VHDL BASED MODELING AND

DESIGN OF PARAMETERIZABLE

MULTIPLIERS FOR TESTABILITY

A thesis submitted to the -
Departinent of Electrical and Electronic Engineering
BUET, Dhaka
in partial fulfillment of the requirements for the degree of
Master of Science in Engineering (Electrical and Electronic)

SHAIKH ARIF SHAMS

ROLL NO: 9406214P
SESSION: 1993-94-95

AUGUST 1998

BB

i

-4
e

Thé thesis titled “"VHDL based modeling and design of parameterizable multipliers for
testability” submitted by Shaikh Arif Shams, Roll No. 9406214P to the Department of
Electrical and Electronic Enginecring, BUET has been accepted as satisfactory for partial

fulfillment of thc requirements for the degree of Master of Science in Engmeernng

' (Electrical and Electronic).

BOARD OF EXAMINERS

'5\/\67%/ \ft»\)é «/Qa/ N
(Dr. Syéd Mahfuzul Aziz) Chairman
Professor ' (Supervisor)
Department of Electrical and '

Electronic Engineering
BUET, Dhaka 1000.

Lot

2. SY/718
Dr. Enamul Basher - Member
Professor and Head _ (Ex-Officio)
Department of Electrical and '
Electronic Engineering

BUET, Dhaka 10600.

3. E/wammg«/—»

(Dr. Joarder Kafszzamany/%/ /78’ Member
Associate Professor . (Internal)
Department of Electrical and '

Electronic Engineering

BUET, Dhaka 1000.

o Gell e

(Dr. Chowdhury Mofizur Rahman) Member
Assistant Professor ' ~ (External)
Department of Computer Science

and Engineering

BUET, Dhaka 1000.

DECLARATION

I hereby declare that this work has been done by me and it has not been submitted
elsewhere for the award of any other degree or diploma.

Countersigned

ACKNOWLEDGEMENT

It is the author’s pleasure to acknowledge his heartiest gratitude and profound

obligation to his Supervisor, Dr. Syed Mahfuzul Aziz, Professor, Department of

. Electrical and Electronic Engineering, Bangladesh University of Engineering and

~ Technology for his excellent supervision, continuous guidance and valuable suggestion

throughout the progress of the work.

The author is indebted to Mr. Nazmul Ula, Ph. D., Assistant Professor, Electrical

| Engineering & Computer Science, Loyola Marymount University for. allowing the author

to simulate the VHDL code of his design on the ModelTek simulator in Mr. Ula’s laptop.

The author is also grateful to him for his constructive criticisms and valuable suggestions.

i

The author wishes to thanks Dr. Iftekhar Ahmed, Lecturer, University telecom

Malaysia for his help with VHDL based design tools.

v -

ABSTRACT

Full custom design of VLSI circuits is very time consuming and costly. Such a -

design for a target process cannot be reused for fabrication even in a scaled down version

- of the same process. This makes the approach less attractive, since the complete chip has

to be redesigned for the process. As a result, language based design approach has gained
tremendous popularity because of the versatility and portability of such designs.
Sophisticated CAD tools are being developed to automate the design procedure of

complex integrated circuits.

This thesis presents the VHDL (VHSIC Hardware Description Language) based
design of a parallel multiplier of variable operand wordlengths. The multipliers are very
casily testable with only 19 vectors irrespective 0} the operand size. All the single stuck-
at faults in the 'multiplicr can be tested with these vectors. The VHDL code for ‘the
proposed multiplier can be incorporated into logic synthesis tools for the automatic

generation of multiplier macrocells within a few minutes.

Acknowledgement

Abstract
List of Figures
List of Tables

List of Abbreviations

CONTENTS

CHAPTER 1 Introduction

1.1
1.2

13

~ Aims

Literature Review

Organization of the Thesis

CHAPTER 2 Multiplier Algorithms and Architecture

2.1
2.2
2.3
24
2..5
2.6

Introduction

Straightforward Carry-Save Array Multiplication

‘Booth Algorithm
* Modified Booth Algorithm

Removal of Sign-Bit Extension Circuitry
An Architecture Based on Modified Booth Algorithm

iv

ix

e] (9] (9] U

14

CHAPTER 3 Testability of the Multiplier

3.1
3.2
33
3.4

3.5

36

3.7

Intrqduction' '

Testing Approach.

Modification of the Architecture for Testability

Testing of Individual Cells | |
3.4.1 Testing of MBE:s for Single Stuck-at Fault
3.4.2 Testing of the SCs for Single Stuck-at Fault
Testing the Multiplier
3.5.1 Test Vectors
3.>5.2 Exhaustive Testing of the FAs
3.5.3 Exhaustive Testing of the MCAs
3.5.4 Testing of the MBEs
3.5.4.1 Exhaustive Testing
3.54.2 Tésting for Single Stuck-at
Fault
3.5.5 Test Vectors for SCs .
Calculation of Overhead
3.6.1 Hardware Overhead
3.6.2 Delay Overhead

Summary

CHAPTER 4 VHDL Modeling of the Multiplier

4.1

4.2
s

T 44

Partitioning

Introduction

Design Hierafchy

 VHDL Model

30

30
30
31
31

32
32

32
- 35

35

g . [r

4.4.1 The Modified Booth Encoder
44.2 Thesc n
4.4.3 The h_adder
444 The addér_sc_n
4.4.5 Then _mca
~ 4.4.6 The Multiplier
4.4.7 Achieving Parameterizability

4.5 Testbench and Simulation

CHAPTER 5 Conclusions and Recommendations
5.1 Conclusions

5.2 Future Work

References:

36
37
38

40

41

42

47
47

53

53
54

55

|

Fig. 2.1
Fig. 2.2

' Fig. 23

Fig. 2.4
Fig. 2.5

. Fig. 3.1
Fig. 3.2

Fig. 3.3
Fig. 4.1
Fig. 4.2
Fig. 4.3

List of Figures

A parallel multiplier array using carry sa?é -adders
Multiplication example using bit-pair recoding

Sign extended partial product array

Recoded sign extended partial product array

An 8 by 8 bit modified Booth multiplier array

Architecture of a 6 x 8 bit multiplier with recoded sign bits
Gate level design of the modiﬁcd Booth encoder (MBE)
Gate level design of the selcctor-comblemcntcr block
Partitioning the multiplier into-modular blocks

Design hierarchy

Simulation result

11

12

14
16
19
20
22
33
35
52

Table 2.1
Table 2.2
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
T.able 3.6

List of Tables

Multiplier bit-pair recoding scheme

Modified Booth recoding table

Fault matrix for the MBE logic circuit

Fault matrix for the selector block

A set of test vectors for an 8 X 8 bit multiplier
Exhaustive testing of the FAs

Exhaustive testing of the MCAs

Exhaustive testing of the MBEs |

11
15
21
23
25
26
27
28

e e e e

CPLD
DCVS
FA
FPGA
LSB
MBE
MCA
MSB
SC
VHDL
- VHSIC
VLSI

List of Abbreviations

Complex Programmable Logic Device
Differential Cascode Voltage Switch
Full-Adder

Field Programmable Gate Array

Least Significant Bit

Modified Booth Encoder

Manchester Carry Adder

Most Significant Bit
Selector-Complementer

VHSIC Hardware Description Language
Very High Spccd'Intcgratcd Circuit

Very Large Scale Integration

P r\._‘_ﬁ,.v,:....‘-.-,_j

Chapter 1

| Introduction

- 1.1 Aims

With the continuing advancements of VLSI technologies and marked shrinkage of
proccés features, the need to develop process independent chip design tools is growing

[1], [2]. The use of a hardware description language (HDL) for integrated circuit design

~eliminates the need to worry about process design rules at the design stage [2], [3]. This

reduces the design complexity and time required in completing chip designs. This is very
important since vendors need to market their products in the shortest possible time in
order to capture a major share of the IC market and also to remain competitive. The fact
that such hjgh level designs can be implexhented on a variety of target processes reduce
the design cost as well. The aim of this thesis is to design easily testable parameterizable
multipliers. VHSIC Hardware Description Language (VHDL) will be used for the design
since it includes some very useful features for hardware design which are not available in
other languages [2]-[4]. The use of VHDL will make the design poftable and reusable.
This chapter presenfs brief review of the literaturé on popular multiplication algorithms
and their testable implementations. The review also includes a discussion of the

multiplier compilers found in the available literature.

e e o .»———‘

1.2 Literature Review

Multipliers are often one of the key elements in single chip digital information

- processors [5]-[8]. Various algorithms have been developed for multiplication of binary

numbers [9]-[17]. Some of them perform unsigned multiplication while others perform
two’s vcomplement multiplication. The speed of multiplication varies from one algorithm
to another. While speed is one of the criteria for selection of multiplication algorithm, the

power consumption and regularity of structure are two other very important criteria for

- VLSI implementation. Especially, for automatic synthesis, the regularity of structure is

the most critical factor. The modified Booth algorithm [9], [10] for two’s complemeht
multiplication essentially reduces the number of partial products by a factor of two
compared to the straightforward carry-save array multiplier [11]. Multiplication speed is
almost doubled. Besides, there is no need for precomplementing the multiplier or
postcomplementing the product. The multiplier structure is regular, therefore suitable for
VLSI implementation.

With the advancement of ixitegrated circuit technology, the implementation of

.large array multipliers on a single chip has become possible. However, due to the

increasing complexity of VLSI circuits it is becoming more and more difficult and costly

_to test them [18], {19]. As a result, it is a common practice among circuit designers these

days to give due consideration to testability at the carly stages of design. Extra hardware
and/or inputs are added to the original circuits to make them easily testable thereby
reducing testing time and cost. The testability of parallel array multipliers have been
investigated by several researchers. A number of testable multiplier architectures have
been proposed by them [20]-[24]. In [20], C-testable designs of carry-save amay
multiplier and Baugh-Wooley’s two’s cdmplement array multiplier are presented. Two
designs of easily testable gate-level and DCVS logic multipﬂers have been propdsed in

v[21]. These design§ are based on the ‘Slraightforward carry-save array multiplication

scheme and have been shown to be testable with a constant number of test vectors'
irrespective of the array size. Such designs are referred to as “C-testable”. Gate-level C-
testable multipliers based on the modified Booth algorithm have been presented in [22]
and [23]. A C-tés_table DCVS design using this aigorithm has also been presented in [24].

In order to find out an optimal area and speed of a processor chip, the different
modules within the chip have to be tried out for various architectures. Since it is time
consuming to verify many possible layouts for each module, one approach is to use
software packages called module generators or silicon compilers to provide fast and
efficient design of parameterized modules. The multlphcr compilers presentcd in {25]}-
[26] generate parameterizable layouts for MOS technology. The technology
independence of the compiler presented in [27] is limited by the requirement that the leaf
cells have to be recharacterized in the new technology. The aim of this thesis is to present
the design of totally process indcf)cndcnt VLSI array multipliers of variable size
(parameterizable) using VHDL.

The proposcd multip]jcr is based on the modified Booth algorithm. There is some
specific reasons for this partlcular choice. First of all it reduces the number of partial
products to almost half compared to stralghtforward carry-save array multiplier. Besides,
the multiplier has a rcgular structure which is an extremely important criterion in the
selection of schemes for VLSI design. The multipliers are made C-tcstab}e [28], i.e., they
can be tested for all single stuck-at féults with a constant number of test vectors
irrespective of the size of the operands. Although stuck-at fault models cannot adequately
model transistor stuck-on and stuck-open faults [29]-[30], it is possible .to derive
equivalent stuck-at test sets for logic gates to cover transistor stuck-on and stuck-open
faults [31]. Since the number of test vectors is constant for any multiplier size, the test
generation for the proposed designs are considerably small. In this thesis, VHDL is

chosen for designing the testable, parameterizable multipliers because of its unique

o

e ey
&~

features for hardware design [2]-[4]. The use of VHDL will make the designs portable

and reusable.

1.3 Organization of the Thesis _
Chéptcr 2 presents the parallcj multiplication scheme using a straightforward
array of carry-save adders. It also introduces the Booth algorithm for multipﬁcation of
1 signéd binary numbers. Bit-pair recoding technique and modified Booth multiplier is also
| presented in this chapter. Chapter 3 analyzes the testability of the multiplier architecture
-baéed on modified Booth algorithm and presents the design of a C-testable multiplier.
The VHDL model of the parameterizable and easily testable multiplier is presented in
f - chapter 4. F inally,' chapter 5 concludes the thesis with some recommendations for further

- research.

e T ST T

Chapter 2

Multiplier Algorithms and Architecture

2.1 Introduction \

In this chapter, multipliéation of two fixed point binary operands. will be
discussed. Some most common parallel multiplication schemes such as the
straightforward carry-save array multiplication, Booth algorithm and method of bit-pair
recoding or modified booth algorithm will be considered. An architecture based on the
modified Booth algorithm for multiplication of two signed numbers will also be

presented in this chapter.

2.2 Straightforwafd Carry-Save Array Multiplication

Multiplication can be defined as repeated addition. The number to be added is the
multiplicand, the number of times it is added is the multiplier, and the result is the
product. Each step of addition generates a partial product and when the operands are
integer the product is twice the length of the operands in order to preserve the information |
cbntent. Binary rrfﬁltiplication is equivalent to the logical AND operation. Thus the
evaluation of partial products consists of the logical ANDing of the multiplicand and the
relevant multiplier b‘it.v Each column of partial products must then be added, and if
necessary, any carry value passed to the next column. A parallel multiplier [11] is based -

on the observation that all partial products in the multiplication process may be

Yo

Y1

Y2

Ys

independently computed in parallel. The partial product terms are called summands. If

the multiplicand and the multiplier have m and n bits respectively then there will be m x n

summands, which are produced by a set of mn AND gates. In a straightforward carry-

save array multiplier the summands Arc collected through a cascaded array of carry-save

adders. At the bottom of the array, an adder is used to convert the “carry save form” to

the required form of outplvlt.‘ The depth of the array and the carry propagation -

characteristics of the adder fix the inultiplication time.

A 4 x 4 bit straightforward carry save array multiplier with the partial products

~ enumerated [11] is shown in Fig. 2.1. The basic cell that may be used to construct this

paralle]l multiplier is also shown in this figure. The multiplicand term x; is propagated

vertically, while the multiplier term y; is propagated horizontally. Incoming partial

product bits enter at the top and the incoming CARRY IN bits enter at the top right of the

cell. The bit-wise AND operation is performed in the cell, and the SUM is passed to the

next cell at the lower right. The CARRY OUT is passed to the bottom of the cell.

X3 112 711 Xo
14 X3Y XzY X 1Y XOY
2 4 X3Y XzY X]Y XoY Po
] A, | .
; X3Y XZY XlY ::,_ XOY \ j..“.’_.......u--.. " ~'; c‘
XY X:Y X;Y XoY P, ;Qi
Py Ps Ps P4 P; ~. 7

Fig. 2.1 A parallel multiplier array using carry save adders

2.3 Booth Algorithm

Booth Algorithm is a ponerful direct tool for signed-number multiplication [10].
In the standard add-shift method, each non zéro bit of the multiplier causes one addition
of the multiple of multiplicand to the partial product. The execution time of
multiplication instruction is detgrmined mainly by the number of additions to be
performed. So, the execution time can be reduced if we can reduce the number of

additions. This is achieved by a method of bit-scanning which reduces the number of

multiplicand multiples. This technique uses recoding of the multiplier based on the string

property. The process is often referred to as “skipping over 0s” and can be generalized to

shift of variable lengths if string of Os can be detected. The greater the number of 0s in

- ~ the multiplier the faster the operation. Consider a string of k consecutive 1s in the

multiplier as shown below.

...... , 0, 1 , 1 , .1, 0,
\ /
k consecutive 1s
by using the following property of binary strings
21tk oi=gi+klygitk2y || goitlioi @.1

The consecutive 1s can be replaced by the following string
e i F kL i+ K i+ k=1, i+, 0,0 1.
iy 0, 1,0 .., 0,-1,.0,..
N~/
k-1 consecutive 0s
Addition Subtraction

~ Now consider a multiph'éation,example in which a positive multiplier has a single

‘ biock of 1s with‘at' least one O at each end, for example 001 1 1 0 (14). The number of

addition can be reduced by observing that a multiplier in this form can be regarded as the
difference of two numbers as follows:
010000 (16)
-) 000010 (2)

001110 (14)
This was shown in Eq. 2.1 and indicates that the product can be generated by one
addition (addition of 24) and one subtraction (subtraction of 21). In the standard notation,

the multiplier can be written as

0 0 +1 +1 +1 O
and the recodéd multiplier can l?e written és

0+1 000 -0

Note that the -1 tﬁnes the left-shifted multiplicand occurs at 0 to 1 boundaries and +1
times the left-shifted multiplicand occurs at 1 to 0 boundaries as the multiplier is scanned

from right to left. The transformation that takes

01111.... 110 into +10000......0-10

is often referred as' the technique of skipping over 1s. The reasoning is that in cases in

which the multiplier has its 1s grouped into a few blocks, only a few versions of the

. multiplicand need to be added to gencrate the product hence, the multiplication process

9

becomes much faster. It can also be shown that the Booth recoded multiplier algorithm

works cqlially well for negative multiplier.

2.4 Modified Booth Algorithm

Modified Booth Algorithm is a multiplication speedup technique that guarantees
that an n-bit multiplier will generate at most n/2 partial products [9], [10]. It can multiply
two two’s complement numbers directly and gives the product also in two’s complement
form. This represents a rhultiplication sﬁccd increase of almost a factor of 2 over the
standard add-shift method.

This new technique is derived from the Booth technique. Recall from the previous
discussion of a positive multiplier of 0 0 1 1 1 0 (+14). The number of addition can be
reduced by observing that the multiplier in this form can be regardcd as thé difference of
two numbers as shown below. '

252423227120
0 10000 (16
20 000 10 (2

Multiplier> 0 0.1 1 1 0 (14)
This indicate that the number 0 0 111 0 (14) has the same value as
24-21=16-2=14
This is true for any number of contiguous 1s, including'thc case in which there is a single

1 with Os on either side. The entire concept of bit-pair recoding revolves around this

method of regarding a stn'hg of 1s as the difference of two numbers.

10

Now returning to the multiplier being discussed and scanning it from right to left ,
bit by bit. In' going from 0 (29) to 1 (21), we saw previously that this resulted in
subtracting the value of the 1 in that position, in this case - 21. Scanning from 1 (21) to 1
(22) resulted in no change , that is , neither addition nor subtraction . The same is true in
scanning from 1 (22) t(v)‘ 1 (23) . However, in going from 1'(23) to 0 (24), we saw that this
resulted in an addition of 24. There-is no change in scanning from 0 (24) to 0 (25). The
results of scanning this'multipl‘ier are asvfollows: 21 was subtracted and 24 was added.
| The same results can be obtained by looking at pairs of bits in the multiplier in
conjunction with the bit that is to the right of the bit pair being considered, as shown

below.

25 24 23 22 21 20
001110'@

!]

Sign - Implied 0
Extension

That is, bit pair 21; 20 is examined with an implied 0 to the right of the low-order bit; bit
pair 23, 22 i examined with bit 21, bit pair 25, 24 is examined with bit 23. Scanning the
bit pairs from right to left and using the righfmost bit of each pair as the column reference
- for the partial product placement (it is the center bit of the three bits being examined), we
obtain the following multiplier bit-pair recodixig scheme shown in table 2.1. It should be

“noted that there are a total of eight possible versions of the multiplicand.

Table 2.1. Multiplier bit-pair recoding scheme

11 .

Multiplier Multiplier bit | ~ Multiplicand EXplamﬁon
bit-pair on the right multiples to be

i+l i-1 | added
0 0 0 ‘0 x multiplicand No string
0 0 1 + 1 x multiplicand End of string
0 0 + 1 X multiplicand Single 1 (+2 -1)
O 1 + 2 X multiplicand End of string
1 0 0 - 2 X multiplicand Beginning of string
1 0 1 - 1 x multiplicand | End/beginning of string
1 0 -1 X multiplicand Beginning of string
1 1 0 x multiplicand 'Strings of 1s

Fig. 2.2 gives an example of the bif-pair recoding multiplication technique using fwo S bit

operands represented in two's complement form.

Multiplicand X =

* Multiplier Y =

Product P =

00110 (+6)

[110010[0] (- 14)

-lIx +1x -2x

‘1111110100

- 00000110

111010

11110101100

(- 84)

Fig. 2.2 Multiplication example using bit-pair rec;oding'

12

2.5 Relhoval of Sign-bit Extension Circuitry .

The modified Booth algorithm for multiplying two binary numbers basically
consists of two steps. First to obtain the partial product from th\e proper version of the
mtiltiplicand and second to add these partial products in an appropriate array of fuil
adders considering that summation in an array has to be done with sigtl bit extension,
because it is a signed multiplication. However, if explicit sign extension scheme is
observed large amount of circuitry is required merely to aécommodate the sign-extension

of the partial products. The redundancy of the sign-bit extension can be eliminated by a

simple method, i.c., reducing the number of variable inputs to the array, thus reducing the

number of full adders involved. Several approaches for removing the sign-extension

circuitry from Booth multiplier have been proposed by previous researchers [32], [33].

Let us consider the multiplication of two 8-bit binary numbers using modified °

Booth algorithm. Since this algorithm scans three bits of the multiplier at a time and
retires two of them to generate a partial product, thebtotal number of partial products
generated for the 8-bit multiplier is four. If a, b, ¢, d represents these partial products,
then the addition of these partial pfoduct is illustrated in Fig. 2.3. Each partial product is
shifted two bit positions to the left with respect to the 'preceding one in accordance with

the modified Booth algorithm.

ag 4dg Aag g8 a8 a8 a8 a8 al a6 a5 a4 a3 a2 al a0

b b5 b3 bs bs bs b7 b6 b5 be b3 b2 b1 b0

8 ¢8 8 8 7 c6 <5 ¢4 ¢3 c2 cl c0

d8 ds8 d7. ds ds d¢e d3 d2 di do

P15 P14 P13 P12 P11 Pl0 P9 P8 P7 P6 Ps P4 P3 P2 PI PO

Fig 2.3 Sign extended partial product array

13

Here ag, bs, cs, ds are the sign bits. It is seen that the direct implementation of explicit
~ sign extended array will be an uneconomical choice.

Let vs assume for simplicity that the arithmetic weight of the p; column is 20,
i.e., 1. Thus the p,; column represents a weight of 27. Then the sum of the sign and sign

extended bits can be written as
Smn=a8(27+26+25+24+23+22+21+20)+b8(27+26+25+24+23 |
+22)+¢,27 +26+25+2%) + d, (27 + 26)

=a,(28-20)+5,(28-22)+ ¢, (28-2%) + d, (28 - 26)

Since p, , is the most significant bit of the product output, module 28 addition can be used

to sum thg sign bits. Thus, the sum of the sign bits can be written as
Sum = - a84(20) -5, (22)-c, (2% - d, (26)
which expressed as_ a binary number is
| Sum=-(0d,0c,05,0a,) B N 2.2)
The two's complement of the word (0 d, 0 ¢, 05,0 ay) is
-(0d,00,05,0a)=(1d, 1 ¢, 1 by 1 28)+1. (2.3)

When the recoding scheme of Eq. 2.3 is used, the sign extended BQoth partial product

array appears like the one shown in Fig. 2.4.

14

1
! a 4 4 a5 a, a a a q,
1 & b, b b b, b, b, b b
1 %% ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

1 9

R
N
9
N
K
a8
L
W

Pis Py Py Pp Py Py Py Py P, Pg Ps P, Py P, P, P,
Fig 2.4 Recoded sign extended partial product array

Hence it is seen that elimination of the sign-extension circuitry in a modified
Booth algorithm multipliers can be achieved by inverting the MSB of each partial product
and adding a logic ‘1’ at every higher significance (including the MSBs). This procc‘durc_‘
is equivalent to recoding the MSBs of the partial products as a two’s complement number

and adding a logic ‘1’ to the most significant full adder in each row of the main a.rray.b

2.6 An Architectli_re Based on Modified Booth Algorithm

- Fig. 2.5 reprcscnts an 8 by 8 bit multiplier architecture based on the modified
Booth algorithm for multiplication of two binary numbers that are in two s complement
. form [24]. Elimination of the sign extension circuitry is achieved by the procedure
described above. The modified Booth encoder (MBE) block in each row operates on
~ three multiplier bits to generate the control signals CM, K, aﬁd K, according to the
modified Booth recoding scheme as shown in Table 22 In this recoding scheme five
possible partial prbducts can be formed: 0, +X, -X, +2X, -2X vv’vhcrc X denotes the
multiplicand. The selector complementers (SC) in Fig. 2.5 consist of multiplexers which

operate on the multiplicand bits to generate 0, X or 2X as partial products dépcndjmg on

15

the control signals K,, K; and complementers (2-input EX-OR gates) whjéh generate
one’s complements of these partial products only when CM signal is high. Moreover,
these one’s complemcnted partial products are converted to their two’s complement form
by addition of a logic ‘1’ to their LSBs. The addition of the partial products are
accomplished by an array of carry save full adders (FA). The Manchester carry adders
(MCA) on the right-hand side and the bottom of the Fig. 2.5 operates on the results

coming out of the main array (the array containing SCs and FAs) to generate the final

product output.
Table 2.2: Modified Booth recoding tablé
MBE inputs MBE outputs - Partial Product | SC output
Yoo Y Y| ¥ K oM | Generated z
oo o]l ool o 0 0
o | o | 1] 1]o0] o +X X
o |1 |o|1t]o] o +X X
o | 1|1]o]1] o +2X X1
1 0 0 0 1 1 -2X ii—l
1ol 1] 1]0] 1 X X
1 1 o] 1]o0] 1 -X X;
1 1 |1]olo] o 0 0

\
i

| SC l | 8SC ' I SC I | SC | 8 SC [Mca
Pl
< : A IB C l
y ¥ A DA 4 v l v ¥ vvw vwvw M -
FA |

T

MCA

y v v v v rv v v v ™l
FA | L FAI | [FAI] L ra | L Fa |1 [Fa | IE‘:(;__‘:JL"
— [—— l ' P4

e =" ,
l___\Ll (] 1] Sper] s
o ’ : PS

) CM
A 4 yYw v v v

FA | [_Fa_ | Ii FA_] [FaA] [Fa
i 1l

P15 P14 P13 P12 P11 P10 P9 P8 . P7

"y
>

y v
Ve
-

z 4
1’1
H
5
>‘
z‘
0
> le
N
4
o]
3

Fig 2.5 : An 8 by 8 bit modified Booth multiplier arrray
(Horizontal Controls and vertical multiplicand routings are omitted for clarity)

16

Chapter 3
| Teétability of the Multiplier

3.1 Introduction)
With the increasing complexity of VLSI circuits, it is difficult to test them unless

due consideration to testability is given at the early stages of design. The high device-to-

pin ratio severely limits the controllability of internal signal lines in VLSI chip [19].

Also, there exists a large number of faults of various types, many of which cannot be
modelled by the traditional stuck-at fault model. Test pattern generation and verification
procedures are becoming very costly or even computationally infeasible to implement
[18]. However, VLSI circuits like array multipliers having regular iterative structure have
been shown to be casily testable by slight modification of the conventional design [20].
The multiplier architecture presented in Chapter 2 will be modified in this chapter in

order to convert it to an easily testable one.

3.2 Testing Approach

The objective of the testing approach adopted in this research is to exhaustively
test the full-adders (FAs), Manchester carry adders (MCAs) and modified Booth encoders
(MBEs). Such a test set will be applicable to any arbitrary logic implementation of these
cells. The fault model used in this research assumes:

a) at most one basic cell in an array multiplier is faulty at a time;

TN SR g e

18

b) the fault is a permanent fault (i.c. the fault permanently changes the circuit’s
logic characteristics);
¢) the fault may alter the cell’s output functions in any arbitrary way, as long as

the faulty cell remains combinational circuit.

It is necessary to modify the design of the modified- Booth encoders with a

significant increase in complexity and gate count in order to generate exhaustive test set

| for the selectof-complemcnters (SCs). However, Takach and Jha [21] have shown that

hardware overhead reduction is possible for array multipliers if a fault model based on

| single (stuck-at) faults is used instead of the single cell fault model. They have also

shown that a set of test vectors which detect all single stuck-at faults in a gate level

carry-save multiplier can be readily adopted to detect all detectable single stuck-at,

transistor stuck-on and stuck-open faults in a DCVS implementation of the multiplier.

Therefore, the selector-complementers will be tested for single stuck-at faults only.
Moreover, although MBEs are eventually exhaustively tested, this testing does not
guarantee the fault propagation to the primary outputs of the array. Due to this, equivalent

gate level circuit for MBE will be tested for single stuck-at faults.

3.3 Modification of the Architecture for Testability]

The main challenge in testing array multipliers is the difficulty of controlling the
inputs of internal adder cells from the primary inputs, namely the multiplier (Y) and
multiplicand (X) inputs. In fact, some patterns cannot be applied to some adders cells. To
overcome this problem, extra inputs and sometimes extra hardware is added to enhance
controllability and observability of the internal signal lines in VLSI circuits.

A testable architecture for an 6x8 bit multiplier is shown in Fig. 3.1. Comparing
to its non testable version, this architecture has 4 extra controllable inputs €y, €2, €3, €4,

P R D LY

4 Encoder

e'f e &) Xs Xy X3 X2 X1 Xo X; €

19

O Selectorr-

complementer

FA- Full adder

Po

> P

Pz _

v v ¥ v v v v v
Pz Pu Pio Py Ps o] Ps Ps P4

Fig. 3.1 Architecture of the multiplier with recoded sign bits

._Yi

20

x_1 and y_j to enhance the controllability of various cells. Forb normal multiplication
Operation these extra inputs will have the following logic values: €1= 0, €2 =0, .c3 =1,e4

=1,%1=0andy.;=0.
3.4 Testing the Individual Cells
In this section, the patterns required for testing the various individual cells of the

multiplier for single stuck-at faults are derived.

3.4.1 Testing of MBEs for Single Stuck-at Fault

~ The logic diagram of the modified Booth encoder used in the multiplier is shown -

in Fig. 3.2.
Yi1 » Y

; N o—
Yisr p

'Figure: 3.2 Gate level design of the Modified Booth Encoder (MBE)

The circuit has twelve nodes and so twenty four possible stuck-at faults. For the

.three primary inputs there will be eight possible test vectors which will be identified as to

to t7, where the suffix is the decimal ecjuivalent of the binary numbers (Vi-1Y1yi+1)- The
fault coverage is conveniently displayed in the fault-matrix shown m Table 3.1. The tick

against each test indicates the fault covered by that test.

F 225
b
¥
B

) EN

B

v

5
3

21

Table 3.1 Fault matrix for the MBE logic circuit

est Yer|Yu | Vi [Vil¥m |Ymi|ALA|B[B|(C|c|D(D|E|E|F|F |KiI|Kl|Ky|K; |coMmlomM
pinjminininjniniolnisinin|nininliolalnlnloelnloin
ol el] 1y R I R O R
tl Vi o] v V] J JIvl 1y

w| iy v A RAR IR
15 ViV N V] AR AR

LR v v N N NE J
5 Vi v v R AR AR

1] I v v v |y y
AR |l MENMENMEN RN

" S TN 2 St s b I T2 SO e e
|) A

From the above fault matrix it is seen that thc test vectors t), t3, ts and t; are the

" easential tests. These four essential tests cover all the faults except yi1/1 and B/ 1. A
, smglc test that covers both of these faults is t,. Hence a set of test pattems for the inputs

| - (Ve1Yyw) of the MBE of Fig. 3.2 that detect any single stuck-at fault in the MBE is {001,
£ 011, 100, 110, 1113

¥

{:3.4.2 Testing of the SCs for Single Stuck-at Fault

The logic diagram of the selector —complementer block is shown in Fig. 3.3. It has

¢ a total of five mputs. However, for fcsting of single stuck-ét fault we will derive fault
{ matrix for only the selector part. This is because the corﬁplcmentcr' part is nothing but an
EX-OR gate whose one input is the complement signal CM and the other is output of -

selector circuit Z;. Since output of an EX-OR gate inverts due to inversion of any one..of

22

Xi Xi-1
T Y
Kz [-
K,
Selector
E F
CM
M, z.
v
Complementer
Z

Fig. 3.3 Gate Level Design of the Selector-Complementer Block

23

Table 3.2 Fault Matrix for the Selector Block

Ky/0 | Kyl | K0 | Ko/l | x/0 | x/1 | %0 | x,/1 | B0 | Bn | Fo | P | Zi0 | Zi/1

t1o

R A ST S BN TR TR O

t1

J
i1 v v v v
2 v v v v
| 4 v J RAREEE R
tg J v v v
ts J v J J J

IR J J 'ARAR J

B vl J y J
| '8 v v ! v

v
J
J

<. |4 |4 (<l
<.

t12

113

B N e S

t14

t1s

<
D - N k.

<. 2.7 |4l <.

<. <. <. <.
<.

<. <. <. <.
<

5K, S g i R o

b
-5

B/

Identifying the indistinguishable faults and dominant faults in the fault matrix of

Table 3.2, it is found that the test vectors needed to test any single stuck-at fault are t;, t7,

§ tsand ty5. So the set of test pattern for the inputs (K;x;K;xy.;) of the selector circuit to

§ detect any single stuck-at fault is {0010, 0111, 1000, 1101}.

et i+ atbis mns oo amn + ©

24

§ 3.5 Testing the Multiplier
v In this section, a set of test vectors for testing the multiplier will be derived. The
‘? vectors will cover the exhaustive testing of the FAs, MCAs, MBEs as well as the stuck-at

R faults in the selector-complementers.

3 5.1 Test Vectors

A set of test vectors for detecting all single stuck-at faults in a larger version of

“x; g ety

the multiplier of Fig. 3.1 is shown in Table 3.3. An 8-bit multiplicand X and a 8-bit
multiplier Y are shown with their LSBs to the right most position. The underlined bits

have to be replicated for generatmg the test vectors for multipliers with larger operand

- wordlenths.

9
1’
\?
i
1
“ -{
f
i
b
128
}»
| b
1
X

3 5.2 Exhaustive Testing of the Full-Adders

The first twelve test vectors t)-t)9 of Table 3.3 set up the patterns required for

i cxhaustive testing of all the full-adders as explained in the following steps:
1) The test. vector t applies 000 to most of the full-adders However, the full

adders affected by the inverted sign bits of the partial products receive 100. Test vector ty

v» apphes 000 to these full-adders

2) Application of pattern 111 to all the full-adders is accomplished with the
*” vectors t3 and ty.

3) The vector t5 applies 100 to all the full-adders except the one labeled 'FAL' in

the second row of Fig. 3.1 which receives the pattern 010. tg applies 100 to FAL.
4) The vector t7 applies 011 to all the full-adders except the one labeled FAL'

which receives the pattern 101. tg applies 011 to FAl

1§
iy

ng- P v

Sr o

Table 3.3 A set of test vectors for an 8 x8 bit multiplier

| Vectors X X Y Yol €4€3¢,¢

I 0000 0000 0 00000000 | O 0000
i : t, | 10000000 0 0101 0101 0 0000
t3 1111 1111 1 01010101 | 0 1111
t 1000 0000 0 10101010 | 1 1111
| ts 0000 0000 0 1111 | o 1100
" ts | 00000000 0 00110011 | 1 0011
i v 1111 1111 1| 001001 | 0 0011 |
A — 1111 1111 1 01000100 | 1 1100 1
l tg 0101 0101 0 1100 1100 1 0110
t10 01010101 0 00110011 | O 1001 |
f t11 11111111 1 0011 0011 0 0011 :
t12 1111 1111 1 11001100 | 1 1100
‘ i3 | 00000000 | O | 10101010 | 1 1100
[e 1111 1111 1 10101010 | 1 0000
‘ t5 111 11111 0 1001 1001 1 1111
U 1111111 | 0 01100110 | O 0000
£ [7 [ooooo000 0 | o000 | o 1111
‘_ 13 1111 1111 1 1001 1001 1 1001
[T111 1111 1| lnint | 1 0000
; * The bits to be replicated for larger multipliers are underlined

T ey

26

5) t9 applies 001 and 110 to alternate full-adders, tjq applies 110 and 001 to
alternate full-adders in each row.

6) tg applies 010 to the full-adders in the even rows excépt FAL It was seen in
| step 3 that FA1 gets 010 by ts. Apphcatlon of 010 to the full-adders n the odd rows is
accomphshcd with the test vector t . '

7) tg applies 101 to the full-adders in the even rows except FAL. It was seen in

step 4 that FA1 gets 101 by t7. Application of 101 to the full-adders in the odd rows is

accomplished with the test vector t} 5.

Tablé 3.4 shows the results of exhaustive testing of the full-adders.

Table 3.4 Exhaustive testing of the FAs

_ Pattern applied to FAs Test vector required

000 1, 12
f 111 ‘ 3,14
i | 100 ts, t
| 011 t7, 1
S 001 9, 10 .
;‘. 110 t9, t10
i _ 010 15, 16, 111

101 17, 18, 112

Now let us consider how the effect(s) of a faultin a full-adder is transmitted to the

primary outputs (observable outputs) of the multiplier. The sum output of a fuil-adder is

s
. 1

27

the parity (EX-OR) of the three input bits. Therefore, if one of these three inputs is

% inverted. The carry output may or may not be inverted depending on the logic values of

the other two inputs. This is also true for manchester carry adder (MCA), because it

§ realizes the same logic function as a full-adder. Since all the full-adders are exhaustively

tested, the effect of a fault in a full-adder is transmitted to it's output(s). The two outputs
of each full-adder of Fig. 3.1 are connected to the primary outputs of the multiplier
3 through two different chains of three mput EX-OR gates (of FAs and final MCAs) Hence

the effect of a fault in a full-adder is transmitted to the observable output(s).

3 f 3.5.3 Exhaustive Testing of the Manchester Carry Adders

13 All the manchester carry adders are exhaustively tested using a subset of test
i ﬂ vcctors from Table 3.3. The combinations of test vectors that apply various patterns to all
 the manchester carry adders are listed in Table 3.5. The effect of a fault in any MCA is

E transmitted to it's sum output which is a primary output of the multiplier.

Table 3.5 Exhaustive testing of the MCAs

Pattemn applied to MCAs Test vector required
000), 2
111 3,1
101 4 13, 15, t7
‘ 011 7, 113
010 t6, 18 t14
100 | t 18
001 . | o t1p: 11,12 Y15, 6
110 t9, 110, 11,812 115, 116

inverted due to appearance of a faulty signal then the sum output of the full-adder is also -

/ \

~

4.3.5.4.1 Exhaustive Testing

Table 3.6.

3.5.4 Testing of the Modified Bobth Encoders
The modified Booth encoders are tested in two ways. First they are exhéustively
itcsted However unlik¢ the FAs and MCAs, exhaustive testing of the MBEs does not
;' necessarily guarantee the transmission of the effect of a faults in an MBE to the primary
~ioutputs of the multiplier. That is why the MBE block is also tested for single stuck-at -

The modified Booth Encoders are exhaustively tested by the vectors shown in

Table 3.6 Exhaustive testing of the MBEs

Pattern applied to MBEs Test vector required
000 f
010 |7
T 101 4
111 ts, t6
011 btz
- 100 11, t12

001 t15 t16
110 t5 t16
S

b

L

i
i
';t

eaedioy

29

"' }%3.5.4.2 Testing for Single Stuck-at Fault

Unlike the full-adders and manchester carry adders, exhaustive testing of the

. MBEs does not necessarily guarantee the transmission of the effect of a fault in an MBE
: f to the primary output of the multiplier. Fault propagation depends on the type of fault and
o fi_ its effect on the output of the MBE. Also, note from Figures 3.1 and 3.2 that the output of
an MBE in any row, namely CM, K}, and K are inputs to the selector-complementers
(SC) in that row (fan-out nodes). In the rest of this sub-section, the test vectors which
propagates any single stuck-at fault in an MBE to the primary outputs of the multiplier

will be derived.

It was shown in Section 3.4.1 that a set of test patterns for the inputs (yj_1¥iyi+1)

of the MBE of Fig. 3.2 that detect any single stuck-at fault in the MBE is {001, 011, | 100,
, 110, 111}. Note from Fig. 3.2 that every input to the MBE has a fan-out of three. This
means that the effect of a fault at one of the input nodes might propagate to more than
one output of the faulty MBE. Because of the fan-outs at the outputs of the MBE these
faulty signals from MBE might propagate through two different paths, i.c. the SC and the
4 chains of carry-save adders, and then reconverge at the final adders (MCAs). Also, note
from Fig. 3.1 that ﬂ1e adjacent MBEs share one multiplier bit. Therefore, a fault on one of

the shared multiplier bits might affect both the MBE sharing that bit resulting in

transmission of the fault through both the MBEs and subsequent reconvergence in the

array of FAs and MCAs. It can be verified that because of these reasons some path
sensitive patterns (mentioned above) applied to the MBEs for detecting some single
stuck-at faults result in negative reconvergence [18] of the fault eﬂ"ects. unless thése
patterns are accompanied by application of appropriate patterns to the multiplicand. It
I was extensively verified in this research that the test vectors ty), t19, 5, tje and tjg |

apply all the necessary patterns to all the MBEs along with appropriate multiplicand

vV

_ I pattcrns so that any smgle stuck-at fault in the MBE is propagatcd to the primary outputs
| } of the multplicr.

I 3.5.5 Test Vectors for SCs
‘ As mentioned in Section 3.4.2, a set of test patterns for the inputs (K1x;K>x;.1) of

T the selector block of Fig. 3.3 that detect any single stuck-at fault in the selector is {0010,
1 0111, 1000, 1101}. The selector in any row have two common input nodes, namely Ky,

and K (fan-out nodes). It is verified that the vectors ty, t3, ts, t17 and t;g sensitize the

single stuck-at faults at these nodes and propagate them to the output of the selectors.
Each of this selector output is passed though a complementer (an EX-OR gate) whose
other input is the MBE output CM (complement signal). The effect of a single stuck-at
g fault at one of the inultiplicand bits is propagated through the outputs of the SCs in that
: column to oﬂc of the inputs of the full-adders in that column. Now the sum output or both
§: the sum and carry outputs of a full-adder are inverted due to a faulty input signal. Each
output of every full-adder is connected to the primary outputs of the multiplier through a
chain of 3-input EX-OR circuits (of FAs and final MCAs). Thus, these faults are
i essentially propagaitcd to the primary outputs of the multiplier.

3.6 Calculation of Overhead

3.6.1 Hardware Overhead

| The testable design of the multiplier presented ‘earlicr does not require any extra
logic compared to the original design presented in Chapter 2. However, the testable
version requires four extra inputs which increases the number of input pins of the
multiplier chip. For a large multiplier, e.g., 32x32 bit multiplier the penalty in terms of

extra pms will not be as severe as for a multiplier-of small operand wordlengths, e.g., 8x8

bit. The lines carrying the above extra signals will increase the silicon area of the testable

multiplier chip compared to the non-testable design.

3.6.2 Delay Overhead

Compared to the non-testable design, the testable multiplier will not have an extra
logic gate delay. However, there will be some additional delay due to the extra wiring

capacitances associated with various nodes connected to the extra inputs.

i 37 Summary

The testable design of the multiplier presented in this chapter requires only test

1 vectors to test all single stuck-at faults. Also, the full-adders, Manchester carry adders

¢ and the modified Booth encoders are exhaustively tested. The numbers of test vectors for

any larger multiplier will still remain the same, i.c., 19. Therefore, this testable multiplier

can be said to be C-testable [28].

Chapter 4

- VHDL Modeling of the Multiplier

" 4.1 Introduction
Design of VLSI circuits entirely at custom level is very time consuming and
_' : costly. Such a design for a target process cannot be reused for fabrication even in a scaled
| down version of the same process. So, to get versatility and portability, high level
languages are being used to design process independent VLSI circuits. One of the recent
methodology is the introduction of VHDL (VHSIC Hardwére Description Language). It
?'; not only allows the design of process independent VLSI circuits, but also the automation
i of the complete design process. In this chapter, the design of a .parametcrizable and easily
* testable multiplier is presented using VHDL. Because of the use of VHDL, it will be
: possible to generate multiplier layouts for various target processes and also program
2 FPGAs (Field Programmable Gate Arrays), CPLDs (Complex Programmable Logic
% Devices) from various vendors. The capabilities of VHDL to gcncraté arbitrary ln-bit

b modules is exploited in this chapter in designing the parameterizable multiplier.
4.2 Partitioning

The first step toward developing a VHDL code is to partition the design into
simpler modular blocks. The multiplier architecture presented in Fig. 3.1 has a regular -
structure which is very convenient for high level coding. Only four different types of
basic cells, viz., modified Booth encoder (MBE), selector-complementer (SC), full-adder

33 ‘

xnx-l ' X‘ xo K] }
. I > scn —» —>
* —» MBE (ne+1) no. of SCs : >
Y * | '
—P P
sc_n : —P '
—> (n+1) no. of SCs ' '
vl —» D2
™ MBE i
Y3 |
n_adder — :
n,no. of FAs - ;
Y4 — adder_sc_n —> . v
—»{ MBE - (ng+1) no. of SCs and n,no. of FAs |
ys — 1P
Yoo S adder_sc_n —> :
12— MBE (n+1) no. of SCs and n,no. of FAs X o
Yari ¢ B D 2l
n_mca | | |
*
all MCAs }
Puptine.1 “
% :
no. of MCAs = depth*2 + n, ~1
where depth =n,/2 for evenn,
{ny+1)/2 for odd n,

n,=no. of bits in the multiplicand
ny=no. of bits in the nmltiplier
The additional test inputs (e, €,, e, ;) are not shown for simplicity

Fig. 4.1 Partitioning the multiplier into modular blocks

b e e vty

349

(FA) and manchester carry adder (MCA) can be identified in this multiplier.
i However, considering the interconnection of these cells; the whole multiplier is
partitioned into a few parameterized blocks each of which is composed of a number of ‘
these basic cells. The multiplier architecture of Fig. 3.1 can be redrawn as shown in Fig,

' v_ 4.1 and contains the following modular blocks:

@) Modified Booth encoder (MBE)

(ii) sc n

(i) n_adder

(iv) adder_sc n

- 8 W) n_mca

_. The first one, i.c., the MBE is a single modified Booth encoder. This component has to be
, instantiated as many times as required depending on the number of multiplier bits n,. The
exact number of instantiation required is termed as the depth of the multiplier and is

. given by

depth = ny/2 for even n, “4.1)
(ny+1)/2 for odd n,.

The block sc_n is composed of (n,+1) number of selector-complementers, where ny is the
number of bits in the multiplicand. As shown in Fig. 4.1, this block is used in the first two
- rows of the multiplier array corresponding to the first two rows of selector-

complementers in the architecture of Fig. 3.1. The next block in the modular array of Fig.

} 4.1is the n_adder block corresponding to the first row of full adders of the multiplier
| array of Fig. 3.1. This block consists of n,number of full adders. The block adder_sc_n is
_ a combination of one row of SCs followed by one row of FAs. It consists of (n.+1)

" number of selector-complementers and n, number of full adders. This block is used as

. many times as required after the first row of full-adders. The exact number of adder_sc_n
blocks depends on the depth of the multiplier and is determined from the number of bits

in the multiplier (ny) using equation no. 4.1. The next block in the modular array of Fig.

N

4.1 is the n_mca block which consists of (depth*2+n, ~1) manchester carry adders. This

- shown in Fig. 3.1.

4.3 Design Hierarchy ,

| The VHDL code of the multiplier is at the top level of the design hierarchy. The
J'ti hicrarchy is shown in Fig. 4.2, In the top level VHDL code, all the modular blocks
i mentioned above are instantiated as many times as required depending on the operand
wordlengths. For the modified Booth encoders, the code of only one MBE cell is written
in VHDL. In the top level code, this block is instantiated a number of times:. equal to the
depth of the multiplier. The VHDL codes of the blocks sc_n, n_adder and adder_sc_n are
written such that they are already parameterized on the value of n,. Two instantiations of
sc_n and one instantiation of n_adder are made.in the VHDL code of the multiplier.

4 - Number of instances of adder_sc_n in the top level code depends on ny. The VHDL code

of the block n_mca is written such that it is already parameterized completely on the
value of both n, and n,. Only one instantiation of this block is made in the top level

VHDL code of the multiplier.

i - Multiplier VHDL code
1 ' (Top level)

, Instances Instances Instances Instances of Instances
of MBE | of sc n of n_adder adder_sc n of n_mca

i
|

| 3

1.

1
1
|
i
A

A

%

Fig. 4.2 Design Hierarchy

1
i
1
1
i
k.
ak:
f

4.4 VHDL Model | |
In this section, the VHDL codes developed for all the modular blocks discussed in

1
b

1
L
[
t
&

7
5
i>
i
t

section 4.2 are presented.

block in Fig. 4.1 corresponds to all the MCAs at the final stage of the multiplier array '

plsipeserin ded

!

4.4.1 The Modified Booth Encoder

30

As mentioned before, the number of modified booth encoders in the multiplier
array depends on the number of bits (ny) in the multiplier (Y). The VHDL code for a
single modified Booth encoder is developed first. Then in the top level VHDL code of the

multiplier, the‘rcquircd number of modified Booth encoders is specified as one of the

generics depth and then instantiated [2], [4]. The logic functions performed by the

modified Booth encoder shown in Fig. 3.2 are as follows:

Ki=yu®wn

K;=vyi1 yi -}—'i+1 + ;i-l ?i Yi+1 -

CM = ¥iaYi.Yit1 =Via Yin + Vi Yi+1

The VHDL code of a single modified Booth encoder is given below:

- Modified~Béoth{s encoder

-- For C-testable Modified Booth's Array multiplier

iibrary IEEE;
use IEEE.std logic_1164.all;

entity mod_béth_éncoder is
port(y i 1, y i, y i 2: in std _logic;
K1, K2, CM: out std logic
)i

end mdd_both_encoder;

architecture dataflow of mod_boﬁh_encoder is
begin
Kl <=y i 1 xor y i;

L U0 Vg

4.2)

@.3) .

@.4)

3/

K2 <= (y_i_ 1 and y i and (not y i 2)) or
((not y i 1) and (not y i) and y i 2);
CM <= (y_i 2 and (not y_1i)) or ((not y i 1) and y i 2);

end dataflow;

§ configuration cfg_mod both_encoder of mod both encoder is
: for dataflow

| end for;

$ end cfg _mod both encoder;

442 Thesc_n
This block consists of a number of selector-complementers depending on the

number of bits (n,) in the multiplicand (X). There are (nx+1) selector-complementers in

In the VHDL code of sc_n, the number of bits in the multiplicand is explicitly specified
as one of the generics, nx. The VHDL code for the entire sc_n block is written and two
instantiations of this are made in the top level VHDL code 6f the multiplier as per Fig.
; 4.1. The logic function performed by one selector-complementer shown in Fig. 33 is

given by
Zi=Kx;+ Kin-l (4' 5)

The VHDL code of the sc_n block is given below:

-- Selector-complementer
-- Generic model with N-bit size
—— For C-testable Modified Booth's Array multiplier

library IEEE;
use IEEE.std logic 1164.all;

e e s Ry

this block including the lefimost selector-complementer whose output is complemented. -

=

R

5 B

. entity sc_n is
: generic (nx : integer := 8);
port (X : in std logic_vector (nx-1 downto 0);
CM, K1, K2, X 1 : in std logic;
7z : out std logic_vector (nx downto 0)
)i

~ end sc_n;

architecture rtl of sc_n is
- ¥ begin . .

1 process (X,CM,K1,K2,X_1)
variable r in : std_logic;
1 variable y : std logic;

% begin
for I in nx downto 0 loop
if I = 0 then

r in := X_1;
else
r in := X(I-1);
end if; , »
y = (X(I) and K1) or (K2 and r_in);
if I = nx then
Z(I) <= not(CM xor y);
else
Z(I) <= CM xor vy:
end if;

end loop:
end process;
end rtl;

configuration cfg_sc_n of sc_n 1is
for rtl
end for;
end cfg_sc_n; ' -

* 4.4.3 The n_adder
¥ As mentioned in section 4.2, the number of full adders in the n_adder block is ny,

which is explicitly specified in the VHDL code as one of the generics, nx. One

% instantiation of this block is made in the top level VHDL code of the multiplier in

%
3
3
7
3

-

§ accordance with Fig. 4.1. The logic'functions performed by a single 1-bit full-adder is as

- follows:

SUM=A®B®C | (4.6)

CARRY = AB +BC + CA “.n
Where, A, B and C are the three inputs to the full-adder.

The VHDL code of the block n_adder is shown below:

-- Generic N number of 1-bit Full addef
-- For C-testable Modified Booth's Array multiplier

library IEEE;
use IEEE.std logic 1164.all;

entity n_adder is
generic (nx : integer := 8); _
port (A, B, Cin: in std logic_vector (nx-1 downto 0);
Sum, Cout: out std logic_vector (nx-1 downto 0));
end n_adder; -

architecture rtl of n_adder is
begin '
process (A, B, Cin)
begin
Sum <= A xor B xor Cin; -
Cout <= (A and B) or (B and Cin) or (Cin and A);
end process;
end rtl;
configuration cfg n_adder of n_adder is
for rtl "
end for;
end cfg n_adder;

4.4.4 The adder_sc_n

In- this block, the nufnbér of selector-complementers is (n,+1) in a row and the

number of full adders is ny in the following row. One of the inputs of all the full-adders in
this block comcé from the outputs of the selector-complementers of the same block
except the lefimost one. In the VHDL code of the adder_sc_n block, nx is specified as a
generic. Thé VHDL code of the block adder sc_n is given below:

—-- Combined selector-complementer and adder
-- Generic model with N-bit size Iy
-- For C-testable Modified Booth's Array multiplier

F library IEEE; :
- use IEEE.std logic 1164.all;

entity adder_sc n is
generic (nx : integer := 8); :
port (A, B, X: in std logic vector (nx-1 downto 0);
CM, K1, K2, X 1: in std logic;
Z_not: out std_logic;
Sum, Cout: out std logic _vector (nx-1 downto 0));
end adder sc _n;

architecture rtl of adder_sc n is
signal Z : std _logic_vector (nx-1 downto 0);

begin

process (A,B,CM,K1,K2,X 1)

variable r in, y : std logic;

begin _

for I in O to nx loop
if I = 0 then

r in := X 1;
else”

r in := X(I-1);
end if;

if I < nx then
Z(I) <= (X(I) .and K1) or (K2 and r_in);
, else »
- y := (X(I) and K1) or (K2 and r_in);
end if; '
end loop;

41

-- The following part is for adder.

Sum <= A xor B xor Z;
Cout <= (A and B) or (B and Z) or (Z and A);
Z _not <= (not y); :
end process;
end rtl;

configuration cfg _adder_sc n of adder sc n is
for rtl '
end for;

end cfg_adder_sc_n;

4.4.5 The n_mca

This block consists of a number of manchester carry adders, depending on the
number of bits (n,) in the multiplicand and the number of modified Booth encoders
(depth) which is dependent on the number of bits (hy) in the multiplier. The exact number
of manchester carry adders in this block is (depth*2+ n, —1). In the VHDL code of the
block n_mca, the numbers nx and depth are explicitly specified as gcnerics: in order to
generate the parameterized manchester carry adder chain. The manchester carry adders
often employ some form of fast carry propagation scheme [11] and are implemented
differently than the carry save adders (full-adders) used in the array. Howevcr,. both these
adders perform the same logic functions and therefore fnay be regarded to be the same
from the point of view of logic functionality. The VHDL code of the block n_mca’'is

shown below:

~- Carry Adder Chain
-- For C-testable Modified Booth's Array multiplier

library IEEE; ,
use IEEE.std_logic_1164.all;

. AL (B

ac

entity n mca is .
generic (nx : .integer := 8; ny : integer := 10; depth
integer := 5); ' ' '
port (A, B : in std_logic_vector (depth*2+nx-2 downto 0);
el : in std_logic; A
P : out std logic _vector (depth*2+nx-1 downto 0));
end n_mca;

architecture rtl of n mca is
begin
process (A, B, el)
variable Cin, Cout : std_logic;
begin ' o
for I in 0 to depth*2+nx-2 loop
if I = 0 then

Cin := el;
else '

Cin := Cout;
end if; -

P(I) <= A(I) xor B(I) xor Cin;
Cout (A(I) and B(I)) or (B(I) and Cin)
or (Cin and A(I)):
end loop; ‘
P(depth*2+nx~1) <= (not Cout);
end process;
end rtl;

configuration cfg n_mca of n_mca is
for rtl

. end for;

end cfg_n_mca;

4.4.6 The Multlpher
In the top level VHDL code of the multiplier, the aforementioned blocks have

been declared as components. Thcn several instantiations of these components have been

made according to the size of the multiplier. Three generics are specified in the entity of
multiplier. These are nx, for the number of bits in the multiplicand; ny, for the number of

bits in the multiplier; depth, for the number of modified booth encoders needed for the

; desired size of the multiplier. Primary inputs and outputs of the multiplier have been

declared as inputs and outputs respectively in the entity of the VHDL code of the

multiplier. Intermediate signals between several blocks have been declared as signals in

| the architecture of the VHDL code of the multiplier. The VHDL code of the top level

block of the multiplier is giveh below:

f;. -- C-testable Modified Booth's Array multiplier

library IEEE;
use IEEE.std logic_1164.all;

entity booth multiplier is
generic' (nx : integer := 8; ny : integer := 10; depth
integer := 5); ,
port (X: in std logic_vector (nx-1 downto 0);
Y: in std _logic vector (ny-1 downto 0);
X 1, Y 1: in std_logic; '
E1l, E2, E3, E4: in std logic;
P: out std logic_vector (depth*2+nx-1 downto 0));
end booth multiplier;

architecture structure of booth multiplier is

component n_adder
generic (nx : integer := 8);
port (A, B,'Cin:'in std logic_vector (nx-1 downto O0);
Sum, Cout: out std logic_vector (nx-1 downto 0)) ;-
end component;

component mod_both_encoder :
port(y i 1, y i, y_i_2: in std_logic;
K1, K2, CM: out std logic);
end component;

component n_mca -
generic (nx, ny, depth : integer);
port (A, B : in std_logic_vector (depth*2+nx-2 downto O);
" el : in std_logic;
P : out std logic vector (depth*Z+nx-1 downto 0));
end component; - :

- component sc_n

generic (nx : integer := 8);
port (X : in std _logic_vector (nx-1 downto 0);
CM, K1, K2, X 1 : in std logic;
Z : out std logic_vector (nx downto 0));
end component;

component adder_sc_n
generic (nx : integer := 8); o
port (A, B, X: in std logic_vector (nx-1 downto 0);
CM, K1, K2, X 1: in std logic;
Z not: out std_logic;
Sum, Cout: out std logic_vector (nx-1 downto 0));
end component;
subtype a width is std_logic_vector (nx-1 downto 0);
type a_depth is array (integer range 0 to depth-2) of
a_width; :

subtype b _width is std_logic_vector (nx downto 0);
type b depth is array (integer range 0 to depth-1) of
b _width;

signal Sum, Cout : a_depth;

signal K1, K2, CM : std logic_vector (depth-1 downto 0);

signal AV, BV, Cin : a_depth;

signal Z : b_depth; :

signal Z not : std_logic_vector (depth-1 downto 0);
~signal AM : std logic_vector (depth*2+nx-2 downto 0);

signal. BM :,std_ldgic_vector,(depth*2+nx—2 downto 0);

signal EA, EB: std_logic_vector(l downto 0);

begin

-- Instantiate modified booth encoder.
mbe0: for I in O to depth-2 generate
c:if I= 0 generate ,
c0: mod both_encoder port map (Y 1, Y(I), Y(I+1),
) ’ K1(I), K2(I), CM(I));
end generate;

m:if I > O generate
cl: mod both_encoder port map (Y(I*2-1), Y (I*2),
Y (I*2+1), K1(I), K2(I), CM(I));
end generate;
end generate;
mbel: if (ny mod 2) = 1 generate

~~—

c2: mod_both_encoder port map (Y (depth*2-3),

Y (depth*2-2), Y(depth*2-2), Kl(depth-1), K2 (depth-1),

CM(depth-1)); o
end generate;

mbe2: if (ny mod 2) = 0 generate

-c3: mod_both_encoder port map (Y(depth*2-3), Y(depth*2-2),
Y (depth*2-1), K1 (depth-1), K2(depth-1), CM(depth-1));

end generate; : . '

—- Instantiate selector-complementer modules
sc_0: sc_n generic map (nx)
' port map (X, CM(0), K1(0), K2(0), X 1, Z2(0));

sc_1l: sc_n generic map (nx)
port map (X, CM(1), K1(1), K2(1), X_1, "Z(1));

adder0: process (El1, E2, E3, E4, Z)
begin
for J in 0 to nx-1 loop
if (J mod 2) = 1 then
BV(0) (J) <= E1;

end if;

if (J mod 2) = 0 and J < nx-2 then
BV (0) (J) <= E2;

end if;

if J = nx-2 then
BV(0) (J) <= E3;

end if;
if J < nx-1 then

AV (0) (J) <= Z(0) (J+2);
end if;

if J = nx-1 then
\ AV(0) (J) <= E4;
end if;
Cin(0) (J) <= Z(1) (J);
end loop; .
end process;

addo: n_adder generic map (nx)
- port map (AV(0), BV(0), Cin{(0), Sum(0), Cout(0));:.

Z not(0) <= Z(0) (nx);

Z not (1) <= Z(1) (nx);
EA(0) <= El1;
EA(1l) <= E2;
EB{0) <= E4;

EB(1) <= E3;
--adder_scl:
yyl: for I in 1 to depth-2 generate
yy2:for J in 0 to nx-1 generate
" xx2 : if J < nx-1 generate
BV(I) (J) <= Cout(I-1) (J+1);
end generate;
. xx3: if J = nx-1 generate
, BV(I) (J) <= EA(I mod 2);
“end generate;
xx4: if J < nx-2 generate
~ AV(I) (J) <= Sum(I-1) (J+2);
_ end generate;
xx5: if J = nx-2 generate
AV(I) (J) <= Z_not(I);
end generate;
xx6: 'if J = nx-1 generate
AV(I) (J) <= EB(I mod 2);
end generate;
end generate;

add scl:
adder sc n
generic map (nx)
port map (AV(I), BV(I), X, CM(I+1l), K1(I+1),
K2(I1+1),. X 1, Z not(I+1l), Sum(I), Cout(I));
end generate; -

i -- Instance carry adder chain :
] mca: process (CM, Z(0),Sum,Cout,El, Z not)
begin
for I in 0 to (depth-1)*2 loop
! if I = 0O then
v © BM(I) <= CM(I);
' AM(I) <= Z(0)(I);
~end 1if;
- if I = 1 then
BM(I) <= Z(0) (I);
AM(I) <= E1;
end if;
if I > 1 and (I mod 2) = 0 then
BM(I) <= CM(I/2);
AM(I) <= Sum(I/2-1) (0);
end if; : L
if T > 1 and (I mod 2) = 1 then
BM(I) <= Cout ((I-1)/2-1)(0);
AM(I) <= Sum((I-1)/2-1)(1);

end if;
end loop;
- for I in depth*2-1 to depth*Z+nx-2 loop
if I = depth*2+nx-2 then

BM(I) <= Cout (depth-2) (nx- 1);

AM(I) <= Z not(depth-1);

else _ _

BM(I) <= Cout (depth-2) (I-nx+1);
AM(I) <= Sum(depth-2) (I-nx+2);
end if;

end loop;.
end process;

mc: n_mca generic map (nx, ny, dépth)
port map (AM, BM, El, P);

end structure;

- 4.4.7 Achieving Parameterizability
In this design. a very powerful feature (generic) of VHDL has been used to
achieve parameterizability. The above design is valid for multiplier arrays of any operand
size provided that the number of bits in the multiplicand (X) and multiplier (Y) as well as
the depth are explicitly specified as generics in the VHDL codes of the individual blocks

' and in the top level multiplier. The number of MBE:s is determined by the generic, depth
which is dependent on the generic ny (the number of multiplier bits). The number of SCs,
FAs and MCAs are determined by the generics nx and depth. So, it is evident that
parameterizability is effectively achieved in this design.

4.5 Testbench and Simulation
Finally, a testbench has been written to test whether the multiplier performs the

multiplication operation properly or not. The testbench is shown below:

- Test bench for C-testable Modified Booth's Array
ultiplier

flibrary IEEE;
fuse IEEE.std logic_1164. all;
1-—use work. booth multiplier;

ﬂhntity tb_booth multiplier is

§ generic (nx : integer := 8; ny : integer := 10; depth
finteger := 5); - '

! end tb booth multiplier;

Férchitecture vector of tb booth multiplier is

component booth multiplier

¥ generic (nx : integer := 8; ny : integer := 10; depth
jinteger := 5);
¥ port(

'X: in std logic_vector (nx-1 downto 0O
Y: in std logic vector (ny-1 downto 0);
X 1, Y 1: in std_logic;

El, E2, E3, E4: in std logic;

P: out std logic_vector (depth*2+nx-1 downto 0)
)i ‘

end component;

signal X: std_logic_vector (nx-1 downto 0);

{f signal Y: std_logic_vector (ny-1 downto 0);

] signal X 1, Y 1: std_logic;

signal E1, E2, E3, E4: std logic;

signal P: std logic_vector (depth*2+nx-1 downto 0);
constant PERIOD : time := 50 ns;

QBegin

Ul: booth multiplier generic'map (nx, ny, depth)
port map (X, ¥, X1, Y 1, E1, E2, E3, E4, P);

U2: Process .
variable Test : integer := 0;
begin

case Test is-
when 0 =>
X <= (others => '0");
Y <= (others => '0');
X.1<="10"; o

Y 1 <= '0";

El <= '0';
E2 <= '0';
E3 <= '0';
E4 <= '0';
when 1 =>

X <= ('1',others => '0");
Y <= "0101010101";

when 2 =>
. X <= (others => '1");
X1<="1";
El <= '1"';
E2 <= '1";
L E3 <= 1'1";
E4d <= '1";
when 3 =>

X <= ('1',others => '0');

Y <= "1010101010";

X1<="'0";
Y 1<="'1"%
when 4 => ‘
X. <= (others => '0');
Y <= (others => '1'});
Y 1<="0";
El <="'0";
E2 <= '0"';
when 5 =>
Y <= "1100110011";
Y 1<="'1";
El <= '1"';
E2 <= '1";
E3 <= '0"';
E4d <= '0"';
when 6 =>

X <= (others => '1'");
Y <= "0101010011";

X 1 <= '1';
Y 1 <="'0";
when 7 =>

Y <= "0001000100";
Y 1 <= '1";

El <= '0';

E2 <= '0"';

E3 <= '1";

E4 <= '1°';

49

Tl

R

50

when 8 =>
X <= "01010101"; ,
Y <= "0011001100";

X_l <= 'OT;
E2 <= '1';
'E4 <= '0';

when 9 => » .
Y <= "1100110011";
Y 1 <=1'0"; -
El <= "1";
] E2 <= '0"';
’ o - E3 <= '0';
P Ed <= '1";
I when 10 =>
X <= (others => '1");
--Y <= "00110011";
X1<="1";
-- Bl <= "1";
E2 <= '1";
-- E3 <= '0"';
E4 <= '0"';
when 11 =>
Y <= "0011001100";
Y 1 <=1"1";
El <= '0';
E2 <= '0"';
E3 <= '1";
E4d <= "1";
when 12 =>
X <= (others => '0');
Y <=-"1010101010";
X1<="'0"; '
when 13 => :
- X <= (others => '1");

X1<="1";
E3 <= '0"';
E4 <= '0'; "

when 14 => : - ' |
Y <= "0110011001"; : ‘ é

X1<="10";
El <= '1"';
E2 <= '1"';
E3 <= "'1";

E4 <= '1"';

~when 15 =>
Y <= "1001100110";
Y 1<="'0";
El <= '0'; -
E2 <= '0"';
E3 <= '0';
. E4 <= '0"';
- when 16 =>
- X <= (others => '0');
- Y <= "01010101";
when 17 =>
X <= (others =>.'0");
- Y <= "1001100110";

El <= "'1";

“ ' E2 <= '1";
S~ E3 <= Ill’.
' E4 <= '1"';

-- when 18 => _
X <= (others => '1"); - - .
Y <= "0110011001";

X 1 <= "1";

. Y 1<="'1";

- El <= '1";
E2 <= '0';

E3 <= '0';

-- E4 <= '1';

~ when 19 =>
'~=X <= (others => '1");
Y <= (others => 'l1");
CEl <= 1'0";
E4 <= '0';
when others => Null;
end case;
wait for PERIOD;
Test := Test + 1;
. end process; o

end vector;

51

e T AT A e S A e OO
Plrec o et SRS

i
B!
4
3
k-3
-
N
3
%
i
3
i
'
4
X
s

The above testbench has been used fo sixhulatc the functionality of the multiplier. Thcl
simulation results have shown that the VHDL based design of the multiplier is

functionally correct.

‘One set of simulation results is-shown in Fig. 4.3. All numbers shown in this

figure are in hexadecimal. The multiplier (Y) is fixed at 02. Results are shown for

different values of muitiplicand (X). For chmplc, 82 (-126 in decimal) multiplied by 02

gives a product output of FF04 (-252 in decimal) which is the desired result. Also, 06
multiplied by 02 gives 000C (12 in decimal) which is the desired result.

» . JUNX(7:0)

» JU1/Y(7:0)
UV
LJUVED
~JUIE2
..JU1/E3
.JUVES

> _fUI/P(15:0)

0 50 100 150 200 250 300 350
TN FRIEUONE ARV ST SRR X VI VY F TRV ¥ ST U U SRt
6. OA - 8 06 ~ OA . 82 ' 06 . OA
. S s e
" oooC oot FFoa 000G | oola FFo4 | o00oC

Fig. 4.3 Simulation result

Chapter 5
Conclusions and Recommendations

5.1 Conclusions
"~ The désign of an easily tcstable parallel array multiplier has been presented in this
thesis. The multiplier can be tested for all single stuck-at faults using only 19 vectors.
The number of test vectors remains constant irrespective of the operand wordlengths.
‘This means that multiplier arrays of different sizes constructed using the proposed
architecture will require the same number of vectors (19 only) for testihg all single stuck-
at faults. Hoﬁwa, the wordlengths of the X and Y operands of the test vectors have to
be adjusted according to the proposed pattern. Such multipliers are called C-testable.
The modified Booth algorithm has been used to design the multiplier. The régular
structure of the array has reduced the complexity of testing to a greét extent. Since,

modified Booth algorithm generates approximately half the number of partial products

b compared to the stfaightforward carry-save array multiplication schem‘e[9],' [10], the

proposed multiplier will be almost two times faster than the carry-save one.

The above design has been coded in VHDL for the automatic synthesis of testable

multipliers. The capability of VHDL to generate arbitrary n-bit modules has been

exploited in designing parameterizable architc;ctures. The VHDL code accepts the
wordlengths of the operands X and Y asA inputs. Depending on these word.lengths,,' it

generates a multipliér array of the appropriate size. Due to the use of a high-level

o e i s At i < B -«

e g T maEeBL wedd s

54

language like VHDL for the design, it can be used for synthesizing parameterizable

- multipliers for any target process. That is, the same VHDL code ean be used to design

multipliers for a variety of processes without having to meke any modification in the
des1gn or the VHDL code. Thus, the VHDL based design proposed in this thesis is
process mdependent ‘FPGA implementation of multipliers of various sizes are also :
possible using the same VHDL code. |

Finally, it 1s expected that the proposed VHDL based design will be very useful
for the quick generation of easily‘testable multiplier macrocells of arbitrary size for a

variety of target processes.

5.2 Further Work
| Future work may include the synthesis of a multiplier circuit from the VHDL
code for a suitable targef process. After necessary simulation and verification, the
synthesized circuit may be fabricated. Finally, the fabricated circuit (chip) can be tested
for evaluation of practical performance. Multipﬁers of various sizes can also be
implemented on FPGAs using the proposed VHDL code. The practical performance of
the two types of irnplementations may then be compared. | |
~ Another important direction of research would be to integrate th¢’ VHDL code
into an. Electronic Design Automation (EDA) tool. It will then form the testable
multiplier 'compiler, part of the tool. 'Also, VHDL codes may be developed for the
automatic synthesis of various arithmetic, control ano memory blocks. All these codes
can then be integrated along with the proposed multiplier code for the development of a

new Electronic Design Automation (EDA) tool.

k

(1]

References

D.D. Gajsici, N. D. Dutt, C. H. Wy, Y. L. Lin, "High-level synthesis, introduction to chip
and system design," Kluwer Academic Publishers, 1991.

Z. Navabi, "VHDL analysis and modeling of digital syétems, " McGraw-Hill jIrzc., NY, 1993.
J. R. Ammstrong, "Chipi level modeling with VHDL," Prentice;H all International Inc., USA,
1989.

D. Pellerin, D. Taylor, “VHDL made easy,” Prentice-Hall International Inc., USA, 1997.

K. Takeda, F. Ishino, "A single-chip 80-bit floating point processor," I[FEE J. of Solid-State

Circuits, Vol. SC-20, No.5, pp. 986-991, Oct. 1985.

P. A. Lynn, W. Fuerst, "Introductory digital signal proccssing with computer applications, "
Jhon Willey & Sons. 1992.

A. V. Oppenheim and R. W. Schafer, "I‘)iscreet_-time.si'gnal processing," Prentice-Hall of
India PTY. Ltd., Delhi, 1994.

Frank P. J. M. Welton, A. Delaruelle, "A 2-um CMOS 10-MHz ﬁﬁcrpprogramrhable signal
précéssing core with an on-chip multiport memory bank," IEEE J. of Solid-State Circuits,
Vol. SC-20, No.3, pp. 754-760, J_une 1985. | | | _
L. P. Rubinfield, "A proof of the modified Booth's algorithm for multiplication,” IEEE
Trans. Comput., pp. 1014-1015, Oct. 1975.

§ (10} J. J. F. Cavanagh, "Digital computer arithmetic design and implementation,” McGraw-Hill

Book Company, New York, 1985.

f[ll] N.Weste and K. Eshraghian, "Principle of CMOS VLSI design," Addision-Wesley

Publishing Company, Sydney, 1993.

I av]

A. Pucknell and K. Eshraghian, "Basic VLSI design," Prentice-Hall of Australia PTY. Ltd.,
Sydney, 1994.

C. S. Wallace, "A suggestion for a fast multiplier," /EEE Trans. on EIectrbnic Comput.,
Vol. EC-13, pp. 14-17, Feb. 1964. |

L. Dadda, "Some schemes for '.parallel multipliers," Alta Frequenza, Vol. 34, No. 5, pp.
349-356, May 1965. " |

" [15] D. G Crawley and G. A. J. .Amaratunga, " 8 x 8 bit pipelined Dédda multiplier in CMOS,"
1' IEE Proceedings, Vol. 135, Pt. G, No..6, pp. 231-240, Dec. 1988,

; [16] C. R. Baugh and B. A. Wooley, "A two's complement parallel array multlphcauon
algorithm," /IEEE T, rans. Comput., Vol. C-22, No. 12, pp. 1045-1047, Dec. 1973.

, [17] J. A. Starzyk and Z. S. R. Dandu, "Overlapped multi-bit scanning multiplier," Proceedings
’ - of IEEE Int.Conf. on Comp Design: VLSI in Computers, ICCD; 85, NY. Oct. 1985, pp:
363-366. o

,, [18] B.R. Wilkins, "Testing digijtal circuits: an introduction,” Van Nostrand Reinhoid (UK) Co.

i L, 1986 | | |

; . [19] T.Williams and K. Parker, "Design for testability - a survey," /EEE Trans. Comput.,.Vol. C-

31, pp. 2-15, Jan. 1982.

[20] J. P. Shen.and F. J. Ferguson, "The design of easily testable VLSI array multiplication,”
IEEE Trans. Comput Vol. C-33, No. 6, pp. 554-560, June 1984. o

‘ f [2 1] A. R. Takach and N. K. Jha, "Easxly testable gate-level and DCVS mulnphers " IEEE T rans.
‘ . Computer-Aided Deszgn, Vol.10, No. 7, pp. 932-942, July 1991. . .

5 [22] S. M. Aziz, "A C-testable modified Booth's array multlpher " 8th International Conference
; on VLS design, New Delhi, India, Jan. 1995 pp. 278-282.

[23] R. Stans, "The testability of a modified Booth multiplier," Proceedmgs of Ist Europzan Test

Conference, 1989, pp. .286-2938.

b oes
| 2o
27)
28]
29

[30]

 [31]

[33]

. 57

w. A.‘ J. Waller and S. M. Aziz, "A C-testable parallel multiplier using differential cascode
'volta'ge switch (DCVS) logic," International Conference.on Very Large Scale Integrqtién.'
VLSI '93, Sept. 6-10, 1993, pp. 3.4.1-10. . .
N.F. Benschop, “Layouf compilers for variable array multipliers,” Proc. Custom Integrdtéd
Circuits Conf,, May 1983, pp. 336-339, | |
-K. C. Chu and R. Sharma, “A technology independent MOS multiplier generator,” 21
Design Automation Conf., 1984, pp. 90-97. ‘

G. Venzl and R. Mitchell, “A compilable binary tree parallel multiplier designed for speed
and testability,” Proc. Custom Integrated Circuits Conf., 1989, pp. 93-94.

A. D. Fﬁédma.n, "Easily testable iterative systems," /EEE Trans. Comput.,Vol. C-22, PP
1061-1064, Dec. 1973.

Y. K. Malaiya, “Testing stuck-on faults in CMOS integrated circuits,” Proc of International
Conference on CAD, Santa Clara, CA, Nov. 1984, pp. 248-250.

S. M. Reddy and M. K. Reddy, “Testable realizations for FET stuck-open faults in CMOS
combinational logic circuits,” /EEE Trans. Comput., Vol. C-35, No. 8, pp. 742-754, Aug.
1986. ‘

S. M Reddy, V. D. Agarwal and S. K. Jain, “A gate level model for CMOS combinational
logic circuits with applications to fault detection,” 21% Design Automation Conf., 1984, pp.
504-509. |

~ [32] M. Roorda, "Method to reduce the sign bit extension in a multiplier thaf uses the modified

Booth algorithm," Electronic Letters, Vol. 22, No. 20, pp. 1061-1062, 25th Sept. 1986.
N. Burgess, "Removal of sign-extension circuitry from Booth's algorithm multiplier-
accumulators," Electronic Letters, Vol. 26, No. 17, pp. 1413-1415, 16th Aug. 1990.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068

