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ABSTRACT

Stair is an important functional element of a building. Presently, helicoidal stairs are

gaining popularity because of their attractive appearance. However, design of the

helicoidal stair is quite difficult as the exact method of its analysis is very

cumbersome. Due to the complex geometric configuration of this structure, the

present methods of analysis are based on various idealizations and assumptions.

Under this background, finite element approach has been applied to study the validity

of the current methods in use. The study has been extended further to determine the

stress resultants of the helicoidal stair slab including an intermediate landing for the

development of a simplified design process.

The investigation has lead to a number of findings. Firstly, the existing methods of

helicoidal stair slab analysis have been found to vary a little with the finite element

analysis. The possibility of suggesting temperature and shrinkage steel for the design

of the Ree helicoidal slab has been explored. The study resulted in a direct design

approach to suggest the steel area based on geometric parameters. It is expected

that the use of such direct design charts will gain popularity among the designers

because of its ease of use.

In addition, behaviour of helicoidal stair slabs with landing has been investigated with

a view to proposing a design chart. Strain energy method has been used to analyse

the structure. Behaviour of the stair with a landing could be generally outlined as the

outcome of the analysis. A simple design approach has been suggested in the end. It

is important to note that no design charts are currently available for the analysis of

helicoidal stair slabs with landing and the charts developed as a part of the proposed

design method will be immensely helpful to the designers. Also, a parametric study

with a limited scope has been carried out. The study suggests that the behaviour of

the stair with and without landing is similar, with the effect of landing being prominent

locally, in the vicinity of the landing. The maximums of all stress resultants,

excepting lateral shear, show some variations because of the introduction of an

intermediate landing. The effect of landing is most prominent in torsion. The

deflection of a helicodial stair with landing has been found to be larger than that

without a landing.
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NOTATIONS

8' = Angle measured from x-axis towards y-axis on a horizontal plane

8 = Angular distance from mid span (Fig. 3.4)

v = Poisson's ratio

a = Slope of the helix contained within the helicoid at radius R (Fig. 2.2)

y = Unit weight of concrete

<I> = Angle subtended at the centre by half landing (Fig. 6.1)

0" = Relative angular displacement about x-axis due to X,=1

Oew = Relative angular displacement of the two ends of the girder at the mid

span cut about x-axis due to a uniform load of 1 lb. per linear foot of

horizontal projection with the redundants equal to zero

Orx = Relative angular displacement about x-axis due Xx=1
oxr -, Relative linear displacement in the direction of x-axis due to Xr=1
0xw = Relative linear displacements of the two ends of the girder at the mid

span in the direction of x-axis due to a uniform load of 1 lb. per linear

foot of horizontal projection with the redundants equal to zero

0xx = Relative linear displacement at the same location in the direction of

x-axis due to Xx=1
2(3 = Total central angle subtended on horizontal projection (Fig. 3.4)

b = Width of the stair slab

E = Young's modulus

e = Eccentricity of loading with respect to the girder centreline

EI = Flexural rigidity

EI, = Flexural stiffness about r-axis

-EIs = Flexural stiffness about s-axis

F = Radial horizontal shear force

H = Radial horizontal shear force at mid span (redundant)

fc = 28-day compressive strength of concrete

GJ = Torsional rigidity

Ht = Height of the helicoid

h = Waist thickness of stair slab

K = Ratio of flexural to torsional rigidity
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Mv =

M =

Mh =

Msup =

N =

R2,R =

R] =

Ri =

Ro =

T =

V =

w =

x, =

Xx =

Vertical moment

Vertical moment at mid span (redundant)

Lateral moment

Vertical moment at support

Thrust

Centreline radii on horizontal projection

Radius of centreline of load

Inner radius on horizontal projection

Outer radius on horizontal projection

Torsion

Lateral shear force

Dead load and live load per unit length of span, measured along the

longitudinal centreline of the plan projection

A moment about x-axis at the mid span section

A horizontal force in the direction of x-axis at the mid span section
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

One of the most important functional elements of a building, be it residential or

commercial, high or low rise, is its stair. It is a series of steps connecting adjacent

floors of a building for transportation of men and goods from floor to floor. At the

time of an emergency like an earthquake or a fire accident the stair loading

becomes maximum. At the peak hour in a commercial building, business centre or

market place, a stair plays a vital role. In a high rise building, a stair appears to be

substituted significantly by the elevators, but during emergency, the stair is the only .

option for transports between floors in these buildings as well.

A stair is not only important from functional point of view but it provides a wide

scope for the use of architect's creativity in this field. Depending on the architectural

forms, there may be different types of stairs, such as (Fig. 1.1):

(i) .Simpie straight stair,

(ii) Saw-tooth/slabless stair,

(iii) Free standing stair, and

(iv) Helicoidal stair.

Among these types, the helicoidal stair has a grand and fascinating appearance

from architectural point of view. For this reason, helicoidal stair slabs are

increasingly used in many important buildings in Bangladesh and other countries of

the world. This attractive structure can also be visualised as being a circular bow

girder with one end displaced vertically out of plane of the other (Fig. 1.2).

Compared with other structural components of a building, stairs have some unique

characteristics. Stairs are an assemblage of interconnected plates in a space

1
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space and are generally supported at the edges of the plates. Both, in-plane and

out-of-plane forces may be present in the stair depending upon the arrangement of

the supports and type of stairs. However, due to the complex geometrical

configuration, the analysis and design of helicoidal stair slabs are more difficult

than simple type of stairs. Therefore, the approaches are based on different

idealisations and assumptions, which results in approximate and conservative

design. They also fail to take full advantage of the beneficial structural behaviour of

helicoids.

So in the practical field, increasing use of helicoidal stair slabs has necessitated the

development of a thorough and 'exact' analysis and a simple design procedure for

this type of stairs.

1.2 BACKGROUND OF RESEARCH

History reveals that the first helicoidal stair slab was constructed in 1908. It was

designed as an open coiled helical spring, primarily as a torsion member. However,

further research has indicated that this type of structure also carries bending, direct

and shear forces besides torsion.

Helicoidal stair siabs, so far, have been analysed and designed on the basis of two

different basic approaches.

In one approach, Bergman (1956) and Engles (1955) considered it as a fixed ended

curved beam. In this approach, the simplest solution is produced by reducing the

helicoid to its horizontal projection and resolving the problem into that of a fixed ended

curved beam. Thus the structure is idealised as a two dimensional structure.

In the second approach, Fuchssteiner (1954), Gedizli (1955), Holmes (1957),

Scordelis (1960), Morgan (1960) and Cohen (1964) considered the helicoid as a

three-dimensional helical girder. Here, the helicoid is reduced to its elastic line having

the same stiffness as that of the original structure. But this simplification neglects the

slab action of helicoid and also assumes that the bending stiffness and torsional

stiffness of a warped girder are the same as those of a straight beam.

3 •



A comparative assessment of the two approaches showed. that the curved beam

solution leads to a very conservative estimation of forces.

The efforts on the development of an 'exact' procedure for the analysis of helicoidal

stair reached its culmination through the works of Santathadaporn and Cusens (1966),

where the stair was assumed as a helical girder. The work presented thirty-six design

charts for helical stairs with a wide range of geometric parameters. Based on this

work, four design charts were compiled in somewhat modified form in the current

design hand book by Reynolds et. al (1988). These design charts now stand as

'helical girder solution' for helicoidal stairs.

Both the curved beam and the helical girder solution fail to take into account the

three dimensional characteristics of helicoid and its inherent structural efficiency.

With a view to developing an 'exact' and general solution, Menn (1956), outlined an

analytical method of solving helicoidal shell problems including edge perturbations or

edge conditions. It was observed that the analysis of a helicoidal shell for certain

boundary conditions is possible through highly complex mathematical calculations.

Menn realised the fact and concluded finally to go for 'girder solution'.

An exact analysis of the problem by directly solving the differential equations of

equilibrium and compatibility in accordance with the theory of elasticity is beyond

the scope of existing rigorous mathematical methods, which is why this approach

was discarded by Menn. The only alternative to this is to employ numerical

methods. Among the available numerical methods, finite element approach is the

most powerful one. The development of different curved shell elements in the field

of finite element techniques and the availability of high speed digital computers at

design engineers' desk have ushered in a new hope for the shell solution of this

problem in a more logical and convenient way.

In this context, Modak (1991) adopted the "General Thick Shell Finite Element

Program" of Ahmad (1969) to investigate the behaviour of fixed ended helicoidal stair

slab under uniformly distributed loads. This investigation paved the way for developing

a design rationale for helicoidal stair slabs. Morshed (1993) worked further on this

problem to get more reliable and logical values of shear forces and torsion using

gauss point stresses with necessary modification in the program. Arnin (1998) worked

4
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further on it and carried out an extensive parametric study of the geometric

parameters governing the design forces of the helicoidal stair slab. He also performed

a comparative study of different methods through the analysis of a prototype stair

employing different methods currently available in the literature for the design of

helicoidal stairs.

Through the efforts at SUET, it was possible to model the behaviour of helicoidal stair

slabs without any geometric idealisation. Recently, Choudhury (2002) has worked to

develop a design guideline, based on finite element analysis. However no efforts have

been made to study the behaviour of helicoidal slabs with an intermediate landing.

1.3 OBJECTIVES

The methods of structural analysis of helicoidal stairs available in the literatures are

based on different ideaiisations and assumptions. These methods fail to consider

the three-dimensional characteristics of helicoid and its inherent structural

efficiency. In contrast, the recent advances at SUET have indicated that the

introduction of thick shell finite elements can successfully tackle this problem more

rationally. However, these developments were not convenient enough for practical

application. The possibility of incorporating an intermediate landing was still waiting.

In this context, the main objective of the present investigation is to cover the

following aspects.

I. To study the behaviour of the fixed ended helicoidal stair slab using finite

element approach, without any geometric idealisation.

II. To 'study the structural behaviour of the helicoidal stair slab over an

extensive variation of parameters with the aim to extend Amin's studies.

III. To develop a simple but general design approach for the fixed ended

helicoidal stair slabs with the least possible computation.

IV. To study the behaviour of helicoidal stair slabs with intermediate landing.

V. To develop a simplified design approach for helicoidal stair slabs with

intermediate landing. No design charts are presently available for such

cases and it is expected that a simple design approach can efficiently work

as a guideline for designing helicoidal stair slabs with intermediate landings.

5



1.4 METHODOLOGY

A thorough survey of related literatures has been made to understand the current

methods available to design the helicoidal stairs. It has also covered the recent

studies made in this field at BUET using finite element method.

To begin with, the helicoidal stair slab has been anaiysed using both finite element

method and helical girder method. The comparison generally justifies the existing
methods for analysing helicoidal stair slab.

Because of the low steel requirement in the helicoidal stair slabs, often temperature

and shrinkage reinforcement may govern the design at critical locations. Therefore,

the possibility of suggesting a steel ratio for different dimensions of the helicoidal
stair has been explored.

Next, the helicoidal stair slab with an intermediate landing has been analysed

through the strain energy method. The behaviour of the stair slab with landing has
led to the suggestion of a design chart.

Then, the helicoidal stair slab with intermediate landing has been modelled by the

finite element method to compare deflection of stair slabs with and without landing.

At the end, guidelines for future research have been suggested.

1.5 SCOPE OF RESEARCH

This work is kept limited to:

o The helicoidal stair slabs with fixed boundaries at top and bottom only.

o Live load is assumed to be uniformly distributed. No influence line analysis has
been carried out.

o Only one landing at the mid span is considered in both the classical and the
finite element approach.

6
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• The length of the landing is kept constant at 0.2 times the span of the helicodial

slab, in the finite element analysis. However, the classical approach is capable

of providing a solution for any length of the landing.

7



8

2.1

2.2

2.3

x =RCos 8'

y=RSin8'

z=8' R tan a

HELICOIDAL STAIR SLAB PARAMETERS

CHAPTER 2

2.1 INTRODUCTION

2.2 GEOMETRY OF A HELICOIDAL SURFACE

This chapter deals with the geometry of helicoid, its axes systems with sign

conventions, loading and boundary condition along with stress resultants of the

helicoidal stair slab in present study.

Left-Hand Hdicoid Right-Hand HI:!licoid

Fig. 2.1 Right handed and left handed helicoid

Geometrically, a helicoidal surface .is a warped surface generated by moving a

straight line touching a helix so that the moving line is always perpendicular to the

axis of the helix. Although, in most cases, the generating line intersects the axis of

the helix, the definition does not require it. In an oblique helicoid, the generating line

always maintains a fixed angle with the helix. A helicoid may be right handed or left

handed (Fig. 2.1). Mid surface of the helicoidal stair slab can be defined by the

following equations:

where, Ri:o; R:o; Ro and 0 :0; 8' :0; 2 ~



Two types of co-ordinate system can be used in the analysis of helicoidal stair slab.
namely:

9
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Fig. 2.2 Perspective sketch of helical beam
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• Global coordinate system

• Local coordinate system

2.3. COORDINATE SYSTEM AND SIGN CONVENTION
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2.3.1 Global Coordinate System

2.4

2.5

2.6

2.7

2.8

2.9

Xtop =Rease' + h sina sine'/2

Xbot =Rease' - h sin a sine'/2

Ytop =R sine' - h sin a cose'/2

Xbot =R sine' + h sin a cDse'/2

Ztop =H e'/2j3 + h cosa/2

Zbot =He'/2j3 - h cosa/2

X axis - radial and horizontal along the bottom boundary

Y axis - perpendicular to X axis on horizontal projection

Z axis - perpendicular to XY plane following right hand screw rule and along

the axis of revolution of the helix as well as parallel to the direction of

gravitational loading.

In representing the mid surface of helicoid (Eqs. 2.1-2.3) the following global axes

system is adopted:

The helicoidal stair slab has a definite thickness. If the uniform thickness perpendicular

to the helicoidal surface is h, then co-ordinates of points on top and bottom surface of

the helicoidal stair slab can be found out easily from trigonometry and can be

represented as follows:

These equations are valid when generator line is always parallel to XY plane.

2.3.2 Local Coordinate System

Local coordinate system is shown in Fig. 2.3. Displacements and stresses are defined

with respect to the global axes system. However, the stresses are subsequently

transferred to local axes system. Stress resultants are defined with respect to the local

axes system. And these stress resultants with respect to the local axes system are the

governing parameter in the design of the stair slab. The relationship between the two

types of coordinate systems and their positive directions are shown in Fig. 2.4.
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Fig. 2.3 Local axes system
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Fig. 2.4 Local and global coordinates and relationship between them
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o

2.11

sma

o
cosa

- sin~cosa cos~cosa

- cos~ - sin~

sin~cosa cos~sina

where,

(all, a12, a13)= direction cosines of t axis with respect to (w.r.t) X,V,l axes respectively

(a21, an, a2l) = direction cosines of r axis w.r.!. X,V,l axes respectively

(all, al2, all) = direction cosines of saxis w.r.!. X,V,l axes respectively

Relationship between the local and global axes system can be interpreted in terms of

a direction cosine matrix (aij)

2.10

2.4 RELATIONSHIP BETWEEN GLOBAL AND LOCAL COORDINATE

SYSTEMS

2.5 LOADING AND BOUNDARY CONDITION

Any displacement or force in the positive direction of axis is considered to be positive

and any moment or rotation having the vector in positive direction of axis is taken to be

positive.

The helicoidal stair slab has its self weigh!. This dead load (self weight) is assumed to

be uniformly distributed. In addition, the slab is subjected to live load. The live load

could be uniformly distributed over the surface or point loads or line loads or

symmetrical loads about the central axis of the slab. However, the live load is also

considered to be uniformly distributed over the entire span and width of stair. Thus in

the present study, the helicoidal stair slab is assumed to be subjected to a surface

load distributed uniformly over the entire horizontal projection.

The ends of the slab may be fixed, partially fixed or hinged. The slab fixed at both

ends is six degree indeterminate; there are six equilibrium equations and twelve



unknown reactions. Helical slab with one end fixed and one end hinged is

indeterminate of third degree. Three reaction moments at the hinged support are

equal to zero.

In the current analysis, helicoidal stair slab, fixed at its ends in all directions, has been

considered.

2.6 STRESS RESULTANTS

Generally, six stress resultants are available in any section of a space structure.

Helicoidal staircase, being a space structure is no exception. The six stress

resultants as found in any cross section of a helicoidal slab are:

• Vertical moment (Mv),

• Lateral moment (Mh),

• Torsion (T),

• Thrust (N),

• Lateral shear force (V), and

• Radial horizontal shear force (F).

The positive directions of these stress resultants have been illustrated in Fig. 2.5.

La~lmomenl

La_shear

Fig. 2.5 Stress Resultants
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CHAPTER 3

LITERATURE REVIEW

3.1 INTRODUCTION

At the beginning of this century, helicoidal stair slab received attention of a number of

researchers. They worked on this problem of developing a simple procedure for

analysing and designing of this attractive structure in a logical and rational way.

The analysis of a helicoidal stair slab involves torsional moments as well as flexural

moments and shears. The analysis is consequently more difficult than that of a straight

stair slab.

The analyses of helicoidal stair done were so far based on two basic approaches. In

the first approach, the stair was considered as a fixed ended curved beam in a

horizontal plane. In the second approach, it was considered as a helical girder in

space. Both approaches were approximate and failed to utilise the inherent structural

efficiency of the helicoid and thereby lead to a conservative design. However, with a

. view to obtaining a more realistic analysis, a shell solution was obtained. But due to its

extreme mathematical complexity, this approach failed to be popular.

In the subsequent articles, some of these analytical approaches have been critically

looked at along with their special assumptions. Afterward, the efforts of different

researchers to substantiate the analytical findings through experimental studies have

been presented.

Another stream of efforts led to the development of design charts based on 'helical

girder approach'. The outcome of some of these efforts has been incorporated in the

recently published design handbooks, i.e., Reynolds (1988). An effort on the formation

14



of stiffness matrix with a view to opening up the possibility of getting numerical solution

of this structure has been recorded in the literature.

At the end, the recent advancements at BUET in the analysis and development of a

design procedure for helicoidal stair slabs have been recorded.

3.2 ASSUMPTIONS IN DIFFERENT APPROACHES

In any analysis, idealisation is an essential part. The actual structure can never be

analysed without some simplifications. The accuracy of the analysis depends on the

accuracy of the idealisations and on how closely the actual structure represents the

ideal structure.

In both the approaches of analysis of helicoidal stairs, the following assumptions are

made:

i. The material is linearly elastic and homogeneous.

Ii. The bending and torsional stiffness of a helicoidal surface is defined by the

straight prismatic member, as if the helicoidal surface was a prismatic bar.

iii. The unit load is uniformly distributed over the width of the girder.

iv. The structure is studied neglecting any slab effect.

v. The cross-section is considered to be symmetrical about two principal axes.

vi. Deformations due to shear and direct forces are negligible since these are small

compared to the deformations caused by twisting and bending moments.

3.3 ANALYSIS OF HELICOIDAL GIRDER AS A PLANE CURVED BEAM

3.3.1 Bergman's Approach

Victor R. Bergman (1956) was one of the pioneers in analysing helicoidal stair slabs

and in proposing design methods and charts to facilitate the design. In his approach,

Bergman reduced the problem to a fixed ended circular bow girderlring beam on the

horizontal projection, that is, he assumed the space structure of helicoid to be

projected on a horizontal plane as a curved beam (Fig. 3.1). The structure is thus

15
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wR?(U-l) 3.1
f] (K,~) = {2(K+l)sin~-2K~cos~}/{(K+l)-(K-l)sin~cos~} 3.2
f2 (v, b, h) = EI/GJ 3.3

Mv =
U
K =

Fig. 3.1 Bergman's idealisation

simplified into a planar one. This idealised structure is then assumed to be loaded

symmetrically under uniformly distributed load over entire span normal to the plane of

curvature.

At any cross-section of this curved beam, there exist, in general, a bending moment, a

twisting moment and a lateral shear. The customary design condition of uniform

loading over the entire span, symmetry of the loading and structure as well, dictate

that torsion and lateral shear cannot exist at the mid span cross-section of the

simplified structure. Therefore only bending moment at mid span remains to be

determined analytically. This makes the rest of the structure statically determinate as

far as the calculation of bending and torsional moments and shears is concerned.

Bergman applied the principle of least work to a fixed ended, curved beam of a

constant centerline radius R2 to determine the expression for the mid span bending

moment, Mv:

For a particular slab cross section, Bergman proposed the value of K. He also

provided a chart which gives the value of U using half-central angle 13 and K as the

inputs. Thus midspan bending moment M can easily be obtained.
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3.3.2 Engle's Approach

3.4

3.5

3.6

wR/(Ucos8-1)

wR/(Usin8-8)

wRz8

=

T

V

Mv = wR/ (U cos8 -I) 3.7

T = wR/ (U sin8-8 ) 3.8

V wR28cosa 3.9

The above expressions, however, give the values of T and V in a vertical plane. So

in planes of normal cross section the expressions will be:

The vertical moment (Mv), torsion (T) and lateral shear force (V) at any cross section

located at an angular distance 8 from the mid span can be obtained from the following

expressions, as suggested by Bergman:

Bergman's approach is extremely simplified and is very convenient to use. However it

leads to a very conservative design. His approach also fails to consider the inherent

structural strength of helicoidal slab. The formula provided for mid span bending

moment Mv and the curves are limited to the common case of uniform loading

covering the entire span. It should be mentioned here that the flexural and twisting

moments for concentrated loads were not developed by him but by MichalOs (1953).

Bergman's approach may be applied for medium sized helicoidal stair slabs. However,

Bergman had recommended to use a more accurate method for large structures.

In Engle's (1955) approach, the analysis was made on the structure idealised as a

curved beam fixed at both ends, eliminating its third dimension. Both symmetric and

antisymmetric loading with respect to plane of curvature were considered and the

method of consistent deformation was followed during analysis. The following

additional assumptions were made:
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3.4 ANALYSIS OF HELICOIDAL GIRDER AS A SPACE STRUCTURE

3.10

3.11

w R} [ 1- A (B - Kj3cos(3) sin2[3]

w R} [ e - A (B- Kj3cos(3) sine]

4/ [2K/[3 - (K -1) sin2[3]

K+1

=where, A

B

T

In the process of solution, the number of unknowns came to three. For the case of

symmetrically applied uniform load, vertical moment (Mv) and torsion (T) at an angular

distance e from mid span are given as,

Based on these assumptions twelve loading conditions, for example, uniform torsion,

uniform load, concentrated load, conoentrated torsion, symmetrically and partially

applied uniform torsion, etc. were considered.

3.4.1 Scordelis' Approach

i. The cross section of beam is uniform and small' compared to the radius of

curvature.

ii. Out of plane deformation is small.

A. C. Scordelis (1960) was the pioneer, among other researchers, to consider

helicoidal stair slab as a space structure. The stair slab is assumed to behave like a

helicoidal girder neglecting any slab effect. The girder is reduced to its elastic line

having stiffness same as that of original structure. Thus for a both-end-fixed structure,

the problem becomes statically indeterminate to the sixth degree. However,

considering symmetry of loading and structure only two redundants remain to be

solved at the midspan section as others attain a zero value because of symmetry. This

leads to a great simplification to the problem. Scordelis had given the general

equations to determine the redundants at midspan of a uniformly loaded helicoidal

girder fixed at both ends. He has also tabulated the values for these redundants for

510 different cases using horizontal angle (2[3), with angle of slope and cross-sectional

properties as the variables.
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3.13

3.14

++R2d~f+13ffirxmrw-p EI
r

Scordelis used the principle of superposition to get the displacements in the direction

of the redundants:

The helicoidal girder was analysed for a uniform vertical load of 1 Ib per linear ft of

horizontal projection of the girder longitudinal axis. The unknown two redundants (Fig.

3.2) at a mid span section are:
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Xx : a horizontal force in the direction of X axis, and

X, : a moment acting about X axis

From Maxwell's law of reciprocal displacements, on<= oxr

Thus to solve the above two equations for redundant, five displacements must be

determined. These are:

By conventional virtual work method the above displacements can be determined. For

example,

The moments are denoted by special notations, first subscript denotes the axis about

which the moment acts and the second subscript denotes the load causing moment

(Fig. 3.3).

Now, due to uniform ,load of 1 plf with the redundant equal to zero and referring to Fig.

3.2 and Fig. 3.3, at any location 8 from mid-span, these moments can be expressed

by statics as follows:
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X r

night-Hand U••licoid

Right-Hana Helicoid

Fig. 3.2 Positive direction of redundants (Scordelis approach)

Lt!ft-Hand Il••licoid

Left~Hand HHlicoid



To get displacement terms. tables have been constructed to reduce the complexity in

calculation. Now final bending and torsional moment at any section can be computed

as:

3.19

3.20

3.21

3.16

3.17

3.18

3.22

3.23

3.24

'-rr

Right -llano' IId/co,"d

ycrl/CQI line.

2- R2 (I - casS)

- R/ (S - sinS) sina

- R2
2 (S - sinS) casa

21

- R2 (SsinS) tana

R2 (sinS) casa + R (B casS) sina tana

- R2 (sinS) sina + R (BcosS) sina

casS

sinS casa

sinS sina

Ill!"x

Illsx =
Illix =

illsI'

Illrr

mIl"

Fig. 3.3 Positive direction of bending and torsional moments

L~ft - Jla"d 1I~/ico/d

r-

FarA,=1.

For. X, = 1,
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3.28

3.24

3.26

3.27

(m", + Xxm", + Xrmrr) W

(msw + Xxmsx + X,msr) w

(mtw +Xxmtx + Xrmtr) W

=e

However, in practical cases, the uniform vertical load is actually distributed over the

width of the girder. As a consequence of this, there exists an eccentricity with respect

to the centreline of the girder, where the equivalent helix is considered. This

eccentricity is equal to,

The eccentric loading produces a uniform torque on the structure. Scordelis and Lee

investigated the matter and suggested that the torque loading is negligible for bl Rz

less than 3. Otherwise they suggested to consider the torque loading during the

calculation and have provided another chart for the torque loading.

For convenience, usually a separate analysis is made for torque loading and

redundants found are algebraically summed to those obtained for vertical load to get

actual value of Xx and Xr' Finally he proposed,

Mv = (m", + emn + Xx m", + Xrmrr) W 3.29
Mh (msw + ernst + Xx msx + Xr msr) W 3.30
T (mtw + emtt + Xx mtx + Xr mtr) W 3.31

where, mn = - wR (1 - cose)

mst w Rzsine sinu

mtt = w Rzsine casu

Scordelis has drawn some interesting conclusions:

I. A change in width-depth ratio (b/h) has an appreciable effect on maximum

values of Mh and T in helicoidal girders, whereas it has little effect on a

horizontal bow girder.

II. For high b/h ratios, the angle of slope of the girder has a relatively small effect

on maximum values of midspan bending and torsional moments.



III. The slope of the girder becomes increasingly important as the b/h ratio

decreases.

He also concluded that cross section with high width to depth ratio should be used in

designing helicoidal girders since they carry the load most efficiently.

Obviousiy, the Scordelis method produces a more realistic analysis than the

Bergman's approach. But this method has got some shortcomings.

Firstly, the helicoidal stair case is a sharply curved member. But the bending and

torsional rigidities are computed assuming the member as straight and it is

concentrated with the longitudinal axis.

Secondly, minimum slab dimension was used by Scordelis to determine the

siffnesses. In the construction of almost all stairs, the steps are cast integrally with the

slab, producing a 'sawtooth profile'. The actually greater average depth of slab due to

presence of the steps must inevitably modify the stiffness in both bending and torsion.

Thirdly, the slab action of helicoidal surface is neglected in this approach, which

necessarily underestimates the capacity of the stair slab.

Fourthly, the elastic line is taken ;;IS the centreline helix of the helicoidal stair slab. But

actually due to skewness of the helicoidal section, the elastic line is likely to move

nearer to the axis of helicoid.

However, in spite of all these shortcomings, the Scordelis method is the more logical

and convenient method for use in analytical design purpose based on hand

computation than other methods.

3.4.2 Morgan's Approach

In Morgan's (1960) approach, the helical stair is analysed with the ends being fixed.

Out of six selected redundants at mid span only two non-zero redundant remain to be

calculated. These two redundants are radial horizontal force (H) and vertical moment
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3.34

3.32

3.33

3.36

3.37

3.35

Top

c •• ,•• -un. 0' Slop.

Fig. 3.4 Plan of stair

Botlam

(M) acting in a tangential plane. Morgan assumed the centreline load to be parallel to,

but not coincident with the centreline of the stair slab and load at any section acts

through a point which is on neither of these lines. This assumption leads to the

following equations valid for any section at an angular distance 8 from the mid span

section (Fig. 3.4):

• Vertical moment:

Mv = Mcos8 + HR2S tana sinS -wRJ2(1- casS)

• Lateral moment:

Mh = MsinS sina - HR2S tana casS sina - HR2 sinS casu +

(wRJ2sinS - wRJRS) sina

• Torsion:

T = (MsinS - HR2S tanacosS +wRJ2sinS +HR2 sinS sina - wR1R2S)casa +

HR2sinSsina

• Thrust:

N = -HsinS casu - wRJS sina

• Lateral Shear:

V = w S casa - HsinS sina

• Radial horizontal shear:

F = HcasS



3.39

3.40
3.41

3.42

3.43
3.44

3.38

wRz 2 (I - C1 cose + Cz e sine + Cz case) I cosu

w R/ (e - C1 sine + Cz e cose)

w R/ tane (e - C1 sine + Cz e cose + Cz sine/sinzu)

C1'w R/lcosu

CzwRzlsinu

=

=

3.4.3 Holme's Approach

where, radius of centreline of load,
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The strain energy theorem was employed to determine the mid span redundant. But

final expressions obtained by him were very lengthy and complicated.

Alan M. C. Holmes (1957) was another pioneerto consider helicoidal stair slab as a

space structure and he analy1ically derived expressions for moments and deflections

of such a structure. Holmes' excellent paper is probably the most comprehensive

treatment of the subject. In a similar approach like Scordelis, Holmes idealised the

structure as a helical girder with both ends fixed. The redundants are selected at the

mid span cross section and as already stated, due to symmetry, all but two

redundants are zero. These two redundants, namely, vertical moment and radial

horizontal shear force remain to be solved. Holmes further assumed that the centre of

gravity of the loads acts along the centre of the stair slab, thus the eccentricity

considered in Scordelis analysis was not considered by Homes. Based on this

assumption Holmes reached the following expressions:

Mh

And M

H

T

Expressions for C1, Cz and C1• were also prescribed by Holmes. These values depend

on various geometric parameters.

Holmes concluded that for a constant uniform load, radius and cross sectional area

mid span deflection of a helical girder decreases with the thickness of the cross

section.

I



In addition, Holmes also reported that for helicoidal slabs with shallow-wide cross

section and greater central angle, the maximum deflection does not occur at mid point.

It should be added further that for a 360 degree helix of shallow-wide cross section,

the deflection of the quarter points can be three times that of the mid point. However,

in that case it was suggested to go for model tests for substantiation of this findings.

Holmes analysis is analytically more accurate than the Bergman approach and also

less conservative. Holmes approach is similar to Scordelis approach. It also utilises

the beneficial structural behaviour of the helicoid.

Holmes study concluded that thinner helicoidal slabs are more efficient due to the

beneficial 'Bent Action'. For shallow-wide cross sections this 'bent action' reduces the

normal and torsional moments. As the member becomes weak about a horizontal-

radial axis, the upper and lower halves tend to 'lean' on each other. The forces set up

by this leaning are carried by each half acting as a canted bent which is relatively stiff

in bending about an axis roughly perpendicular. Thus the slab action of the helicoidal

stair slab was apparent from his studies.

The occurrence of pseudo-fixity at the mid span, as measured by Holmes, was later

substantiated by the finite element analysis also.

3.5 INTRODUCTIONOF INTERMEDIATELANDINGS

Intermediate landings are often used in stair slabs with long vertical elevation. In some

cases code provides regulations on the inclusion of a landing. All the analysis to

incorporate an intermediate landing assumes the helicoidal structures to be spatial.

3.5.1 . Arya and Prakash's Approach

A. S. Arya and Anand Prakash (1973) attempted to analyse the case of the helicoidal

stairs with intermediate landing. They used flexibility approach to analyse internal

forces due to dead and live loads in fixed ended circular stairs having an intermediate

landing. Like Scordeilis, they treated the structure as a linearly elastic member in

space defined by its longitudinal centroidal axis. Influecnce lines were drawn at

various cross sections for all the six stress resultants found at such sections for unit
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vertical load and unit moment about the axis of the structure. Critical positions of loads

were determined to obtain the maximum values of the internal forces. From this

analysis they drew the following conclusions:

i. Torsional moment has the maximum value at the ends for both concentrated and

distributed loads. In order to obtain the maximum value of torsional moments, the

live load should be placed on the outer half of the stair slab throughout the whole

span.

ii. Radial horizontal shear force is maximum either at the ends or at the mid span of

the stair slab in all cases.

iii. Lateral shear force is maximum at the ends for vertical loads and at a cross

section lying in the end quarter span.

iv. The vertical moment is always maximum at the ends and the sagging vertical

moment is maximum at a cross section lying in the central half portion of the stair
slab.

v. The lateral moment is maximum at a cross section lying in the end quarter span

of the stair slab. The nature of bending moment is such that it causes tension

outside near the lower end and tension inside near the upper end of the stair

slab.

vi. The thrust is maximum at a cross section lying in the end quarter span. The

portion near the lower end is subjected to axial compression and the portion near

the upper end to axial tension.

3.5.2 Solanki's Approach

Himat T. Solanki (1986) analysed the problem of intermediate landing using energy

method to find the two unknown redundants at the mid span section. Other

redundants at mid span have zero values because of symmetry of geometry and

loads. H~ gave two equations, the simultaneous solution of which gives the values of

the redundants. Solanki's findings were similar to those observed by Arya and

Prakash. He further commented that this method could be used to analyse the

structure with more than one landing in the stair slab. Moreover, simply supported or

pin jointed helicoids could also be analysed using this method. The method followed in

this study incepts from Solanki's approach.
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3.6 EXPERIMENTAL FINDINGS

Researchers have not only attempted to analyse the helicoidal stair slabs from purely

mathematical point of view, but also conducted extensive model tests to substantiate

the analytical findings. Various materials were used to simulate the helicoidal stair slab

along with half scale models of RCC structures. The conscious and extensive

investigation of a number of researchers has unveiled many interesting and exclusive

information about the behaviours of this complex but attractive structure. The following

articles highlight some of these facts.

Magnel made some experiments on prestressed concrete helicoidal stair slabs but the

results were inconclusive. Young and Scordelis (1960) tested a model helical slab of

plexiglass. Holmes, in his paper mentions the use of models but gave no details.

Mattock has made deflection measurements on a full sized reinforced concrete

helicoidal stair slab under self weight when the formwork was removed. Cusens and

Trirojna (1964) then tested half scale reinforced cement concrete models of helicoidal

stair slab.

Findings of tests by Young and Scordelis, and Cusens and Trirojna are be presented

here in brief.

3.6.1 Findings of Young and Scordelis

Y. F. Young and S. C. Scordelis (1960) made the earliest attempts to construct a

model of the helicoidal slab for experimental purpose. They used plexiglass (a clear

plastic possessing certain model qualities like flexibility and workability) as the material

of the models. They tested four girders having b/h ratios of 1:1, 4: 1, 8:1 and 16:1. The

models were all y." thick with widths of y.", 1"; 2" and 4". All girders had the same helix

angle (inclination with the horizontal) of 30 degree and were of rectangular cross

section with central angle of 180 degree. These models were used to substantiate the

influence lines for end reactions due to vertical load derived from analytical

approaches. There was good agreement between the analytical results and

experimental findings. The following conclusions proved the validity of Scordelis'

earlier theoretical analysis:
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i. For girders with b/h ratio within 1 to 16 and a centreline radius to width between 3

and infinity, sufficiently accurate resuits are obtained by analysing only the elastic

line defined by the longitudinal centroidal axis of the girder, neglecting slab effect.

ii. The bending and torsional stiffnesses can be taken as those defined by for a

straight prismatic member of same cross section.

iii. The influence ordinates across the width of the girder have a linear relationship.

3.6.2 AIT Model Study

A. R. Cusens and Supachai Trirojna (1964) were among the firsts to test reinforced

concrete helicoidal stair slabs to failure. The tests were carried out at the Asian

Institute of Technology, Bangkok.

In total, three models were tested at the AIT, all models constructed to half scale. Two

models having 80 degree central angle were tested under uniform load. The models

were scaled down from a prototype, which was designed for the dining hall project of

Chulalongkorn University, Thailand. Following this study Morgan's method of analysis

were used for analysis and design. However, Bergman, Holmes and Scordelis

methods were also used for comparison purpose between the different approaches .

. The first one of these two models was constructed as per the analysis while in the

second model the reinforcement required for resisting computed lateral moment was

arbitrarily reduced by 50%. Later on, another model having a central angle of .180 .

degree was also tested under concentrated load and uniform load.

Cusens and Trirojna, and later Cusens alone have concluded the following from the

model study for these stairs:

i. The assumption that the cross section of the stair behaves as a beam

concentrated at the centerline is not correct.

ii. The cross-section of the stair slabs had a curved profile under load. In other

words, under uniformly distributed load, there was evidence of slab action in the

stair slab.

iii. Bergman's analysis is extremely conservative. In some cases, load factors as

high as 20 have been achieved.

iv. The torsional moment by Morgan's method is considerably higher.
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3.7 PROPOSAL FOR DESIGN CHARTS

30

3.45M

v. Under ideal construction for a stair slab subtending a small horizontal angle up to

80 degree and designed by elastic analysis of Morgan. Holmes and Scordelis. a

load factor of 5 may be expected. However. in case of 180-degree model. a load

factor of 9.83 was recorded.

vi. The use of ultimate strength design based on an equivalent straight fixed ended

beam gave a simple and safe solution for vertical moment. Since reinforcement

was not found necessary. nominal reinforcement against lateral direction is

recommended.

vii. There was reasonable agreement between the analytical and experimental

strains at design load at mid span of the stair slab. The correlation was not that

good at the top and bottom of the stair slab.

viii. For stairs subtending small angles in plan. the moment about the horizontal axis

is of greater importance than that about the vertical axis; for larger angles.

approaching 180 degree. the reverse is the case. However, failure of the

structure was due to combination of the bending moments in all the cases.

3.7.1 First Attempts of Santathadaporn and Cusens

Morgan and Scordelis have given formulas to find the two unknown redundants at the

mid span section of a helicoidal stair slab, the redundants being horizontal force and

vertical moment.. However both these equations contained a relatively large number

of terms and required tedious computations to determine the design bending moments

and shear. as the design moments and shears were to be found from further

equations. This is why these equations were not as attractive as they should have

been to the practising engineers. Santathadaporn and Cusens (1966) worked further

on helicoidal stair slabs to simplify the design process. They proposed some simple

equations for design purpose with the provision of using coefficients in the equations.

They used computer program to solve those complicated equations and constructed a

series of design charts to provide the values of the coefficients. The simplified

equations had the form:



3.7.2 Reynold's Modification ofthe Design Charts
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• Central half angle ( 30 to 360 degree)

• Slope made by the tangent to the helix centre-line with respect to horizontal

plane (20 to 50 degree)

• The width/depth ratio of the stair section (0.5 to 16 )

• The ratio of the centre-line of the load to the radius of the centre-line of the

steps (1.0 to 1.1 )

The values of a" a2 and a3 are to be taken from the 36 design charts proposed. The

input parameters used to find these coefficients were:

A typical distribution of forces and moments over the span of the stair is shown in the

Fig. 3.5.

C. E. Reynolds and J. C. Steedman (1988) attempted further modifications of the

charts provided by Santathadaporn and Cusens. The analytical approach they chose

was the one made by Morgan and Scordelis. They incorporated CP11 0 to the design
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3.8 FORMATION OF THE STIFFNESS MATRIX

3.48

3.49

3.50

Redundant vertical moment at mid span, M=k! W R2 2

Horizontal redundant force at mid span, H= k2 W R2

Vertical moment at supports, Mysup = k3 W R/

charts of Santathadaporn and Cusens. These typical design charts developed earlier

were recalculated for a ratio of GfE of 0.4 as recornmended in CP 110 and by taking

C to be one half of the St. Vennant value for plain concrete. Four design charts,

covering the range of the most frequentiy met helicoidal stair slabs, were proposed by

Reynolds and Steedman. The coefficients a!, a2 and a3, as suggested by

Santathadaporn and Cusens were restated as k!, k2 and k3• Therefore the final form of

he equations become:

Using these values it must be ensured that the slab is sufficiently thick to resist the

final design moments. Values of other parameters at different points along the stair

slab are found by using Morgan's equations and accordingly a detailed reinforcement

can be designed. The moments were found to vary with horizontal angle from mid

span in a way similar to Fig. 3.5.

After the analytical and experimental approaches proposed by various researchers,

the first known attempt in the numerical analysis of helicoidal stair slabs was made by

Fardis, Skouteropoulou and Bousias (1987). They constructed a full 12 x 12 stiffness

matrix of the helicoidal stair slab in terms of its geometric characteristics. This

formulation allowed the incorporation of the stair as a single element into a 3-

dimensional model of a reinforced concrete building structure for lateral load analysis.

The elements of the stiffness matrix that affect most the lateral stiffness of the

structural system were presented in terms of the geometrical parameters like story

height, axis inclination, central angle on plan, width and depth of the stair slab. For a

given story height, the magnitude of these elements was found to depend strongly on

the depth and central angle of the stair slab. The lateral stiffness of the stair in any

horizontal direction was found almost negligible for central angle between 270 degree

and 360 degree but became quite significant for angles less than 180 degree. The

reduction of stiffness due to axial and shear deformations of the stair was generally



found to be very small. However, apart from these analyses, this study failed to

provide any idea regarding the design forces and moments of this stair slab. The

equations to determine the internal forces suggested in the paper were complicated

and present no interest to the designer.

3.9 THE RECENT FINDINGS AT BUET

3.9.1 The Background

Earlier studies of helicoidal stair slabs indicated the necessity of thorough but

practicable shell solution to get. In one of his discussion papers on helicoidal stair slab,

Gedizli called for the shell solution with reference to Menn's results.

With this end in view the "General Thick Shell Finite Element Program" of Ahmad was

adopted at BUET for investigating helicoidal stairs with a view to developing a rational

procedure for its analysis and design. This thick shell finite element program is quite

general and versatile in nature. It is generalised to a large degree and can handle as

many as five loading conditions. This program is capable of analysing the singly or

doubly curved thick shell structures. It is also valid for moderately thin shells. Because

of its general nature, it requires a large number of data each time when the analysis is

to be performed.

3.9.2 Modak's Works

With a view to making an efficient and automated data feeding process, Modak (1991)

in his graduate research work made modifications in the program to facilitate the

analysis of this structure as a particular case of thick shell problem through an

interactive mode of data entry. However, while making such modifications, provisions

were made to preserve the general nature of the program by feeding data in file mode.

The features of modifications made in the main program by Modak are summarised

below:

• Automatic division of the structures into elements.

• Preparation of a simplified view of the nodal representation of the structure.
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• Automatic generation of nodal co-ordinates.

• Automatic fixation of boundary co-ordinates.

• Automatic determination of adjusted unit weight to handle gravity and uniformly

distributed load at a time as gravity load only.

• Automatic definition of element topology.

• Automatic transformation of global stresses to local stresses.

• Automatic determination of moments and forces.

• Automatic design and comments on whether further revision in design is

necessary or not; if revision is to be done then probable thickness is also

indicated.

Using the modified "Thick Shell Finite Element Program" of Ahmad, the actual

behaviour of the helicoidal stair slabs was ,investigated by Modak. A tentative design

procedure was also suggested. But in this work, some anomalies regarding the

estimation of shear and torsion, obtained from this program, remained unsolved.

3.9.3 Morshed's Modifications

After Modak, Morshed (1993) modified the program to calculate the shear forces and

torsion using Gauss point stresses. This led to the successful elimination of the

anomaly of Modak's results.

3.9.4 Amin's Contributions

However, even after Morshed's modification, there were some anomalies, which

eventually were corrected by Amin (1998) during his graduate research works. Amin

worked on the development of a finite element software to optimise its mesh system

and to assured the applicability of the thick shell element to model the helicoidal stair

slab.

However, Amin's greatest success was to model the deflection behaviour of the

helicoidal stair slab, which no one could do previously. He compared the finite element

deflection behaviour with the experimental findings of previous researchers. The

appearance of a pseudo fixity at mid span for higher central angles, as found by

Holmes, was also established by Amin's study.
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In addition, Amin collected the geometric data of some existing helicoidal stair slabs in

Bangladesh and redesigned them using the finite element technique and helical girder

solution. A comparative study was also made to check the design economy attainable

through the finite element analysis. His study hinted that an economy in reinforcement

may be possible, if designed by the finite element technique. The comparison of

helical girder and finite element solutions for three different prototype stairs were also

presented by Amin in a pictorial way.

Amin also carried out an extensive parametric study of the variables governing the

values of the stress resultants and presented them in his M.Sc.(Engg.) thesis. His

works proved that the finite element method using "General Thick Shell Finite Element

Program" of Ahmad can be used to analyse the helicoidal slab in a rational way. His

studies opened up a gate for a new breed of researchers at BUET to study the

behaviour of helicoidal stair slabs through the finite element methods.

3.9.5 Works of Wadud, Khan and Choudhury

In the light of Amin's work, Z. Wadud (1999); R. A. Khan (2000), and C.F. Choudhury

(2002) carried out further studies at BUET on helicoidal stair slabs without landings.

Wadud, and Khan principally worked on parametric study of the helicodial stair cases

to generalize the behaviour. Finally, Choudhury proposed new design charts on the

basis of finite element results and compared them with Reynold's charts.
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CHAPTER 4

VERIFICATION OF REYNOLDS' COEFFICIENTS

4.1 GENERAL

Among the conventional methods available for helicoidal staircase design, the

helical girder solution produces closest approximation of stress resultants. The

girder approach deals with the three degrees of indeterminacy in the form of three

dimensionless coefficients k], k1. and k3 The traditional helical girder approach

incorporates the evaluation of these three coefficients from Reynolds's design

charts, which are based on design charts proposed by Santathadaporn and

Cusens. This chapter aims at verifying these coefficients using the finite element

methods. The thick shell finite element program developed by Ahmad (1969), and

later modified at various stages at SUET has been used to model the helicoidal

stair slab. The design charts available are discussed in article 3.7.

4.2 THE FINITE ELEMENT ANALYSIS

The finite element program uses Ahmad's thick shell element as the basic element. To

accommodate the modeiing of a helicoidal staircase, it was modified at SUET at

various stages. The program currently in use takes various geometric parameters of

the stair and automatically models the staircase. Stair with only fixed boundary

conditions can be modeled. The FE program takes the following data as its input:

• Inner radius (Ri)

• Outer radius (R,)

• Height of the stair (Ht)

• Total subtended angle on the horizontal projection (213)

• Thickness of the slab (h)
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In addition to the geometric data, load data are to be input as well. For the current

analysis, uniformly distributed live load of 100 psf and concrete unit weight of 150 pet

have been used throughout the analysis.

The program gives the following output:

• Nodal coordinates

• Node and element number, connectivity

• Displacement along centreline, inner edge and outer edge along the span

• Vertical moment along the span

• Lateral moment along the span

• Torsion along the span

• Thrust along the span

• Lateral shear along the span

• Radial Horizontal shear along the span

Depending upon the user requirements, the stair can be divided into different

combination of elements and nodes. For the present study, the stair has been

modeled with 149 nodes and 40 elements. A pictorial representation of the stair

divided into element with node numbers is given in Fig. 4.1.

4.3 METHODOLOGY

The values of selected geometric parameters are entered into the finite element

program. The resultant output files provide different stress resultants. Mid span vertical

moment, mid span radial horizontal shear and support vertical moment values are

recorded. For the given stair, load is separately calculated. The value of mean radius

can also be calculated directly. Thus the stress resultants, wand R are known. Back

calculations provide the values of kl, k2 and k3•

k] = w R2/ MoFE 4.1

k2 = w RI FcFE 4.2

k3 =w R2/ MvsFE 4.3

The subscript FE refers to the stress resultants found from the finite element analysis.

Detail of the method is described in terms of the flow chart in Fig. 4.2.
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4.4 FINDINGS

The results of the finite element analysis are presented pictorially where the finite

element coefficients and the Reynold's coefficients are plotted. Also a linear

regression has been carried out with the data. Figs. 4.3-4.5 represent the individual

regression results between the Reynold's coefficients and Finite Element

coefficients for k" k2 and k3 for a given RdR2 and b/h ratios. Figs. 4.6-4.8 give the

regression curves for k1, k2 and k3 respectively over the entire range of other

variables. Fig. 4.9 is the plot of all the k1, k2 and k3 values, together.

In the regression curve, a correlation value of 1 represents that the variables are

perfectly related. The correlation values have been found above 0.95 for each of k"

k2, k3 and all taken together. A slope of 1.0 and intercept of zero at the x axis is

expected for an exact equality between Reynold's coefficients and Finite Element

coefficients. The slope for k2 has been found to be almost 1. This accompanied by

the fact that the degree of correlation is also above 0.96, indicates that the

Reynolds coefficients have almost the same value as the FE coefficients. The slope

of k1 and k3 regression is not a perfect 1.0. However their correlation is still good

enough. A greater than 1 slope for the k1, indicates that the FE coefficients are

greater than the Reynold's coefficients, whereas, a slope less than 1 for k3 indicates

that the Reynold's coefficients are larger.

While each of kj, k2, or k3 taken together for a wide range giv~s a good correlation,

for individual cases (specific central angle) only k2 gives a good correlation. The

values of kI and k3 for individual case did not show a good relationship. This could

be due to the following reasons:

• The Reynold's method actually does not give exact values

• Statistical errors, like

• The number of data points is smaller for kj and k3, than for k2

• The percent error in picking the value of kj and k3 from the Reynold's

chart is far higher than that for k2, because k1 and k3 have very small

values.
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The regression results for kj and k2, their values being grouped according to central

angles are presented in Figs. 4.10 to 4.12.

In addition to the regression analysis, both the Finite Element coefficients and the

Reynold's coefficients have been plotted on the same graph in the similar form as

Reynold's (Figs 4.13 through 4.24). Although this does not give a mathematical

relation between the two, the plots are convincing that these coefficients conform

each other in many cases, specially for the k2 values.
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CHAPTERS

DESIGN OF RCC HELICOIDAL STAIRS

5.1 INTRODUCTION

Shell structures often only require the minimum reinforcement for temperature and

shrinkage, as specified by the AGI. It has been inferred from past studies at BUET

that the helicoidal slab may also show substantial shell behaviour and may require

only the temperature and shrinkage steel. In this light, a study has been undertaken

to compare the temperature steel requirement and total steel requirement at the

support in a helieadial stair slab. The work has been enhanced further to propose a

design chart to calculate steel directly. It is expected that the use of the charts will

make it easier for the designer to calculate reinforcement for a RGG helicodial stair

slab ..

5.2 METHODOLOGY

A number of prototype stairs have been analysed by the finite element methods to

check if the temperature and shrinkage reinforcements govern or not. A live load of

100 psf has been considered, as most design codes recommend the use of 100 psf

live load. The results of the design process suggest the temperature and shrinkage

reinforcement mayor may not govern at the support.

Focus is then switched to determine the governing force/moment parameter.

Reynold's chart has been used to determine stress resultants and then steel

requirements. It has been found that the lateral moment has a much higher value

as compared to torsion or vertical moment. Because the available moment arm is

much higher to resist the lateral moment, it cannot be readily concluded as to which

type of moment governs the design. However the placement of steel is different for

lateral and vertical moment. While reinforcement for lateral moment is to be placed

concentrated nearer the inner or outer edge, that required for vertical moment is to

be placed throughout the width of stair slab.
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Because the vertical moment is maximum at the support, the steel requirement at

support for vertical moment has been caiculated. Also, the steel required for tension

is placed in the similar manner as that for vertical momen!. To expedite the design

process, an investigation has been taken up to find the total steel requirement at

the suppor!. An Excel worksheet has been prepared in this connection.

Next, the possibility of deveioping a direct design chart to determine the steel area

has been investigated. Accordingly a chart has been proposed.

5.3 THE DESIGN PHILOSOPHY

5.3.1 Slab Thickness:

The charts provided by Santathadaporn and Cusens (1966), and Reynolds (1988)

provide the user with the design forces at different sections. Study reveals that the

critical parameters are vertical moment and thrust at support, lateral moment at the

end quarter span, maximum torsion (critical location varies widely), maximum radial

horizontal shear either at mid span or end quarter span and lateral shear at support.

Because the maximum radial horizontal shear has always been found to be greater

than the maximum lateral shear for all practical cases, only maximum radial

horizontal shear can be considered. Also no shear reinforcement is expected to be

piaced in the slab. Therefore, the radial horizontal shear and torsion requirements

will govern the thickness of the slab. Deflection of the slab should not be neglected

as well. Having determined the slab thickness, the steel area determination comes

into action.

5.3.2 Axial Force and Vertical Moment:

The upper half of a helicodial stair is subject to axial tension. Therefore

reinforcements are to be provided to carry this tension. As concrete is weak in

tension, the entire tensile force is to be taken by the steel. The axial force at

different sections can be found from Eq. 3.35.
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5.1

5.2

5.3

N
0.9.fy

A =,

N = (- kzsin8 cosu - RI8 sinu!Rz)wRz

N=~wRz=>

Here, Sl is a function of k4 and steel yield strength. Because 60,000 psi steel is now

widely used, only this type of steel has been considered. Thus steel yield strength is

eliminated as a variable. And SI becomes a direct function of ~ only. An excel

worksheet has been prepared in order to develop a chart that would give the values

of SI directly, considering all the factors that affect its values. The result of the

calculations is presented in a chart from (Figs. 5.1 & 5.2). As stated before, USD

design method has been followed, and the strength reduction factor is incorporated

within the value of SI. The steel area required for tension can then be directly found

out from the chart, when the unit load wand mean radius Rz is known. Because this

is an empirical equation, the units must be strictly followed. The unit of Rz is ft. Unit

of w could be psf, if steel area per ft width of the stair is to be determined, or it could

be plf is the total steel requirement for the entire cross section is to be determined.

The area of steel is given in in2 or inz/ft, depending on the w value used.

where, 0.9 is the strength reduction factor as suggested by the ACI. Eqs. 5.1 and

5.2 combined together give rise to:

Where ~ is a function of kz, slope of the slab, central angle subtended by the stair

on plan and the ratio RI/R2. Once the axial force is known, the steel area becomes

a function of this force and steel yield strength. Because the entire tension is to be

carried by the reinforcement, concrete crushing strength or cross sectional area of

the slab bears no significance. The USD method proposes that the steel required

for a given tension N can be expressed as

Mid span radial horizontal shear H can be found from the charts provided by

Santathadaporn, Cusens and Reynolds. Substituting the value of H (=kzwRzl in Eq.

3.35,
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5.4

5.5

5.6

A _ My
sVM - 4.15d

AsVM = 52WRl

where,

d = effective depth

a= depth of equivalent rectangular compression zone = AsvMfylO.85f cb

The vertical moment at support as expressed by Reynolds is given in Eq. 3.50. The

steel area required for moment is a function of the vertical moment at support and

therefore a function of wand Rl. The steel area is also a function of steel yield

strength and concrete crushing strength. With 0.9 as the strength reduction factor,

Because Eq. 5.4 cannot be solved at one step, to simplify the derivation of chart,

some assumptions have been necessary. It has been found that for 3,000 psi

concrete and 60,000 psi steel, the term (d-a/2) varies from 0.97d to 0.88d. An

average value of 0.92d has been assumed to simplify Eq. 5.4. Taking strength

reduction factor bo be equal to 0.9 and steel yield strength to be 60,000 psi, Eq. 5.4
becomes

Here, Mv is in k-ft and d in inches. Combining Eqs. 5.5 and 3.50, along with the

simplifications, a formula can be derived as follows:

Where 52 will be a function of k3, concrete crushing strength and steel yield strength

and obviously the effective depth of slab. As seen from the Reynold's charts, k
3
is a

function of R11R2, slope of helix a, central angle and blh ratio.

It has been found that the variation of k3 with blh ratio is not very high. Moreover,

the slab blh ratio is expected to be nearer to 10 than 5 for all practical cases. This is

why only one b/h ratio has been considered and thus, 52 becomes independent of

blh ratio for the present study.



For the reason mentioned previously, only 60,000 psi steel was considered. Taking

the cover for reinforcement to be equal to 1", the effective depth of the slab can be

expressed in terms of slab thickness. Therefore in the end, the coefficient 52

becomes a function of:

I. R]/R2 ratio

II. Slab thickness

. III. Slope of helix centreline, a

IV. Central angle, and

V. Concrete strength

An excel worksheet has been prepared to develop a chart to find the values of 52. In

the worksheet the coefficient 52 has been determined following the USD method as

suggested by the ACI. The strength reduction factor is incorporated within the 52

values. Figs. 5.3 and 5.4 have been initially developed. A closer look suggests that

the effect of slope of the stair slab is very small and can be neglected for all

practical purposes. This reduces the number of variables further by one. Figs. 5.5

and 5.6 are the final forms of the charts: these can be readily used to determine

steel area (in in2), for a given load of wand mean radius of R2. Once again, the

units must be strictly followed. The unit of R2 is ft. Unit of w could be psf, if steel

area per ft width of the stair is to be determined, or it could be plf is the total steel

requirement for the entire cross section is to be determined.

Once 51 and 52 are calculated from the appropriate charts, the total steel

requirement at the support can be expressed as:

This steel has to be compared with the minimum temperature and shrinkage

reinforcement. Whichever is larger, will govern the design. The maximum limit of

reinforcement must also be kept in mind for stairs with larger mean radius or central

angle. In these cases, the steel area from the charts may exceed the ACI code

requirement of 3/4 times the balanced steel ratio. Therefore a check must be made

against this criteria. In case the steel requirement becomes larger, it is suggested to
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opt for a higher thickness, as slabs will not be designed as doubly reinforced Ree

elements.

In addition to these charts, Tables 5.1 and 5.2 are provided. These two tables give

the designer directly the steel area required per ft width of the slab to accommodate

axial force and vertical moment for a live load of 100 psf and concrete unit weight of

150 pcf. Steel yield strength is 60,000 psi, concrete crushing strength 3,000 psi.

The tables have been derived considering the lower limit of temperature and

shrinkage requirement and upper limit of Y, balanced steel ratio.

5.3.3 Lateral Moment:

Having decided on the steel requirement for axial force and vertical moment, now

the steel requirement for the lateral moment should be determined. In keeping with

the previous philosophy, maximum lateral moment can also be expressed as:

5.6

Here, ks is a function of R]/R2, slope of helix a, central angle and bib ratio. A chart

for ks has been proposed in Figs. 5.7 and 5.8. The maximum lateral moment occurs

at the region between support and end quarter span. There the reinforcement is to

be provided up to quarter span from the support. Past the point of quarter span, the

lateral moment distribution can be taken as linear and curtailment can be made

accordingly. For ease of use, the ks values have been determined from the finite

element analysis.

5.4 SUMMARY

The design of the Ree helicoidal stair slab may follow the following steps:

I. To find the geometric parameters: R]/R2, slope of helix a, central angle.

II. To determine the thickness of the slab (h) on the basis of torsion and shear

requirements. These values can be found from Reynold's charts. Deflection

criteria should also be checked.
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Table 5.1: Steel area (sq. in.) recommended per ft width 01slab (USD)

Steel yield strength 60 ksi, concrete crushing strength 3 ksi

Live load 100 psI, concrete unit weight 150 pcl, R1/R2 = 1.00
Thicker slab recommended lor the shaded values

I rta ICS indicate temperature & shrinkage qoverns

Slope Central R2= 60" R2= 90"
anqle 6" slab 8" slab 10" slab 12" slab 6" slab 8" slab 10" slab 12" slab

20 135 0.1296 0.1728 0.216 0.2592 0.15844 0.1728 0.216 0.2592
20 180 0.1296 0.1728 0.216 0.2592 0.23145 0.21127 0.216 0.2592
20 225 0.15982 0.1728 0.216 0.2592 0.31075 0.27658 0.26223 0.2592
20 270 0.2585 0.22623 0.216 0.2592 0.5298 0.45165 0.41316 0.39269
20 315 0.42225 0.35757 0.3252 0.30751

it>' _,.,::r-
0.74225 0.6634 0.6176.8938.

20 360
!,/ "f ':0};i)'

0.58737 0.52246 0.48424 ~4065'JY<;+" ld~1~,
1.10296 1.010590;l:11104 /1:25541

25 135 0.1296 0.1728 0.216 0.2592 0.15256 0.1728 0.216 0.2592
25 180 0.1296 0.1728 0.216 0.2592 0.22213 0.20094 0.216 0.2592
25 225 0.15389 0.1728 0.216 0.2592 0.30185 0.266l3 0.25143 0.2592
25 270 0.25242 0.21949 0.216 0.2592 0.52067 0.44155 0.40208 0.38064
25 0.41406 0.31525

f\TTJ:v$:"" 10,,/

0.64847 0.60135315 0.34849 0.29669 ,",0:8816 0.72864
I ,'-:--'n, 0:n:J;;JkH"""'i'I+k l]ihT!240:t425 3601,,0.70196 0.57732 0.51143 0.47225 ,1;1'52643 1.08643 0.9926

30 135 0.1296 0.1728 0.216 0.2592 0.1476 0.1728 0.216 0.2592
30 180 0.1296 0.1728 0.216 0.2592 0.21717 0.19545 0.216 0.2592
30 225 0.15164 0.1728 0.216 0.2592 0.29849 0.263 0.24735 0.2592
30 270 0.24913 0.21585 0.216 0.2592 0.51574 0.43609 0.39609 0.37412

1'(",-"-..,, ,".-

30 315 0.41014 0.34416 0.3105
0.2915~lf~~~

0.72214 0.64135 0.5936
30 360 1~l>f69674 0.57155 0.5051 0.46536 1,,5186 1',1,23167 1.07693 0.98227
35 135 0.1296 0.1728 0.216 0.2592 0.14533 0.1728 0.216 0.2592
35 180 0.1296 0.1728 0.216 0.2592 0.21396 0.1919 0.216 0.2592
35 225 0.14996 0.1728 0.216 0.2592 0.29597 0.26022 0.24429 0.2592
35 270 0.24777 0.21435 0.216 0.2592 0.5137 0.43383 0.39362 0.37143
35 315 0.40797 0.34175 0.30786 0.2886411tO.87237 0.71853 0.63739 0.58929
35 360 1.0:69443 0.56899 0.50229 0,46231Il'r51514 ~.T7'! "/'''~:'' 1.07272 0.977691.22786
40 135 0.1296 0.1728 0.216 0.2592 0.14318 0.1728 0.216 0.2592
40 180 0.1296 0.1728 0.216 0.2592 0.21237 0.19014 0.216 0.2592
40 225 0.1495 0.1728 0.216 0.2592 0.29527 0.25944 0.24344 0.2592
40 270 0.24929 0.21603 0.216 0.2592 0.51598 0.43635 0.39638 0.37444
40 315 0.40906 0.34297 0.30918 0.29009 1ml'7401 0.72064 0.63938 0.59146

l~lO.69433 0.46218111~51499
":I'!/>~'ryc;.~

1.07254 0.977540 360 0.56888 0.50218 -'T1:22l68



Table 5.1 (contd): Steel area (sq. in.) recommended per ft width of slab (USD)

Steel yield strength 60 kSi, concrete crushing strength 3 ksi

Live load 100 psf, concrete unit weight 150 pcf, R1/R2 = 1.00

Thicker slab recommended for the shaded values

Itaiics indicate temoerature & shrinkaae ( overns

Slope Central R2=120" R2=150"

anale 6" slab 8" siab 10" slab 12" slab 6" slab 8" slab 10" slab 12" slab
20 135 0.25072 0.2276 0.21916 0.2592 0.36272 0.32349 0.30721 0.30137
20 180 0.37174 0.3316 0.31497 0.30902 0.54359 0.4769 0.44692 0.43364
20 225 0.50903 0.44364 0.4135 0.39938 0.75466 0.64814 0.59669 0.57028
20 270 I 0.8958 0.75194 0.67859 0.63728 1.35649 1.12711 1.00788 0.93871
20 315 1.53897 1.26419 1.11867 1.03189 2.35774 1.9234 1.69101 1.55041.... -

2.63174120 360 2.68473 2.17302 1.89632 1.72643 4.14507 3.34021 2.90252
25 135 0.24287 0.21891 0.216 0.2592 0.35291 0.31264 0.29531 0.28842
25 180 0.3593 0.31784 0.29987 0.29259 0.52804 0.45969 0.42805 0.41311
25 225 0.49717 0.43051 0.3991 0.38371 ' 0.73984 0.63172 0.57869 0.55069
25 270 1 0.88363 0.73847 0.66382 0.62121 1.34128 1.11027 0.98941 0.91863
25 315 1.52257 1.24604 1.09877 1.01024 ; 2.33725 1.90071 1.66613 1.52334
25 360 2.66657 2.15292 1.87428 1.70244 4.12237 3.31508 2.87497 2.60177
30 135 0.23626 0.21159 0.216 0.2592 0.34464 0.30349 0.28528 0.2775
30 180 0.35269 0.31052 0.29184 0.28385 0.51977 0.45054 0.41802 0.40219

..

30 225 0.49268 0.42554 0.39365 0.37779 0.73423 0.62552 0.57189 0.54329... ...

30 270 0.87705 0.73119 0.65583 0.61252 1.33306 1.10117 0.97943 0.90777
30 315 1.51474 1.23738 1.08927 0.9999 i 2.32746 1.88988 1.65425 1.51042.

30 360 2.65613 2.14137 1.8616 1.68866 4.10932 3.30064 2.85913 2.58453
35 135 0.23324 0.20825 0.216 0.2592 0.34087 0.29931 0.28069 0.27251
35 180 0.34841 0.30578 0.28665 0.2782 0.51442 0.44462 0.41153 0.39513

..

35 225 0.48932 0.42183 0.38958 0.37335 ' 0.73003 0.62087 0.56679 0.53774
35 270 0.87433 0.72818 0.65254 0.60893 I 1.32966 1.09741 0.97531 0.90328.

i 2.32202
. .

35 315 11.51039 1.23256 1.08398 0.99415 1.88386 1.64765 1.50324
35 360 2.65151 2.13625 1.85599 1.68255 4.10354 3.29424 2.85212 2.5769
40 135 0.23037 0.20508 0.216 0.2592 0.33729 0.29534 0.27634 0.26778
40 180 0.34629 0.30343 0.28408 0.2754 0.51177 0.44168 0.40831 0.39163
40 225 0.48839 0.42079 0.38844 0.37211 I 0.72886 0.61958 0.56537 0.5362

" .

'1.33346
- -_.

40 270 0.87737 0.73155 0.65622 0.61294 1.10161 0.97992 0.90829.... .. .. ,

40 3151 1.51258 1.23499 1.08664 0.99705 " 2.32476 1.88689 1.65097 1.50685
40 360112.65132 2.13604 1.85576 1.6823 ," 4.1033 3.29397 2.85183 2.57659



Table 5.2: Steel area (sq. in.) recommended per It width 01slab (USD)

Steel yield strength 60 ksi, concrete crushing strength 3 ksi

Live load 100 psI, concrete unit weight 150 pel, R1/R2 = 1.10
Thicker slab recommended lor the shaded values

Italics indicate temperature & shrinkaoe aoverns

Slope Central R2= 60" R2= 90"
anale 6" slab 8" slab 10" slab 12" slab 6" slab 8" slab 10" slab 12" slab

20 135 0.1296 0.1728 0.216 0.2592 0.19876 0.1835 0.216 0.2592
20 180 0.1296 0.1728 0.216 0.2592 0.26448 0.2422 0.2348 0.2592
20 225 0.20184 0.18348 0.216 0.2592 0.39747 0.3501 0.32917 0.32025
20 270 0.30014 0.26233 0.24509 0.2592 0.61593 0.52452 0.47938 0.45527
20 315 0.4994 0.42175 0.38265 0.36108 11.05983 0.87829 0.7835 0.72814
20 360 0.79928 0.66009 0.58699 0.54393 ! 1.73161 1.41129 1.23967' 1.13566
25 135 0.1296 0.1728 0.216 0.2592 0.19098 0.17489 0.216 0.2592
25 180 0.13357 0.1728 0.216 0.2592 0.25362 0.23019 0.22162 0.2592
25 225 0.19457 0.17543 0.216 0.2592 0.38655 0.33802 0.31592 0.30584
25 270 0.29214 0.25348 0.23539 0.2592 0.60393 0.51125 0.46483 0.43943
25 315 0.48977 0.41109 0.37096 0.34835 1 1.04538 0.8623 0.76596 0.70905. _.

! 1.71659
....,- -

25 360 0.78927 0.64901 0.57484 0.53071 1.39466 1.22144 1.11582
30 135 0.1296 0.1728 0.216 0.2592 0.18492 0.1728 0.216 0.2592
30 180 0.1296 0.1728 0.216 0.2592 0.24637 0.22216 0.216 0.2592
30 225 0.19104 0.1728 0.216 0.2592 0.38126 0.33216 0.30949 0.29885
30 270 0.28842 0.24936 0.23087 0.2592 0.59835 0.50507 0.45805 0.43206
30 315 0.48517 0.406 0.36538 0.342281 1.03849 0.85467 0.75759 0.69995_ ...

0.52293 i 1.70775
-_. - ....

30 360 0.78338 0.64249 0.56769 1.38488 1.21072 1.10415
35 135 0.1296 0.1728 0.216 0.2592 0.18089 0.1728 0.216 0.2592
35 180 0.1296 0.1728 0.216 0.2592 0.24214 0.21748 0.216 0.2592
35 225 0.18862 0.1728 0.216 0.2592 0.37762 0.32814 0.30508 0.29405
35 270 0.28642 0.24715 0.22844 0.2592 0.59535 0.50175 0.45441 0.4281
35 315 0.48191 0.40239 0.36142 0.33798 i

1.0336 0.84926 0.75166 0.6935
35 360 1 0.78043 0.63922 0.56411 0.51903 1.70332 1.37998 1.20535 1.09831
40 135 0.1296 0.1728 0.216 0.2592 0.17809 0.1728 0.216 0.2592
40 180 0.1296 0.1728 0.216 0.2592 0.23959 0.21466 0.216 0.2592
40 225 0.18811 0.1728 0.216 0.2592 0.37686 0.32729 0.30416 0.29304
40 270 0.28791 0.2488 0.23025 0.2592 0.59759 0.50422 0.45712 0.43105
40 315 0.48298 0.40358 0.36272 0.33939 1.03521 0.85103 0.75361 0.69562...

40 360 0.7801 0.63886 0.56371 0.5186 1.70283 1.37944 1.20475 1.09766

c



Table 5.2 (contd): Steel area (sq. in.) recommended per ft width of slab (USD)

Steel yield strength 60 ksi, concrete crushing strength 3 ksi

Live load 100 psf, concrete unit weight 150 pcf, R1/R2 = 1.10

Thicker slab recommended for the shaded values

& h' kI r . d' tta ICSIn Ica e temperature s nn ape l overns

Slope Central R2=120" R2=150"

anole 6" slab 8" slab 10" slab 12" slab 6" slab 8" slab 10" slab 12" slab

20 135 0.31631 0.28522 0.27323 0.26992 0.4595 0.40722 0.38477 0.37589
20 180 0.42366 0.37909 0.36096 0.35485 0.61836 0.54406 0.51107 0.49685
20 225 ' 0.65622 0.56663 0.52403 0.5028 i 0.97811 0.83307 0.76146 0.72324, . .

20 270 I 1.0422 0.87406 0.78817 0.73967 1.57895 1.31095 1.17146 1.09039
1 1.82742

...

20 315 1.49862 1.32404 1.21955 2.80216 2.28272 2.00425 1.83531•..

2.95861120 360 3.01905 2.44325 2.13181 1.94055 4..66161 3.75597 3.26341
25 135 0.30594 0.27374 0.26064 0.2592 0.44654 0.39287 0.36904 0.35877
25 180 0.40918 0.36307 0.34339 0.33573 0.60026 0.52403 0.4891 0.47295
25 225 0.64167 0.55052 0.50637 0.48358 ! '0.95992 0.81294 0.73939 0.69922
25 270; 1.02621 0.85636 0.76876 0.71855 1.55897 1.28883 1.1472 1.06399

3151 1.80815
. .. .

25 1.47729 1.30065 1.19411 2.77807 2.25606 1.97502 1.80351
--- _ ..

25 360 2.99903 2.42108 2.10751 1.9141 4.63658 3.72827 ...3.23303 2.92556
30 135 0.29786 0.2648 0.25084 0.2592 0.43644 0.38169 0.35678 0.34543
30 180 0.39952 0.35237 0.33166 0.32297 0.58818 0.51066 0.47444 0.457
30 225 0.63461 0.5427 0.4978 0.47426 I 0.95109 0.80317 0.72868 0.68757. ---- ..

30 270 1.01876 0.84812 0.75973 0.70872 1.54966 1.27852 1.1359 1.0517-- .. .

30 315 1.79896 1.46712 1.28949 1.18197 2.76658 2.24335 1.96108 1.78833..•

30 360 2.98724 2.40804 2.09321 1.89854 4.62185 3.71196 3.21515 2.90611
35 135 0.29249 0.25886 0.24432 0.2592 0.42973 0.37427 0.34864 0.33657
35 180 0.39388 0.34613 0.32482 0.31552 0.58113 0.50286 0.46589 0.4477-- .
35 225 0.62976 0.53734 0.49192 0.46786 0.94504 0.79646 0.72133 0.67957- ._-

35 270 1.01477 0.8437 0.75488 0.70344 1.54466 1.27299 1.12984 1.0451. .- - - - .
35 315 1.79244 1.4599 1.28158 1.17336' 2.75844 2.23433 1.95119 1.77758...

35 360 2.98134 2.40151 2.08604 .1.89075 4.61448 3.7038 3.2062 2.89636
40 135 0.28875 0.25472 0.23979 0.2592 0.42506 0.3691 0.34297 0.3304
40 180 0.39048 0.34237 0.32069 0.31103 0.57688 0.49815 0.46073 0.44208
40 225 I 0.62875 0.53622 0.49069 0.46652 0.94377 0.79506 0.71978 0.67789

-- ----

40 270 • 1.01775 0.84699 0.75849 0.70738 1.54839 1.27712 1.13436 1.05002

1.28418' 12.76111
_. --

40 315 1.79458 1.46227 1.17619 2.23729 1.95444 1.78111..

40 360 2.98069 2.40078 2.08525 1.88988 4.61366 3.70289 3.2052 2.89528
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III. To find the distributed steel required across the width of the stair at the

support from Figs. 5.1, 5.2, 5.5 & 5.6 and to check with upper and lower

limits of steel as specified by the code. Or, for 100 psf live load Tables 5.1

and 5.2 can be used directly. The charts and tables have been derived for

60,000 psi steel and 3,000 psi concrete.

IV. The maximum lateral moment can be found by using Figs. 5.7 and 5.8.

Steel is to be provided at the end quarter span region to take care of this

moment. After, that the lateral moment can be assumed to be linearly

varying to zero at the mid span.

A qualitative reinforcement layout for a helicoidal stair slab is given in Fig. 5.9.

46



Fig. 5.9 Qualitative reinforcement details in a helicoidal stair slab
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6.1 INTRODUCTION

CHAPTER 6
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6.6

6.1

6.2

6.3

6.4
6.5

o ~ 8'~P
P ~8' ~ P +2~
P+2~:;;8' :;;2(P+~)

Hta I= tan -I

R 2p

y=Rsin8'

z=8'Rtanu'

z= pRtan u'

z = (8'-;!~) R tan u'

INCORPORATION OF INTERMEDIATE LANDING

The complex geometry of a regular helicoidal stair slab has made the analysis quite

difficult. The introduction of an intermediate landing further complicates the

situation. However, the addition of an intermediate landing is often desired specially

because of functional reasons. In this chapter, the analysis of the helicoidal stair

with an intermediate landing has been carried out following the method proposed by

Solanki (1986). In the end. a simple procedure to analyse a fixed ended helicoidal

slab with landing at the mid span has been proposed.

6.2 GEOMETRY OF THE HELICOIDAL SLAB WITH INTERMEDIATE

LANDING

where.

The geometry of a circular helicoidal stair slab with an intermediate landing can be

defined as follows:

The mid surface coordinates can be expressed as:

x=Rcos8'

a' = slope made by tangent helix with a radius R with respect to horizontal plane

Ht = height of stair, from one support to another

p = Angle subtended in the centre measured on plan by half the flight



where,

8' = angle subtended at the centre measured on plan from the bottom support

~ = angle subtended at the centre measured on plan by half the landing

6.3 ANALYSIS

6.3.1 Assumptions:

To facilitate the analysis procedure, the following assumptions have been made during

the analysis:

1. Deformation due to shear and direct forces, being small in comparison to the

deformations caused by twisting and bending moments, are neglected.

2. The cross section is symmetric about the two principal axis of the section.

3. The angle subtended at centre by the landing is small compared to the total angle

subtended by the stair at the centre.

4. The moment of inertia of the helicoidal slab section with respect to a horizontal

radial axis is negligible as compared to the moment of inertia with respect to the

axis perpendicular to it.

6.3.2 Stress Resultants in the Helicoidal Stair with Intermediate Landings

The analysis method followed in this chapter incepts from Solanki's approach.

However, to ensure a correct analysis, instead of starting from where Solanki had

stopped, efforts have been made to start from the same point where Solanki had

started. Strain energy method has then been applied to find the mid span redundants.

In the end, using these equations a simplified method has been proposed following

the Santathadaporn and Cussen's (1966) approach.

Because of symmetry in geometry and loading, four of the six redundants at the mid

span of a helicoidal stair slab with intermediate landing, becomes zero. Only two,

vertical moment M and radial horizontal shear H remain to be calculated (Figs. 6.1 &

6.2).
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Fig. 6.1 Plan of a Helicoidal Staircase with Intermediate Landing

Fig. 6.2: Mid Span Redundant Moment, Horizontal Force and Other Resultants
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6.9

6.8

6.7
• Vertical Moment:

Mv = Mcos'¥ - wR]2(l-coS'¥)
• Lateral Moment:

Mh = -HRzsin'¥

• Torsion:

where,

\II = angle subtended in plan measured from mid point of landing (O:S;\II:S;~)

For the flight the moments and other forces were assumed to follow Morgans (1960)

derivations (Eqs. 3.32 to 3.37)

It should be mentioned that these equations are valid when the angle subtended by

the landing at the centre (~) is small as compared to angle subtended at the centre by

the whole stair plus the landing. It should be also be noted that the equations for the

landing are nothing but the expressions for the flight, with the slope of the helix (a) put

to zero.

Solanki assumed that at the landing level the bending and torsional moments along

the upper half of the stair slab to.be:

6.3.3 The Strain Energy Method

If a force is gradually applied to a body, there will essentially be only static

deformation and displacement of the body. In such cases, due to deformation of the

body, the work done by the force is stored up in the body as a particular form of

potential energy, known as the strain energy.

The widely used Castigliano's Second theorem states that in any structure the

material of which is elastic and follows Hooke's law and in which the temperature is

constant and the supports are unyielding, the first partial derivative of the strain

energy with respect to any particular force is equal to the displacement of the point



where U is the strain energy, P is the force, and i5 is the deflection in the direction of

force.

of application of that force in the direction of its line of action. Mathematically

expressing,

6.10

6.11

6.12
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6.13

6.14

~= (5ap

au = 0
aM

au = 0
aH

U=If~L
2EI

u = l: f-SL
2GJ

And that by the twisting moment is:

The strain energy due to shear stress and axial force is neglected, because they

are small. The strain energy stored by the bending moment is given by:

Where, E, 1, G, J all bear their usual meanings in mechanics of solids.

6.3.4 The Strain Energy Method Applied to the Helicoidal Stair Slabs

The strain energy method has previously been successfully employed by Morgan

and Holmes to analyse helicodial stair slabs. Because of symmetry in loading and

geometry, in a helicodial stair slab with a landing at the middle, the slope at the

midspan is zero and so is the horizontal deflection. This is why, according to the

Castiglia no's second theorem, the partial derivatives of the strain energy function

with respect the vertical moment (M) and radial horizontal force (H) is equal to zero.

That is,

And,
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The strain energy function U, is given by,

6.16

6.17

6.19

6.20

6.21

2 Ell h

I + I h

I-",,0
I h

GJ=

EI =-.!.[~+I]""!.
GJ 2 Ih 2

ds= Rz de

1M' 1M' IT' ~M2 ~M2 ~T2
U = I~s+ I h ds + I~s + I 'ds + I~s+ I--ds 6.15

o 2EI o2EIh o2GJ o2EIh o2EI o2GJ

ds= Rz seca de

Where, for the landing

8U = j2M,. 8M, .ds+ j2Mh• 8Mh .ds+ j 2T . 8T .ds+ flM,. 8M, .ds+
8H 0 2EI 8H o2EIh 8H o2GJ 8H 0 2EI 8H

flMh• 8Mh .ds+ j 2T . 8T .ds 6.18
o2Elh 8H 0 2GJ 8H

and, for the flight

The partial derivative of the strain energy function with respect to His,

8U I 8M 11 aT ~ 8M lP aT
- = fM ._v .ds+ - fT.-.ds + fM ._V .ds+ - fT.-.ds = 0 6.22
8H 0 v 8H 20 8H 0 v 8H 20 8H

Because the stair width is large as compared to its thickness, the moment of inertia

with respect to a vertical axis h is much greater than the moment of inertia about

the horizontal axis I. The ratio I/h can therefore be neglected, i.e.,

As per Solanki, the torsional rigidity can be taken as:

Then,

Eq. 6.14 can be rewritten with the help of Eqs. 6.18, 6.19 and 6.21 as:



6.23

6.24

6.25

Similarly Eq. 6.13 stands as:

au' aM ]lOT p aM POTrt:1\= fM .-Y .ds+- fT.-.ds+ fMy.-v .ds+- fT.-.ds = 0
~ 0 v aM 20 aM 0 aM 20 aM
Eqs. 6.22 and 6.23 expands to:
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MR/tanaseca.A + HR/tanZaseca.B - wR]zR/tanaseca.(C-A) + 12[MR/sina(D-

A) + HRz3sinzaseca (D-2A+E) + wR]zR/sina.(D-A) - wR]Rz3sina.(C-F)] = 0

:::}M [tanaseca.A + 12sina.(D-A)] + HRz [tanZaseca.B + 12sin1aseca (D-2A+E)]

- wR]2[tanaseca.(C-A) - 12sina.(D-A) + 12R2sina.(C-F)/R]] = 0

and

MR2seca.G] + HR/tanaseca.A - wR]lRzseca(H]-G]) + 12[MR1cosaD +

HRlsina(D-A) + wR]lR1cosa.D - wR]Rlcosa.C] + [MR1.G' - wR]lR1(H'- G')] +

12[MR1. D' +WR]lR1. D' -wR]Rl.c'] = 0

:::} M [seca.G] + 12 cosaD + G' + 12D'] + HR1 [tanaseca.A + 12 sina(D-A)] _

wR]l[seca(H]-G]) - 12cosaD + 12R1cosa.C/R]+ H' - G' - 12D' + 12R1C'/R]] = 0

where,

A = (1/8)sin2~ - (1I4)~cos2~

B = ~3/6 - (~114-118) sin2~ - (114) ~cos2~

C = sin~ - ~cos~

C' = sin~ - ~cos~

D = (112) ~ - (1I4)sin2~
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•

6.26

6.27

M= A4B, -A,B, wR' =k wR'
, , 2

A,B, -A,B,

6.4 SUGGESTION FOR A CHART

The simultaneous solution of Eqs. 6.24 and 6.25 yields the values of M and H, mid

span redundant moment and radial horizontal force:

D' = (1/2) </>- (1/4)sin2</>

E = 133/6+ (132/4 -1/8) sin213 + (1/4) I3cos213

F = 213cos13+ (132- 2)sinl3

Gj = (1/2) 13+ (1/4)sin213

G' = (1/2) </>+ (1/4)sin2</>

Hj = sinl3

W= sin</>

AI, A2, A3, A4, BI, B2, B3, B4 are constants, their value being evident from Eqs.

6.24 and 6.25.

Once M and H are determined from Eqs. 6.26 and 6.27, Eqs. 6.7 to 6.9 and 3.32

through 3.37 can be used to determine the six stress resultants at any section of the

helicoidal stair slab. However, the derivation of Eqs. 6.26 and 6.27 requires tedious

mathematical computations. To facilitate the design procedure a series of design

charts have been proposed here (Charts 6.1 to 6.21). These charts provide the

values of kj and k2 for a wide range of parameters:

• Total central angle subtended by the stair (range 135 degree to 360 degree)

• Slope of the tangent helix centre line with respect to the horizontal plane, ex. (20
degree to 40 degree)

• Ratio of radius of the centre line of load to the mean radius of the stair, Rj/R2
(1.01 to 1.10)

• Total angle subtended by the landing (10 degree to 70 degree)
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The vertical moment at the support often becomes the most critical design force.

Another factor k3 has been introduced in order to expedite the design process,

where,

6.28

The factor k3 has also been depicted in the proposed design charts.

6.5 VARIATION OF STRESS RESULTANTS ALONG THE SPAN

Figs. 6.3 through 6.6 are presented to depict the variation of the stress resultants

for two different stairs. The mid span radial horizontal force and vertical moment

have been found using the charts and the rest are calculated using Morgan's

equations.
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CHAPTER 7

EFFECTS OF LANDING

7.1 INTRODUCTION

The critical design forces in the helical structure depend upon the geometric

parameters of the stair slab and, of course the loading conditions. It is obvious that

the design forces and moments are critical at different locations for different types

of forces and moments. The critical locations also depend upon the geometric

parameters.

During the past few years, a detailed study on helicoidal stair slabs without landings

has been carried out at SUET with a view to generalize their behaviour. The

variation of the design forces and moments with respect to various geometric

parameters has been studied. Also, the critical locations for different stress

resultants have been determined. It is known from the earlier studies that, for

helicoidal stair slabs with no landings:

• Maximum vertical moment occurs at or near the support, depending on the

central angle

• Maximum lateral moment occurs at or near the support, depending on the

central angle

• Location of maximum torsion varies greatly with the central angle

• Maximum thrust occurs at or near the support, being dependent upon the

central angle

• Maximum radial horizontal shear occurs at midspan

• Maximum lateral shear occurs at the support .

While all these features are expected to show up in a helicoidal stair with an

intermediate landing, the exact effect of the landing length has not yet been

characterized. To understand the effect of landing on the behaviour of the helicoidal

stair slab a study with a limited scope has been taken up.
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7.2 THE PARAMETERS

7.3 EFFECT ON FORCES AND MOMENTS

-')

'.;'

Stair 1 Stair 2

180 270

60 inches 60 inches

120 inches 150 inches

120 inches 135 inches

100 psf 100 psf

20-60 degrees 20-60 degrees
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I. Total angle subtended by the whole stair slab (8f)

II. Slope of the helicodial slab with respect to horizontal plane (ex)

III. Landing length, expressed as the angle subtended at the centre (2~)

IV. Ratio of the radius of centreline of loading to the mean radius (Rj/R2)

V. Mean radius (R2)

Table 7.1: Geometric parameters of the two stairs

Parameter

Central angle

Inner radius

Outer radius

Height

Uniformly distributed surface live load

Variation of landing angle

The variation of the stress resultants with respect to the mean radius is clearly

evident through the 2nd degree equation for mid span redundant moment (M =

kjwRl) and 1st degree equation for the mid span horizontal shear force (H =

k2WR2). The effect of central angle, slope of the slab and the ratio Rj/R2 has been

extensively studied before in one form or other during the study of helicoidal stairs

without landings and are expected to be valid for stairs with landing as well. Also

the charts provide an idea as to the variation of the design forces with respect to

these parameters. Emphasis will be placed here on the effect of the landing length

on the force and moment values.

The parameters which have significant impact on the stress resultants are:

Figs. 7.1 through 7.12 depict the effect of the landing length on design forces for

two stairs with 180 degrees and 270 degrees central angles. The geometric

dimensions and loading of the stairs are given in Table 7.1. The results from the

two stairs are summarized in the following paragraphs:



Vertical Moment (Figs. 7.1 & 7.2)

The effect of landing is more prominent for stairs with a lower central angle. This is

expected, because for a given fixed length of the landing, the smaller the total

central angle, the larger the ratio of landing to the flight, and more dominant will be

the action of the landing.

The values of the maximum vertical moment show some change, specially for

longer spans. The location of maximum vertical moment remains unchanged. The

variation of vertical moment around the landing section however is significantly

affected. As expected, the moment in the landing is higher for a larger landing

length.

The vertical moment diagram of the landing section is interesting. It shows that the

landing section acts as a slab supported at two ends.

Lateral Moment (Figs. 7.3 & 7.4)

The effect of the landing is moderate. However, the lateral moment remains

unaffected due to the presence of the landing, even at the landing region. It is seen

that the presence of a larger landing reduces the overall lateral moment, to a small

extent.

Torsion (Figs. 7.5 & 7.6)

The effect of the landing has been most prominent in torsion. A longer landing

results in a higher torsion. A landing angle as small as 20 degrees has almost no

effect on the variation of torsion 'in the landing region.

Thrust (Figs. 7.7 & 7.8)

The effect of landing is small. Near the landing region some effect can be observed.

For a smaller landing angle, the local effect is virtually nil. A longer landing

produces a slightly smaller thrust.
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Lateral Shear (Figs. 7.9 & 7.10)

There is absolutely no effect of the landing on the flight section. The lateral shear

diagram at the landing level shows that the landing section acts as a pure slab

supported at the ends by the flights.

Radial Horizontal Shear (Figs. 7.11 & 7.12)

The effect of the landing is not at all evident locally in the landing section. However,

the radial horizontal shear is much reduced due the presence of a larger landing.

This reduction is more prominent in the stair with smaller total central angle.

7.4 DEFLECTION COMPARISON

The serviceability criteria of deflection may be an important parameter while

designing a helicoidal stair. The thickness of the stair, specially for stairs with higher

mean radius and central angle higher than around 200 degrees may be governed

by the maximum deflection. This calls for the determination of deflection of the

helicodial stair, specially with an intermediate landing.

In order to determine the deflection, finite element approach has been employed.

The computer program developed by Amin, which uses the Ahmad's thick shell

finite element program, has been modified to calculate the deflections specifically,

for only one case of landing length, 0.2 times the span on plan. The total angle, i.e.,

span can be varied, but the landing will also vary proportionally. The details of the

modifications in the finite element program are not presented here as they bear no

consequence.

The comparison of deflection of helicoidal stairs with and without landing shows that

the stairs with landings deflect more than those without landings. The comparative

deflection profile is depicted in Figs 7.13 through 7.18. The effect of thickness on

the deflection profile is presented in Figs. 7.19 to 7.24. Fig. 7.25 provides the

deflection pattern for stairs with different central angles.
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Fig. 7.13: Deflection pattern of helicoidal stair slab with and without landing (135 deg)
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Fig. 7.15: Deflection pattern of helicoidal stair slab with and without landing (225 deg)
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Fig. 7.25 Deflection pattern of helicoidal stair slab with an intermediate landing
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Because the helicoidal stairs with landing undergo appreciable deflection, the

thickness of the slab may be governed from limiting deflection criteria.

7.5 FINDINGS

Based on the behaviour of the helicoidal stair slab under varying landing length

(Figs. 7.1 through 7.12) following conclusions have been drawn. Some of these

observations contradict and many consolidate the conclusions by Arya and Prakash

(1973) and Solanki (1973).

I. Both, Arya and Prakash, and Solanki concluded that torsional moment has

the maximum value at the support. The present study concludes that torsion

may have maximum value at or nearer the support. The critical location

depends on the geometric parameters. The effect of central angle is most

prominent.

II. The vertical bending moment is maximum at the support. However, for a

stair with smaller total central angle and larger landing, the vertical moment

at the landing level is appreciably high.

III. Maximum lateral moment occurs at the end quarter span. This supports the

findings by Arya and Prakash, and Solanki.

IV. Radial horizontal shear force is maximum either at the supports or at the

mid span depending on the geometric parameters, central angle being the

dominant factor.

V. The thrust is maximum at a section lying at the end quarter span. The lower

portion of the stair is in compression and upper portion is subject to tension.

VI. Lateral shear is maximum always at the ends.

VII. Maximum values of vertical moment increase, and lateral moment, thrust

and radial horizontal shear decrease with the increase of the landing length.

Landing length has virtually no effect on the lateral shear distribution.
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VIII. The effect of landing is most prominent on torsion. Torsion increases

appreciably with the increase in landing length.

IX. Local effect of landing is quite important, specially in the case of vertical

moment, lateral shear and torsion.
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CHAPTERS

CONCLUSION

8.1 GENERAL

Helicoidal stair slabs are now being increasingly used throughout the world. This

thesis looks into a number of aspects regarding the helicoidal stair slabs. These

include:

• Verification of the Reynold's coefficients

• Investigation into the possibilities of temperature and shrinkage steel

requirement governing the design

• Determination of the stress resultants in a helicoidal stair slab with intermediate

landing

• Suggestion for a design chart for the design of helicoidal stair slab with

intermediate landing

• Study on the behaviour of helicoidal stair slabs with intermediate landing

8.2 SPECIFIC FINDINGS

8.2.1 Verification of R~ynolds Coefficients

Finite element methods have been used to verify the coefficients suggested by

Reynolds, Santathadaporn and Cusens. A regression analysis has also been

carried out in this regard. The correiation between the coefficients found from the

Reynolds charts and the finite element analysis has been strong. The study

revealed that the Reynolds coefficients for calculating mid span horizontal shear are

in good agreement with the finite element results. The Reynolds coefficients for

calculating moments, however differ slightly with the finite element findings.
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8.2.2 Design of RCC Helicoidal Stair

The possibility of suggesting temperature and shrinkage reinforcements to take

care of the axial force and vertical moment has been investigated. A direct design

method has been proposed in this regard. Figs. 5.1 through 5.6 can be used to

design the slab when 60000 psi steel and 3000 psi concrete is to be used. Tables

5.1 and 5.2 further simplifies the results of these figures. Steel requirement at the

support for axial force and vertical moment per ft width of the stair can be

determined using these tables, when live load is 100 psf. All these design charts

and tables follow the USD method.

8.2.3 Introduction of Intermediate Landing

Detail analysis of a helicoidal stair slab with intermediate landing has been carried

out. The assumptions in the analysis has been noted. The analysis followed

Solanki's efforts using helical girder solution.

Further studies on the stair differ with the observations by Solanki, Arya and

Prakash that the torsion has the maximum value at the support. Other findings

supported Arya, Prakash and Solanki's conclusions.

8.2.4 Proposal for a Design Chart

The most important outcome of this research is the proposed design method for

helicoidal stair slabs with intermediate landings. Various charts are proposed for

different geometric combinations. These charts are presented in Chapter 6. The

step by step procedure to be followed in designing a helicoidal stair slab with

intermediate landing using these charts is presented in the Appendix C. It is

expected that the use of these charts will simplify the design of such stair slabs and

encourage the use of such beautiful structural components.

8.2.5 Effect of the Landing

The introduction of an intermediate landing does not radically change the critical

design forces and, as a whole, the helicoidal stair slab with an intermediate landing
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behaves similarly to another helicoidal stair slab without any landing. The effect of

landing is more prominent for stairs with a lower central angle.

Landing has the most prominent effect on torsion. Torsion increases appreciably

with the increase in landing width.

Maximum values of vertical moment increase, and lateral moment, thrust and radial

horizontal shear decrease with the increase of the landing length. Landing length

has virtually no effect on the maximum lateral shear. The local effect of landing is

however quite important, specially in the case of vertical moment, and lateral shear.

However these conclusions are drawn on the basis of two prototype stairs only.

8.3 SCOPE AND GUIDELINES FOR FUTURE STUDIES

The present study has investigated into the validity of Reynold's method for

designing a helicoidal stair slab without a landing. A simple design rationale has

been proposed for helicoidal stairs with intermediate landings. However, the work

does not end here. During the course of the research it has been felt that certain

areas need further investigation. The future studies may encompass the following

areas:

8.3.1 Development of a Direct Design Procedure

The charts provided for the direct steel design method is not comprehensive. It

deals with only 3000 psi concrete and 60000 psi steel. Extensive studies should be

carried out to expand the scope of these charts. Also only one width to thickness

ratio (b/h=10) has been assumed. The use of one b/h ratio may be jUstified by

another study.

8.3.2 Modification of the Program to Accommodate Intermediate Landing(s)

The finite element program modified by the author for analysing defiection

behaviour has a very limited scope. Only one landing length (0.2 times the central

angle) can be analysed. Also, efforts regarding determining the stress resultants

could not have been compieted. The program needs further modifications to
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analyse the forces and moments in a helicoidal stair slab with an intermediate

landing. The option of providing the landing length as an input parameter may be

introduced. This will encourage the use of the same program to analyse helicoidal
stairs with no landing as well.

8.3.3 Study on Maximum Deflection

From the investigation and literature review, it is perceived that maximum deflection

plays an important factor in designing helicoidal stair slabs. But in practical cases,

due to architectural reasons, it may be more difficult to adjust different geometric

parameters other than waist thickness for deflection control. So for maximising

design economy, a thorough study to investigate the possibility of reduction of waist

thickness in keeping with the deflection to an acceptable range is necessary. For

design simplicity, this study may go for suggesting a minimum thickness

requirement for different geometric configurations. The finite element methods may

be incorporated for this purpose. Also, a direct thickness can be suggested on the

basis of deflection control as well as shear and torsion requirement. This will be

more user friendly.

8.3.4 Study on the Effect of Steps

The finite element software analyses helicoidal stair slab as a uniform thickness

slab, whereupon the stair steps are assumed to contribute the dead load only. In

practice stair steps are monolithically cast with the stair slab and their integrated

action will be somewhat different from the slab assumption. The possibility of taking

an average thickness considering the steps as the waist thickness could be

investigated. This will have the advantage of using the same program for designing

driving or loading ramps. Alternately, the finite element program may be modified as

to incorporate the steps in the analysis. This will produce an accurate

understanding of the behaviour of the stair slab.

8.3.5 Study of Different End Conditions

Present study includes stair slabs (both with and without landings) only with both

end fixed. In actual field, a complete fixity of supports rnay not always be attainable.
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Therefore, helicoidal stair slab hinged at one or both of the supports or having

partial fixity at the support should also be studied. The program could be modified

for this purpose.

8.3.6 Non-linear Analysis

Throughout the present study, a linear elastic analysis has been made. Concrete is

not in the strictest sense a linear material. A finite element analysis with non-linear

material properties may be attempted.

8.3.8 Influence Line Analysis

It is believed that the most severe loading condition in a helicoidal stair slab is the

uniformly distributed load over the entire span. But an influence line analysis should

be carried out to verify this.
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C-1 INTRODUCTION

L=2~Rat the centre

I Htu=tan- --
R,2P

•.

APPENDIX C

C-2 ANALYSIS PROCEDURE

This chapter functions as a user guide. The step by step procedure for analysis of a

helicodal staircase with an intermediate landing using the proposed design charts is

presented here. The geometric limitation must be kept in mind: the landing is

located mid way of the stair.

DESIGN PROCESS FOR A HELICOIDAL STAIRCASE WITH

AN INTERMEDIATE LANDING

The height of the stair, inner radius, outer radius (or alternatively mean radius and

width of stair), the total angle (8r) through which the stair is to rotate to reach its

height, the length of landing (L) etc. are generally suggested by the architect.

Having fixed the geometric parameters, a designer then has to determine the stress

resultants. The introduction of the chart will substantially reduce the tedious

computations required otherwise to find the design forces and moments. The

analysis procedure using the charts consists of the following steps:

1. Determine mean radius Rz from given inner radius Ri and outer radius Ro

Rz =(Ro+Ri)/2

2. Determine the angle (2~) subtended by the landing of length L at a distance R

3. Find the Total angle subtended at the centre by the flights (2P) from 8rand 2~

2p = 8r- 2~

4. From the height of stair (Ht), mean radius (Rz), and total angle subtended by

flight at the centre (2P) calculate the slope of the tangent helix centreline (a) as



5. Determine the radius of centre line of loading (R,) from

2 R'-R'R = _ 0 I

, 3.R2-R'
o ,

6. Find w, total dead and live load per unit length along the centreline

7. With the vaiues of R1/R2 and central angle subtended by the landing (2~) go to

the appropriate chart, find kl, hand k3 for the given value of total angle

subtended at the centre (8f). Determine mid span moment, M, mid span radial

horizontal shear, H, and support moment Msup, from

M=k1wR/

H=k2wR2

Msup =k3wR/

8. Determine other stress resultants at various distance, 8, from the mid span

toward the top support. Keep in mind that a = 0 at the landing.

• Vertical moment:

Mv = Mcos8 + HR28 tana sin8 - WRl
2 (1- cos8)

• Lateral moment:

Mh = Msin8 sina - HR28 tana cos8 sina - HR2 sin8 cosa +

(wRl2sin8 - wR1R28) sina

• Torsion:

T = (Msin8 - HR28 tanacos8 + wRl2sin8 + HR2 sin8 sina - wR1R28)cosa +

HR2sin8sina

• Thrust:

N = - Hsin8 cosa - wRl8 sina

• Lateral Shear:

v = w 8 cosa - Hsin8 sina

• Radial horizontal shear:

F = Hcos8

xviii



It is required to analyse a reinforced concrete helicodial stair slab with a height of

12.5 ft, inner radius of 5 ft, and outer radius of 11.25 ft. The stair is to reach its full

height within a 270° turn. The length of landing at the inner edge is 5.25 ft. Live load

= 100 psf. Concrete unit weight = 150 pcf. The stair slab is 6 inches thick and the

risers are 6 inches high.

xix

M = 0.036*1367*8.1252 = 3250 Ib-ft

H = 1.657*1367*8.125 = 18400 Ib

Msup = -0.73*1367*8.2152 = 65880 Ib-ft

R = 11.25' -5' = 8.526 fl.
, 11.25'-5'

RdR2 = 8.526/8:125 = 1.05

P2 = (5 + 11.25)/2 = 8.125 ft

~ = 5.25/(5*2) = 0.525 radian = 30°

2(3= 270 - 2*30 = 210° = 3.665 radian

a = tan-' 12.5 - 22.80
8.125 * 3.665

Total thickness in vertical direction is approximately 9.5 inches.

Surface UDL = 12.5*9.5 + 100 = 218.75 psf

w = 218.75*(11.25-5) = 1367 plf

With the calculated values of R1!R2, a. and ~, refer to chart 6.13. For

a 270° stair,

kl = 0.036

k2 = 1.657

k3 = -0.73

The variation of stress resultants along the span, found using the

previously stated equations, is depicted through Figs. 6.5 & 6.6.

C-3 EXAMPLE

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 7:

Step 6:

Step 8:
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