45 55 35 5 5 100 
Cluster_3 832 477 103 367 1779 35 1779 947 53 47 27 6 21 100 
Cluster_4 126 27 8 5 166 3 166 40 24 76 16 5 3 100 

Single            
Vehicle 

Cluster_1 891 181 59 51 1182 

1696 

70 1182 291 25 75 15 5 4 100 
Cluster_2 90 52 11 22 175 10 175 85 49 51 30 6 13 100 
Cluster_3 114 34 22 0 170 10 170 56 33 67 20 13 0 100 
Cluster_4 147 15 4 3 169 10 169 22 13 87 9 2 2 100 

Multi                      
Vehicle 

Cluster_1 1 10 4 3 18 

61 

30 18 17 94 6 56 22 17 100 
Cluster_2 17 1 2 0 20 33 20 3 15 85 5 10 0 100 
Cluster_3 14 1 0 4 19 31 19 5 26 74 5 0 21 100 
Cluster_4 0 3 1 0 4 7 4 4 100 0 75 25 0 100 

 

    Note: F= Fatal accident, G=Grievous accident, S=Simple injury accident, M=Motor collision/Property damage only (PDO) accident 
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5.5 Application of RF 

RF methodology was applied separately on all the hazardous clusters identified through 

HC.  The randomForest package of R was used for this purpose. The intention was to 

identify the high impact variables individually from each of these datasets. The 

variables which topped the lists have been considered as most important predictors i.e. 

high impact variables (Appendix H). However, the predictors (variables) like number of 

vehicles involved, number of driver casualties, number of passenger casualties, and 

number of pedestrian casualties have been left out during summarizing the predictor 

(variable) selection for CART because of the obvious fact of their correlation with 

accident severity. Moreover, this dissertation is concerned with a national database and 

overall accident severity pattern i.e. how accident severities are related to roads and 

roadway environment and operating condition is most important in this study.  

Therefore, the predictors related to these issues have been inspected with greater 

emphasis than temporal variables like time, date, month, and year of accident events in 

CART; although during RF these temporal variables have been considered with the 

same gravity like all other variables.  

 
The predictors have been selected based on their variable importance as outlined in 

Chapter 3. Variable importance is a difference and this difference is measured 

considering modulus sign. In the R program variable importance is called as mean 

decrease accuracy, and is measured without considering the modulus sign. Therefore, 

during predictor selection, this issue was taken into consideration. The selected final 

variables through RF for CART are summarized in Table 5.3 along with their mean 

decrease accuracy. For easy understanding the predictors are highlighted with green 

shades. Moreover, the description of theses predictors is abridged in Table 5.4. 
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Table 5.3. Summary of RF 

 
Accident Group Cluster # High Impact Variables 

Pedestrian 

Cluster_1 RdClassM LightM CollTypeM LocatTypeM DividerM 
Mean Decrease Accuracy 26.9062199 26.83743161 23.72993413 22.5120291 16.58498867 
Cluster_2 LocatTypeM TrafficContrlM RdClassM JuncTypeM NA 
Mean Decrease Accuracy 8.934941283 5.746201222 4.269378045 4.148095324 NA 
Cluster_3 TrafficContrlM Rd_GeoM CollTypeM JuncTypeM NA 
Mean Decrease Accuracy 4.783570879 -2.06444957 -1.739744352 1.733000617 NA 
Cluster_4 JuncTypeM Surf_TypeM RdClassM TrafficContrlM NA 
Mean Decrease Accuracy 9.237595977 -4.32681388 3.237877133 3.188050255 NA 

Double                  
Vehicle 

Cluster_1 Rd_GeoM LightM CollTypeM Surf_TypeM TrafficContrlM 
Mean Decrease Accuracy 10.30768083 6.152270616 6.039192418 5.525508339 4.80883211 
Cluster_4 RdClassM CollTypeM Surf_CondM LocatTypeM Rd_GeoM 
Mean Decrease Accuracy 3.184766888 3.148147297 2.011488866 1.615001565 1.532404265 

Single                     
Vehicle 

Cluster_1 CollTypeM LightM Rd_GeoM TrafficContrlM JuncTypeM 
Mean Decrease Accuracy 8.697937388 6.407632429 6.195833895 4.119314096 3.779245973 
Cluster_3 Surf_TypeM LightM JuncTypeM WeatherM NA 
Mean Decrease Accuracy 4.09891818 3.497018816 3.413011471 2.282952542 NA 
Cluster_4 CollTypeM MovM Surf_CondM NA NA 
Mean Decrease Accuracy 5.53668368 4.982673333 3.452905007 NA NA 

Multi                       
Vehicle 

Cluster_2 WeatherM LocatTypeM Surf_CondM Rd_GeoM NA 
Mean Decrease Accuracy -1.9806105 1.051854514 0.926921057 0.229327544 NA 
Cluster_3 JuncTypeM LightM LocatTypeM Rd_GeoM NA 
Mean Decrease Accuracy -3.304094153 2.992148949 -2.172437226 1.784178541 NA 
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Table 5.4. Description of variables 

 

Variable (Predictor)  Variable Description  
No_VehInv Number of Vehicles Involved 
No_DrvCasu Number of Driver Casualties 
No_PassCasu Number of Passenger Casualties 
No_PedCasu Number of Pedestrian Casualties 
Day Day of Week 
Month Month 
Time_SQL Time of Accident Occurrence 
JuncTypeM Junction Type 
TrafficContrlM Traffic Control Type 
CollTypeM Collision Type 
MovM One-way or Two-way Movement  
DividerM Presence of Divider 
WeatherM Weather Condition 
LightM Light Condition 
Rd_GeoM Road Geometry 
Surf_CondM Surface Condition 
Surf_TypeM Surface Type 
Surf_QualM Surface Quality 
RdClassM Road Class 
RdFeatuM Road Feature 
LocatTypeM Location Type 
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5.6 Application of CART 

Classification and regression trees (CART) partition the entire data space into small 

manageable chunks which facilitates clear understanding of problem domains. 

Therefore, classification trees have been grown using CART methodology with the 

datasets that have been identified as most critical clusters through hierarchical clustering 

(HC). Important predictors as identified by random forest (RF) have been given the 

priority during applying CART methodology. However, pedestrian accidents, double 

vehicle accidents and single vehicle accidents have been treated separately as before. 

Multi vehicle accident records in separate clusters are quite insignificant (because of 

low sample size) to apply CART on these clusters. So these clusters have not been 

selected for this analysis. The predictors like number of vehicles involved, number of 

driver casualties, number of passenger casualties, and number of pedestrian casualties 

have been left out during predictor selections for CART because of the obvious fact of 

their correlation with accident severity as outlined in RF; although they have been given 

the same gravity like other predictors during the application of RF. 

 
This study is concerned about how accident severities are related to road and roadway 

environment and operating conditions. Therefore, the predictors related to these issues 

have been inspected with greater emphasis than temporal variables like time, date, 

month and year of the accident events; besides, temporal variables are more useful to 

get deep insight into crashes in specific geographical locations and geocoded data would 

become handy in analyzing the status. Moreover, instead of growing a tree up to 

maximum depth where each terminal node comprises a pure class, a minimum split rule 

has been used in such a way that a node gets split only when it contains at least 10 data 

points so that subsequent child nodes have at least 1/3rd of those data points. This 

facilitates in reducing the calculation complexity as well as the tree size substantially. 

Furthermore, from analytical point of view it infers insight into the situation easily. If 

the parent node is ‘n’ then the left and the right child nodes are numbered as ‘2n’ and 

'2n+1' respectively.  
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5.6.1 Pedestrian accidents 

The whole dataset of pedestrian accidents have been divided into four major clusters 

through HC. Among these, Cluster 1 is the most hazardous cluster as outlined earlier. 

Therefore, Cluster 1 of pedestrian accidents has been analyzed first in the following. 

Then the other clusters of pedestrian accidents were analyzed by CART.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Classification tree for pedestrian accidents cluster 1. 

 
Collision type emerges as the splitting predictor of the root node. It is quite interesting 

to find that pedestrians are not only the direct victims of hit pedestrian accidents; rather 

all other accident types are contributing to the pedestrian vulnerability in Bangladesh. 

This also highlights the fact that probably pedestrians are not getting the proper 

pedestrian facilities and are widely exposed throughout the road networks. However, hit 

pedestrian along with head on, overturn, hit object in road and hit animal collision types 

contribute 84.76 percent fatal pedestrian accidents as outlined in Node 2 of Figure 5.1. 

Rear end, right angle, side swipe, hit object off road, hit parked vehicle and other 

collision types contribute less fatal (67.89%) pedestrian accidents (Node 3). Moreover, 

in the second collision (Node 3) group right angle, hit object off road, hit parked vehicle 

and other collision types are more involved in non-fatal accidents (52 fatal versus 61 
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non-fatal, Node 15). Dividers in urban areas have a positive impact in reducing fatal 

pedestrian accidents. Urban divided roadways have less fatal pedestrian accidents 

(38.23%, node 31) compared to fatal pedestrian accidents (57.77%, node 30) on urban 

undivided roadways. On the other hand, rural areas are substantially hazardous for 

pedestrians as depicted in Node 6 (193 fatal pedestrian accidents versus 56 non-fatal 

pedestrian accidents). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Classification tree for pedestrian accidents cluster 2. 

 
CART provides another stimulating fact about pedestrian accidents in Cluster 2 (Figure 

5.2). More than 85 percent fatal pedestrian accidents are clustered in the roadway 

sections where no traffic control system is available. On the contrary, only 28.57 

percent fatal pedestrian accidents occur where there is some form of traffic control 

system, viz., pedestrian crossing, police control, etc. (Node 7, Figure 5.2) are available. 
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Traffic control predictor splits the root node of Cluster 3 for pedestrian accident dataset. 

Analogous to cluster two, cluster three illustrated that in case of police controlled traffic 

system no fatal pedestrian accident has been recorded (Node 3, Figure 5.3). Other traffic 

control systems viz. no control, centerline marking, pedestrian crossing have been 

underlined with 89.75 percent fatal pedestrian accidents; and the major percentage of 

this representation is due to hit pedestrian along with head on, rear end, overturn and 

other types of collision (Node 4, Figure 5.3). Fatal pedestrian accidents are more prone 

to straight and flat and curve road geometric sections (Node 10, 100% fatal pedestrian 

accidents) than slope only geometric sections (Node 11) and this consequence has been 

associated with side swipe and hit object off road collision types and where there is no 

police controlled traffic system available. Therefore, it can be easily perceived that 

traffic control system and road geometry have definite impact on pedestrian accident 

severity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Classification tree for pedestrian accidents cluster 3. 
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vulnerable sections for pedestrians (Node 14, Figure 5.4). Rural and city roads cross 

junctions are safer (46.15% non-fatal pedestrian accidents) platform for pedestrians with 

no or centerline marking traffic control system compared to that of national highways. 

But centerline marking traffic control system hardly had any impact on reducing 

pedestrian accident severity on rural and city roads (Node 30 and Node 31 of Figure 

5.4). Unlike Cluster 3, at cross junctions police controlled traffic system has been found 

ineffective in reducing fatal pedestrian accidents (Node 6 of Figure 5.4, 87.5% fatal 

pedestrian accidents). The mid-section of roadways and junction types like tee, 

staggered, roundabout and railway crossings have been underscored with 96.47 percent 

fatal pedestrian accidents (Node 2); which depicted the fact that pedestrian accidents are 

spread throughout the road network and lack of proper pedestrian facilities could be one 

the main factors behind this carnage.    

 

 

 

  

 

 

 

 

 

 

 

 

 
 

Figure 5.4. Classification tree for pedestrian accidents cluster 4. 
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5.6.2 Double vehicle accidents 

Road geometry has differentiated the root node of Cluster 1 for double vehicle accidents 

(Figure 5.5). It has been found that more fatal accidents (89.03%) have taken place in 

straight and flat, slope only, and crest oriented geometric sections of roads (Node 2, 

Figure 5.5) compared to curve only, and curve and slope oriented geometric sections 

(Node 3 of Figure 5.5, 72.17% fatal accidents). However, lighting condition associated 

with collision type has a significant impact on the latter part of the previous finding. It 

has been identified that if the lighting condition is dawn or dusk and night-unlit (Node 

12, Figure 5.5) and if the accident collision type is head on, right angle, overturn, hit 

object in road, and hit animal (Node 6, Figure 5.5) then 90.90 percent double vehicle 

accidents resulted in fatal cases (Node 12, Figure 5.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Classification tree for double vehicle accidents cluster 1. 
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But with the same collision types if the accidents occurred in daylight and night-lit 

condition concomitant with traffic lights traffic control system then 60 percent of these 

accidents stemmed in non-fatal crashes (Node 27, Figure 5.5); which is quite the reverse 

case (75.20% fatal accident) if there is no traffic control system and centerline marking 

traffic control system (Node 26, Figure 5.5). Moreover, rear end, side swipe, hit object 

off road, and hit parked vehicle collision type double vehicle accidents occurred on 

curve only, and curve and slope sections of roads ensued in 64.28 percent fatal crashes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6. Classification tree for double vehicle accidents cluster 4. 
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5.6.3 Single vehicle accidents 

Collision type transpires as the splitting predictor of the root node for single vehicle 

Cluster 1 dataset. This first split has highlighted a feeble point of the accident database 

as well. It is found that even in single vehicle accident database head on and rear end 

accidents have been registered. Nevertheless, rear end, overturn, hit parked vehicle, hit 

animal, and other types of accidents constituted 80 percent single vehicle fatal accidents 

(Node 2, Figure 5.7). On the other hand, head on, right angle, side swipe, hit object in 

road, and hit object off road comprised 167 fatal accidents versus 110 non-fatal 

accidents (Node 3, Figure 5.7). Curve only, slope only, and curve and slope oriented 

geometric sections associated with the latter part of the above mentioned collision group 

have been found clustered with 85.29 percent fatal accidents (Node 6, Figure 5.7). 

However, when the sections had been straight and flat, and crest 56.79 percent fatal 

crashes have been registered (Node 7, Figure 5.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Classification tree for single vehicle accidents cluster 1. 
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Node 15 of Figure 5.7 revealed that pedestrian crossing, police control, traffic lights, 

police control and traffic lights have some positive impacts in reducing the fatal 

accidents a little bit (19 fatal versus 20 non-fatal crashes); and this is true for head on, 

right angle, side swipe, hit object in road, and hit object off road collision types along 

with straight and flat, and crest road segments. Nonetheless, no traffic control, and 

centerline marking traffic control system have been found quite ineffective (58.33% 

fatal crashes, Node 14 of Figure 5.7) in the above mentioned cases. Node 28 has 

depicted that daylight manifested more fatal accidents (Figure 5.7, 88 fatal versus 57 

non-fatal) than dawn or dusk, night-lit, and night-unlit lighting conditions (Node 29, 31 

fatal versus 28 non-fatal); and this is associated with all other conditions of Node 14 of 

Figure 5.7. Accidents occurring at mid-block sections, cross junctions, and tee junctions 

are more prone to fatal cases (Node 56 of Figure 5.7, 62.39% fatal) than accidents 

occurring at staggered junctions, roundabouts, and railway crossings (Node 57 of Figure 

5.7, 53.57% fatal).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.8. Classification tree for single vehicle accidents cluster 3. 
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Cluster 3 for single vehicle accidents outlined a different view than Cluster 1 regarding 

lighting condition. Dawn or dusk, and night-unlit lighting condition have been identified 

concomitant with more fatal crashes (29 fatal versus 4 non-fatal, Node 2 of Figure 5.8) 

than daylight, and night-lit lighting condition (62.04% fatal, Node 3 of Figure 5.8). 

Furthermore, brick and earthen surface type along with daylight and night-lit lighting 

condition have been underscored with 13 fatal crashes versus 2 non-fatal crashes (Node 

6, Figure 5.8). Interestingly rainy weather allied with sealed surface and daylight and 

night-lit lighting situation came up with less fatal crashes (10 non-fatal versus 7 fatal, 

Node 15 of Figure 5.8)   than the same conditions with fair and foggy weather (61.90% 

fatal accidents, Node 15 of Figure 5.8).    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.9. Classification tree for single vehicle accidents cluster 3. 
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two-way roads suffered with 86.53 percent fatal accidents (Node 6, Figure 5.9). And as 

was expected one-way roads even with dry and muddy surface conditions have 

contributed to only 20 percent of fatal crashes for single vehicle accidents (Node 7, 

Figure 5.9).   
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CHAPTER 6 

CONCLUSION 
 

 

6.1 General 

This thesis is the first step regarding the application of data mining (DM) in road traffic 

accident analysis in Bangladesh. No previous studies have ever utilized data mining for 

finding unrecognized and unsuspected facts and overcome road accident data related 

deficiencies as well as statistical limitations in the country. Therefore, in this research, 

an attempt has been made to study the feasibility and utility of data mining methods in 

the context of road traffic safety of Bangladesh. The intention was to elicit reasonable, 

and hopefully novel, unsuspected and interesting facts as well as confirming any 

perceived concepts from road traffic accident data. This chapter mainly summarizes the 

findings of this research and outlines the precincts and future research scopes.  

 

 

6.2 Key Findings 

The primary finding of this study is that DM has depicted few practical, unique, 

unanticipated, and attention-grabbing realities as well as has confirmed some perceived 

facts from road traffic accident database. It has been able to quantify multiple 

predictors’ relationships which lead to crashes and eventual injuries in accident events. 

These facts and relationships can lead to better understanding of the accident 

phenomena where traditional statistical approaches have failed to instigate so far; i.e. 

DM is capable of dealing with large datasets and drawing pragmatic conclusions where 

as traditional approaches involve human exploration tasks, and thereby limits the 

assessment capacity. DM has been able to overcome the limitations of traditional 

approaches regarding road traffic accident analysis, and thus designing proper 

countermeasures and policy level decisions. Following are the key findings of this 

thesis:  
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o Nearly 10 percent of the pedestrian accidents are triggered by other 

accident/collision types, which indicate that may be pedestrians are not only the 

victims but also a stimulating factor for some accidents.   

o Pedestrians are found to be more vulnerable in rural areas (77.5% fatal 

accidents) than in urban areas (56.6% fatal accidents) as secondary dupes. 

Exposure might be a reason but it also highlights the fact that probably 

pedestrians are not getting proper pedestrian facilities and are widely exposed 

throughout the road network.  

o Dividers in urban areas have been found quite effective in reducing fatal 

(38.23% fatal vs 57.78% fatal where there are no dividers) pedestrian accidents. 

o Traffic control systems especially police controlled traffic control system in 

urban areas have been identified as persuasive in reducing pedestrian fatal 

accidents (in some cases 0% fatal incidences).  

o Geometric sections without police controlled traffic control system have been 

acknowledged as a bracing factor for fatal pedestrian accidents. The straight and 

flat, and curve only geometric sections associated with side swipe and hit object 

off road type accidents provoked more fatal pedestrian accidents (nearly 100% 

fatal compared to 33.33% fatal in case of slope only geometric sections).  

o National highways’ cross junctions without any traffic control system or with 

centerline marking traffic control system are highly vulnerable sections for 

pedestrians. However, rural and city roads cross junctions with the same aspects 

are safer (100% vs 53.85% fatal pedestrian accidents).  

o The mid-section of roadways and junction types like tee, staggered, roundabout, 

and level crossings have been underscored with more fatal pedestrian accidents 

than cross junctions.  

o Straight and flat geometric sections of roadways have generated more double 

vehicle fatal accidents (more than 80% accidents are fatal) than other types (e.g. 

curve only, slope only, curve and slope and crest) of geometric sections (nearly 

70% fatal accidents).  

o The latter part of the previous finding got worse when the sections were 

associated with head on, right angle, overturn, hit object in road and hit animal 

type of collisions (76.22% fatal); or occurred on national and regional highways 

or feeder roads (71% fatal); or during dawn/dusk and night (unlit) lighting 
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condition (90.91% fatal); or in daylight or night (lit) light condition but with no 

or centerline marking traffic control system (75.21% fatal).  

o It has been found that head on and rear end collisions are recorded in the single 

vehicle accident database which transpires a feeble point of the accident 

database.  

o However, rear end, overturn, hit parked vehicle and hit animal type accidents 

constituted 80 percent fatal accidents for single vehicle crashes.  

o On the other hand, head on, right angle, side swipe, hit object in road, and hit 

object off road collision types affiliated with curve only, slope only, and curve 

and slope geometric sections of the roadways produced 85.29 percent fatal 

single vehicle crashes.   

o Even straight and flat, and crest geometric sections allied with no and centerline 

marking traffic control system induced 58.33 percent single vehicle fatal 

accidents.  

o Dawn/dusk and night (unlit) lighting condition attributed 87.88 percent single 

vehicle fatal accidents. Even daylight akin with head on, right angle, hit object 

in road and hit object off road type collisions at mid-block sections of roads, and 

at cross and tee junctions has resulted in 65.05 percent fatal single vehicle 

accidents.   

o Staggered junctions, roundabouts and level crossings have been identified 

responsible for 46.43 percent non-fatal single vehicle crashes. Pedestrian 

crossings, police control, and traffic lights have been underscored with some 

persuasive impacts on reducing fatal single vehicle accidents (51.28% non-fatal 

accidents) even in straight and flat geometric sections of roads.  

o Brick and earthen road surfaces have generated 86.67% fatal single vehicle 

crashes even in daylight and night (lit) condition. On the contrary, sealed surface 

even affiliated with rainy weather has ensued less fatal single vehicle crashes 

(58.82% non-fatal crashes). 

o Wet and flooded surface conditions of roads have resulted in 94.74 percent fatal 

single vehicle crashes. Nevertheless, one-way routes concomitant with dry and 

muddy surface prompted only 20 percent fatal cases as always perceived; 

whereas in case of two-way roads it shoots up to 86.54 percent fatal single 

vehicle accidents.  



84 

 

The findings clearly demonstrate the capability of data mining in making pragmatic 

transportation decisions and allow us to allocate resource accordingly. This cannot be 

achieved by general statistical tools. Statistics may help us to quantify a particular issue 

but cannot give us the insight, quantify multiple relationships, and make policy level 

decisions i.e. where to apportion the budget to reduce what percentage of loss. Data 

mining provides platforms (hypotheses) that are beyond human exploration task which 

is the utmost need in making financial decisions.  Therefore, the feasibility and utility of 

data mining are justified in the context of Bangladesh’s road safety status.  

 

 

6.3 Limitations of the Study 

Resource limitations had been one of the most important determinants for this research. 

Processing the massive accident database for data mining requires fast computers with 

sound technical configuration. It was found that the computer that was designated for 

the data mining operations for this dissertation could not handle the huge database. 

Therefore, it became urgent to reduce the size of the accident database. It is expected 

that if it would have been possible to work with the whole database the results might 

have been more precise.  

 
A tool was required to convert/transcript the whole MAAP database to MS Excel 

smoothly and correctly. Then it would have been possible to encompass the other 

predictors in this study that have been left out due to inconsistency in the column heads.  

 
The number of clusters produced in HC and depth of classification trees grown in 

CART were controlled to reduce the complexity of the study and for easy understanding 

of the problem domains. As this dissertation has been the first step towards the 

application of data mining in road traffic accident analysis in Bangladesh, simplicity has 

been endured in back of mind.   
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6.4 Future Research Scopes 

It is being perceived that by overcoming the study limitations new research horizons 

would be yielded. These can be abridged as follows:   

 
o The DM process was executed through a laptop configured with Intel core i5 

processor and 6GB RAM. Future researches should lodge better PCs to 

incorporate the complete road traffic accident database. 

o A conversion toll should be developed to transcript the MAAP database to easy 

importable database for R so that all the predictors could be assimilated in the 

studies.  

o Number of clusters can be increased through HC and depth of CART trees can 

be enlarged in future works to get more micro-level aspects clearly. However, 

this would be a time consuming process as well. 

o Multi vehicle accident database was discarded in CART phase due to low 

sample size in each of the 2 clusters. Two things can be done in future from this 

database; either it can be merged with double vehicle accident database or direct 

CART can be executed without processing the database with HC. 

o This study has been concerned with how accident severities are related to road 

and roadway environment and operating conditions, i.e. the target/dependent 

predictor was accident severity. However, it is possible to change the target 

predictor to any other variables like accident/collision type, road class, etc. and 

draw new relationships accordingly.  

o Weight or gravity of the variables/predictors during the application of 

hierarchical clustering (HC) was considered same. Nevertheless, different 

weights can be assigned to different predictors to stimulate policy level 

decisions.  

o In-depth analyses of data mining findings for developing countermeasures and 

policy level decisions would provide enormous scopes for future endeavors.  
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APPENDIX-D 

 

Table D-1. Year-wise pedestrian accidents vs day of week 

 

Year     Day of Week     Total 
1 2 3 4 5 6 7 

2010 143 136 151 150 123 112 146 961 
2009 166 194 188 171 156 182 182 1239 
2008 256 249 235 272 278 238 267 1795 
2007 304 304 315 314 316 299 334 2186 
2006 178 203 218 227 205 201 197 1429 
2005 169 171 163 166 174 162 177 1182 
2004 244 281 229 229 260 217 215 1675 
2003 248 237 233 238 250 211 235 1652 
2002 282 265 277 302 252 265 284 1927 
2001 206 186 210 181 213 190 169 1355 
2000 274 256 255 285 267 249 258 1844 
1999 267 233 250 267 255 294 280 1846 
1998 232 237 212 282 217 236 237 1653 
Total 2969 2952 2936 3084 2966 2856 2981 20744 

 
Notes: 1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 7=Sunday 

                                                 Source: ARI Accident Database 1998-2010 
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Table D-2. Year-wise pedestrian accidents vs month of year 

 

Year           Month of Year           Total 
1 2 3 4 5 6 7 8 9 10 11 12 

2010 84 89 113 97 94 68 76 82 71 71 62 54 961 
2009 120 147 119 140 115 101 98 91 73 68 85 82 1239 
2008 204 175 202 155 165 122 161 148 141 106 121 95 1795 
2007 166 157 247 209 168 129 185 172 173 221 186 173 2186 
2006 156 125 136 139 134 115 115 115 89 98 96 111 1429 
2005 120 109 115 112 116 102 100 82 82 74 92 78 1182 
2004 168 138 159 120 129 132 150 142 113 136 139 149 1675 
2003 128 139 138 138 154 131 170 157 147 138 135 77 1652 
2002 173 176 195 160 160 139 140 163 160 166 137 158 1927 
2001 146 113 115 110 138 118 102 122 96 100 103 92 1355 
2000 192 155 168 134 167 189 161 128 135 142 144 129 1844 
1999 172 158 176 130 155 153 186 174 127 147 122 146 1846 
1998 141 132 165 131 142 161 171 122 113 108 133 134 1653 
Total 1970 1813 2048 1775 1837 1660 1815 1698 1520 1575 1555 1478 20744 

 
Notes: 1=January, 2=February, 3=March, 4=April, 5=May, 6=June, 7=July, 8=August, 9=September, 10=October, 11=November, 12=December 
            Source: ARI Accident Database 1998-2010 
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Table D-3. Year-wise pedestrian accidents vs time of occurrence 

 

Year 
Time of Occurrence 

Total 
00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 ?* 

2010 25 27 20 21 24 32 28 48 41 52 70 57 56 48 38 42 55 64 41 47 39 25 32 24 5 961 

2009 26 23 22 18 24 38 43 58 57 86 79 94 89 66 58 76 74 51 57 63 40 42 26 26 3 1239 

2008 65 25 17 32 33 61 62 89 101 111 124 115 115 86 66 82 108 113 69 85 65 56 54 41 20 1795 

2007 39 42 48 38 44 65 80 113 123 139 143 175 150 120 101 119 125 128 74 83 71 69 45 35 17 2186 

2006 98 20 26 21 34 48 66 70 63 79 104 90 101 77 63 67 84 86 37 50 48 40 25 15 17 1429 

2005 117 23 20 14 23 30 34 43 61 72 90 99 71 66 53 61 60 72 32 42 28 24 21 18 8 1182 

2004 69 26 21 31 15 49 53 78 81 115 123 135 130 93 73 91 93 102 54 65 54 40 39 27 18 1675 

2003 25 21 13 21 26 29 40 69 87 106 128 144 107 97 100 87 125 117 65 71 53 53 33 27 8 1652 

2002 20 13 26 26 33 46 57 86 87 137 156 157 134 111 115 121 120 144 68 81 69 47 29 33 11 1927 

2001 18 13 15 9 10 28 47 60 65 92 102 106 103 73 77 84 93 106 63 51 32 39 26 22 21 1355 

2000 22 17 13 13 21 30 55 82 72 115 155 136 123 122 99 125 147 142 70 83 65 47 42 29 19 1844 

1999 19 24 14 13 18 36 55 75 85 114 154 166 130 110 111 112 139 142 76 79 57 40 30 36 11 1846 

1998 13 15 14 23 16 24 59 80 109 101 104 134 125 83 102 83 127 114 72 79 59 46 33 29 9 1653 

Total 556 289 269 280 321 516 679 951 1032 1319 1532 1608 1434 1152 1056 1150 1350 1381 778 879 680 568 435 362 167 20744 

 

Notes: *“?” means blank data field 
             Source: ARI Accident Database 1998-2010 
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Table D-4. Year-wise pedestrian accidents vs junction type 

 

Year       Junction Type       Total 
1 2 3 4 5 6 7 ?* 

2010 692 58 88 9 8 0 106 0 961 
2009 759 72 109 23 7 0 249 20 1239 
2008 1160 134 145 17 13 7 304 15 1795 
2007 1352 100 154 24 6 1 478 71 2186 
2006 937 97 104 17 10 2 221 41 1429 
2005 747 51 103 5 20 2 201 53 1182 
2004 1166 65 121 24 32 4 222 41 1675 
2003 1190 69 104 16 11 3 212 47 1652 
2002 1559 72 129 14 13 6 115 19 1927 
2001 1111 49 87 9 6 1 87 5 1355 
2000 1513 83 141 16 4 5 80 2 1844 
1999 1483 103 166 7 27 3 56 1 1846 
1998 1272 100 148 10 31 4 67 21 1653 
Total 14941 1053 1599 191 188 38 2398 336 20744 

 

Notes: *“?” means blank data field 
         1=Not at junction, 2=Cross junction, 3=Tee junction, 4=Staggered tee junction, 5=Roundabouts, 6= Railway/level crossing, 7=Other 

            Source: ARI Accident Database 1998-2010 
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Table D-5. Year-wise pedestrian accidents vs traffic control system 

 

Year       Traffic Control        Total 
1 2 3 4 5 6 7 8 ?* 

2010 751 10 47 72 3 10 5 63 0 961 
2009 851 19 81 135 9 7 0 129 8 1239 
2008 1271 30 125 138 5 7 1 183 35 1795 
2007 1493 37 143 172 7 16 0 280 38 2186 
2006 1024 30 63 157 1 6 4 126 18 1429 
2005 864 29 57 65 7 42 3 89 26 1182 
2004 1291 15 65 85 7 53 1 141 17 1675 
2003 1270 27 88 83 6 24 1 125 28 1652 
2002 1578 20 56 103 13 55 1 92 9 1927 
2001 1147 19 26 73 22 22 2 42 2 1355 
2000 1606 29 29 60 12 50 2 49 7 1844 
1999 1524 40 56 63 3 114 2 42 2 1846 
1998 1327 41 38 59 10 106 2 57 13 1653 
Total 15997 346 874 1265 105 512 24 1418 203 20744 

 

Notes: *“?” means blank data field 
            1=No control, 2=Centerline marking, 3=Pedestrian crossing, 4=Police controlled, 5=Traffic lights, 6=Police + Traffic lights, 7=Stop/Give 
            way sign, 8=Other 
            Source: ARI Accident Database 1998-2010 
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Table D-6. Year-wise pedestrian accidents vs traffic collision type 

 

Year           Collision Type           Total 
1 2 3 4 5 6 7 8 9 10 11 ?* 

2010 12 20 1 5 5 0 2 5 895 0 16 0 961 
2009 22 27 2 20 2 3 9 9 1114 0 27 4 1239 
2008 29 46 3 27 13 5 7 13 1606 0 42 4 1795 
2007 37 45 2 39 27 13 13 7 1947 1 53 2 2186 
2006 40 35 0 37 16 8 13 5 1251 0 23 1 1429 
2005 21 28 5 27 16 6 7 5 1038 0 23 6 1182 
2004 28 40 3 31 14 9 14 4 1484 0 47 1 1675 
2003 19 48 1 27 13 6 18 7 1481 0 30 2 1652 
2002 24 31 3 23 13 6 17 12 1775 0 23 0 1927 
2001 22 48 1 17 14 6 12 11 1206 0 17 1 1355 
2000 31 19 1 6 12 7 7 13 1738 1 8 1 1844 
1999 24 16 2 10 22 5 15 12 1729 0 9 2 1846 
1998 25 30 5 27 13 9 7 5 1509 0 18 5 1653 
Total 334 433 29 296 180 83 141 108 18773 2 336 29 20744 

 
Notes: *“?” means blank data field 
            1=Head on, 2=Rear end, 3=Right angle, 4=Side swipe, 5=Overturn, 6=Hit object in road, 7=Hit object off road, 8=Hit parked vehicle, 
            9=Hit pedestrian, 10=Hit animal, 11=Other  
            Source: ARI Accident Database 1998-2010 
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Table D-7. Year-wise pedestrian accidents vs traffic movement 

Year Traffic Movement Total 
1 2 ?* 

2010 115 846 0 961 
2009 292 938 9 1239 
2008 456 1329 10 1795 
2007 739 1417 30 2186 
2006 457 958 14 1429 
2005 158 1018 6 1182 
2004 159 1506 10 1675 
2003 192 1449 11 1652 
2002 151 1775 1 1927 
2001 74 1279 2 1355 
2000 43 1799 2 1844 
1999 52 1793 1 1846 
1998 71 1579 3 1653 
Total 2959 17686 99 20744 

 

                              Notes: *“?” means blank data field 
                                          1=1-Way street, 2=2-Way street 
                                          Source: ARI Accident Database 1998-2010 

 
 

Table D-8. Year-wise pedestrian accidents vs presence of divider in roads 

Year Presence of Divider Total 1 2 ?* 
2010 225 736 0 961 
2009 282 938 19 1239 
2008 428 1355 12 1795 
2007 486 1637 63 2186 
2006 348 1055 26 1429 
2005 236 911 35 1182 
2004 383 1246 46 1675 
2003 292 1313 47 1652 
2002 385 1542 0 1927 
2001 240 1109 6 1355 
2000 386 1456 2 1844 
1999 328 1513 5 1846 
1998 419 1228 6 1653 
Total 4438 16039 267 20744 

 

                              Notes: *“?” means blank data field 
                                          1=Yes, 2=No 
                                          Source: ARI Accident Database 1998-2010 
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Table D-9. Year-wise pedestrian accidents vs weather condition 

Year Weather Condition Total 
1 2 3 4 ?* 

2010 925 17 1 18 0 961 
2009 1178 30 2 26 3 1239 
2008 1717 47 3 27 1 1795 
2007 2083 73 1 21 8 2186 
2006 1383 23 4 15 4 1429 
2005 1122 34 3 16 7 1182 
2004 1616 41 2 14 2 1675 
2003 1580 45 4 22 1 1652 
2002 1861 45 1 20 0 1927 
2001 1303 36 2 14 0 1355 
2000 1767 53 3 21 0 1844 
1999 1771 60 5 10 0 1846 
1998 1598 40 1 9 5 1653 
Total 19904 544 32 233 31 20744 

 

              Notes: *“?” means blank data field 
                          1=Fair, 2=Rain, 3=Wind, 4=Fog 
                          Source: ARI Accident Database 1998-2010 
 
 

Table D-10. Year-wise pedestrian accidents vs light condition 

Year Light Condition Total 
1 2 3 4 ?* 

2010 611 117 129 103 1 961 
2009 805 169 144 116 5 1239 
2008 1221 240 196 132 6 1795 
2007 1581 228 207 156 14 2186 
2006 1055 156 154 60 4 1429 
2005 837 137 117 78 13 1182 
2004 1203 200 160 105 7 1675 
2003 1186 188 153 120 5 1652 
2002 1390 229 182 124 2 1927 
2001 983 168 104 99 1 1355 
2000 1342 210 153 137 2 1844 
1999 1361 224 147 113 1 1846 
1998 1190 203 150 103 7 1653 
Total 14765 2469 1996 1446 68 20744 

 

              Notes: *“?” means blank data field 
                          1=Daylight, 2=Dawn/Dusk, 3=Night (lit), 4= Night (unlit) 
                          Source: ARI Accident Database 1998-2010 
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Table D-11. Year-wise pedestrian accidents vs road geometric condition 

Year Road Geometric Condition Total 1 2 3 4 5 ?* 
2010 883 43 18 16 1 0 961 
2009 1137 52 22 18 3 7 1239 
2008 1637 87 36 21 10 4 1795 
2007 2038 68 27 19 6 28 2186 
2006 1356 36 18 11 2 6 1429 
2005 1084 57 18 7 1 15 1182 
2004 1582 68 10 5 2 8 1675 
2003 1543 74 12 14 4 5 1652 
2002 1819 70 22 13 3 0 1927 
2001 1265 57 16 11 4 2 1355 
2000 1702 89 29 19 5 0 1844 
1999 1726 68 37 11 3 1 1846 
1998 1555 61 18 9 5 5 1653 
Total 19327 830 283 174 49 81 20744 

 

      Notes: *“?” means blank data field 
                  1=Straight + Flat, 2=Curve only, 3=Slope only, 4=Curve + Slope, 5=Crest 
                  Source: ARI Accident Database 1998-2010 
 
 

Table D-12. Year-wise pedestrian accidents vs road surface condition 

Year Road Surface Condition Total 1 2 3 4 5 ?* 
2010 919 25 2 0 15 0 961 
2009 1177 30 3 1 20 8 1239 
2008 1700 64 7 2 20 2 1795 
2007 2089 63 4 0 9 21 2186 
2006 1391 22 1 1 8 6 1429 
2005 1118 38 1 2 7 16 1182 
2004 1619 43 0 0 9 4 1675 
2003 1585 53 2 0 8 4 1652 
2002 1866 52 4 0 5 0 1927 
2001 1306 38 0 0 9 2 1355 
2000 1762 68 7 2 5 0 1844 
1999 1782 58 2 0 4 0 1846 
1998 1594 49 3 0 1 6 1653 
Total 19908 603 36 8 120 69 20744 

 

       Notes: *“?” means blank data field 
                  1=Dry, 2=Wet, 3=Muddy, 4=Flooded, 5=Other 
                  Source: ARI Accident Database 1998-2010 
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Table D-13. Year-wise pedestrian accidents vs surface type 

Year Surface type Total 1 2 3 ?* 
2010 939 9 13 0 961 
2009 1214 6 16 3 1239 
2008 1749 16 27 3 1795 
2007 2122 18 27 19 2186 
2006 1379 18 26 6 1429 
2005 1140 17 15 10 1182 
2004 1634 16 20 5 1675 
2003 1606 17 26 3 1652 
2002 1874 27 26 0 1927 
2001 1322 15 16 2 1355 
2000 1763 35 46 0 1844 
1999 1793 29 24 0 1846 
1998 1605 21 22 5 1653 
Total 20140 244 304 56 20744 

 

                      Notes: *“?” means blank data field 
                                  1=Sealed, 2=Brick, 3=Earth 
                                  Source: ARI Accident Database 1998-2010 
 
 

Table D-14. Year-wise pedestrian accidents vs surface quality 

Year Surface Quality Total 1 2 3 ?* 
2010 925 30 6 0 961 
2009 1177 43 14 5 1239 
2008 1700 70 16 9 1795 
2007 2102 50 14 20 2186 
2006 1361 46 15 7 1429 
2005 1127 35 8 12 1182 
2004 1581 53 32 9 1675 
2003 1581 45 17 9 1652 
2002 1851 51 25 0 1927 
2001 1306 38 9 2 1355 
2000 1746 72 26 0 1844 
1999 1778 48 19 1 1846 
1998 1600 32 14 7 1653 
Total 19835 613 215 81 20744 

 

                      Notes: *“?” means blank data field 
                                  1=Good, 2=Rough, 3=Under repair 
                                  Source: ARI Accident Database 1998-2010 
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Table D-15. Year-wise pedestrian accidents vs road class 

Year Road Class Total 1 2 3 4 5 ?* 
2010 389 118 108 118 226 2 961 
2009 503 176 155 123 276 6 1239 
2008 825 215 196 195 359 5 1795 
2007 926 279 389 187 403 2 2186 
2006 585 163 216 123 334 8 1429 
2005 421 195 128 122 313 3 1182 
2004 684 188 224 111 463 5 1675 
2003 618 240 250 143 396 5 1652 
2002 676 237 347 121 545 1 1927 
2001 516 193 242 89 314 1 1355 
2000 657 238 328 140 477 4 1844 
1999 677 241 287 116 524 1 1846 
1998 518 226 168 101 629 11 1653 
Total 7995 2709 3038 1689 5259 54 20744 

 

       Notes: *“?” means blank data field 
                  1=National, 2=Regional, 3=Feeder, 4=Rural road, 5=City 
                  Source: ARI Accident Database 1998-2010 
 
 

Table D-16. Year-wise pedestrian accidents vs road feature 

Year Road Feature Total 1 2 3 4 5 ?* 
2010 930 18 2 6 3 2 961 
2009 1175 20 8 15 11 10 1239 
2008 1714 25 8 13 9 26 1795 
2007 2095 16 8 11 7 49 2186 
2006 1361 26 11 9 2 20 1429 
2005 1119 16 8 12 2 25 1182 
2004 1617 22 6 9 0 21 1675 
2003 1596 25 6 9 3 13 1652 
2002 1857 31 9 21 5 4 1927 
2001 1314 19 8 9 3 2 1355 
2000 1793 18 8 20 2 3 1844 
1999 1795 21 6 17 4 3 1846 
1998 1584 25 8 15 2 19 1653 
Total 19950 282 96 166 53 197 20744 

 

       Notes: *“?” means blank data field 
                  1=None, 2=Bridge, 3=Culvert, 4=Narrowing/Restriction, 5=Speed breakers 
                  Source: ARI Accident Database 1998-2010 
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Table D-17. Year-wise pedestrian accidents vs road location 

Year Location Total 1 2 ?* 
2010 497 456 8 961 
2009 614 609 16 1239 
2008 742 1020 33 1795 
2007 845 1291 50 2186 
2006 571 828 30 1429 
2005 396 761 25 1182 
2004 593 1051 31 1675 
2003 558 1074 20 1652 
2002 688 1229 10 1927 
2001 472 874 9 1355 
2000 699 1138 7 1844 
1999 707 1134 5 1846 
1998 765 871 17 1653 
Total 8147 12336 261 20744 

 

                              Notes: *“?” means blank data field 
                                          1=Urban area, 2=Rural area 
                                          Source: ARI Accident Database 1998-2010 
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APPENDIX-E 

 

Table E-1. Year-wise double vehicle accidents vs day of week 

 

Year Day of Week ?* 
1 2 3 4 5 6 7 Total 

2010 101 96 118 104 111 91 90 711 0 
2009 138 140 134 136 128 141 118 935 0 
2008 187 173 201 212 173 185 154 1285 1 
2007 168 172 191 194 184 169 170 1248 0 
2006 128 110 122 127 162 132 134 915 0 
2005 102 120 116 126 117 95 134 810 0 
2004 156 167 158 166 193 168 155 1163 0 
2003 188 213 184 187 190 183 171 1316 0 
2002 204 180 200 229 199 214 167 1393 0 
2001 133 131 118 136 135 139 138 930 0 
2000 220 222 186 242 199 189 218 1476 0 
1999 205 188 205 218 205 226 210 1457 0 
1998 202 182 200 197 197 196 184 1358 0 
Total 2132 2094 2133 2274 2193 2128 2043 14997 1 

 
                                     Notes:  *“?” means blank data field 
                                                  1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 7=Sunday 
                                                Source: ARI Accident Database 1998-2010 
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Table E-2. Year-wise double vehicle accidents vs month of year 

 

Year           Month of Year           Total 
1 2 3 4 5 6 7 8 9 10 11 12 

2010 60 67 63 56 69 74 52 64 46 57 52 51 711 
2009 114 96 69 89 80 101 80 81 68 36 50 71 935 
2008 136 103 116 131 123 103 91 110 131 84 79 79 1286 
2007 98 84 128 108 109 94 116 87 95 119 102 108 1248 
2006 81 72 91 85 101 91 82 77 57 63 50 65 915 
2005 84 75 78 70 83 90 59 60 56 40 65 50 810 
2004 128 102 95 86 103 98 112 83 81 105 86 84 1163 
2003 98 94 110 101 120 112 144 114 106 126 119 72 1316 
2002 136 108 124 120 121 93 126 116 92 131 95 131 1393 
2001 122 58 101 68 97 69 73 64 61 58 74 85 930 
2000 149 132 143 125 125 131 123 101 117 108 127 95 1476 
1999 140 123 131 122 137 114 120 115 115 122 106 112 1457 
1998 121 131 144 128 121 120 99 121 94 85 87 107 1358 
Total 1467 1245 1393 1289 1389 1290 1277 1193 1119 1134 1092 1110 14998 

 

Notes: 1=January, 2=February, 3=March, 4=April, 5=May, 6=June, 7=July, 8=August, 9=September, 10=October, 11=November, 12=December 
            Source: ARI Accident Database 1998-2010 
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Table E-3. Year-wise double vehicle accidents vs time of occurrence 

 

Year 
Time of Occurrence 

Total 
00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 ?* 

2010 10 10 15 10 12 21 29 44 40 41 46 42 66 40 35 46 36 30 35 27 29 17 14 14 2 711 

2009 17 14 10 13 16 24 38 51 51 49 60 61 52 46 68 68 54 54 39 42 29 28 27 22 2 935 

2008 23 33 16 25 22 40 39 47 62 82 97 82 84 72 66 71 88 70 51 56 62 40 25 29 4 1286 

2007 34 24 23 26 32 51 45 53 63 63 93 101 96 73 62 74 70 61 39 51 30 32 20 26 6 1248 

2006 74 14 16 23 23 17 30 49 40 75 59 71 54 45 43 57 46 47 16 31 30 21 19 11 4 915 

2005 92 17 12 17 19 22 22 41 39 42 48 56 44 37 46 35 35 26 27 32 29 23 17 25 7 810 

2004 63 23 12 22 22 30 45 54 55 71 88 92 86 50 56 54 67 59 42 47 39 37 21 25 3 1163 

2003 35 20 19 25 25 42 49 55 55 58 91 94 93 76 68 87 83 85 54 50 42 47 32 28 3 1316 

2002 20 31 12 13 24 31 49 68 59 82 102 106 116 82 86 76 97 65 54 53 44 46 38 32 7 1393 

2001 14 13 10 11 12 23 30 49 45 63 76 63 71 46 63 60 60 48 27 26 30 30 23 34 3 930 

2000 32 39 22 14 20 40 43 64 83 88 104 115 83 87 76 91 85 77 52 64 66 50 41 34 6 1476 

1999 21 21 27 20 23 36 53 64 58 77 111 93 100 99 95 101 72 86 40 74 55 46 41 40 4 1457 

1998 23 21 17 13 18 24 58 68 68 86 99 98 84 71 71 94 93 62 55 58 60 39 42 35 1 1358 

Total 458 280 211 232 268 401 530 707 718 877 1074 1074 1029 824 835 914 886 770 531 611 545 456 360 355 52 14998 

 

Notes: *“?” means blank data field 
             Source: ARI Accident Database 1998-2010 
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Table E-4. Year-wise double vehicle accidents vs junction type 

 

Year       Junction Type       Total 
1 2 3 4 5 6 7 ?* 

2010 473 58 72 11 8 0 88 1 711 
2009 534 70 88 14 5 2 214 8 935 
2008 806 100 104 14 6 1 240 15 1286 
2007 741 71 103 28 8 3 237 57 1248 
2006 594 62 88 15 9 1 122 24 915 
2005 513 45 79 10 28 1 107 27 810 
2004 780 49 119 12 31 5 140 27 1163 
2003 942 58 116 17 24 5 127 27 1316 
2002 1030 67 146 20 51 10 61 8 1393 
2001 729 41 83 10 11 4 49 3 930 
2000 1133 113 156 19 6 6 42 1 1476 
1999 1109 106 140 10 61 4 24 3 1457 
1998 946 129 167 9 64 6 25 12 1358 
Total 10330 969 1461 189 312 48 1476 213 14998 

 

Notes: *“?” means blank data field 
          1=Not at junction, 2=Cross junction, 3=Tee junction, 4=Staggered tee junction, 5=Roundabouts, 6= Railway/level crossing, 7=Other 

            Source: ARI Accident Database 1998-2010 
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Table E-5. Year-wise double vehicle accidents vs traffic control system 

 

Year       Traffic Control        Total 
1 2 3 4 5 6 7 8 ?* 

2010 563 13 4 65 5 5 0 56 0 711 
2009 706 17 5 70 7 5 3 113 9 935 
2008 976 30 8 91 4 12 3 142 20 1286 
2007 900 42 10 119 7 4 1 146 19 1248 
2006 683 27 9 104 0 4 3 74 11 915 
2005 603 22 6 51 5 39 0 66 18 810 
2004 913 25 6 61 7 64 0 71 16 1163 
2003 1018 53 13 74 8 51 3 78 18 1316 
2002 1099 32 8 80 12 97 1 58 6 1393 
2001 764 28 5 54 19 27 1 29 3 930 
2000 1218 38 7 83 11 81 3 34 1 1476 
1999 1155 45 4 47 4 171 3 24 4 1457 
1998 983 52 10 77 7 185 0 37 7 1358 
Total 11581 424 95 976 96 745 21 928 132 14998 

 

Notes: *“?” means blank data field 
            1=No control, 2=Centerline marking, 3=Pedestrian crossing, 4=Police controlled, 5=Traffic lights, 6=Police + Traffic lights, 7=Stop/Give 
            way sign, 8=Other 
            Source: ARI Accident Database 1998-2010 
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Table E-6. Year-wise double vehicle accidents vs traffic collision type 

 

Year           Collision Type           Total 
1 2 3 4 5 6 7 8 9 10 11 ?* 

2010 327 254 13 72 4 0 3 34 0 0 4 0 711 
2009 381 353 19 101 6 6 0 61 0 0 5 3 935 
2008 503 446 23 184 11 11 6 78 0 0 23 1 1286 
2007 524 419 19 177 20 10 9 49 0 1 19 1 1248 
2006 344 342 20 142 10 5 3 40 0 0 8 1 915 
2005 315 268 30 118 10 5 4 46 0 0 11 3 810 
2004 457 411 25 153 7 10 7 62 0 0 29 2 1163 
2003 515 453 28 178 8 7 3 101 0 0 21 2 1316 
2002 451 551 57 218 14 6 2 76 0 0 17 1 1393 
2001 323 383 42 105 3 3 1 62 0 0 8 0 930 
2000 499 655 56 180 16 3 2 59 0 0 6 0 1476 
1999 482 625 23 246 13 0 3 53 0 0 12 0 1457 
1998 428 563 58 228 12 5 3 46 0 0 12 3 1358 
Total 5549 5723 413 2102 134 71 46 767 0 1 175 17 14998 

 

Notes: *“?” means blank data field 
            1=Head on, 2=Rear end, 3=Right angle, 4=Side swipe, 5=Overturn, 6=Hit object in road, 7=Hit object off road, 8=Hit parked vehicle, 
            9=Hit pedestrian, 10=Hit animal, 11=Other  
            Source: ARI Accident Database 1998-2010 
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Table E-7. Year-wise double vehicle accidents vs traffic movement 

Year Traffic Movement Total 
1 2 ?* 

2010 79 631 1 711 
2009 161 768 6 935 
2008 281 995 10 1286 
2007 396 837 15 1248 
2006 249 658 8 915 
2005 101 704 5 810 
2004 108 1052 3 1163 
2003 129 1183 4 1316 
2002 87 1305 1 1393 
2001 51 879 0 930 
2000 67 1408 1 1476 
1999 34 1423 0 1457 
1998 30 1326 2 1358 
Total 1773 13169 56 14998 

 

                              Notes: *“?” means blank data field 
                                          1=1-Way street, 2=2-Way street 
                                          Source: ARI Accident Database 1998-2010 

 
 

Table E-8. Year-wise double vehicle accidents vs presence of divider in roads 

Year Presence of Divider Total 1 2 ?* 
2010 141 568 2 711 
2009 173 747 15 935 
2008 248 1020 18 1286 
2007 300 898 50 1248 
2006 239 647 29 915 
2005 216 569 25 810 
2004 280 842 41 1163 
2003 252 1022 42 1316 
2002 372 1020 1 1393 
2001 214 715 1 930 
2000 405 1070 1 1476 
1999 334 1118 5 1457 
1998 436 916 6 1358 
Total 3610 11152 236 14998 

 

                              Notes: *“?” means blank data field 
                                          1=Yes, 2=No 
                                          Source: ARI Accident Database 1998-2010 
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Table E-9. Year-wise double vehicle accidents vs weather condition 

Year Weather Condition Total 
1 2 3 4 ?* 

2010 676 19 3 13 0 711 
2009 849 35 4 44 3 935 
2008 1197 57 1 31 0 1286 
2007 1156 66 2 21 3 1248 
2006 860 23 4 27 1 915 
2005 759 34 4 12 1 810 
2004 1079 55 0 28 1 1163 
2003 1211 73 1 30 1 1316 
2002 1305 52 5 31 0 1393 
2001 868 34 2 26 0 930 
2000 1391 50 8 27 0 1476 
1999 1375 62 3 17 0 1457 
1998 1299 35 1 19 4 1358 
Total 14025 595 38 326 14 14998 

 

               Notes: *“?” means blank data field 
                          1=Fair, 2=Rain, 3=Wind, 4=Fog 
                          Source: ARI Accident Database 1998-2010 
 
 

Table E-10. Year-wise double vehicle accidents vs light condition 

Year Light Condition Total 
1 2 3 4 ?* 

2010 499 95 52 65 0 711 
2009 629 131 87 83 5 935 
2008 885 185 105 110 1 1286 
2007 878 155 109 98 8 1248 
2006 667 94 82 69 3 915 
2005 522 107 95 81 5 810 
2004 768 152 101 138 4 1163 
2003 864 201 98 150 3 1316 
2002 962 156 162 113 0 1393 
2001 619 135 85 89 2 930 
2000 969 188 182 135 2 1476 
1999 974 198 153 132 0 1457 
1998 934 163 183 74 4 1358 
Total 10170 1960 1494 1337 37 14998 

 

              Notes: *“?” means blank data field 
                          1=Daylight, 2=Dawn/Dusk, 3=Night (lit), 4= Night (unlit) 
                          Source: ARI Accident Database 1998-2010 
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Table E-11. Year-wise double vehicle accidents vs road geometric condition 

Year Road Geometric Condition Total 1 2 3 4 5 ?* 
2010 634 47 14 16 0 0 711 
2009 817 78 12 14 7 7 935 
2008 1137 113 19 14 2 1 1286 
2007 1122 86 10 12 4 14 1248 
2006 839 61 6 5 0 4 915 
2005 731 58 5 13 1 2 810 
2004 1048 79 18 12 1 5 1163 
2003 1197 92 8 10 2 7 1316 
2002 1291 82 10 9 0 1 1393 
2001 834 71 14 9 2 0 930 
2000 1344 104 15 11 1 1 1476 
1999 1345 89 11 8 3 1 1457 
1998 1276 60 11 6 0 5 1358 
Total 13615 1020 153 139 23 48 14998 

 

      Notes: *“?” means blank data field 
                  1=Straight + Flat, 2=Curve only, 3=Slope only, 4=Curve + Slope, 5=Crest 
                  Source: ARI Accident Database 1998-2010 
 
 

Table E-12. Year-wise double vehicle accidents vs road surface condition 

Year Road Surface Condition Total 1 2 3 4 5 ?* 
2010 688 18 0 0 5 0 711 
2009 868 46 1 0 14 6 935 
2008 1221 53 0 2 8 2 1286 
2007 1153 66 4 0 10 15 1248 
2006 884 27 0 0 1 3 915 
2005 756 48 2 0 0 4 810 
2004 1095 62 0 0 2 4 1163 
2003 1229 76 0 2 6 3 1316 
2002 1324 63 1 0 4 1 1393 
2001 892 34 2 0 1 1 930 
2000 1404 61 4 1 5 1 1476 
1999 1395 58 0 0 4 0 1457 
1998 1314 38 1 0 0 5 1358 
Total 14223 650 15 5 60 45 14998 

 

       Notes: *“?” means blank data field 
                  1=Dry, 2=Wet, 3=Muddy, 4=Flooded, 5=Other 
                  Source: ARI Accident Database 1998-2010 
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Table E-13. Year-wise double vehicle accidents vs surface type 

Year Surface type Total 1 2 3 ?* 
2010 706 2 3 0 711 
2009 922 3 4 6 935 
2008 1273 7 4 2 1286 
2007 1231 5 1 11 1248 
2006 907 3 0 5 915 
2005 800 3 6 1 810 
2004 1148 11 2 2 1163 
2003 1303 7 2 4 1316 
2002 1384 7 1 1 1393 
2001 919 6 4 1 930 
2000 1454 12 9 1 1476 
1999 1443 9 5 0 1457 
1998 1346 4 3 5 1358 
Total 14836 79 44 39 14998 

 

                      Notes: *“?” means blank data field 
                                  1=Sealed, 2=Brick, 3=Earth 
                                  Source: ARI Accident Database 1998-2010 
 
 

Table E-14. Year-wise double vehicle accidents vs surface quality 

Year Surface Quality Total 1 2 3 ?* 
2010 689 12 10 0 711 
2009 884 35 10 6 935 
2008 1241 32 9 4 1286 
2007 1203 28 5 12 1248 
2006 879 19 12 5 915 
2005 782 15 8 5 810 
2004 1115 17 29 2 1163 
2003 1258 34 19 5 1316 
2002 1363 23 6 1 1393 
2001 893 26 9 2 930 
2000 1440 18 18 0 1476 
1999 1427 23 7 0 1457 
1998 1339 12 2 5 1358 
Total 14513 294 144 47 14998 

 

                      Notes: *“?” means blank data field 
                                  1=Good, 2=Rough, 3=Under repair 
                                  Source: ARI Accident Database 1998-2010 
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Table E-15. Year-wise double vehicle accidents vs road class 

Year Road Class Total 1 2 3 4 5 ?* 
2010 331 115 87 70 108 0 711 
2009 447 142 134 69 142 1 935 
2008 668 150 152 90 220 6 1286 
2007 570 173 213 58 231 3 1248 
2006 445 107 135 55 164 9 915 
2005 314 140 65 61 229 1 810 
2004 606 104 115 40 296 2 1163 
2003 630 167 152 61 304 2 1316 
2002 524 147 194 45 482 1 1393 
2001 343 120 135 49 281 2 930 
2000 595 154 173 47 506 1 1476 
1999 591 126 158 54 525 3 1457 
1998 397 103 101 31 718 8 1358 
Total 6461 1748 1814 730 4206 39 14998 

 

       Notes: *“?” means blank data field 
                  1=National, 2=Regional, 3=Feeder, 4=Rural road, 5=City 
                  Source: ARI Accident Database 1998-2010 
 
 

Table E-16. Year-wise double vehicle accidents vs road feature 

Year Road Feature Total 1 2 3 4 5 ?* 
2010 678 21 5 6 0 1 711 
2009 890 16 6 7 6 10 935 
2008 1231 23 10 8 4 10 1286 
2007 1177 23 2 10 4 32 1248 
2006 870 26 2 3 1 13 915 
2005 774 18 0 3 1 14 810 
2004 1111 20 10 12 3 7 1163 
2003 1267 23 8 9 4 5 1316 
2002 1347 24 8 11 1 2 1393 
2001 902 13 5 6 2 2 930 
2000 1436 25 2 8 1 4 1476 
1999 1421 15 7 9 4 1 1457 
1998 1316 22 3 5 2 10 1358 
Total 14420 269 68 97 33 111 14998 

 

       Notes: *“?” means blank data field 
                  1=None, 2=Bridge, 3=Culvert, 4=Narrowing/Restriction, 5=Speed breakers 
                  Source: ARI Accident Database 1998-2010 
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Table E-17. Year-wise double vehicle accidents vs road location 

Year Location Total 1 2 ?* 
2010 270 431 10 711 
2009 365 563 7 935 
2008 509 759 18 1286 
2007 506 712 30 1248 
2006 322 565 28 915 
2005 285 504 21 810 
2004 399 750 14 1163 
2003 447 855 14 1316 
2002 571 816 6 1393 
2001 368 559 3 930 
2000 654 816 6 1476 
1999 663 792 2 1457 
1998 828 519 11 1358 
Total 6187 8641 170 14998 

 

                              Notes: *“?” means blank data field 
                                          1=Urban area, 2=Rural area 
                                          Source: ARI Accident Database 1998-2010 
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APPENDIX-F 

 

Table F-1. Year-wise single vehicle accidents vs day of week 

 

Year Day of Week ?* 
1 2 3 4 5 6 7 Total 

2010 29 24 22 30 41 29 27 202 0 
2009 47 36 42 42 55 30 32 284 0 
2008 55 65 39 64 71 40 71 405 0 
2007 59 71 60 74 66 61 75 466 0 
2006 46 57 47 35 52 47 55 339 0 
2005 49 52 45 58 40 51 40 335 0 
2004 66 60 55 66 65 51 50 413 0 
2003 83 79 87 72 84 90 78 573 0 
2002 71 91 95 79 91 88 99 614 1 
2001 45 64 61 65 70 70 60 435 0 
2000 98 103 76 91 73 79 104 624 0 
1999 86 85 102 88 68 107 82 618 0 
1998 79 64 69 82 59 52 79 484 0 
Total 813 851 800 846 835 795 852 5792 1 

 

                                   Notes:  *“?” means blank data field 
                                                  1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 7=Sunday 
                                                Source: ARI Accident Database 1998-2010  
 



147 

 

 

 

Table F-2. Year-wise single vehicle accidents vs month of year 

 

Year           Month of Year           Total 
1 2 3 4 5 6 7 8 9 10 11 12 

2010 22 18 16 19 18 5 19 15 23 11 24 12 202 
2009 28 23 37 30 22 30 19 24 26 12 15 18 284 
2008 44 30 45 27 56 33 40 35 18 29 17 31 405 
2007 37 36 41 38 45 30 47 45 38 33 32 44 466 
2006 30 35 30 40 35 29 33 21 20 24 21 21 339 
2005 37 28 35 26 24 32 33 31 26 21 22 20 335 
2004 42 42 37 40 34 35 32 25 35 30 29 32 413 
2003 47 46 46 48 70 61 62 37 59 45 35 17 573 
2002 52 48 66 57 79 52 49 37 40 29 47 59 615 
2001 46 33 49 29 37 41 29 42 36 34 28 31 435 
2000 61 61 50 56 62 50 62 52 39 51 39 41 624 
1999 51 51 57 51 57 67 56 42 53 48 42 43 618 
1998 46 51 51 46 41 51 45 33 25 30 27 38 484 
Total 543 502 560 507 580 516 526 439 438 397 378 407 5793 

 

Notes: 1=January, 2=February, 3=March, 4=April, 5=May, 6=June, 7=July, 8=August, 9=September, 10=October, 11=November, 12=December 
            Source: ARI Accident Database 1998-2010 
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Table F-3. Year-wise single vehicle accidents vs time of occurrence 

 

Year 
Time of Occurrence 

Total 
00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 ?* 

2010 8 3 6 5 3 4 6 9 7 13 15 10 8 14 12 13 21 4 8 11 9 5 3 5 0 202 

2009 10 5 6 11 17 11 11 12 9 18 14 21 14 16 9 17 16 21 7 10 10 7 3 8 1 284 

2008 16 4 10 10 16 21 9 21 16 21 28 22 24 28 20 21 26 22 10 12 13 15 7 12 1 405 

2007 7 7 8 22 12 12 17 21 22 27 29 41 28 18 28 32 32 26 12 12 14 13 5 15 6 466 

2006 24 11 7 8 13 15 12 15 20 14 27 24 17 9 22 19 23 13 8 7 9 10 9 1 2 339 

2005 45 9 8 9 11 13 19 24 18 20 12 19 21 15 12 18 15 10 6 9 5 6 4 4 3 335 

2004 33 9 14 10 13 15 14 23 11 30 23 26 21 17 25 19 14 10 17 18 21 10 10 7 3 413 

2003 10 20 12 16 20 28 25 18 21 42 51 41 31 23 37 29 26 21 18 20 16 17 13 9 9 573 

2002 11 22 13 16 29 23 19 28 34 32 51 35 41 41 28 29 33 33 19 26 18 14 7 12 1 615 

2001 4 12 13 14 11 17 15 15 20 20 29 34 20 24 19 31 27 26 10 19 14 16 13 12 0 435 

2000 8 15 15 15 20 23 27 25 24 43 41 45 37 41 40 30 45 37 16 19 14 9 17 11 7 624 

1999 7 13 10 14 21 24 14 21 35 41 41 41 50 41 35 35 34 33 24 21 17 6 13 24 3 618 

1998 9 15 7 9 19 14 20 22 26 32 35 34 23 25 27 25 29 28 15 17 18 8 12 11 4 484 

Total 192 145 129 159 205 220 208 254 263 353 396 393 335 312 314 318 341 284 170 201 178 136 116 131 40 5793 

 

 Notes: *“?” means blank data field 
             Source: ARI Accident Database 1998-2010  
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Table F-4. Year-wise single vehicle accidents vs junction type 

 

Year       Junction Type       Total 
1 2 3 4 5 6 7 ?* 

2010 147 13 7 5 0 0 30 0 202 
2009 160 7 13 5 3 3 91 2 284 
2008 262 27 22 5 1 0 86 2 405 
2007 269 11 21 6 2 1 126 30 466 
2006 207 8 18 6 3 1 80 16 339 
2005 202 10 16 7 4 2 68 26 335 
2004 294 9 26 1 2 2 68 11 413 
2003 434 12 31 4 1 1 69 21 573 
2002 524 15 25 4 3 1 40 3 615 
2001 378 6 14 2 3 1 30 1 435 
2000 550 10 27 10 1 0 25 1 624 
1999 545 9 33 8 2 2 19 0 618 
1998 381 15 36 3 6 0 31 12 484 
Total 4353 152 289 66 31 14 763 125 5793 

 

 Notes: *“?” means blank data field 
          1=Not at junction, 2=Cross junction, 3=Tee junction, 4=Staggered tee junction, 5=Roundabouts, 6= Railway/level crossing, 7=Other 

            Source: ARI Accident Database 1998-2010  
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Table F-5. Year-wise single vehicle accidents vs traffic control system 

 

Year       Traffic Control        Total 
1 2 3 4 5 6 7 8 ?* 

2010 161 2 0 9 4 0 0 26 0 202 
2009 232 2 1 4 3 2 2 34 4 284 
2008 314 4 2 11 3 4 2 58 7 405 
2007 327 5 0 18 2 1 2 86 25 466 
2006 259 5 2 13 6 2 1 40 11 339 
2005 252 7 2 13 6 5 3 36 11 335 
2004 336 2 1 8 8 7 3 39 9 413 
2003 492 10 3 17 3 2 0 38 8 573 
2002 536 8 3 19 6 4 1 36 2 615 
2001 387 6 1 8 5 4 4 19 1 435 
2000 562 10 1 16 4 6 1 24 0 624 
1999 554 20 0 14 1 12 4 13 0 618 
1998 382 19 0 11 2 25 2 27 16 484 
Total 4794 100 16 161 53 74 25 476 94 5793 

 

Notes: *“?” means blank data field 
            1=No control, 2=Centerline marking, 3=Pedestrian crossing, 4=Police controlled, 5=Traffic lights, 6=Police + Traffic lights, 7=Stop/Give 
            way sign, 8=Other 
            Source: ARI Accident Database 1998-2010 
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Table F-6. Year-wise single vehicle accidents vs traffic collision type 

 

Year           Collision Type           Total 
1 2 3 4 5 6 7 8 9 10 11 ?* 

2010 4 7 0 4 125 8 24 0 0 0 30 0 202 
2009 8 8 1 5 166 10 36 5 0 0 45 0 284 
2008 15 19 2 12 220 15 56 1 0 0 64 1 405 
2007 8 23 2 21 242 24 45 6 0 3 90 2 466 
2006 12 16 2 13 164 20 47 4 0 1 57 3 339 
2005 5 12 2 14 159 22 54 4 0 2 58 3 335 
2004 15 12 0 28 219 9 49 2 0 1 74 4 413 
2003 8 8 0 12 342 13 84 5 0 3 94 4 573 
2002 5 8 0 10 372 22 87 11 0 1 99 0 615 
2001 7 7 0 5 253 13 56 3 0 1 90 0 435 
2000 2 3 0 6 328 21 108 3 0 2 151 0 624 
1999 6 8 0 12 334 26 112 1 0 1 118 0 618 
1998 7 13 0 9 257 23 64 3 0 3 100 5 484 
Total 102 144 9 151 3181 226 822 48 0 18 1070 22 5793 

 

Notes: *“?” means blank data field 
            1=Head on, 2=Rear end, 3=Right angle, 4=Side swipe, 5=Overturn, 6=Hit object in road, 7=Hit object off road, 8=Hit parked vehicle, 
            9=Hit pedestrian, 10=Hit animal, 11=Other  
            Source: ARI Accident Database 1998-2010 
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Table F-7. Year-wise single vehicle accidents vs traffic movement 

Year Traffic Movement Total 
1 2 ?* 

2010 16 186 0 202 
2009 30 250 4 284 
2008 60 342 3 405 
2007 129 322 15 466 
2006 60 275 4 339 
2005 44 283 8 335 
2004 56 350 7 413 
2003 68 500 5 573 
2002 36 579 0 615 
2001 18 417 0 435 
2000 31 593 0 624 
1999 22 595 1 618 
1998 31 452 1 484 
Total 601 5144 48 5793 

 

                              Notes: *“?” means blank data field 
                                          1=1-Way street, 2=2-Way street 
                                          Source: ARI Accident Database 1998-2010 
 
 

Table F-8. Year-wise single vehicle accidents vs presence of divider in roads 

Year Presence of Divider Total 1 2 ?* 
2010 24 178 0 202 
2009 20 259 5 284 
2008 46 351 8 405 
2007 56 380 30 466 
2006 43 282 14 339 
2005 38 279 18 335 
2004 47 343 23 413 
2003 44 508 21 573 
2002 67 548 0 615 
2001 45 390 0 435 
2000 73 550 1 624 
1999 59 557 2 618 
1998 81 398 5 484 
Total 643 5023 127 5793 

 

                              Notes: *“?” means blank data field 
                                          1=Yes, 2=No 
                                          Source: ARI Accident Database 1998-2010  
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Table F-9. Year-wise single vehicle accidents vs weather condition 

Year Weather Condition Total 
1 2 3 4 ?* 

2010 191 5 0 6 0 202 
2009 258 14 0 12 0 284 
2008 361 25 1 18 0 405 
2007 416 33 2 9 6 466 
2006 309 12 2 13 3 339 
2005 302 20 1 9 3 335 
2004 374 26 0 13 0 413 
2003 500 50 4 18 1 573 
2002 541 53 1 20 0 615 
2001 395 30 0 10 0 435 
2000 569 40 2 13 0 624 
1999 557 46 3 12 0 618 
1998 440 29 0 14 1 484 
Total 5213 383 16 167 14 5793 

 

               Notes: *“?” means blank data field 
                          1=Fair, 2=Rain, 3=Wind, 4=Fog 
                          Source: ARI Accident Database 1998-2010 
 
 

Table F-10. Year-wise single vehicle accidents vs light condition 

Year Light Condition Total 
1 2 3 4 ?* 

2010 132 30 7 33 0 202 
2009 180 42 19 41 2 284 
2008 288 55 18 43 1 405 
2007 319 49 34 54 10 466 
2006 224 44 21 45 5 339 
2005 201 72 16 43 3 335 
2004 237 77 31 66 2 413 
2003 351 104 31 84 3 573 
2002 388 96 37 94 0 615 
2001 258 70 20 87 0 435 
2000 413 95 38 78 0 624 
1999 410 83 31 94 0 618 
1998 316 61 35 69 3 484 
Total 3717 878 338 831 29 5793 

 

              Notes: *“?” means blank data field 
                          1=Daylight, 2=Dawn/Dusk, 3=Night (lit), 4= Night (unlit) 
                          Source: ARI Accident Database 1998-2010  
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Table F-11. Year-wise single vehicle accidents vs road geometric condition 

Year Road Geometric Condition Total 1 2 3 4 5 ?* 
2010 168 22 3 7 2 0 202 
2009 229 25 6 18 4 2 284 
2008 307 46 21 25 5 1 405 
2007 381 42 15 12 5 11 466 
2006 276 40 8 8 2 5 339 
2005 257 34 11 13 14 6 335 
2004 355 27 9 13 7 2 413 
2003 494 49 6 16 5 3 573 
2002 534 53 13 5 8 2 615 
2001 356 48 18 9 4 0 435 
2000 521 57 20 19 7 0 624 
1999 508 57 27 17 9 0 618 
1998 393 50 17 14 7 3 484 
Total 4779 550 174 176 79 35 5793 

 

       Notes: *“?” means blank data field 
                  1=Straight + Flat, 2=Curve only, 3=Slope only, 4=Curve + Slope, 5=Crest 
                  Source: ARI Accident Database 1998-2010 
 
 

Table F-12. Year-wise single vehicle accidents vs road surface condition 

Year Road Surface Condition Total 1 2 3 4 5 ?* 
2010 185 8 0 0 9 0 202 
2009 254 18 1 1 7 3 284 
2008 358 36 3 0 8 0 405 
2007 418 31 3 1 5 8 466 
2006 311 17 3 1 2 5 339 
2005 304 15 5 1 3 7 335 
2004 382 22 3 0 5 1 413 
2003 510 53 5 0 3 2 573 
2002 545 62 2 0 4 2 615 
2001 400 31 1 0 3 0 435 
2000 575 40 3 0 6 0 624 
1999 560 51 3 1 3 0 618 
1998 440 35 4 0 3 2 484 
Total 5242 419 36 5 61 30 5793 

 

       Notes: *“?” means blank data field 
                  1=Dry, 2=Wet, 3=Muddy, 4=Flooded, 5=Other 
                  Source: ARI Accident Database 1998-2010 
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Table F-13. Year-wise single vehicle accidents vs surface type 

Year Surface type Total 1 2 3 ?* 
2010 194 4 4 0 202 
2009 265 7 10 2 284 
2008 388 8 9 0 405 
2007 439 13 5 9 466 
2006 314 9 11 5 339 
2005 316 8 7 4 335 
2004 390 9 13 1 413 
2003 545 11 13 4 573 
2002 587 15 11 2 615 
2001 418 7 10 0 435 
2000 593 18 12 1 624 
1999 595 11 12 0 618 
1998 460 12 11 1 484 
Total 5504 132 128 29 5793 

 

                      Notes: *“?” means blank data field 
                                  1=Sealed, 2=Brick, 3=Earth 
                                  Source: ARI Accident Database 1998-2010 
 
 

Table F-14. Year-wise single vehicle accidents vs surface quality 

Year Surface Quality Total 1 2 3 ?* 
2010 183 16 3 0 202 
2009 260 14 8 2 284 
2008 357 37 9 2 405 
2007 417 27 11 11 466 
2006 307 19 7 6 339 
2005 286 36 8 5 335 
2004 360 22 29 2 413 
2003 504 42 23 4 573 
2002 544 49 20 2 615 
2001 390 34 10 1 435 
2000 569 36 19 0 624 
1999 571 38 9 0 618 
1998 449 28 6 1 484 
Total 5197 398 162 36 5793 

 

                      Notes: *“?” means blank data field 
                                  1=Good, 2=Rough, 3=Under repair 
                                  Source: ARI Accident Database 1998-2010 
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Table F-15. Year-wise single vehicle accidents vs road class 

Year Road Class Total 1 2 3 4 5 ?* 
2010 73 41 34 31 23 0 202 
2009 123 39 54 47 21 0 284 
2008 180 58 77 66 24 0 405 
2007 209 54 109 52 42 0 466 
2006 150 39 66 42 39 3 339 
2005 153 48 55 50 28 1 335 
2004 207 64 67 36 36 3 413 
2003 268 97 108 52 43 5 573 
2002 250 86 152 56 71 0 615 
2001 180 62 94 49 49 1 435 
2000 251 76 151 57 88 1 624 
1999 274 104 128 40 71 1 618 
1998 165 64 93 52 105 5 484 
Total 2483 832 1188 630 640 20 5793 

 

       Notes: *“?” means blank data field 
                  1=National, 2=Regional, 3=Feeder, 4=Rural road, 5=City 
                  Source: ARI Accident Database 1998-2010 
 
 

Table F-16. Year-wise single vehicle accidents vs road feature 

Year Road Feature Total 1 2 3 4 5 ?* 
2010 192 7 1 1 1 0 202 
2009 263 9 2 5 3 2 284 
2008 368 14 6 12 3 2 405 
2007 427 10 7 4 0 18 466 
2006 309 12 5 5 0 8 339 
2005 293 10 7 10 0 15 335 
2004 382 12 5 10 1 3 413 
2003 533 15 7 12 3 3 573 
2002 574 12 10 16 2 1 615 
2001 400 15 9 8 3 0 435 
2000 578 22 9 12 3 0 624 
1999 578 20 8 8 2 2 618 
1998 451 11 4 12 0 6 484 
Total 5348 169 80 115 21 60 5793 

 

      Notes: *“?” means blank data field 
                  1=None, 2=Bridge, 3=Culvert, 4=Narrowing/Restriction, 5=Speed breakers 
                  Source: ARI Accident Database 1998-2010 
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Table F-17. Year-wise single vehicle accidents vs road location 

Year Location Total 1 2 ?* 
2010 54 147 1 202 
2009 60 221 3 284 
2008 99 301 5 405 
2007 134 313 19 466 
2006 82 240 17 339 
2005 46 274 15 335 
2004 66 341 6 413 
2003 85 483 5 573 
2002 102 511 2 615 
2001 70 360 5 435 
2000 136 486 2 624 
1999 103 512 3 618 
1998 128 349 7 484 
Total 1165 4538 90 5793 

 

                              Notes: *“?” means blank data field 
                                          1=Urban area, 2=Rural area 
                                          Source: ARI Accident Database 1998-2010 
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APPENDIX-G 

 

Table G-1. Year-wise multi vehicle accidents vs day of week 

 

Year Day of Week ?* 
1 2 3 4 5 6 7 Total 

2010 1 0 0 3 6 2 5 17 0 
2009 3 2 1 4 3 3 3 19 0 
2008 2 0 2 2 3 1 0 10 0 
2007 3 1 1 1 1 1 2 10 0 
2006 1 1 1 1 1 0 0 5 0 
2005 1 2 2 0 1 2 0 8 0 
2004 3 3 4 4 4 4 3 25 0 
2003 2 1 1 2 3 1 4 14 0 
2002 0 1 2 1 0 0 2 6 0 
2001 1 3 1 1 2 0 1 9 0 
2000 2 3 4 3 1 3 2 18 0 
1999 5 2 2 6 4 5 3 27 0 
1998 5 5 7 3 4 5 9 38 0 
Total 29 24 28 31 33 27 34 206 0 

 

                                    Notes:  *“?” means blank data field 
                                                  1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday, 6=Saturday, 7=Sunday 
                                                Source: ARI Accident Database 1998-2010  
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Table G-2. Year-wise multi vehicle accidents vs month of year 

 

Year           Month of Year           Total 
1 2 3 4 5 6 7 8 9 10 11 12 

2010 0 2 1 3 2 3 1 1 2 2 0 0 17 
2009 1 1 1 1 0 2 3 3 3 2 0 2 19 
2008 1 0 2 1 0 0 2 2 0 1 1 0 10 
2007 0 0 3 3 0 1 0 0 0 1 1 1 10 
2006 0 2 0 1 1 0 0 0 0 0 0 1 5 
2005 1 1 1 1 2 0 1 1 0 0 0 0 8 
2004 4 2 0 3 1 5 0 1 0 2 2 5 25 
2003 2 1 1 1 1 1 1 2 0 2 2 0 14 
2002 0 0 1 1 0 0 0 1 0 1 2 0 6 
2001 0 0 1 0 0 0 0 1 2 2 1 2 9 
2000 2 0 7 2 0 1 0 1 3 0 1 1 18 
1999 1 4 2 3 1 1 1 4 0 3 5 2 27 
1998 3 2 1 2 4 6 2 5 2 4 4 3 38 
Total 15 15 21 22 12 20 11 22 12 20 19 17 206 

 

Notes: 1=January, 2=February, 3=March, 4=April, 5=May, 6=June, 7=July, 8=August, 9=September, 10=October, 11=November, 12=December 
            Source: ARI Accident Database 1998-2010 
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Table G-3. Year-wise multi vehicle accidents vs time of occurrence 

 

Year 
Time of Occurrence 

Total 
00-01 01-02 02-03 03-04 04-05 05-06 06-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24 ?* 

2010 0 0 0 0 2 0 0 0 1 0 1 1 1 2 1 1 1 1 1 1 1 1 0 1 0 17 

2009 0 1 1 0 0 1 0 1 0 0 1 1 3 3 0 1 2 0 1 0 0 0 0 3 0 19 

2008 0 0 0 0 0 1 0 0 0 1 3 0 0 1 0 0 1 2 0 0 0 1 0 0 0 10 

2007 2 0 1 1 0 0 0 0 0 1 0 0 2 0 1 1 0 1 0 0 0 0 0 0 0 10 

2006 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 5 

2005 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 2 1 0 0 0 0 0 0 8 

2004 3 0 0 1 0 0 1 0 3 3 3 0 6 1 1 0 2 0 1 0 0 0 0 0 0 25 

2003 0 0 0 1 0 0 1 0 2 1 1 1 2 0 3 1 0 0 0 0 0 0 0 1 0 14 

2002 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 2 0 0 0 0 0 6 

2001 0 0 0 0 0 0 0 1 1 0 1 0 3 1 0 0 0 0 1 0 0 1 0 0 0 9 

2000 0 1 0 1 1 0 1 1 0 0 2 2 2 1 1 0 0 1 1 0 1 0 1 1 0 18 

1999 0 0 1 0 0 2 0 1 1 2 1 0 2 0 2 2 3 0 3 3 1 2 0 1 0 27 

1998 0 0 0 1 0 0 1 1 1 4 4 5 4 5 3 0 2 1 1 1 1 1 2 0 0 38 

Total 6 3 3 5 3 5 5 7 10 12 19 11 25 15 12 7 13 8 10 7 4 6 3 7 0 206 

 

  Notes: *“?” means blank data field 
             Source: ARI Accident Database 1998-2010   
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Table G-4. Year-wise multi vehicle accidents vs junction type 

 

Year       Junction Type       Total 
1 2 3 4 5 6 7 ?* 

2010 13 3 1 0 0 0 0 0 17 
2009 7 4 5 0 0 0 3 0 19 
2008 7 1 0 0 1 0 1 0 10 
2007 9 0 0 0 0 0 1 0 10 
2006 3 1 1 0 0 0 0 0 5 
2005 5 0 0 0 0 2 0 1 8 
2004 16 2 4 0 1 0 1 1 25 
2003 6 1 4 0 0 0 2 1 14 
2002 4 0 1 0 0 1 0 0 6 
2001 8 0 1 0 0 0 0 0 9 
2000 10 2 6 0 0 0 0 0 18 
1999 17 4 5 0 1 0 0 0 27 
1998 24 3 6 0 3 2 0 0 38 
Total 129 21 34 0 6 5 8 3 206 

 

Notes: *“?” means blank data field 
          1=Not at junction, 2=Cross junction, 3=Tee junction, 4=Staggered tee junction, 5=Roundabouts, 6= Railway/level crossing, 7=Other 

            Source: ARI Accident Database 1998-2010  
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Table G-5. Year-wise multi vehicle accidents vs traffic control system 

 

Year       Traffic Control        Total 
1 2 3 4 5 6 7 8 ?* 

2010 14 0 0 3 0 0 0 0 0 17 
2009 10 0 0 5 2 1 0 1 0 19 
2008 7 0 0 1 0 0 1 0 1 10 
2007 10 0 0 0 0 0 0 0 0 10 
2006 5 0 0 0 0 0 0 0 0 5 
2005 6 0 0 1 0 1 0 0 0 8 
2004 20 1 0 2 0 1 0 1 0 25 
2003 7 1 0 3 0 3 0 0 0 14 
2002 5 0 0 0 0 0 0 1 0 6 
2001 7 1 0 0 0 1 0 0 0 9 
2000 14 1 0 0 0 3 0 0 0 18 
1999 19 0 0 0 0 7 0 1 0 27 
1998 24 4 0 5 0 5 0 0 0 38 
Total 148 8 0 20 2 22 1 4 1 206 

 

Notes: *“?” means blank data field 
            1=No control, 2=Centerline marking, 3=Pedestrian crossing, 4=Police controlled, 5=Traffic lights, 6=Police + Traffic lights, 7=Stop/Give 
            way sign, 8=Other 
            Source: ARI Accident Database 1998-2010 
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Table G-6. Year-wise multi vehicle accidents vs traffic collision type 

 

Year           Collision Type           Total 
1 2 3 4 5 6 7 8 9 10 11 ?* 

2010 8 7 0 1 0 0 0 1 0 0 0 0 17 
2009 6 8 0 1 0 1 0 1 0 1 1 0 19 
2008 2 6 0 1 0 0 0 1 0 0 0 0 10 
2007 3 4 0 2 1 0 0 0 0 0 0 0 10 
2006 1 3 0 1 0 0 0 0 0 0 0 0 5 
2005 1 7 0 0 0 0 0 0 0 0 0 0 8 
2004 10 8 1 1 0 0 0 4 0 0 1 0 25 
2003 4 6 0 0 1 0 0 3 0 0 0 0 14 
2002 1 5 0 0 0 0 0 0 0 0 0 0 6 
2001 3 6 0 0 0 0 0 0 0 0 0 0 9 
2000 5 7 2 3 0 0 0 1 0 0 0 0 18 
1999 2 20 0 4 0 0 0 1 0 0 0 0 27 
1998 7 18 1 8 0 1 0 3 0 0 0 0 38 
Total 53 105 4 22 2 2 0 15 0 1 2 0 206 

 

Notes: *“?” means blank data field 
            1=Head on, 2=Rear end, 3=Right angle, 4=Side swipe, 5=Overturn, 6=Hit object in road, 7=Hit object off road, 8=Hit parked vehicle, 
            9=Hit pedestrian, 10=Hit animal, 11=Other  
            Source: ARI Accident Database 1998-2010 
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Table G-7. Year-wise multi vehicle accidents vs traffic movement 

Year Traffic Movement Total 
1 2 ?* 

2010 1 16 0 17 
2009 7 12 0 19 
2008 4 6 0 10 
2007 1 9 0 10 
2006 1 4 0 5 
2005 0 8 0 8 
2004 1 24 0 25 
2003 1 13 0 14 
2002 1 5 0 6 
2001 0 9 0 9 
2000 1 17 0 18 
1999 0 27 0 27 
1998 3 35 0 38 
Total 21 185 0 206 

 

                              Notes: *“?” means blank data field 
                                          1=1-Way street, 2=2-Way street 
                                          Source: ARI Accident Database 1998-2010 

 
 

Table G-8. Year-wise multi vehicle accidents vs presence of divider in roads 

Year Presence of Divider Total 1 2 ?* 
2010 6 11 0 17 
2009 9 10 0 19 
2008 4 6 0 10 
2007 3 7 0 10 
2006 2 3 0 5 
2005 5 3 0 8 
2004 6 16 3 25 
2003 8 5 1 14 
2002 4 2 0 6 
2001 5 4 0 9 
2000 7 11 0 18 
1999 16 11 0 27 
1998 22 16 0 38 
Total 97 105 4 206 

 

                              Notes: *“?” means blank data field 
                                          1=Yes, 2=No 
                                          Source: ARI Accident Database 1998-2010  
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Table G-9. Year-wise multi vehicle accidents vs weather condition 

Year Weather Condition Total 
1 2 3 4 ?* 

2010 17 0 0 0 0 17 
2009 17 1 0 1 0 19 
2008 10 0 0 0 0 10 
2007 8 1 0 1 0 10 
2006 3 1 0 1 0 5 
2005 8 0 0 0 0 8 
2004 24 1 0 0 0 25 
2003 13 0 0 1 0 14 
2002 6 0 0 0 0 6 
2001 9 0 0 0 0 9 
2000 16 1 0 1 0 18 
1999 25 2 0 0 0 27 
1998 37 0 0 1 0 38 
Total 193 7 0 6 0 206 

 

              Notes: *“?” means blank data field 
                          1=Fair, 2=Rain, 3=Wind, 4=Fog 
                          Source: ARI Accident Database 1998-2010 
 
 

Table G-10. Year-wise multi vehicle accidents vs light condition 

Year Light Condition Total 
1 2 3 4 ?* 

2010 11 2 3 1 0 17 
2009 11 2 4 2 0 19 
2008 7 1 1 1 0 10 
2007 8 0 1 1 0 10 
2006 2 3 0 0 0 5 
2005 7 1 0 0 0 8 
2004 19 4 0 2 0 25 
2003 11 1 1 1 0 14 
2002 5 0 1 0 0 6 
2001 7 1 1 0 0 9 
2000 10 3 3 2 0 18 
1999 15 7 5 0 0 27 
1998 31 2 5 0 0 38 
Total 144 27 25 10 0 206 

 

              Notes: *“?” means blank data field 
                          1=Daylight, 2=Dawn/Dusk, 3=Night (lit), 4= Night (unlit) 
                          Source: ARI Accident Database 1998-2010  
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Table G-11. Year-wise multi vehicle accidents vs road geometric condition 

Year Road Geometric Condition Total 1 2 3 4 5 ?* 
2010 14 2 1 0 0 0 17 
2009 15 4 0 0 0 0 19 
2008 7 1 1 1 0 0 10 
2007 10 0 0 0 0 0 10 
2006 5 0 0 0 0 0 5 
2005 7 1 0 0 0 0 8 
2004 24 0 1 0 0 0 25 
2003 13 1 0 0 0 0 14 
2002 5 1 0 0 0 0 6 
2001 9 0 0 0 0 0 9 
2000 16 2 0 0 0 0 18 
1999 27 0 0 0 0 0 27 
1998 37 1 0 0 0 0 38 
Total 189 13 3 1 0 0 206 

 

       Notes: *“?” means blank data field 
                  1=Straight + Flat, 2=Curve only, 3=Slope only, 4=Curve + Slope, 5=Crest 
                  Source: ARI Accident Database 1998-2010 
 
 

Table G-12. Year-wise multi vehicle accidents vs road surface condition 

Year Road Surface Condition Total 1 2 3 4 5 ?* 
2010 17 0 0 0 0 0 17 
2009 18 1 0 0 0 0 19 
2008 10 0 0 0 0 0 10 
2007 9 1 0 0 0 0 10 
2006 5 0 0 0 0 0 5 
2005 8 0 0 0 0 0 8 
2004 24 1 0 0 0 0 25 
2003 14 0 0 0 0 0 14 
2002 6 0 0 0 0 0 6 
2001 9 0 0 0 0 0 9 
2000 17 1 0 0 0 0 18 
1999 25 2 0 0 0 0 27 
1998 38 0 0 0 0 0 38 
Total 200 6 0 0 0 0 206 

 

       Notes: *“?” means blank data field 
                  1=Dry, 2=Wet, 3=Muddy, 4=Flooded, 5=Other 
                  Source: ARI Accident Database 1998-2010 
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Table G-13. Year-wise multi vehicle accidents vs surface type 

Year Surface type Total 1 2 3 ?* 
2010 17 0 0 0 17 
2009 19 0 0 0 19 
2008 10 0 0 0 10 
2007 10 0 0 0 10 
2006 5 0 0 0 5 
2005 8 0 0 0 8 
2004 25 0 0 0 25 
2003 14 0 0 0 14 
2002 6 0 0 0 6 
2001 9 0 0 0 9 
2000 18 0 0 0 18 
1999 27 0 0 0 27 
1998 38 0 0 0 38 
Total 206 0 0 0 206 

 

                      Notes: *“?” means blank data field 
                                  1=Sealed, 2=Brick, 3=Earth 
                                  Source: ARI Accident Database 1998-2010 
 
 

Table G-14. Year-wise multi vehicle accidents vs surface quality 

Year Surface Quality Total 1 2 3 ?* 
2010 17 0 0 0 17 
2009 19 0 0 0 19 
2008 10 0 0 0 10 
2007 10 0 0 0 10 
2006 5 0 0 0 5 
2005 8 0 0 0 8 
2004 25 0 0 0 25 
2003 14 0 0 0 14 
2002 6 0 0 0 6 
2001 9 0 0 0 9 
2000 18 0 0 0 18 
1999 27 0 0 0 27 
1998 38 0 0 0 38 
Total 206 0 0 0 206 

 

                      Notes: *“?” means blank data field 
                                  1=Good, 2=Rough, 3=Under repair 
                                  Source: ARI Accident Database 1998-2010 
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Table G-15. Year-wise multi vehicle accidents vs road class 

Year Road Class Total 1 2 3 4 5 ?* 
2010 11 2 0 0 4 0 17 
2009 12 0 1 0 6 0 19 
2008 5 1 0 0 4 0 10 
2007 7 0 1 0 2 0 10 
2006 3 0 2 0 0 0 5 
2005 2 1 0 0 5 0 8 
2004 20 1 0 0 4 0 25 
2003 4 1 0 0 9 0 14 
2002 1 0 0 0 5 0 6 
2001 2 0 0 0 7 0 9 
2000 6 0 0 0 12 0 18 
1999 0 2 0 0 25 0 27 
1998 6 0 1 0 31 0 38 
Total 79 8 5 0 114 0 206 

 

       Notes: *“?” means blank data field 
                  1=National, 2=Regional, 3=Feeder, 4=Rural road, 5=City 
                  Source: ARI Accident Database 1998-2010 
 
 

Table G-16. Year-wise multi vehicle accidents vs road feature 

Year Road Feature Total 1 2 3 4 5 ?* 
2010 16 0 0 0 1 0 17 
2009 18 1 0 0 0 0 19 
2008 9 0 0 1 0 0 10 
2007 10 0 0 0 0 0 10 
2006 4 0 0 0 0 1 5 
2005 8 0 0 0 0 0 8 
2004 23 1 1 0 0 0 25 
2003 14 0 0 0 0 0 14 
2002 6 0 0 0 0 0 6 
2001 9 0 0 0 0 0 9 
2000 18 0 0 0 0 0 18 
1999 27 0 0 0 0 0 27 
1998 38 0 0 0 0 0 38 
Total 200 2 1 1 1 1 206 

 

      Notes: *“?” means blank data field 
                  1=None, 2=Bridge, 3=Culvert, 4=Narrowing/Restriction, 5=Speed breakers 
                  Source: ARI Accident Database 1998-2010 
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Table G-17. Year-wise multi vehicle accidents vs road location 

Year Location Total 1 2 ?* 
2010 11 5 1 17 
2009 12 6 1 19 
2008 6 4 0 10 
2007 3 7 0 10 
2006 1 3 1 5 
2005 5 3 0 8 
2004 8 17 0 25 
2003 10 4 0 14 
2002 5 1 0 6 
2001 7 2 0 9 
2000 13 5 0 18 
1999 26 1 0 27 
1998 33 4 1 38 
Total 140 62 4 206 

 

                              Notes: *“?” means blank data field 
                                          1=Urban area, 2=Rural area 
                                          Source: ARI Accident Database 1998-2010 
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APPENDIX-H 

 

 

Table H-1. Summary of variable importance for pedestrian accidents cluster 1 

 

Variable Mean Decrease Accuracy 
RdClassM 26.9062199 
LightM 26.83743161 
CollTypeM 23.72993413 
LocatTypeM 22.5120291 
Time_SQL 16.75631434 
DividerM 16.58498867 
MovM 13.00608565 
No_DrvCasu 12.6085845 
TrafficContrlM 12.25567782 
JuncTypeM 8.86385692 
No_PedCasu 7.99961349 
Rd_GeoM 6.871664663 
No_VehInv 6.319291629 
RdFeatuM 4.848950542 
Month 4.674958225 
Surf_QualM 4.659464214 
No_PassCasu 4.64026838 
Surf_TypeM 3.141168447 
WeatherM 3.043011884 
Surf_CondM 1.674016489 
Day 0.940054443 
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Table H-2. Summary of variable importance for pedestrian accidents cluster 2 

 

Variable Mean Decrease Accuracy 
LocatTypeM 8.934941283 
No_PedCasu 8.269677705 
TrafficContrlM 5.746201222 
RdClassM 4.269378045 
JuncTypeM 4.148095324 
Month 2.385018256 
DividerM 2.225364847 
WeatherM 1.895197068 
Time_SQL 1.8325482 
Rd_GeoM 1.46896939 
Surf_TypeM 1.356936071 
Day 0.705877594 
No_VehInv 0 
No_DrvCasu 0 
No_PassCasu 0 
RdFeatuM -0.305323702 
Surf_QualM -0.336914902 
MovM -0.491608575 
CollTypeM -0.851432457 
Surf_CondM -1.009755478 
LightM -1.305656273 
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Table H-3. Summary of variable importance for pedestrian accidents cluster 3 

 

Variable Mean Decrease Accuracy 
TrafficContrlM 4.783570879 
Time_SQL 2.558916581 
Day 2.483832145 
JuncTypeM 1.733000617 
Month 1.720957291 
RdClassM 1.268245094 
Surf_TypeM 1.155791833 
WeatherM 1.055525191 
No_DrvCasu 1.001001503 
LightM 0.968222877 
Surf_CondM 0.735977243 
MovM 0.527484146 
Surf_QualM 0.364850445 
No_PedCasu 0.096436748 
RdFeatuM 0.001048796 
No_VehInv 0 
No_PassCasu 0 
DividerM -0.034176147 
LocatTypeM -1.245013484 
CollTypeM -1.739744352 
Rd_GeoM -2.06444957 
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Table H-4. Summary of variable importance for pedestrian accidents cluster 4 

 

Variable Mean Decrease Accuracy 
JuncTypeM 9.237595977 
Month 5.463137275 
Time_SQL 5.133861743 
Day 4.449203544 
No_DrvCasu 3.766832455 
RdClassM 3.237877133 
TrafficContrlM 3.188050255 
CollTypeM 2.881890016 
No_VehInv 2.562102166 
No_PassCasu 2.332402853 
DividerM 1.913509419 
LocatTypeM 1.908486738 
Surf_CondM 1.75696986 
Rd_GeoM 1.754408227 
LightM 1.477500111 
No_PedCasu 0.998180088 
RdFeatuM -0.322919388 
WeatherM -0.390519321 
Surf_QualM -0.507383819 
MovM -2.435402268 
Surf_TypeM -4.32681388 
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Table H-5. Summary of variable importance for double vehicle accidents cluster 1 

 

Variable Mean Decrease Accuracy 
No_PassCasu 22.64081763 
No_DrvCasu 22.12735771 
Rd_GeoM 10.30768083 
LightM 6.152270616 
CollTypeM 6.039192418 
Surf_TypeM 5.525508339 
TrafficContrlM 4.80883211 
Time_SQL 3.902070387 
RdClassM 3.805565585 
Surf_CondM 3.136800618 
Month 2.933717775 
Day 2.930634923 
JuncTypeM 2.199479313 
LocatTypeM 1.454540657 
Surf_QualM 1.137793456 
DividerM 0.094012485 
No_VehInv 0 
No_PedCasu 0 
MovM -0.903885376 
WeatherM -1.013491735 
RdFeatuM -2.593078695 
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Table H-6. Summary of variable importance for double vehicle accidents cluster 4 

 

Variable Mean Decrease Accuracy 
No_DrvCasu 5.851814411 
No_PassCasu 4.344697098 
RdClassM 3.184766888 
CollTypeM 3.148147297 
Surf_CondM 2.011488866 
LocatTypeM 1.615001565 
Rd_GeoM 1.532404265 
LightM 1.119473278 
Surf_QualM 0.913590845 
DividerM 0.430048576 
JuncTypeM 0.410031189 
No_VehInv 0 
No_PedCasu 0 
MovM -0.34708825 
Surf_TypeM -0.369043765 
WeatherM -0.491501564 
Month -0.567723234 
Day -0.813846022 
TrafficContrlM -1.010855469 
RdFeatuM -1.030854857 
Time_SQL -1.472380002 
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Table H-7. Summary of variable importance for single vehicle accidents cluster 1 

 

Variable Mean Decrease Accuracy 
No_PassCasu 43.41367245 
No_DrvCasu 21.42364882 
CollTypeM 8.697937388 
Time_SQL 6.70632163 
LightM 6.407632429 
Rd_GeoM 6.195833895 
TrafficContrlM 4.119314096 
JuncTypeM 3.779245973 
WeatherM 2.197300965 
Day 2.002030734 
Month 1.50351611 
Surf_TypeM 1.232597633 
LocatTypeM 0.536435165 
Surf_CondM 0.223043916 
Surf_QualM 0.203889904 
No_VehInv 0 
No_PedCasu 0 
RdClassM -0.535777258 
RdFeatuM -1.494540202 
DividerM -1.662103406 
MovM -2.639128796 
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Table H-8. Summary of variable importance for single vehicle accidents cluster 3 

 

Variable Mean Decrease Accuracy 
Day 4.790790311 
Surf_TypeM 4.09891818 
LightM 3.497018816 
JuncTypeM 3.413011471 
No_PassCasu 2.836218648 
WeatherM 2.282952542 
RdFeatuM 1.915971568 
Surf_CondM 1.854059589 
Surf_QualM 1.457035957 
Month 1.388462211 
Rd_GeoM 1.165519654 
RdClassM 1.121842407 
Time_SQL 0.879376819 
TrafficContrlM 0.443102569 
LocatTypeM 0.351178253 
No_VehInv 0 
No_PedCasu 0 
MovM -0.008413672 
CollTypeM -0.719038396 
No_DrvCasu -1.154396285 
DividerM -1.165600468 
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Table H-9. Summary of variable importance for single vehicle accidents cluster 4 

 

Variable Mean Decrease Accuracy 
No_PassCasu 6.735444514 
CollTypeM 5.53668368 
MovM 4.982673333 
No_DrvCasu 4.056968574 
Surf_CondM 3.452905007 
Month 3.279688221 
Day 2.678137594 
JuncTypeM 2.391014548 
DividerM 2.318354462 
WeatherM 1.667910494 
Surf_QualM 1.15267288 
Time_SQL 1.086494071 
LocatTypeM 0.394505082 
No_VehInv 0 
No_PedCasu 0 
LightM -0.210289317 
TrafficContrlM -0.424045592 
Rd_GeoM -0.506852453 
RdClassM -0.689719124 
RdFeatuM -0.799988131 
Surf_TypeM -1.33869404 
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Table H-10. Summary of variable importance for multi vehicle accidents cluster 2 

 

Variable Mean Decrease Accuracy 
No_PassCasu 3.5198123 
Month 1.638168072 
LocatTypeM 1.051854514 
Surf_CondM 0.926921057 
Rd_GeoM 0.229327544 
No_VehInv 0 
No_PedCasu 0 
TrafficContrlM 0 
MovM 0 
DividerM 0 
Surf_TypeM 0 
Surf_QualM 0 
RdFeatuM 0 
RdClassM -0.071104906 
LightM -0.0851073 
JuncTypeM -0.275292227 
CollTypeM -1.144290596 
Time_SQL -1.644682903 
No_DrvCasu -1.668027182 
WeatherM -1.9806105 
Day -2.5072853 
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Table H-11. Summary of variable importance for multi vehicle accidents cluster 3 

 

Variable Mean Decrease Accuracy 
No_DrvCasu 7.047745792 
No_PassCasu 6.298708301 
Time_SQL 3.207650584 
LightM 2.992148949 
Rd_GeoM 1.784178541 
Day 1.669843238 
RdClassM 0.648067197 
No_PedCasu 0 
TrafficContrlM 0 
MovM 0 
WeatherM 0 
Surf_CondM 0 
Surf_TypeM 0 
Surf_QualM 0 
RdFeatuM 0 
No_VehInv -0.335710372 
DividerM -1.002760136 
CollTypeM -1.024357774 
Month -1.4416816 
LocatTypeM -2.172437226 
JuncTypeM -3.304094153 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 


