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ABSTRACT

Linear elastic analysis of simple Spine Beam Bridge Deck was
carriesi out by Finite Element method and compared with
approximate methods such as simple beam theory, method of
Kollbrunner, Hajdin and Heilig and beam on elastic foundation
analogy. Loading used in the analysis is HS,o. The analysis shows
that the simple beam theory underestimates the longitudinal
stress than that obtained by finite element method. ThE'

difference decreases with the increase of span length. But simple

beam theory can not predict torsional and distortional warping
st.resses. The overall effect by approximate methods is predicted
by superimposing the results as obtained by the simple bea.m

method of Kollbrunner, Hajdin and Heilig. After superimposing the

bottom of webs than that obtained by Finite

that of beam on elastic foundation analogy and the

1n

element mrothod '':''t

sp1ne beams analysed
34% lower at top and 4 to 14% higher a~.to16study are

theory with

results the combined stresses for the

midspan for eccentric loading.

this



Analytical model for analysis. of Spine

ii

Beam Bridge Decks by

Finite Element method is presented by representing the diaphragms
by restraining the translational displacements to reduce the
computational t.ime. It is found that more than 50% time can be
saved by the modelling of the diaphragms 1n this ma.nner. A

elements) was performed to highlight the effects of these on the
."
"

parameter study {such as width, thicknesses of' different

design of a Spine beam bridge deck. The analysis shows that the

I

"

longitudinal stresses decrease with the increase of web thickne.s

and the ratio of change is more than one.

,.

. ;
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Reinforced concrete 1S particularly adaptable for use 1n
bridges because of its less nlaintenance cost, rigidity and
economy as well as the comparative ease wh,i.ch 'a pleasing
architectural appearance, can be secured. For small to medium
range spans, reinforced concrete bridg~s are 'extensively used.
The present practice in Bangladesh is to design bridges on maJor
highways for the AASHTO lIS,. loading. However, the lilthter
loadings are used only for structures on secondary roads, ';on
which the occurenc"e of heavily loaded traffic i'5 a remote
possibility.

1.2 BACKGROUND OF THE RESEARCH.

A spine beam bridge deck j,g one wi'th'a single bo~ beam in the

centre with iarge cantilevers on the sides. In spi.oe beam bridge
deck design, if relatively large web and thicker flanges are
used, simple beam theory and St. -Venant torsion theory can be

applied for ,the analysis. However to attain economy, reduction In
the thickness of the elements are required which ineffect
incr~ases the warping and distortional stresses . A number of
•nalytical methods have been developed for analysing of thi~ type
of problems. Most of these analytical methods are appJicat,le to
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rectangular, straight box-beams of \Jniform cross-section. A sp1ne

beam bridge deck is subjected to torsion and warping stresses 1n

addition to bending and shear-stresses. Moreover shear lag
effects are more important with wide single-cell box-beams 1.n

comparison to narrow one. The simple beam theory gives no
information on transverse bending stress .due to eccentric 1.oading
which can result severe torsional and distortional stresses in
the structure. Many of the available simple. analytical methods

can not predict accurate information of the combined action of
the complex behaviour of spine beam bridge deck. For better
understanding of the combined effects of these stresses finite
element method may be used for an~lysi_s whci,h takes care of theRe
stresses.

1.3 OBJECTIVE OF STUDY

A spine beam bridge deck usually has diaphragms. Analysis. of a
spine beam bridge deck by finite element method having diaphragms
is a time consuming process from the computational points of

the large band width of the overall stiffnessbecause

the band width of

V1ew,
matrix.
avoiding

of

If the diaphragms can he modelled 1.n

the physical presence of diaphragms.
the analysis by

the stiffness matrix is reuced significantly thereby reducing the

computational time., In this study this aspeci of analytical model
is investigated. Parameter study (Such as width; thicknesses of
different elements) 1.Salso performed to highlight the effects of

these on the design of the spine heam bridge deck.

r-
I .



Correlation of

3

the behaviour of the spine beam bridge deck will
be investigated in this study by analysing tIle bri,d~e decks by

finite element method and by simple methods. So that the results

"
.,';

of the study can be used to study the behaviour of these type of

bridge decks where large computational facilities are not easily
available ..

"



CHAPTER 2

CELLULAR STRUC'rURE AND ITS BEHAVIOUR

2.1. INTRODUCTION

The design of concrete box-

beam bridge is one of the most" commonly occuring
the concrete box girder is a popular variety.

The feature survey by Swan [18],shows that

in the

to long

'fhesplne
forms

for medium

the box girder bridges.

spans,

family of

girder bridges usually is.based on analysis of the structure by

linear elastic methods, where displacements are assumed to be
linearly proportional to loads.
loads.

irrespective of the level of the
The elastic loads are then increased by overload factors

to calculate the sections
strength design.

and re inforc_em~nts in the ultimate

theare
all of which

These

compatibility and the

rules.funda_men t.a 1commonfrom
be predicted by a number of analyt.ical techniques,

The response of a given structGre under loading can in principle

are derived

sati,sfaction of conditions of equilibrium,
constitutive relationship of material.

and theory.ofof materialsof strengthmethodsConventional

£tructures Use a nu~ber of simp],ifications in onder to ~ake the
problem tractable. The most important of these, from an
engineerls point of vlew, is that of linearity. In t,his, it 15
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assumed that all displacements and internal actions are linear
functions of applied loadinA. As mqst strllct\lreS behave 1n an
approximately l-inear manner upto working load level, this
approach is useful and makes the analysis a great deal Aasier.
Structural design of members on this basis 1S related to
permissible working stress, which in turn are related to fai.lure

n

by a factor of safety.

2.2 DEVELOPMENT OF CELLULAR CONSTRUCTION [12J

Concentrated loading necessitates a thorollgh analysis of bridge
decks. For structural efficiency, a bridge deck.must have a high
strength/weight ratio. With longer spans, the need for efficiency

in resisting longitudinal bending and shearing forces is greater.
Due to the inci~ence of heavy concentrated loading, the need for
good load distribution has also increased.

efficient part of ~he slab lclose tu the neutral axis) to obtain

be considered as the result of development from a solid concrete

solid slabs, since the removal of the material from the region of

less

It can

the use of

a maXlmum weigllt

However,

with

2.lbl are developed from

the fJ.eiural or "torsional011

coupled

effectlittlehas

Voided or cored slabs (Fig.
THe development of cellular construction is shown in

but makes the structure lighter.

ax~s

2 •1 .

Cellular construction evolved to meet these require~ent~.

maximum efficiency of material

slab to a more efficient structural form by eliminating the

reduction.

Fig.

neutral

strength,



L------:....- ~_J
Ca) Solid Slab

6

10000000.0001

(b) Cored Slab

11-' _II__ II_~I_I_II
.(C) Multi- Cellular Slab

[1~--------------~'J----'1' [~ .~J=1=1 0 0 I
(d) Cellular Slab with Cantilever.

r'--------~-_-_----'f]-1_1-__==_-=1]
(e) Spine Bealll

Fig, 2.1 The development of bridge' decks from solid slab.to "pine be.am. . . . .
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circular voids limits the amount of material that can be removed
from the slab;

The next step is to use rectangl11ar voids (Fig. 2.1 c I which
of all the struct',rally least efficient part ofremovalallows

difficulties
any

of theaction

not. cause

longitudinal

removed doesthus
interpreting the1n

The materialslab.the

transverse direction,
carry the mal,n- she~r.

bridge, since the webs still

hOHever, the structural action
In "the

of the
medium is somewhat complex since no through webs are present.

As the torsional stiffness of ceJ.1.u.lar canst.ruction 1.5 large, the

structural: efficiency af'a deck call be increased by incorporating
cantilever slabs (Fig. The special form of box girder is
shown 1n Fig. 2. Ie.

2. Id) •

This type of bridge deck with side

The cost of a wide deck is thus greatly reduced due

cantilevers having a central beam lspine) is
bridge deck.

called spine bcafn

to the reduction of number of cells ~nd dead weight of strubture.

Box girder decks are thus 'str~cturally economic solutions for
medium to,long span's, especially where headroom limitations are a
major design consideration. Box girder decks tend to be mOre

"streamlined and slender than other types. This type of bridge 1S

pleasing in appearance~ a considel"ation fo]~ thei.r adaptability to
most urban flyovers. They are particularly adaptable to
prefabrication and standardisation of detail which are especially
advantageous when many similar spans have to be built.
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2.3 TYPES OF STRUCTURAL ACTION OF SPINE BEAM BRIDGE DECK [3]

In addition to simple beam action, there are two types of

structural action whcih can occur 1n spine beam bridge decks.

These are called distortion or deformation of

and warping of. the cross-se~tion.

the cross-section

2.3.1 Distortion or Deformation of the Cross-Section.

This is illustrated in Figs. 2.2 and 2.3 which show the effects
of symmetriq and antisymrnetri.c loading respecti,'ely. Any
eccentric point load or longitudinally distributed load can be

resolved into the two load system shown.

In 'both cases, the shape of the cross-section has been altered by

transverse bending of the webs of the box beam, and this has come

~bout because of 'the absence or non-rigidity of transverse

diaphragms. The torsional stiffness of a spine beam bridge deck

is reduced by distortion of the cross-section.

2.3.2 Warping of the Cross-section

This 1S an out of the plane di,splacement of points on the cross-

section, and arises under torsional loading as follows. Firstly a
box beam whose .cross-section cannot distort because of the

existence of rigid transverse diaphragm all along the span can be



Fig. 2.2 Distorition or cross-section
due to symmetric (bendlng)loading! .

lig.2.~.Distortton Qr cr088-
8ecti~n due to anttsymmetric
(tor81()nal)loading.

9

\ '

Fig.2.4rTwistlng of midepan
crose-eeetion without
distortion.

"
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considered. These, however, are assumed not to restr:ict ',I

longitudinal displacements. Fig. 2.4 shows how the cross-section
of such a box beam twists under torsional loading.

The chain dotted configuration in Fig. 2.5 shows how this leads
to out-of-plane (longitudinal) displacements.of cross-sectiollS,
except at midspan where, by symmetry, th~ cross-section remains
plane. These longitudinal displacements are called torsional
warping displacements, and are associated with shear deforlnations
in the planes of the flanges and h"ebs. The midspan vertical
deflection of each web occuring in torsion without distortiori is
denoted by a•. The term warping torsion is also u~ed to denote
the state of loading and stress associated with torsional warping
displacements. Now, as a further stage ln the deforation of the
structure it.can be assumed that the rigid transverse diaphragms
are removed, so that the cross-section can distort. Fig, 2.6
shows the additional twisting of cross-section that
center torsional loading.

now results

The additional vertical d'eflection of each ."ebat midspan due to
distortion is denoted b" ad', (Fig. 2.5). This 1n turn increases
the out-of-planedispla6ements af cross-sections not at midsp~n,
as shown by the solid line configuration In Fig. 2.5. These
additional warping displacements are called distortional warping
displacements, and are associated with in-plane bending 'of the
flanges and webs.



tKey
---- - undefleeted form of st,ructure

. deflected form' of structure with, rigid
- - - transverse diaphragms 811 along the !'Ipan
_____ defleeted form of structure after removnl

of diaphragms between eupports

Fig.2.5:Torsional and distort£onal warping
of boxbeam under torsional
loading.

Fig.2.6: Additional twisting of midspan
cross-section when distortion is permitted.

11,
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Thus, concrete spi.ne heam hridge decks with no diaphra~ms exc~pt
<.

at supports, when sub.iected to torsional. loading, can

warping displacements 'which composed of two components viz.

torsional warping displacements and distortional
displacements. But these components give rise to longitudinal

normal stresses (warping stresses) Hhen the warpi.ng IS

constrained, e.g. by symmetry at the midspan section of.a box

beamt or at a continuous or built-in support, or by changes 1n

cross-section or 1n applied torsional moment. In these

circumstances., the significance of the warping stresses depends

on the geometry of the structure as we.ll as on the nature of the

loading and support conditions. The warping stresses can form a

significant addition to the ordinary bending stresses resulting

from the symmetrical component of loading. Distortion of cross-

section IS the main source of warping stresses in concrete box
beam construction where distortion IS resisted mainly b;l' the

transverse bending strength of the webs.

results from ~hear deformation in th~ planes of the flanges, and

This type of warping IS known as shear lag in bending,

s~vmmetricalwith

The differential

type of behaviour

as

2.8.

This

and

torsion,

2.7

deflection between points A and B 1n the top flange

to bending without

form of warping arlses when a sp1ne beam bri~ge deck is

loading.

2.3.3.Shear Lag

due to shear lag is denoted by avl g •

longitudinal

Another

subjected

and is illustrated In Figs.



Fig. 2.7 Shear lag in bending.

13

und~fl~~ted form of structure
deflected form of s'tructure
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Fig.2.8: Enlarged elevation of region
of boxbeam near support,
showing out-of-plane displa-
cements of end cross-section
due to shear lag in bendin~.

14

Fig. 2.9: Torsional load applied
with warping restraint
at support.

,
~I
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leads to a decrease ln longitudinal bending'stress a,Jl1yfrom t:he

webs, which in turn affects the effective widtllsof the flanges
in bending, .especially when there are extensive large side

cantilevers.A finite element analyses of the West Gate bridge(3)
demonostrated shear lag effects of upto 80%, 1.e. the calculated
stress was

theory.
80% greater than that obtained by engineer's bending

Shear lag can also ar1se in torsion, for example when one end of
a box beam is restrained against warping and a torsional load is
applied away from the end. as shown fn Fig. 2.9. The restraint
against ,warping induces longitudinal stresses in the region of
the built-in end. and the shear stress ln this area 18

redistributed as a result. This lS also an effect of shear
deformation, and is'sometimes called a shear lag effect.

2.3.4 Stress Patterns Arising in Bending and ST Venant Torsion

Engineers' theory'of bending leads to the ndrmal and shear stress
distributions are shown i,n Fig. 2. J O. Shear deformation j,s not
taken into accotint in this theory.

As discussed in connection wi~h Fig.- 2.~, when shear deformation
lS taken into account in the bending analysis. shear lag effects
arise, as indicated ln Fig. 2.11. The variat,ion of normt1l
stresses across the flanges has been drawn according to the



mid/lpan
point load

AI !
IA..J

(a)Elev~tion of simply supported beam "

16

T

(b) Sec~~on A-A showing variation ~f
normal stress round" th~ perimeter

-- ->-. -->.. -~~ f--- ..-
~
I

~t->-. ---..
~ ~

(c) Section A-A showing variation of shear
stress round the perimeter.

Fig. 2.10

•

Bending and shear stress distribution
ata corss-section by simple beam theory .

. ,
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analytical results obtained by finite element method cGnside~ing

shear lag effect.

The theory ~f" St. Venant torsi.on (pure torsienl assumes that

there is no constraint on warping, ThlJS only shear stresses arise
1n ihe cross-section, and no (longitudinal) warpin~ stress. These
shear stresses are called St. Venant shear stresses and are shown

in Fig. 2.12 for a spine beam bridge deck loaded by two equal and
opposite concentrated torsi.anal moments, one at each end. The St.
Venant shear stresses are usually taken as constant through the

thickness of the closed box, although a more refined
calculation, which considers the linear variation through "the web
thickness shown in Fig. 2.12 is possible.

2.3.5 Local Effects 10 the Top and Bottom Slabs

These effects are particularly associated with the Dccurence of
point loading between the webs or on the side cantilevers. With
large spine beam bridge deck carrying two levels of traffic where
the bottom slab can also be loaded. The stresses arising from
local b~nding may be calculated by the use of influence surfaces
for plates,

analysis.
independently of the overall spine beam brdige deck

~
I
, ;,'



AI
A~

(a)Elevation of

}--
1J,

simply supported beam

18

(b)8ection A-A showin~ variation
cir.rilOrmal.stress round the perimeter.

Fig.2.11:Bending stress distribution at
c~0.s-section.con6ide~ing shear lag
eCfeete.

antieymmetric distribution about mid-
line of web in cantilevers

I \

trapezoidal <Idi stribu ti on--""":
in webs of box

Fig.2.12: St Venant shear stress
distribution.
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2;3.6 Transverse Normal Stresses Constant Through the Web

Thickness

Of minor significance ~n the analysis of r~ctangu].ar.section,

~ing1e-ce11. non-prestressed spIne beam bridge decks, is a set of. .
transverse normal stresses'constant through the web thickness.

These arise from differential shear stresses on cross-sections.



CHAPTER 3

ELASTIC ANALYSIS OF CELLULAR STRUCTURE

AND RIVIEW OF DIFFERENT METHODS

3.J INTRODUCTION

Elastic methods of analysis are based on the principle thnt

displacements are linea~ly proportional to load at that all

stages of loading. Linear elastic methods are still the most
.:\

popular approach to analysis and design of bridge structures. In

the case of open type ribbed construction the load is transmitted

from an immediately loaded web to the other webs by the
transverse flexUre of the top slab. For greater load aapa,city,

design results in an increased number of ribs or a greater

thickne~sof the top slab or a combination 6f both. In the case
of closed type box girders, the transmission of.load is effected
by shear stresses which develop around the box. The existing
elastic solutions are based on simplifying assumptions.

3.2 DIFFERENT METHODS OF ELASTIC ANALYSIS

The following are the principal methods of analysis availa:l:)lefor
elastic analysis of box girder bridge decks.

i ) Simple beam theory

ii) Load distribution factor method.



, iii)

iv)

v)

vi)

vii)

Knittel's f8] method

Equivalent bEl-ammethod (Richmond r 14]
Kup£er's111] method

Kollbrunner. Hajdin and Heilig [10,7J

Beam on elastic foundation analogy

21

viii) Reissner [15] method

ix) Influence surfaces for plates and frame analysis for local
transverse bending effects.

x) Grillage theory

xi) Orthotropic plate method

xii) Shear weak orthotropic plate method

xiii) Three dimerisional frame work method.
xiv) Folded plate method

xv) Finite strip method
xvi) Shell theory

xvii) Finite element method

C'

All of the above methods. except the finite elem'ent approach, are
based on the followin'g assumptions.

a) The thickness of each plate is small compared with its breadth
and length so that the thin plate theory can be applied' to
individual plates.

b) Each plate of 'the box bridge deck is rectangular, uniform in

thickness, and is ma~e of elastic, isotropic and homogen~ous
material.



Table 3.1
methods.

sholVS the
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field of application of each of the above

3.2.1 Simple Beam Theory

This method is sometimes known as !engineer1s methodJ• In this
method the elementary beam theory based on the following

assu~ptions is used to determine the stresses and strlins.

a) Longitudinal strains and stresses are linear over
section.

the cro.ss-

b) There is no shear lag across the flanges hence all fibres
located same distance from neutral axis are equally strained.

c) Since all fibres' are equally strained, the transverse
deflection of all points in a cross-sections are the same, so
there is no distortion of the cross-section.

According to this theory, the following expression 1S obtained

for the normal stresses in longitudinal bending of a thin-webed

beam whose cross-section has a vertical aX1S of symmetry (-Fig.

3.1).
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Table 3.1 Different methods of elastic analysis and their field of
application [18J

Longi- St.Venant Distortion,,:l Torsional Distor- Shear Local
tudinal torsion (transverse warping tional lag effec
bending bending) warping

------------------------- -------- ----------- -------------- f------------ --------- ------- ------~,
V1. Simple beam theory

2. Load distribution V Vfactor method

3. Knittel's [ 8] method V
.

4. Equivalent beam V(methodiRichmond[14]) V
" . Kupfer's [11 j method V 0

I
5. Kullbrunner and IHajdin, [1O j Heilig [ 7 J V

I
7. Beam on elastic --.l

V V I

fOI.ndation analogy ,

3. Reissner [ 15 j method .

V .

.

::::::::::-::::::--------:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:~~~~~~~~~:~~~~~~~:~~~~~~1
s

'"'"



")"'j-

j

\

I ,,/ I

1

-----------------------------------------------------~----------------------------.,.--------------l
Type of structural action considered _IAnalytical method . -------- ---------- -------------- ------------ ---------- -------r-----.,.-Longi- St.Venant Distortional Torsional Distor- Shear Localtudinal torsion (transverse warping tional lag effecbending bending) warping-------------------------- -------- ---------- -------------- ------------ '---------9. Influence surfaces ------- ------

for plates and. frame
analysis for local
transverse bending ,

jeffects.

10. Grillage theor;,." V V V I
!

I 1 " Orthotropic plate V I
method

I
!
I

i. '. Shear Heak !~. V V ,

orthotropic plate ' I
met.hod

"

j

I 'j Three dimensIonal V ,,/ V' -/ I
v.

frame l-iork method
V V

..- -

V V I V V ,,/14. Folded p1ate met'hod -

15. Finite st.rip met.hod V V V V -/ '/
I
V

16 . Shell theory V V V V V 'V i V
0

i.;: ", Finite element method V V V I ,,/
J

V V L-.:!_I I
I -

tv
",.
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MxY My X

fJ bg
(3.1):; ----- + ------

Ix Iy

:; normal longitudinal stress in longitudinal bending
(positive tensile)

x,y :;coordinate of a point on the mid-line of the web of cross-'

section, referred to centroidal axes (Fig. 3.!l.

Mx :; bending moment 'about x axis (Fig. 3.3)

My :; bending moment about y axis (Fig. 3.3)

Ix :; moment of inertia of entire cross-section about centroidal
x-axis.

Iy :; moment of inertia of entire cross-section about centroidal
y-axis.

For the shear stresses arising in bending due to vertical loading
only, by symmetry about the vertical axis of cross-section the
longitudinal shear stress 1S zero at this axis, hence the
complementary shear stress VI bg in the plane of cross-section is
also zero at x :;0, as shown 1n Fig. 3.2. Half the open-closed
section (ABODE in Fig. 3.2) may therefore be analysed as an open

section, since the boundary conditions for open sections are now

,
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satisfied i.e zero lonlitu4inal shear stress In bending at the
"ends of the cross-section fA, C and E).

Kollbrunner and Basler
here in the form:

Vy("AY)'/2

where,

[9] give a formula which may be applied

(3.2)

(VI bgh) = shear flow in longitudinal bending
VI b g

vy

(Fig. 3.3)

(Ay)

Ix

Iy

= first moment of area of th~ partial half-cross section
abciut the centroidal x-aXIS (Fig. 3.41.

= moment of inertia of entire cross-section about
centroidal x-axis.

= moment of inertia of entire cro~s-section about the
centroidal y axis.



mid-line.
of top sla
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Fig.3.1:Dimen8ions of ero8s-seetion

Fig.3.2: ~ero bending shear stress v
1b

on
i . gax s of symmetry, for vert~eal loading.

1\



For the St. Venant torsion of thin-webed beams of
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open-cl.osed
section,

expression:
Kollbrunner and Basler r 9 1 give the following

(Vsvth) =

where,

2Aenc
I 3 • 3 )

(Vsvth) = shear flow in St. Venant torsion of thin-webed section

v to V t

h

Ts v t

Ae n c

= Shear stress in St. Venant torsion at mid-line of web.

= thickness of web of closed portion of cross-section
= torsional moment at cross-section.in St. Venant torsion
= area enclosed by mid-line of web of closed portion of

cross-section

= bd. (Fig. 3.1)

This leads to the stress distribution shown in Fig. 3.5 I'hichis
a simplification of that 1n Fig. 2.12. For thin-webed cross-
sections, the distribution of Fig. :1.5 is_adequa~e, 1n that it
assumes Vsvt to be constant through the I'allthickness of the
closed portion of cross-section, and zero .in the open portions.-
For thicker-I'elded sections, Kollbru~ner and Basler [9] give the

following" more accurate formlJla corresp?nding to Fig. 2 • l2 and

J---... •..
I '
t, '.;/
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y
Fig.3.3: Positive directions of internal
stress-resultants and extern~l loading.
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~~! 91,/--2;
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L
r --1
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Fig. 3.4: Evaluation Of(Ay)~, the first moment of
the partial half-cross-section about the centroidslx axis.

+
~ -
~ . 1 +

~
.+

Fi .3.5: Dia~ram of St.Yenant ~hear
st~ess at mid-line of web at m~dsp3n
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3.6.

6,VSVI = h Tsvticr.Vl

where,

~VB v't = increment 10 Vs v t .over half thickness of web (Fig. a .. I)
h = thickness of web (open or closed portion of C1'088-

section;

Tg v t = torsional moment at. cross-sect.ion 1n St. Venant t~o.rsi(1n

Cs v t = torsional. moment of inertia of cross-section in St.
Venant torsion.

j( dspe,. /h i = h/h. 0 p + b/hho t + 2d/hw(' n

b = breadth between mid-lirtes of webs (Fig. 3. II.

d = depth between mid-lines of top and bottom slabs IFig.3.]
htop = thickness of top slab (Fig. 3.1 I
hbot = thickness of bottom slab (Fig. 3. II

hwob = thickness Df web (Fig. 3.1 I

Sp~'r = peri.pher'ical coordinate along mid-li~~ of web

= integral along the mid-line of ~all of" tIle cl.Gsed portion
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)

8-
" I

Vsvt.bot~:~-ibot
i.

..f--..

Ilvt.
I

AVsvt.web

I
I.

I

Fig.3.6,Notation ror St Venant Ilhear strells
distribtition,considering linear v9riation or.stres3through thickness or web,
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of cross-section.

The followin« cy.iterion for a i:",h in-h'ebed ma.y nOH be

formulated" in a more general form.
follows.that

From equations 3.3 and 3.4 it

l::.V, v, IV, n = h' 12A. nc (b/h'.o'p+b/hbo' +2d/hw• b)

It.can also be shown that

(3.6)

.6Ts vt ITs vt

where .6.TsVI =- increment in TR vi due t,o the antisymrnetric shear

stress distribution. measured by.6.Vsvt

Thus equations 3.6 and 3.7. may be used to eyaluate the
proportional errors in stress and moment arisin~ from" the use of

tbe simplified stress distribution of Fig. 3.5 instead of the
more accurate one of Fig. 2.12. If the error .in torsional moment

Tsvt exceeds 10%, the section may be considered to be thick~
webed. For sections tendj.ng towards the thick-webed, Csvt may be

replaced by (cs v t + 60s v t ), where

( 3. 8 i
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belint = h'id"th of eanti.1ever (Fig. :i.1),

The results obtained from this method are considerably 1n error

because of the above simplified assumptions; Spine beam bridge

decks usuallj consist of thin plate and transverse distorsion

invariably Occurs. The external loads are usually eccentric

resulting in bending and torsioh.

section.

3.2.2 Load Distribution Factor Method

and distortion of cross-,

This method 1S particularly applicable to simply supported.
straight (not skewed) multi-cell box girder bricige slabs with
transverse diaphragms. In this method the box girder _1 S

considered to con~~st of repeati.nq I-stlaped girders made lJp of a
web and a top and bottom flange equal in width, except for tho
external web, where the bottom flange extends only on one side
and the top flange extends from the kerb

top flange. All the dead loads due
to the centre of

to kerb and railing

the

are

equally distributed among individual girders. The wheel loads are

distributed by empirical distribution factors related tc the
girder spacing, based on tests and experie~ce. The distribution
is generally of the form:

Load carried by an interior girder
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spacing of the girder

Vi; = 'wheel load x -------------~-------
constant C

Load carried by.an exterior girder

Top flange width of exterior girder
We .:: Wi X ------------------------------------

Top flange width of interior girder

.This method is 9ver-simplified and does

distort'ion of the c,ross-section.
not take into account

3.2.3 Analysis of Simple Bending, Torsion and Distortion by
Knittel's Method faj

The structural effects neg] ect.ed here are torsion and
distortional warping and shear lag.

Loading:
,

formulated in terms of line loads

IS fihown below how to represent

Knittel's method is

webs of. the spine beam. It

along the

practical
loadings.

loadings by equivalent sinosoidally distributed

Resolution of Loading:
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..~

~

Y"n fuI .y . y

=

•

{b)Re8olution of loading applied between webs

(c)Fir8t fourier component ofsymmetric loading

,

4 fuIy 'hn. y
1 = L t(a) Resolution of loadinfl:.app]ied

'hY )7F

H
(d)First fourier component of anti symmetric loaclinp:

Fi~. ~.7:Resolution of loading
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If the. given loading 1S line loading, this 1S replac8d by a
statically equ~valent conlbinatiorl of" symmetric and antisymmetric

,>
Thus, for a lin'eload ny at a web, theline loading at the webs.

resolution shown in Fig. 3.7a is obtained.

If there is point loading on the structure, this 15 resolved 1n

Fig. 3.'7b,obtaining symmetric and antisymmetric point loading at
the webs, and th.is is replaced by Fourier components of

equivalent line loading, as indicated in Figs. 3.7c and d.

Summary of Procedure for Analysis:

analysed by simple beam theory, which has been presented 1n

1) For the symmetric load case (Fig. 3.7c), .the structure is

connection with equations 3. 1 and 3.2. Consideration of

transverse normal forces ~re included, as discussed below.

2) Fo~ the antisymmetric load case (Fig. 3.7d), the following two
effects are analysed separately:

. a) Pure 1St • Venant) torsion, giving rise to shear stresses In
the cross-section, as shown by eqtlations j.3 and 3.4:

and webs, and transverse normal forces.

b) Distortion, givi~g rise to transverse bending of the flanges
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.-

3.2.~ A~alysis of Distortion and Distortional Warping by the

Equivalent Beam

The structural effects neg'l.ected here are torsional

shear lag.

Loading:

warping and

The given loading l.S resolved into statically equivalent
distributed loading along the webs. as shown in Fig. 3 .7 . Onl;v
the antisymmetric load case is considered in the equivalent beam,

method and the action under symmetric
simple beam theory.

.Summary of Procedure for Analysis:

loading is

,.

treated by

.For the anti~ymmetric load case, the following two ~f'ects are
anal;vsedseparatel;v as explained in Ref. 3.

a) Pure (St. Venant.) torsion, giving: rise to shear stress Vsvt 1n

the cross-section.

b) Di~tortion and distortional warping, giving rl.seto transverse
bending stress ftrb~ transverse normal stress f t r n and
(longitudinal distortional warping stress 'dw ••
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hlbcnnl-_._._---
ht p ,

'1, C? t
(a) Diroeneione of ftctuftl croea-eection

A A'ftop.eff 'top.e •

.q~;~;;:0' 1f~~::;;Jf' ~oJ
benm , - ,-.

------- --

Abot.eff Abot.eff

(b)Croee-secti~n of,twoequivalent beams

F<\.'g'.?\.8: Croe,,-eection of actual and equivalent beome .

.'
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3.2.5 Analysis of Distortion and Distortional Warping by Kupfer's
Method (10]

The structural effects ~eglected here al"e torsi.onal warping and

shear lag.

Loading:

The vertical loading is assumed to be applied over a web, and is
resolved into three systems as shown i,n ~ig. 3.9. These systems

.generate lai longitudinal bending, (bi torsion and (c i

distortion, Kupfer recommends tha~ the first two be treated by
Knittel's method and St. Venant torsion theory respectively and
develops an analysis referin~ mainJ,y to the action 10 distortion
and distortional warping. The method IS formulated In terms of

distributed loading ~ and Fouri er components are used t;o represElnt

the loading. However, the poin( loading is tr~ated as such when
evaluatin~.transverse bending stresses and distortional

stresses in th~ vicinity of, the point load.

Summary of Procedure for Analysis:

warping

In system ( b) of Fig, 3.9 for a square section box beam of
constant web thickness

(
around the perimeter there are no

transverse bending effects ln pure torsion. }Io\~ever, for a
rectangular seclion box beam in whcih the web thickne~s varies



around the perimeter, small transverse bending moments arise
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J.n

pure to.rsion. There Occurs the Venant shear stresses 1n

addition.

In treating the distortional system Icl of Fig. 3.9 the procedure
IS to subdivide the load of this system b:etween t,~o mutual.).v
independent structural systems I and 2 which are deformationallY

compatible. In system 1, IFig. 3.(0) the spine beam 1.Streated as
a hinged folded plate structure subjected to a load In the plane

-"'. of each Neb, sinusoidally distributed along the beam. Only t.he
longitudinal structure action of the webs IS considered,' l~ith
each web behaving as a longitudinal beam in inplane bending. The
influence of shear deformation is neglected.

System 2 IS a rigid jointed closed-frame structure and also
subjected to a load In the plane of each web, sinusoidally
distributed alorig.the beam. Only the transverse structural action

The subdivision of the distortidnal load system Ic) ofstresses.
is considered, with each. web developing transverse, bendi,ng

Fig. 3.9 between systems I and 2 of Fig.- 3.10 is determined by
specifying that tne' deflections at the corners of all cross~
sections must be compatible as between sytem I and 2.

3.2.6 Analysis of Torsional Warping by the Method of Kollbrunner,
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~j~==~l_b_1
•

System(a)
longitudinal bending (b)

torsion (c)
distortion

"nyl'
_______ J ' _

Fig.3.9: Resolution of loading

"nyl ~bny1/d ~~2

------..-. ----_L _ -- --.------

- I
I

---_-I --
a)System 1(Hinged folded plate) (b)System 2 (Rip:id jointAd closp.d frame

Fig. 3.10: Subdivision of distortional system.
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Hajdin and Heilig (10,7)

This 15 a rigorous analysis of torsional warping, in which it is
assumed by definition that there is no distorlion of cross-
section. The onl_y other structura.l effect neglected is the minor

one giving r].8e to transverse normal stresses constant thro~gh
the web thickness.

Loading:

The analysis considers only the torsional system of Fig. :3. 9b.

The torsiona~ component of the actual loading is used.
Fourier representation of it.

Summary of Procedure for Analysis:

and not a

.1Following Vlasov [23]. Kollbrunner and Hajdin [IOJ have developed
the theory of warp,ing torsion of thin-webed beams of closed or
open closed, und~formable cross-section. The_torsional warping
(longi~udinal) stresses and torsional warping shear stresses are
obtained in terms of the ~pplied torsional moment, the bimoment
and section properties knol~n as the sectori.a]. coordinate arId the
torsional warping moment of inertia.

3.2.7 Analysis of Distortion and Distortional Warping by the

Beam-nn-Elastic Foundation Analogy



The structural
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effects neglected here are torsional warp1ng and
shear lag and the m1nor one giving to transverse normal
stresses constant through the web thickness.

This method is based ?n Vlasov's (23]'thin-walled beam theory. It
is based on the following assumptions.

a) The thickness of each plate 1S small compared witl, its 'width
and length.

b) The box section is symmetrical about its vertical aX1S and the
individual plates are symmetrical about their centroidal axes.

Among all the approximate methods, this method takes into account
warping and distortional stresses and 1S suitable for hand
computation. It .is therefore I

method any applied loading P and
systems in Fig. 3.11Iii).

described 1n

be split
some detail. In this

force

a) The symmetrical force system PH causes bending 1n the vertical

plane of the cross-section. The slresses can be determined by
conventional beam theory neglecting deformation due ,to shear.

b) The antisymmetrical force system causes twisting of the crORs-
sections. This force.system can be subdivided agai~ into the
following two sub-systems as shown In Fig. 3.11(iii).



i ) Pure torsion system, consisting
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of P. forces 1n different
plates, so as to equilibriate th'e applied torsion of the
antisymmetrical force system.

i i ) The self equilibriating pure shear system p$, so that 1n
combination with pure torsion system they balance the external I)"
applied load to each web.

The components of antisymmetrical
simple statics.

1. Pure Torsion P.

force system are found by

Saint Venant's shear flow per unit length
formula

Pt, = b, .pc, /c

2. Pure Shear Force p.

computed by Bredit'g

( 3 . 9 )

( 3 . J 0 )

(3. JJ )



pc. = pbb c/(2d(b.+bb))

Pt. = - bb pc./c

Pbs = b. pc. Ie

( 3 • 1 2 j

/3.13)

(3.14)
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The effect of pure torsion PT is determined by using St. Venant's

torsion theoryasuming a rigid body rotation of the cross-section
but no distortion. The warping stresses associated with.St.
Veriant'sshear flow are usually neglegible in the case of
reinforced concrete box girders.

The box section under the influenbe of pure shear, undergoes
deformation as shown in Fig. 3.12 due

deformation are called'transverse -.t~stresses due to this
to frame action. The

distortional stresses. The measure of the distortion may be
defined either as w or c as shown 1n Fig. 3. 12. If this
distortion is non-uniform along the span, due to"nonuniformity of
torsional load, or because of non-sym~etrical external load, each
plate will displace unequally in its plane along the span.

This non-uniform distortion gives rise to longitudinal bending of
individual plates in their own planes,
warp~ng stresses.

thus causing distortional

A fourth order differential equation can be set up from ehergy
consideration in terms of w, as Nas done by Wright 123h

\'

or in
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x

(b)

p

LA L
f--------------j

I b --j

I~

i :O\hb.({!
bb

(a) Section A-A

(i)Cro8s-section and external load of box- ~irder.,

tP t/2 P/2

\ / • +

(a)
"(ii) Symmetrical and anti symmetrical components of load

(a)

(iii) Pure

P/2 ptt Pte. ~

.Pct \ jpct + pc~ j PCs-Pbt Ph e
(b) (c)

torsion lind pure shear systems.

_!~ J~/2

\'----/
(8,) (c)

(iv) Displacement of a typicai cross-section

Fip;.__3.11: Forcee and displacements of 13 box section
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terms of inplane displacement of the ~eb plate Lc. as was done by

Tung (21), from statics and compatibility considerations. The

equation developed in terms of L1c is given by:

,.'-.

d4 Lc/dx' + 4 ''''c = pc.

where 7\ = 4 KI 4EIe 0

where K is known as foundation stiffness, whlch 1S

( 3 . 15 )

related to
geometric properties of the box section. Ie. and pc. are the
moment of inertia of the box sectiori and pure shear force on web.
The distortional behding and warping stresses can now be found by

analogy with the beam on elastic foundation. The analogy between
the behaviour of box girder and that of beam on elastic
foundation is shown 'in Fig. 3.13 and a. 14. Wright, Samad and
Robinson [23] presented simplified formu~ae for different types

of diagram, and presented solutions of the beam on elastic

foundation in dimensionless parameters 1n the form of graphs,

3.2.8 Orthotropic PalteMethod

In this method, the box girder 1S replaced by an equivalent
,

anisotropic plate, .of dimensions determined by empirical

relationships. The analysis 1S performed by ort-hotropic plate

theory, assuming plate rigidities D., Dy, D, and D.y• 'fhe

actual structure.

stresses obtained from the

This method

analysis

1.S not

are then related to tho

capable of taking into
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account distortion, ~nd stresses associated with it.
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The method

can at best evaluate the approximate

stresses.

3.2.9 Shear-Weak Plate Method

longitudinal and lateral

In this method the behaviour of the box girder 1S idealised t6

that of quasi-slab and a substitute structure 1S analysed. It

simulates the stress distribution of cell\.lar slab by simulating

the trarisverse bending of cell wall by a shear parameter. Cope,

Harris and Sawko [16] used this ,approach using shear analogy to

simulate cell distortion of the box section. The resulting slab
was solved by the finite element technique. They reported good
agreement of results for 3 and 6 cell decks with simple and fixed
supports. This method is economical in comparison with three-
dimensional finite element or finite difference technique.
Intermediate supports do not present difficulties as they do 1n

the eaSe of folded plate or finite strip methods.How~ver, the

method cannot predict local transverse bending stresses directly,

and these are determined by applying displacements, obtained from

the quasi~slab analysis, to <>
the web of a plane-framework

"

representation of the cross-section,"

3.2.10 Three Dimensional Framework

n
\

.Ie. )~.'~
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In a slight modification of the Orthotropic plate method, the

actual box girder is replaced by an equivalent orthognnat grid-
work of beams rigidly connecte~ at joints to fnrm a three-
dimensional rigid- frame. These grid members ~re assigned axial,
bending and torsional stiffnesses to simulate the two-way plate
behaviour. Each jnint has S1X degrees of freedom and the
equivalent system is solved for internal forces and moments which

are used to interpret the two-way behaviour of the plates of the

box girder.' In addition to complexities of inter-relation ~nd the
problem of solving a large number of equations, the grid
behaviour
structure.

is only an approximation to that of the actual
,.

3.2.11 Folded Plate Method .•
The theory of folded plates was originally put.
Goldberg and Leve [ 6 ] and implemented using matrix st.iffness
.ethod of analysis of the box girder by Scordelis [17]. 'Chu and
Elli'ot [ 13] used the same method for the analysis of multicell
box girders. The following is a brief description of the method.

al A box girder is considered to consist 'of an assemblage of
isotropic rectangular plates inter-connected along the
longitudinal edges.

bl The applied loads, with any a:rbitrary longit.udinal
distribution, are resolved into Fourier serles. The analysis is
c~rried out for all load components of each harmonic, and the



process IS repeated for all harmonics.
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The final results are
obtained by superposition
harmonics.

of the res\Jlts from all

•

of the

cl As the harmonic load component produces displacements of the

same variation as that of the lo~ding, single values may be used
to represent and force or displacement In the longitudinal
direction. Thus each longitudinal joint may be treated as a

single nodal point.

d) Each longitudinal joint has four degrees of freedom. VIZ.

translatign in horizontal, vertical and longitudinal directions.
and rotation about the longitudinal edge axis.

el Each plate is first isolated and fixed along its longitudinal
edges and analysed for surface loads. The internal forces of the

plate, and fixed edge forces are obtained by the use of equations

of elasticity arid: plate theory in flexure, for tangential and,

norm~l components of load. The internal fo~ces for ,each plate are
similarly related t6 edge displacements.

f) The stiffness matrix for the whole strlJcture IS formulated
from the stiffness matrix of. individual plates using the
appropriate transformation matrices.

gl Using the compatibility of edge displacements, and equilibrium
of edge forces, leads to a'set of linear sim~ltaneous equations



with loads as the known vector.
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These equations are then sol.ved

for displacement of edges.

h) Final stress resultants for each piate are obtained by adding
the internal forces calculated for fixed edges and internal
forces for edge displacements.

The final solution is obtained by gumming results of the analysis
for each harmonic of the applied loads.

The method possesses the advantage of simplicity and involves few
degrees of freedom. ,but stlf'fers the limitation of being
suitable only for right simple spans with shear rigid diaphragms
at each.end. The method loses its simplicity Nhen intermediat,e

supports or internal diaphragms have to ,be tr~ated.

3.2.12 Finite Strip Method

The Finite Strip method [41 may be considered as a special form
of the well-known finite element method, i.nwhcih the box girder
cross-section 1S divided into a number of strips of length equal
to the span of the box girder. The displacement function of the
finite ~trip consists of two parts, a polynomial 1n the
transverse d'irectionand a continuously differentiable srnoo'th

trigonometric series in the longitudinal, directi.on. The series is
so selected that it .satisfies, a prior1, the bou~dary conditions
at the ends of the strips. The, relation be1~l.;een strains and



displacements
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are"obtained from the theory of elas~icity and the

load is represented by Fourier serles. Fin'tlly, the relat.ions
betw'een load and disp],acAmAnt~s

total potential energy, i.e. strain enrgy stored in the body a~d
the potential ener.~ of tile loads. This lea.ds t.o a set of linear

obtained by solving the equations
for each harmonic and the displacement

simultaneous

displacements.

equations which

Th I" / "
e so utl'on 15

total

are t.hen solved

is obtained

t.he

by

adding the displacements for a nllmber of" harmonics. Cheung 14]
was the first to use this method for the analysis of box girder
bridges by combining the bending and inplane stiffness of the
strips. This method is suitable for simple spans, but becomes
uneconomic for multispan structures due to coupling of terms.

3.2.13 Finite Element Method

The finite element method [24J is now a well-established ~ethod

for the analysis of continuum structures. In this approach the
continuum lS divided into elements "inter-connected only at a
finite number of points. At these points fictitius" forces
rep~esentative of the distributed stresses actually acti.ng on the

element boundaries ar~assumed to act. With such an idealisation
the local displacemen~ characteristics for the elements are
determined. The solution of structural 'continua, plat.es and
shells etc., lies in the solution of t.hese force displacen@nt.
relationships by numerical procedures. Among all the elastic
methods of analysis, "this method lS the most versatile and



includes torsional, distortional and warping
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stresses in the
formulation. The gel~eral derivation of this method 1S not
discussed here, and can be referred to elsel4here [24J.

Because of its versatility, this approach, has been selected for
the analysis of the box girder used in this study, A brief
descript"ion

nex't chapter.

of the finite element program used ~s givRn in the.

f,. , ~
r t__
; .' •.•.",
\,
! "
r.~ \,
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CHAPTER 4

ANALYSIS OF.SPINE BEAM BRIDGE DECK

4.1 INTRODUCTION

;- •..~
I '
I

A'spine beam bridge deck may be analysed by different analytical
methdos as discussed 1n Chapter 3. Of the different methdos of
analyses of spine beams, the simplest one 1S the simple beam
theory or the engineer's bending theory which is used in many

cases for calculation of bending and shear stresses. A spine beam
is subjected to torsion and warping stresses 1n addition to
bending 'and shear stresses. Noreover lag effects are
important with wid~ single-cell box-beams 1n comparisdn with
narrow one. The simple beam tneory can not predict accurate
information- of the cambi,ned action of the complex

sp~ne beams.
behaviour of

Many of the simplified methods are- tJsed to predict individual

action of different stresses which have been shown in Table 3. 1 ..

The method of Kollbrunner, Hajdin and Heilig [10,7J is used to
calcualte th~ torsional warping stresses and the beam on elastic

foundation analogy is used to calculate the distor~ional warping

stres~es, Thesd two methods are simple and used 1n most cases, Of
all the methods the finite element method 18 .the most
sophisticated method. To obtain accurate re.suits of the combined

"

i'
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effects of different stresses. the finite element method has been

used for the analysis of spine beam brid~e decks.

,
4.2 ANALYSIS BY SIMPLE BEAM THEORY. METHOD OF KOLLBRUNNER, HA.lDIN

AND HEILIG (10.7) AND BEAM. ON ELASTIC FOUNDATION ANALOGY

Three simply supported sp_ine-beam bridge decks havin,g diaphragms

only at the ends were considered in the analysis. The span length

and ~he cross-sectional rlimensi,ons were ii,xed IIp with reference

to normal sizes of this type of bridge {18J. The feature SIJrvey

by Swann [18] shows that the economic span range of this type of

bridge decks is usually greater than 80'. the popular'span being

between 80 and 160 ft. Moit of the spans smaller than .80 ft. are

for subsidiary structure such as entry and exist ramJls to
viaducts. Economy has been achieveod some small spans by

forming the cells of the box with permanent cylindrical void-

former, virtually resulting HI a voided slab w.ith side
cantilevers. From the above consideration three span of 84, 96
and 120 feet were selected 1n the analysis.

Three 'examples are presented 1n Appendix-A. For all the spine

beams considered in the analysis, the span/depth ratio is 10. The

breadth/depth ratio for the eel] is 2 and the thickJleSses' of top

flange. hot tom flange and webs are taken to be the same. The
total ,.iidth of section with side cantilevers 1S twice the

distance between centre line of webs. Cross-sectional rlimeIlsions

\,. ... '



and distribution of loads are shown In Fig.

c.ases !lS.o loading was considered at midspan.

5.1 to 5.9.

58

In all

theory and St. Venant"torsion tt18ory. These stresse~ are shown in

Longitudinal bending stresses at midspan, bending and torsional

stresses a~ support secti.n!l were calculated by si,mple beam

Fig. A.3, A.II and A.19 in Appendix-A.

T~rsional warping stresses at midspan section were ca]:cul~ted by

the method.of Kollbru~ler, Ha,jdin and Heilig [IO,t] placing the

loading On the end of cantilever to produce the maximum torsional

warping stress. Distortional warping stresses. and transverse
bending stres'ses were calcuJ.ated by the beam on elastic
foundation analogy. For simplicity. total weight of HS,o loading

kips load .was aSS11med to act at mi.dspan on one web to

calculate distorti?nal warping and trans~~rse bending stresses at
midspan, Torsional iJarping, distortional warping and trarlsverse

'bending stresses are shown lrl Fig. , .
h. :J 1 A. 7 I A .8 ;..A ,.l3, A. 15 ,

A.16; A. 2 I,

Appendix:-A.

A, 23 and A, 24 for the t.hree examples respeetively in.

4.3 DESCRIPTION OF THE FINITE ELEMENT PTWGRAMME AND ELEMENT

STIFFNESS MATRIX

A ~ectangular fini~e element stiffness ma~rix, with inplane and
flexure terms, known as a tshell element1

, hTas uRed for the
development of the" programme. rt 1S aS~~tlrned that "there is no



matrix of the shell element was obtained by superposition of the

freedom per nodel element and the Zienkiewicz (24]

three translations and

is

(2
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Each

stiffness

stress

element

The

element.freedOm per node)of

The stiffness matrix for an

of

interaction between inplane .and flexure stresses.

degrees
stiffness mafrix of the'Melosh (12J rect~ngular plane

plate bending (3 degrees

element thus has five degrees of freedom,
two,rotations per node.

stored in a 24x24 matrix: The terms ih each6x6 submatrix (terms
relating the forces at a node to the deflections at a node) Bre
given ~y the fo~lowing relatiolls to faciJ.i.tate
in the programm~.

operations later

( 4 • j I

,x

•

v

u

w

o

a

o
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refer to terms,of the inplane and
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I
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I

I
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=
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T.
where K~

bending stiffness matrices respectively.

the riodil point

In gener,al, elemerits may not

before

must be"

be co-p1.atlner,

forcesand

co-ordinat:e

displacements

shell

of a commonterms

adjacent

Inexpressed

'therefore

compatibility and equilibrium condi.tions can be establi.shed.
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The co-ordinate system of a particular element IS denoted by

(x,y,z) and referred to as element axes, and
<,

t.he common qo-

vectors acting 1n the co-ordinate.di~ections and it is, therefore

system of the complete structure IS denoted by IX,Y,Z),
referred to structure axes as shown

by

forcestThe

represented

4.1..Fig..in
rotations 'can beandmoments

ordinate

displacements,

only necessary to determine the transformation matrix for any set
.of vectors acting in these directions. Denotin.g the angle betweeri
the x and Y axes by xY etc. The displacement i~ the el.ement axes

can be expressed in terms of those of struct'lral axes by equation
4.2,

u.
v.
w.

=
Cos xX
Cos yX

Cos zX

Cos xY Cos xZ
Cos yY Cos yZ

Cos zY Cos zZ

u.
v.
w.

( 4 • 2 )

where subscript e and s stands for element- and structure
respectively, The direction COSInes Cos (xX) etc. are determined
by the following:

Let I,J,K be unit vectors in the X,Y,Z directions and (x, Y2 t

Zz) and (X3 Y3 , 'Z3) be co-ordinates of nodes 2 and 3 l.n

structure axes with node 1 taken as origin. Unit vectors in the
element axes are given by:

"



y

z

x

Fig.4.1: .Axes of element and structure.
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J :: l/blx,l + y,J + z,KI
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JI

k :: Uab

where a and b are length of element sides and given by:

a :: Ix.' + y32

,b :: (x,, + y," + z,') I ; •

The direction cosines are obtained by taking scalar products such
as i.1 ::Cos(xX) ::x./a etc. to give:

U. x./a y./a z./a
V. x,/b y,/b z,/b

::

y. Z. Z. X3 X3 Y::l

W. y. z. z, X2 X2 y,
----- ----- ------

ab ab ab J

I <I . :l ) "'f'I
" '''.,

, ..



The square matrix of equation 4.3 ,is

matrix and is denoted by T.

=

termed as

63

transformation

(4.4)

whefe d. are displacements 1n local axes

ds are displacements in structural. axes

The corresponding forces can be similarly transformed by:

=

(4 •5 )

transformation is performed by op~ratin. separatel~ on

For

=

orthogonal transformation T-l = TT •
,.

The cOITIPlet,n

3x3

sub-matrix S of' an element stiffness nlatri~.

"

Thus, - = [sJ (4.6)

By applying the above process to each element 1n turn, the
element stiffness, matrices are transformed to struct.ural axes"

ready' for assembli-ng the overall stiffness matrix.
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As shown in Eqn. 4.1. at each clode, six degrees of freed~m have
been permitted,. but onJ.y five components of displacement and
force have been used to formula'te the.element stiffness matrix
with respect to local axes. These forces and di?placements are
resolved into the SIX directions'of' the structural axes. For
nodes at which only co-planner elements meet, the resolution'
produces SIX equations from sets of five and one of them is
linearly dependent upon on of the others. This makes the overall
stiffness matrix singular and therefore incapable of ~olution. To

maintain regularity in the method the redundant equations are set

up by the computer programme, but they have 110 infl.uence as their

co-efficients are set eq\lal to ze~o before soliltion. For Jlodes at
which non-co-plannar elements meet, resolution prodtJces. HIX

'0
equati~ns from each of five equations and \~hen they are combined
six independent equations are formed.

4.4 SOLUTION OF EQUATIONS

IOnde the stiffness matrix is formed the next step is to solve the

equations for displacement. These displacements are then used for

calculating the stresses in the individual elements. Since in a
box girder bridge the number of equations solved i.s quite large.
the whole assembled stiffness matrix canpot be stored in the live

core of the computer, because of core limitation for any job. The

assembled stiffness matrix 1S. therefore. sto~ed in backing store

in a sq.uare matrix of size equal to. that of half band-width. The
solution of the equations are t,hen carried out by Cholesky



,.

decompo's it ion. The the Hnalys'ls of spine beam

brid~e deck by usin~

Murtuza Ij 3] .

4.5 NUMBER OF:ELEMENTS

the above procRd\Jre was obtained from

To determine the number of elements i.n the cross-section. a
subroutine subprogramme for an automatic mesh generation was used

in the finite, element programme. Only the number of elements l.n

the cross-section and the number of segments in the span were

given as input. The number of- elements in the cross-section was

16 for all of the cases, with'2 elements in each web and 4

elements in top and bottom flange and 2 in each 'cantilever. The

number of seg~ents in the ~pan was J2.

The number of elements in the cross-section increases the band-

width of the stiffness matrix and the number of segments ln the

span lncreases the S1ze of the stiffness matrix. Since the
solution time is a ~quare of band width, the abvoe s.eguence of

the num~er of elementi and segments was selected in the analysis

by the finite element methods to obtain the output ].n a

reasonable time.

,.
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4.6 ANALYTICAL MODEL STUDY

Analysis of a sp1ne beam bridge deck h~ving diaphragms 1S a time

consuming pro6ess from the computational points of Vlew because
of the large band width of the overall stiffness matrix. If the

diaphragms can be modelled ,n the analysis by omitting the

physical presence of diaphragms. the band-width of the stiffness

matrix IS reduced signific~ntly, thereby reducing the

computational time. For this purpose a simply supported spine

beam bridge deck of span 84 feet. inconformity U8 ) with the
usual single span spine beam, was analysed with four types of
boundary.conditions. The plan, cross-section and the end boundRry
conditions are given in Figs. 4.2 and .4,3. For simplicity, the
web and flange thicknesses are taken to be the same. The

structure was analysed by the finite element method. HS,. loading

w~s used and the loading arrangelnents are shown in Fig. 4.4a.

Fig. 4.2 represents the dimensions of splne beam and load
position. Fig. 4.3 represents the carss-sectional geometry and

Figs. 4;3a to 4.3d represent the end boundary conditions of spine

beam. Fig. 4.3a represents the presence cifend diaphramgs and the

end diaphragm is omitted in Fig. 4.3b to Fig. 4.3d.
Fig. 4•3c and 4.3d indicate the modelled diaphragms. 'l'he

modelling has been done by restraining the tr~nsla.tional
displacements of the .joints at the diaphragmed section. After the

analysis by the finite element method for this lo~ding CBse (Fig.
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lI6. 16+ 41k IS+IS+4k

I'

'='1 ~I
I' I 1

" S.4'

L. I' _I
I. S.4' ,I•. '6.S'

-\0 8.4' , I
Section A- A

Fig. 4.2Plllll. geometry and loading of analytical
model stUd:r.
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Left support, u. 0, V • 0, W • 0
Right support, V • 0, W • °
with end diaphragm.

Col

Left support, u.o •.V • 0, •••••°
Rightsupport,.V.O, •••••0
••••ithout end diaphragm

Cbl

Left suppcrt, u .0, V..o, •••••0
Right support, V.O, W.O
In top and bottom flange,verticaltranslations and in.webs hori~Onta1
translations are zero only at nodes.

eel

Left support, u.O, V.O, •••••0
Right support, v .0, •••••0

,
In all nodes, vertical end
horizontal translations are
zero •

. Cdl

rig. 4.~ End's boundary conditions of analytill,/ll
model study.



bending stresses of loaded and unloaded webs at the bottom points

at midspan for the four types of' bounda~y conditions are gi.ven in

For the same

4.21 only the vertical deflections of the loaded

cases (Fig. 4.3a to 4.3d) are shown .in Table 4.1.

four

69

for

longitudinal

l~eb

theconfiguration,and cross-sectionalloading

Table 4.2~ From these Tables (4,] and 4.21 it is f6undthat the

sp1ne beam with boundaiy conditions as shown in Fig. 4.3d behaves

just like as case one (Fig. 4.3al 1.e with the presence of end

diaphragms. For this element configuration, the band-width of the

case one is 138 and that for the case two, three and four is 120.

Computational time for the first case was 21 minutes ahd that for

the other three cases was 10 minutes for the finite element

programme (13) used in this analysis. But computational time also

depends upon the total number of~odes. Therefore high~r time

will be required for smaller size of elements to obtain better

results,

This shows that a diaphragm can be modelled reasonably by

restraining the translational displacements of

section .where a diaphragm 18 present.
joints at

Therefore

the

less
computational time will be required to analyse such a structute
by the finite element method. In this analysis more than 50% time

was saved by this modelling,

•
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Table 4.1 Vertical deflection of loaded web (span = L=84')

---~-------------------~--------------------_._------------------
Case

Distance

Case 1

Fig. 4. 3a

(ft)

Case 2
Fig. 4.3h

(ft i

Case 3

Fig. 4.3c

(ft )

Case 4

Fig.4.3d

(ft) .

-----------------------------------------------------------------
0 0.00 0.00 0.00 0.00
L/6 0.00149 0.0017 0..00J5 0.00148
2L/6 0.0027 0.003J' 0.0028 0.00270
3L/6 0.00310 0.0036 0.0032 0.00310

'. '.-

4L/6 0.0025 0.0029 0.0026 0.00249
5L/6 0.0014 0.0016 0.0014 O.00136
L 0.00 0.00 0;00

---------------------------------------------~--------------~----

,>

.{
.\

/' 0'
I
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webs at mid-span

-----------------------------------------------------------------
Case 4Case 3Case 2Case 1

,
Table 4.2 Longitudinal stresses at bottom of loaded and unloaded

Fig. 4.3a Fig. 4.3b

(ksf) (ksf)

Fig. 4.3c

(ksf)

Fig. 4.3d

(ksf)

-----------------------------------------------------------------
Loaded web 8.6 10. O. 9.0 8.7

Unloaded web 5.4 4.0 5'.0 5.3
----------------------------------------------------------_._-----

4.6 ANALYSIS BY THE FINITE ELEMENT METHOD

The three examples which were anal~sed bY,simpl~ beal theory, the

method of Kollbrunner, Hajdin and Heilig fl0,7J and the beam on
elastic foundation analogy in Appendlx-A, were analysed by the

finite element method to compare the res~lts obtained by the

fin~te element method to the results obtained by these methods.

This comparison has been discussed in Chapter 5.

Results as ,obtained by finite element method depend on the a~pect

ratio of the elements. Table 4.3 gives the ratio of the' stresses

as obtained by finit~ element method to that obtained by simple

beam theory for symmetrical case Nith respect to the longitudinal

•..• .J
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aX1s at the bottom of webs at midspan for different aspect ratio

of elements.

Table 4.3 Ratio of stresses as obtained by SBT to FEM for

different as~ect ratio

-----------------------------------------------------------------
ASpect ratio Stress by FEMjStress by SBT

-----------------------------------------------------------------
1.038 I1.0 ~

0.6 1.005
0.5 0.969

0.3 0.955

0.17 0.89
0.15 0.8257
0.10 0.7320

-----------------------------------------------------------------
From this table an aspect ratio 0.6 is taken for finite element
analysis.

To obtain the variation of longitudinal stresses at midspan

across the width of deck, HS.o loading was placed on different

position. The position of loads and corresponding stress diagrams

of the mid-section across the width of deck are shown in Fig. 5.1

to 5.9. Magnitude of Poisson's ratio was taken as 0.18.,

J
I•{ \



CHAPTER 5

"RESULTS OF ANALYSIS AND DISCUSSION OF RESULTS

5.1 INTRODUCTION

This investigation presents the' analysis of spIne beam bridl(e
.' decks and interpretatiorl' of results as obtained by the simple

beam theory, the metbod of analysis proposed by Kollbrunner,
Hajdin and Heilig fl0,7J, beam on elastic foundation analogy and
the finite element method. The simple beam theory, the metbod of
KolllJrunner, Hajdin and Heilig fl0,7) and the beam on elastic
foundation. analogy' ar.e simple to use. The finite element method
gives accurate results bu~ it .is a tilne consuming process and is
only suitable where computer facilities are available. Torsional
and distortional warping. stresses may arise due to eccentric
loading on spine beam bridge decks. These type of stresses can
not be predicted by simple beam theory. Therefore the method of
Kollbrunner, Hajdin and Heilig (10,7J was used to calculate the

warping stresses and the beam on el~stic foundation
analogy was used to calculate the distortional warping stresses'

and the transverse bending stresses. Amount of these stresses
which may arlse 1n case of splne heams with respect to

longitudinal bending stresses are shown 1n percentage form for
.HS,. loading. The same sp1ne beams were analysed by the finite
element method to obtain the longitudinal stresses. The
comparison of longitudinal stresses as obtained by the simple

f
j

I

beam theory and
5.1, 5.2 and 5.2

the f~nite element method are shown in Tables
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Lastly a parameter study of 81 spine beams has been performed by
the finite element method and the effects of changing of cross

sectional geometry on the longitudinal and distortional stresses
-are presented in section 5~3.

5.2 COMPARATIVE S'rUDY OF THE RESULTS AS OBTAINED BY TIlE .METHOD OF

KOLLBRUNNER, HAJDIN AND HEILIG, BEAM ON ELASTIC FOUNDA'rION
.,

ANALOGY AND FiNITE ELEMEN1' METHOD

Three simply supported spine beams having diaphragms only at the

ends of different span lengths and ~~oss-se~tional geometry were
analysed by the simple beam theory, the-method of Kollbrunner,
Hajdin and Heilig (10,7] and the finite element method. These
analyses are shown in Appendix-A. Longitudinal bending stresses,
bending and torsional shear stresses were calculated by simple
beam theory and St. Venant torsion theory. Torsional warpi,ng

stresses were calculated by the method of Kollbrunner, 'Hajdin and
Heilig (10,7] and the distortional warping and the transverse
bending stresses were calculated by the beam on elastic

"warping and shea~ lag effeots,

foundation analogy.

The simple beam theory is very simple to use.

does not consider distorti,oTI,
But thfs theory

Moreover this theory is not applicable to deep beams. The mathod
of Kollbrunner, Ha,jdin and Ifeili,!nnd .the beam on elastic

., foundation analogy are used for analysi.s of individual actions



and the combined effects of bending,
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torsion and distortion are
obtained by superimposi,nK the 1.estJlts obtained by these nlethodh
with the simple .beam theory. these methods nre
cons~rvative for individual actions of different stressel3. 'l'ho

finite element method is the most sophisticated one.

FigurBs 5.1 to 5.9 represent the geometry, positio~ of loads Mnd
longitudinal bending stresses at midspan across the width of deck

and at the bottom of the loaded and the unloaded web along the

span of deck as obtained by the simple beam theory and the finite
element method. The .simple beam ltleory 18 abbrevi.ated as SBT
while the finite element met~od is abbreviated as FEM and used in
the text in the following. These stress diagrams represent the
variat~on. of stress level as obtained by SBT and FEM.

longitudinal bending stress is the same at a particular
Since t~he

section
across the width of deck for different load position at a
.particular section across the width of deck as obtained by the
simple beam theory, therefore longitudinal bending stress

diagrams are of the same type. These are sho~.;n 1n clearl)'" in

Figs. 5.1 to 5.3, 5.4 to 5.6 and 5.7 to 5.9 for examples one, two
and three respectively. The detail calculations of stresses for
these diagrams are given in Appendix-A.

Figs. 5.1 to 5.9. represent the variation 6f longitudinal bending
stresses across the width of deck at ttle midspan ~nd at the
bottom of webs along the span. These diagrams that the
variation of the longitudinal bending .tresses as obtained by the
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also
r~,
l

represent the shear lag effects. Tables 5. to 5.3 represent the
variation of longitudinal bending stresses at top and bottom of

webs. at midspan as obtained by SBT and FEM of the three examples

as described in previous chapter. These tables 15.1 to 5.3) show

that the calculated stresses as obt.a,ined by SBT are higher at
unloaded web and lower at loaded web than that of obtained by
FEM. This variation Increases with the increasing span length.
Table 5. [ (for example onel s h()~,,"s that the calculat",d
longitudinal bending stresses as obtained b,' SBT and FE~I are
nearly the same 1n case of symmetrical loadillg but there is
slight difference due t.o shear lag ef'fect. And this difference
increases with the incre~sing e(~centri_city of loading but average
stress level remaIns the same. For eccentr.i c loading the
differences are -29% and -20% at. top arId bottom of ladr!d Heb and

35% and 34% at top and bottom of unloaded Heb.

In l

this situation severe torsional. and dis.t~oti,on~l warping
stres~es arise. Table'5.4 and Table 5.5 show the ratio of

torsional and distrotional warping stresses to longitudinal
bending stresses whcih are 62% at the top and 130+12) 42% at the

bottom of webs at midspan for Example I. Table 5.2 and 5.3
represent the longitudinal bending stresses for Example 2 and 3
r.espectively. But the variation of above stresses are increased

than example one. Table 5.2 shows thBt for eccentric loading

longitudinal bending stresses are 35% and 27% higher at top and
bottom of loaded web and 62% lOhrer at t.op and bott.om of {In.loaded



Table 5.1 Variation of longitudinal bending stresses as ?btained by
SBT and FEM at midspan for Example one

, .
--~----------------------------~-----------~-----------------------------------------------------

-------------------------------------------------------------------------------

Figure for
'load position,
cross-"sectional
dimension

St~esses
obtained by

SBT
Stresses obtained

by FEM
Excess than FEM

Top of
web
(ksf)

Bottom
of l-Veb
(ksf)

Left web
Top Bottom
(ksfl iksf)

Right
Top
Iksf)

web
Bottom
iksf)

Left
Top
1%)

web
,Bottom
.1%;

Right
Top
1%)

web
Bottom

(%)

,

--------------------------------------------------------------------------------------------------
~. 1 -4.32 t.O -4.5 '{ . 05 -'4.5 7.05 -4 0 -4 0

5.2 -4.32 7.0 -5.8 8.6 -3.5 5.3 -25 -18" 23 32

~.3 -4.32 7.0 -6.1 8.8 -3.2 5.2 -29 -20 35 34
------------------------------------------------------------------------------------------------

'"('",'I



Table 5.2' Variation of longitudinal bending stresses as obtained by
SBT and FEM at midspan for Example Two

':_~~_.

-------------------------------------------------------------------------------------------------

------------------------------------------------~------------------------------

Figure for
load position,
cross-sectional
di-mension

Stresses
obtained ,by

SBT
Stresses obtained

by FEM
Excess than FEM

Top of
web
iksf)

Bottom
of web
(ksf)

Left web
Top Bottom
(ksf) lksfl

Right
Top
<ksfl

web
Bottom
iksfl

Left
Top
1%1

web
Bottom
i%)

Right
Top
i%l

web
Bottom,

i %)
------------------------------------------------------------------------------------------------_.

5.4 -3,.9 6.35 ' -4.13 6.38 -4. 1.3 6.38 -" 0 -" 0

5.5 -3.9 6.35 -5.22 7.9 -3..2 4,8 2 - -19 > 2 i 32- "
5.6 -3.9 6.35 -6.0 8.7 -2.4 3.9 -35 -27 62 62

------------------------------------------------------------------------------------------------_.

,

00
-J



Table 5.3 Variation of longitudinal bending stresses as obtained by'SBT and FEN at midspan ,for
Example Three

t-."eb
Bottom
(% I

Right
Top
1%)

web
Bottom
1%)

Excess than FEM

Left
Top
1%1

web
Bottom
(ksfl

Right
Top
Iksfl

Stresses obtained
by FEN

Left web
Top Bottom
lksfllksfi

Bottom
of web
lksfi

Stresses
obtained by

SBT------------~------------------------------------------------------------------
Top of
web
(ksf)

--------------------------------------------------------~--------------------~-------------------
Figure for
load position,
cross-sectional
dime-ns ion

----------~------------.-------------------------------------.--------------------------------------

" . I -3.2 5.27 -3.5 5.3 -3.5 5.3 -8 0 -8 (I

5.8 -3.2 5.27 -5.11 8.0 -2.0 2. I -37 -34 60 95

5.9 -3.2 ~5 . 2 'I" -5.4 8.2 -1.8 2.4 -40 3 - 77 119- "
-------------------------------------------------------------------------------------------------

"

co
'"
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web as obtained by FEM than.SBT. Table 5.3 shows the above values

as 40%, 35% 77% and 119% respectively for,example three.

Table 5.4 and 5.5 show the ratio of torsional and distortional

warping stress to longitudinal bending stress remaln the same

level for the three cases at different points across the width of

deck at the midspan section. Table 5.6 represents the ratio of
the transverse bending stresses to the longitudinal bending

torsional and distortional warping stresses at the top and bottom

of webs at midspan for the three examples. This table shows that
the ratio of the above ~tr~sses are the same but are different at
top and bottom of webs.

Table 5.7 represents the ratio of combined longitudinal bending

stresses by superimposing the results as obtained by the simple
beam theory, method of Kollbrunner, Hajdin and Heilig [10,7J and
the beam on elastic foundation analogy to the finite element

method.at top and bottom of loaded web at midspan. This table
shows that the magnitude of combined effect of stresses are

higher ,than that obtained by'FEM at bottom of webs and lower at
top of webs. This variation lncreases with the increasing of

bridge span. But this variation is higher at the top ~f webs than
at bottom of webs. In example one, this variation is 16% at top
and 4% at bottom of webs. In example two, this variation lS 13%
at top and 3% at bottom of webs. In example three the aoove
values are 34% and 14% respectively.
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Table 5.4 Ratio of torsional warping' stress (fl wr) to
longitudinal bending stress (f, h< I at different points
for the midspan section

--------------------------------------------------------._-------Position Example 1
d=8.4
span=84

Example 2
d=9.6
span=96

Examp.le 3
d=12
span=120----------------------------------------------------------------

At top of web 32 32 32
At ends of 40 40 40cantilever

At bottom 12 12 12of web
-------------------------------------------------------_._-------

Table 5.5 Ratio of distortional warping stress Ifdw, j to
longitudinal bending stress (f,h<) at different point.s
of the midspan section.

Example 3
d=12
span=J20

Example 2
d=9.6
span=96

Example
d=8.4
span=84

----------------------------------_._----------------------------Position

------------------------------~---------------------------------'"
At top of web 30"" "30 30
"At ends of 60 62 65cantilever
At bottom 70 72 76of web

.----------------------------------------------------------------

"
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Example 3
d=J2'

Span=J20'
(%1

ExalTlpJe 2
d=9.6:

Span=96'
(% )

Example j

d = 8.4'
Span=84'

(% )

Position

Table 5.6 Ratio of :transverse bending .stress 1ft,") to If," < +
ftw• + fdw.) ~t different points of midspan section .

. ----------------------------------------------~--------~---------

-------~---------------------------------------------------------
At top of web JJ.l J 1 J JjJ

At bottom of web 60 60 60
----------------------------------------------------------------

.;:-

,~_."
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------~----------------------------------------------------~-----

Table 5.7 Ratio of combined longitudinal stress by super-
imposing the results as obtained by SBT, method of
Kollbrunner, Hajdin and Heilig [10,7] and Beam on
elastic. foundation analogy to FEM at midspa~ secti.on.

Excess than
combined effectl%r

FE~j
ksf

Combined
effect.ksf

Position'Example

-----------------------------------------------------------------
One Top.of -5 -5.8 16

loaded web

Bottom of 9 8.6 -4
loaded web

----------------------------------------------------------------
Two Top of

loaded web
-4.6 -5.22 13

Bottom of
web

8.3 8.0 -3

-----------------~--------------------~-------------------------
Three Top of

loaded web
-3.8 -5. J1 34

Bottom of
loaded web

7.0 8.0 14

----------------------------------------------------------------

,.••

,>
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deck for'an anticipated traffic ~olume, where the site conditions

a realistic asse~ment of the merits of alternative configurations
usually necessary if

the decision on overall

as for'as effect on cost 1S

Therefore in designing a spine beam bridgebe obtained.

the design of structures generally,

to

In

concerned, and prolonged backgrou~d work ~s

configuration is the most important,

1S

5.3 PA~ETER STUDY

and the economic of construction are known, decision can b~'mnde
regarding the overall breadt.h of top flange, the lengt,haof
individual spans and t.hedepth of ,.ebs.It then remains t.O select
the distance between webs and t.he t.;r'eb thickness. A parameter
study could be performed to assist in this selection, but would
require knowledge of the particular conditions of the design
proJect.

A parameter study has been performed here, in which the overa].l
width of section and the span are assumed known. Altoget.her, 81
geometrical configUrations of rectangular, simply support.ed
striight spine beam bridge decks have been analysed by the finite
element method and the results are presented belot>1 . .The

structures are assumed to have diaphragms at the s"pports only,
where there 1S full torsional and distortional restrant exists.
The range of geometrical proportions has been selected with
reference to a feat~re survey by Swann r IB].For all the spine
beams analysed in this section, the span/depth rdtio is 10. Spans
of 84', 96' and 120'are used. the breadth/depth (bid) ratio for
the cell varies from 1,0 to 2.0 and the flange thickness/web
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bending stresses at the bottom of the loaded l'eb at midspan due

I~ the analysis H820 loading i.B considered as shol4n 1n Fi~. ~.iO.
The finite element method was used f()r the arlalysis and the shear
lag effect is taken into account by the Rnalysis.

5.11 to "5.13 show the vari.ation of longitlJdina,l
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to 0.2.

Llan~e

from O.

the t;op

varles(h/dl

taken equal to

of Figs.

ra t iodepth

thickness 1S

cases.

Curves

.to the variation of breadth/depth (b/dl ratio
thickness/depth (h/d) rat.io. These curves

bending t.he bot..tom

Similarl)'

thethatshoH

of the loaded web

of the cell to the

ratio.bidof

atstress
increasethe

longitudinal

decreases with

longitudinal bending stress at the bottom of loaded l'eb decreases

with the increase of hid ratio. But the latter decreasinK rate is
faster than that of the earlier case.

"
Figs. 5.14 to 5.22 represent the variat.ion

bending st:i"esses at the bott,orJI of t.he loaded \4eb at, midspan due

to the variation of web thickrlesS to flan~e thickness. Jndi,viduaJ.

2 for span length of 84,Curve is plotted for bid ratio of

96 and 120 feet. From these Cllrves.

to

it ]s observed that the
longi tudinal bending stress Jiecreases hl'ith the increase of I"rHb

thickness. But this "de6reasillg rate JS riot: lirlear.
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made for the spine beam bridge decks used in this analysis.

5.4 CONCLUSIONS.

From the results of this 'study tIle f'ollowing conclusi.OI1~ can be

il Of all the available methods for analysis of spine beam bridge

decks. the finite element method is the most sophisticated one. A
sp1ne beam may be analysed by omitting the physical presence of

diaphragms to reduc~computational time. 11his may ~e achieved by

modelling the diaphragms by the translational
displacements of joints ~t lhe seclion. From the analytical model
study. it is found that more than 50% time can be saved .. by

modelling the diaphragms In this.way.

ii) From the comparative study of "the analysis of spi.ne beams, it

is concluded that the simple beam theory d,oes not give any
information about the torsional distortional Harping and
.transverse ben~in~ due to' eccentric ]_oadin~ whictl aI"e quite
significant 1n case of Spi.118 beams.

iiil The assumptions of the simple beam theury IArt. 3.2. Jl are
not valid 1n case of spine bealns. But the results obtained by
this theory are more conservative ill case of symmetric loadi,n~.

iv) Longitudinal bending stressz:i<as obt.a~ned. by
~ Finite element

method ,./i's-:">~"higher at top and bo1:t_olh of h!eb.
. ~1"-~

simple beam theory. But this varlBtlon

than thal obtained by

IS due to shear lag
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effect.

vI Variation of longitudinal bendin~ stresses at midspan fo}" the

three spine beams of 84', 96' and 120' span as obtained by simple

beam theory and finite element method iwhere the lo~er values for
shorter span) are as follows:

a) For symmetrical loading variat.iofl "is in the ran{;!e of -4 to -8%

at top of webs.

b) For eccentric loading vaI"ia(i,on is itl the ran~e of'-20 to -35%

at bottom and -29 to -49% at top of loaded web. For unloaded web,
this variation 15 in the range of 34 to l19% a~ bottom aIld 35 to
77% at top of webs respectively.

vi) The method of Kollbrunner, Ilajdin and Heili. f10,7] and the
beam on elastic foundation analogy' are lJsed for the anaJ.ysi,a of

individual ae'tion (ct~"torsion and distort~ion and
~.¥ the combin(~d

effect of bending, torsion and distortion are obtained by' super

imposing the results as obtained by these m~thods with the gimpJ.e
beam" theory. After superimposing the result~s the var if! 1~ion of

,longitudinal
follows:

stresses with the finite element. method are. as

a)- The variation is 1n the range of -J,G to 34% at top of loaded
web .at midspan, I.e the combien'd stresses are J6 to 34% lo\¥er

than that of obtained by the finite element method.
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h) At bottom of .loaded "ob,' the ve""ial.;o" is 'H, the range of -4
to 14%,

vii) Fr6m the parameter study it is found that the longitudinal

bendin~ stress decreases with the increase of webthicknBss and
the ratio is more than orie.

5.5 RECOMMENDATION FOR FUTURE STUDIES

This study is used for .linear analysis of spine beam bridge dock,

it should be extended to the following ~n the future studies,

ofstudies1:0e:xtended

concerned Wl t,h simpl y supported s in,~J.e-ceJ.l
study WasThisi )

spine beam bridge decks. Itshoulri he

multi-cell, multi-span deck,

segment:a.lprest.ressedofarestructures

the future studie~ may be extended to the studies

spanLongi i )

constr_uction,

of these types of bridge decks.

iii) Analysis of Splne beam brdge deck is recommended to be

carried out upto the failure stage of the deck. which requires
non-linear analysis of the deck.

iv) Analysis may be extended to the spine beam b"idge deck having
intermediate d~aphragms.
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EXAMPLE ONE

"

A simrily supported sin~le cell spIne beanl wi.ih diaphraglns onl,y at
the ends 1S taken. The span ILl .s 84 ft. and 1"1,0-5,. 10ading is
considered at midspan. Fig. A.I shows the geometry and loadillg
and. Fig. A.2 lives the bending moment. s~lear force a,n~'-torsi~nal

moment dia~rams due to live load. For simplicity. thickness of
top flan~~, bottom flan~e and webs are taken to be the same. The

analysis would be restricted to live load effects only.

To calculate the stress distribll~i,on. the followi,n~ section
properties are required. For bending;

Depth of centroid above mid-line of bottom flange

y =
7.4x4.2x2+33.fix8.4--------------------
7.4x2+33.6+17.8

= 5. 2 ft.. •

Ix =

+

2x7.4'
------- + 2x7.415.2-4.ZI'+
12

17.8
+17.8x5.2'

12

:33.6

12
+ 33.6xIS:4-5.21'

= 912 ft'

From Fils. 3.2 and 3.4, first moments of area of the partial half

cross-section about the centroidal x-axis are as follbws:

/-.



At top of web (B),'just to ril'thtof mid-line of web.
(AY)II' = - 8..4xlx3.2 = -26.88 ft'

At top of web (B), just to let of mid-li.ne of web,
IAY)II' = -8.4xlx3.2 = - .26.88 ft'.
At level of centroid, (~'=O)

IAY)'/' = - (2x26.88+2.7'/21 = -57.4 ft'
At mid-depth of web ly=O.7 ftl

(Ay), I, = - 57.4+12/2 = - 56.9 ft'
•

At bottom of web (D), (y=5.2')

.(AY)'I2)'.= - 56.9 + 5.2'/2 = -43.38 ft'
For St. Venant torsion

A.no = 8.4xI6.8 = 141.12 ft'
By equation 3.5

112

Os v t =
4x14L 12'

-----------------------= 1580.54 ft'
16.8/1+16.8/1+2x8.4/1

Bending stress due to live load.
At midspan, M. = 1232 k-ft. My = 0
By equation 3.1, .at midspan of top flange

1232x3.2
f,b( = - ----------- = _ 4.32 ks'f

912

At mid-liqe of bttom flange,

1232x5.2
f, b g = -------- = 7.02 skt'

912

At support (z=O, Vy = 40 kipsl

"

/



In

By equation 3.2. at t'op or ,,'eb,just to ri,'!htof mid-line of ,,,eb,
V'b. ,- -40xi-26.881/i912xll = 1./8 I<sf

= mallnitude of V, h< 'at top of ",eb'just, to left of mid-line
of web.

At top of "eb.

V'b, = -40x(-26.88x21/i912xll = 2.36 ksf

At level of centroid.

V'b, = -40xi-57.4I'/(912xll = 2.52 ksf

This is the maximum bending shear stress 1.0 the web.
At,mid-depth of web

V'b, = -40xi-56.91/(912xJI _ 2.5 ksr

At bottom of web

V, b, = -40x(-43.381/(9J2xJ) = 1.9 ksf

= mae:nitude of VI b'lt at batt,om of ~.;reb just t.o rie:ht of mid.-

line of web.

Torsional stresses due to live load,"
At ,support, (z=O), T,v. = 552 ok'

By equation 3.3

V.v• = 552/(2x141.J21 = 1.96 ksf

= ma~nitude of V••• in "eb and flsnlle.

The bending and torsional stresses calculated ilbove are sho"n in
the dial'lramsof Fi'g. A.3. which gives both the sign and the
direction of action of stresses.

Torsional warpin~ analysis by the methods of Kollbrunner.
and Heilig:

Position of shear centre;
By equation B.2

Ha,idin
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Iv = lX33.63/!2+JxI7.83/I2+7.4x2Xl'll'2+7.4xIL4'x2.

16.S'xS.4
Therefore d,hc = ----~-~---((129.36-11.76+58.8+2!J.68)/5d.4)

4677
= 3.9 it 0'

Evaluation of sectorial ,co-ordinate in torsional warping (Wl~r):

C,vt = 1580.54 ft'

A.nc = 141.12 ft'

',I
'.,

and so Cs v t I (2 A~ n c

Hence in equation B.l

= 1580.54/12xi4l.121

= 5.6 ft2

In top flange. (Points A.B.CI

as = dsc = 3.9 ft

, .



(3.9-5 •. 6/1) dspoc

In web, (points B,D), a. = b/2 = 8.4 ft

as dsp *' rAt c. Wt wr = -14.28

In bottom slab, (points D.E). a. =d-dshc _ 4.5 ft

= -1 ..7x8.4 = -14.28 ft2

115 I", ,,

At A. S~@r = 0, from whicll Wtwr = 0

= -14.28+3.9x8.4 = 18.48 ft'

At D. Wtwr = - 14.28+ (8.4-5.6/11 dsp.,

= -14 ..28+2.8x8.4

= 9.24 {t'

.At E. W'wr = 9.24 + (4.5-5.6/l)ds".,

= 9.24+8.4xl-l.j) = 0

Evaluation of Torsional l~arpJ.ng moment of inertia of cross-
section (Ct.wr):

Simpson's inte~ration method 15 used to evaluate the integral j.n
equation B.3.

16.8xl 2x8.4xl
Ctwr = ------(2x14.28')+ -------- 1J4.28'+4x«-14.28+18.48)/2P

6 6
2x8.4xl

+ 18.48')+ -------IJ4.28'+4«( .. 14.28+9.24)/2)2+9.24') .
• 6

16.8xl
+ ------12x9.24'

6

= 4078 ft6

Evaluation of Torsional Warpin~ BimOlnent (B.wr): to

In equation B.I0

Central torsional moment of inertia of cross-section fC~~nJ

,"'.



= 33.6xlx3.9'+2x8.4x8.4'+16.8xlx4.5'
I.•

= 2036.66 ft'

In equation B.8
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C<:~f1

K, 9 = --------- =
Cc ~ n -Cs v t

In equation B.'9

2036.66

2036.66-1580;54
= 4.46

C'wr = 4:46x4078 = 18188 ft"

In equation B.7. with Poisson's ratio taken as 0.18
G/E = 1/1211+.18))= 0.424

Hence K,. = 10.424x1580.541l8188)li' = 0.192/ft

,In eq~ation B.4, at midspan. Torsional warping bimoment
331.2

Bt w r =
0.192x4.46

= 386 k-ft'

x sinhI0.192x421/ICosh( .192x42))

Evaluation of torsional warping stresses (ftwr

In equation B.l1

f.wr = 386/4078xW.wr = 0.0948 W',wo'ksf
At A. (Fig. A.4). f,wr = 0

"at midspan:

At B.

At C.

At D.

f.wr = -1.35 ksf

f.wr = +1.75 ksf

f,wr = .880 ksf

Fugure A.5 shows the torsional warping stress.
"Discussion of calculated stresses:"



The torsional warpin~ stresses (f'we I of Fi~.
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A.5 are compared

with the lon~itudinal bendin~ stre,sses If,h<' of Fi".
magnitude.

At top of web. at midspan.
f'we/f'b. = .67/4.32 =0.32. i.e. 32%
At ends of cantilevers, at midspan,
f,we/f'h. = 1.75/4.32 =0'.4. i.e. 40%

At bottom of web, at midspan,

A.:Jain

f'wr/f'b. = 0.88/7.02 = .12 i.e 12%

The above increases in longi tudinal stress (t...rhere £, b ~ and f~wr
are addit-ivel will be lanter, when the effect of distortional
warping is considered.
Distortional analysis by the beam on elastic foundation analogy:
Evaluation of distortional warpin.E! coordinate (Wit wr ) :

By equations C.2, C.3 & C.4

16.8xl
K. = ------

8.4xl

16.8+2x8.4
-----,-----)3 = 16

16.8

i,

16.8xl
K7 = -------= 2

8.4xl

3+16
K'5 = = 3.8

3+2

From Fig, B.l. at tqp of web.

Wdwr = 116.8x8.4)//411+3.8) = 7.,35, ft'

At bottom of web. Wdwr = -7.35x3.8 = -27.93 ft'
At end of cantilever,

WOwr = 116.8+2x8.4)x7.35/16.8=14.7 ft'

The above values of Wdwr are shown in Fig, A.6

Evaluation of distortional warpin~ momerlt of InertIa of cross-
section (Cd wr ) :
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By equation C.l'and C.5

K. = (3+2(J6+2)+!6x2)/16+J6+21=2.!lG

COwr = 16.82x8.43xlx2.96/48 = 10315.9 ft6

Evaluation of the frame stiffness IEI'r.):

By equation C.6-C.I0. with Poisson's ratio taken as 0.18
Itop = 13/.(12(1-0.18') = .0861 ft'/ft

loot = 0.0861 ft'/f;t

Iw<b = 0.0861 ft'/ft

K'6 = 1+12xI6.8/8.4+3x2)/12+6/2) = 3

I'r. = 24xO.0861/(3x8.4)=0.082 ft'
Evaluation of distortional warpin~ bimoment (B~wr):

By equation C.12 and C.13

K" = IO.082/(4xl0315.9))li4 = 0.0375/ft
Bdwr at midspan:

72x16.8/1 16x.0375)x(Sinhl .0375x84)+Sin( .0375x84i i/(Coshl .0375x
84 )+Cos( .0375x84))

= 1859 ksf
Evaluation D,f distortional warpin~ stresses (fdwr) at midspan

The stresses are shown in Fig. A.7

Evaluation of transverse bending stresses (f'rb) at midspan:

,.
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In equation C. 17,

3+l6.8/8.4
K30 = ---------- = 1

3+16.8/8.4
In equation C.18

Elfn B"b = (72xI6.8x.0375)/8x(Sinh(.0375x84)

- Sine .0375x84))/(CoshIO.0375x84)tCos( .0375x84))
= 5.18 kips

In equation C.15, at top of web

~lt,b. B = 5.18//2(1+1)1 = 1.3 k-ft./ft.
In equation C.16. at bottom fof w~b.
Mt,b. D = -1.3 k-ft./ft.

In equation C.14, at top of web, in t.op flange,
Max. ft,b = 6xMt,b/h'

= 6x1.3/[2 = 7.8 ksf
At bottom of web. ft,b = 7.8ksf

These stresses are shown in Fig. A.8

Discussion of Calculated Stresses:

,.

The magn~tudes of distortional warping stresses (fd., I. torsional

warping stre~ses (~••,) are compared to longitudinal bending
stresses' (f,bg ).

At top of web, at midspan,

(f •• ,tfd.,)/f'bg = (1.35t1.32)/4.32 = 0.6 1.e. 60%

fd.,/f, b( = 1.3214.32 = 0.3, i.e: 30%

At ends ofcantilev~rs, at mid-span

/ft.,+f ••,i/f'b( = 11.75-2.651./4.32 = 0.2. i.e. 20%



12.0

i .e 60%

At bottom of web; at mid-span

If'w,+fdw, )/f, bg = (0.88+5)/7 = 0.84, 84%

f d w, / f, b g = 5/7 = 0.7, i. e, 70%

;
The above increases 1n lon.«itudinal stress (wh~ere f, b g ~ f t w r and

'" \"
f d wr are additive) are significant 1n design, even if the
torsional hrarping stress (ft wr) .1S' neglected.

"In addition:

In the top flange, at the web, ,
'. <>

I

= 7.8/14.32+1.35+1.32)
.'

= 1.11, i.e 111%

In the botto~ flange, at the web.

•

Thus the transverse bending stresses are of the same order as the
resultant longitudinal stresses at midspan, and are therefore
significant in design. It is impottant to consider Poisson's
rJitio effects in this situatiqn.
~



121

.. ,

28'

4+41<

I AAJ .t-:r-A
. I,. 14'28'I.

(a) EleYOlian of Beam

"

94

8.4'

"

I
.1.18.8'1_.__ 8_._4_'_

Section A-A

Fig. A..1 Loading and geOllletry.

,.

\
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24.'---- ...•'-----------' 32

(a) Shear force diagram (kips).

1/2.0_~ __ -123_2

~~

(b) Bending moment diagram (k-ft).

Position of l08ding.!or toraional analysis.

441.6

, + 110.4

• 331.2
-

552

(c) Torsional mom nt diagram (k-ft)•

•
Fig. A.2 Shear force, bending and torsional

moment diagram due to live lOAd. "
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(a) Longitudina1 bending stress at midspan
section (ksf).

1.18

1.9

2 lI6 lIS.--- __ .oL-_ - -- ---..- t- ------ I-~-~
2.:52 ,

tI
',.9~- -1.9 - ..•.. ,-~---.

1.9

(b) Bending shear stress (V1bg) on negative tace
ot SUppOrt section (kst).

"

..
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196

f-'- - ---,.. -....--- ~ 1
f j,

/I- ----------~ 1.96

(c) Torsional SheAr.stress (Vsvt) on negative face
of support section (ksf).

3.14

1.184.~

1.19 - ---- --- --- -- ~I If
/

\ ~ I-- --- - 0.003.86

3.8<

(d) Combined shear stress on negative face ofsupport section (ksf).

Fig. A.3 Bending, shear and torsional stresses (kef).
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14.28
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Fig •. A.4. Diagram of torsional l:!arping
. . coordinate (litwr) (ft ).

o.ss

1.7'

0.88

Fig. A.5 Torsional warping stress (ftwr) at midspan
section (kst) •

,~"

14.7
7.3'

!
7.3'

14.7

27.93 .

27.93

Fig. A.6, Diagram of ~istortional warping coordinate
(Wdwr)' (It ).,
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2.6~'

~.O '

Fig. A.7 Distortional stress (! ) at midspandwrsection (ksf).

7.8

7.S

,
7'.9

)

Fig. A.8

7.S'

Maximum transverse bending stres8 (!trb)
at midspan section drawn on positive sJ.de (ke!),'
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EXAMPLE TWO

A simply supported sin~lecell spine beam with diaphra~ms only at

the ends 1S taken. The span (Ll is 96 ft and HS, 0 lO,ading 1S

consldered at midspan. Fi.. A.9 shows the geometry and loadin~
and Fig. A.10 gives the bending moment. shear force and torsional

moment diagrams due to live load. For simplicity. thickness of

top flange, bottom flange and wehs are taken to be the,same. The

analysis would be restricted to live load effects only.

Analysis by simple beam theory and St. Venant Torsion Theory.

To calculate the stress distributiont the folloHinI?; sectipn

properties 'are required.

"

For longitudinal bendin~:

Depth of centroid above mid-line of hottom flange.

y = (8.6x2x4.8+38.4x9.61/(8.6x2+38.4+20.21

= 5.95 ft.

Ix = i8.6'/12lx2+8.6x2x(1.15l'+38.4x3.65'+20.2/12
+ 20.2x5. 95' = 1357 £1:4

FromFi~s. 3.2 and 3.4, first~oments of area of the partial

half-cross-section about the centroidal x-axis as folloN •.

At top of web (BI, just to right of mid-line of web.

"



lAy)", = -9.6x3;65xl = - 35.04 ft'

At top of web IB), just to left of mid-line of web.

lAy),,', = -9.6x3.65xl = -35.04 ft3

At level of centroid, Iy = 0)

lAy)", = (-2x35.04+3.05'/2) " -74.7 ft'

At mid-depth of web (y=O.7 ft)

IAY)lI' = -74.7 + 1.15'/2 = -74.ft'

At ~ottom of web (D), (y = 5.95)

C.Ay)" , = -74.7+1x5.95'/2 = - 57 ft'

For St. Venant torsion

A.nc = 9.6x19.2 = 184.32 ft'

By equation 3.5, torsional moment of inertia of cross-section,

4x 184.32'
Cs •• = -----.----------.------= 2359 ft'

19.2j1+19.2/1+2x9.6/1

Bending stresses dde to live load

At mid'span, M, = 1448 k-ft., My = 0

By equation 3.1, at midspan of top flanE(e,'

128

f, b. =
1448x3.65

_________ c = -3.9 ksf
1357

At mid-line of bottom flange,

1448x5.95------------= 6.35 ksf

•
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1357 \,

At support (z=o, vy = 39,5"

By equation 3.2, at top -of ,.reb. ,just to ri.~ht of 'mid-line' of 1.,reb.

= -39.51-35.04)/1357 = 1.01 ksf

= magnitude of V,h. at top of <;eb just to left of mid-line
of {.;reb.

At top of web.

VI h. = 39.5(-35.04x2)/(1357xl) = 2.02 ksf
At 1evei fa centroid,

V'b. = -39.5x(-74.71/(1357xl1 = 2.2 ksf

,This is the maximum bending shear stress In the web
At bottom of web

Vlbg = -39.5(-57)/(1357.1) = 1.66 ksf

= magnitude of VI b. at bottom of loIeb.just to right of mid-
line of web.

Torsional stresses due to live load
At support 1z=O), T. v I = 640 k-ft

"

By equation 3.3

V.v• = 640/(2x184.32) = l.i4 ksf

= magnitude of Vsvt in t-.'eb and flanE;e.

The bending and torsional stresses calculated above are shown In
the diagrams of Fig; A.ll. which gives both the sign and the
direction of action of stress.

Torsional warping analysis by the method of Kollbrunner. Ha,jdin
and Heih'g .

,.L.....;:,..- ......;. ---.;.......__ ----l'~
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Position of shear.;centre
By equation B:2

I. = lx38.4'/12tlx20.2'/12t2x8.6xl'/12t2x8.6xY.6'
= 6992 ft4

K" = 1/4xI9.2xlxlxll/3xJ9.2xlt3x9.6xll
= 169 ft'

K'4 = 19.2x9.6xlxl 1/6xl'-1/4xl' I = -15.36 ft'

K,. = 1I2xlxlxlxll/6xJ9.2't9.6') = 76.8 ft'

K'n = 9.6xlxlxlxI9.6t19.21 = 276.48 ft'

K'7 = 19.2xlx(ltl)+2x9.6xlxl=57.6 ft'

19.2'x9,6

ds he =

6992
= 4.45 ft

1(169-15.36+76.8+276.481/57.6)

"

.'

Evaluation of sectorial co-ordinate ].n torsional warping referred
to shear centre (Wtwr):

Csv, = 2359 ft4

A.De = 184.32 ft'

and so Cs v. / (2 A. n e) = 6. 4

Hence in equation B.l
In top flange, (Points A.B.C)
a. =, ds he = 4.45 ;ft,

In web. IPoints B,DI, as = b/2 = 9.6 ft
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In bottom slab. (points DtE) , a. = d-d.he = 9.6-4.45 = 5.15 ft
At .A, Sp~T = O. from which Wt wr = 0
At B. Wt wr = (4.45-6.4/1l dSper

= 1.95x9 .6,= - 18.72 ft'
At C, Wt wr = -18.72+ as dSPE'T

• = -18..72 + 4.45 (19.2-9.6)
= 24 ft'

At D. Wt w t -18.72+ (9.6-6.4/1lds ••, \'=
::.-18.72+3.2x9.6 = 12 ft2

AtE.Wtw,=12+ (5.15-6.4/1 Ids.",
:: 12+ (-1.25x9.61 :: 0

Fig. A.12 shbws the Wtwr dia~ram.

Evaluation of torsional warpin~ moment of inertia of cross-
section (Ct wr ) :

Simpson's integration method 1S used to evaluate the inte~ral 1n
equation B.3

Ctw, = 19.2x1x(2x18.72' l/6+2x9.6x1x(18.72'+4(-18.72+24)/21'

+ 24' l/6+2x9.6x1xl 18.72'+41 (-18.72+12)/2)'+12' l/6
+ 19.2x1x12x12' l/6

= 7945 ft6

Evaluation of torsional warping bimoment (B,w, l:

In equation B.10
Ce•• = 38.4x4.45'xl+2x9.6x1x9.6'+19.2x1x3.15'

= 3039 ft'

In equation B.8
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K,. = 3039/(3039~2359) = 4.47

In equation B.9

C, wr = 4.4 7x7945 = '35502 ft.

In equation B.7, with Poisson's ratio taken as 0.18

O/E = 1/(2(1+0.18)) = 0.424
Hence K" = (0.424x2359/35502)J/2

= O. 168/ft
In equation 8.4', at midspan torsi.orl~tl warping binloment,,"

B.w, = 396.8xSinh(0.168x48)/(Cosh(0.168x48))/(0.168x4.47)
= 528 k-ft2

Eval'lation of torsional wRrpi,n~ stT;~SRes
(f'wr) at midspan:

i.

In equation B.11
f t.w r = 528/7954xW.wr = 0.066 Wt wr ksf

) At A. (Fig. A. 12) , ft w r = 0
At B, f t w r = -1.24 j,sf
At C, f t wr = 1.6 kst'
At D, f t wi = 0.8 ksf

Figure A.13 shows the torsional warpin~ stI"eSSeS

Discussion .of calculated stresses I, .
i

The torsional warpj.ng stress (ftwr of Fig. A.13 are domptlred

with the lon/(itudinal bendin/( stresses (f,•• ) of' F:il(. A.IJn in
"magnitude.

At top of' web, at ~idspan,
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f'wr/flb, = 1.24/3.9,= 0.32. i.e 32%

At ends of ~antileve~s, at midspan.

f.wr/f!b' = 1.6/3.9 = 0.4. I.e. 40::<,

At bottom of web. at mdispan.

f.wrlt'b' = 0.816.35 = 0.12.12%

The abrive~ in(~J.eaHes
• in .1onl{itudinni RLroess(l-1here fl h,! Hnd ft wr

are additivel will be larger when

warping is considered ..
the effect of distortional

-Distortional analysis by the beam on elastic foundation analo~y.

Evaluation of distortional warpinR co-ordinate Wdwr

By equations C.2, C.3, and C.4'

19.2
=

=

K,. =

i i 19.2+19.2)/19.2)3
9.6

19.2xl
= 2

9.6xl

3+16
= 3.8

3+2

= -16

From Fig. C.l, at top of web;

Wdwr = 19.2x9.6/(4U+3.8») = 9.6 ft:'

At end of cantilever'.,
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19.2+19.2

19.2
x9.6 = 19.2 ft'

;

.'-'

The above values of Wdwr are ,shown 1n Vig. A.6

Fig.' A.J4: Diagram of distorbonal "arping co-ordinate (Wdw,) at

midspan.

Evaluation di,storti,onal ~~rpirl~ moment~ of i.nerti,a .of crOBS-

section (Cdw,.):

,.
By equations C.l and C.S

K. = 13+2i 16+2l+16.x2)/i6+16+2i = 2.96

Cdwr = 19.2'x9.6'xlx2.96/48 = 20112 ft'

Evaluation of fram'e stiff~,ess (EI", I;

By equation C.6~C.IO, with Poisson's ratio taken as 0.18

Ito. ~ /3/(12(1-0.l8')) = O.086J ft.'/ft

hot = 0.0861 ft'/ft

Iw.b = 0,0861 ft'/ft

K, •. = 1+/2x19.2/9.6+3x2)j(2+6/2) = :J

I, •• = 24xO.0861/(3x9.6)= 0.07175 ft'

Evaluation of distortional ,;arping bimoment (Bdw, j;

By equations C.12 and C.13

K" = (0.07175/(4x20112))li' = O,0307(ft

Bdw, at midspan = 72x19.2/(16,Ox,0307)xISinhI0.0301x96)

+Sin(O,0307x96) '/ICoshI0.0307x961

+Cos(0.0307x9G) j

= 2548 k-ft.2..

;;._ ..-:---,---.~~.V
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Evalua'tion of diRtortion'a.:1 h'at"ping HtJ'f:~g~lf~S (ff1wr) at midspan

" In equation C. J 1

.f d w r = (2548/20JI2)xW~wr = 0,1267 Wd wr i{sf

At A (Figure C. I) , f d w r = 0

At B, f d wr = 0.1267( -9.6) = - I. 22 ksf

At C, fdwr = 0.1267(-19.2) = -2.44 ksf

At D, f d w r = 0.1267 06.48) = '1.62 ksf

At E, f d wr = 0

These stre~ses are shown 1n Fig. A.15

Evaluation of iransvers~ bending stresses If'rb) at midspan:
In equation C.17,

3+2

K30 = = 1

3+2

In equation C. 18

'..

Ell r, Brrb = (72xJ9.2xO.0307lx(Ril1h( .O:107x96l-Sin( .OJ07x961)/i8(

Cosh, .0307x96)tCos( .0307x96)))

= 4.75 kips

In equation C.15, at top of weh

M"b B =' 4.75/(2(HI)) = 1.19 k-ft/ft

In equation .C.16', at bottom of web,

• \'

I
I

f.,
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.'"

M" ., D = ,. J. J 9 ks f / ft

In equation B.14, at top of web, in top flange

f". = 6xM". / h'

= nxJ.IOIJ' = 7.J2 ksf

At bottom of web, f". = 7.,12 ksf

These st.r.eflRes are'Rhown ,1n Fi /.(Uf'{'l !\. It)

Discussion of calclJlated stresse~:

"The magnitudes of distortional warpin~ stresses (fdwr I I tOT"si,ana!
1>

warping str<;'sses (f, w,) are compared to longitudinal' bending
-~

stress (f, .•.• I.,

At top'of web, at midspan.

( f, w, + f dw,\) / f, •• = (1. 24+ t. 22 In.9 = . 6, 1.. e 60%.

fdw,/f, •• = 1.22/3.9 = 0.3, l.e. 30%.

At ends of cantilevers, .at midspan
I

!

.'

,
(f,w,.tfdw,l/f, •• = (t.6-2.441/:1.9 ~ .2i . .,. 20% \'

,
= 2.44/3.9 = 0.62, i.e 62%..,"

At bottom 6f web, at nlidspan,

(f"w,+fdw,l/f, •• = (0.8+4.62)/6.35 = .85, i.e 85%

fdw,/f, •• = 4.62/6.35 = 0.72, i.e 72%

'rhe abovE:! lncreases in longi tudinal. 8tJ'~SS (h'here fl hI( I ft wr. and
fdw, are additivel are si,gnificant in design, even i I'the

torsional. wa~ping stress (ft wr) is neg 1p.c::t.ed •
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In addition,

In the top flange, at the web

ftrb/(f, b,+f'w,+f.w, = 7.j2/(:J.~J+J.2'l+J.22) = 1.11 I.e lIl%

In bottom flange, at the web,

= 7.12/16.35+.8+4.62) = 0.60, i.e: 601.,.

Thus the transverse bendine; stresRe'S are of the same order as th(?

resultant longitudinal stresses at midspan, and are therefore
significant in design. j t. i s impOr"t.B.nt', l:() (~nrlsider PoiRsnn's
ratio effects 'iIi this situation~

"

':' ;

':'-:-~'~
"0--:-,'~.-
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(a) Shea; rorce diagram (kip).

,
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..

(b) Longitudinal bending moment diagram (k-ft).,

"

"

, 9.6' 19.21

9.61 -I
;, Position or loading for torsional analysis.

639.9

121.:5

398.9 I
"

(e) Torsiona1 moment diagram (k-rt).

:526.:5

/

Pig. ;\.10 Shear force, bending and torsional
moment diagram due to live load.

:
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+.6.3

(a) .Longitudinal bending stress at midspansection (kst).

1.66

2.021.01

1.66

2.02 1.01 ~----------~ ~LOI.2.2 ,
tI t Lee1.66 \. ...•... --~-- -1.-- - - .,..

(b) Bending shear stress (V1b ) on negati.e
tace of support section (~B~).
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/

(c) Torsional shear stress (Vsvt) on negative tace
a! support seotion (ks!).

2.n
1.013.215 -_.

"-~ -,.. - _.~- - ~
f

~.3.94
~

~r
f\ , --~~~ ~

3.4
0.8

(d) Combined shear stress on negative face atsupport section (ksr).

Fig. A.11 Bending, shear and toreiolial stresses (ks!).

(
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Fig. A.12

1.6

Diagram of ~orsional warping coordinate
(Ioltwr), (ft ). . .

1.24

0.8
0.8

Fig. A.13 Torsional warping 'stress (f
twr

) at
midspan. section (ksf).

92

19.2

36048

)

Fig. A.14

36.48

Diagram of distortional warping coordinate
(Ioldwr), (!t2).
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Fig. A.15 Distortional tress (fd ) at midspansection (kst) wr .

7.12,
7.12

7.12

7.12

Fig. A.16 Maximum transverse bending stress (f
t

b)
at midspan section on Positive aide r
(kat) •



EXAMPLE 'l'IIIlEE

A simply supported single .cell spine be~m with diaphragms only at
the ends is taken. The span fLI is J20 ft and H82• loading 1. S

considered at midspan. A. 17 Bha;~s (he geonletr"y and loadin~

arid Fi~ ..A.I8 ~ives the bendin~ momeTtt. shear f'orce arid torsional
moment diagrams due to live load. For simplicit.y, t.hickness of
top flange, bottom f],an~e and webs are taken to be the snme. The
analysis would be restricted "to J.ive load effects Ollly.

I
. Analysis by simple beam theory and St. Vf~nant rpoT'sion Theory,

To calculate the stress distribution,

properties are reqlii,re(l.

For bending:

fol IQ,~ing secti,(ln

"

Depth of centroid above mid-line of bott~m flange

y = (llxlx2x6+48xlxI21//48+11x2+25)
= 7.45'

I, = 2x 11' /12 + 2x 11x /7 .45 -6 j2 +48 /12 +4 8x (l2_ 7 ,45 ,'
+25/ 12+25x7, 45'

= 2655 ft'

Bending stresses due 'to Jive 10ad:

At mid-span, M, = 1880 k-ft, My = 0

By equation 3. I. at midspan of top flnnge

f I h. = - (I 880 x <I. 55 , /2655 = -,3. 2 j, s r
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At mid-li.ne of bottom flange,

f, •• = 1880x7. 45/2655 = 5.27 ksf

,There stresses are shown 1n Fig. A.19.

Torsional Warping analysis by the "".thod of l\ollbrunner. Ha.idin

and Heilig:

Evaluation of Shear CeTltfe:

By equation B.2.

I, = lx48'/12+1x25'/12+2xll/12+2xl1xI2'

= 13.688 ft'.

Kt3 = Ix24xlxl (24xI/3+3xI2x1)/4=2fi,j ft'

K, • = 24xl2xl (Ix!' /6-1' /4) = -24. f t.:;

K1 5 = lxlxl( lx24' /6+12' l/2 = 120 ft'.

K•• = 12xlxl (12+24) = 432 ft"

K'7 = 24x.lx( .I+11+2x12xlxl = 72 ft'

dshc = 24'xI2x(264-24+120+432l/( 13688x72l

-. 5.55 ft.

,('

Evaluation of sectorial co-ordiris'te in torsi.anal warpj,n~ (W, WI l:

Torsional moment of inertia of cross-se6tion

c ••• = 4xi12x2'1i'/(241J+2'11J+2'1/11

= 4608

A. nc = 12x24 = 288 ft'

and so C••• /(2 A.nc') = 4608/12x28RI

= 8 ft'
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Hence in equation B.l

In top flange, (Points A,B.Cl

In web (Points B,DI, a. = b/2 = 12 ft

In bottom slab, (Points D,El, a, = d

At A, S •• r = 0, from which W. w r = 0

d ••• , = 6.45 ft

At B, Wt wr := (5.55-8. 61l Ids,,,, r
<,

= -12x2.45 = -29.4 ft'

At C, W, wr = -29.4 +.I2x5.55.

= :li . 2 ft'

At D, Wt wr = -29.4t12xI12-8.01

= 18.6 ft'

At E, Wt w r = 0

Figure A.20 shows the Wtwr diagram .

.Evaluation of torsional warping moment of inertia of cross-

section (Ctwr): S.imps~nts integration method is used to evalQate
the integral in equation B..3.

Ciwr = 24xl(2x29.4' 1/6t2xI2xlxI29,'l't411-29.4t3i.21/21'

t 37.2' 1/6t2xlZxlx(29.4't41(29.4t!8.61/21't18.6' 1/6

t24xlxl2x 18.6' 1/6

= 24226 ft.

"I,

I
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Evaluation of t.or~ional h'.arping birn?mellt (BI wr I:

In equati.on n.-10~ central, t(Jrsi,onnl. Ulomerlt. of inertia,

C••~ = 48x1x5.55'+2x12xlx12'+24x1x6.45'

= 5933 ftt

In ,equation D.8

KI' = ~933/(5933-4608)= 4.47

In e~uation D.19

C,w. = 4.47x24226 ='10,8290 ft'

In' equation B. 7.'

OlE = 1/(2(j+0~181 I = 0.424

Hence,

K18 = 10.424x46081l08290)l/'

= 0.13'l/ft

"In equation B.~, trirsional \4arpl11g bilnO~lent,

D,w. = 529.2/(0.134x4,.47IxISinhI0.134x60i/CoshiO.134x60»

= 864 k-ft'

Evaluat-ion of torsional Harping: stresses i f't wr J at m,ispan:

In equati.on B. 1.1

'.
ft w. = 864 W'w./24226 = 0.0356 W,w.
At A, Fi/'(. JA.201, 'f, w, = 0

147

AtB, f, w" = ,J. 0'1 k s J'

"
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At C, f t w'; = I.:lJ ksf

At D, f~w r = 0.66 ksf
At E, f t w r = 0
Fig. A.21 shows the torslona.l '''arp tng; s'Lr~s.s:

Discussion of calctJlated stresses:
The torsiona.l warping: s.treSS(~H {Ct w, J 01' Fi,g. A.21 are cOlllpaJ"ed
with the longitudinal bending stressp.s (£, b,) of Fig.
magnitude.

At top. of web, at midspan,

f'w,/f'bg = 1.0513.2 =0.32 i.e 32%

At end of cantilevers, at midspan.

f'w,/f, •• = J.JJ/3.2 = 0.40. I." 40%

At hottom of web, at midspan,

f I w, I f,., = O.66 I 522 = 0, J 2', 1. e I2%

A.19 in

will be larger whert ttle ef'fect of distorti,orlal

The above inr::reasos .In .lonujtlJdi,na.1 Btl'e~~:; I~hc:r'e

are additive)

warping is considered.

fi II V. /lnd
.' fl WI'

Distortional. analysis by the beam-OIl-e1.ast;ic foundati.on anal(H!y;

Evaluation of distortional warp:in.L! co-or'd,illat-(~ (Wdwr )":

By equation C.2., C.3 & C, 15

K. = 24 X j( (.2 4 + 2 X J2 ) 124 )? I ( 1 2 X j) = Hi

K, = 24x11( 12x1) = 2
; ,.

K" = (.1+1611(H2) = 3.8

"
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From Fig. C.l, at top of web,

:: 24xI2//4x(1+3.8i = 15 ft'

At end of cantiLever,. Wrtw, = 124+2xI2ixI5/24 = 30 fl.'

The above values of W"wr are shc)l./n in .pi g. °A. 2'2.

.'

Evaluation of distortional \<Illrp,i_n~ moment" of

By equation C. I and C.5

K, = (3+2(16+2i+16x2i//6+16+2)

:: 2.96

C.w, = (24'xI2'xlx2.96i/48 = 6,[344 fl."

Evaluation of frame stiffness:

CT'OSS-H(H.~tion

By equation C.6 to C. la, with Poi~son's ratio taken as 0.18

It •• = 1'/(1211-.182)) = 0.0861 ft'/ft

h.t = 0.0861 ft'/fte

Iw.b = 0.0861 ft.'/ft.

K,. = 1+ (I 2x24/12+3x2) II 2+6x 112 i I

= 3

I, •• = (24xO.08611/l:lx121=O.05'i'l ft'.



Evaluation of distortional warping birnornent (Bd w.r I:

By equations C.12 and C.13,

K" = (O'.0574/(4x61344))114 = 0.022

Bd •• i 72x24x«SinhI0.022x120)+Sin(0.022xI201 1/

(Cosh(0.022xI20)+Cos(O.022xI20) )/i 16xO,0221

= 4283 k-ft'
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Evaluation of distortional W~rpin~ Stresses (fdwr

In equation C. IJ
;

f d wr = (4283/613441 Wd Wr

= 0,0698 Wd wr ksf
At A, rig. (A.22) , f d w r = 0
At B, fdwr = 1.05 ksf
At C, ftlwr = 2, .Iksf
At D, f d w r -' 3.98 ksf

:"', At E, f d w r 0=
'These stresses are shown 1n rig, A.23.

at midspan:

,>

Evaluation of transverse ebdi,ng stl'esses (ftrb I at midspan:

In eq~ation C.17

K,. = (3+24/12)/(3+24/12) = 1

'0
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In equation C.18

Elt" B"b = i72x24x.022)xiSinhi.022xI20i-

Sinl .022x120)/1 iCoshiO.022xI201)+CosI0.022.120) 1.81

= 4.09 kips

In equation C.15, at top of web

~I"b. B = <l.09/12ii+[I)=1.02:i 1<-1',/1'1.

.In equatio~'C.16, at bottonl of web,

Mtrb, D = -1.023 k-ft/ft

In ~quation C. 14. at "top of web, in top flan_e.

max ftrb = 6xl.02:l/P = 6.10 ksf

At bottom of ~eb, ftrb = 6.1 k~f

Tllese stresses are shaWll i.n Fi~.' A.24,o

Discussion of calculated stresses;

The magnitude of distortiona.l warping st:resses (fdwl'")' t.or" iO'H'.J.,.

,.
warping stresses (ft wr) are cOlllpar"ed to long] tudinal bendi.n~

stresses (£, b" ) •

At top of web, at midspnn,

iftwr + fdwr I/f, b( = i 1.05+1.05)/3.2 = O.riS,

fdwr/f, •• = "1.05/3.2 = 0.30, i .., 30%

. e .65%

At ends of cantilever, at midspan,

Iftwr + fdwr)/flbg:: i1.33-2".II/:L2=O.2'i, i.e 2'1'%

fdwr /fl b( = 2.1/3.2 = 0.65, i.e 65%



At bottom of web. at midspan.

I f I w r + f. w, " I t\ h' = I 0 • Ii Ii + :1 • :~8 , I 5 • 22

= 0.88, i.e 88%

f.w,/f, •• = 3.98/5.22=0.i6. i..e iii%.

"
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The above i.ncreases in JonuitudinaJ st,r(~ss ('.,There fl hg.

"
fl wr Flnd

fdwr are additi,vel are signi,ficant. in design, even if the

torsional warping s-tress fl wr 1S neglected.

In addi.tion:

In ,the' top flange, at t.he web, flrh/(flhc+f1wr+f,l\.:rl. =
6.10/(3.2+1',05+1.05)

= 1.11, 'i.e, 111%

In the bottom f1ang~, at the web,
,

fl,b/(f, b,+f,w,_fdW' = 6.10/(5.2+0.66+3.981

= 0.60, i.e 60%

Thus the. transverse bending str~sse~ are of the same order as the

resultant longitudinal streases at. midspan. find are

significant In design, It 15 i'liportant Lo consid~I' Pois~onls
ratio effect-s' in this situation.



153
16+16k 16+16k 4+4k

l 1 ! ,,] A (> .:

.A \
\. 46' .1 14'

\-
14' \. I t

(01 Elevation of Beoll'l.

111l+lll.H)k 111l+16+4)k

6"
I'

1:-=::-":3__" _
_'_"2_' _I. 24' "" 12'.\

"(bIsection A-A

Fig •. A.17 Loading and geometry.
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(a) Shear force diagr8.lll(kips).

1880
1:527

(b) Bending moment diagram (k-ft).

(IS+18+4)k (18.•.18.•.4Ik

8'

0 0

L 'TIJ
I. IZ' I. 24' , I 12' .1 "

\ Position of lOAding for torsionsl analysis.
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+
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-
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(0) Torsio~ai moment diagr8.lll(k-ft).

Fig • .4..18 Bending Jjloment.shear force ,and torsionalmoment diagr8.llldue to ive load.
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rig. A.19 Longitudinal bendi~ stress at
midspan (ket).
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Fig. A.20

L:13

29.4

37.2

18.6

18.6

Diagram of 2tol'sioDal warping coordinate
(Wtwr) (tt ). ,

1.0:1
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0.66
0.66

Torsional warping stress' (ftwr) at
midspan section (kat)

30

30

57

Fig. A.22 Diagram o~ distortional warping co-ordinate
(Wdwr)( ft ). "
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Fig. A.23 Di8tortional stress (fdwr) at midspan
section (ks!).

6.1

6.1

6.1

Fig. A.24 Msximum transverse bendin~ stress
(ftrb) at midspan section (kef).
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APPENDIX-B
EXPRESSIONS USED IN TOl~SIONAL WARl'lNU ANAI,YSI S BY
THE METHOD OF KOl,LBRUNNER, IIAJDIN AND IIEILW 19,61

The sectorial coordinate WI wr 1ft dl~f'i rlf.~d llR

Wt w r =

where

Cs v I / (2 Af' n r. 1ds I' f! r

Cs v t

h

Sper

is the perpendictl.I.~r dis'Lance f]"onl the shear (Jentr~ to
t.he tan>lent to th,; mid-Ii"" of' Ha.ll ai, the point

considered

IS defined In equa't;ion 3.5

18 defined In eqlJation :~.:~

1S the wall t~ick~ess

1S the peripheral coordinate along t.he mid-i.ine of wall

To find a. the following expreSS10n is used for the position of

the shear centre

where

d. be = depth of shear centre belDl; mid-.li.ne.of top slab

I B, 2 I

Iy = moment of inertia of entire cross-section about the
celltroidal y aXIS

b,bc.<lnt,d,htop,hWl'h and tHot 'fire defined i.n Fi.l':. 3.1

KJ4 = bd h1(lp(1/6 h2bot - 1/4 h2w~h

K I 6 = be ant h t (I ph w (> b h hot (be ant + b)

K1'7 = bhw~b(htop+hbo' )+2dhtophh.ot

<.

The torsional warpin.£! moment of, inertia of cross-section C, wr is
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9also required, and 1S defined as

C,- wr = W2twI'" dA lB. 3 i

Relations between applied load,

twist.

internaJ stress-resultants and

T" x t

Bt w r ( Z I =
2K,.K,. 1(,. 1

CoshI ------. I
2

in. (zl = Tn' i-i+CoshIK"zl/II(" Coshll("L/21 J i/2 Ill.~J

'pf' ll' 1

Tt w r I z) = -----
21\, •

where,

Cosh KtN Z

Cosh.

(B.61

T" X t = Concentrated torsi,ana.l. moment s\lb,ipci:ed to nlidspBn.

fit WI'" (z) ~ bimoment of tarsioanl warpin~ at section Z

Til'" t (z) = torsional moment dlH~ to St. Venant sheu~ streRse~, at.

section Z.

Tt w r

Ctwr
Cc 0 n

= torsional mc)ment'd\Jc to f:oT~sional 'war~in~ shellr

st,resses at secti on Z

= G ell v t IE i Ct w r ) 1 " 2 ( B. 7 l

= Cc 0 n / (Cc ~ n -es v t f B. 8 )

= K•• C.wr 11),;)1

= Central tor~io~almomen1: of inertia of cross--section

= a'. dA ( B • J il J

I fJ. i I J
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APPEND TX-C
EXPRESSIONS USED TN D1S'I'OR1'TONAL' WARPING BY

TilE I1EAM.- ON-El.Ml'I'JC FOUNDA'rION ANAl.OGY

\
)
"1
l

'. "'"\
I

3+211\.+1\, 1+1\.1\7
Ik = ---------------

6+1\. + K,

bh.oo b+2br: .. nt
K. = ------- (---------1'

bhw.b b

bh\.o
1\, - , -----

dhwf'b
3+1\.

K, • = -----

IG. II

(C.21

I C. :1 I

( (; • fl I

J
.(

3+K,
The distortiona,l warpin~ rnomATlt of i,nertia of' crnRR-Rect~inn:
Cdwr is ~iven by the followin~ expression:

b2d3hw~b
Cl1wr = -------- K"

48
The frame stiffnessEI'r. lS

24'lw.b
It r.. = --------

where,

obt.ained f,'om:

Ie.:; I

IC.61

2b/d + 3 (]lnJI+fhn, 1/l.wI'h

• K,. = I +
ItOfl + Ihol
-----------+6d/b

Iwt' h

I, f)" :r h.(l I

1C. -; I

.'

)

h3~t 0 p

I t I) P = ----------
12( I-m'

h3 h l) I

Ibot = --------
12 I 1-m' I

•,
.• t~

(C.8 j
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c"hO
--~-.-.I. _--_~----_-~---.-----,--1----~-;----,-- --

shear
centre

I
!

8) Position of shear centre.

b) Distortional warping coordinnte wdwr~

Fig. C.l Position of shear centre and Distortionnl wnrping coordinnte



h3 Wfl b

Iw@ b = -------
j 2 ( j -m2 I

m :: PoissonJs ratio
E = Youn.'s mod"Ius of elasticity
Distortional Warpinll: Stresses fdwr

f"wr :: --'--------

162

I C. I () )

I C • 1.1 )

Fvb Sinh (1\" 11 + Sin 11(" j)

Bdw'r :: ------ --------------------------

j 6 1\" Cosh (1\" 1 , + Cos II(" 1 ,
(C. I G i

.r r r 11

Kz 7 :: (-------) •. / 4

4 Cr1 wr

Fy =: Concentrated load appJ:ied ori hleh at 1II1dspnTl.
Transverse bendin~ stresses f', rb

IC. I:i )

f"b = 6/h'

where
tvlt r h I C. I" I

Mt r b

h
ft r b

:: transverse bending- moment dlJ~ to distortional load system
= web thickness
::transverg~ hendin~ stress nt. fa~e at' web

B :: -------------~--_
~/J+I\,.J

Mt r b t

E If r a Bt r b

I C .15)

At. bottom of web

K:lO E 1fr1l Btrh
Mt r b, D ::

3+/b/dlllwp./l.op)

3.+(b/d)(1wp./ho' )

The midspan val11e of 3lTh fo," tile Jond (~;lS~consi.del.ed

1C. J61

,.

/ C. 17'

Fv b 1\"
Bt r b:: ---------

8 E If r a

Sinh ()(" L) - Sinl)i" Ll
-------------------------
Cos II\"L) + Cosll\"L)

IC.181
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