
VHDL BASED MODELING AND
DESIGN -OF PARAMETERIZABLE
MULTIPLIERS FOR TESTABILITY

A thesis submitted to the
Depa.rtment of Electrical and Electronic Engineering

BUET,Dhaka
in partial fulfillment of the requirements for the degree of

Master of Science in Engineering (Electrical and Electronic)

SHAIKH ARIF SHAMS

ROLL NO: 9406214P
SESSION: 1993-94-95

AUGUST 1998

"111111 11111111/111 11111111111111
#92535#

I I

The thesis titled "VHDL based modeling and design ofptll'ameterlzable maiJipliers for

tests/Jility" submitted by Shaikh Arif Shams, R.oll No. 9406214P to the Department of

Electrical arid Electronic Engineering, BUET has been accepted as satisfactory forpartial

fuJftllment of the requirements for the degree of Master of Science in Engineering

(Electrical and Electronic).

BOARD OF EXAMINERS

,4

~. ,&~ II _,1. /.\./"'e"'-t> -', 1..~YJ

(Dr. Sy d Mahfuzul AzIZ)
Professor
Department of Electrical and
Electronic Engineering
BUET, Dhaka 1000.

Chainnan
(Supervisor)

2.

3.

~' .

. 3/tl'J e
Dr. Enarnul Basher
Professor and Head
Department of Electrical and
Electronic Engineering
BVET, Dhaka 1000.

J~=~ ,
(Dr. Joarde~ZZam~lf7'&'
Associate Professor .
Department of Electrical and
Electronic Engineering
BVET, Dhaka 1000.

.,

Member
(Ex-Officio)

Member
(Internal)

4.

-

(Dr. Chowdhury Mofizur Rahman)
Assistant Professor
Department of Computer Science
and Engineering
BUET, Dhaka 1000.

Member
(External)

o ./

-

DECLARATION

I hereby declare that this work has been done by me and it has not been submitted
elsewhere for the award of any other degree or diploma.

Countersigned

-1

,
f:

-.\

F~---
f '::

ACKNOWLEDGEMENT

It is the author's pleasure to acknowledge his heartiest gratitude and profound

obligation to his Supervisor, pr. Syed. Mahfuzul Aziz, Professor, Department of

Electrical and Electronic Engineering, Bangladesh University of Engineering and

Technology for his excellent supervision, continuous guidance and valuable suggestion

throughout the progress of the work.

The author is indebted to Mr. Nazmu1 Ula, Ph. D., Assistant Professor, Electrical

Engineering & Computer Science, Loyola Marymount University for. allowing the author

to simulate the VHDL code of his design on the M odelTek simulator in Mr. Ula' s laptop.

The author is also grateful to him for his constructive criticisms and valuable suggestions.

The author wishes to thanks Dr. Iftekhar Ahmed, Lecturer, University telecom

Malaysia for his help with VHDL based design tools.

lV

-

ABSTRACT

Full custom design of VLSI circuits is very time consuming and costly. Such a -

design for a target process cannot be reused for fabrication even in a scaled down version

of the same process. This makes the approach less attractive, since the complete chip has

to be redesigned for the process. As a result, language based design approach has gained

tremendous popularity because of the versatility and portability of such designs.

Sophisticated CAD tools are being developed to automate the design procedure of

complex integrated circuits.

This thesis presents the VlIDL (VHSIC Hardware Description Language) based

design of a parallel multiplier of variable operand wordlengths. The multipliers are very

easily testable with only 19 vectors irrespective of the operand size. All the single stuck-

at faults in the multiplier can be tested with these vectors. The VlIDL code for 'the

proposed multiplier can be incorporated into logic synthesis tools for the automatic

generation of multiplier macrocells within a few minutes.

v

,-,

CONTENTS

'J

Acknowledgement iv
Abstract v
List of Figures ix
List of Tables x
List of Abbreviations xi

CHAPTER 1 Introd uction

1.1

1.2

1.3

Aims

Literature Review

Organization of the Thesis

1

1

2

4

CHAPTER 2 Multiplier Algorithms and Architecture 5

2.1 Introduction 5

2.2 Straightforward Carry-Save Array Multiplication 5

2.3 Booth Algorithm 7

2.4 Modified Booth Algorithm 9

2.5 Removal of Sign-Bit Extension Circuitry 12

2.6 An Architecture Based on Modified Booth Algorithm .14

vi

••... ----. 1

CHAPTER 3 Testability of the Multiplier

3.1 Introduction

3.2 Testing Approach

3.3 Modification of the Architecture for Testability

3.4 Testing of Individual Cells

17

17

17

18

20
3.4.1 Testing ofMBEs for Single Stuck-at Fault 20

3.4.2 Testing of the SCs for Single Stuck-at Fault 21

3.5

3.6

3.7

Testing the Multiplier '24

3.5.1 Test Vectors 24

3.5.2 Exhaustive Testing of the FAs 24

3.5.3 Exhaustive Testing of the MCAs 27

3.5.4 Testing of the MBEs 28

3.5.4.1 Exhaustive Testing 28

3.5.4.2 Testing for Single Stuck-at 29

Fault

3.5.5 Test Vectors for SCs 30

Calculation of Overhead 30

3.6.1 Hardware Overhead 30

3.6.2 Delay Overhead 31

Summary 31

CHAPTER 4 VHDL Modeling of the Multiplier

4.1 Introduction

4.2 Partitioning

4.3 Design Hierarchy

4.4 VHDLModel

vii

32
32

32
35
35

1,

4.4.1 The Modified Booth Encoder 36

4.4.2 The sc n 37

4.4.3 Then adder 38

4.4.4 The adder sc n 40

4.4.5 Then mca 41

4.4.6 The Multiplier 42

4.4.7 Achieving Parameterizability 47

4.5 Testbench and Simulation 47

CHAPTER 5 Conclusions and Recommendations

-----~

References:

5.1

5.2

Conclusions

Future Work

viii

53

53
54

55

\

.~

_____ 0 _

List 0.£ Figures

Fig. 2.1 A parallel multiplier array using carry save adders 06

Fig. 2.2 Multiplication example using bit-pair recoding 11

Fig. 2.3 Sign extended partial product array 12

Fig. 2.4 Recoded sign extended partial product array 14

Fig. 2.5 An 8 by 8 bit modified Booth multiplier array 16

Fig. 3.1 Architecture of a 6 x 8 bit multiplier with recoded sign bits 19

Fig. 3.2 Gate level design of the modified Booth encoder (lvffiE) 20

Fig. 3.3 Gate level design of the selector-complementer block 22

Fig. 4.1 Partitioning the multiplier into modular blocks 33

Fig. 4.2 Design hierarchy 35

Fig. 4.3 Simulation result 52

ix

--_._----~

List of Tables

Table 2.1 Multiplier bit-pair recoding scheme 11

Table 2.2 Modified Booth recoding table 15

Table 3.1 Fault matrix for the MB,E logic circuit 21

Table 3.2 Fault matrix for the selector block 23

Table 3.3 A set of test vectors for an 8 X 8 bit multiplier 25

Table 3.4 Exhaustive testing of the FAs 26

Table 3.5 Exhaustive testing of the MCAs 27

Table 3.6 Exhaustive testing of the,MBEs 28

x

.-. ,-- --~~~-
n'

---------_. ---~.

List of Abbreviations

CPW Complex Programmable Logic Device

DCVS Differential Cascode Voltage Switch

FA Full-Adder

FPGA Field Programmable Gate Array

LSB Least Significant Bit

MBE Modified Booth Encoder

MCA Manchester Carry Adder

MSB Most Significant Bit

SC Selector-Complementer

VlIDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

-Xl

1.1 Aims

Chapter 1

Introduction

• f '.~ _'

" .

. ," ~'.
..•..~.~---" ~' ,~_""' ...~.'"

• , -, :',~':,.~.;'" ~~':" __ ",;.;_~.", .f ._,"

With the continuing advancements ofVLSI technologies and marked shrinkage of

process featUres, the need to develop process independent chip design tools is growing

[1], [2]. The use of a hardware description language (HDL) for integrated circuit design

eliminates the need to worry about process design rules at the design stage [2], [3]. This

reduces' the design complexity and time required in completing chip designs. This is very

important since vendors need to market their products in the shortest possible time in

order to capture a major share of the Ie market and also to remain competitive. The fact

that such high level designs can be implemented on a variety of target processes reduce

the design cost as well. The aim of this thesis is to design easily testable parameterizable

multipliers. VHSIC Hardware Description Language (VHDL) will be used for the design

since it includes some very useful features for hardware design which are not available in

other languages [2]-[4]. The use ofVIIDL will make the design portable and reusable.

This chapter present~ brief review of the literature on popular multiplication algorithms

and their testable implementations. The review also includes a discussion of the

multiplier compilers found in the available literature.

2

1.2 Literature Review

MultiplierS are often one of the key elements in single chip digital information

processors [5]-[8]. Various algorithms have been developed for multiplication of binary

nwnbers [9]-[17]. Some of them perform unsigned multiplication while others perform

two's complement multiplication. The speed of multiplication varies from one algorithm

to another. While speed is one of the criteria for selection of multiplication algorithm, the

power consumption and regularity of s1ructure are two other very important criteria for

VLSI implementation. Especially, for automatic synthesis, the regularity of s1ructure is

the most critical factor. The modified Booth algorithm [9], [10] for two's complement

multiplication essentially reduces the nwnber of partial products by a factor of two

compared to the straightforward carry-save array multiplier [11]. Multiplication speed is

almost doubled. Besides, there is no need for precomplementing the multiplier or

postcomplementing the product. The multiplier structure is regular, therefore suitable for

VLSI implementation.

With the advancement of integrated circuit technology, the implementation of

large array multipliers ona single chip has become possible. However, due to the

increasing complexity of VLSI circuits it is becoming more and more difficult and costly

. to test them [18], {19]. As a result, it is a common practice among circuit designers these

days to give due consideration to testability at the early stages of design. Extra hardware

and/or inputs are added to the original circuits to make them easily testable thereby

reducing testing time and cost. The testability of parallel array multipliers have been

investigated by several researchers. A nwnber of testable multiplier architectures have

been proposed by them [20]-[24]. In [20], C-testable designs of carry-save array

multiplier and Baugh-Wooley's two's complement array multiplier are presented. Two

designs of easily testable gate-level and DCVS logic multipliers have been proposed in

[21]. These designs are based on the straightforward carry-save array multiplication

3

scheme and have been shown to be testable with a constant number of test vectors

irrespective of the array size. Such designs are referred to as "C-testable". Gate-level C-

testable multipliers based on the modified Booth algorithm have been presented in [22]

and [23]. A C-testable DCVS design using this algorithm has also been presented in [24].

In order to find out an optimal area and speed of a processor chip, the different

modules within the chip have to be tried out for various architectures. Since it is time

consuming to verify many possible layouts for each module, one approach is to use

software packages called module generators or silicon compilers to provide fast and

efficient design of parameterized modules. The multiplier compilers presented in [25]-

[26] generate parameterizable layouts for MOS technology. The technology

independence of the compiler presented in [27] is limited by the requirement that the leaf

cells have to be recharacterized in the new technology. The aim of this thesis is to present

the design of totally process independent VLSI array multipliers of variable size

(parameterizable) using VlIDL.

The proposed multiplier is based on the modified Booth algorithm. There is some

specific reasons for this particular choice. First of all it reduces the number of partial

products to almost half compared to straightfonvard carry-save array multiplier. Besides,

the multiplier has a regular structure which is an extremely important criterion in the

selection of schemes for VLSI design. The multipliers are made C-testable [28], i.e., they

can be tested for all single stuck-at faults with a constant number of test vectors

irresp'ectiveof the size of the operands. Although stuck-at fault models cannot adequately

model transistor stuck-on and stuck-open faults [29]-[30], it is possible to derive

equivalent stuck-at test sets for logic gates to cover transistor stuck-on and stuck-open

faults [31]. Since the number of test vectors is constant for any multiplier size, the test

generation for the proposed designs are considerably small. In this thesis, VHDL. is

chosen for designing the testable, parameterizable multipliers because of its unique

4

features for hardware design [2]-[4]. The use of VlIDL will make the designs portable

and reusable.

1.3 Organization ofthe Thesis

Chapter 2 presents the parallel multiplication scheme using a straightforward

array of cany-save adders. It also introduces the Booth algorithm for multiplication of

signed binary numbers. Bit-pair recoding technique and modified Booth multiplier is also

presented in this chapter. Chapter 3 analyzes the testability of the multiplier architecture

based on modified Booth algorithm and presents the design of a C-testable multiplier.

The VHDL model of the parameterizable and easily testable multiplier is presented in

chapter 4. Finally, chapter 5 concludes the thesis with some recommendations for further

research.

___ 0 --'- '

I,

\
\
,I

Chapter 2

Multiplier Algorithms and Architecture

2.1 Introduction

In this chapter, multiplication of two fixed .point binary operands. will be

discussed. Some most common parallel multiplication schemes such as the

straightforward carry-save array multiplication, Booth algorithm and method of bit-pair

recoding or modified booth algorithm will be considered. An architecture based on the

modified Booth algorithm for multiplication of two signed numbers will also be

presented in this chapter.

2.2 Straightforward Carry-Save Ar~ay Multiplication

Multiplication can be defmed as repeated addition. The number to be added is the

multiplicand, the number of times it is added is the multiplier, and the result is the

product. Each step of addition generates a partial product and when the operands are

integer the product is twice the length of the operands in order to preserve the ipformation

content. Binary multiplication is equivalent to the logical AND operation. Thus the

evaluation of partial'products consists of the logical ANDing of the multiplicand and the

relevant multiplier bit. Each column of partial products must then be added, and if

necessary, any carry value passed to the next column. A parallel multiplier [11] is based'

on the observation that all part~al products in the multiplication process maybe

f"r:. - '.< .(: ..'~>:

I.....'..'.'

i,
!

Yo

Yl

Yz

L

6

independently computed in parallel. The partial product terms are. called summands. If

the multiplicand and the multiplier have m and n bits respectively then there will be m x n

summands, which are produced by a set of mn AND gates. In a straightforward carry-

save array multiplier the summands are collected through a cascaded array of carry-save

adders. At the bottom of the array, an adder is used to convert the "carry save form" to

the required form of output. The depth of the array and the carry propagation

characteristics of the adder :fixthe multiplication time.

A 4 x 4 bit straightforward carry save array multiplier with the partial products

enumerated [11] is shown in Fig. 2.1. The basic cell that may be used to construct this

parallel multiplier is also shown in this figure. The multiplicand term XIis propagated

vertically, while _the multiplier term yIispropagated horizontally. Incoming partial

product bits ertter at the top and the incoming CARRY IN bits enter at the top right of the

cell. The bit-wise AND operation is performed in the cell, and the SUM is passed to the

next cell at the lower right. The CARRYour is passed to the bottom of the cell.

Fig. 2.1 A parallel multiplier array using carry save adders

"1

7

......, i + k, i + k-l, i + k- 2, , ~ i-I, .

2.3 Booth Algorithm

Booth Algorithm is a powerful direct tool for signed-number multiplication [10].

In the standard add-shift method, each non zero bit of the multiplier causes one addition

of the multiple of multiplicand to the partial product. The execution time of

multiplication instruction is determined mailily by the number of additions to be

performed. So, the execution time can be reduced if we can reduce the number of

additions. This is achieved by a method of bit-scanning which reduces the number of

multiplicand multiples. This technique uses recoding of the multiplier based on the string

property. The process is often referred to as "skipping over Os"and can be generalized to

shift of variable lengths if string of Oscan be detected. The greater the number of Os in

the multiplier the faster the operation. Consider a string of k consecutive 18 in the

multiplier as shown below.

r.

' '.' .. '.'•...

::,~'.-~-: :

'. '.

/
f
r
I
[

I
t

I
I

t

f
I'

!
t
[
t
I
t

......, 0, 1 , 1 , 1, 0 , .
,,'-------'/

k consecutive Is

......, i + k+1, i + k, i + k- 1, , i +1, i, i-I, .

The consecutive Is can be replaced by the following string

by using the following property of binary strings

2i +k _2i = 2i +k-l + 2i+k-2 + + 2i+1 + 2i

t

r,.
[
I.

f
l
I,

......,
o , r 'k.~~:ve :/'t0 , .

Addition Subtraction

(2.1)

Nowconsider a multiplication.example in which a positive multiplier has a single

block of Is with at least one 0 at each end, for example 0 0 1 1 1 0 (14). The number of

k...'•.'...•.'.~.....'.....:...'..•'...
f':

I
t
I
I
i

f

!
l
l
I

t

!

, .

8

addition can be reduced by observing that a multiplier in this form can be regarded as the

difference of two numbers as follows:

010000 (16)

-) 000010 (2)

00111 0 (14)

This was shown in Eq. 2.1 and indicates that the product can be generated by one

addition (addition of 24) and one subtraction (subtraction of21). In the standard notation,

the multiplier can be written as

o 0 +1 +1 +1 0

and the recoded multiplier can be written as

o +1 0 0 0 -1 0

Note that the -1 times the left-shifted multiplicand occurs at 0 to 1 boundaries and +1

times the left-shifted multiplicand occurs at 1 to 0 boundaries as the multiplier is scanned

from right to left. The transformation that takes

01111 1110 into +10000 0-10

is often referred as the .technique of skipping over 1s. The reasoning is that in cases in

which the multiplier has its Is grouped into a few blocks, only a few versions of the

multiplicand need to be added to generate the product hence, the multiplication process

j

J

I
i
1

1,

"l ,

! .

9

becomes much faster. It can also be shown that the Booth recoded multiplier algorithm

works equally well for negative multiplier.

2.4 Modified Booth Algorithm

Modified Booth Algorithm is a multiplication speedup technique that guarantees

that an n-bit multiplier will generate at most n/2 partial products [9], [10]. It can multiply

two two's complement numbers directly and gives the product also in two's complement

form. This represents a multiplication speed increase of almost a factor of 2 over the

standard add-shift method.

This new technique is derived from the Booth technique. Recall from the previous

discussion of a positive multiplier of 0 0 1 1 1 0 (+14). The number of addition can be

reduced by observing that the multiplier in this form can be regarded as the difference of

two numbers as shown below.

252423222120

o I 0 0 0 0 (16)

-) 0 0 0 0 1 0 (2)

Multiplier ~ 0 0 1 1 1 0 (14)

This indicate that the number 0 0 1 1 1 0 (14) has the same value as

This is true for any number of contiguous Is, including the case in which there is a single

1 with Os on either side. The entire concept of bit-pair recoding revolves around this

method of regarding a string of Is as the difference of two numbers.

1 l

F<'":

,'T

)

i

10

Now returning to the multiplier being discussed and scanning it from right to left ,

bit by bit. In"going from ° (20) to 1 (21), we saw previously that this resulted in

subtr~cting the value of the 1 in that position, in this case - 21. Scarmingfrom 1 (21) to 1

(22) resulted in no change, that is , neither addition nor subtraction. The same is true in

scanning from 1 (22) to 1 (23). However, in going from 1(23) to 0 (24), we saw that this

resulted in an addition of 24. There-is no change in scanning from ° (24) to 0 (25). The

results of scanning this multiplier are as follows: 21 was 'subtracted and 24 was added.

The same results can be obtained by looking at pairs of bits in the multiplier in

conjunction with the bit that is to the right of the bit pair being considered, as shown

below.

25 24 23 22 21 20

[1J LQ. .LL .LJL [Q]
i " T
Sign . hnplied 0
Extension

That is, bit pair 21, 20 is examined with an implied 0 to the right of the low-order bit; bit

pair 23, 22 is examined with bit 21, bit pair.25, 24 is examined with bit 23. Sc~g the

bit pairs from right to left and using the rightmost bit of each pair as the ~olumn reference

for the partial product placement (it is the center bit of the three bits being examined), we

obtain the following multiplier bit-pair recoding scheme shown in table 2.1. It should be

noted that there are a total of eight possible versions of the multiplicand.

i

I
1

I
I
j
I
I
I
I
j
1

J
!

F",:J:". 11 1): 1
j

j

Table 2.1. Multiplier bit-pair recoding scheme I
I
l

1

Multiplier Multiplier bit Multiplicand Explanation
bit-pair on the right multiples to be

i+l 1 i-I added

0 0 0 o x multi licand No strin
I

0 0 1 + 1 x multi licand End ofstrinI
0 1 0 + 1 x multi licand

0 1 1 + 2 x multi licand End ofstrin
1 0 0 - 2 x multi licand Be ofstrin
1 0 1 - 1 x multi licand End/be ofstrin
1 1 0 -1 x multi licand Be ofstrin

I
. I1 1 1 o x multi licand Strin s of Is

Fig. 2.2 gives an example of the bit-pair recoding multiplication technique using two 5 bit

operands represented in two's complement form.

-Ix +Ix .2x

1 ill 110100

!
;

I
1
!
i

I
I
I
a
j

(+ 6)00110

[1] 10010[0] (-14)
~~'---'

Multiplicand X =

Multiplier Y =

ProductP =

00000110

111010

1+- 1 1 1 0 1 0 1 1 0 0 (- 84)

Fig. 2.2 Multiplication example using bit-pair recoding

l
i-----_. __.-~------- -------------

12

2.5 Removal of Sign-bit Extension Circuitry

The modified Booth algorithm for multiplying two binary numbers basically

consists of two steps. First to obtain the partial product from the proper version of the

multiplicand and second to add these partial products in an appropriate array of full

adders considering that summation in an array has to be done with sign bit extension,

because it is a signed multiplication. However, if explicit sign extensio~ scheme is

observed large amount of circuitry is required merely to accommodate the sign-extension

of the partial products. The redundancy of the sign-bit extension can be eliminated by a

simple method, i.e., reducing the number of variable inputs to the array, thus reducing the

number of full adders involved. Several approaches for removing the sign-extension

circuitry from Booth multiplier have been proposed by previous researchers [32], [33].

Let us consider the multiplication of two 8-bit binary numbers using modified I'

Booth algorithm. Since this algorithm scans three bits"of the multiplier at a time and

retires two of them to generate a partial product, the total number of partial products

generated for the 8-bit multiplier is four. If a, b, c, d represents these partial products,

then the addition of these partial product is illustrated in Fig. 2.3. Each partial product is

shifted two bit positions to the left with respect to the preceding one in accordance with

the modified Booth algorithm.

PI5 P14 P13 PI2 Pll PIO P9 P8 P7 P6 Pj P4 P3 P2 PI PO

a8 a8 a8 a8 a8 a8 a8 a8 a7 a6 a5 a4 a3 a2 al aO

b8 b8 bs b8 b8 bs b7 b6 b5 b4 b3 b2 bi bo

Fig 2.3 Sign extended partial product array

'j

,l

I
I
i
l
~
j

I
i
I

j
j

1

cO
-

c8 cS ,c8 c7 c6c5 c4 c3 c2 ci

d8 d8 d7 d6 d5 d4 d3 d2 dl do

1,"",

13

extended bits can be written as

Swn = a8 (27 + 26 + 25 + 24 + 23 + 22 + 21 + 20) + b8(27 + 26 + 25 + 24 + 23

+ 22) +c8(27 +26+25+24)+d8(27 +26)

= a8 (28.2°) + b8 (28.22)+ Cs (28.24) + ds (28.26)

Since P J5 is the most significant bit of the product output, module 28 addition can be used

to swn the sign bits. Thus, the swn of the sign bits can be written as

which expressed as a binary number is

(2.2)

The two's complement of the word (0 d8 °c8 0 bs °as) is
(2.3)

When the recoding scheme of Eq. 2.3 is used, the sign extended Booth partial product

array appears like the one shown in Fig. 2.4.

1
: ,.~ ~.". '

-1

1

14

1

1 as a7 a6 aj a4 a3 a2 aj ao

1 0; b7 b6 bj b4 b3 b2 bj . bo

1 rJ8 c7 c6 cj c4 c3 c2 cj Co

1 a; d7 d6 dj d4 d3 d2 d doj

Fig 2.4 Recoded sign extended partial product array

Hence it is seen that elimination of the sign-extension circuitry in a modified

Booth algorithmmultipliers can be achieved by inverting the MSB of each partial product

and adding a logic '1' at every higher significance (including the MSBs). This procedure

is equivalent to recoding the MSBs of the partial products as a two's complement number

and adding a logic '1' to the most significant full adder in each row of the main array.

2.6 An Architecture Based on Modified Booth Algorithm

Fig. 2.5 represents an 8 by 8 bit multiplier architecture based on the modified

Booth algorithm for multiplication of two binary numbers that are in two's complement

form [24]. Elimination of the sign extension .circuitry is achieved by the procedure

described above. The modified Booth encoder (MBE) block in each row operates on

three multiplier bits to generate the control signals CM, K} and Kz according to the

modified Booth recoding scheme as shown in Table 2.2. In this recoding scheme five

possible partial products can be formed: 0, +x, -X, +2X, -2X where X denotes the

multiplicand. The selector complementers (SC) in Fig. 2.5 consist of multiplexers which

operate on the multiplicand bits to generate 0, X or 2X as partial products depending on

------------------------,--~-_. __ ._.

I

I

1

15

the control signals K}, K2 and complementers (2-input EX-OR gates) which generate

one's complements of these partial products only when CM signal is high. Moreover,

these one's complemented partial products are converted to their two's complement form

by addition of a logic' I' to their LSBs. The addition of the partial products are

accomplished by an array of carry save full adders (FA). The Manchester carry adders

(MCA) on the right-hand side and the bottom of the Fig. 2.5 operates on the results

coming out of the main array (the array containing SCs and FAs) to generate the [mal

product output.

Table 2.2: Modified Booth recoding table

MBEinputs MBE outputs Partial Product SC output

Y'l Y. Y'I KI ~ CM Generated Z1+ 1 1-

0 0 0 0 0 0 0 0

0 0 I I 0 0 +X X.
1

0 I 0 I 0 0 +X X.
1

0 I 1 0 I 0 +2X X'II-

I 0 9 0 I I -2X. X'II-

I 0 I I 0 I -X
. X.

- 1

I 1 0 I 0 I -X X.1

I I I 0 0 0 0 0

1

I
j
1

~

i
1
I
I
1

M
B
E

~._-

yO

)'1

y2

)'3

)'4

y5

)'6

y7

'":"';:':~-~i.\'~;>Li:~~~

PiS P14 Pl3 P12 Pll P10 P9 P8 P7

;

J

Fig 2.5 : An 8 by 8 bit modified Booth multiplier arrray
(HorizOntal Controls and vertical multiplicand routings are omitted for clarity)

16

ad. '*' ""-. *',! ' ••Ih -'

1

Chapter 3

Testability of the Multiplier

3.1 Introduction

With the increasing complexity of VLSI circuits, it is difficult to test them unless

due consideration to testability is given at the early stages of design. The high device-to-

pin ratio severely limits the controllability of internal signal lines in VLSI chip [19].

Also, there exists a large number of faults of various types, many of which cannot be

modelled by the traditional stuck-at fault model. Test pattern generation and verification

procedures are becoming very costly or even computationally infeasible to irnp,lement

[18]. However, VLSI circuits like array multipliers having regular iterative structure have

been shown to be easily testable by slight modification of the conventional design [20].

The multiplier architecture presented in Chapter 2 will be modified in this chapter in

order to convert it to an easily testable one.

3.2 Testing Approach

The objective of the testing approach adopted in this research is to exhaustively

test the full-adders (FAs), Manchester carry adders (MCAs) and modified Booth encoders

(MBEs). Such a test set will be applicable to any arbitrary logic implementation of these

cells. The fault model used in this research assumes:

a) at most one basic cell in an array multiplier is faulty at a time;

I ~

18

b) the fault is a permanent fault (i.e. the fault permanently changes the circuit's

logic characteristics);

c) the fault may alter the cell's output functions in any arbitrary way, as long as

the faulty cell remains combinational circuit.

It is necessary to modify the design of the modified. Booth encoders with a

significant increase in complexity and gate count in order to generate exhaustive test set

for the selector-complementers (SCs). However, Takach arid Jha [21] have shown that

hardware overhead reduction is possible for array multipliers if a fault model based on

. single (stuck-at) faults is used instead of the single cell fault model. They have also

shown that a set of test vectors which detect all single stuck-at faults in a gate level

carry-save multiplier can be readily adopted to detect all detectable single stuck-at,

transistor stuck-on and stuck-open faults in a DCVS implementation of the multiplier.

Therefore, the selector-complementers will be tested for single stuck-at faults only.

Moreover, although !\1BEs are eventually exhaustively tested, this testing does not

guarantee the fault propagation to the primary outputs of the array. Due to this, equivalent

gate level circuit for !\1BE will be tested for single stuck-at faults.

3.3 Modification of the Architecture for Testability

The main challenge in testing array multipliers is the difficulty of controlling the

inputs of internal adder cells from the primary inputs, namely the multiplier (Y) and

multiplicand (X) mputs. In fact, some patterns cannot be applied to some adders cells. To

overcome this problem, extra inputs and sometimes extra hardware is added to enhance

controllability and observability of the internal signal lines in VLSI circuits.

A testable architecture for an 6x8 bit multiplier is shown in Fig. 3.1. Comparing

to its non testable version, this architecture has 4 extra controllable inputs el, e2, e3, e4,

1

Pl3 PI2 PH PIO P9

Xs

Ps

X2

ps

Jf
Final
adders

~

19

o Se1ectorr-
comp1ementer

FA- Full adder

Po

PI

4

1

Fig. 3.1 Architecture of the multiplier with recoded sign bits

I
j
I
1
I
1

I
.1
. I

'i -,:

20

"-land y-1 to enhance the controllability of various cells. For normal multiplication

operation these extra inputs will have thefollowing logic values: e1= 0, e2 = 0, e3 = 1, e4

3.4 Testing the Individual Cells

In this section, the patterns required for testing the various individual cells of the

multiplier for single stuck-at faults are derived.

3.4.1 Testing ofMBEs for Single Stuck-at Fault

The logic diagram of the modified Booth encoder used in the multiplier is shown

in Fig. 3.2.

Yi-l

Yi

Yi+l

Kz

eM

'Figure: 3.2 Gate level design a/the Modified Booth Encoder (MBE)

The circuit has twelve nodes and so twenty four possible stuck-at faults. For the

.three primary inputs there will be eight possible test vectors which will be identified as to

to t7, where the suffix is the decimal equivalent of the binary numbers (YI. lYIYI+ 1)' The

fault coverage is convenientlydisplayed in the fault-matrix shown in Table 3.1. The tick

against each test indicates the fault covered by that test.

-I

J

I,
i

.~.

21

Table 3.1 Fault matrix for the MBE logic circuit

t
lfest Yi.l Yi.l Yi Yi Yi+l Yi+l A A B Bee D DEE F F K1 K1 K2 K2 CM CM

/0 /1 /0 /1 /1 /1 /0 /1 /0 /1 /0 /1 /0 /1 /0 /1 /0 /1 /0 /l /0 /1 10 11

'~ .J
, ~-
",Is .J

~~,

,16 .J
.;.~

h .J

~f
, From the above fault matrix it is seen that the test vectors t1, t3, t6 and h are the>,
"essential tests. These four essential tests cover all the faults except YI+I/l and B/l. A

. single test that covers both of these faults is 4. Hence a set of test patterns for the inputs

. (YI-IY!YI+l) of the J\..1BE ofFig~ 3.2 that detect any single stuck-at fault in the J\..1BE is {DOl,
o'011, 100,110,Ill}.

J.

;,3.4.2 Testing ofth.e SCs for Single Stuck-at Fault
I ,~>,

The logic diagram of the selector -complementer block is shown in Fig. 3.3. It has

,; a total of five inputs. However, for testing of single stuck-at fault we will derive fault

matrix for only the selector part. This is because the complementer part is nothing but an

EX-OR gate whose one input is the complement signal eM and the other is output of

selector circuit Zj. Since output of an EX-OR gate inverts due to inversion of any one ,of

22

{its inputs so if we can test only the selector part for single stuck-at fault we may declare

" ~.'that this fault will propagate to the SC output due to that fault propagatiott property of

rEX-OR gate. This criterion will also reduce the number of input test vectors of SC blocks",'.

, J from twenty five to sixteen. These will be identified as to to t1,5,where suffix is the

decimal equivalent of the binary number (KIXiKZXI-I). Table 3.2 shows the fault matrix.

Xi

E

Complementer

Selector

Fig. 3.3 Gate Level Design o/the Selector-Complementer Block

CM •.

,,~
, " - ""

~, 23~t
.\

11::

Table 3.2 Fault Matrix for the Selector Block

,
Test KIlO KIll KiO Kil x.; 10 x.; 11 x.;.) 10 x.;.) II EIO Ell FlO Fl1 '40 '41

, f to ..J ..J ..J

t1 ..J ..J ..J ..J

I t2 "' , " " ..J

, t3 ..J ..J ..J " ".
t t4 " ..J " ..J

t5 ..J ..J ..J " ..J

" 1() " " " " ..J ..J

\ t7 " ..J " ..J "
.!:~ t8 " ..J ..J "4;

" ~ " " " " ..J~
"I,
~. tlO " " " ..J "~,
~,

t11 ,..J ..J1. " ..J ..J ", -~

I
! t12 " ..J " ..J "'(,,

t13 ..J ..J " ..J ..J "':j

\
..j

-t. t14 ..J ..J ..J "
.

" "'f. "3.

t t15 " ..J " ..J ..J " "~•,,<'.

,..
.~ -
),
.{ Identifying the indistinguishable faults and dominant faults in the fault matrix of;.t

, . - Table 3.2, it is fOlmd that the test vectors needed to test any single stuck-at fault are t2, t7,
~-

t8 and t13. So the set of test pattern for the ipputs (KlxjK2xI-l) of the selector circuit to

detect any single stuck-at fault is {0010, 0111, 1000, 1101}.

,

'~

,';
,., . --"--","'-'-'- -_."'.,_ . .".<.~ "'..: " -.- _.' _ ..<___ -, _S~ , .. ~m._'_~

24

3.5 Testing the Multiplier

In this section, a set of test vectors for testing the multiplier will be derived. The

~vectors will cover the exhaustive testing of the FAs, MCAs, MBEs as well as the stuck-at

; faults in the selector-complementers.

; ~3.5.1 Test Vectors
. l

A set of test vectors for detecting all single stuck-at faults in a larger version of

:-the multiplier of Fig. 3.1 is shown in Table 3.3. An 8-bit multiplicand X. and a 8-bit

1multiplier Y are shown with their LSBs to the right most position. The underliried bits
~.

"~'have to be replicated for generating the test vectors for multipliers with larger operand
,J
1: wordlenths.'!. .
!.{
~.

~" .

. ~3.5.2 Exhaustive Testing of the Full-Adders
;!-
{ The first twelve test vectors tl-t12 of Table 3.3 set up the patterns required for
~~
? exhaustive testing of all the full-adders as explained in the following steps:

. I.

} 1) The test vector tl applies 000 to most of the full-adders. However, the fulli.
$! adders affected by the inverted sign bits of the partial products receive 100. Test vector t2

,~

~r applies 000 to these full-adders.
, :'
? . 2) Application of pattern 111 to all the full-adders is accomplished with the

, ~..!vectors t3 and t4'
" 3) The vector t5 applies 100 to all the full-adders except the one labeled 'FAI' in
'i
. ~the second row of Fig. 3.1 which receives the pattern 01O.l6 applies 100 to FA1.

4) The vector t7 applies 011 to all the full-adders except the one labeled 'FAI'

which receives the pattern 101. t8 applies 011 to FAI.

~.

f

~'.

t
It"

,F

r,
!

. ~,.. {

Table 3.3 A set of test vectors for an 8 x8 bit multiplier

Vectors X)(.1 Y Y-l e4e3e2e}
t1 ooOOOOOQ 0 QOOO0000 0 0000

t2 1000000Q 0 01010101 0 0000

t3 11111111 1 01010101 0 1111

t4 1000000Q 0 1010 1010 1 1111

t5 OOOOOooQ 0 11111111 0 1100

f() OOOOOOOQ 0 0011 0011 1 0011

t7 11111111 1 01010011 0 0011

t8 11111111 1 01000100 1 1100

~ 01010101 0 11001100 1 0110

t10 01010101 0 0011 0011 0 1001

t11 1111 1111 1 0011 0011 0 0011

t12 11111111 1 11001100 1 1100

tl3 OOOOOOOQ 0 1010 1010 1 1100

t14 11111111 1 1010 1010 1 0000

t15 11111111 0 10011001 1 1111

t16 11111111 . 0 01100110 0 9000

t17 0000 OOOQ 0 01100110 0 1111

t18 11111111 1 10011001 1 1001
-

t19 11111111 1 11111111 1 0000'

lie The bits to be replicated for larger multipliers are underlined

7) t8 applies 101 to the full-adders in the even rows except FAI. It was seen in

Table 3.4 shows the results of exhaustive testing of the full-adders.

26

5) ~ applies 001 and 110 to alternate full-adders, tl0' applies 110 and 001 to

alternate full-adders in each row.

6) f() applies 010 to the full-adders in the even rows except FAI. It was seen in

step 3 that FAl gets 010 by t5. Application of 010 to the full-adders in the odd rows is

accomplished with the test vector tIl.

tI!t
r. ~;
:[step 4 that FAI gets 101 by t7. Application of 101 to the full-adders in the odd rows is

. ~i accomplished'with the test vector t12.
I -I;:~t
/'

, ~'

Table 3.4 Exhaustive testing of the FAs

Pattern applied to FAs Test vector required

000 tl, t2

111 t3, t4

100 t5, f()

011 t7, t8

001 ~, tlO

110 ~, tlO

010 t5, f(), t11
-

101 t7, t8, t12

----_.,'- ._,_ .._--,-----------,-------------~

Now let us consid,er how the effect(s) of a fault in a full~adder is transmitted to the
-'

. :[primary 'outputs (observable outputs) of the multiplier. The sum output of a full-adder is
~~
-,'
'."

.' ~
"r'
,I:...~
!f

'".>"~~~&~ :(::~
'1

27

, Jthe parity (EX-OR) of the three input bits. Therefore, if one of these three inputs is
J

~;inverteddue to appearance of a faulty signal then the swn output of the' full-adder is also,
I

t

/'inverted. The carry output mayor may not be inverted depending on the logic values of
, ~ ' '

"~fthe other two inputs. This is also true for manchester carry adder (MCA), because it

,~: realizes the same logic function as a full-adder. Since all the full-adders are exhaustively
, j

I':' tested, the effect of a fault in a full-adder is transmitted to it's output(s). The two outputs

of each full-adder of Fig. 3.1 are connected to the primary outputs of the multiplier

through two different chains of three input EX-OR gates (ofFAs and fmal MCAs). Hence

the effect of a fault in a full-adder is transmitted to the observable output(s).

, I

3.5.,3Exhaustive Testing of the Manchester Carry Adders

All the manchester carry adders are exhaustively te!'ted' using a subset of test

I vectors from Table 3.3. The combinations of test vectors that apply various patterns to all

the manchester carry adders are listed in Table 3.5. The effect of a fault in any MCA is

transmitted to it's sum output which is a primary output of the multiplier.

j
j
j

I
I
I

I
I
'I
I

fth MCAsT bl 35 E h f t fa e . x aus Ive es lOR 0 e

Pattern applied to MCAs Test vector required

000 t1, t2

111 t3, t4

101 t3, t5, t7
-

011 t7, t13

010 16, t8, t14

100 16, t8

001 t9, tlO, t11,tlD tIS, t16
'. 110 t9, tlO, t11,tlD tIS, t16

"

:;;!'" ~':~.:fl..

28

~.5.4 Testing of the Modified Booth Encoders
- .}

." The modified Booth encoders are tested in two ways. First they are exhaustively
""r

:!{tested However unlike the FAs and MCAs, exhaustive testing of the MBEs does not
",,'

:necessarilyguarantee the transmission of the effect of a faults in an MBE to the primary

~outputsof the multiplier. That is why the MBE block is also tested for single stuck-at
f
::faults.
~

.;)3.5.4.1 Exhaustive Testing

. t:

The modified Booth Encoders are exhaustively tested by the vectors shown in
:"~,
}Table 3.6.

Table 3.6 Exhaustive testing of the MBEs

Pattern applied to MBEs Test vector required

000 t1

010 t2

101 t4

111 tS. t<>

011 t11, t12

100 t11, t12

001 tIS, t16
- ,

t15, t16110

29

I 3.5.4.2 Testing for Single Stuck-at Fault

Unlike the full-adders and manchester carry adders, exhaustive testing of the

;MBEs does not necessarily guarantee the transmission of the effect of a fault in an MBE

~to the primary output of the multiplier. Fault propagation depends on the type of fault and

its effect on the output of the :MBE.Also, note from Figures 3.1 and 3.2 that the output of

an :MBEin any row, namely CM, K1, and K2 are inputs to the selector-complementers

(SC) in that row (fan-out nodes). In the rest of this sub-section, the test vectors which

propagates any single stuck-at fault in an :MBEto the primary outputs of the multiplier

will be derived.

It was shown in Section 3.4.1 that a set of test patterns for the inputs (yi-lYiYi+1)

of the :MBEof Fig. 3.2 that detect any single stuck-at fault in the:MBE is {001, 011, 100,

110, 111}. Note from Fig. 3.2 that every input to the:MBE has a fan-out of three. TIris

means that the effect of a fault at one of the input nodes might propagate to more than

one output of the faulty :MBE.Because of the fan-outs at the outputs of the MBE these

faulty signals from MBE might propagate through two different paths, i.e. the SC and the

chains of cany-save adders, and then reconverge at the [mal adders (MCAs). Also, note

from Fig. 3.1 that the adjacent :MBEsshare one multiplier bit. Therefore, a fault on one of

the shared multiplier bits might affect both the :MBE sharing that bit resulting in

transmission of the fault through both the :MBEsand subsequent rec0.nvergence in the

array of FAs and MCAs. It can be verified that because of these reasons some path

sensitive patterns (mentioned above) applied to the MBEs for detecting some single

stuck-at faults result in negative reconvergence [18] of the fault effects unless these

patterns are accompanied by application of approp~te patterns to the multiplicand. It

,; was extensively verified in this research that the test vectors t11, t12, t15, t16 and t19
ri
tJ apply all the necessary patterns to all the MBEs along with appropriate multiplicand
~J,
fj
Ij
!:,',.h
L"----_.,;:~ -------------

;)V

The testable design of the multiplier presented earlier does not require any extra

!patterns so that any single stuck-at fault in the :MBEis propagated to the primary outputs

..~:of the multiplier.

3.5.5 Test Vectors for SCs

As mentioned in Section 3.4.2, a set of test patterns for the inputs (KlxiK2xi-l) of

the selector block of Fig. 3.3 that detect any single stuck-at fault in the selector is {OOI0,

0111, 1000, 1l01}. The selector in any row have two common input node~, namely Kl,

and K2 (fan-out nodes). It is verified that the vectors t2, t3, ts, t17 and t18 sensitize the

single stuck-at faults at these nodes and propagate them to the output of the selectors.

Each of this selector output is passed though a complementer (an EX-OR gate) whose

other input is the :MBEoutput CM (complement signal). The effect of a single stuck-at

fault at one of the multiplicand bits is propagated through the outputs of the SCs in that

column to one of the inputs of the full-adders in that colUmn.Now the swn output or both

the swn and carry outputs of a full-adder are inverted due to a faulty input signal. Each

output of every full-adder is connected to the primary outputs of the multiplier through' a
, '~..
'F

.!: chain of 3-input EX-OR circuits (of FAs and final MCAs). Thus, these faults are
I:.

'. t. essentially propagated to the primary outputs of the multiplier.
6
i
~',
".;

. l'

;' 3.6 Calculation of Overhead
.:t""

f:~.
$

f
1" 3.6.1 Hardware Overhead

',j: .
J ~:t.

l
:~
;:.

'} logic compared to the original deSign presented in ~hapter 2. However, the testable
", -,:

1 f version requires four extra inputs which increases the number of input pins of the
i 't

';~ t:nultiplierchip. For a large multiplier, e.g., 32x32 bit multiplier the penalty in temis of
'i: ,0. ,

extra pins will not be as severe as for a multiplier'of small operand wordlengths, e.g., 8x8

••.....-------------~----------------_.-----, --_ ..

--'I-~-'
t',:

~~bit.The lines carrying the above extra signals will increase the silicon area of the testable
.'
~'multiplier chip compared to the non-testable design.

-,-
,(.;

:1-

It 3.6.2 Delay Overhead

Compared to the non-testable design, the testable multiplier will not have an extra

I"."-illogic gate delay. However, there will be some additional delay due to the extra wiring
, ,
~.~;, ,1; capacitances associated with various nodes connected to the extra inputs.

can be said to be C-testable [28).

The testable design of the multiplier presented in this chapter requires only test

and the modified Booth encoders are exhaustively tested. The nwnbers of test vectors for

any larger multiplier will still remain the same, i.e., 1~. Therefore, this testable multiplier
",;
~':.
;,f.

:~:~
" ~,

r~I3.7 Summaryc
~.

"t
l, vectors to test all single stuck-at faults: Also, the full-adders, Manchester carry adders
l.: .r

, ~,'
~,
~

-------------_._._--_._------_ ---

Chapter 4

VHDL Modeling of the Multiplier

4.1 Introd uction
Design of VLSI circuits entirely at custom level is very time consuming and

costly. Such a design for a target process cannot be reused for fabrication even in a scaled

down version of the same process. So, to get versatility and portability, high level-

- languages are being used to design process independent VLSI circuits. One of the recent

methodology is the introduction of VlIDL (VHSIC Hardware Description Language). It

not only allows the design of process independent VLSI circuits, but also the automation

of the complete design process. In this chapter, the design of a parameterizable and easily

L testable multiplier is presented using VlIDL. Because of the use of VlIDL, it will be

l possible to generate multiplier layouts for various target processes and also program

__FPGAs (Field Programmable Gate Arrays), CPLDs (Complex Programmable Logic
r Devices) from various vendors. The capabilities of VHDL to generate arbitrary n-bit

modules is exploited in this chapter in designing the parameterizable multiplier.

4.2 Partitioning
The first step toward developing a VlIDL code is to partition the design into

~ simpler modular blocks. The multiplier architecture presented in Fig. 3.1 has a regular

_Ii structure which is very convenient for high level coding. Only four different types of

!i basic cells, viz., modified Booth encoder (MBE), selector-complementer (SC), full-adder

\1
I;
11n
Ii

l'i
J

________ .i.--;~; ~~~=~~ __i_i_ •• =-~--_."C _-.c.,

adder_sc_"
. (Ilx+ 1) no. ofSCs and Ilxno. ofFAsMBE

X.x.1 X, >Co x.. ,

y.,

Yo MBE SC_" Po
(Ilx+ 1) no. ofSCs

1
Yl

PI

SC_" ,

Y2
(Ilx+ 1) no. ofSCs

P2
MBE

Y3
"_adder ,IIlxno.ofFAs I

Ys

:...

" ~.:

".f
,~ ':

Yay.2

Yay.,

MBE adder sc "
(Ilx+1) no. ofSCs and Ilxno. ofFAs

" mca
* allMCAs

* no. ofMCAs = depth'"2 + fix-I
where depth = n,12 for even fly

if • (fly+1)/2 for odd fly
fix= no. ofbits in the nmlliplicand
f1y=no. ofbits in the nmltiplier
The ldditional test inputs (e ••e2. e3. e4) are not shown for simplicity

Fig. 4.1 Partitioning the multiplier into modulat blocks

I"

--~-------,,--..._--~

(FA) and manchester carry adder (MCA) can be identified in this multiplier.

...However, considering the interconnection of these cells, the whole multiplier is

;partitioned into a few parameterized blocks each of which is composed of a number of

these basic cells. The multiplier architecture of Fig. 3.1 can be redrawn as shown in Fig.

4.1 and contains the following modular blocks:

(i) Modified Booth encoder (MBE)

(ii) sc n

(iii) n adder

(iv) adder sc n

(v) n mca

The first one, i.e., the MBE is a single modified Booth encoder. This component has to be

.:' instantiated as many times as required depending on the number of multiplier bits ny• The

exact number of instantiation required is termed as the depth of the multiplier and is

given by

\

depth = n.J2 for even ny

(ny+1)/2 for odd ny.

(4.1)

---_._---------------------_.:....:.. ..__. -

The block sc_n is composed of (nx+1) number of selector-complementers, where nx is the

number of bits in the multiplicand. As shown in Fig. 4.1, this block is used in the first two

rows of the multiplier array corresponding to the fIrst two rows of selector-

, complementers in the architecture of Fig. 3.1. The next block in the modular array of Fig.

4.1 is the n_adder block corresponding to the f1fStrow of full adders of the multiplier

array of Fig. 3.1. This block consists ofnxnumber of full adders. The block adder _sc_n is

a combination of one row of SCs followed by one row of FAs. It consists of (nx+l)

number of selector-complementers and nxnumber of full adders. This block is used as

many times as required after the f1fStrow of full-adders. The exact number of adder _sc_n

~. blocks depends on the depth of the multiplier and is determined from the number of bitst in the multiplier (ny) using equation no. 4.1. The next block in the modular array of Fig.
f.!.
l'If
j.l

l!
'~~-

't-.
~:
~,;:____ 1 _

4.1 is the n_mca block which consists of (depth,*2+nx -1) manchester carry adders. This

block in Fig. 4.1 corresponds to all the MCAs at the fmal stage of the multiplier array

shown in Fig. 3.1.

4.3 Design Hierarchy

The VHDL code of the multiplier is at the top level of the design hierarchy. The

hierarchy is shoWn in Fig. 4~2.In the. top level VHDL code, all the modular blocks

mentioned above are instantiated as many times as required depending on the operand

wordlengths. For the modified Booth encoders, the code of only one &mE cell is written

in VHDL. In the top level code, this block is instantiated a number of times",equal to the

depth of the multiplier. The VHDL codes of the blocks sc_n, n_adder and adder _sc_n are

written such that they are already parameterized on the value of nx• Two instantiations of

sc_n and one instantiation of n_adder are made.in the VHDL code of the multiplier.

Number of instances of adder _sc_n in the top level code depends on ny• ,The VHDL code

of the block n_mca is written such that it is already parameterized completely on the

value of both nx and ny• Only one instantiation of this block is made in the top level

: I: VHDL code of the multiplier.
?,
~"\ "P I)

Multiplier VHDL code
(Top level)

Instances
ofMBE

Instances
of sc n

Instances
ofn adder

Instances of
adder sc n

Instances
ofn mca

Fig. 4.2 Design Hierarchy

4.4 VHDL Model

In this section," the VHDL codes developed for aU the modular blocks discussed in

section 4.2 are presented.

4.4.1 The Modified Booth 'Encoder

As mentioned before, the number of 'modified booth encoders in the multiplie~

array depends on the number of bits (ny) in the multiplier 00. The VIIDL code for a

single modified Booth encoder is developed fIrst. ,Then in,the top level vtIDL code of the

'~ multiplier, the required number of modified Booth encoders is specifIed as one of thes'~

i'~i~ generics depth and then instantiated [2], [4].' The logic ftmctions performed by the

: ~ modifIed Booth encoder shown iIiFig . .3.2 are as follows:
" l

, !::~

K1 = Yi-l E9 YI

K2 = Yi-l Yi Yi+1 + Yi-l Yi Yi+1'

eM = Yi-l Yi . Yi+1 = Yi-l Yi+l + Yi Yi+1

(4.2)

(4.3) ,

(4.4)

;I The VIIDL code of a single modifIed Booth encoder is given below:Jt
, l'

'"~,

•• ".:c";"_':;'

,I
f
U

Modified-Booth's encoder
For C-testable Modified Booth's Array multiplier

library IEEE;
use IEEE.std_logic_1164.all;

entity mod_bath_encoder is
port (y_i_I, y_i, y_i_2: in std_logic;

KI, K2, CM: out std_logic" ;end mod both encoder;

architecture dataflow of mod both encoder is
begin

KI <~ y_i_I xor y_i;

---,.. ..••~.....:, •.•.....I-..• ~•.• _~ __ ~_..:.._-'-_. _- .

K2 <= (y_i_l and y_i and (not y_i_2)) or
((not y_i_l) and (not y i) and y_i_2);

CM <= (y_i_2 and (not y_i)) or ((not y_i_l) and y_i_2);
end dataflow;

configuration cfg_mod_both_encoder of mod both encoder is
for dataflow
end for;

end cfg_mod_both_encoder;

4.4.2 The sc n

This block consists of a number of selector-complementers depending on the

number of bits (nx) in the multiplicand (X). There are (nx+1) selector-complementers in

this block including the lefbnost selector-complementer whose output is complemented ..

In the VHDL code of sc_n, the number of bits in the multiplicand is explicitly specified

as one of the generics, nx. The VIIDL code for the entire sc_n block is written and two

ie instantiations of this are made in the top level VHDL code of the multiplier as per Fig.

4.1. The logic function performed by one selector-complementer shown in Fig. 33 18

given by

r
D
r

(4.5)

The VHDL code of the sc_n block is given below:

Selector-complementer
Generic model with N-bit size
For C-testable Modified Booth's Array multiplier

I

entity sc n is
generic (nx : integer := 8)i
port(X: in std_logic_vector (nx-I downto O)i

CM, KI, K2, X_I : in std_logici
Z : out std_logic_vector (nx downto 0)

) i
end sc ni

o loopdownto
then
.- X Iir in

else
r in .- X(I-I) i

end ifi
y := (X(I) andKI) or (K2 and r_in)i
if I = nx then

Z(I) <= not(CM xor y) i

else
Z(I) <= CM xor Yi

end ffi
end lOOPi

end processi
end rtli

configuration cfg_sc_n of sc n is
for rtl
end fori

end cfg_sc_ni

" It::
~,

architecture rtl of sc n is
'~ begin

process (X,CM,KI,K2,X_I)
variable r_in : std_logici
variable y : std_logici
begin
for I in nx

if I = 0

4.4.3 The D_adder
Asmentioned in section 4.2, the number of full adders in the n_adder block is nx,

which is explicitly specified in the VIIDL code as one of the generics, nx. One

instantiation of this block is made in the top level VHDL code of the multiplier in

.:I

accordance with Fig. 4.1. The logic functions performed by a single I-bit full-adder is as

follows:

SUM = A ffi B ffi C

CARRY = AB + BC + CA

Where, A,B and C are the three inputs to the full-adder.

The VHDL code of the block n adder is shown below:

Generic N number of l-bit Full adder
For C-testable Modified Booth's Array multiplier

library IEEE;
use IEEE.std_logic_1164.all;

(4.6)

(4.7)

entity n_adder is
generic (nx : integer := 8);
port (A, B, Cin: in std_logic vector (nx-l downto 0);

Sum, Cout: out std_logic_vector (nx-l downto 0));
end n adder;

architecture rtl of n adder is
begin

process (A, B, Cin)
begin
Sum <= A xor B xor Cin;
Cout <= (A and B) or (B and Cin) or (Cin and A);
end process;

end rtl;

configuration cfg_n_adderof n adder is
for rtl
end for;

end cfg_n_adder;

J':
i, .
.,
t.
~.

It
~.r.....•...
~.'.

!~
bt;

--- ••..•.•.L. _

4.4.4 The adder_sc_n

In-this block, the number of selector-complementers is (nx+1) in a row and the

number of full adders is nx in the following row. One of the inputs of all the full,.adders in

this block comes from the outputs of the selector-complementers of the same block

except the lefbnost one. 'In the VHDL code of the adder_sc_n block, nx is specified as .a

generic. The VlIDL code of the block adder _sc_n is given below:

Combined selector-complementer and adder
Generic model with N-bit size
For C-testable Modified Booth's Array multiplier

library IEEE;
use IEEE.std_logic_1164.all;

entity adder_sc_n is
generic (nx : integer ;= 8);
port (A, B, X: in std_logic_vector (nx-I downto 0);

eM, KI, K2, X_I: in std_logic;
Z_not: out std_logic;
Sum, Cout: out std_logic_vector (nx-I downto 0));

end adder sc n;

architecture'rtl of adder sc n is
signal Z : std_iogic_ve~tor (nx-I downto 0);

begin
process (A,B,CM,KI,K2,X_I)
variable r_in, y : std_logic;
begin
for I in 0 to nx loop

if I = 0 then
r in .- X 1;

else -
r in. X(I-l);

end if;
if I < nx then

Z(I) <= (X(I) and KI) or (K2 and r_in);
else

y := (X(I) and Kl) or (K2 and r_in);
end if;

end loop;

'
"

.' ~~,.'.i.'
"~,:.
i
;,

fr

1\
if

_______1__ .___..__.

41

The follciwing part is for adderA

.\ Sum <= A xor B.xor Z;
Cout <~ (A and B) or (B and Z) or (Z and A);
Z~not <= (not y);

end process;
end rtl;

configuration cfg_adder_sc_n of adder sc n is
for rtl
end for~

end cfg_adder_sc_n;

4.4.5 The n mea

This block consists. of a number of manchester carry adders, depending on the

number of bits (nx) in the multiplicand and the number of modified Booth encoders

(depth) which is dependent on the number of bits (ny) in the multiplier. The exact nwnber

of manchester carry adders in this block is (depth"'2+ nx -1). In the VlIDL code of the

block n_mea, the numbers nx and depth are explicitly specified as generics in order to

generate the parameterized manchester carry adder chain. The manchester carry adders

often employ some form of fast cany propagation scheme [11] and are implemented

differently than the carry save adders (full-adders) used in the array. However, both these

adders perform the same logic functions and therefore may be regarded to be the same

from the point of view of logic .functionality. The VHDL code of the block n_mea. is

shown below:

Carry Adder Chain
For C-testable Modified Booth's Array multiplier

library IEEE;
use IEEE.std_logic_1164.alli

entity n_mca is
generic (nx : integer := 8; ny : integer := 10; derth :

integer := 5);
port (A, B : in std_logic_vector (depth*2+nx-2 downto 0);

e1 : in std_lo9ic;
P : out std_logic_vector (depth*2+nx-1 downto 0)),;

end n mca;

loop

<= (not Cout);

A(1) xor B(1) xor Cin;
(A(1) and B(1)) or (B(1) and Cin)
(Cin and A (1));

in 0 to depth*2+nx-2
1 = 0 then
Cin := e1;

else
Cin .- Cout;

end if;
P(1) <=
Cout :=

or
end loop;
P(depth*2+nx-1)

end process;
rtl;end

architecture rtl of nmcais
begin

process (A, B, el)
variable Cin, Cout : std_logic;
begin
for 1

if

configuration cfg_n~ca of n mca is
for rtl
end for;

end cfg_n_mca;

4.4.6 The Multiplier

In the top level VHDL code of the multiplier, the aforementioned blocks have

been declared as components. Then several instantiations of these components have been

made according to the size of the multiplier. lbree generics are specified in the entity of

multiplier. These are nx, for the number of bits in the multiplicand; ny, for the number of

bits in the multiplier; depth, for the number of modified booth encoders needed for the

i "

1
',',

1" t:
: ~
f

---_ •.•>y -------- ---------~,._-----------------,---'---~-- ----~~-----'

, . ,':.~.,

If
! desired size of the multiplier: Primary inputs and outputs of the multiplier have been
'~l;

declared as inputs and outputs respectively in the entity of the VlIDL code of the

multiplier. Intennediate signals between several blocks have been declared as signals in

. the architecture of the VlIDL code of the multiplier. The VI-IDL code of the top level

block of the multiplier is given below:

-- C-testable Modified Booth's Array multiplier

library IEEE;
use IEEE.std_logic_1164.all;

entity booth_multiplier is
generic (nx : integer.- 8; ny : integer := 10; depth

integer := 5);
port (X: in std_logic_vector (nx-1 downto 0);

Y: in std_logic_vector (ny-1 downto 0);
X_I" Y_l: in std_logic;
E1,E2, E3, E4: in std_logic;
P: out std_logic_vector (depth*2+nx-1 downto 0));

end booth_multiplier;

architecture structure of booth_multiplier is

component n adder
generic (nx : integer := 8);
port (A, S, .Cin:in std_logic_vector (nx-1 downto 0);

Sum, Cout: out std_logic_vector (nx-l downto '0));.
end component;

component mod_both_encoder
port (y_i_l, y_i, y_i_2: in std logic;

Kl, K2, CM: out std_logic);
end component;

component n_mca ,
generic (nx, ny, depth: integer);
port (A, B : in std_logic_vector (depth*2+nx-2 downto 0);

e1 : in std_logic;
P : out std_logic_vector (depth*2+nx-l downto' 0));

end component;

. I

j
j
I

?' component sc_n
generic (nx : integer := 8);
port(X: in std_logic_vector (nx-l downto 0);

CM, Kl, K2, X~l : in std_logic;
Z : out std_logic_vector (nx downto 0));

end component;

component adder sc n
generic'(nx: integer := 8);
port (A, B, X: in std_logic_vector (nx-l downto 0);

CM, Kl, K2, X_l: in std_logic;
Z not: out std_logic;
Sum, Cout: out std_logic_vector (nx-l downto'O));

end component;
subtype a_width is std_logic_vector (nx-l downto 0);

type a_depth is array (integer range 0 todepth-2) of
a width;

subtype b_width is std_logic_vector (nx downto 0);
type b_depth is array (integer range 0 to depth-l) of

b width;

signal Sum, Cout : a_depth;
signal Kl, K2, CM : std_logic_vector (depth-l downto 0);
signal AV, BV, Cin : a_depth;
signal Z : b_depth;
signal Z_not : std_logic_vector (depth-l downto 0);
signal AM : std_logic_vector (depth*2+nx-2 downto 0);
signal. BM :,std_logiG_vector (depth*2+nx-2 downto 0);
signal EA, EB: std_logic_vector(l downto 0);

.(begin
, I

--'Instantiate modified booth encoder,
mbeO: for I in 0 to depth~2 generate

i! c:if I= 0 generate
cO: mod_both_encoder port map (Y_l, Y(I), Y(I+l),

Kl (I), K2 (I), CM (!));
end generate;

m:if I > 0 generate
cl: mod_both_encoder port map (Y(I*2-1)~ Y(I*2),

Y (I*2+1), Kl (I), K2 (I), CM (I));
end generate;

end generate;
; mbel: if (ny mod 2) = 1 generate

___ ,1 _

! ,~
1"

c2: mod both encoder port map (Y(depth*2-3),
Y(depth*2-2), Y(depth*2-2), Kl(depth-l), K2(depth~I).,
CM(depth-l));

end generate;

mbe2: if (ny mod 2) = 0 generate
.c3: mod_bath_encoder port map (Y(depth*2-3), Y(depth*2-2),
Y(depth*2-1), Kl(depth-l), K2(depth-l), CM(depth-l));
end generate;

-- Instant~ate selector-complementer modules
sc 0: sc n generic map (nx)

port map (X, CM(O), Kl(O), K2(0), X_I, Z(O));

sc 1: sc_n generic map (nx)
port map (X, CM (1), K1 (1), K2 (1), X_I, .Z (1));

adderO: process (E1, E2, E3, E4, Z)
begin
for J in Oto nx-l loop

if (J mod .2) = 1 then
BV(O) (J) <= E1;

end if;
if (J mod 2) = 0 and .J < nx-2 then

BV(O) (J) <= E2;
end if;
if J = nx-2 then

BV(O) (J) <= E3;
end if;
if J < nx-1 then

AV(O) (J) <= Z(O) (J+2);
end if;

if J_= nx-l then
AV(O) (J) <= E4;

end if;
Cin(O) (J) <= Z(l) (J);
end loop;

end process;
-addOi n~adder generic map (nx)

port map (AV(O.), BV(O), Cin(O), Sum(O), Cout(Ol);.

Z_not(O) <= Z(O) (nx);
Z_not(l) <= Z(l) (nx);
EA(O) <= E1;
EA(l) <= E2;
EB (.0)<= E4;

. <to

EB(l) <= E3;
--adder sc1:
yy1: for I in 1 to'depth-2 generate

yy2:for J in 0 to nx-1 generate
xx2 : if J < nx-1 generate

BV(I) (J) <= Cout (1-1) (J+1);
end generate;
xx3: if J = nx~l generate

BV(I) (J) <= EA(I mod 2);
'end generate;
xx4: if J < nx-2 generate

AV(I) (J) <= Sum(I-1) (J+2);
end generate;

xx5: if J = nx-2 generate
AV(I) (J) <= Z_not (I);
end generate;

xx6: 'if J = nx-1 generate
AV(I) (J)<= EB(1 mod 2);
end generate;

end generate;

add sc1:
adder sc n
generic map (nx)
port map (AV(I), BV(I), X, CM(I+1), K1(I+1),

K2 (1+1)" X_1, Z not (1+1), Sum (I), Cout (I));
end generate;

and (I mod 2) = 0 then
CM(I/2) ;
Sum (I/2-1) (0);

I
I

. !

loopo to (depth-1)*2
then
CM(I) ;
Z(O)(I);

Instance carry adder chain
mea: process (CM, Z(0);Sum,Cout,E1, Z_not)

begin
for I in
if I = 0
BM(I) <=
.AM(I) <=
end if;
if I = 1 then
BM (I) <= Z (0) (I) ;
~(I) <=. E1;
end if;
if I > 1
BM(I) <=
AM(I) <=
end if;
if I > 1 and (I mod 2) = 1 then
BM(I) <= Cout ((1-1)/2-1) (0);
AM(I) <= Slim((I-i)/2-1) (1);

. ~'

,I,, ;~-

---- •••• illllliJ . _ _._. _

,f

. [

'+,

end if;
end loop;
for I in depth*2-l to depth*2+nx-2 loop

if I = depth*2+nx-2 then
BM(I) <= Cout(depth-2) (nx-l);
AM(I) <= Z_not(depth-l);
else
BM(I) <= Cout(depth-2) (I-nx+l);

AM(I) <=Sum (depth-2) (I-nx+2) ;
end if;

end loop;
end process;

me: n_mca generic map (nx, ny, depth)
port map (AM, BM, El, P);

end structure;

. 4.4.7 Achieving Parameterizability

In this design a very powerful feature (generic) of VHDL has been used to

achieve parameterizability. The above design is valid for multiplier arrays of any operand

size provided that the number of bits in the multiplicand (X) and multiplier (Y) as well as

the depth are explicitly specified as generics in the VlIDL codes of the individual blocks

and in the top level multiplier. The number of:rvIBEs is determined by the generic, depth

which is dependent on the generic ny (the number of multiplier bits). The number of SCs,

FAs and MCAs are determined by the generics nx and depth. So, it is evident that

param~terizability is effectively achieved in this design.

4.5 Testbench and Simulation
Finally, a lestbench has been written to test whether the multiplier performs the

multiplication operation properly or not. The testbench is shown below:

48

10; depth
is

.'8; ny : integer .-

. Test bench for C-testable Modified Booth's Array
:.,.ultiplier
, ~:

.,(LibraryIEEE;
Itse IEEE.std logic 1164.all;v . - - .~-use work.booth multiplier;

1, • -

r~~.,

~ntity tb_booth_multiplier
~. generic (nx : integer :=

'~integer := 5);
end tb_booth~multiplier;

architecture vector of tb booth_multiplier is

.- 10; depthinteger
Ii component booth_multiplier

generic (nx : integer := 8; ny
,integer := 5);

port (
X: in std_logic_vector (nx-l downto 0);
Y: in std_logic_vector (ny-l downto 0);
X_l, Y_l: in std_logic;
El, E2, E3, E4: in std_logic;
P: out std_logic_vector (depth*2+nx-l downto 0)

) ;
end component;

i
I,

signal X: std logic vector (nx-l downto 0);
signal Y: std=loglc=vector (ny-l downto 0);
signal X_l, Y_l: std_logic;
signal El, E2, E3, E4: std_logic;
signal P: std_logic_vector (depth*2+nx-l downto 0);
constant PERIOD : time ~= 50 ns;

;Begin

Vl: booth_multiplier generic map (nx, ny, depth)
port map (X, Y, X_l, Y_l, El, E2, E3, E4, P);

V2: Process
variable Test : integer .- 0;
begin

case Test is'
when 0 =>

X <= (others=> '0');
Y<= (others => '0');
X.l <= '0';

_____ 1--------..--.
l..

f~,:
~".

--_ ••••••liiiik.._. .__.

Y_1<='O';
E1 <='0';
E2 <= '0';
E3 <= '0';
E4 <= '0';

when 1 =>
X <= ('l',others => '0');
Y <= "0101010101";

when 2 =>
X <= (others => '1');
X 1 <= '1';
E1 <= '1';
E2 <= '1";
,E3 <= '1';
E4 <= '1';

when 3 =>
X <= ('l',others => '0');
Y <= "1010101010";
X 1 <= '0';
Y 1 <= '1';

when 4 =>
X<= (others ~> '0');
Y <= (others => '1');
Y 1 <= '0';
E1 <= '0';
E2 <= '0';

when 5 =>
Y <= "1100110011";
Y 1 <= '1';
E1 <= '1';
E2 <= '1';
E3 <= '0';
E4 <= '0';

when 6 =>
X ~= (others => '1');
Y <= "0101010011";
X 1 <= '1';
Y 1 <= '0';

when 7 =>
Y <= "0001000100";
Y 1 <= '1';
E1<='O';
E2 <= '0';
. E3 <= '1';
E4 <= '1';

49

", ~"l

I
'.,

..•.• !,••..•..,

.'

I...:•....•.
;F

t
r
I
1

,1•...'•.'••.",t'

;'
1,
~.

t

when 8 =>
X <= "01010101";
Y <= "0011001100";
X 1 <= '0';
E2 <= '1';
E4 <= '0';

when 9 =>
Y <= "1100110011";
Y 1 <= '0';
E1 <= '1';
E2 <= '0';
E3 <= '0';
E4 -<= '1';

when 10 =>
X <= (others => '1');
--y <= "00110011";
X1<='1';
-- E1 <= '1';
E2 <= '1';

-- E3 <= '0';
E4 <= '0';

when 11 =>
y <= "0011001100";
Y 1 <= ,'1';
E1 <= '0';
E2 <= '0';
E3 <= '1';
E4 <= '1';

when 12 =>
X <= (others => '0');
Y <= "1010101010";
X 1 <= '0';

when 13 =>
X <= (others => '1');
X 1 <= '1';
.E3 <= '0';
E4 <= '0';.

when 14 =>
Y <= "0110011001";
X 1 <= '0';
E1 <= '1';
E2 <= '1';
E3 <= '1';
E4 <= '1';

50

WdMWWWWfi'*rt'trt H W'

i' end vector;
(.

'{

~.: .,
(:

I
":.,
I ~

I,....:.....•."

~'

1
.1' ."f~"

J

when 15 =>
y <= "1001100110";
Y 1 <= '0';
E1 <= '0';
E2 <= '0';
E3 <= '0';
E4 <= .' 0' ;

when 16 =>
X <= (others => '0');
Y <= "01010101";

when 17 =>
X <= (others => '0');
Y <= "1001100110";

E1 <= '1';
E2 <= '1';
E3 <= '1';
E4 <= '1';

when 18 =:=>
X <= (o~hers => '1'); .
Y <= "0110011001";
X_1 <= '1';
Y_1 <= '1';
E1 <= '1';
E2 <= '0';
E3 <= '0';
E4 <= '1i ;

when 19 =>
--X <= (others => '1');
Y <= (others => '1');
E1 <= '0';
E4 <= '0';

when others => Null;
end case;
wait for PERIOD;
Test. Test + 1;

end process;

.. ----- -_._----_._---

51 .

-I
1
1

I
1
i
1

." -~,

The above testbench has been used to simulate the functionality of the multiplier. The

simulation results have shown that the VHDL based design of the multiplier is

functionally correct.

One set of simulation results is shown in Fig. 4.3. All nwnbers shown in this

figure are in hexadecimal. The multiplier (Y)is fixed at 02. Results are shown for

different values of multiplicand (X). For example, 82 (-126 in decimal) multiplied by 02

gives a product output of FF04 (-252 in decimal) which is the desired result. Also, 06

multiplied by 02 gives oooe (12 in decimal) which is the desired result.

_____. ._,..__P-------_ ------ ... --.------- .. -

350300250

"'1"OOOC : 0014

:aOO

FF04

150

0014

10050

oooc

Fig. 4.3 Simulation result

rO
.......... 1." I, I I I I ~.;.-!J!...~:!~:.~,•.,...J)'~';'_':"~ i.. • I 1._,~ .~,I I , .•.\ - ! 1.1I I - ~ i I ! .• ; .••.••••••l..:,_._ .. ~...:~~.

06 OA 82 06 __~~ i 82 '06 OA

02

~ ..JU11X(7:0)

~ ..JU1N(7:0)

•.JU1N_1

...lU11E1

..JU11E2

..JU1JE3

..JU1JE4

~ •.JU11P{15:0)

":\'~

'\'

Chapter 5

Conclusions and Recommendations
t.;,r

: !.
Ii,

5.1 Conclusions

The design of an easily testable parallel array multiplier has been presented in this

thesis. The multiplier can be tested for all single stuck-at faults using only'19 vectors.

The number of test vectors remains constant irrespective of the operand wordlengths.

This means that multiplier arrays of different sizes ,constructed using the proposed

architecture will require the same number of vectors (19 only) for testing all single stuck-

at faults. However, the wordlengths of the X and Y operands of the test vectors have to

be adjusted according to the proposed pattern. Such multipliers are called C-testable.

The modified Booth algorithm has been used to design the multiplier. The regular

structure of the array has reduced the complexity of testing to a great extent. Since,

':f modified Booth algorithm generates approximately half the number of partial products
,
j" compared to the straightforward carry-save array multiplication scheme[9], [10], the,
~):,

~ proposed multiplier will be almost two times faster than the carry-save one.
;,(

", The above de.signhas been coded in VlIDL for.the automatic synthesis of testable
rr multipliers. The capability of VlIDL to generate arbitrary, n-bit modules haS been

exploited in designing parameterizable architectures. The VHDL code accepts the

wordlengths ,of the operands X and, Y as inputs. Depending on these word,lengths" it

generates a multiplier array of the appropriate size. Due to the use of a high-level

r '
t
f
l'~, .------~,',--,

r

54

language like VHDL for the design, it can be used for synthesizing parameterizable

, " ' multipliers for any target process. That is, the same VIIDL code can be used to design

multipliers for a variety of processes without having to make any modification in the

design or the VHDL code. Thus, the VlIDL based design proposed in this thesis is

process independent. .FPGA implementation of multipliers of various sizes are also

possible using the same VHDL code.

Finally, it is expected that the proposed VHDL based design will be very useful

for the quick generation of easily testable multiplier macrocells of arbitrary size for a

variety of target processes.

5.2 Further Work

Future work may include the synthesis of a multiplier circuit from the VlIDL

code for a suitable target process. After necessary simulation and verification, the

synthesized circuit may be fabricated. Finally, the fabricated circuit (chip) can be tested

for evaluation of practical performance. Multipliers of various sizes can also be

implemented on FPGAs using the proposed VHDL code. The practical performance of

the two types of implementations may then be compared.

Another important direction of research would be to integrate the' VHDL code

into an. Electronic Design Automation (EDA) tool. It will then forin the testable

multiplier compiler part of the tool. Also, VHDL codes may be developed for the

automatic synthesis of various arithmetic, control and memory blocks. All these codes

can then be integrated along with the proposed multiplier code for the development of a

new Electronic Design Automation (EDA) tool.

.~ ,

References

[1] D. D. Gajski, N. D. Dutt, C. H. Wu, Y. L. Lin, "High-level synthesis, introduction to chip

and system design," Kluwer Academic Publishers, 1991.

[2) Z. Navabi, "VHDL analysis and modeling of digital systems," McGraw-Hilllnc., NY, 1993.

[3] J. R. Armstrong, "Chip level modeling with VHDL," Prentice-Hall International Inc., USA,

1989.

[4],
: l';

\ [5], ",

I,':
(

[6]

D. Pellerin, D. Taylor, "VlIDL made easy," Prentice-Hall International Inc., USA, 1997.

K. Takeda, F. Ishino, "A single-chip 80-bit floating point processor," IEEE J. of Solid-State

Circuits, Vol. SC-20, No.5, pp. 986-991, Oct. 1985.

P. A. LYnn, W. Fuerst, "Introductory digital signal processing with computer applications,t'

Jhon Willey & Sons. 1992. '

[7] A. V. Oppenheim and R. W. Schafer, "Discreet-time signal processing," Prentice-Hall of

Vol. SC-20, No.3, pp. 754-760, JW1e1985.

. .

processing core with an on-chip multiport memory bank," IEEE J .. of Solid-State Circuits,

I
I
l
i

India PIT. Ltd., Delhi, 1994.

Frank P. J. M. Welton, A. Delaruelle, "A 2-j.lII1CMOS 10-rvtHz rnicroprogramrnable signal

~ r
, i
, I'

;i [8]~',
; I:, t
.:l~
I ~,

'I

I

f
, I

: f [9F L. P. Rubinfield., "A proof of the modified Booth's algorithm for multiplication," IEEE

Trans. Comput., pp. 1014-1015, Oct. 1975.

[10] J. J. F. Cavanagh, "Digital computer arithmetic design and implementation," McGraw-Hill'

Book Company, New York, 1985.

! [11] N.Weste and K. Eshraghian, "Principle of CMOS VLSI design," Addision-Wesley

Publishing Company, Sydney, 1993.

~

_l~-

C. S. Wallace, "A suggestion for a fast multiplier," IEEE Trans. on Electronic Comput.,

A. Pucknell and K. Eshraghian, "Basic VLSI design," Prentice-Hall of Australia PIT. Ltd.,

Vol. EC-13, pp. 14-17, Feb. 1964.

L. Dadda, "Some schemes for'parallel multipliers," Alta Frequenza, Vol. 34, No.5, pp.

Sydney, 1994.

349-356, May 1965 ..

D. G Crawley and G. A. J.Amaratunga, " 8 x 8 bit pipelined Dadda multiplier in CMOS,"

lEE Proceedings, Vol. 135, Pt. G, No ..6, pp. 231-240, Dec. 1988.

[16] C. R. Baugh and B. A. Wooley, "A two's complement parallel array multiplication

algorithm," IEEE Trans. Comput., Vol. C-22, No. 12, pp. 1045-1047, Dec. 1973.

, [17] J. A. Starzyk and Z. S. R. Dandu, "Overlapped multi-bit scanning multiplier," Proceedings
: ~,

[12]
\> t,

I :~'

11~'i
~~,' [13]l'

.: ~S

"

i~~;

[14]L"
:::.

':.\t

'".,

~"'~ [15]

of IEEE Int.Conj on Compo Design: VLSI in Computers, ICCD; 85, NY. Oct. 1985, pp::

363-366.

:; [18] B. R. Wilkins, "Testing digital circuits: an introduction," Van Nostrand Reinhold (UK) Co.

Ltd, 1986.

[19] T.Williarns and K. Parker, "Design for testability - a swvey," IEEE Trans. Comput.,Vol. ,C-

31, pp. 2-15, Jan. 1982.

[20] J. P. Shen, and F. J. Ferguson, "The design of easily testable VLSI array mul~plication,"
;>r:: ••

IEEE Trans. Comput., Vol. C-33, No.6, pp. 554-560, June 1984.

I [21] A. R. Takach and N. K. Jha, "Easily testable gate-level and DCVS multipliers," IEEE Trans.

Computer-Aided Design, Vo1.10, No.7, pp. 932-942, July 1991.

[22] S. M. Aziz, "A G-testable modified Booth's array multiplier," 8th International Conference

on VLSI design, New Delhi, India, Jan. 1995, pp. 278-282.

[23] R. Stans, "The testability of a modified Booth multiplier;" Proceedings of 1st Europian Test

Conference, 1989, pp.286-2938.

57

VLSI '93, Sept. 6-10, 1993, pp. 3.4.1-10.

. [24] W. A. J. Waller and S. M. Aziz, "A C-testable parallel multiplier using differential cascode

~. voltage switch (DCVS) logic," International Conference on Very Large Scale Integration:
./

kt
:~: [25] N.F. Benschop, "Layout compilers for variable array multiplier's," Proc. Custom Integrated. ,.;,~

Circuits Coni, May 1983, pp. 336-339 .

. [26] .K. C. Chu and R. Sharma, "A technology independentMOS multiplier generator," 21st

Design Automation Conf., 1984, pp. 90-97.

[27] G. Venzl and R. Mitchell, "A compilable binary tree parallel multiplier designed for speed

and testability," Proc. Custom Integrat~d Circuits Conj., 1989, pp. 93-94.

[28] A. D. Friedman, "Easily testable iterative systems," IEEE Trans. Comput.,Vol. C-22, pp.

1061-1064, Dec. 1973.

[29] Y. K. Malaiya, "Testing stuck-on faults in CMOS integrated circuits," Proc of International

Conference on CAD, Santa Clara, CA,.Nov. 1984, pp. 248-250.

[30] S. M. Reddy and M. K. Reddy, "Testable realizations for FET stuck-open faults in CMOS

combinational logic circuits," IEEE Trans. Comput., Vol. C-35, No.8, pp. 742-754, Aug.

1986.

,[31] S. M. Reddy, V. D. Agarwal and S. K. Jain, "A gate level model for CMOS combinational

logic circuits with applications to fault detection," 21st Design Automa~on Conf., 1984, pp.

504-509.

[32] M. Roorda, "Method to reduce the sign bit extension in a multiplier that uses the modified

Booth algorithm," Electronic Letters, Vol. 22, No. 20, pp. 1061-1062, 25th Sept. 1986.

accumulators," Electronic Letters, Vol. 26, No. 17, pp. 1413-1415, 16th Aug. 1990.

[33] N. Bwgess,"Rer..noval of sign-extension circuitry from Booth's algorithm multiplier-
(

I'

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068

