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Abstract

Wireless capsule endoscopy (WCE) is the most advanced and non-invasive video

technology to detect small intestine diseases, such as bleeding. Recently, automatic

bleeding detection methods have received much attention by several researchers be-

cause of its huge diagnostic demand. In this research, efficient bleeding detection

schemes are developed to detect bleeding frames and zones in WCE video. In or-

der to detect bleeding frames, both image-based and block-based feature extraction

methods are investigated. In the image-based method, instead of using conventional

color spaces, a composite color plane is introduced and various statistical features

are computed in that plane. One major advantage of this method is its low com-

putational burden. However, the detection performance strongly depends on the

amount of bleeding zones. Next, a color histogram based feature extraction method

is proposed for block-based analysis where block statistical features are utilized.

Here the effect of number of histogram bins, block size and amount of block over-

lap on overall performance is investigated. In order to use the advantages of both

block-based and region-based method, a cluster specific feature extraction method

is proposed, which introduces an unsupervised clustering step to segment the image

into two classes prior to global feature extraction. It is found that instead of ex-

tracting features from the entire image if features from each cluster along with the

differential cluster features are used significantly better detection performance can

be achieved. For the purpose of classification, various classifiers have been tested,

such as support vector machine, k-nearest neighbor and linear discriminant analysis.

Once a bleeding image is detected in a WCE video, automatic marking of the bleed-

ing zone is very much supportive for the reviewer to diagnose the diseases. Thus, in

this research, based on the features extracted for frame classification, bleeding zone

detection schemes are also developed. Finally, in order to continuously track bleed-

ing frames in a WCE video, a post-processing algorithm is introduced considering

the decisions made on neighboring frames. Extensive experimentation is carried out

on several WCE videos and a very satisfactory performance in comparison to some

of the recent methods is achieved in terms of accuracy, sensitivity, and specificity

for both bleeding frame and zone detection.
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Chapter 1

Introduction

In this chapter, a brief description of some computer aided method of automatic

bleeding detection in wireless capsule endoscopy (WCE) is presented. It begins with

a brief introduction to the WCE technology and its scope in the diagnosis of bleeding

related abnormalities. The motivation behind the use of block-based classification

technique is its ability to utilize information from the local regions of the video

frames. The limited exploration of this technique in the existing works related to

bleeding detection has also provided a motivation for investigating the approach in

this field. The chapter presents the motivation of the thesis by providing the past

and current research scenarios in the use of various types of feature extraction and

classification techniques. The objectives and organization of the thesis are finally

presented at the end.

1.1 Background

Since the discovery of fiber-optic endoscopy to examine upper and lower gastroin-

testinal tract, diagnosis and therapy of gastrointestinal diseases were revolutionized.

However, using this type of endoscopy, in the small bowel, only the proximal duo-

denum, and distal ileum can be examined. Rest of the small bowel, which is more

than four meters in length, remained like a black box. With the discovery of capsule

endoscopy in 2000 [2], not only the small bowel became visible to the Gastroen-

terologist but also it led to the discovery of a new technology by which a swallowed

capsule could take images of the gastrointestinal track and send these to a computer

using the radio-frequency transmitter. The value, safety, and acceptability of this

technology are further documented by the fact that within a year of its discovery,

1
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it was approved by US food and drug administration (FDA) [3]. Later on, it has

been proven to be the best choice of investigation for visualizing the entire small

bowel [4]. These led to an era of physiological endoscopy, the scope of which is now

increasing day by day to include colon and esophageal capsule endoscopy, steerable

capsule and therapeutic capsule endoscopy.

1.2 Wireless Capsule Endoscopy

Wireless capsule endoscopy (WCE), also called video capsule endoscopy (VCE) or

simply capsule endoscopy (CE) is a unique endoscopic technique which was first

developed by Given Imaging [2]. It uses a different approach for examining of

the GI tract than the thin lighted tube approach where a tube is inserted down

the throat. Though the standard endoscopic techniques are able to perform both

diagnostic and limited therapeutic functions, these techniques are painful and un-

comfortable to the patients. WCE technology was thus developed as an innovative

way to perform a non-invasive examination of the GI tract. This technique employs

a pill-shaped miniaturized device which captures and transmits the images from the

interior of the GI tract of the patients. Over subsequent years, CE systems from

other manufacturers also entered the commercial market. Currently, three WCE

systems are approved by the FDA for the diagnosis of the small bowel: PillCam

SB2 by Given Imaging Ltd, Israel; Endocapsule by Olympus America Inc., Penn-

sylvania; and MicroCam by IntroMedic Company Ltd, Korea [3]. PillCam Colon of

the Given Imaging has also been recently cleared by the FDA for the visualization

of the colon [5]. Given Imaging has also developed CE systems for the visualizing

esophagus. Capsule endoscopy is used for the investigation of various small bowel

diseases, such as obscure gastrointestinal bleeding, celiac disease and other types

of mal-absorption syndrome, polyposis, Crohn disease, ulcer, tumor etc. Image of

different indications is presented in Fig. 1.1, where tuberculosis, tumors, hookworm

and bleeding symptoms are illustrated. Colon capsule and esophageal capsules are

used for esophageal and colonic diseases [6].
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Fig. 1.1: Representative capture images of WCE for different cases, (A) tuberculo-
sis with enterolith, (B, C, D) small bowel tumors, (E) hookworm, and (F) active
bleeding; source: [1]

1.2.1 Wireless Capsule Endoscopy System

The WCE system consists of four components: 1) capsule, 2) sensor array, 3) real-

time viewer and 4) computer with relevant software. All the four components along

with a schematic representation of parts of capsule and sensor location guide in the

patient body are illustrated in Fig. 1.2. Most capsules consist of a lens, 4 light

emitting diodes, a color camera, 2 batteries, a radio-frequency transmitter and an

antenna (Fig. 1.2) [7]. The camera transmits multiple (usually 2 frames per second)

images by radio-frequency through the sensor to a recorder. The specification of

‘Pillcam SB2’ capsule is listed in Table. 1.1. A patient can swallow capsule due to

its small size (26 mm in length). Before patient swallows the capsule, 8 skin antennas

are taped to the anterior abdominal wall (Fig. 1.2). The capsule, while moving inside

gastrointestinal tract, takes images and sends the images through radio-frequency

transmitters and the sensor array those are fixed at different locations on the anterior

abdominal wall (Fig. 1.2) to the data logger, which is hanging on the patient. After

the examination, the images are downloaded to a computer and investigated as
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Fig. 1.2: Components of capsule endoscopy system including schematic representa-
tion of parts of capsule and sensor location guide; source: [1]

video images with software. The use of the real-time viewer may shorten procedures

as the patient can be disconnected as soon as the suspected images are visualized

[8]. Recently, software has been upgraded with additional capabilities to assist the

reader, such as the ability to localize the capsule, blood indicator, a multi-viewing

feature and quick view modality.

1.2.2 Bleeding Related Abnormalities in WCE

GI tract bleeding accounts for approximately 300,000 hospitalizations per year in the

United States [9]. In the majority of the cases, the source of bleeding can be found

with the traditional diagnostic methods. However, the source of bleeding cannot be

readily identified in approximately 5% of patients [10]. These bleeding incidences

with unknown origin are called obscure gastrointestinal bleeding (OGIB). The small

bowel has been known to be one of the prime locations of lesions leading to OGIB.

The visualization of the entire small intestine is not possible with upper endoscopy

and colonoscopy. Technologies like WCE and push enteroscopy have recently been
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Table 1.1: Specification of Capsule

Pillcam SB2
Length (mm) 26

Weight (g) 3.4
Number of cameras 1

Frame rate per second 2
Image sensor CMOS

Battery life (hr) 8
Number of Antenas 8

advanced to make the small intestine accessible for examination [11]. Also, among

these two methods, it was studied that WCE is preferred by patients because of less

pain and more ease and comfort associated with the procedure [12]. Other works

have also shown that WCE has a larger range of access to the small intestine, and

thus can identify more bleeding sites than push enteroscopy [12]. WCE has thus

established itself as a gold standard tool in the examination of the small bowel.

1.3 Literature Review

Standard endoscopy and capsule endoscopy both have the ability to view the GI

tract directly. However, the two systems have different operation scenarios. In

standard endoscopy procedures, the diagnosis process is controlled by the physician.

Given that the whole process is viewed by the physician in real time anyway; manual

marking of suspicious regions is not time-consuming. But in the case of WCE, the

pill-shaped device moves along the GI tract in a manner similar to food, which is

through natural peristalsis. Thus, the diagnosis process is not controllable as the

camera cannot be moved according to the desire of the endoscopist. The recorded

video is then viewed later for examination. The real time viewing of the process is

infeasible as the complete process lasts for an average of 8 hours. Also, the process

produces around 55,000 frames per patient per examination and it requires around 2

hours of time for a physician to inspect the video [13]. Thus, there is a high scope of

computer-assisted diagnosis tools in WCE for making the diagnosis more accurate,

reliable and fast. The inspection time of the video can be greatly reduced if the

suspicious frames could be recognized by a computer system. The suspicious frames
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thus selected could then be presented to the physician for the final decision. Further-

more, there may be some bleeding regions and abnormal characters which cannot

be recognized by naked eyes due to their size or distribution. All these problems

motivate researchers to develop the computer aided intelligent bleeding detection

technology in reducing the burden of physicians. Given Imaging (Yoqneam, Israel)

provides a tool called Suspected Blood Indicator (SBI) that detects red pixel in the

images [14]. However, studies have shown that performance of SBI is not sufficient

to screen all types of bleeding in the GI tract [15], [16]. This has motivated a lot of

studies in the development of computer-assisted diagnosis tools to automatically de-

tect bleeding frames from WCE video and hence localize bleeding areas in a detected

bleeding image.

A number of studies related to computer-aided diagnosis (CAD) in capsule en-

doscopy are pattern recognition problems that perform classification of images into

different classes according to the image features. Image features characterize certain

properties of images. Features that describe image properties, such as color, texture,

brightness, contrast etc., have been widely studied and used in pattern recognition

involving images. For the purpose of analysis, different color spaces are utilized,

namely RGB (red-green-blue), HSV (hue-saturation-value), CMYK (cyan-magenta-

yellow-black), YIQ, YUV, CIElab. The classification itself can be of various types

based on the identification area, which is the area of the image that is used in the

calculation of feature. It can range from whole image and image fragments to even

the smallest image element i.e. the image pixel. The choice of an identification area

for the mathematical formulation of the features depends on its appropriateness to

the aim of the image analysis. According to the identification area, classification is

performed in four ways: pixel-based, image-based, patch-based, and region-based.

Pixel-based methods analyze and classify every pixel in the images. Such a

scheme are followed in [17], [18]. Both of these methods require multi-dimensional

feature vector for processing every pixel in an image. In [17], both RGB and HSI

color spaces are used to obtain features and for the purpose of classification proba-

bilistic neural network (PNN) is considered. On the other hand, [18] uses artificial

neural network (ANN) classifier. Classification based on this kind of feature ex-

traction scheme requires a high computational cost for a single image, which gets
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even worse for higher resolution images. As a result, these methods may require a

long duration of time and may not be very effective for online WCE analysis. Also,

features derived from a single pixel may not be a good representative of the local

and global neighborhood.

Image-based methods ( [19]- [20]) generate features utilizing the area of the whole

image. The features thus characterize the whole images which are then subject to

classification. In [19], [21], [22], image-based features like statistical feature obtained

from the histogram, color plane histogram, and word based histogram are utilized.

And for the purpose of classification probabilistic neural network (PNN) is used

in [19] support vector machine (SVM) is employed in [21], in [22] both SVM and

k-nearest neighbor (KNN) classifiers are used. In [20], Histogram variance control

based bleeding detection scheme is proposed, where CIElab color space is applied to

extract the features. The main advantages of image-based classification method are

its simplicity and low computational cost in feature extraction and classification.

However, delineation of the bleeding areas in the WCE image may not be possible

directly from the extracted image-based features. While identifying the bleeding

zones in a WCE image leads to another classification task, where a pixel-based

classification may be suitable.

An intermediate area of identification is thus generally preferred in capsule en-

doscopy images where features are generated from image patches. Image patches are

derived by dividing an image into blocks of fixed shape and size. One such example

is to divide an image into rectangular blocks of 8 × 8 pixels. These image patches

characterize local image features and are computationally less rigorous than pixel

based schemes. Authors in [23] performed a classification based on image patches by

dividing images (256×256 pixel resolution) into rectangular blocks of 30×30 pixels

and similarly, in [24] classification based on blocks of 10 × 10 pixel on images of

400× 400 resolution is performed. In [24], a threshold based approach of statistical

parameters of each block is proposed. In [23], chrominance moment computed in

each block in HSI color space is utilized as the color texture feature. In addition,

uniform local binary pattern (LBP) is used to extract texture representation model,

which is applied to discriminate normal regions and bleeding regions in WCE images.

Classification of bleeding regions using the multilayer perceptron neural network is
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then carried out. The main drawback of patch or block based methods is that it

cannot accurately delineate bleeding zones due to arbitrary shape and size of bleed-

ing regions. Moreover, the bleeding detection performance and computational cost

highly depend on block size. However, block/patch based feature extraction miti-

gates single pixel randomness problem which is considered a common phenomenon

in WCE. This block based feature extraction method has significant potential to

detect bleeding images from WCE videos.

In region-based methods, instead of dealing with the entire image, certain regions

are chosen for further processing. Image regions are image partitions of arbitrary

shape and size which are derived by dividing an image into several pixel groups, such

that the individual groups contain pixels which are similar to each other with respect

to some criteria. Lesions are generally of arbitrary shapes and sizes which make fixed

sized rectangular or circular patches unsuitable to serve as effective ROIs. In [25],

a region growing method of bleeding image detection is developed. It is shown that

all the features used in the study performed better classification when the features

were derived from the image regions. One drawback of this method is that the

initial bleeding seed needs to be marked manually, thus, this method is not fully au-

tomated rather semi-automated. Another region-based method is developed in [26],

where a super-pixel segmentation is proposed to reduce the computational complex-

ity while maintaining high diagnostic accuracy. A feature vector of each super-pixel

is extracted using the red ratio in RGB color space and fed into a support vector

machine (SVM) for classification. In regions based methods, bleeding detection per-

formance extremely depends on the quality of selected regions of interest (ROI) and

sometimes finding the ROI itself may need complex and computational expensive

algorithm. Hence, there is still demand to develop a scheme which utilizes the ad-

vantage of both block and region-based approaches to enhance feature quality and

improve classification performance.

1.4 Motivation of This Research

The motivation of this research is to develop efficient automated computer-aided

methods to detect bleeding frames in WCE video. Once a bleeding image is de-

tected in a WCE video, automatic marking of the bleeding zone by the bleeding



9

detection software is very much supportive for the reviewer to diagnose the diseases.

Thus, another motivation is to introduce a bleeding zones detection scheme with

high accuracy and tracking bleeding frames of a WCE video. In order to detect

bleeding frame, we investigate image-based, block-based and combination of block

and region-based feature extraction methods. In the image-based method, we intro-

duced composite color plane and various statistical features. Color histogram feature

is proposed for block-based analysis. In order to use the advantages of both block-

based and region-based method a combination of block and region-based method

is proposed using unsupervised clustering scheme. Very limited research has been

done to detect bleeding zones. Detection of the bleeding zone with high accuracy

is a challenging task. Thus, in this thesis, bleeding zone detection algorithm is also

developed to delineate bleeding regions with high accuracy. Most of the methods

described in the literature are reported performance result considering bleeding and

non-bleeding dataset collected discretely from a number of WCE videos. It is to be

noted that in test cases of CAD system, input data is a video file, thus, performance

needs to be analyzed in continuous frames of a given video. However, the very lim-

ited paper reported video level performance. A fast-tracking of bleeding frames in

WCE video is a difficult task. In this thesis, video level performance of different

video clips is investigated and hence a post-processing algorithm is proposed using

labeling decision of continuous frame.

1.5 Objectives and Scope

The objectives and Scope of this thesis are:

1. To propose efficient feature extraction schemes utilizing composite color plane

and color histogram in WCE images.

2. To develop region-based feature quality enhancement scheme.

3. To develop post-processing scheme to obtain better accuracy in tracking video

frames and verify the detection performance on continuous WCE videos

4. To identify bleeding region precisely in a detected bleeding frame
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The outcome of this thesis is an automatic computer aided technique to detect

bleeding frame and zone from WCE video recordings, which will help the physicians

to diagnose different gastrointestinal diseases. However, detection of other abnor-

malities (like tumor, ulcer, polyp etc.), development of WCE device are beyond the

scope of this thesis.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows

In Chapter 2, a feature extraction is proposed utilizing the whole image (called

holistic approach) in composite color space. A G/R composite plane is introduced.

Different statistical features are investigated. A post-processing scheme is intro-

duced that enhances the performance of bleeding frame detection in the continuous

video frame. Finally, a bleeding zone segmentation method is proposed. Detail ex-

perimental results on the publicly available database are reported along with com-

parative performance analysis.

In Chapter 3, region-based feature quality enhancement method is proposed to

detect bleeding frame. Here, at first, the given image is segmented into two clusters

using local feature extracted from each block. Next, a global feature extraction

method is introduced where cluster-specific features are used along with the differ-

ential cluster feature. Finally, the bleeding zone is detected from a bleeding image.

Detail experimental results are presented considering a variation of block size and

amount overlapped between consecutive blocks. Comparative performance analysis

is also presented between proposed method and few recent papers from the litera-

ture.

In Chapter 4, a proposed color histogram based feature extraction method is pre-

sented. Instead of using intensity information of a single color plane, all three color

planes are utilized in extracting color histogram feature, which is considered more

prominent and consistent representation of bleeding. A feature reduction scheme is

developed that reduces feature vector dimension. Performance result of color his-

togram feature is reported considering the block-based and cluster-based approach.

Chapter 5 summarizes the outcome of this thesis with some concluding remarks

and possible future works.



Chapter 2

Pixel Based Feature Extraction of
WCE Image

In this chapter, pixel based holistic feature extraction scheme is proposed for bleed-

ing frame detection of WCE recordings. Unlike conventional methods, instead of

directly using RGB color space, a transform color domain is introduced. Higher and

lower order statistical analysis in transform color domain are carried out to extract

feature from an entire image. Feature-based supervised classification using support

vector machine (SVM) is performed to differentiate bleeding and non-bleeding im-

ages. Next, to improve the bleeding frame detection performance in WCE video,

a post-processing scheme is developed using a variation of temporal characteristics

of consecutive frames. Finally, a zone detection algorithm is proposed to identify

bleeding regions in the detected bleeding images. Extensive experimentation is car-

ried out on a numerous number of WCE images and videos. It is observed that the

proposed algorithm can detect bleeding frame and bleeding zone from WCE video

recordings with a satisfactory level of performance.

2.1 Bleeding Frame Detection

In this method, the feature is extracted considering the whole image (holistic ap-

proach). Workflow of the proposed method is illustrated in Fig. 2.1. The input of

the proposed method is a WCE video segment, followed by preprocessing, domain

transformation, feature extraction, classification and post-processing. The output

is the label of the frames (bleeding or non-bleeding) and detected bleeding zone of a

bleeding image. The WCE video recordings possess low frame rate, e.g. 2 frames/sec

and generally the dimension of the image frame is 576×576. A circular region in the

11



12

given WCE image contains necessary information due to its constructional nature of

intestinal pathway. Typical bleeding and non-bleeding WCE images are presented

in Fig. 2.4. Figs 2.4 (a) and (b) presents bleeding images where red zone indicate

bleeding. Note that in Fig. 2.4 (a) the presence of bleeding zone is very prominent

while in the case of fig. 2.4 (b), it is very difficult to precisely locate bleeding zones.

In Fig. 2.4 (c) and (d), non-bleeding images are shown, where red bleeding zones

are absent. However, it is observed that in Fig. 2.4 (d) light red bleeding like areas

appear which leads to confusion. Hence, just by looking at WCE images it may

not always possible to differentiate bleeding and non-bleeding images. Moreover,

automatic bleeding zone detection is also very difficult.

Fig. 2.1: Illustration of work flow of proposed method

(a) (b) (c) (d)

Fig. 2.2: Examples of RGB WCE images. (a), (b) bleeding images, (c), (d) non-
bleeding images

2.1.1 Preprocessing

In WCE video, images are captured at a regular interval and in each image, as

mention before the necessary information is preserved in the central region (circular

or semi-octagonal) as shown in Fig. 2.3 (a). Around the central zone of each image,

there exist black regions carrying no information related to bleeding or non-bleeding
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tissues. If the entire image is considered for feature extraction, the presence of

these black surround pixels can degrade the quality of extracted features. It is

observed that the pixels residing in the black outer zones possess extremely low-

intensity value with respect to the pixels of the desired central zones. In the proposed

method, at the beginning, black pixels of the outer zone are removed considering the

change in pixel values and circular shape of the desired region. Fig. 2.3 represents

the step by step output during removing the undesired outer black zones. First,

the black portions of the four sides (left, right, top, and bottom) are removed,

which is demonstrated in Fig. 2.3 (b) and then the black portions located in the

corner areas are removed. The extracted image contains the required information

and demonstrates characterization and description of WCE. Instead of using the

entire image, the resulting black-boundary pixel eliminated images are considered

for further processing, which makes feature extraction procedure much effective and

involves less computational burden.

(a) (b) (c)

Fig. 2.3: Illustration of preprocessing step: (a) original WCE frame; (b) after re-
moving black portions of the four sides; (c) final preprocessed image after removing
corner black regions.

2.1.2 Transformation from RGB to a Composite Plane

Various color spaces are used by different researchers to visualize bleeding regions

in WCE images [22], [25], [27]. Among them, RGB color space is most widely used

for detecting bleeding images in WCE video. The reasons behind such a practice

are: (i) the available format of WCE images use RGB color space and (ii) there is a

common understanding that the color of bleeding belongs to specific shades of red.

Because of intensity level variations of R, G, and B, different shades of a particular

color can be obtained. For example, red (255, 0, 0), maroon (128, 0, 0), dark red

(139, 0, 0) and firebrick (174, 34, 34) have different RGB values (which are provided



14

inside the parenthesis). Bleeding zones in a WCE image may contain different

shades of red and also the non-bleeding images may contain similar shades. Hence,

it is very difficult to identify bleeding zones directly from the RGB intensity values.

Another important factor affecting the bleeding zone detection in WCE images is

the change in illumination during the long duration of the endoscopy. One possible

reason behind the illumination variation is capsule’s battery weakening over time.

It is found that the change in illumination causes intensity variation in R, G, and

B planes intensively. This unwanted intensity variation may hinder usual intensity

pattern due to the presence of bleeding and non-bleeding zones. As a result, it will

play a detrimental role in feature extraction.

(a) (b) (c) (d)

Fig. 2.4: Examples of RGB WCE images. (a), (b) bleeding images, (c), (d) non-
bleeding images

In Fig. 2.4, examples of WCE images (bleeding and non-bleeding) in RGB

color plane are shown. It is observed that in the case of bleeding images size and

shape of bleeding zones vary significantly. In Fig. 2.4(a) a small portion is bleeding

and in Fig. 2.4(b) comparatively larger portion is bleeding. In the case of non-

bleeding images, bleeding like zones may appear as shown in Fig. 2.4(d). In order

to demonstrate the variation in intensity distribution between bleeding and non-

bleeding zones, in Fig. 2.5, histograms of intensity levels of red, green and blue

planes are shown considering two bleeding and non-bleeding images presented in

Fig. 2.4. From the figure, it is observed that intensity distribution in bleeding zones

shows interesting characteristics, almost no overlaps between R and G planes and

R and B planes. However, in non-bleeding zones, severe overlaps are observed in

the combination of any two RGB planes. This gives an idea that instead of dealing

with a single plane, a combination of two planes may provide more discriminating

characteristics. In order to further understand the tendency of pixel values, two-
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Fig. 2.5: Histogram obtained from bleeding and non-bleeding zones in different
color planes: (a) red plane of bleeding zone; (b) red plane of non-bleeding zone;(c)
green plane of bleeding zone; (d) green plane of non-bleeding zone; (e) blue plane of
bleeding zone; (f) blue plane of non-bleeding zone

dimensional plots considering G-R and B-R planes are shown in Fig. 2.6. Since

a large amount of overlaps exists between G and B planes, G-B combination is

ignored. It is to be mentioned that in literature it is well established that the

intensity distribution in the blue plane does not carry significant information in

discriminating bleeding and non-bleeding zones [28]. From Fig. 2.6(b) it is found

that in B-R plot, bleeding and non-bleeding pixels are largely overlapped. On the

other hand, it is clearly observed in Fig. 2.6(a) that G-R plot offers separability

of bleeding and non-bleeding pixels. In this case, pixels with high G values and

low R values and vice versa. From R-plane and G-plane histograms, one can easily
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notice that R values are relatively higher in this figure approximately higher than

70 and G values are lower (approximately less than 70). As a result, considering a

composite plane consisting of the ratio of intensity values of G and R planes can

provide a better option for bleeding pixel detection in comparison to using a single

(G or R) plane. The ratio plane is expected to offer narrow band histogram and

help in reducing the effect of unwanted pixel intensity variation due to illumination

change.

(a)

(b)

Fig. 2.6: Bleeding and non-bleeding pixel distribution, (a) distribution in RG in 2D
space, (b) distribution in RB in 2D space

In order to investigate the histogram characteristics of composite planes con-

structed from the ratios of intensity levels, different combinations of red, green and

blue planes are considered. In Fig. 2.7, histograms of bleeding and non-bleeding
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Fig. 2.7: Histogram obtained from bleeding and non-bleeding zones in different ratio
planes: (a) green to red ratio (G/R) plane of bleeding zone; (b) green to red ratio
(G/R) plane of non-bleeding zone; (c) blue to red ratio (B/R) plane of bleeding
zone; (d) blue to red ratio (B/R) plane of non-bleeding zone; (e) blue to green ratio
(B/G) plane of bleeding zone; (f) blue to green ratio (B/G) plane of non-bleeding
zone.

zones in different ratio planes are shown. In Figs. 2.7 (a) and (b), green to red

(G/R) transformed domain is considered. It is observed that a narrow band his-

togram is obtained in comparison to those shown in Fig. 2.5. Moreover, it exhibits

quite separable histogram patterns between bleeding and non-bleeding cases with

the reasonably small amount of overlap. Similarly, in Figs. 2.7 (c)-(f), histograms

considering blue to red (B/R) transformed domain and blue to green (B/G) trans-

formed domain are shown. As it is already mentioned that the blue plane does
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not carry significant information to distinguish between bleeding and non-bleeding

zones, the histograms shown in Figs. 2.7 (c)-(f) do not exhibit narrow band pattern

and contain a significant amount of overlaps. Hence in the proposed method, we

propose to use a composite plane constructed from the pixel intensity ratio of green

and red planes, namely G/R pixel ratio plane. Feature extraction is carried out from

G/R plane, which is expected to overcome the problems of unwanted illumination

variation and inconsistencies in intensity pattern in various bleeding zones.

2.1.3 Statistical Feature Extraction from G/R Domain

Statistical features are acquired from images and tested successively to find the

best-suited combination of features to be used for detecting bleeding images. Apart

from most commonly used first and second order Statistical measures, e.g. mean,

median, mode, variance, maxima, and minima, some higher order measures are also

utilized e.g. kurtosis, and skewness. In what follows, the necessary formulas used

for calculating the above statistical parameters are presented

Mean: The mean is the arithmetic average of a set of values. In the images,

mean is defined as summation of pixel intensities divided by total number of pixels.

If the presented regions in WCE image contain NT pixels and an i-th pixel located

at (xi, yi) has pixel intensity ratio C(xi, yi) then mean is calculated as

µ =
1

NT

NT∑
i=1

C(xi, yi); NT = total no. of pixels (2.1)

Mode: The mode is the value that appears most often in a set of data i.e., which

is most frequent. In G to R intensity ratio plane WCE image, the mode is defined

as the ratio which occurs most.

Variance: Variance is a measure of dispersion. It is the average squared distance

between the mean and each item in the population or in the sample. Mathematically

for WCE images

σ2 =
1

NT

NT∑
i=1

(
C(xi, yi)− µ

)2
(2.2)

where µ is the mean defined in equation 2.1 and C(x, y) is the G to R pixel intensity

ratio.

Median: The median is the numerical value separating the higher half of a data

sample or a population from the lower half. The median of a finite list of numbers
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can be found by arranging all the observations from the lowest value to the highest

value and picking the middle one. In WCE images, median is calculated from the

pixel intensity ratio plane.

Kurtosis: Kurtosis characterizes the relative peakedness or flatness of a distri-

bution compared with the normal distribution. It is define as

Kurtosis =
M4

σ4
(2.3)

where M4 is the fourth moment about the mean k-th moment about the mean is

defined as

M4 =
1

NT

NT∑
i=1

(
C(xi, yi)− µ

)k
(2.4)

where µ is the mean defined in equation 2.1 and C(x, y) is the G to R pixel intensity

ratio.

Skewness: Skewness is the measure of asymmetry of a data set or distribution

about its mean. The skewness value can be positive or negative, or even undefined.

Mathematically it is the ratio of the third moment (M3) and the second moment

(M2 = σ2) which is raised to the power of 3/2 and defined as

Skewness =
M3

M
3/2
2

=
M3

σ3
(2.5)

Maxima and Minima: The largest value of a data set is known as maxima while

the smallest value is called minima.

Using above definitions, the statistical parameters are calculated in G/R pixel

intensity ratio domain and used as features for bleeding detection. The behavior of

each statistical parameter for bleeding and non-bleeding images is investigated.

Proposed Pixel Intensity Ratio Count Feature

It is well known that red is the most dominating color that naturally helps in iden-

tifying bleeding. Hence, while considering the intensity ratio planes in RGB color

space, the level of pixel intensity values of other two colors (G, B) with respect to red

(R) pixel intensity may help in extracting bleeding characteristics. However, from

the sample distribution is shown in Fig. 2.7, only G to R ratio plane exhibits capa-

bilities of distinguishing characteristics between bleeding and non-bleeding pixel. In

this case, it is observed that the distributions of bleeding and non-bleeding pixels are
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clearly separable. Thus, a threshold value of G/R pixel ratio (TG/R can be chosen

to differentiate pixels into two classes. It is expected that bleeding zone pixels will

have G/R pixel intensity ratio less than TG/R and non- bleeding zone pixels possess

ratio value greater than TG/R. From these observations, in the proposed method,

the number of pixels in an image that satisfies condition i.e., C(xi, yi) ≤ TG/R is

counted. The threshold value can be obtained based on histogram presented in Fig.

2.7 and experimental result using several bleeding and non-bleeding images. This

pixel intensity ratio count is also used as a feature in the proposed method. 2.8, the

distribution of pixel intensity ratio count feature is presented in box plot for 400

WCE images (200 bleeding images and 200 non-bleeding images). In the figure, left

and right side box represents the feature acquired from bleeding and non-bleeding

images respectively. For the purpose of acquiring box plot, the value of TG/R is set

as 1
2
. From the box plot, it is found that feature from non-bleeding images concen-

trated in a very small range with very low centroid value. However, for bleeding

images, it is found that ratio-count feature distributed in a wide range, it exhibits

well-separated centroid value from the non-bleeding image. It is also shown that

intensity ratio feature has non-overlapping (marginally overlapped) characteristic

thus it can be referred, this feature is highly separable for bleeding detection in

WCE images.

Fig. 2.8: Color ratio distribution of WCE images.

Average Intensity in Different Color Planes

Color texture statistical feature in terms of average pixel intensity of R, G, and B

color planes is also incorporated in the overall feature vector in order to enhance the

feature quality. The mean pixel intensity Ei of j-th color plane can be calculated
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using the following equation

Ej =
1

NT

NT∑
i=1

Ij(xi, yi) (2.6)

Hence, apart from statistical features, pixel intensity ratio count and three mean

intensities of R, G, B are included in the proposed feature vector.

2.1.4 Classifier

K-nearest Neighbor (KNN) Classifier

To classify the bleeding and non-bleeding WCE images the K-nearest neighbor

(KNN) classifier is used. Because of its simplicity and satisfactory performance,

KNN is one of the most widely used classifiers in several pattern recognition prob-

lems. It classifies the test WCE image by comparing the extracted feature with

K neighboring feature obtained from train data set by considering a distance func-

tion. After classification, the KNN classifier provides a class membership. This class

membership assigned to a test object is determined from votes of the majority K

nearest neighbors. In the proposed method, Euclidean distance is used to classify

test image considering the class labels of K nearest image patterns. Different val-

ues of K can be used and thus, the classification performance is tested by varying

K values. However, if the quality of extracted features is good, less variation in

classification performance will be observed with respect to different K values.

Support Vector Machine (SVM) Classifier

In the proposed method, the support vector machine (SVM) is also employed to

classify the test WCE images. The key component in SVM learning is to identify a

set of representative training vectors deemed to be the most useful for shaping the

(linear or nonlinear) decision boundary. These training vectors are called support

vectors, which need to lie right on the marginal hyper-planes.

Considering a training dataset which consists of expression profiles of N images

xi, where each M dimensional expression profile xi = xi(n), n = 1, · · · ,M is asso-

ciated with a teacher value or class label (e.g. bleeding and non-bleeding). Given

a discriminant function f(x) = f(w, x), the objective is to find an M dimensional

decision vector w = [w1 w2 · · · wM ]T so that f(xi) can best match with teacher
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value yi, with all the training dataset taken into consideration. Considering 2 class

problem with teacher values +1 and −1, in the basic SVM, all the training vectors

xi satisfy the following inequalities:

wTxi + b ≥ +1, for all positive xi

wTxi + b ≤ −1, for all negative xi (2.7)

An error term is defined as εi ≡ wTxi + b − yi. The main objective here is to

create a maximum margin to separate the two opposite classes. Maximization of

the separation margin 2/‖w‖ can be achieved by minimizing ‖w‖. Apart from this,

considering a set of slack variables {ξi}Ni=1 ≥ 0, the optimization formula can be

written as

minw =
{1

2
‖w‖2 + C

∑
i

ξi

}
, subject to yiεi + ξi ≥ 0 (2.8)

The above quadratic programming optimization problem is solvable by using convex

optimization techniques, more specifically, by using a Lagrangian one can obtain the

following Wolfe dual-optimization formulation in terms of empirical vector a

maxa L(a) = aTy − 1

2
aTKa (2.9)

subject to
N∑
i=1

ai = 0, w =
N∑
i=1

aixi, 0 ≤ aiyi ≤ C, i = 1, · · · , N

where kernel matric K is given by

K =


K(x1, x1) K(x1, x2) ... K(x1, xN)
K(x2, x1) K(x2, x2) ... K(x2, xN)

...
... ...

...
K(xN , x1) K(xN , x2) ... K(xN , xN)

 (2.10)

and it is jointly determined by the kernel function K(x, y) and the training vectors.

After a is learned, the decision boundary is characterized by f(x) = 0, where f(x)

is the discriminant function defined as

f(x) =
N∑
i=1

aiK(xi, x) + b (2.11)

It is to be mentioned that the (i, j)-th element of the kernel matrix can be defined as

the inner product of the i-th and j-th training vectors. A nonlinear kernel function
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can also be adopted as the inner product. In the proposed scheme, most widely used

radial basis function (RBF) is used as the kernel, which is an exponential function. It

is shown that the kernel approach hinges upon the mapping from the original space

to a new representative vector space. Moreover, the number of basis function for

the kernel vector space is usually (much) greater than the dimension of the original

feature space. This plays a major role facilitating the design of highly discriminant

classifiers. This is the major reason why the kernel based approach is usually much

more effective for supervised classification.

2.1.5 Post-Processing

In previous subsections, a complete method of classifying a test WCE image as

bleeding or non-bleeding is proposed. In the WCE based diagnosis, generally, the

objective is to find out the bleeding frames in a WCE video recording. In this

case, each frame of a given WCE video needs to be tested. However, in most of

the reported literature, for the performance evaluation, instead of using the entire

WCE video, a set of bleeding and non-bleeding images collected from different WCE

video recordings are used [22], [27], [23]. In the result section, the bleeding detection

performance of the proposed method using such a set of bleeding and non-bleeding

images is also presented. Apart from this, considering that the video recording

or the sequential WCE frames are available, in this subsection, a post-processing

algorithm is proposed where prior to finalizing the decision on a test image, pre-

liminary decisions on neighborhood frames are taken into consideration. Depending

on the preliminary decisions of nearby frames of a test image, the decision of that

test image is either preserved or revised. Based on extensive experimentation on

several bleeding and non-bleeding video recordings, it is found that in general, an

isolated bleeding or non-bleeding frame does not appear, rather similar types of

frames appear in consecutive frames. Even similar type of frames (either bleeding

or non-bleeding), appearing less than three consecutive frames is rarely observed.

In the proposed post-processing scheme, instead of dealing with entire video at a

time, consecutive small portions of videos, each consisting of a certain number of

frames (L) are sequentially tested. In order to test a frame, an equal number of

prior and post frames in the neighborhood of that particular test frame are taken
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Fig. 2.9: Illustration of post processing scheme

into consideration. For example, for testing a frame which is preliminary declared

as non-bleeding, if two post and prior frames are considered along with the test

frame, there will be in total five frames under investigation. Based on the majority

voting principle, when the majority of frames possess labels opposite to the label of

the test frame, further checking is proposed to finalize the label of that test frame.

In the example case stated before, for the non-bleeding (N) test frame, among four

neighborhood frames under investigation, if three of them are labeled as bleeding

(B), according to the proposed hypothesis, the test frame needs to be checked again.

Thus, for a non-bleeding test frame, if one post and prior frames are considered (in

total three frames), among possible four cases (NNN, NNB, BNN, BNB) only one

case (BNB) needs to be rechecked. Similarly, if two post and prior frames are con-

sidered (in total five frames), among 24 cases (xxNxx, x may be N or B), five cases

need to be rechecked. In general, considering in total r number of frames, among

2(r−1) cases, total
∑r−1

i=(r+1)/2
r−1Ci cases need to be rechecked. With the implemen-

tation of the rechecking process, there is a possibility of changing the preliminary

decision of a test image, which may not be a good idea especially for images having

preliminary bleeding labels. The reason behind of that, changing mistakenly the

label of a bleeding image may have severe consequences in comparison to the case

where a non-bleeding image is mistakenly labeled as bleeding. As a result in the

proposed method of post-processing, only images having preliminary non-bleeding

labels are considered. For better visualization, the proposed post-processing scheme

is pictorially illustrated in Fig. 2.9. In the figure, test image and its corresponding

investigation zone are presented with the help of frame sequences.
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For the purpose of rechecking a distance based criteria using proposed feature

vector is proposed. As described before, from each image features are extracted.

Bleeding labeled image corresponds to bleeding feature (Fb) and similarly non-

bleeding image corresponds to non-bleeding feature (Fn). The objective is to in-

vestigate whether a true bleeding image is incorrectly labeled as non-bleeding image

or not. It is sufficient to compute two types of feature distances, 1) feature distance

between bleeding and test frame (db) and 2) feature distance between non-bleeding

and test frame (dn). Therefore, the feature distance form bleeding feature (Db) and

non-bleeding feature (Dn) are calculated as following

db
i = |Fb

i − Ft| (2.12)

Db =
1

P

P∑
i=1

db
i (2.13)

dn
i = |Fn

i − Ft| (2.14)

Dn =
1

Q

Q∑
i=1

dn
i (2.15)

where, Ft = feature vector of test frame

Fb
i = feature vector of i-th bleeding label frame

Fn
i = feature vector of i-th non-bleeding label frame

db
i = distance feature vector between an i-th bleeding

label image and test frame

dn
i = distance feature vector between an i-th non-

bleeding label image and test frame

P = total number of bleeding label images in an

investigation pool

Q = total number of non-bleeding label images in an

investigation pool

To take the final decision, whether the label of test frame needs to be changed

or not, following conditions are tested.

• if Db > Dn, mark test frame as non-bleeding
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• if Db < Dn, mark test frame as bleeding

• if Db = Dn, previous decision is kept

In this process, according to the condition of feature distance previously declared

non-bleeding frame may be revised to bleeding.

2.2 Bleeding Zone Detection

Once a bleeding image is detected in a WCE video, it would be helpful for the user

if bleeding zones in that image can be automatically marked. Automatic bleeding

zone detection can provide several advantages, namely

• Quick visualization of the region of interest intensively

• Finalizing the bleeding detection decision of that image

• Further detail analysis on that bleeding region

• Investigating the change in bleeding characteristics in consecutive video frames.

Most of the available bleeding detection methods do not offer automatic bleeding

zone detection facility. However in this research, an automatic bleeding zone detec-

tion scheme is proposed, which is applied for identifying bleeding regions in detected

bleeding frames. To detect bleeding pixel, a threshold based method in G/R pixel

intensity domain is proposed. At first, an edge detection algorithm is implemented

to sort out the edges. Then, a threshold value is imposed to label bleeding pixel and

finally Fine tune of bleeding zone with the help of morphology operation. Major

steps, to be performed in the proposed bleeding zone detection algorithm are given

below

• Detect edge and remove it from the given image

• Impose threshold to detect bleeding pixels

• Fine tuning of bleeding zone with the help of morphology operation.

The objective of this section is to detect bleeding zone from a bleeding WCE

image. Generally, it is observed that edge of the WCE image does not contain
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any bleeding pixels. Thus, from the common understanding, the edge regions of a

bleeding image should be detected and removed. For the purpose of edge detection

“Sobel method” is implemented [29]. This method finds edges using the Sobel

approximation to the derivative. It returns edges at those points where the gradient

of pixel intensity is maximum. After detecting the edges of a given image, it is

removed from the image.

In order to detect bleeding pixels in the bleeding image, simple threshold-based

method is introduced. As observed in Fig. 2.7, bleeding pixels are concentrated

below the threshold value (TG/R) of 1
2

and on the other hand non-bleeding pixels are

concentrated above that threshold value. Thus, in G/R domain, to detect bleeding

zone, the TG/R value is considered around 1
2
, below that threshold value all the pixels

are marked as bleeding pixels. To find out the effective TG/R value, a quantitative

analysis is performed by varying the value of TG/R considering both positive and neg-

ative increment (small amount e.g. 0.05) around 1
2

to archive the best performance

result, which is reported in result section.

(a) (b)

(c) (d)

Fig. 2.10: Illustration of bleeding zone detection steps, (a) bleeding image, (b) edge
regions, (c) after applying threshold, (d) output of morphological operation
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2.2.1 Fine Tuning of Bleeding Zone Using Morphology Op-
eration

Threshold-based operation provides a set of suspected bleeding pixels in the bleeding

image. Generally, a single isolated pixel may not be a candidate for the bleeding

zone. Such pixels may arise due to intensity variation or the presence of bleeding

like areas. Choice of the hard threshold is also a reason for the appearance of

isolated bleeding pixels. Discarding such isolated bleeding suspected pixels is not

a good solution. Alternately we proposed to check the homogeneity around that

suspected pixel. In this regard, morphological operations are performed, a namely

morphological dilation followed by morphological erosion.

Morphological dilation offers connectivity among closely separate bleeding re-

gions in a WCE image. It includes very small isolated non-bleeding regions or pixels

if those are surrounded by bleeding regions. Apart from that it also dilates the

boundary of bleeding regions. This operation ensures not to lose any bleeding pixels

that are initially marked as bleeding rather than it enhances bleeding (foreground)

regions with respect to non-bleeding (background). After Morphological dilation,

morphological erosion operation is performed. Morphological erosion discards iso-

lated regions (very small) and pixels those are a candidate for bleeding zones. It also

erodes and smoothen the boundary of the bleeding zone. Hence, erosion operation

ensures that bleeding zone must contains significantly large bleeding areas. Illustra-

tion of bleeding zone detection steps is presented in Fig. 2.10. In Fig. 2.10 (a) a

bleeding image is displayed. Bleeding zone of that image is desired to identify. After

applying edge detection algorithm, the edge of that bleeding image is acquired and

displayed in Fig. 2.10 (b). Then, from the bleeding image, edges are subtracted.

After that, threshold based method is deployed upon subtracted images and the

output is represented in Fig. 2.10 (c). Finally, morphology operation is performed

to obtained final bleeding zone, which is shown in Fig. 2.10 (d). Bleeding zone

detection performance analysis are presented in the result section.
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2.3 Results and Analysis

2.3.1 Bleeding Frame Detection Criteria

There are four cases about the detection result of bleeding and non-bleeding images.

Namely: 1) true bleeding (Tb), 2) true non-bleeding (Tnb), 3) false non-bleeding (Fnb)

and 4) false bleeding (Fb). There are two possible cases of false detection, 1) when a

bleeding image is wrongly detected as a non-bleeding image (Fnb) and 2) when a non-

bleeding image is wrongly detected as bleeding image (Fb). In a similar way, there are

two possible cases of true detection, 1) when a bleeding image is correctly detected

as bleeding image (Tb) and 2) when a non-bleeding image is correctly detected as a

non-bleeding image (Tnb). To assess the capability of the bleeding detection method,

accuracy, sensitivity and specificity [30] are ideal criteria, which are calculated as

follows.

Sensitivity =

∑
Tb∑

Tb +
∑
Fnb

(2.16)

Specificity =

∑
Tnb∑

Tnb +
∑
Fb

(2.17)

Accuracy =

∑
Tb +

∑
Tnb∑

Tb +
∑
Fnb +

∑
Tnb +

∑
Fb

(2.18)

Sensitivity is a measure of correctness in bleeding frame detection. Specificity in-

dicates truthfulness in identifying non-bleeding images. Accuracy reflects overall

correctness of true bleeding and non-bleeding frame detection. For all these per-

formance indicators, higher the values better the performance. For bleeding frame

detection, sensitivity plays the most vital role because it is directly associated with

the true bleeding frame detection truthfulness and always being the prime concern

in bleeding frame detection research.

2.3.2 Data Acquisition and Experimental Setup

Extensive simulations are performed in order to demonstrate the effectiveness of

the proposed method for bleeding frame and zone detection. For the purpose of

simulation, several WCE videos are collected from a publicly available widely used

database [31]. The database provides the ground truth labeling of bleeding and

non-bleeding videos. The experimentation is carried out on those WCE videos and

the results are reported on 20 of them, where 10 videos are labeled as bleeding and
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10 are normal. Images in bleeding videos are manually annotated as bleeding or

non-bleeding and if bleeding, the bleeding zones are marked by expert physicians.

Bleeding frame detection results are reported for 2350 WCE frames, where 450

are bleeding and 1900 are non-bleeding, which are extracted from those videos.

The performance of the proposed method in terms of bleeding detection criteria is

investigated and compared with that of some of the recent methods. In what follow,

first, the performance of bleeding frame detection is presented considering the effect

of various parameters. Next, the bleeding detection performance in continuous WCE

video clip is reported considering the effect of post processing. Finally, the bleeding

zone detection performance is reported considering some bleeding images.

2.3.3 Performance of Bleeding Image Detection

At first, In Table 2.1, the accuracy of bleeding detection obtained by using different

combinations of statistical features is presented. For the purpose of classification

SVM classier with linear kernel is used. It is found that among different combinations

of statistical features, a combination of median, variance and kurtosis exhibits the

best accuracy of 94.97%. Thus, from G/R domain, median, variance and kurtosis are

considered as proposed feature and named as statistical feature from G/R domain

(Stat (G/R))

Table 2.1: Performance Comparison among Different Feature Combination in G/R
Domain

Features Accuracy
median, mean, mode 91.50%

median, variance, kurtosis 94.97%
mean, variance, kurtosis 90.50%
variance, mode, maxima 89.00%

mode, skew, kurtosis 88.50%
mean, skew, mode 90.00%

skew, mode, minima 89.50%
mean, skew, mode, maxima, minima 87.50%

mean, skew, maxima 84.50%
skew, mode, maxima 84.50%

mode, maxima, minima 84.00%
mean, skew, minima 83.50%

The performance of bleeding image detection of WCE video recording using
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G/R ratio count and mean intensity of R, G, and B are presented below. By

investigating several bleeding and non-bleeding WCE images available in [31], the

threshold for pixel intensity ratio is kept as TG/R = 0.5. In Table 2.2, performance

variations of threshold values is presented. Here, PIR means pixel intensity ratio. It

is observed that the performance is very satisfactory in the neighborhood of chosen

threshold, which is also expected from Fig. 2.7. This feature is called pixel intensity

ratio count (PIRC). Bleeding detection performance considering different features

and their combination are reported in 2.3. From the table, best performance is

obtained by the combination of PIRC, mean of red, green, blue and stat (G/R).

The combination of this feature vector is called ratio count and statistic (RC &

Stat) feature.

Table 2.2: Effect of Variation of Color Ratio on Performance Measures

Detection PIR ≤ 0.4 PIR ≤ 0.5 PIR ≤ 0.6
Criteria (proposed)

Sensitivity 94.50% 94.78% 87.00%
Specificity 91.75% 93.58% 91.38%
Accuracy 92.30% 94.00% 90.50%

Table 2.3: Performance Comparison among Different Features

Feature Feat. Dim. Sen. Spec. Accu.
Stat (G/R) 3 91.37% 96.05% 94.97%

PIRC, mean (R, G, B) 4 94.32% 93.74% 93.83%
Stat (G/R), PIRC, 7 97.75% 97.99% 97.96%

mean (R, G, B)

In Table 2.4, different performance measures obtained by the proposed method

are presented considering three different types of classifier, namely K-nearest neigh-

bor (KNN) SVM-linear, SVM Gaussian radial basis function (RBF). Among these

three classifier, it is observed that the SVM linear kernel exhibits the highest sensitiv-

ity. Although highest specificity and accuracy is obtained by SVM-RBF classifier,

SVM-linear classifier is proposed considering sensitivity and robustness nature of

linear kernel.

For the purpose of comparison, the result obtained by the proposed method is

compared with those obtained by the methods proposed in [23], [19], [32], [28], [27],
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Table 2.4: Performance Measures Obtain by Different Classifier

Classifier Sensitivity Specificity Accuracy
KNN (k=1) 83.54% 97.15% 94.51%
SVM linear 97.75% 97.99% 97.96%
SVM RBF 97.41% 98.66% 98.47%

[33], [34]. It is to be mentioned that the LBP features [23] are extracted indepen-

dently from HSI color space. Here, uniform LBP acquired from plane I (intensity)

of HSI color space and histogram values of uniform LBP are used as feature. In the

implementation of the method proposed in [19], best feature combination, which

are histogram probability, mean and energy of R, G, and B color plane are used.

Intensity ratio and mean (R, G, B) features are presented in [32]. While statistical

feature in R/G domain and Hue space are proposed in [28] and [33] respectively.

ROI based feature extraction is presented in [27] and [34]. In [27], statistical fea-

ture from CMYK color space is proposed while in [34] statistical feature of Y.I/Q

composite color domain is developed. For a fair comparison, in all the methods,

experiments are carried on using the same classifier, i.e., SVM. The comparison re-

sults are demonstrated in Table 2.5. It is clearly observed that the proposed method

exhibits the best performance in terms of all performance indices. Sensitivity is the

most important performance index in bleeding detection, which represents the true

bleeding image detection accuracy. It can easily be observed that the sensitivity

obtained by the proposed method is extremely satisfactory.

Table 2.5: Comparison Result Among Different Methods

Method Name feature Sen. Spec. Accu.
Dimension

Uniform LBP [23] 8 79.25% 94.56% 91.50%
Hist. probability [19] 6 83.00% 75.69% 77.15%
Intensity ratio [32] 4 94.78% 93.58% 94.00%

Stat (R/G) [28] 3 88.50% 96.63% 94.97%
Stat (Hue) [33] 4 93.08% 96.46% 95.24%

Stat (Y.I/Q) [34] 4 93.50% 94.00% 93.90%
Stat (CMYK) [27] 4 95.50% 92.87% 93.40%

Word hist. [22] 80 91.71% 94.05% 93.31%
Proposed RC & Stat 7 97.75% 97.99% 97.96%
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2.3.4 Performance in Continuous WCE Video Clip

In this subsection, bleeding frame detection in continuous WCE video clip and

the effect of post-processing step are demonstrated. For the purpose of analyzing

performance in WCE video clip, five WCE bleeding videos are considered namely:

1) ‘D170 bleeding’, 2) ‘bleding5’, 3) ‘bleeding3’, 4) ‘bleeding2’, and 5) ‘23 bleeding’,

those are publicly available in [31]. Those videos are chosen in a way so that it

covers different types of bleeding frame, as well as variation of frame number and

position. First, from the video clip image frames are extracted and proposed final

features are calculated. Then, bleeding and non-bleeding decision are acquired by

applying SVM classifier and the performance is reported in Table. 2.6 and termed

as without post-processing performance. Among the five videos, four videos show

satisfactory performance in terms of all performance criteria, except ‘bleeding3’, due

to the presence of numerous incidents of faint small bleeding areas. After getting

primary bleeding detection result, post-processing algorithm is implemented. In the

post-processing step, first, the decision of sequential frames in a video clip is tested,

and applying necessary conditions an investigation zone is acquired. Examining

feature distance from bleeding and non-bleeding frame of that investigation zone, a

test non-bleeding frame can be toggled to bleeding, which is described in 2.1.5. As a

result, a bleeding frame decision may be corrected, thus, the sensitivity is improved.

The performance result of with and without post-processing are reported in Table.

2.6 in terms of sensitivity, specificity, and accuracy. It is shown from the table, the

sensitivity, as well as accuracy, are significantly improved by post processing. In the

case of ‘bleeding3’ video, its sensitivity is highly improved as well as accuracy. The

overall result of considering all five videos are illustrated in Fig. 2.11. From the

figure, it is clearly shown that the overall sensitivity and accuracy are improved by

almost 4% and 2% respectively, which reflects strong justification of post processing

step.

2.3.5 Experiment Results for Bleeding Zone Detection

Quantitative Analysis

A pixel-based comparison between the marked bleeding zone and the ground truth

labeled by the clinicians is performed to measure the quantitative performance for
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Table 2.6: Video Performance Result with Post Processing Effect

Video name Frames
No.
(B/N)

Criteria Without
post-proc.

With post-
proc.

D170 bl 96/4 sen. 98.97% 100.00%
spec. 50.00% 50.00%
accu. 97.00% 98.00%

bleeding5 22/78 sen. 86.36% 90.91%
spec. 81.82% 90.91%
accu. 96.15% 96.15%

bleeding3 5/95 sen. 60.00% 80.00%
spec. 96.84% 96.84%
accu. 96.00% 97.00%

bleeding2 100/0 sen. 100.00% 100.00%
spec. — —
accu. 100.00% 100.00%

23 bl 40/60 sen. 92.50% 95.00%
spec. 98.63% 98.63%
accu. 93.00% 94.00%

Fig. 2.11: Overall performance comparison between with and without post process-
ing

detecting bleeding zone. The comparison result has four possible outcomes, they

are true positive (TP), true negative (TN), false positive (FP) and false negative

(FN). There are two true cases: 1) the bleeding pixels that are correctly labeled

as the bleeding called true positive (TP) and 2) the non-bleeding pixels that are

correctly labeled as non-bleeding termed as true negative (TN). Similarly, there are

two false cases: 1) the pixels which are not labeled as the bleedings but should have

been called false negative (FN) and 2) false positive (FP) are the ones incorrectly

labeled as the bleedings. From those four outcomes three criteria are calculated

to represent performance result as Precision, the false positive ratio (FPR) and

false negative ratio (FNR) [35], [36], which is calculated according to the following
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equations:

Precision =
TP

TP + FP
(2.19)

FPR =
FP

FP + TN
(2.20)

FNR =
FN

FN + TP
(2.21)

Precision describes the truthfulness of bleeding zone detection, thus a higher value

of it is highly desirable. In medical testing, more generally in binary classification,

there are two types of errors as false positive and false negative. FPR and FNR

represent those errors, hence, the lower value is considered better performance.

For the purpose of quantitative analysis, 100 bleeding images are tested, which

are collected from 10 different bleeding videos. The ground truth of bleeding zone of

those bleeding images is marked by the clinician. Bleeding zone detection result of

different threshold values of proposed method is reported in Table. 2.7. Among the

different performance parameters precession and the false negative ratio (FNR) are

more crucial indicators. According to the definition of precision, FPR, and FNR;

higher value of precision but the lower value of FNR and FPR are considered as a

good result. FNR value represents failure detection percentage of the bleeding zone,

which must be kept very low. As a result, high precision value and low FNR value are

desired. Bleeding zone detection result of proposed method are reported in Table.

2.7 considering the variation of different threshold values. From the table, it is found

that very high FNR value is obtained for lower threshold value. As threshold value

is increased, FNR values are lower but precession values are drastically decreased.

Thus, TG/R value should be set at a middle point; neither too large nor too small.

From the table, the best performance result in terms of precession and FNR is

obtained when TG/R value is kept less than equal 1/2.

For further analysis, proposed method of bleeding zone detection is compared

with recently developed method reported in [22]. In [22], bleeding localization is

marked by fusion strategy of two stage-salient maps considering 0.8 weighting of

first stage-salient. The comparison result of bleeding detection performance is pre-

sented in Table. 2.8. From the table, it is clearly shown that the performance is

significantly improved in terms of precision and FNR. Most important and signifi-

cant improvement is observed in FNR ratio, which improved by almost 12%.
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Table 2.7: Bleeding Zone Detection Performance of varying TG/R value

TG/R value Precession FPR FNR
TG/R ≤ 0.35 88.27% 1.51% 80.84%
TG/R ≤ 0.40 90.37% 2.03% 70.25%
TG/R ≤ 0.45 89.69% 3.21% 48.95%
TG/R ≤ 0.50 91.41% 6.23% 27.46%
TG/R ≤ 0.55 86.63% 10.79% 13.96%
TG/R ≤ 0.60 78.24% 20.12% 5.38%
TG/R ≤ 0.65 65.41% 36.23% 2.46%

Table 2.8: Performance Comparison of Bleeding Zone Detection

Method Precession FPR FNR
Yuan method [22] 88.20% 3.14% 39.60%

Proposed G/R threshold 91.41% 6.23% 27.46%

2.4 Conclusion

In this chapter, a new technique of bleeding frame and zone detection in wireless

capsule endoscopy video recordings is presented. The proposed method exhibits

high sensitivity, specificity and accuracy with respect to other established method.

In the proposed method, red to green intensity ratio feature is explored. More dis-

criminant feature quality is achieved between bleeding and non-bleeding images. In

the proposed method, the best result of bleeding frame detection is obtained using

ratio count and statistic feature in G/R domain as sensitivity 97.75% and accuracy

97.96%. It is observed that proposed post-processing algorithm improves bleed-

ing frame detection performance by a significant margin. An automatic bleeding

zone detection method is also presented with high precision. The proposed is thus

promising in identifying bleeding zones from a bleeding image. In the future, we

will develop more consistent and suitable feature for bleeding frame classification in

order to archive the highest sensitivity.



Chapter 3

Proposed Unsupervised Cluster Based
Bleeding Detection Scheme

In this Chapter, an efficient automatic scheme is proposed to identify the bleed-

ing frames and zones from WCE video based on cluster specific feature (CSF). For

the purpose of feature extraction, instead of using conventional red, green and blue

(RGB) color plane, a transformed plane containing green to red pixel ratio is uti-

lized. This helps in enhancing the separability between bleeding and non-bleeding

pixels. Different statistical features are extracted from the overlapping spatial blocks

of the preprocessed WCE image. The unique idea of the proposed method is to first

perform unsupervised clustering of the extracted blocks to obtain two clusters and

then extract global feature utilizing these CSFs along with differential cluster fea-

tures. Finally utilizing the global feature, support vector machine (SVM) supervised

classifier is employed to classify bleeding and non-bleeding images. It is found that

the quality of the proposed CSF based global feature is significantly better than the

feature extracted from the entire image. For bleeding frame detection in continu-

ous WCE video data, a post-processing scheme is introduced utilizing the feature

trends in neighboring frames. Finally using the CSF along with some morphological

operations bleeding zones are identified. The proposed method is extensively tested

on several WCE videos and a very satisfactory bleeding detection performance is

achieved.

3.1 Introduction

The objective of this chapter is to develop an efficient computer aided bleeding

frame and zone detection scheme in the WCE video recordings. In this Chapter,

37
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starting from region level block based feature extraction, with the help of two class

unsupervised clustering, an image level global feature is finally constructed to detect

bleeding frames. From the given image, a transformed color plane utilizing green to

red (G/R) pixel ratio is formed for extracting different statistical features in over-

lapping blocks. These blocks are first classified into two classes using unsupervised

Kmeans clustering. Next global feature for an image is constructed by utilizing

the cluster specific feature (CSF) along with the differential cluster feature. For

the purpose of classification global features are used in SVM supervised classifier.

A post-processing scheme utilizing neighboring frame characteristics is developed

to detect bleeding frames from continuous WCE video data. Finally, the bleeding

zones are detected by effectively utilizing the block labels. Simulation is carried

out on several WCE video data. Our main contributions can be summarized in the

following three aspects.

• A block-based local feature is extracted, which is considered more prominent

representation instead of using individual pixel with respect to image noise,

distortion and bleeding zone. While most of the literature consider individual

pixel [25], [37], [22].

• An unsupervised classifier is used to segment WCE image into two clusters,

which separates bleeding and non-bleeding regions, hence enhance global fea-

ture quality for detection of bleeding images.

• A bleeding zone detection algorithm is proposed using cluster segmentation

which is acquired from the unsupervised classifier.

In order to obtain a quick overview of the proposed bleeding frame and zone

detection method, in Fig. 3.1, a simplified block diagram is presented. From a

given WCE video data, frame by frame feature extraction and classification tasks

are carried out. Similar preprocessing and feature extraction operations are per-

formed on both training and testing data. First, block-based statistical features

are extracted from transformed G/R color plane. Next, an unsupervised Kmeans

clustering method is employed on those blocks to obtain two clusters (cluster-I and

cluster-II). Finally, a global feature vector is constructed using the cluster specific

feature (CSF) extracted from each cluster and differential cluster features. The
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global feature is used in supervised SVM classifier to detect bleeding images. In or-

der to handle continuous video data, considering the classification results obtained

on each frame, a post-processing operation on video segment is performed. Finally,

a scheme for bleeding zone detection is carried out. In what follows, each step of

the proposed method is described.

(a)

(b)

Fig. 3.1: Illustration of work flow of proposed method: (a) cluster specific feature
(CSF) generation; (b) bleeding detection using CSF

3.2 Bleeding Frame Detection

3.2.1 Proposed Block Based Local Feature Extraction

Images in WCE video generally face different types of distortions due to motion

blur and slow frame rate. Moreover, due to the inherent construction of gastroin-

testinal pathway, occlusion and changes in illumination may occur. As a result,

there is a possibility that in a WCE image, an individual pixel may be corrupted

or distorted. In most of the bleeding detection methods, the analysis is carried out

on pixel level, i.e. features are extracted from each pixel [25], [37], [22]. In this

case, there is a chance that the consistency of extracted features will be poor if

there are some distorted pixels in a WCE image. In order to overcome this problem,

instead of computing features from an individual pixel, we propose to consider the
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neighborhood block of that pixel for feature computation. Since in general, even

a very small bleeding zone consists of several pixels, it is expected that such block

based feature extraction can overcome the problem of single pixel distortion and

offer feature consistency. Moreover, depending on the amount of overlap between

consecutive blocks, block based feature extraction may reduce the computational

burden. For example, in an image with M ×M pixels, if pixel values are directly

considered as a feature, feature dimension would be M2. If feature extraction is

performed on m×m non-overlapping blocks, in total J × J blocks will be required,

where J = floor(M/m). In this case, if the average value of each block is considered

as feature, J2 average values containing local information can be used to construct

feature vector with dimension J2 < M2. It is to be mentioned that although only J2

blocks instead of M2 pixels are used, in each block, all pixels are utilized to extract

feature. Thus, conventional pixel down-sampling operations are not equivalent to

block based feature extraction. In Fig. 3.2, a WCE image in composite G/R plane

is shown from which a sample square block with a dimension 5× 5 pixels is marked.

This type of spatial blocks is used for feature extraction.

Fig. 3.2: Representation of neighborhood block characteristic (a) given image; (b)
G/R composite plane; (c) a sample block of size 5× 5 pixels and statistical charac-
teristics

In view of obtaining spatial characteristics of each block, conventional statistical

parameters are computed, such as mean, median, maximum, minimum, intensity

of block center, and difference between block-mean and block center intensity. For

m × m dimensional i-th block with pixel intensities bi(x, y), statistical measures

namely mean (Bi
mean), median (Bi

median), max (Bi
max), min (Bi

min) are computed.



41

Moreover, deviation of center pixel value from the block mean value is also taken

into consideration. This defined as

Bi
diff = |Bi

mean −Bi
C | (3.1)

where, Bi
C represents center pixel intensity of i-th block which is centered at (m/2,m/2)

(shown in the Fig. 3.2 (c) and the mean value of i-th block (m×m size) is computed

as

Bi
mean =

1

m×m

m∑
x=1

m∑
y=1

bi(x, y) (3.2)

Finally a feature vector for i-th block is constructed as

f i = [Bi
mean B

i
median B

i
max B

i
min B

i
diff B

i
c], i ∈ all blocks (3.3)

This block based features are treated as regional features, which will be directly used

in an unsupervised clustering scheme to obtain preliminary two class classification

among the pixels of given WCE image.

3.2.2 Proposed Method of Global Feature Extraction

In order to classify bleeding and non-bleeding images, a representative feature from

a given WCE image needs to be extracted by utilizing features computed from all

blocks. If all the block features, extracted from a given image, are combined, the

feature dimension would be extremely large and it may not exhibit a consistent

pattern. One possible solution is to develop a global feature for each image by

utilizing features extracted from all blocks. However, quality of the global feature

will depend on the size of the bleeding and non-bleeding regions in WCE image.

For example, in some bleeding images, there may be a large non-bleeding region.

In this case, if the global feature is extracted by using features of all the blocks, it

may not be capable of representing the bleeding image because of the dominance

of non-bleeding blocks. In order to overcome this problem, we propose to segment

a given image into two possible regions and then extract global features from each

region separately. As a result, from a given image, instead of one feature vector,

two feature vectors will be obtained from two regions, which will be concatenated

to get the desired feature. It is expected that the feature vector extracted from each

region will offer better consistency, no matter whether it is a bleeding or non-bleeding
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image. In particular, the advantage will be very prominent in the case of bleeding

images where the two regions belong to two different classes. Two major concerns

in the proposed method of global feature extraction are: the process to be used

for segmentation of the image and the method of extracting proposed concatenated

feature. In what follows, two major steps related to these two concerns are presented

in detail.

Unsupervised Two Class Clustering

The objective at this stage is to segment a given image into two regions for an

extracting consistent global feature from each region. In the case of bleeding im-

age, it is expected that the two segments will belong to bleeding and non-bleeding

regions. In the case of non-bleeding images, the two segments will exhibit very

similar characteristics, as both of them belong to same class (non-bleeding region).

Hence, there are two possibilities when a test image is segmented into two clusters:

(1) both segments belong to the non-bleeding region and (2) one bleeding and one

non-bleeding region. Depending on some discriminative characteristics, two clusters

and corresponding cluster labels (I or II) need to be obtained. Since the objective

here is to obtain two clusters, block based features (block statistical parameters)

described in the previous sub-section can be used for this purpose. In this regard,

one may utilize a supervised or unsupervised classifier. Considering a large number

of blocks available in each image and their variations, constructing a representative

train dataset for different types of blocks would be a cumbersome job. As a result,

instead of the supervised classifier, an unsupervised clustering method is employed

to obtain the two segments. Among different available clustering schemes, K-means

clustering is considered for unsupervised classification, which is found very suitable

for handling a large amount of data. K-means clustering is the most widely used

partitioning method that can segment the given dataset into K mutually exclusive

clusters and mark each cluster by an index number. For the two-class clustering

required in the proposed method, K-means will determine a partition dividing the

dataset into two clusters (CI and CII) where members within each cluster are as

close to each other as possible, and as far from the members in other clusters as

possible. In the K-means clustering, block statistical parameters described in (3.3)

are used as features, namely mean, median, maximum, minimum, intensity of the
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center pixel of a block Bc, and the deviation of center pixel value from the block

mean value are employed as features. It is observed that for the bleeding image

K-means exhibits satisfactory performance in separating bleeding zone from the

non-bleeding neighborhood. On the other hand, for non-bleeding images, K-means

creates two clusters as dominant and less dominant non-bleeding zones. A sample

clustering outcome obtained by using the K-means is shown in Fig. 3.3 considering

one bleeding and one non-bleeding image. In Fig. 3.3 (a), a bleeding image and in

Figs. 3.3 (b) and (c), corresponding two clusters (CI and CII) are shown. From

this figure, it is observed that the bleeding and non-bleeding zones are satisfactorily

separated in clusters I and II. Similarly, the clustering of a non-bleeding image is

demonstrated in Figs. 3.3 (d)-(f). It is observed in this figure that the K-means

clustering attempts to ensemble blocks exhibiting very similar characteristics in one

cluster. Next, for both clusters, mean pixel intensities (IIavg, I
II
avg) are computed.

Each these two intensities can easily be obtained by average the block mean values

of a particular cluster and can be expressed as

IIavg =
1

NI

∑
i∈CI

Bi
mean (3.4)

IIIavg =
1

NII

∑
j∈CII

Bj
mean (3.5)

In view of obtaining consistency in cluster labeling, in the proposed method between

the two clusters, a cluster with lower Iavg is marked as cluster-I. For labeling a

cluster, it is found that considering only one feature statistics above is sufficient.

Next from those two clusters, global features are calculated using block features and

this global feature will be used in the supervised classifier to declare a frame as

bleeding or non-bleeding.

Concatenating Cluster Based Features

In global feature extraction, one may consider only one cluster of a given image.

For example, only cluster-I may be considered, which consists of lower centroid

value of the mean feature. In this case, for bleeding images it is expected that

the cluster-I corresponds to a bleeding zone in the G/R transform plane. However,

the problem will arise in testing the non-bleeding images, where considering global
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(a) (b) (c)

(d) (e) (f)

Fig. 3.3: Illustration of segmentation of clustering (a) WCE bleeding frame; (b)
cluster-I from bleeding frame; (c) cluster-II from bleeding frame; (d) WCE non-
bleeding frame; (e) cluster-I from non-bleeding frame; (f) cluster-II from non-
bleeding frame

feature extracted only from cluster-I may lead to introduce bias in declaring a non-

bleeding image as bleeding. As a result of the proposed method, features extracted

from both clusters are used in the final stage of bleeding and non-bleeding image

classification. From each cluster, centroid of the block features is computed which

results in six-dimensional feature vector given by

FI =
1

NI

NI∑
i=1

f I , i ∈ CI (3.6)

FII =
1

NII

NII∑
j=1

f j j ∈ CII (3.7)

where NI and NII is the number of blocks in CI and CII , respectively. Since nat-

ural images are used, it is obvious that features extracted from the two clusters

will exhibit some differences, no matter whether it is bleeding or non-bleeding im-

age. Apart from using, FI and FII vectors, one interesting idea is to introduce a

differential feature vector, defined as

Fdiff = |FI − FII |. (3.8)

It is expected that Fdiff is significantly lower in the case of non-bleeding images than

those of the bleeding images. Because of the strong distinguishable characteristics,
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use of this differential feature can help in obtaining better classification performance.

Hence, the desired feature vector to be used for image classification is proposed as

Ffinal = [FI FII Fdiff ]. (3.9)

This global feature is termed as cluster specific feature (CSF) which is used in a

supervised classifier to carry out the two class image classification.

Feature Quality

There is no doubt that the overall bleeding detection performance strongly depends

on the quality of the extracted CSF. One commonly used tool to demonstrate the

quality of the extracted features in terms of statistical parameters is the box plot.

In box plot representation, box edges are 25th and 75th percentiles, whereas central

mark is the median of a given data. The most extreme data points are the whiskers,

and outliers are plotted individually [38]. In Fig. 3.4, box plot representation of

proposed CSF is demonstrated considering 200 bleeding and 200 non-bleeding im-

ages. In Figs. 3.4 (a)-(f), in each box, statistical behavior of four variables is shown.

First, two variables of each box correspond to the behavior of a particular CSF ex-

tracted from cluster-I of bleeding and non-bleeding images denoted as cluster-I(B)

and cluster-I(N), respectively. Similarly, second two variables represent the behavior

corresponding to cluster-II denoted as cluster-II(B) and cluster-II(N), respectively.

For each of the six features, the centroid of the block features in each cluster is com-

puted. Feature extracted from non-bleeding images provide very high within class

compactness and as expected in this case, the difference in the cluster centroids of

two clusters is very small. For some features cluster-I provides better separation

between bleeding and non-bleeding classes (e.g. Figs. 3.4 (b), (d), (f)), while for

some other features cluster-II provides better class separation (e.g. Figs. 3.4 (a),

(c), (e), (f)). As a result, both clusters features are taken into consideration in

proposed CSF. Moreover, it is observed in the figure that class separation becomes

significantly high when differential cluster feature is used (Figs. 3.4 (h)-(l)), except

for one case Fig. 3.4 (g). . It can be inferred from the figures, that proposed feature

values exhibit significant separation between two classes with a very few exception.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3.4: Feature quality analysis (a) Box plot of cluster mean; (b) Box plot of
cluster median; (c) Box plot of cluster maximum; (d) Box plot of cluster minimum;
(e) Box plot of block center pixel; (f) Box plot of difference between center pixel and
mean of block; (g) Box plot of difference of cluster mean; (h) Box plot of difference
of block cluster median; (i) Box plot of difference of cluster maximum; (j) Box plot
of difference of cluster minimum; (k) Box plot of difference of cluster center pixels;
(l) Box plot of cluster difference of difference between center pixel and mean of block

3.2.3 Post-Processing

In previous subsections, a complete method of classifying a test WCE image as

bleeding or non-bleeding is proposed. In the WCE based diagnosis, generally the

objective is to find out the bleeding frames in a WCE video recording. In this case,

each frame of a given WCE video needs to be tested. Thus, temporal information

of videos (consecutive frame sequence) is available. In order to improve bleeding

frame detection performance, a post-processing algorithm is developed using that

temporal information. At first, an investigation zone is selected, which is same as
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section 2.1.5. Then, image that are labeled as non-bleeding are rechecked by feature

distance based criteria.

Fig. 3.5: Illustration of post processing scheme

As described before, from each image two sets of global features are extracted

from the two clusters. For the purpose of rechecking a distance based criteria us-

ing CSF is proposed. At first, the number of bleeding and non-bleeding images is

counted in an investigation pool while ignoring the test non-bleeding image. Let the

total number of bleeding and non-bleeding labeled images are P and Q respectively.

There are two possibilities: Q = 0 and Q 6= 0. For the first case (Q = 0), it is more

logical that the test image may be labeled falsely as non-bleeding as there are no

non-bleeding images nearby that test image. In this case without further calculation,

the test non-bleeding image is declared as bleeding. In second case (Q 6= 0), for the

purpose of rechecking centroid feature extracted from cluster-I (FI) is considered.

Mean absolute difference (MAD) between FI extracted from the test image (FIT )

and FI obtained from bleeding images (FIB) is defined as

Db =
1

P

P∑
i=1

|Fi
IB
− FIT | (3.10)

Similarly MAD between (FIT ) and FI obtained from non-bleeding images (FIN ) is

defined as

Dn =
1

Q

Q∑
j=1

|Fj
IN
− FIT | (3.11)

To take the final decision, whether the label of the test frame need to be changed

or not, conditions are same as described in section 2.1.5.

3.3 Bleeding Zone Detection

In this section, identification of bleeding regions in detected bleeding frames is pre-

sented. In the proposed method, first, with the help of unsupervised classifier,
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different blocks in a given image are classified into two clusters (cluster-I and cluster-

II) and then feature based supervised classifier is used to identify bleeding (B) or

non-bleeding (N) images. Next, bleeding zone detection will be carried out only

on bleeding images. Each block of a bleeding image is already marked as cluster-I

or cluster-II. One of this two cluster corresponds to the bleeding region and the

other one corresponds to the non-bleeding region. Since each pixel of a bleeding

image needs to be identified, it will be helpful if only the clusters correspond to the

bleeding region is considered. Hence, first, the task is to find the label (bleeding or

non-bleeding) of each cluster and then carry out bleeding zone detection algorithm

on each pixel of a bleeding cluster. Major steps, to be performed in the proposed

bleeding zone detection algorithm are given below

• Determining the label of two clusters of an image whether bleeding or non-

bleeding

• Determining the label of each pixel in a block whether bleeding or non-bleeding

• Fine tuning of bleeding zone with the help of morphology operation.

3.3.1 Determining the Label of Cluster

During performing unsupervised clustering of the blocks of a given WCE image,

several features, extracted from a block, are utilized. However at this stage, the ob-

jective is not to further classify the blocks into two classes rather finding the bleeding

cluster between the available two clusters. Thus considering all those features are

not necessary for this purpose. It is observed that bleeding pixels exhibit higher red

(R) but lower green (G) intensity values with respect to non-bleeding pixels. As a

result, in the G/R composite plane, pixel intensity ratio is lower for the bleeding

pixels than that of non-bleeding pixels. If the mean value of G/R pixel intensity

ratio, computed within a block, is considered, it is expected that the blocks in a

bleeding cluster will exhibit on average lower values in comparison to those in the

non-bleeding clusters. For better understanding, an average of mean G/R values of

all the blocks in bleeding cluster and that of non-bleeding clusters are computed for

100 bleeding images and the results are shown in Fig. 3.6. In the figure, it is clearly

observed that for every bleeding image, an average of mean G/R values is lower for
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bleeding cluster than that of non-bleeding clusters. Hence, in order to determine

the label of a cluster, in the proposed method, the average of mean G/R values of

each of the two clusters is considered and the cluster having lower average value

is termed as a bleeding cluster and other is termed as a non-bleeding cluster. The

bleeding cluster is a combination of blocks and in general, it is assumed that all the

blocks of a bleeding cluster are labeled as bleeding. Similarly, for the non-bleeding

cluster, all the blocks are labeled as non-bleeding.

Fig. 3.6: Illustration of cluster mean value of green to red ratio for bleeding and
non-bleeding cluster

3.3.2 Determining the Label of Pixel

After getting the marking of all the blocks, our objective is to determine the label

of each pixel in a block. One of the possible solutions is to label all the pixels of

a block same as the block label, however, each block consists several pixels and

all the pixels may not necessarily belong to same class. Especially, in the case of

overlapping blocks, one pixel may have more than one labels when it belongs to

different blocks with different labels. In these cases, it would be very difficult to

take the final decision on those overlapping pixels. Therefore, in order to find a

suitable method to detect bleeding zone, in the proposed method, a pixel based

interpolation technique is developed.

At first for a test pixel, its membership status is determined by using the number

of blocks which contain that particular test pixel. Considering 3× 3 block size with

33% overlapping, in Fig. 3.7(a), 16 blocks are shown. A pixel can be a member of

one or several blocks and can be termed as center pixel (o), arm pixel (ap) and corner

pixel (cp) depending on its location in a block. In this figure, each center pixel of
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a block (marked as circular blue) is a member of only one block, with membership

count 1. The arm pixel (marked as diamond yellow with AP) is a member of two

blocks (according to the figure, its left and right blocks or up and down blocks),

thus, its member count is 2. And the corner pixel (marked as diamond yellow with

CP) is a member of four surrounding blocks (according to the figure), thus, its

membership count is 4. In the second step, labels of membership blocks are taken

into consideration to obtain the label of a test pixel. For taking final decision of a

test pixel with membership value n, preliminary labels of n number of blocks need

to be considered. The label of the test pixel is finalized depending on the majority

voting principle, that is, if higher than n
2

blocks belong to bleeding class, the test

pixel is declared as bleeding. But in the case of equal (n
2
) bleeding and non-bleeding

belonging blocks, then it is quite a difficult task to take an accurate decision and this

problem is called ‘no majority found’. To overcome this problem, in this research, a

region growing surrounding block based method is proposed. If a test pixel belongs

to an equal number of bleeding and non-bleeding blocks, first tire surrounding blocks

are considered and again check the majority voting of those surrounding blocks to

mark that test pixel. If first tire surrounding blocks face same ‘no majority found’

problem, second tire surrounding blocks will be taken into consideration and so on.

This pixel-wise proposed method is executed in the whole image and considered

more suitable to take acceptable decision for the test pixel. In Fig. 3.7(b), a case is

presented where red boundary blocks are bleeding blocks and green boundary blocks

are non-bleeding blocks. In this case, the boundary of bleeding and non-bleeding

clusters faces problem to determine the appropriate label of the pixels, but that

problem is solved using proposed method, corner pixel (marked as CP in the figure)

is marked using block membership count of that pixel and its block decisions. Here

corner pixel is a member of four surrounding blocks, three of the four blocks decision

is bleeding so that test corner pixel is labeled as bleeding according to the proposed

method that relies on majority voting decision rule. While considering AP marked

arm pixel (as shown in the figure), its block membership count is two. One of the

blocks is marked as bleeding and another one as non-bleeding, so majority rule fails

to determine the label of that pixels, as a result, first tire surrounding blocks are

considered for decision making. Here, 10 surrounding blocks are available, among
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the 10 blocks 3 are labeled as non-bleeding and 7 are labeled as bleeding, thus,

the test arm pixel finally marked as bleeding (red diamond). Applying proposed a

method, all the pixel in Fig. 3.7(b) are marked, here red and green color represent

bleeding and non-bleeding pixel respectively.

Fig. 3.7: Demonstration of pixel marking for bleeding zone detection

3.3.3 Fine Tuning of Bleeding Zone Using Morphology Op-
eration

Fine tuning of bleeding zone is described in section 2.2.1.

3.4 Simulation and Experimental Result

3.4.1 Performance of Bleeding Image Detection

Parameter Selection

First, after applying preprocessing technique described in subsection 2.1.1, black-

boundary pixels are eliminated from given WCE images. Then, the G/R trans-

formed plane is constructed by using the pixel intensity ratio of red and green

planes (refer to subsection 2.1.2). Next, for block-based local feature extraction, as

described in subsection 3.2.1, blocks are constructed and effect of variation of block

size and percentage overlapped on bleeding, detection performance is investigated.

Performance evaluation results are reported considering three different block sizes:

3×3, 5×5, 7×7 and 9×9 with various combinations of overlapping. Different local

features, such as mean, median, maximum, minimum and center pixel values of the

block, and the distance between the center pixel value and block mean value are

calculated. For the purpose of segmentation, K-means clustering is employed as an
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unsupervised classifier, and local features are used as a feature vector to segment a

given image into two clusters. Cluster wise global features are calculated and hence,

the final feature vector is formed as described in subsection 3.2.2. For bleeding

frame, classification SVM classifier is used with different kernel functions, such as

the linear kernel and radial basis function (RBF) kernel. Experimental performance

is evaluated based on 10 fold cross validation technique.

Performance of Bleeding Frame Detection

In this subsection, the performance of the bleeding frame detection obtained by the

proposed method is presented in terms of accuracy, sensitivity and specificity. Here

the effect of different parameters, such as block size, overlapping between blocks,

and types of the classifier are taken into consideration. In Table 3.1, the effect

of variation of block size on the performance of bleeding detection is presented

considering 3× 3, 5× 5, 7× 7 and 9× 9 block dimensions using SVM classifier with

radial basis function (RBF) kernel. From detailed investigation on severe bleeding

and non-bleeding blocks, it is found that in comparison to the whole bleeding area,

a very small sized block may not represent a significant area of bleeding. On the

other hand, a large sized block may contain both bleeding and non-bleeding regions.

As a result, it is more suitable to take the moderate size of the block to obtain the

best bleeding detection performance. This fact can be visualized from the results

shown on from Table 3.1. It is observed from the table that the value of all three

performance indicators increases with the increase in block size starting from 3× 3

up to 7× 7 and after that further increase in the block size to 9× 9 causes decrease

in the performance.

Table 3.1: The Effect of Block Size on Bleeding Frame Detection Performance

Block Size Sensitivity Specificity Accuracy
3 by 3 93.28% 97.29% 96.39%
5 by 5 94.86% 97.44% 96.83%
7 by 7 95.70% 97.94% 97.49%
9 by 9 94.79% 96.85% 96.11%

It is to be mentioned that one major contribution of this proposed method is

the cluster based feature extraction. In order to demonstrate the effect of unsu-

pervised clustering used in the proposed method on classification performance, in
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Fig. 3.8, comparative performance analysis is shown considering with and without

clustering. In the figure, different size of blocks is considered to demonstrate the

bleeding detection performance in terms of sensitivity, specificity and accuracy. As

discussed before, it is expected that better classification performance is achieved

when features are extracted from after unsupervised clustering. This fact is clearly

observed in the figure, where the result obtained with clustering found superior to

the case where features are extracted from the whole image without any clustering.

Fig. 3.8: Classification performance effect of clustering

Next, the effect of changing percentage of overlap between consecutive blocks is

investigated and the results are reported in Table. 3.2. In that table, only 5×5 and

7×7 block dimensions are considered due to their high level of performance observed

in Table. 3.1. Here 0%, 20% and 40% overlap between two consecutive blocks of

5 × 5 size and 0%, 14%, 28% and 43% overlap between two consecutive blocks of
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7×7 size are taking into consideration. More than 50% overlap between two consec-

utive blocks is not considered. It is observed that, overlapping block scheme is more

suitable to overcome single pixel randomness and distortion problem, hence offers

better feature consistency than non-overlapping block feature. Thus, overlapping

block scheme performed better than a non-overlapping block. It is observed that

in comparison to the non-overlapping scenario if small overlapped between consec-

utive two blocks is allowed, a significant improvement of all performance criteria

is achieved. However, considering a large amount of overlapped may not necessary

improve the performance characteristics. For example, in the case of 7 × 7 block

size, best performance is obtained by considering 14% overlapped.

Table 3.2: The Effect of Block Overlapping on Bleeding Frame Detection Perfor-
mance

Block Size Overlapping Sensitivity Specificity Accuracy
Percentage

5by 5 0% 94.86% 97.44% 96.83%
5 by 5 20% 95.09% 97.83% 97.32%
5 by 5 40% 94.80% 97.74% 97.12%
7 by 7 0% 95.70% 97.94% 97.49%
7 by 7 14% 96.22% 98.54% 98.04%
7 by 7 28% 95.25% 98.11% 97.53%
7 by 7 43% 95.67% 97.80% 97.36%

Furthermore, bleeding detection performance is investigated using different types

of classifiers using the final proposed feature and results are presented in Table 3.3

considering LDA, KNN and SVM classifier. For KNN classifier, the value of k is

varied from 1 to 10 and the value of k for which the best performance in terms of

sensitivity is achieved is reported in Table 3.3.

Table 3.3: The Effect of Classifier on Bleeding Frame Detection Performance

Classifier Sensitivity Specificity Accuracy
LDA 95.79% 97.85% 97.45%
KNN 95.86% 97.54% 97.19%
SVM 96.22% 98.54% 98.04%

Bleeding detection is a two class problem and it is well known that SVM classifier

is better suited for this type of problem, which is also reflected in the results shown

in Table. 3.3. Here for SVM classifier, the radial basis function (RBF) kernel is used.
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In SVM classifier, different kernels are tested and the effect of variation of kernels

on bleeding detection performance is reported in Table. 3.4, considering 7× 7 block

size with 14% overlap. It is observed that in comparison to linear and polynomial

kernels, RBF kernel provides better classification performance in terms of all three

performance measurement criteria.

Table 3.4: The Effect of SVM Kernel on Bleeding Frame Detection Performance

Kernel Sensitivity Specificity Accuracy
Linear 92.24% 97.01% 96.51%

Polynomial 93.86% 97.74% 96.83%
RBF 96.22% 98.54% 98.04%

Performance Comparison with Established Method

In view of comparing the performance of the proposed method, eight recently re-

ported methods are taken into consideration [23], [19], [32], [28], [27], [33], [34]

and [22]. One common approach to bleeding detection is the use of Local Binary

Pattern (LBP) [23] based feature. In LBP based method 8 bin histogram is used

for feature extraction. The method reported in [22] utilizes 80 bin word based color

histogram for feature extraction. In [19], bleeding detection is performed using color

features from histogram probability. In implementing the method reported in [19],

the best feature combination as mentioned in the chapter is taken into account.

the other two methods [32], [28], chosen for performance comparison utilize sta-

tistical feature extracted from each pixel of WCE image. Comparison results are

presented in Table. 3.5. For a fair comparison, same WCE image dataset and clas-

sifier are used for all these eight methods. It is to be noted that proposed method

is named as CCBF (cluster centroid of block feature). It is observed that proposed

method exhibits superior performance to all other reported methods, in terms of all

performance indicators. It is observed that performance of proposed method is sig-

nificantly improved in terms of sensitivity. The possible reasons for getting superior

classification performance by the proposed method are its capability of overcoming

some difficulties commonly observed in WCE images, such as single pixel random-

ness, illumination changes, and image distortion. Another reason is the consistency

of the proposed feature that does not depend on the size of the bleeding zone.
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Table 3.5: Performance Comparison of Different Features

Method Name Sen. Spec. Accu.
Uniform LBP [23] 79.25% 94.56% 91.50%
Hist. probability [19] 83.00% 75.69% 77.15%
Intensity ratio [32] 94.78% 93.58% 94.00%
Stat (R/G) [28] 88.50% 96.63% 94.97%
Stat (Hue) [33] 93.08% 96.46% 95.24%
Stat (Y.I/Q) [34] 93.50% 94.00% 93.90%
Stat (CMYK) [27] 95.50% 92.87% 93.40%
Word hist. [22] 91.71% 94.05% 93.31%
Proposed CCBF 96.22% 98.54% 98.04%

3.4.2 Performance in Continuous WCE Video Clip

In this subsection, the outcome of post processing step alone with bleeding frame

detection performance in continuous video segment are described. In order to in-

specting the performance in WCE video clip, five WCE bleeding videos are tested

namely: 1) ‘D170 bleeding’, 2) ‘bleding5’, 3) ‘bleeding3’, 4) ‘bleeding2’, and 5) ‘23

bleeding’, those are widely accessible in [31]. Those videos are selected so that they

offer variation in bleeding frame number and position in a video. First, from the

video clip image frames are extracted and proposed final features are computed.

Then, the decision of test frame is acquired by applying SVM classifier and the

performance is reported in Table. 3.6 and named as without post-processing perfor-

mance. Among the five videos, four videos show satisfactory performance in terms

of all performance criteria, except ‘bleeding3’, due to the presence of numerous

incidents of faint small bleeding areas.

After getting primary bleeding detection result from the supervised classifier,

post-processing algorithm is implemented. In the post-processing step, first, frame

decision of video clip sequence is tested with certain conditions and acquired an

investigation zone centering a frame which is primarily labeled as non-bleeding.

Fulfilling necessary condition a test non-bleeding frame can be toggled to bleeding,

which is described in 3.2.3. Therefore, a bleeding frame decision may be corrected,

thus, the sensitivity is improved. The performance result of with and without post-

processing are reported in Table. 3.6 in terms of sensitivity, specificity, and accuracy.

As expected, the sensitivity, as well as accuracy, is significantly improved by post

processing. In the case of ‘bleeding3’ video, its sensitivity is highly improved as well
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as accuracy. The overall result of considering all five videos are illustrated in Fig.

3.9. From the figure, it is clearly shown that the overall sensitivity and accuracy

are improved by almost 4% and 2% respectively, which reflects strong justification

of post processing step.

Table 3.6: Video Performance Result with Post Processing Effect

Video name Frames
No.
(B/N)

Criteria Without
post-proc.

With post-
proc.

D170 bl 96/4 sen. 91.87% 93.75%
spec. 100.00% 100.00%
accu. 92.00% 94.00%

bleeding5 22/78 sen. 86.36% 90.91%
spec. 94.87% 94.87%
accu. 93.00% 94.00%

bleeding3 5/95 sen. 80.00% 100.00%
spec. 97.87% 97.87%
accu. 97.00% 98.00%

bleeding2 100/0 sen. 96.00% 99.00%
spec. — —
accu. 96.00% 99.00%

23 bl 40/60 sen. 90.00% 97.50%
spec. 88.33% 88.33%
accu. 89.00% 92.00%

Fig. 3.9: Overall performance comparison between with and without post processing

3.4.3 Experiment Results for Bleeding Zone Detection

Quantitative Analysis

For the purpose of quantitative analysis, 100 bleeding images are tested, which are

collected from 10 different bleeding videos. The ground truth of bleeding zone of
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those bleeding images is marked by the clinician. Bleeding zone detection result of

a different parameter of proposed method are reported in Table. 3.7. Among the

different performance parameters precession and the false negative ratio (FNR) is

a more crucial indicator. According to the definition of precision, FPR, and FNR;

higher value is of precision but the lower value of FNR and FPR are considered as

a good result. FNR value represents failure percentage of bleeding zone detection,

which must be kept very low. As a result, high precision value and low FNR value

are expected. Bleeding zone detection result of proposed method are reported in

Table. 3.7 considering variation of different block sizes. 3× 3, 5× 5, 7× 7 and 9× 9

block dimensions are investigated and found that very small size of the block could

not represent a significant area of bleeding, on the other hand, big size of the block

may contain both bleeding and non-bleeding regions. As a result, it is more suitable

to take the moderate size of the block to obtain the best performance result. Hence,

in terms of precision, better performance result is obtained considering 7× 7 block

size. It is noted that bleeding zone detection performance highly depends on local

block features, which are used for segmenting bleeding and non-bleeding zone as

mentioned in 3.2.2.

Table 3.7: Bleeding Zone Detection Performance of Different Block Size

Method Precession FPR FNR
3 by 3 block 94.21% 2.71% 24.85%
5 by 5 block 96.11% 1.46% 28.23%
7 by 7 block 96.81% 1.28% 33.37%
9 by 9 block 96.17% 1.52% 42.98%

Different types of overlapping blocks are investigated and reported in Table. 3.8.

In that table, only 5×5, and 7×7 block dimensions are considered due to their high-

performance potential. 0%, 20% and 40% overlap between two consecutive blocks

of 5 × 5 size and 0%, 14%, 28% and 43% overlap between two consecutive blocks

of 7× 7 size are taking into the investigation. More than 50% overlap between two

consecutive blocks is not considered. It is observed that, overlapping block scheme

is more suitable to overcome single pixel randomness and distortion problem and

offers consistency of local block feature. Thus, overlapping block scheme performed

better than a non-overlapping block. Performance result is also varied due to an

overlapping percentage between adjacent blocks. In order to examine the effect of
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overlapping percentage between two adjacent blocks; 14%, 28% and 43% overlap-

ping of 7 × 7 blocks are considered and found that, if a large portion of a block is

overlapped, local feature quality of blocks are degraded as well as the bleeding zone

detection performance. As a result, in terms of precision, the best performance is

obtained from 14% overlapping block of 7× 7 size which is shown in Table. 3.2.

Table 3.8: The Effect of Block Overlapping on Bleeding Zone Detection Performance

Block Size Overlapping Precision FPR FNR
Percentage

5by 5 0% 94.21% 2.71% 24.85%
5 by 5 20% 96.57% 2.31% 20.02%
5 by 5 40% 95.65% 2.83% 14.67%
7 by 7 0% 96.81% 1.28% 33.37%
7 by 7 14% 97.05% 1.11% 22.38%
7 by 7 28% 96.80% 1.49% 20.76%
7 by 7 43% 96.67% 2.13% 17.60%

For further analysis, proposed method of bleeding zone detection is compared

with recently developed method reported in [22]. In [22] bleeding localization is

marked by fusion strategy of two stage-salient maps considering 0.8 weighting of

first stage-salient. The comparison result of bleeding detection performance is illus-

trated in Table. 3.9. From the figure, it is clearly shown that the performance is

significantly improved in terms of precision and FNR. Most important and signifi-

cant improvement is observed in FNR ratio, it is improved by almost 16%.

Table 3.9: Performance Comparison of Bleeding Zone Detection

Method Precession FPR FNR
Yuan method [22] 88.20% 3.14% 39.60%

R/G threshold 91.41% 6.23% 27.46%
Proposed Kmeans 97.05% 1.11% 22.38%

clustering

Qualitative Analysis

For the purpose of qualitative analysis, four bleeding frames from four different

patients videos is considered and presented in Fig. 3.10. The first column is the

original image, while the second column shows the bleeding zone ground truth, the

third column shows the detected bleeding region in the binary image and the final
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column shows the bleeding zone in a color image. It is observed that proposed

method successfully marked the bleeding zone. Also, it is clearly exhibited that

bleeding zones are detected with high precision and accuracy, with some exception.

Fig. 3.10: Qualitative analysis of bleeding zone detection

3.5 Conclusion

In this chapter, a new technique of bleeding frame and zone detection in wireless

capsule endoscopy video recordings is presented. The proposed method exhibits high

sensitivity, specificity and accuracy with respect to other established method. In the

proposed method, block base local feature extraction overcomes pixel randomness

problem and provides consistent feature quality. Bleeding frame feature quality is

enhanced by block clustering, especially in the case of small bleeding regions. And

finally, global feature are extracted from the local feature, which offers computa-

tional efficiency. A novel post-processing algorithm is developed considering video

frame sequence and global features, provides a significant improvement in perfor-
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mance result. The extensive experiment demonstrates that medium block size with

moderate block overlapping provides the best classification result. In the proposed

method, the best result of bleeding frame detection is obtained from 7 × 7 with

14% overlapping block as sensitivity 95.47% and accuracy 96.64%. An automatic

bleeding zone detection method is also presented with high precision. Bleeding zone

detection method used previously obtain block cluster and pixel-wise marking are

done by proposed interpolation technique. The proposed is thus promising in iden-

tifying bleeding zones from a bleeding image. In the future, we will develop more

consistent and suitable feature for bleeding frame classification in order to archive

the highest sensitivity.



Chapter 4

Proposed Color Histogram Based
Bleeding Detection Scheme

In this chapter, an automatic bleeding image detection method is proposed utilizing

construction of an index image incorporating a certain level of information from

each plane of RGB color space. Distinguishable color texture feature is developed

from index image by the histogram. Here, intensity values of all three available color

planes are utilized thus called color histogram. A single pixel may be distorted due

to the motion of capsule in GI tract. Hence, Instead of considering individual pixel

values, a surrounding neighborhood block is chosen, from that block local statisti-

cal features are computed, hence global histogram feature is contracted using local

features. From the observation of histogram pattern, an effective feature reduc-

tion scheme is proposed which minimize computational cost significantly without

compromising performance. For the purpose of frame classification, the k-nearest

neighbor (KNN) classifier is deployed. Satisfactory bleeding detection performance

result is achieved in terms of accuracy, sensitivity, and specificity from severe ex-

perimentation on several WCE videos which are collected from a publicly available

database. Moreover, for bleeding zone detection, blocks are classified using available

local features, that do not incorporate any computational burden for feature extrac-

tion. It is noticed that proposed method successfully differentiate the bleeding areas

from neighborhoods. Also, it is found that proposed method over performed with

comparing some of the existing methods.

62
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4.1 Introduction

The objective of this chapter is to develop an efficient computer aided bleeding

frame and zone detection scheme in the WCE video recordings. A block-based local

feature extraction is proposed from each color plane, which is more prominent rep-

resentation instead of using individual pixel with respect to image noise, distortion,

and bleeding zone. Color histogram based global features are extracted using each

local feature. The final feature is formed by applying a proposed feature reduc-

tion scheme. For the purpose of bleeding and non-bleeding image classification a

supervised k-nearest neighbor (KNN) classifier is proposed. Furthermore consecu-

tive frames decision and final global feature are considered to develop a simple but

effective post-processing scheme, to announce final bleeding frame of given WCE

video recordings. This proposed post-processing step significantly improved bleed-

ing frame detection performance. For the purpose of determining bleeding zone,

the block is classified using available local features and pixel labeled within a block

is determined with proposed interpolation method. Furthermore bleeding labeled

pixel zone is fine-tuned by the morphological operation. Our main contributions can

be summarized in the following three aspects.

• A color histogram based feature is proposed utilizing information of all three

color planes

• A feature reduction scheme is developed, which significantly lessen computa-

tional cost without compromising performance

• A bleeding zone localization method is proposed using an available local feature

of each block, that is not incorporated any computational burden in feature

extraction process.

Work flow of the proposed method is illustrated in Fig. 4.1. Input of the proposed

method is a WCE video segment, followed by preprocessing, feature extraction,

feature dimenstion reduction, classification and post-processing. Output is the label

of the frames (bleeding or non-bleeding), and detected bleeding zone of a bleeding

image.
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Fig. 4.1: Illustration of work flow of proposed method

4.2 Bleeding Frame Detection

4.2.1 Pixel Based Color Histogram (PChist)

A histogram measures the ratio of participation of different sub-classes in a given

data. A color histogram is formed considering pixel intensity of all three color

planes [39], [40]. Pixel intensities of all color planes are grouped together according

to different ranges of their values (depending on bin size of the color histogram)

and then the number of pixels in each group is counted. Let assume that all images

contain the same number of blocks J . The color space of the image is discretized

such that there are n distinct colors. A color histogram HC can be defined as

HC =
[
h1 h2 h3 · · · hn

]
(4.1)

where each bucket hj holds the number of blocks of color j in the image. Color

histogram is widely used in comparing images and its popularity increased due to

various aspects

• Color histograms are not affected by small fluctuations in camera viewpoint.

• Color histograms are computationally inexpensive.

• Distinctive color histogram often found for different objects.

Generally, WCE images are captured in the RGB color space and to acquire

color histogram vector a few of the most significant bits (MSB) are utilized from

each color plane. For example, in [37], three MSB bits are used for each color plane,

thus, a total of n = 512 buckets histogram is formed.

In Fig. 4.2(a), three different planes are shown. Considering 8 bits separately,

each one of the RGB planes can be considered as being composed of eight 1-bit
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(a) (b)

Fig. 4.2: Indexed image construction from RGB planes: (a) Spatial marks for RGB
color image; (b) Bit-plane representation of an 8-bit R color plane

Fig. 4.3: Cartesian coordinate system of RGB color space

planes, which is demonstrated in Fig. 4.2(b). Here the eighth plane indicates the

most significant bit (MSB) and the first plane indicates the least significant bit

(LSB). Instead of considering all eight planes, one may consider only the MSB or

two planes, MSB and the next one. For the purpose of classifying a block into

one of the two classes, bleeding and non-bleeding, it is observed that use of eight

planes (considering 256 different values for a pixel) may not be necessary and even

makes the task difficult. If only one bit (MSB) plane is considered from each color

plane, there will be total three bits from three planes and for each bit, there are

two possibilities (0 and 1), resulting in 23 = 8 different choices. As each pixel is

now represented by three MSBs from three color planes, using Cartesian coordinate

system, the color subspace of interest can be represented by a cube as shown in

Fig. 4.3. As per the standard color scheme, eight colors obtained in this system are

indicated in the figure. Use of the MSB of a color plane is, in fact, equivalent to

considering normalized values 0 and 1 for each color space, where 0 represent the
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intensity range 0 to 127 and 1 represent the intensity range 128 to 255. For each

pixel, MSB information from all three planes is taken into consideration and the

corresponding pixel is now assigned a new three-bit value. The given WCE image

is now transformed into a different plane where the pixels are indexed with 3L bits

where L indicates the number of bits (starting from MSB) to be considered for each

color plane resulting in 23L combination for each block. For example, considering

only MSB gives L = 1 and 23 = 8 choices.

An index value is assigned for each color plane considering the binary value of

the most L significant bits (MSBs). Let the index values are Rind, Gind, and Bind

corresponds to red, green and blue color planes. Final index value (Find) is calculated

as the decimal values that corresponds to the binary choices

Find = 22L × (Rind)10 + 2L × (Gind)10 + 20 × (Bind)10 (4.2)

Here L is the number of MSB bits, which are taking into count. For example, when

L=1 and mean of R, G, B planes of a block are 150, 180, 76 respectively, then index

value is [1 1 0] and final index, Find = 22× 1 + 21× 1 + 20× 0 = 6. To compute final

index value, highest priority is given to red color plane due to its more prominent to

bleeding. In order to capture spatial distribution of different colors, in the proposed

scheme, combined color plane histogram approach is employed. Instead of consid-

ering the color distribution in one plane, information for constructing histogram is

extracted from the index image plane described above. A color histogram represents

the number of occurrence of each option of the index image. Formation of the index

value is presented in Table. 4.1.

Table 4.1: Representation of Pixel Index Value

Pixel value 1 bit (MSB) Ind 2 bit (MSB) Ind
No. (R,G,B) Rind Gind Bind (0-7) Rind Gind Bind (0-63)

1 (100,230,50) 0 1 0 2 01 11 00 28
2 (150,240,30) 1 1 0 6 10 11 00 44
3 (50,60,10) 0 0 0 0 00 00 00 00
4 (200,120,100) 1 0 0 4 11 01 01 53
5 (240,235,250) 1 1 1 7 11 11 11 63

Color histogram, a count based representation of image pixels should ensure the

presence of any group of bleeding pixels, no matter how small it is, independently

in the feature vector. Thus, a color histogram is considered as more prominent and
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significant representation of color in a given WCE image and it is to be noted that

bleeding regions are sensitive to color information. In the case of small bleeding

regions, it can provide discriminant feature value in the specific color bin, which is

sufficient to detect the bleeding image. As a result, it is expected that the feature

vector will offer better consistency no matter whether it is a bleeding or non-bleeding

image. One of the major concern in the proposed method of global feature extraction

is acquiring block based color histogram which is described below.

4.2.2 Block Based Feature Extraction

The motivation of block-based local feature extraction is described in section 3.2.1.

In the previous chapter, block based method is developed using a composite color

plane (G/R), which is a 2D plane, thus, the block is formed as a 2D block. Rather

than a composite plane, in this chapter, all three available color planes are con-

sidered. It is to be mention that color images actually a data matrix of three

dimensions. Two dimensions (X and Y axis) contain spatial information and the

third dimension (Z axis) preserves color information. It is well known that color

information plays a very significant role to differentiate bleeding and non-bleeding

images. To represent a particular color, at least, three color planes information is

required. To address this, all three color planes intensity information are considered

to calculate local feature. Thus, in this section, a block is formed, which has three

dimensions, consisted of both spatial and color planes information. For example,

Fig. 4.4: Representation of neighborhood block characteristic (a) given image; (b)
a representation of consecutive block; (c) block and statistic characteristics

considering a WCE color image with M ×M pixels, and each pixel possesses value

corresponding to C color planes (RGB color space, there are three color planes: R,

G, and B), total dimension of that image becomes M ×M × C. If pixel values are
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directly considered as a feature, feature dimension would be M ×M ×C. However,

if feature extraction is performed on m×m non-overlapping blocks in one channel,

in total J × J blocks will be required, where J = floor(M/m). In this case, if the

average value of each color plane of each block is considered as a feature, J × J ×C

average values containing local information can be used to construct feature vector

with dimension J2 × C < M2 × C. It is to be mentioned that although only J2

blocks instead of M2 pixels are used in one channel, in each block all pixels are uti-

lized to extract feature. Thus, conventional feature selection or pixel down-sampling

operations are not equivalent to block based feature extraction. In Fig. 4.4, a block

formation and local feature extraction method is illustrated. First, a given image

is presented, then a block formation is presented from RGB color space (in this

case a 5 × 5 spatial block is considered). In the figure, red, green and blue color

represent each color plane. Finally, local features are computed separately for each

color plane.

a pixel intensity becomes three dimensional vector and denoted as p(x, y, c)

where c = 1, 2, · · ·C. For a block of size m × m, pixel intensity of j-th pixel is

denoted as pj(x, y, c), mean value of i-th block of each color plane are defined as

Bi
mean(c) =

1

m×m

m×m∑
j=1

pj(x, y, c) (4.3)

where c is defined as color plane. Finally, block local feature of a statistical mea-

surement is composed as

Bi
mean =

[
Bi

mean(1) Bi
mean(2) . . . Bi

mean(C)
]

(4.4)

Similar way, other conventional statistical measurements such as median, minimum

and maximum of i-th block are computed

4.2.3 Proposed Block Feature Based Color Histogram

For the purpose of differentiating bleeding and non-bleeding images, a descriptive

feature from a given WCE image needs to be extracted by employing features cal-

culated from all blocks. For a given image, if all the extracted block features are

combined, the feature vector would be tremendously large and it may not display

a consistent pattern. One potential way out is to form a global feature for each
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image by employing the features extracted from all blocks. If histogram from in-

dividual plane color is considered, that is not capable of characterizing bleeding

pixels properly because to represent a single color, at least, three color channels are

required [41]. Thus to represent bleeding, all color planes information are signifi-

cant. In this circumstance, in order to find a suitable global feature, in this method,

block based color histogram approach is proposed using all color planes intensity

information [37].

The objective of this subsection is to present a scheme to extract a global feature

of an image using available local features of each block. Instead of using one single

color plane, statistical measures of all color planes are considered to extract global

feature. For each local feature (e.g. mean, median, max, and min), a color histogram

based global feature extraction method is proposed utilizing all blocks. At first, for

a local feature, an index value is calculated using information of all color planes

for each block. Similar to the case of pixel based color histogram as described

in subsection 4.2.1. In this way, once index values of all blocks are computed,

a histogram is contracted. Since the pixel value in RGB color space varies from

0 to 255, the value of the statistical measure of any block (e.g. mean, median,

maximum, and minimum) will be confined within a range of 0 to 255. A color

histogram of a bleeding image considering 1 bit MSB and the mean value of each

block is constructed and represented in Table. 4.2. In that table, only MSB bit of

each color space is considered, which results in 8 different classes.

Table 4.2: Representation of Color Histogram

Red Green Blue Color Block Block/Bin
Index Count Probability

0 0 0 0 744 0.327
0 0 1 1 0 0
0 1 0 2 0 0
0 1 1 3 0 0
1 0 0 4 626 0.275
1 0 1 5 0 0
1 1 0 6 805 0.354
1 1 1 7 100 0.044

For better understanding, considering the bleeding and non-bleeding images pre-

sented in Fig. 4.5 (a) and (b) respectively, eight bin histograms constructed from
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4.5: Bleeding and non-bleeding image with individual plane color histogram,
(a) bleeding image; (b) non-bleeding image; (c) R-plane (bleeding) histogram; (d) R-
plane (non-bleeding) histogram; (e) G-plane (bleeding) histogram; (f) G-plane (non-
bleeding) histogram; (g) B-plane (bleeding) histogram; (h) B-plane (non-bleeding)
histogram; (i) gray image (bleeding) histogram; (j) gray image (non-bleeding) his-
togram.

different individual color planes are first shown in Fig. 4.5 (c)-(j). In this figure R,

G, B three planes and the grayscale plane is shown separately. From the histogram

figure, it is observed that bleeding and non-bleeding image exhibit quite similar his-

togram pattern with a large portion of overlapped regions between the two classes.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.6: Color histogram from proposed indexed image plane. 8 bin: (a) bleeding
and (b) non-bleeding. 32 bin: (c) bleeding and (d) non-bleeding 64 bin: (e) bleeding
and (f) non-bleeding.

Next in Fig. 4.6, for the same WCE images, histograms constructed from index

image plane are shown considering 8, 32 and 64 bins. In Figs. 4.6 (a) and (b), 8 bin

color histogram of bleeding and the non-bleeding image is illustrated respectively.

Here, L = 1 is considered which gives 23 = 8 index values and then 8 bin histogram

is computed. For L = 2, 23×2 = 64 index values can be acquired (local feature

value of each plane is divided as 0 to 63, 64 to 127, 128 to 191 and 192 to 255 and

represented by the most significant two bits (L = 2)), from that 32-bin color his-

togram is computed and presented in Figs. 4.6 (c) and (d). Similarly, 64-bin color

histogram is shown in Figs. 4.6 (e) and (f). From the figure, it is observed that 8-bin

color histogram shows distinguishable frequency in bin 4 and 6, 32-bin histogram

shows very distinguishable frequency value in some of the bins (e.g. 0, 21, 27) and

for 64-bin separability between the bleeding and non-bleeding image histogram is

significantly increased with respect to 32-bin color histogram. It can be observed

that the classification task is more difficult if the histogram of an individual plane

(R, G, B, grayscale) is used. However, the histogram obtained by using index image

offers better between class separation. Hence, a set of occurrence values of each color
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in the index image histogram is proposed to be used as a potential global feature

for classifying bleeding and non-bleeding images. In order to construct the feature

vector, L bits (starting from MSB) of a pixel from each plane are taken and placed

in a sequential manner to construct the transformed pixel value of the index image

plane.

4.2.4 Feature Dimension Reduction Scheme

One of the major observations is made from the Table. 4.2 and the Figs. 4.5 (g)

and (h) is that the blue intensity value in WCE image remains lower than 128 due

to the inherent characteristics of GI tract. From the Table. 4.2, it is observed that

pixel count is negligibly small or zero when the blue index value is 1, it is to be

noted that index value 1 represents intensity range of 128-255. In Table 4.2, B = 1

corresponds to 1, 3, 5, and 7 index values. In addition to this, from the Figs. 4.6 (a)

and (b), it is observed that at color indices 1, 3, 5, and 7, bin probability is close to

zero which do not make any sense to distinguish bleeding and non-bleeding frames.

Thus, to reduce feature dimension, we propose to take only bin probability that

contains blue intensity range 0-127. For example, in 8-bin color histogram, 0, 2, 4,

and 6 colors index feature is proposed. Similarly for 64 bin, 0, 1, 4, 5, 8, 9 · · · 60, 61

color index feature is proposed. This approach reduces the feature dimension by

50% without mislaying any significant information regarding bleeding.

4.2.5 Effect of Feature Cascading

Bin probability of color histogram is constructed for each block based local feature

(i.e. mean, median, minimum and maximum). In the simulation and result section,

those color histogram features are tested and the block features that provide best

performance result is proposed as final proposed feature. In addition to this, color

histogram features constructed from different block features are cascaded to form a

feature vector. The performance of those cascading features is presented in result

and simulation section.
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4.3 Bleeding Zone Localization

Once a bleeding image is detected in a WCE video, it is desired by the reviewer

that bleeding zones are marked by the bleeding detection tools. Automatic bleeding

zone localization can afford various assistances, namely 1) ratifying the bleeding

recognition result of that image, 2) quick picturing of the region of importance

intensively and 3) Exploring the variation in bleeding appearances in sequential

video frames. But automatic bleeding zone localization facility is not offered in the

most of existing bleeding recognition techniques. Thus in this section, a computer

aided bleeding zone localization scheme is proposed, which is used for identifying

bleeding regions in the detected bleeding frame. In the proposed method, first,

local features are computed from different blocks, then using that local feature, the

probability of each color histogram bins is computed and considered as a global

feature and then feature based supervised classifier is used to identify bleeding (B)

or non-bleeding (N) images. Next, bleeding zone localization will be performed only

on bleeding images. At this point, the objective is to categorize the blocks of a given

bleeding image into two classes as bleeding and non-bleeding block. After getting

the block label, the label of a pixel in a block needs to be determined. And finally

bleeding zone is localized using pixel-wise marking of a given image. Major steps,

to be executed in the proposed bleeding zone localization procedure are as following

• Classify all the blocks of an image into bleeding and non-bleeding classes

• Identifying the label of each pixel in a block whether bleeding or non-bleeding

• Fine-tuning of bleeding zone with the help of morphology operation.

4.3.1 Block Classification

In order to classify blocks of a given bleeding image, available local features of each

block are considered. It is to be mentioned that block based local features are already

extracted for the purpose of bleeding frame detection and described in subsection

4.2.2. Any computational burden is not incorporated in feature extraction for the

purpose of block classification because of using available local features of each block.

Along with the block-based local features, the color intensity value of block center

pixel of each color plane is included in the final feature vector. This block center
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pixel intensity is a strong representative member of that block, which definitely

enhances feature quality of a block in case of block classification.

fblock =
[
Bmean Bmedian Bmax Bmin Ic

]
(4.5)

Here fblock and Ic represent the final block feature for classifier and color intensity

value of block center pixel respectively. For the purpose of classification, a supervised

KNN classifier is proposed and final block feature is considered as a feature vector.

In KNN classifier, a training dataset consists by randomly chosen 20% bleeding

images of the available database. Ground truth of bleeding localization of those

bleeding images are denoted by an expert physician. Bleeding blocks are collected

from the ground truth marking and considered as training dataset.

After that identifying the label of pixels is performed which is similar as described

in section 3.3.2. Finally, fine-tuning of the bleeding zone using morphology operation

is executed which is similar as described in section 2.2.1.

4.4 Simulation and Experimental Result

4.4.1 Parameter Selection

First, after applying preprocessing technique described in subsection 2.1.1, black-

boundary pixels are eliminated from given WCE image. Next, for block-based local

feature extraction, as described in subsection 4.2.2, different blocks are constructed

and effect of variation of block size and percentage overlapped on bleeding detection

performance is investigated. Performance evaluation result are reported considering

four different block sizes: 3×3, 5×5 7×7 and 9×9 with various combinations of over-

lapping. Different local features, such as mean, median, maximum, and minimum

are calculated. For the purpose of a global feature extraction color histogram is com-

puted utilizing each block based local feature of all color space (refer to subsection

4.2.3. Block probability of histogram bin is considered as a global feature for each

local feature. For bleeding frame classification KNN classifier is used. Experimental

performance is evaluated based on 10 fold cross validation technique.
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4.4.2 Bleeding Frame Detection Performance

Bleeding frame detection results of proposed method are reported in Table. 4.3

considering variation of different block sizes. 3 × 3, 5 × 5, 7 × 7 and 9 × 9 block

dimensions are investigated taking block median of 512 bin histogram and found

that, very small size of block could not represent a significant area of bleeding,

on the other hand, big size of block may contain both bleeding and non-bleeding

regions. As a result, it is more suitable to take the moderate size of the block to

obtain the best performance result. Hence, better performance result is obtained

for 7 × 7 block size. The performance of frame detection varying histogram bin

is investigated and presented in Table. 4.4. 8, 16, 32, 64, 128, 256 and 512 bin

histogram are examined, more than 512 bin is not considered due to avoid very large

feature vector. Blocks are segmented into more classes by higher histogram bin which

offers the most discriminant feature. Thus, better performance is obtained by higher

order histogram bin. 512 and 256 histogram bin show satisfactory performance than

other lower bin.

Table 4.3: The Effect of Block Size on Bleeding Frame Detection Performance

Block Size Sensitivity Specificity Accuracy
3 by 3 93.58% 98.94% 97.91%
5 by 5 93.75% 98.90% 97.87%
7 by 7 94.22% 99.22% 98.26%
9 by 9 91.93% 98.38% 96.89%

Table 4.4: Performance of Bleeding Frame Detection Varying Histogram Bin

Block Histogram Sensitivity Specificity Accuracy
size Bin

8 46.17% 87.42% 79.49%
16 79.46% 95.89% 92.72%
32 79.61% 95.95% 92.81%

7 by 7 64 85.03% 96.79% 94.55%
128 88.88% 98.36% 96.60%
256 93.09% 98.74% 97.66%
512 94.22% 99.22% 98.26%

Different types of overlapping blocks are investigated and reported in Table. 4.5.

In that table, 7× 7 block dimensions are considered due to their high-performance

potential. 0%, 14%, 28% and 43% overlap between two consecutive blocks of 7×7 size
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are taking into the investigation. More than 50% overlap between two consecutive

blocks is not considered. It is observed that, overlapping block scheme is more

suitable to overcome single pixel randomness and distortion problem, hence offers

better feature consistency than non-overlapping block feature. Thus, overlapping

block scheme performed better than a non-overlapping block. Performance result is

also varied due to an overlapping percentage between adjacent blocks. In order to

examine the effect of overlapping percentage between two adjacent blocks; 14%, 28%

and 43% overlapping of 7×7 blocks are considered and found that, if a large portion

of a block is overlapped, feature quality degraded as well as the performance. As a

result, the best performance is obtained from 14% overlapping block of 7 × 7 size,

which is shown in Table. 4.5.

Table 4.5: The Effect of Block Overlapping on Bleeding Frame Detection Perfor-
mance

Block Overlapping Sensitivity Specificity Accuracy
Size Percentage

0% 94.22% 99.22% 98.26%
7 by 7 14% 94.92% 99.23% 98.30%

28% 93.09% 99.11% 97.96%
43% 93.84% 98.88% 97.91%

The performance variation effect of global feature constructed by different local

features and their combination are tested and reported in Table. 4.6. It is found

that from the individual local feature, the best performance obtained by block me-

dian value histogram of 512 bin. Among the different combination of local features,

a combination of median and min shows the best performance in term of sensitivity

and accuracy. 96.00% sensitivity and 98.72% accuracy are achieved using a combi-

nation of median and min histogram with 512 bin. The final proposed feature is the

combination of median and minimum local features 512 bin color histogram of 7× 7

block with 14% overlapping.

Furthermore, bleeding detection performance is investigated using different ‘k’

value of KNN classifier considering final proposed feature, which is illustrated in

Fig. 4.7. From the figure, it is found that the best performance is obtained using

k = 2 in terms of sensitivity, specificity, and accuracy. It is to be mentioned that one

major contribution of this paper is the block based feature extraction. In order to
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Table 4.6: Performance of Bleeding Frame Detection Varying Local feature of Block

Block
Size

Histogram
Bin

Local Feature Sen. Spec. Accu.

Mean 94.22% 99.22% 98.26%
7 by 7 512 Median 94.92% 99.23% 98.30%

Maximum 94.04% 98.68% 97.87%
Minimum 94.85% 99.06% 98.30%
Mean, Median 94.44% 99.22% 98.30%
Median, Min 96.00% 99.47% 98.72%
Mean, Median,
Max, Min

94.61% 99.48% 98.30%

demonstrate the effect of block based feature of proposed method, the comparison

result between with and without block based approach is shown in Fig. 4.8. In the

figure, bleeding detection performance in terms of sensitivity, specificity and accu-

racy are demonstrated considering without and with block based color histogram

feature. Single pixel randomness and distortion problem are reduced by block based

approach. Hence, it is expected that with block based feature provides better perfor-

mance than without blocking. From the figure, it is clearly shown that blocking step

significantly improves sensitivity, specificity, and accuracy, in the case of sensitivity,

it is improved by approximately 2%.

Fig. 4.7: Classification performance effect on ’K’ values of KNN classifier

Although all the above results are reported in RGB color space, proposed fea-

ture extraction method is also tested among different color spaces like normalized

RGB, HSV, CIElab, CIExyz, YCbCr and YIQ, which is illustrated in Fig. 4.9. In

the figure, sensitivity, Specificity, and Accuracy are demonstrated considering above

mentioned 7 color spaces and found that RGB and YIQ show highly satisfactory per-

formance in term of all criteria. It is noted from the previous subsection, sensitivity

is the most important performance criteria and high sensitivity is always desirable.
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Fig. 4.8: Classification performance effect on block

Among the different color space, YIQ domain provides the best sensitivity in 256

bin color histogram. Finally, it is found that the best performance is obtained using

7×7 block size with 14% overlapping, along with a combination of 256 bin histogram

of the median and minimum value of the block-based local feature in YIQ domain.

To further evaluate the performance of proposed new method, it is compared with

different histogram feature of RGB color space and reported in Table. 4.7. In the

table, a block-based histogram of red (R) plane, green (G) plane, blue (B) plane and

combination of all three color planes are taken into consideration. From the table,

it is shown that our proposed block-based color histogram method perform better

than any other histogram feature.

Table 4.7: Performance Comparison of Different Histogram Bin features of RGB
Plane (%)

Block Histogram Feature Sensitivity Specificity Accuracy
Size Feature Dimension

R plane 256 84.13% 96.68% 94.26%
G plane 256 79.04% 93.69% 90.89%

7 by 7 B plane 256 74.14% 93.65% 89.79%
Combined R, G,
and B

768 94.50% 98.95% 98.06%

Proposed Color
Histogram

512 96.00% 99.47% 98.72%

Performance of Feature Dimension Reduction Scheme

One of the major contributions of this work is to reduce feature dimension by fea-

ture dimension reduction scheme (referred to subsection 4.2.4. This scheme offers a

reduction of computational cost without compromising the performance. The perfor-
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Fig. 4.9: Bleeding Detection Performance in Different Color Plane

mance comparison between with and without feature dimension reduction scheme is

presented in Table. 4.8. From the table, it is found that feature dimension reduction

scheme offers almost same performance while reducing feature size by 50%. It is to

be noted that reduction of feature vector size significantly lessens the computational

cost of classification.

Performance Comparison with Established Method

To further evaluate the performance of proposed method, it is compared with some

recently established methods [23], [19], [32], [28], [27], [33], [34], [22] and [21]. At

first proposed method is compared with uniformed Local Binary Pattern (LBP) his-
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Table 4.8: Performance Comparison Between With and Without Feature Dimension
Reduction Varying Histogram Bin

Without Reduction With Reduction
Hist.
Bin

Dim. Sen. Spe. Accu. Dim. Sen. Spe. Accu.

32 32 79.61% 95.95% 92.81% 16 79.56% 95.73% 92.64%
64 64 85.03% 96.79% 94.55% 32 85.88% 96.53% 94.47%
128 128 88.88% 98.36% 96.60% 64 89.85% 98.42% 96.77%
256 256 93.09% 98.74% 97.66% 128 92.51% 98.59% 97.40%
512 512 94.22% 99.22% 98.26% 256 94.15% 99.15% 98.21%

togram feature. To extract feature in LBP, 8 bin histogram is performed. Other

recent related papers, [19], [32], [37] and [22] focused on bleeding detection are con-

sidered for performance comparison, which is already mentioned in the introduction

section. Best feature combination reported in [19] are taken into count. For [32],

features are extracted from composite color intensity plane. A pixel intensity based

color histogram feature of the whole image is taken for [37]. And for [22], 80 bin

word based color histogram are considered as feature. The comparison result is

reported in Table. 4.9. It is to be noted that in short proposed method is named

as CH-BF ( color histogram of block feature). For a fair comparison, same WCE

image dataset and classifier are implemented. Our proposed method is developed

in such a way that it can overcome some serious problem that usually WCE videos

faces, like single pixel randomness, illumination changes, and image distortion. Also

proposed method provides consistency feature not only for the image, that possess

large bleeding zone but also for the image, that containing small bleeding zone. As

a result proposed method shows the best performance result. From the table, it

is exhibited that proposed method outperformed among the all reported methods,

especially in terms of sensitivity.

4.4.3 Performance in Continuous WCE Video Clip

In this subsection, bleeding frame detection in continuous WCE video clip and

the effect of post-processing step are demonstrated. For the purpose of analyzing

performance in WCE video clip, five WCE bleeding videos are considered namely:

1) ‘D170 bleeding’, 2) ‘bleding5’, 3) ‘bleeding3’, 4) ‘bleeding2’, and 5) ‘23 bleeding’,

those are publicly available in [31]. Those videos are chosen in a way so that it
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Table 4.9: Performance Comparison of Different Features

Method Name Sensitivity Specificity Accuracy
Uniform LBP [23] 79.25% 94.56% 91.50%

Hist. probability [19] 83.00% 75.69% 77.15%
Intensity ratio [32] 94.78% 93.58% 94.00%

Stat (R/G) [28] 88.50% 96.63% 94.97%
Stat (Hue) [33] 93.08% 96.46% 95.24%

Stat (Y.I/Q) [34] 93.50% 94.00% 93.90%
Stat (CMYK) [27] 95.50% 92.87% 93.40%

Word hist. [22] 91.71% 94.05% 93.31%
Raw hist. [21] 94.50% 98.95% 98.06%

CCBF 96.22% 98.54% 98.04%
Proposed CH-BF 96.09% 99.32% 98.68%

covers different types of bleeding frame, as well as variation of frame number and

position. First, from the video clip image frames are extracted and proposed final

features are calculated. Then, bleeding and non-bleeding decision are acquired by

applying KNN classifier and the performance is reported in Table. 4.10 and termed

as without post-processing performance. Among the five videos, four videos show

satisfactory performance in terms of all performance criteria, except ‘bleeding3’, due

to the presence of numerous incidents of faint small bleeding areas. After getting

primary bleeding detection result, post-processing algorithm is implemented. In

The post-processing step, first, frame decision of video clip sequence is tested with

certain conditions and acquired an investigation zone centering a frame which is

primarily labeled as non-bleeding. Fulfilling necessary condition a test non-bleeding

frame can be toggled to bleeding, which is described in 2.1.5. As a result, a bleeding

frame decision may be corrected, thus, the sensitivity is improved. The performance

result of with and without post-processing are reported in Table. 4.10 in terms of

sensitivity, specificity, and accuracy. As expected, the sensitivity, as well as accuracy,

is significantly improved by post processing. In the case of ‘bleeding3’ video, its

sensitivity is highly improved as well as accuracy. The overall result of considering

all five videos are illustrated in Fig. 4.10. From the figure, it is clearly shown that

the overall sensitivity and accuracy are improved by almost 2% and 1% respectively,

which reflects strong justification of post processing step.
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Table 4.10: Video Performance Result with Post Processing Effect

Video name Frames
No.
(B/N)

Criteria Without
post-proc.

With post-
proc.

D170 bl 96/4 sen. 98.96% 100.00%
spec. 75.00% 75.00%
accu. 99.00% 99.00%

bleeding5 22/78 sen. 90.91% 95.45%
spec. 96.15% 96.15%
accu. 95.00% 96.00%

bleeding3 5/95 sen. 100.00% 100.00%
spec. 89.47% 89.47%
accu. 90.00% 90.00%

bleeding2 100/0 sen. 98.00% 100.00%
spec. — —
accu. 98.00% 100.00%

23 bl 27/73 sen. 81.48% 88.89%
spec. 98.63% 98.63%
accu. 94.00% 96.00%

Fig. 4.10: Overall performance comparison between with and without post process-
ing

4.4.4 Experiment Results for Bleeding Zone Detection

Quantitative Analysis

For the purpose of quantitative analysis, 100 bleeding images are tested, which are

collected from 10 different bleeding videos. The ground truth of bleeding zone of

those bleeding images is marked by the clinician. Bleeding zone detection result of

a different parameter of proposed method are reported in Table. 4.11. Among the

different performance parameters precession and the false negative ratio (FNR) is

a more crucial indicator. According to the definition of precision, FPR, and FNR;
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higher value is of precision but the lower value of FNR and FPR are considered as

a good result. FNR value represents failure percentage of bleeding zone detection,

which must be kept very low. As a result, high precision value and low FNR value

are expected. Bleeding zone detection result of proposed method are reported in

Table. 4.11 considering variation of different block sizes. 3 × 3, 5 × 5, 7 × 7 and

9× 9 block dimensions are investigated and found that very small size of the block

could not represent a significant area of bleeding, on the other hand, big size of the

block may contain both bleeding and non-bleeding regions. As a result, it is more

suitable to take the moderate size of the block to obtain the best performance result.

Hence, in terms of precision, better performance result is obtained considering 7× 7

block size. It is noted that bleeding zone detection performance highly depends on

local block features, which are used for segmenting bleeding and non-bleeding zone

as mentioned in 3.2.2.

Table 4.11: Bleeding Zone Detection Performance of Different Block Size

Method Precession FPR FNR
3 by 3 block 94.28% 2.14% 8.46%
5 by 5 block 94.75% 4.01% 10.31%
7 by 7 block 95.33% 3.14% 10.88%
9 by 9 block 94.07% 1.34% 16.35%

Different types of overlapping blocks are investigated and reported in Table.

4.12. In that table, only 5 × 5, and 7 × 7 block dimensions are considered due to

their high-performance potential. 0%, 20% and 40% overlap between two consecu-

tive blocks of 5×5 size and 0%, 14%, 28% and 43% overlap between two consecutive

blocks of 7 × 7 size are taking into the investigation. More than 50% overlap be-

tween two consecutive blocks is not considered. It is observed that, overlapping

block scheme is more suitable to overcome single pixel randomness and distortion

problem and offers consistent local block feature. Thus, overlapping block scheme

performed better than a non-overlapping block. Performance result is also varied

due to an overlapping percentage between adjacent blocks. In order to examine the

effect of overlapping percentage between two adjacent blocks; 14%, 28% and 43%

overlapping of 7×7 blocks are considered and found that, if a large portion of a block

is overlapped, local feature quality of blocks are degraded as well as the bleeding

zone detection performance. As a result, in terms of precision, the best performance
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is obtained from 14% overlapping block of 7× 7 size which is shown in Table. 4.12.

To justify our methods, further analysis is done to compare bleeding zone detection

result with recently developed method reported in [22] and other proposed meth-

ods. The comparison result of bleeding detection performance is illustrated in Table.

4.13. From the figure, it is clearly shown that all the performance parameters are

significantly improved. Most important and significant improvement is observed in

FNR ratio, it is improved by almost 29% from Yuan method. Proposed method

performance is superior to both Yuan and R/G threshold-based method. Although,

proposed method precession is lower than kmeans clustering method but it exhibits

lower FNR, which is considered one of the very important performance parameter.

Table 4.12: The Effect of Block Overlapping on Bleeding Zone Detection Perfor-
mance

Block Size Overlapping (%) Precision FPR FNR
7 by 7 0% 95.33% 3.14% 10.88%
7 by 7 14% 95.75% 3.11% 10.38%
7 by 7 28% 94.80% 3.49% 16.46%
7 by 7 43% 94.67% 4.13% 15.80%

Table 4.13: Performance Comparison of Bleeding Zone Detection

Method Precession FPR FNR
Yuan method [22] 88.20% 3.14% 39.60%

R/G threshold 91.41% 6.23% 27.46%
Kmeans clustering 97.05% 1.11% 22.38%

Proposed block 95.75% 3.11% 10.38%
based classification

4.5 Conclusion

In this chapter, a new technique of bleeding frame and zone detection in wireless

capsule endoscopy video recordings is presented. In the proposed method, block base

local feature extraction overcomes pixel randomness problem and provides consis-

tent feature quality. The color histogram based global feature is proposed using the

local feature. A feature reduction scheme is developed to reduce the computational

cost of classification task without compromising the bleeding frame detection per-

formance. The proposed method exhibits high sensitivity, specificity, and accuracy
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with respect to other established method. Moreover, a bleeding zone localization

method is developed using the local feature. First, blocks of a bleeding frame are

classified using supervised classifier and then pixels are marked using proposed in-

terpolation scheme. Finally, bleeding zones are delineated applying morphological

operation. The proposed method is thus promising in identifying bleeding zones

from a bleeding image. In the future, we will develop more consistent and suitable

feature for bleeding frame classification in order to archive the highest sensitivity.



Chapter 5

Conclusion

5.1 Contribution of this Thesis

• The main objective of this thesis work is to develop a fast and efficient bleeding

frame and zone detection technique for WCE video recordings. In order to

achieve this target, three different schemes are proposed, one falls into the

category of holistic-based approach, the second one is combination of block

and segment based approach and the third one is color histogram based feature

extraction approach. The objective of the first scheme is to provide satisfactory

bleeding frame detection performance with a very low computational cost of

processing the whole image. RGB color plane and a composite color plane

based feature extraction method is developed and found that this method can

successfully differentiate bleeding and non-bleeding WCE video frames. WCE

video recording holds sequential information of frames, it is observed from the

frame sequence that bleeding does not occur a discrete single frame rather than

bleeding frames occur in a group of the continuous sequential frame. In this

regard, a post-processing algorithm is developed to improve the performance

of bleeding frame detection.

• A combination of block and segment based approach is introduced. This ap-

proach overcomes single pixel randomness problem as well as independent of

the size of the bleeding area in a given image. A block-based local feature is

extracted, which is considered more prominent representation instead of using

individual pixel with respect to image noise, distortion, and bleeding zone.

Furthermore, an unsupervised classifier is used to segment WCE image into

two clusters, which separates bleeding blocks from non-bleeding blocks hence

86
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enhance feature quality for detection of bleeding pixels.

• The third scheme proposed in this thesis performs 3D color histogram based

bleeding and non-bleeding frame classification. A 3D color histogram is ac-

quired utilizing information of all three color channels and the probability of

bin frequency is proposed as a potential feature. This feature is considered as

a good suit representation bleeding and non-bleeding pixel distribution in a

given WCE image. One of the major contributions of this proposed scheme

is a reduction of feature dimension, which significantly lessen computational

cost without compromising performance.

• For the purpose of bleeding zone detection only bleeding marked images are

taken into consideration. In this thesis, two approaches are developed for

bleeding area localization. One approach uses clusters that are provided from

the combination of block and segment-based approach. At first, from the two

clusters (cluster-I and cluster-II) bleeding cluster is marked. Then pixel-wise

marking is done by proposed interpolation technique and finally, with some

morphological operation final bleeding zone is identified. Another approach

to bleeding zone localization is a block-based classification of bleeding and

non-bleeding zone. This approach also shows satisfactory performance result.

Bleeding localization definitely helps the physician to diagnose bleeding source

and as well as bleeding related abnormalities.

• The main objective of this thesis is to develop an efficient bleeding frame and

bleeding zone detection methodology that can help the physician to diagnose

bleeding related abnormalities. Our proposed method can successfully detect

bleeding WCE video recording with a high level of sensitivity, specificity, and

accuracy with respect to other recently publish method. Thus, it can reduce

the burden of the physician in reviewing a large number of WCE images.

5.2 Scope & Future Work

• One possible future work could be to find more effective and distinguish-

able feature that is more prominent to differentiate bleeding and non-bleeding
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frame. So that true bleeding image is not being misclassified as non-bleeding,

this is very harmful in clinical aspect.

• Another future work could be to investigate not only bleeding abnormalities

but also other diseases like tumor, ulcer etc. Then it will be a package for

the user that any sort of abnormalities would be detected by computer aided

system that definitely reduces the burden of the physician.
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