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Abstract

Location-based applications like nearby information services (e.g., finding the nearest bus station or

a hospital), traffic monitoring, urban planning and transport management facilitate the development

of smart cities and improve the quality of life for citizens. A user’s location is a sensitive data and can

reveal private information about the user’s health, habit and preferences. Due to privacy concerns,

people may hesitate to share their locations and prohibit the growth of location-based services and

analysis. In this thesis, we develop a novel approach to share privacy protected location data with

others in real time. Our approach does not need to trust any party including a centralized server or

peers in a distributed setting for protecting location privacy.

Researchers have developed techniques for sharing a user’s locations in a privacy preserving manner

in the Euclidean space and road networks. However, none of these approaches can ensure both user

privacy and data utility in real time. We identify the possible privacy threats in the literature and

develop solutions to overcome the privacy attacks. In our approach, a user reveals a cloaked region

(i.e., a region that includes her current location) instead of an actual location if the disclosure of the

user’s actual location enables others to infer a user’s visit to a sensitive place. Existing approaches fail

to protect a user’s privacy for not considering upcoming sensitive locations in advance. We develop

a technique to precompute the warning zone, i.e., the refined area where the disclosure of a user’s

actual location may enable adversaries to identify the user’s sensitive locations. Warning zones also

enable users to reduce the frequency of not sharing locations for privacy reasons and thereby improve

the accuracy and utility of shared locations. In addition, we develop an algorithm to compute a user’s

cloaked regions using the pre computed warning zones with reduced processing time. We evaluate

our proposed approach using a real dataset and compare our algorithm with the most recent state-

of-the-art technique in road-networks, in terms of privacy, data utility and computational overhead.
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Chapter 1

Introduction

The proliferation of location aware mobile devices has enabled users to continuously share their

locations and enjoy a range of location based services (LBSs) like nearby information services, location-

based advertisements, social networking, and navigation systems. Furthermore, urban planners, traffic

monitoring authorities and researchers can analyze shared location data to make effective decisions

to facilitate urban computing. However, a user’s location is a sensitive data and can reveal private

information about the user’s health, habit and preferences [2–6]. Due to privacy concerns, users may

hesitate to share locations with others and prohibit the growth of location-based analysis and services

for the development of a smart cities [7–9]. In this thesis, we develop an efficient approach for real

time sharing of location data without violating a user’s privacy in road networks.

A user needs to periodically report her locations in real-time to enjoy a continuous LBS (e.g.,

searching for a nearest gas station with respect to a moving user) or facilitate a location based

analysis (e.g., live traffic monitoring). Assume that a user named Alice reports her visited locations

as shown in Figure 1.1. Alice visits a hospital on the way to her office and after work she visits a

park and then returns to home. The hospital may be a sensitive place for Alice and if an adversary

can convince the hospital authority, she can have detail information about Alice’s health condition.

Thus, Alice reveals her daily activities and sensitive information while sharing the location data.

In this thesis, we present an approach, where users ensure privacy of location data before sharing

with others. Our approach does not need to trust any party including a centralized server or peers

in a distributed setting for protecting location privacy. In parallel to protecting privacy of location

data, it is important to preserve the utility of location data. For example, if a user reveals location

1
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Figure 1.1: Privacy violation while sharing location data

data in city level, the revealed information can contribute little for the development of applications

and analysis in a smart city. Our proposed approach ensure both utility and privacy of location data.

Furthermore, if an approach requires high computational overhead to protect privacy of location data

before sharing with others, it cannot support real-life applications (e.g., real time traffic monitoring).

We propose an efficient algorithm that can share privacy protected location data in real-time.

H

A B

Figure 1.2: A privacy threat when a user stops sharing a sensitive location

1.1 Privacy Threats and Solutions

A naive approach to protect a user’s privacy can be to stop sharing sensitive locations. For example,

if Alice does not want to let others know that she visits a hospital, Alice can stop sharing location

when she is nearby a hospital. However, protecting privacy of users who periodically shares location

data in real-time is not straightforward as an adversary can exploit spatio-temporal constraints in

road networks and infer sensitive information.
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H

A BPath 1

Path 2

(a)

H P

Path 2

Path 1

(b)

H

P

(c)

H

(d)

Figure 1.3: (a): No stay point on Path 2, (b)-(c): A park on the way from A to B, (d): Path-2 is long

Let Alice reveal location A at time tA and then stop. After a medical visit, Alice starts sharing

location again when she reaches a non-sensitive place B at time tB. Considering the traffic speed, an

adversary can figure out that Alice needs maximum time t to travel from A to B, where t is less than

(tB − tA). From this difference of time, the adversary can infer that Alice stays somewhere between

A and B and if there is a single stay point, say a hospital, between A and B, then the adversary

becomes confident that Alice stays in the hospital while traveling from A to B.

One may argue that there can be more than one path to travel from A to B and there is no

guarantee that Alice takes the path through the hospital. However, the fact is that in some scenarios

(Figure 1.3), even if there are more than one path, an adversary can identify that Alice visits the

hospital.

Figure 1.3(a): There are two paths to travel from A to B. In this case, the probability of Alice to

take Path 1 is 50%. Since there is no stay point in Path 2 and t << (tB − tA), an adversary still can

assume that Alice takes Path 1 and the probability of Alice to be in the hospital is 100%.

Figure 1.3(b)-(c): There is a park in addition to the hospital on the way from A to B and Alice
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can spend time in the park other than hospital. Hence an adversary can infer that the probability of

Alice to be in the hospital is 50%. On the other hand, if Alice travels from A to B on Sunday evening,

when the park remains closed, then the adversary is 100% confident that Alice visits the hospital.

Figure 1.3(d): The minimum time to travel from A to B via Path-2 is greater than (tB − tA).

Thus, it is not possible for Alice to take Path 2 and an adversary can infer with 100% probability

that Alice visits the hospital.

Hiding a user’s identity while sharing location data cannot always protect a user’s privacy [10–15]

as the location data such as home or office address can act as an identifier. Once the identity of a

user is determined, the privacy of sensitive location data revealed by the user is violated. On the

other hand, identifies are often required for personalized services (e.g., friend finder applications) and

authorization purposes. Thus we focus on hiding sensitive location data instead of identities.

A large number of approaches exist to protect location privacy in the Euclidean space [16–22].

However, users move through road networks and an adversary can exploit the constraints of road

networks to infer a user’s sensitive locations. In recent years, researchers have also proposed a few

techniques [1, 23] for sharing location data in road networks. However, both of these techniques are

vulnerable to privacy attacks. In [1], when a user is on a sensitive location, a false(safe) location

nearby to the actual location is published. Since safe (false) locations for sensitive locations are

precomputed irrespective of time, the safe location may remain closed when it is published. Thus,

the solution proposed in [1] fails to protect location privacy in real-time. Furthermore, this approach

does not take velocity based linkage attack [16] into consideration. A user’s movement is restricted by

the maximum allowed speed in road networks and thus, if a user’s shared safe (false) location falls

outside the maximum movement bound with respect to the user’s last revealed location, an adversary

can easily identify the revealed location as false using the velocity based linkage attack.

In [23], the authors use popular cloaking techniques to protect location privacy under road network

constraints. Using the cloaking technique, instead of sharing a sensitive location, the user reveals an

area that includes the user’s sensitive location. The privacy requirement of a user is expressed in terms

of the popularity, i.e., the number of people located at places (e.g., a bank, school, hospital) included

in a cloaked region. The popularity of places may vary with time and the area of the cloaked region

location can change to satisfy the privacy requirement of users in real-time. In [23], the authors

propose that to reduce the computational overhead in real-time, the cloaked regions for sensitive

locations can be precomputed. However, like [1], precomputed cloaked regions may not always satisfy
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(a) (b)

Figure 1.4: An example of the upcoming linkage attack, where red and green places are considered as

sensitive and safe, respectively

the privacy requirement of users due to change in popularity of places (e.g., the popularity of a place

may drop to 0 if the place remains close at a certain time). We call this attack on a user’s location

data as temporal linkage attack.

To address the temporal linkage attack, the authors in [23] also propose an computationally

expensive online algorithm to compute cloaked regions in real-time. However, online cloaking also

fails to protect privacy due to the lack of knowledge about upcoming sensitive locations. Assume that

a user shares l1 at time t1 (Figure 1.4(a)). While revealing the location at time t2, the algorithm only

considers the subgraph G′ which consists all the vertex and edges reachable from l1 within t2 − t1

time and computes cloaked regions r2 and r′2 for red sensitive places. If the user’s location at time

t2 falls inside r2 or r′2, the user reveals corresponding cloaked region. Otherwise, the user reveals her

actual location. Let the user’s location is at l2 as shown in Figure 1.4(a), and thus the user reveals l2

at time t2. If we consider the city network in Figure 1.4(b), we see that the user is actually heading

to a sensitive location, which has not been recognized by the solution at time t2. This implies that

the user shares her sensitive movement with others because of not knowing about upcoming sensitive

locations. We call this attack as the upcoming linkage attack. Another limitation of this approach

is that it frequently fails to satisfy privacy requirements of users, stops sharing location data and

reduces the utility of the revealed information.

To overcome the limitations of existing approaches, we introduce a new concept called warning

zone. Warning zones enable us to overcome the upcoming linkage attack, increase the utility of

location data and reduces the computational overhead to protect location privacy in real-time. Each
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warning zone consists of a sensitive location and places and road networks whose disclosure may enable

an adversary to apply the upcoming linkage attack. If a user’s location falls inside the warning zone,

our approach checks whether the user can reveal her actual location or not based on the popularity

of places in real-time. If not then our approach compute the cloaked region in real-time. On the

other hand, if the user’s location falls outside the warning zone, our approach reveals the user’s actual

location. Existing approaches stop sharing locations when it is not possible to protect a user’s sensitive

location using a cloaked region because of previously revealed locations. Computation of warning zones

enable us to prethink about upcoming sensitive locations and thereby reduce the frequency of not

sharing locations and increase the utility of location information. Furthermore, warning zones refine

the search space in road networks, where a user needs to consider cloaked regions and thus, reduce

the computational overhead of our real-time privacy preserving algorithms.

1.2 Contributions

In summary, the contributions of this thesis are as follows:

• We identify the possible privacy attacks in existing privacy preserving approaches and develop

solutions to overcome the identified attack.

• We develop an approach that ensures both privacy and utility of location data of users. Our

approach does not need to trust anyone to protect location privacy of users.

• We present efficient algorithms that can protect privacy of a user’s location with reduced com-

putational overhead and share location data in real-time.

• We validate the effectiveness and efficiency of our proposed approach using a real dataset.

1.3 Organization

The remainder of the thesis is organized as follows. In Chapter 2, we formulate the problem and

present the privacy model considered for our system. Related works are discussed in Chapter 3. The

detail of our approach is proposed in Chapter 4. In Chapter 5, we present a comprehensive security

analysis and in Chapter 6, we elaborate our experimental evaluation of the proposed approach. Finally,

Chapter 7 concludes the thesis.



Chapter 2

Problem Formulation

In this chapter, in Section 2.1, we first discuss the terms and concepts we use throughout the thesis

and then in Section 2.2, we present the privacy model we consider for our approach.

2.1 Preliminaries

City network: City network is a connected weighted graph G = (V,E,W ), where

• V denotes a set of vertices and each vertex v ∈ V represents a place or a road junction.

• E denotes a set of edges and each e ∈ E represents a road segment connecting two vertices.

• W denotes a set of weights and each we ∈ W represents the minimum time required to travel

the edge e ∈ E.

Place type: PT denotes a set of place types in the city network G. The type of a place v in

denoted by v.pt, where v.pt ∈ PT can be a school, hospital, park etc. Based on a user’s privacy

profile, place type is divided into sensitive PTS and non-sensitive PTNS sets. For example, university

and park are non-sensitive and a hospital is sensitive for a specific user (Figure 2.1).

Popularity: POP denotes a set of popularity of places in the city network G. The popularity of

place is denoted as v.pop, where 0 ≥ v.pop ≤ 1. The popularity of a place means the probability of

a random user to be located in v at a specific time t. The popularity varies with time, for example,

a school has almost 0 popularity at night if it does not have night shift. We also consider that the

7
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popularity of a road junction and edges are 0 for our computation. In Figure 2.1, the popularity of a

university and a hospital are 0.4 and 0.5, respectively.

H(0.5)

U(0.4)

P(0.3)

Figure 2.1: Example of city network

Cloaked region r: Cloaked region r is connected sub-graph of city used for revealing location

instead of a user’s actual location. r should maintain the following properties:

• should contain one sensitive place PTS and atleast one non-sensitive place PTNS .

• should satisfy minimal disclosure requirement. Let a user’s defined disclosure threshold value is

βpts indicating the maximum allowed probability of a user being in a place of such type. Hence

probability of such place in a specific region r should not exceed βpts for that specific user.

Hence privacy requirement for single r is:

(v.pop)pts
r.pop

≤ βpts

where r.pop is popularity of the specific cloaked region r.

H(0.5)

U(0.4)

P(0.3)
r

Figure 2.2: Cloaked region r for hospital(H)
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In Figure 2.2, hospital(H) is sensitive and university(U) and Park(P) are non-sensitive. Popularity

for hospital is 0.5, for university is 0.4 and for park is 0.3 . Assume that disclosure threshold for hospital

is 0.5. Hence cloaked region r in the Figure 2.2 satisfies the user’s privacy requirement because in

the region r the probability of the user being in a hospital (0.5/0.5 + 0.4 + 0.3 = 0.42) is less than or

equal to 0.5.

When revealing sequence of locations there is a risk of velocity based linkage attack[16]. Analyzing

the velocity and previously reported location, adversary can limit the area of a user’s position within

reported r. Therefore, to prevent this attack, we define another property for r. As we said before,

each edge is weighted a minimum time to traverse that edge. If previous position is a cloaked region

r1 at time t1 then next revealed cloaked region r2 at time t2 should maintain the following property:

• time-distance from r1 to r2 is defined as maximum required weighted time of shortest path

between any vertex in r1 to any vertex in r2. Since time-distance is measured by r to r, we can

say that if a user reveals exact location then the cloaked region r contains one vertex.

• Hence the privacy requirement for these sequenced r is : time-distance from r1 to r2 (denoted

by d(r1, r2)) is lower than the time t spent between previous request t1 and current request t2. i.e.

d(r1, r2) ≤ t

Warning zone of a sensitive place: Warning zone consists of one sensitive location with all the

vertices and edges related to that sensitive location maintaining a user’s required l diversity. Warning

zone means we not only consider the sensitive stay point to take action against privacy breach but

also consider the sensitive movements that can be used for upcoming linkage attack. We calculate a

warning zone wzv with l−diversity (Figure-2.3) for each sensitive place v of a user. Bamba et al.[24]

first defines l−diversity for a cloaked region i.e. a region with l− diversity contains l places. We adopt

the concept and in our solution it means warning zone wzv has l different outgoing road directions

towards l non-sensitive locations. If a user is in any warning zone then we have to take necessary

steps for privacy protection.

User Profile PPuser: User profile denoted by PPuser, consists of list of sensitive place types(PTS)

with their minimal population requirement for disclosure(β).

PTS = (pts0 , βs0), (pts2 , βs2), ..., (ptsn , βsn)
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H

U

P

Figure 2.3: Warning zone for hospital(H)

For example, Hospital(pts0) is sensitive for a user and its minimal disclosure requirement is .25(βs0).

That means the probability of a random user to be located in that type of place at a specific time t

should be less than or equal to .25 when sharing location. A user also gives input about the number

of diversity l she needs to create warning zone wz and maximum allowed time delay θ to process her

request of sharing location.

PPuser = (l, θ, PTS)

Notations, those are used in this thesis are summarized in Table 2.1

2.2 Privacy Model

An adversary can have information about the city network that includes the popularity of places, a

user’s published locations and the privacy algorithm used to protect location privacy. We assume that

an adversary does not know about a user’s privacy profile. However, an adversary can predict which

type of place is sensitive for a user by reverse engineering with previously published cloaked regions

r. Hence we consider that an adversary has the information about a user’s sensitive places. The

adversary can apply the velocity based linkage attack, the temporal linkage attack and the upcoming

linkage attack.

The user’s privacy is the maximum and the utility of location data is 0, if a user does not reveal

locations in any form (actual or cloaked). On the other hand, the utility is the maximum and privacy

is 0, if a user reveals actual locations of her movements. To balance between privacy and utility,

we assume that a user specifies the required privacy level in terms of disclosure threshold, i.e., the



CHAPTER 2. PROBLEM FORMULATION 11

Table 2.1: Notations and their meanings

Symbol Meaning of the symbols

G A graph representing a city network

V A set of vertices in G and each vertex v ∈ V represents a

place or a road junction.

E A set of edges in G and each e ∈ E represents a road

segment connecting two vertices.

W A set of weights in G and each we ∈W represents the

minimum time required to travel the edge e ∈ E

PT A set of place types, where v.pt represents the place type

of v and v.pt ∈ PT

POP A set of popularity of places, where v.pop represents the

popularity of a place v and v.pop ∈ POP

WZ A set of warning zones, where wzv ∈WZ represents a

warning zone for a place v

r A cloaked region

d(r1, r2) the required maximum time distance between two vertices

of cloaked regions r1 and r2

PTS = (pts0 , βs0), (pts2 , βs2), ..., (ptsn , βsn)

PTS ← Set of sensitive place types

(pts0 , βs0)← Disclosure threshold βs0

for sensitive place type pts0

PPuser = (l, θ, PTS)

PPuser ← A user’s privacy profile

l← Required diversity

θ ← Maximum allowed time delay to process request

PTS ← Set of sensitive place types with their

minimal disclosure threshold
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user does not want to be identified at a sensitive place with a probability higher than the disclosure

threshold.

We propose an approach that ensures the required privacy level of a user while maximizing the

utility of location data. We develop techniques to overcome the velocity based linkage attack, the

temporal linkage attack and the upcoming linkage attack and thus, adversaries cannot refine a user’s

sensitive locations with a probability higher than the disclosure threshold using linkage attacks.



Chapter 3

Related Works

Privacy-preserving location publishing has been extensively studied in recent years. There exist

many different models like False locations/path, Cloaking methods, Position sharing approaches etc

to protect from revealing sensitive data when a user uses different types of LBSs. Some of the

approaches work in Euclidean space and some consider the road network constraints. Section 3.1

describes different types of privacy techniques to protect a user’s privacy and Section 3.2 elaborates

the approaches based on Euclidean space and road network. Finally in Section 3.3, we discuss the

approaches whether they process a user’s request with offline or online data.

3.1 Different Types of Privacy Techniques

3.1.1 False locations

The basic idea is to send either one or more fake locations that are related to the user’s actual loca-

tion [22, 25]. Without the help of any trusted third party, a mobile user can generate fake location

trajectories, called dummies to protect trajectory privacy. A trajectory is the path that a moving

object follows through space. [22] proposed an anonymous communication technique in which a user

sends position data with some dummies different from the actual position generated using Dummy

generation algorithm based on realistic user movements. However in long run an adversary can dis-

tinguish a user’s true trajectory from dummies by exploring data mining technique based on moving

pattern of users [26]. The authors in [25] proposed two scheme to derive dummy trajectories that ex-

hibit long-term user movement patterns. Random pattern scheme randomly generates dummies with

13
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consistent movement patterns and the key idea of the rotation pattern is to have some intersections

between trajectories of dummies and the user. However these dummy locations could still fall within

sensitive areas since there is no distinction between sensitive or non-sensitive locations.

3.1.2 Cloaking techniques

A typical approach to protect location privacy is to generate a cloaked region (r) [16–18, 23, 24, 27–36]

that encloses a user’s position. A broad range of existing cloaking techniques rely on k anonymity [27–

30, 32, 33] where the region contains k − 1 other LBS users along with the requestor or k anonymity

with l diversity [24, 35] where region consists of l places or l different types of places.

Initially k anonymous is introduced to protect shared medical data such that an adversary can not

distinguish an individual record from other k−1 records [37] which is then extended by l diversity [38].

The authors in [39] develop a privacy notion t closeness which is a further refinement of l-diversity

approach where each sensitive attribute has l well represented values. The distance between two

distributions of a sensitive attribute should be no more than the disclosure threshold t.

A region is considered location k anonymous if the location information inside that region shared

by a user to LBSs is indistinguishable from the locations shared by other k − 1 users. Location

k-anonymity is first studied by Gruteser et al. [27]. However location privacy should be based on

personalized preferences unlike [27] where users do not have the ability to define their own privacy

requirements. [31] presented a framework called personalized anonymity technique for the protection

of sensitive attributes while providing k anonymity. However the approach aims to protect data

privacy. The authors of [32] proposed a solution to provide a personalized k at per user level instead

of a uniform k for all users. A user can specify the minimum value k with specific privacy requirement

like maximum level for spatial and temporal error a user can accept while preserving k anonymity

of a region. The techniques used in [29, 40] also support customization the value of K. However

these solutions need to rely on a anonymity server which works as a middleware server between a

user and service providers. The author in [41] developed an cloaking algorithm which works in mobile

peer to peer environment. The k anonymity process has been extended to support road networks

where a users location is cloaked into a region satisfying the privacy requirements of k-anonymity and

containing at least l different road segments [33].

However, location k anonymity approaches fail to protect privacy since all k users may belong
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to a single location. PrivacyGrid, a framework for supporting anonymous location-based queries is

developed by Bamba et al. which satisfies required location k−anonymity and each region with l

diversity where l diversity means l places [24]. However they did not distinguish between sensitive

and non-sensitive place types for a user when considering l diversion. All l places can be of same

sensitive place type. To overcome this problem, Xue et al. [35] defined l diversity as the number of

different place types.

Problem of these solutions is that they consider only the number of users and types of places in

the cloaked region. However number of users can differ with different types of places and the impact

of a huge populated place in a cloaked region is omitted. For example, a cloaked region can be built

with k anonymity and l diversity where all k users belong to one sensitive location. Gruteser et al. [34]

classified a area as sensitive or non-sensitive. When a user’s location is in a region surrounded by

sensitive areas, the algorithm reports an area containing k1 other sensitive areas. Hence an adversary

can not distinguish one sensitive area where the user belongs. However still the adversary has the

information that the user has visited her sensitive place.

The Probe framework (Privacy Preserving Obfuscation Environment) [18] overcomes this limita-

tions. It provides a set of alternative cloaking heuristics which blur sensitive semantic positions based

on a user’s preferences. All locations on the map are represented as features, and each feature has a

type, sensitive (e.g., hospitals, bars) or innocuous (e.g., shopping centers, parks). Each user defines her

own privacy profile which specifies sensitivity thresholds with respect to each feature type. PROBE

generates cloaked regions that cover a mix of sensitive and innocuous regions such that the association

probability between the user and sensitive features is bounded below the specified threshold.

Ghinita et al. [16] protects against velocity based linkage attacks that infer exact locations based on

previously reported locations. They propose two techniques to preserve the privacy of user requests:

temporal cloaking and spatial cloaking. Temporal cloaking is suitable when the partition of the map

into cloaked regions is fixed in advance i.e., the map is partitioned into a set of tiles. In spatial cloaking,

cloaked regions can be dynamically computed at the time of the request. Regions must be constructed

taking into consideration the sets of sensitive features and associated sensitivity thresholds.

[17] proposed an extension of the Probe framework [18] to include criteria for the evaluation of

the cloaking methods accuracy with respect to spatial accuracy bounds. They have presented the key

features of a privacy-preserving approach for the personalized protection of sensitive locations.

Yigitoglu et al. [23] presents an extension of the semantic location cloaking model [17] originally
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developed for the cloaking in an unconstrained space. Unlike some other cloaking approach, it consid-

ers road networks and places. For example, a user remains in the cloaked region which contains only

the sensitive place for a long time, more than the time that is needed to traverse all the road inside the

region. Hence an adversary can predict that the user walked into that sensitive place since there is no

alternative place in the cloaked regions in which the user can spend much time. The user’s sensitive

stay point is thus disclosed. The authors in [23] defines cloaked region which contains one or more

non-sensitive places. It also protects user from the velocity-based linkage attack. They developed two

cloaking method: offline cloaking and online cloaking. In offline cloaking method, cloaked regions are

pre-computed and when a user requests to share her location the solution transforms the user’s actual

location into a cloaked region. On the other hand, cloaked regions are built at runtime in online

cloaking method.

3.1.3 Position sharing approaches

False path or cloaking technique none of them provide different precisions to different clients with

different quality of service demands and trust levels. Position sharing approaches [19–21] protect a

user’s location privacy and also provide different precisions to different clients based on different quality

of service demand and trust levels. It splits the precise user position into a set of imprecise position

shares and distributes these shares among LSs of different providers. Location-based applications

(LBA) can query these shares from the LSs and fuse them to a position of well-defined precision

depending on the number of shares they got access rights for from the tracked user.

3.1.4 Mix-zones and path confusion

A mix zone exists whenever two or more users occupy the same place at the same time and their paths

become indistinguishable. In Mix zone based approaches [10, 11, 42] when users enter a mix-zone, they

change to a new and unused pseudonym such that the mapping between their old pseudonyms and

new pseudonyms are not revealed. Hence when users exit the mix zone, an adversary can not predict

which user takes which trail. Path Confusion approaches [43, 44] extended the method developed by

mix zones. They incorporate a delay during sharing users’ locations until the paths intersect such a

way that they create anonymity. However, these techniques actually aim to publish trajectory data

by protecting a user’s identity not location privacy.
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3.2 Approaches in Euclidean Space and Road Networks

3.2.1 Approaches in Euclidean space

Most of the researchers developed their solution working in Euclidean space [16–22] where a user can

go through anywhere without any bindings. However in real world, users only move through the road

network. If a user’s locations are continuously reported, an attacker can correlate the regions through

road networks from multiple timestamps to accurately predict the user’s position inside a region.

3.2.2 Approaches in road networks

There are few works which consider road network constraints while sharing a user’s location contin-

uously. Claudio et al. [1] have developed a model to protect location privacy considering sensitive

and non-sensitive locations in road network. Safe path/poi for a user is pre-computed using a user’s

historical movements based on Markov chains. Any unusual path/poi is also considered as sensitive.

Whenever a user is on a sensitive/unusual path/poi, a false safe path/poi is published nearby to that

sensitive path/poi.

HP
xlocu

(a)

HP
locu

(b)

Figure 3.1: (a) Real path (b) Released path in [1]

For example in Figure 3.1(a) a user’s location locu falls into a sensitive path which is heading to a

hospital, a sensitive location for the user. The solution [1] detects the risk and instead of publishing the

user’s actual location, it publishes the pre-computed safe path indicated by red arrow in Figure 3.1(b).

Static cloaking techniques which aim to protect location privacy for snapshot LBSs under road

network constraints [33, 45–47] are not applicable. Snapshot LBS means the location based service
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where a user shares her location once to get the service. Hence an adversary can limit a user’s actual

area inside the cloaked region using temporal correlation with spatial information (e.g., time needed

to traverse the roads of the city) while sharing location continuously. The authors of [16] identified

velocity based linkage attack while a user shares her location data continuously. However they did not

consider the road network constraints. The authors in [23] developed the solution in which the cloaked

region are built under road network constraints during sharing location data continuously. A cloaked

region for a sensitive place contains non-sensitive places required to meet a user’s privacy requirement

along with one sensitive place and the places are connected through road networks. (Figure 3.2).

Figure 3.2: Cloaked region in road network

Before publishing a cloaked region instead of a user’s actual location while a user requests to share

her location, solution in [23] checks whether all the places and roads inside the region are reachable

from the previously shared location through road networks within the time gap. There also exist

some approaches under road network constraints which preserve a user’s privacy by protecting her

identity [12, 13, 48, 49]. However all the personalized and authorization based services that need a

user’s identity can not be available. Hence our aim is to protect a user’s privacy while publishing her

location continuously with her identity.

3.3 Offline and Online Approaches

3.3.1 Offline approaches

Offline solution means safe regions or paths which are needed to publish instead of a user’s actual

location, are either pre-computed or generated based on historical data. The solution in [50] ensures k
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anonymity using k−1 other individuals’ historical footprints instead of using their real-time locations.

However an adversary might find only the requesting user or less than k users into that region

considering real-time. Another solution called CliqueCloak [51] also compromises real-time operation

since it waits until it gets k different queries requested from a particular region.

Claudio et al. [1] pre-computes a user’s safe poi/path using a user’s historical movements based

on Markov chains model. Markov model is a type of predictors where the mobility behavior of an

individual is represented as a Markov model and the next location is predicted based on the previously

visited locations [52–55]. However, the solution in [1] does not consider the velocity based linkage

attack while publishing a user’s location. On the other hand, population of poi varies time to time.

Hence it fails to protect privacy due to ignoring time constraint as safe poi which is pre-computed

based on a user’s historical movement may not have the validity for the requesting time period. The

offline cloaking method developed in [23] also does not consider the population of poi under time

constraints since cloaked regions are pre-computed. For example, a cloaked region for hospital is

pre-computed (Figure 3.2) with a hospital and a school which remains closed at night. Hence at night

an adversary can predict that a user belongs to the hospital inside the cloaked region if she spends

more time than needed to traverse all the roads of that region.

3.3.2 Online approaches

Some anonymization cloaking processes like [56–58] ensure k anonymity by blurring a user’s actual

location or path into a region containing k − 1 other users at real time. However, previously we

described that k anonymity process can not provide location privacy if all k users belong to one

sensitive location or path. Online cloaking method developed in [23] overcomes it along with all

the problems described for offline techniques. Since cloaked regions are built at runtime, instead of

considering whole city network the solution only considers the sub graph containing all the places and

roads reachable from previously shared location within the time difference. It then publishes a cloaked

region instead of a current location when it finds that a user’s position falls into a cloaked region(r) of

a sensitive location inside the sub graph. However they are not aware of upcoming sensitive locations

and can not provide privacy against upcoming linkage attack. On the other hand, sub-graph and

cloaking regions are generated at run time based on time and popularity of the places at that time.

Hence size of the sub-graph and number of cloaked regions within it can affect the effectiveness and
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efficiency of location-dependent services.

In our approach, we propose a solution which protects a user from revealing her sensitive infor-

mation while sharing real-time location continuously. The solution checks whether a user needs to

reveal a cloaked region even if she is not in a sensitive location and if needed, it publishes a cloaked

region instead of the user’s actual location. We also improve the rate of service drop and the risk of

privacy violation because of the service drop.

Table 3.1 summarizes the limitations in different techniques which we overcome in our solution.

Table 3.1: Privacy preserving techniques with their limitations

Techniques
Temporal linkage

attack

Velocity based

linkage attack

Upcoming linkage

attack
Utility Efficiency

False location based

on Markov chains
[1] x x x high high

Online spatial cloaking[23] X X x low low

Position sharing approach[21] x x x high high

Our approach X X X high high
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Our Approach

In this chapter we elaborate our proposed approach to ensure a user’s privacy requirements while

sharing location data with others. A user provides her required l diversity, disclosure threshold β and

maximum allowed time delay θ with city network G into her privacy profile. Our aim is to protect

the user’s privacy from all types of linkage attacks based on the privacy profile. Our approach is a

combination of offline and online process. In the offline part, we calculate the warning zone wzv with

the concept of l diversity for each sensitive location v in the map when a user first defines her privacy

profile. Warning zones allow the system to pre-think whether the disclosure of a user’s actual location

enables others to infer that the user has visited a sensitive place and take privacy actions based

on that. Transformation process (i.e. generating a cloaked region and revealing a user’s location)

is online such that we can calculate the real-time probability to associate a user with her sensitive

location inside a cloaked region. During service request when a user wants to share her location, if

the user’s actual location falls into any of her warning zones then we create the cloaked region for

that warning zone. After creating the cloaked region, we check whether the user’s actual location falls

into that cloaked region or not. If the user lies into that region then system reveals the cloaked region

instead of the user’s actual location and if the user is outside of the region then system reveals the

actual location. It may happen that a user’s location falls into multiple warning zones. In that case,

we create cloaked regions for all the warning zones and select a random cloaked region to publish

amongst all cloaked regions which contain the user’s actual location. On the other hand if the user is

outside of her warning zone then her actual location is considered as safe to publish.

The remainder of this chapter is organized as follows. Process of generating list of warning zones

21
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is stated in the next section. Section 4.2 provides the algorithm for creating a cloaked region for a

warning zone. Finally, Section 4.3 states the process to publish a user’s actual location or a cloaked

region based on the user’s privacy profile.

4.1 Generate List of Warning Zones (WZ)

Warning zones are computed offline. Every warning zone wzv contains one sensitive place v and has l

outgoing road directions towards l non-sensitive places. At first we create warning zones for each sen-

sitive place. After that we also consider the non-sensitive places which are connected directly with the

pre-computed warning zones. The process repeatedly uses the function GenerateZone(G, v, PPuser)

to create a zone zv with l diversity for every sensitive or non-sensitive place v ∈ V in graph G which

is used later to compute the list of warning zones. The function is invoked from Algorithm 1. Hence

we first elaborate the procedure of generating a zone zv with l diversity for a place v before going into

the detail process to compute list of warning zones using Algorithm 1.

4.1.1 Generate a zone zv with l−diversity

Pseudo-code of generating a zone zv for a place v with l−diversity is given in Algorithm 1. The

algorithm takes city network G, a place v and a user profile PPuser as input and returns the zone zv

with l diversity. We continuously add road junctions to extend a subgraph for the place v until we

find the required diversity. Breadth-first-search (BFS) is used to generate the zone and the place v

will be the starting vertex. The algorithm maintains a first-in, first-out queue Q to manage the set

of vertices discovered during the searching algorithm. At first we initiate the zone zv and the queue

Q empty, mark the vertex v as visited and then initialize the queue Q containing just the vertex v

(Line 1-4). The while loop of lines 5-21 iterates as long as required l−diversity is not found. For first

iteration, Q only contains the root vertex v. Line 6 determines the vertex u at the head of Q and

removes it from Q.
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Algorithm 1: GenerateZone(G, v, PPuser)

Input: City network G = (V,E,W ), sensitive or non-sensitive place v, a user’s privacy profile

PPuser = (l, θ, PTS)

Output: zone zv

1: zv ← φ

2: queue Q← φ

3: mark v visited

4: ENQUEUE(Q, v)

5: while Q 6= φ do

6: u← DEQUEUE(Q)

7: for all unmarked u′ ∈ AdjacentList(u) do

8: if u′.pt /∈ PTS then

9: mark u′ visited

10: if u′.pt ∈ PTNS then

11: decrease l by 1

12: else

13: zv.addEdge(u, u
′)

14: ENQUEUE(Q, u′)

15: end if

16: end if

17: end for

18: if l ≤ 0 then

19: break

20: end if

21: end while

22: return zv

The for loop of lines 7-17 considers each non-visited vertex u′ in the adjacency list of u. If place

type of u′ is non-sensitive for the user then the algorithm marks the vertex u′ as visited (Line 9). If u′

falls into the user’s non-sensitive place type, it means one diversity is found for the vertex v. Hence

the algorithm decrease the value of l by 1 (Line 10-11).
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Otherwise u′ is a road-junction and we place u′ at the tail of Q and add the edge(u, u′) to the z

(Line 12-14). When all the vertices on u’s adjacency list are marked as visited, we check the number

of still required l diversity in Line 18. If required l diversity is less than or equal 0 then it means

generated zone zv has atleast l different outgoing road directions towards l non-sensitive places. Hence

BFS is stopped (Line 18-19). After completing BFS, we add all the original edges between vertices in

resulting zone to preserve the shortest path among them. The output of this algorithm is the zone zv

for the place v with l diversity.

Figure 4.1 illustrates the progress of the Algorithm 1. Places are denoted by their initials and

road-junctions are denoted by vi where i = 1, 2, .., n. In this scenario, we create a zone for hospital H

where l = 2 i.e. generated zone have to have atleast 2 outgoing road directions towards 2 non-sensitive

places. First Q is initialized with the root vertex H (Figure 4.1(a)). H has only one adjacent vertex

v1. Hence after first iteration, H is removed from the head of queue Q and after traversing H’s

adjacent vertex v1, v1 is assigned at the tail of queue (Figure 4.1(b)). In Figure 4.1(c) v1 is removed

from queue Q and then the algorithm traverse its adjacent vertices v2 and v3. Since the vertices are

road junctions, we add these two vertices (v2 and v3) into queue Q. Required diversity still is 2. In

Figure 4.1(d), v2 is removed from queue Q and after traversing its adjacent vertices U , v4 and v5, we

found a non-sensitive place U according to the user profile. Hence l is decreased by 1 and add the

other two vertices into queue Q. Now required diversity is 1. The process thus continued as long as l

is greater than 0. Whenever the condition is fulfilled, BFS will be stopped [Figure 4.1(e)]. Output of

the algorithm is zone for hospital H with l = 2 diversity [Figure 4.1(f)] after adding all the original

edges between vertices in resulting tree.

4.1.2 Generate list of warning zone for sensitive and non-sensitive

places

Since the procedure to generate zone with l diversity is stated, we can move to the main procedure

i.e. to generate list of warning zones for sensitive and non-sensitive places. Algorithm 2 takes city

network G and user profile PPuser as input and returns list of warning zones (WZ). At first, we

initialize the list of all type of warning zones WZ and list of warning zone for both sensitive (WZS)

and non-sensitive(WZNS) places empty (Line 1-3). The first for loop of lines 4-7 considers each

sensitive vertex v ∈ V in graph G. Zone zv created for a sensitive vertex v is directly added to the
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Figure 4.1: Generating zone for hospital H with l diversity where l = 2

list of warning zones of sensitive place WZS (Line 5-6) and after calculating all warning zones for

sensitive places, WZS is added to WZ and WZNS (Line 8-9).
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Algorithm 2: GenerateWZ(G,PPuser)

Input: City network G = (V,E,W ), a user’s privacy profile PPuser = (l, θ, PTS)

Output: list of warning zone WZ

1: WZ ← φ

2: set of warning zone for sensitive places, WZS ← φ

3: set of warning zone for non-sensitive places, WZNS ← φ

4: for all v ∈ V s.t. v.pop 6= 0 and v.pt ∈ PTS do

5: zv ← GenerateZone(G, v, PPuser)

6: WZS .add(zv)

7: end for

8: WZ.add(WZS)

9: WZNS .add(WZS)

10: for all v ∈ V s.t. v.pop 6= 0 and v.pt ∈ PTNS and AdjacentList(v)± wzs where wzs ∈WZS

do

11: zv ← GenerateZone(G, v, PPuser)

12: for all wzns ∈WZNS where zv ± wzns do

13: WZNS .remove(wzns)

14: wzns ← wzns ∪ zv

15: WZNS .add(wzns)

16: end for

17: end for

18: WZ.add(WZNS)

19: return WZ

The algorithm also creates warning zones for non-sensitive places such that an adversary can not

limit a user’s actual location inside a cloaked region with the help of warning zones for sensitive places.

The second for loop of lines 10-17 considers each non-sensitive vertex (except the road junction) v ∈ V

which is part of created warning zones of sensitive places(i.e. AdjacentList(v)±wzs ∈WZS) in graph

G to generate zone zv. If zv intersects any other warning zone wzns ∈ WZNS , then our algorithm

removes that wzns from WZNS and combines the warning zone wzns and zv. The algorithm then

adds the combined zone to the warning zone list of non-sensitive places WZNS (Line 13-14). After
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calculating all warning zones for non-sensitive places, WZNS is added to WZ (Line 15). Output of

the algorithm is list of warning zone (WZ) for both sensitive and non-sensitive places.
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Figure 4.2: (a) Warning zone for hospital(H) with l = 2, (b) Combined warning zone for hospital(H)

and university(U) after generating the zone for university(U)

In Figure 4.2(a), we have warning zone for hospital using Algorithm 1. Assume, university is

non-sensitive for the user and it is a part of warning zone of hospital. Hence, we create the zone

of university(U) with l = 2. In Figure 4.2(b), a zone created for university(indicated by red edges)

intersects previously created warning zone for hospital. Hence Algorithm 2 combine these two zones

and the combined zone is added into the list of warning zone WZ.

4.2 Online Cloaking Method

Generating cloaked region and transformation of a user’s actual location is done during service request.

Population of a place may vary time to time. Hence we create cloaked regions online to preserve a

user’s location privacy from temporal linkage attack. Pseudo-code of the cloaking method is given in

Algorithm 3.
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Algorithm 3: CreateCR(G,POP,wzv, PPuser, r1, t)

Input: City network G = (V,E,W ), popularity list POP , a warning zone wzv, a user’s privacy

profile PPuser = (l, θ, PTS), previously shared location r1, time difference between two requests t

Output: cloaked region rv

1: rv ← φ

2: rv.pop← 0

3: queue Q← φ

4: v ← associated sensitive place of wzv

5: Let the type of place v is pts and the required disclosure threshold is βpts

6: consider the warning zone wzv as a compound vertex vcompound

7: rv ← wzv

8: rv.pop← wzv.pop

9: if v.pop
rv .pop

≤ βpts then

10: return rv

11: end if

12: mark vcompound visible

13: ENQUEUE(Q, vcompound)

14: while Q 6= φ do

15: u← DEQUEUE(Q)

16: for all unmarked u′ ∈ Adj(u) do

17: mark u′ visible

18: if u′.pt /∈ PTS and d(r1, u
′) ≤ (t+ θ) then

19: rv.addEdge(u, u
′)

20: ENQUEUE(Q, u′)

21: if u′.pt ∈ PTNS then

22: rv.pop← rv.pop+ u′.pop

23: if v.pop
rv .pop

≤ βpts then

24: return rv

25: end if

26: end if

27: end if

28: end for

29: end while
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The algorithm takes city network G, set of popularity POP , warning zone wzv of the sensitive

place v for which a cloaked region will be created, a user’s privacy profile PPuser and previously

shared location r1 with time difference between two requests t as input and returns the cloaked region

rv which meets the user’s privacy requirement. The algorithm uses BFS for creating a cloaking region

for a sensitive place. Since both warning zone and cloaked region use BFS with same sensitive place,

we reuse the warning zone to create a cloaked region. We continuously add non-sensitive locations

to the warning zone and each time we merge a non-sensitive place, we calculate the probability of

associating a user with her sensitive location. The process continues until the region meets the user’s

disclosure threshold.

At first the algorithm initializes the region rv and queue Q empty and assigns associated sensitive

vertex of the warning zone into vertex v (Line 1-4). Since we already used BFS algorithm for generating

a warning zone, Algorithm 3 considers the warning zone of that sensitive place as a compound vertex

and start BFS from that compound vertex as root to create a cloaked region instead of starting from

the sensitive place v (Line 6). Computation time for creating one cloaked region is thus minimized

from previous existing solution. In lines 7-8, the algorithm initializes the cloaked region rv with

warning zone wzv and assigns the popularity of the warning zone into the cloaked region’s popularity.

If the cloaked region rv meets the user’s privacy requirement then the algorithm returns the resulting

rv (Line 9-11). Otherwise the algorithm inserts the compound vertex vcompound into Q. The while

loop of lines 14-29 iterates as long as generated cloaked region rv does not meet the user’s privacy

requirement. In the iteration, it first determines the vertex u at the head of queue Q and removes it

from Q. The for loop of lines 16-28 considers each non-visited vertex u′ in the adjacency list of u. If

u′ is not a sensitive place for the user and the time needed to travel from r1 to u′ is less than or equal

to t+ θ (condition checked for velocity based linkage attack) then the algorithm adds the edge (u, u′)

to the rv (Line 19) and places u′ at the tail of Q (Line 20). If u′ is a non-sensitive place then the

algorithm adds the popularity of u′ to the popularity of rv i.e rv.pop (Line 22). During traversal, the

algorithm checks whether the cloaked region rv meets the user’s privacy requirement or not. If yes

then BFS traversal is stopped (Line 23-24) and the algorithm adds all original edges between vertices

in the resulting tree. Output of the algorithm 3 is called a cloaked region rv for that sensitive place

v.

An example of creating a cloaked region from a warning zone is illustrated in Figure 4.3. The

graph in Figure 4.3(a) shows one sensitive place: hospital(H), some non-sensitive places: like park(P )
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Figure 4.3: Creating cloaked region for hospital H

, university(U), school(S) etc and previously generated warning zone for hospital (H). We assume

that all type of places have same popularity (0.2) and the disclosure threshold for hospital is 0.4

based on the user’s privacy profile. According to this algorithm, it considers the warning zone wz as a

compound vertex vcompound. The algorithm maps wzv into a cloaked region rv and since wzv contains

only one sensitive place(hospital), wzv.pop becomes 0.2. Hence, rv.pop is also 0.2 and the disclosure

threshold is 1 which does not meet the user’s privacy requirement. Then the algorithm inserts the

compound vertex i.e. all the leaf nodes for warning zone wzv into the queue Q. In Figure 4.3(b), it

removes vertex v2 from queue, traverses it’s adjacent vertex i.e. a non-sensitive place: university U and
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then inserts the vertex U into rv. After adding U , rv.pop becomes 0.4 and the disclosure threshold is

0.5. Since the resulting zone still does not meet the user’s privacy requirement, the iteration continues

in Figure 4.3(c). In this figure, the algorithm removes vertex v3 from the head of queue and traverses

its adjacent vertex. Adjacent vertex (P ) is non-sensitive and after adding the vertex into rv, rv.pop

becomes 0.6. Since H.pop
rv .pop

≤ 0.4, resulting rv satisfies the constraint for hospital. Figure 4.3(d) then

shows the created cloaked region for hospital(H).

4.3 Transformation

Pseudo-code of the transformation process is given in Algorithm 4 that takes city network G, set of

popularity POP , set of warning zones WZ, a user’s privacy profile PPuser, service requested time

treq, a user’s location locu as input.

Let r1 be the user’s previously revealed location/cloaked region at time t1 (Line 2). When a user

requests to share her location, first the algorithm checks whether the user needs to reveal a cloaked

region or not i.e. the algorithm checks if the user falls into any of her warning zones or not (Line 3).

If the user’s location is outside of her warning zone then the user can reveal her actual location (Line

4-5). If a user’s actual location falls into any of her warning zones then the algorithm considers that

warning zone from the set (WZ) for a cloaked region rv and adds it to the list of cloaked regions CR

(Line 7-14). After creating cloaked regions needed, the algorithm checks whether the user’s actual

location lies into any of those cloaked regions rv ∈ CR or not. If yes then it checks for velocity based

linkage attack. Cloaked region rv is considered as safe to publish if all the vertices of cloaked region

r is reachable from previously shared location r1 within (t + θ) where t is denoted for time between

previous and current request and θ is denoted as threshold value for maximum allowed time delay)

(Line 15-23).

On the other hand if the user is not in any generated cloaked regions then the algorithm publishes

the user’s actual location. A user’s actual location may fall into multiple cloaked region. In that

scenerio, the algorithm randomly chooses a cloaked region to publish. If Algorithm 3 fails to create a

cloaked region due to not having enough non-sensitive places then service will drop (Line 15).
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Algorithm 4: Tranformation(G,POP,WZ,PPuser, treq, locu)

Input: City network G = (V,E,W ), Popularity list POP , list of warning zone WZ, a user’s

privacy profile PPuser = (l, θ, PTS), service requested time treq, a user’s location locu

Output: a user’s actual location or a cloaked region rv

1: Set of cloaked region CR← φ

2: Let, previously revealed location is r1 at time t1

3: Determine the list of warning zones WZu ∈WZ which contains the user’s actual location locu

at time treq

4: if WZu is φ then

5: return rv and time t where t← (treq − t1)

6: end if

7: for all wzv ∈WZu do

8: rv ← CreateCR(G,POP,wzv, PPuser, r1, t)

9: if rv is null then

10: FlagForFailedCR← 1

11: else

12: CR.add(rv)

13: end if

14: end for

15: if locu ∈ rv where rv ∈ CR then

16: if d(r1, rv) ≤ (t+ θ) then

17: if d(r1, rv) > t then

18: return rv and time t+ θ

19: else

20: return rv and time t

21: end if

22: end if

23: end if

24: if FlagForFailedCR is 1 then

25: Drop service

26: else

27: return locu and time t

28: end if
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Figure 4.4: (a) Warning Zone wzv for Hospital (b) Cloaked region rv for Hospital

An example is given in Figure 4.4. Figure 4.4(a) shows that a user’s current location locu falls

into a warning zone wzv for hospital. According to the algorithm, it creates a cloaked region rv for

wzv (Figure 4.4(b)). Since the user’s actual location is in the cloaked region rv, algorithm publishes

rv instead of a user’s actual location.

4.4 Performance Analysis

As previously mentioned, we only generate a cloaked region for a warning zone if it contains a user’s

actual location at the requested time. Hence number of sharing a user’s actual location is increased

which ensures minimal degradation in quality of a user’s shared data. However number of created

cloaked region per request is also minimized which leads less online processing time than previous

solutions. In our approach we never publish a user’s actual location nearby her sensitive places before

considering her all privacy requirements. In that way, service drop (if needed) can not cause any

privacy breach which is discussed in Figure 1.3 from Section 1. On the other hand, we reuse pre

calculated warning zones to create cloaked regions since both processes use same BFS algorithm to

expand with same starting node. Hence computation time to create each cloaking region is also

improved.
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Security Analysis

In this chapter, we show that our approach ensures the required privacy level of a user, i.e., an

adversary can not refine a user’s sensitive locations with a probability higher than the specified

disclosure threshold. Furthermore, we show that in our approach, an adversary cannot apply the

velocity based linkage attack, the temporal linkage attack and the upcoming linkage attack refine a

user’s sensitive locations with a probability higher than the disclosure threshold.

Our approach computes a cloaked region for every sensitive location of a user by considering the

real time popularity of places and shares the cloaked region instead of the user’s actual location, if

the user is inside the cloaked region. The cloaked region generation algorithm expands the cloaked

region by gradually adding non sensitive places until the probability to identify the user’s sensitive

place becomes lower or equal to the disclosure threshold.

However, an adversary may try to increase the probability to identify a user’s sensitive location

greater than disclosure threshold by reverse engineering the cloaked region. To avoid this, during

warning zone generation we include warning zones of non-sensitive locations as a part of warning

zone of a sensitive location. This ensures that whenever a location is cloaked, an adversary is not

able to do any reverse engineering to exclude any non-sensitive place from the revealed cloaked region

to increase the probability for identifying a sensitive location. For example, we assume that our

algorithm does not include the warning zones of non-sensitive locations and whenever a user belongs

to a warning zone of a sensitive location, a cloaked region is created to publish. Since an adversary

has the knowledge about a user’s sensitive place types and from the privacy algorithm, she knows

that warning zones of sensitive locations does not include any non-sensitive places, she can predict

34
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that the user actually belongs to a sensitive location. The reason behind that is if the user belongs

to a non-sensitive location, she publishes her actual location because it is outside of the warning

zone. Hence we construct warning zones for non-sensitive locations also such that an adversary can

not identify whether a user belongs to a warning zone for a sensitive location or for non-sensitive

locations.

Upcoming linkage attack: The upcoming linkage attack occurs for not considering the move-

ment towards a sensitive location in advance. To protect against upcoming linkage attack we introduce

the concept of warning zone. Warning zone refines the area where the disclosure of a user’s actual

location may reveal a movement towards a sensitive place. In our approach, a user can reveal her

actual location in two scenarios:

• A user’s location is outside of warning zones.

• A user’s location is inside of a warning zone but outside of a cloaked region.

However, by the technique we construct a warning zone, it is not possible that a location outside

of warning zones is directly connected to any sensitive locations. In addition, a cloaked region for a

sensitive location is generated by reusing the primary warning zone of that sensitive location. Thereby,

it is also not possible for an adversary to link a user’s actual location with a sensitive location directly

if a user lies outside of a cloaked region. Hence, in both cases of sharing a user’s actual location, our

approach overcomes the upcoming linkage attack.

Temporal linkage attack: An adversary may increase the probability to associate a user with

her sensitive location inside the cloaked region if cloaked regions are pre-computed and the popularity

of places changes at the time of sharing cloaked regions. Let the cloaked region r shown in Figure 5.1(a)

is pre-computed. The popularity of the park(P ) becomes 0 at night and the probability of associating

Alice with the hospital(H) becomes 0.56 which is greater than the specified disclosure threshold (0.5)

of Alice. Thus, if Alice shares the cloaked region at night, the cloaked region fails to meet the privacy

requirement of a user due to ignoring time constraints.

In our approach, Algorithm 3 computes cloaked regions at the time of sharing location data and

thus considers the current popularity of places. At night, instead of considering the park for the

cloaked region r, the algorithm considers another non-sensitive place, i.e., the night-club(N) with

the popularity 0.3 to compute the cloaked region (Figure 5.1(b)). Hence our approach omits the

possibility of applying the temporal linkage attack using correlation between popularity of a places
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Figure 5.1: (a) Cloaked region r for Hospital precomputed (b) Cloaked region for Hospital at night

and the time constraint.

Velocity based linkage attack: Ghinita et al.[16] shows that an adversary can use the maximum

allowed velocity in a road network to refine a user’s location inside a cloaked region and the attack

is known as the velocity based linkage attack. To protect a user from the velocity based linkage

attack, our cloaked region computation technique considers only those road junctions or non-sensitive

places that are reachable from previously shared locations by the user at the time of sharing current

cloaked region. If the algorithm fails to create the required cloaked region due to lack of enough

non-sensitive places reachable from previously shared location then the algorithm drops the service.

Hence our approach protects a user from the velocity based linkage attack while sharing location data

continuously.



Chapter 6

Experiment

In this chapter, we present the experiments to evaluate the performance of our proposed approach

using real datasets. Though our solution provides better privacy in terms of addressing linkage attacks,

we compare our solution with the most recent online cloaking technique [23] in road-networks in terms

of data utility and processing time while varying different parameters of a user’s privacy profile. Since

we run our experiments in different experimental environment, we also implemented the existing

online algorithms with their provided pseudocode for comparison purpose. We measure the data

utility in terms of the service drop and the frequency of the actual location revealed. The service drop

represents the number of times a user stops sharing locations (in both precise or imprecise format).

The data utility is the maximum, if a user always shares her actual locations and the data utility is 0

if the user stops sharing her locations. On the other hand, the data utility decreases if a user reveals

cloked locations instead of her actual locations. Thus, the data utility depends on the precision of

the shared location data, and the data utility increases with the decrease of the service drops and the

increase of the number of the actual location revealed per trajectory. We run experiments for 1000

sample trajectories and determine the average processing time, service drops, and the frequency of

actual location revealed.

The remainder of this chapter is organized as follows. In Section 6.1, we describe our experimental

setup for evaluation and in Sections 6.2-6.4, we compare our solution with the most recent online

cloaking technique in road-networks [23] in terms of data utility and efficiency while varying disclosure

threshold, a user’s sensitive place types, l diversity and number of sensitive buildings respectively.

Finally, Section 6.5 validates our implementation by analyzing the output pattern of the existing
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online technique for different privacy parameters of a user’s privacy profile.

6.1 Experimental Setup

We chose a selected area of California covering approximately 32, 320 km2 from OpenStreetMap1

and processed the raw datasets to prepare the city network according to our definition. The raw

data consists of more than 15, 000 nodes (road junctions and places/stay points), 16, 894 edges (road

networks) and different place types like hospital, shopping mall, and school. Among these nodes, there

are 7, 990 places (sensitive or non-sensitive). For simplicity, we use the following fixed popularity

for places of different types: hospital(0.3), school(0.4), religious place(0.09), entertainment(0.15),

social/working place(0.06) and others (0.01). However, our approach can work for variable popularity

of places, i.e., the popularity of a place can change with time and more than one places of the same

type can have different popularity. Weight of edges represent the travel time required to traverse the

edges and values of weights are collected from OpenStreetMap. Since we have to check the distance

a user can cover during every request, we pre-compute all shortest paths between every pair of nodes

in the graph using Dijkstra’s algorithm. All algorithms are implemented in Java and experiments are

executed on an Intel Core i5 3.20GHz, windows 7 machine equipped with 4GB main memory. After

processing raw datasets, to simulate the movement of users, we randomly generate 1000 trajectories

in the considered city network, where we assume that users periodically share their locations and the

maximum number of the shared location per trajectory is 100. It is also estimated that users take

around 7 hours on average to travel through each of these trajectories.

Table 6.1 summarizes parameter settings for our experiments.

1https://www.openstreetmap.org/
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Table 6.1: Experimental Setup

Parameter Range Default

Disclosure threshold 0.8, 0.6, 0.4, 0.2, 0.1 0.1

Sensitive place type
Hospital, club,

religious place
Hospital

No. of sensitive buildings 50 to 400 -

l diversity 2 to 8 4

6.2 Effect of Disclosure Threshold and Sensitive Place

Types

Figure 6.1(a) presents the comparison in terms of efficiency i.e. the required processing time while

varying disclosure threshold. Privacy profile contains only one sensitive place type (Hospital) and the

required l diversity is 4. Dotted black line indicates existing online cloaking approach [23] and red

solid line means our approach. For better visibility we set logarithmic scale on the y−axis when the

output is in terms of processing time. According to the definition of disclosure threshold, we need

to add more non-sensitive locations to decrease the probability to identify a user’s sensitive location

inside a cloaked region if the disclosure threshold is lower. Hence the processing time to create a

cloaked region is increased with the decreased value of the disclosure threshold (Figure 6.1(a)). In

addition, from Figure 6.1(a) we can see that our solution works faster than the previous solution. This

is the benefit of warning zone. We generate cloaked region only for the warning zone which contains

a user’s actual location. The total number of created cloaked regions is thus reduced, which effects

the processing time. We also reuse a generated warning zone to create a cloaked region. Hence the

computation time to create each cloaked region is reduced.

Figures 6.1(b)-(c) show the utility comparison between both solutions. We can see that rate

of service drop in previous method [23] is higher than ours while increased values of privacy, i.e.,

disclosure threshold (Figure 6.1(b)). The number of service drops in the figure is the average count

per trajectory. Cloaked region generation precesses (our approach and existing online solution) need
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Figure 6.1: Comparison in term of processing time and utility while varying disclosure threshold

less non-sensitive locations to create a cloaked region for a sensitive location if disclosure threshold

is higher and a user can share her actual locations all the time if her disclosure threshold becomes

1. Hence the probability of the service drop due to the failure to generate cloaked regions for not

satisfying privacy requirements decreases while increasing disclosure threshold (Figure 6.1(b)) and it

comes down to 0 when disclosure threshold is 1. However existing online solution creates cloaked

regions in every request for all the sensitive locations which is reachable from previously shared

location within the request time difference. When they fail to create, they drop the service. On the

other hand, we create a cloaked region only if the warning zone contains a user’s actual location.

Since the number of required cloaked regions generated per request is less, the rate of service drop

due to the failure to compute cloaked regions is also less in our solution.

Our solution also provides better result than previous online method (Figure 6.1(c)), if we com-

pare the average number of revealed actual locations while varying disclosure threshold. With a lower

disclosure threshold, the size of each cloaked region is increased due to adding more non-sensitive

locations inside the cloaked region. Thereby, a user can share less actual locations per trajectory,

which degrades data utility. Figure 6.1(c) shows that for both processes (our approach and existing

online solution), the average number of actual revealed locations per trajectory decreases while de-

creasing the disclosure threshold. Since we only need to create a cloaked region when a user lies into

a warning zone, the total number of required cloaked regions is thus reduced and we can publish a

user’s actual locations more without having any privacy issue that in turn increases the shared data
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quality. On the other hand, both existing and our approaches use the BFS algorithm for computing

cloaked regions. Hence the size of the computed cloaked region for same sensitive place is almost same

in both approaches. Since our approach publishes higher number of actual locations than the existing

online method, considering the actual location as a cloaked region containing a single location, the

average cloaked region size per trajectory thus becomes less in our approach compared to the existing

online method.
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Figure 6.2: Comparison in term of efficiency and utility while containing more sensitive place types

in one privacy profile

In reality, it is possible that a user has multiple sensitive place types (Figure 6.2). Figure 6.2(a)

presents the comparison between the processing time and the disclosure threshold while having multi-

ple sensitive place types in the privacy profile. It clearly shows that our solution is significantly better

in terms of the processing time. Figures 6.2(b)-(c) show the comparison for utility, where we can see

that the shared data quality of existing approach in terms of the average number of revealed actual

locations and average service drop per trajectory, degrade with higher rate than ours while decreasing

the disclosure threshold.
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6.3 Effect of l Diversity

Figure 6.3 shows the effect of l diversity on the processing time and utility for our approach. We

do not consider the existing online method for this set of experiments as the online cloaking method

does not use the concept of l-diversity. In this experiment, the privacy profiles of users contain only

one sensitive place type (Hospital) and the required disclosure threshold is fixed at 0.1. If we increase

the diversity l, the processing time increases as well (Figure 6.3(a)). On the other hand, the average

service drop count increases (Figure 6.3(b)) and the number of revealed actual locations decreases

(Figure 6.3(c)) with the higher values of l. The reason behind is that with more diversity a warning

zone covers more area. Hence the probability of a user being in a warning zone is increased. We thus

need to generate more cloaked regions per request. The quality of shared data is thus degraded while

increasing l diversity (Figure 6.3(c)).
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Figure 6.3: Effect of l diversity on processing time and utility

6.4 Effect of Number of Sensitive Buildings

Since we are working with an urban network, it is possible that the number of sensitive places is high.

For scalability test, we randomly generate sensitive places inside the city network. By generating

sensitive places we mean that we randomly change the type of existing places as sensitive place type

and remaining places are of non-sensitive place type. In the first iteration of our experiment, we
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Figure 6.4: Comparison in term of processing time and utility while varying number of sensitive

buildings

consider 50 sensitive locations inside the city network and then for every next iteration, we add

50 more sensitive locations into it. This process continues until the number of sensitive locations

reaches 400. Figure 6.4 presents the comparison on efficiency and utility with respect to the number

of sensitive buildings. Other parameters are set to their default values. Figure 6.4(a) shows that

solutions work faster while the number of sensitive buildings becomes lower inside the city network.

The reason behind that is that we need to create less number of cloaked regions per request that in

turn reduces the computational overhead. On the other hand, with less number of required cloaked

regions, the service drop due to the failure to compute cloaked regions and the probability of a user

being in a cloaked region are reduced. Hence we can publish more actual locations per trajectory and

increase the data quality. Figures 6.4(b)-(c) show the impact in terms of service drop and revealed

actual locations per trajectory. From the figures we also see that existing online solution shows poor

performance compared our approach in terms of efficiency (Figure 6.4(a)) and utility (Figures 6.4(b)-

(c)).

In existing online solution, the number of sensitive locations inside the subgraph (i.e., a graph

containing all the vertices reachable from previously shared location within the time difference of two

consecutive requests) per request is increased for increasing number of sensitive buildings overall in

the city network. Hence they need to create more cloaked regions per request and the probability

of the failure to compute the cloaked region while satisfying the privacy constraint is increased as
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well. The number of sensitive buildings has also impact on our approach. With the increased number

of sensitive buildings, the number of warning zones that contain the user’s actual locations is also

increased. However we only need to be concern about those warning zones, not all the sensitive

buildings that are reachable from previously shared location. Hence the negative impact of the high

number of sensitive buildings on the shared data quality in our approach less than that of the existing

one.

6.5 Code Validation

In the existing online cloaking solution, we found that the processing time decreases with the increase

of the disclosure threshold. In Figure 6.1(a), we also see that for both the online cloaking technique

and our approach the experimental results show similar trends, i.e., the processing time decreases

with the increase of the disclosure threshold.

If we consider the data utility in terms of the average service drop while varying disclosure threshold

in existing online solution, we see that the number of times a user stops sharing her location per

trajectory i.e., the average service drop increases with the decreased value of disclosure threshold.

Figure 6.1(b) also shows the similar pattern for the average service drop per trajectory when the

value of a user’s disclosure threshold for her sensitive location is decreased.

From [23] and Figure 6.2(a)-(b), we also find that even if a user have multiple sensitive place types

in her privacy profile, the impact of disclosure threshold on the processing time and data utility are

same.

During scalability test, we found from existing online solution that the processing time increases

with increase number of sensitive buildings. Figure 6.4(a) also shows that both our approach and

existing online solution work slower while the number of sensitive buildings becomes higher inside the

city network.

In addition, with the increased number of sensitive buildings, we need to compute more cloaked

regions per request. Hence the service drop due to failure to compute cloaked regions increases with

higher value of number of sensitive buildings. If we consider Figure 6.4(b), we can find the similar

output pattern as analyzed.

Though experiments show that our approach is superior to the existing literature, the similar

increasing/decreasing trends of the data utility and processing time as [23] for varying different privacy
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parameters validate the correctness of the implementation of the existing and our approach.



Chapter 7

Conclusion

Protecting location privacy of users has become an important research topic in recent years. In this

thesis, we have developed a novel approach to ensure a user’s privacy while sharing location data

without involving any third party. Researchers have developed solutions for privacy preserving shar-

ing of location data. However, most of them focus on the Euclidean space and do not consider the

the constraints of road networks. Since an adversary can infer a user’s sensitive location using the

maximum allowed velocity in road networks, solutions considering Euclidean space cannot overcome

velocity based linkage attacks. Researchers have also proposed few techniques considering road net-

work constraints for sharing location data continuously. However, none of them are able to ensure a

user’s privacy for not protecting temporal linkage attack and/or upcoming linkage attacks. Further-

more, these approaches frequently stop sharing location data for not considering upcoming sensitive

locations in advance and thereby reduce the utility of location data. We develop techniques to protect

a user’s location privacy from all types of linkage attacks and increase data utility by reducing the

frequency of not sharing locations of users.

Our solution is a combination of offline and online phases. In the offline phase, our approach

pre-identifies warning zones for a user based on the user’s privacy profile. Warning zones refine the

areas where the disclosure of a user’s actual location may enable adversaries to infer that the user has

visited a sensitive place and thus, overcome the linkage attacks. At the time of sharing locations, in

the online phase, our approach checks whether a user falls inside a warning zone. If not, our approach

shares the user’s actual location. Otherwise, i.e., if the user is inside the warning zone, our approach

shares either cloaked or actual location depending on the the real time popularity of places. If the
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disclosure of the actual location inside a warning zone can violate the user’s privacy requirement, our

approach computes cloaked regions. We have developed an efficient algorithm to compute a user’s

cloaked locations using the pre-computed warning zones.

We have performed experiments to evaluate the performance of our solution using real datasets in

terms of privacy, utility and efficiency. Even though our solution provides better privacy by addressing

all types of linkage attacks, we compare our algorithms with the most recent technique [23] in road-

networks. Experimental results show that our approach incurs significantly less processing overhead

than the existing approach because our approach considers the computation of cloaked locations only

if a user is inside the precomputed warning zones. In addition, the reuse of computations performed

in the warning zones for computing the cloaked locations further reduces the processing overhead.

On the other hand, with our solution, a user is able to share her actual locations more without

compromising her privacy than the existing approach, which increases the utility of shared data.

In the future, we aim to consider a user’s habits, characteristics, background information while

computing a cloaked location. For example, based on a user’s financial condition an adversary can

check whether the user can afford an expensive place which lies inside a cloaked location, based on the

religious view an adversary can check whether the user can be in a religious place if it is located inside

the cloaked location. An adversary can exploit these information and predict a user’s location inside

a cloaked location with higher probability. Our challenge will be to develop an efficient algorithm

that can integrate a user’s habits, characteristics, background information while computing a cloaked

location to protect the user’s privacy.
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