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Abstract 
 

The study of fluid flows through tube has received considerable attention over few centuries 
due to its wide applications in physical, biological and applied sciences. It is therefore 
necessary to examine some combined effects on the entire flow structure. In this thesis, three 
different circumstances of fluid flow through a tube are studied. In this regard, wall driven 
flow through a porous tube with magnetic field and flow through a collapsible tube in 
presence of obstacle and magnetic field are considered. A numerical study of two-
dimensional, steady as well as unsteady flow of an incompressible viscous fluid are 
investigated using approximation method and finite element method. To determine the 
stability of flow is main concern. In this thesis, different types of disturbance such as 
movement of wall, porosity in wall, contraction and expansion of collapsible tube, magnetic 
field and obstacle are used that help to create instability in flow structure. Special type of 
Hermite-Padé approximation method is used to analyze the stability of flow and to determine 
the critical point where the instability initiates. The effect of different dimensionless numbers 
on the velocity, temperature and rate of heat transfer are also investigated. Here, the critical 
Reynolds number, effect of contraction and expansion, formation of vortex and magnetic 
effect on vortex are discussed. 
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Overview 

 
 

1.1 INTRODUCTION 
 
A fluid is any substance that deforms continuously when subjected to a shear stress 
(tangential force per unit area), no matter how small according to McDonough. The work of 
Leonardo Da Vinci gave rapid advancement to the study of fluid mechanics more than 500 
years ago, but earlier than this time; fluid behavior were much more available by the time of 
ancient Egyptian. Enough practical information had been gathered during the Roman Empire 
to allow fluid dynamics application. Several centuries ago, more modern understanding of 
fluids motion was begun that known as Bernoulli’s equation. Since then, many researchers 
have done numerous works on fluid mechanics.  
 
The study of fluid flows and heat transfer through a porous tube fascinated mankind for many 
centuries due to its applications in many areas of life. Such areas are: agriculture (e.g. 
irrigation, land drainage), geothermal system, micro-electric heat transfer equipment, coal and 
grain storage, nuclear waste disposal, hydraulic engineering, atmospheric sciences, 
oceanography, geophysics (e.g. convection in the earth’s mantle, convection in earth’s molten 
core). So also in a chemical and petroleum engineering (e.g. industrial filtration, fluidization, 
sedimentation, metallurgy, ceramics, powders, drying and wetting of textiles and wood), 
building engineering (e.g. aeration insulation against moisture) and biological area (e.g. flow 
of blood and water in the system, action of kidney and rise of juices in plant).  
 
While the flow over a circular cylinder represents one of the classical problems in fluid 
mechanics, the case of flow over a confined cylinder in a plane channel remains relatively 
unexplored. The extra confinement provided by the stationary no-slip walls of the channel 
affects the nature and stability of the flow. To understand the wide variety of flow phenomena 
it is very important to gather overall knowledge on bluff body (obstacle) in fluid dynamics. 
Even more importantly, such a flow configuration represents an idealization of several 
industrially important flows, where flow inserts can be used to enhance mixing and heat 
transfer; typical examples include flow past dividers in polymer processing, turbulence 
promoters in the liquid-metal blankets of fusion reactors, etc. Understanding the dynamics of 
a three dimensional wake flow behind a cylinder can provide valuable knowledge with 
practical importance, with respect to its effect on heat and mass transfer. 
 
However, the flow of an electrically conducting viscous fluid between two parallel plates in 
the presence of a transversely applied magnetic field has applications in many devices such as 
magneto-hydrodynamic (MHD) power generators, MHD pumps, accelerators, aerodynamics 
heating, electrostatic precipitation, polymer technology, petroleum industry, purification of 
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molten metal’s from non-metallic inclusions and fluid droplets-sprays. Hartmann flow of a 
Newtonian fluid with heat transfer, subjected to different physical effects, has been studied by 
many authors. These results are important for the design of the duct wall and the cooling 
arrangements. The rectangular channel problem has later been extended also to fluids obeying 
non-Newtonian constitutive equations. The hydrodynamic flow of a visco-elastic fluid has 
attracted the attention of many authors due to its important industrial applications. 
 
In this thesis, analysis of MHD flow is major concerned on three different situations. The wall 
driven flow through porous tube, flow through collapsible tube and flow through collapsible 
tube with obstacle in the presence of hydro-magnetic effect are studied. 
 

 

 

1.2 LITERATURE REVIEW 
 
MHD effect on wall driven flow and heat transfer through a tube with porous wall is the first 
problem of this thesis. The study of fluid flows in porous tube and channel have received 
considerable attention over few centuries due to its wide applications in physical, biological 
and applied sciences. Berman (1953) studied laminar flow in a two dimensional rectangular 
channel with porous wall. He showed the corresponding Navier-Stoke equations can be 
reduced to a nonlinear third order ordinary differential equation with two point boundary 
conditions and Reynolds number (Re) based on injection-velocity. The perturbation results for 
extremely small Reynolds number was given by him. Some years later, Sellar (1955) obtained 
a solution for large Reynolds number. However, Yuan and Finkelstein (1956) obtained 
solution for large negative Reynolds number. Makinde (1995) investigated the problem of 
laminar flow in channels of slow varying width and permeable boundaries. Makinde (1996) 
considered the computer extension of perturbation series solution, its analysis and analytic 
continuation provided valuable information on the solution structure at large Reynolds 
numbers, including bifurcation study for porous tube flow problem. Makinde (1999) 
investigated a new series summation and converging improvement technique to study the 
steady flow of a viscous incompressible fluid flow both in a porous pipe with moving walls 
and an exponentially diverging asymmetrical channel. Munson-McGee (2002) presented an 
approximate solution for fluid dynamics of flow through a porous tube, where he encountered 
in the cross-flow filtration process.  
 
Kays and Crawford (1993) considered heat transfer in a developed laminar incompressible 
flow with constant physical properties in a two-dimensional channel with porous walls having 
constant temperature. They obtained several asymptotic solutions of the energy equation for 
small and large wall Peclet numbers and large Prandlt numbers. Makinde (2001) investigated 
the combined effects of viscosity variation and energy dissipation on steady flow of an 
incompressible fluid in a pipe with moving surface. Reddy et al. (2009) observed the unsteady 
MHD convective heat and mass transfer flow past a semi-infinite vertical porous plate with 
variable viscosity and thermal conductivity. Makinde (2009) examined the effect of thermal 
radiation on inherent irreversible in the flow of a variable viscosity optically thin fluid 
through a channel with isothermal walls. Many investigations have been conducted on 
thermal stability and heat transfer in a porous channel. 
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An incompressible symmetric wall driven steady flow of a viscous fluid and heat transfer in a 
tube of circular cross section was examined by Makinde et al. (2006). They used a 
perturbation series for the slow flow and low Reynolds number to solve the governing 
equations. They represented the behavior of wall shear stress and the rate of heat transfer 
across the wall with the increase or decrease of Reynolds number.    
 
In this thesis, the first problem is solved by the series solution and approximation technique 
where MHD effect on stability of flow, velocity, shear stress and temperature is represented 
with the variation of Hartmann number, Reynolds number and Prandtl number. 
 
However, MHD effect on fluid flow and heat transfer through a collapsible tube is the second 
problem of this thesis. Fluid flow through collapsible tubes is a complex problem due to the 
interaction between the tube-wall and the flowing fluid, Heil (1997). Collapsible tubes are 
easily deformed by negative transverse pressure owing to marked reduction of rigidity. Thus, 
they show a considerable nonlinearity and reveal various complicated phenomena. It is 
usually used to simulate biological flows such as blood flow in arteries or veins, flow of urine 
in urethras and airflow in the bronchial airways. These investigations are very useful for the 
study and prediction of many diseases, as the lung disease (asthma and emphysema), or the 
cardiovascular diseases (heart stroke). The major research goal remains, the full 
understanding of the flow structure and the mechanism driving this flow. Many previous 
theoretical works on flow in collapsible tubes concentrated on the development and analysis 
of simpler models, by reducing the spatial dimension of the problem, which involved a 
number of ad-hoc assumptions e.g., Contrad (1969), Grotberg (1971), Flaherty et al. (1972), 
Cowley (1982,1983) etc. Experimental example of the work on collapsible tube and finite-
length elastic tube were performed whose upstream and downstream ends were open (i.e. 
Starling-resistor), Brower and Scholten (1975), Bertram (1986). Inside a pressure chamber, 
thin-walled elastic tube (made of latex rubber) was mounted on two rigid tubes. Fluid (liquid 
or gas) typically water or air respectively was driven through the tube, either by applying a 
controlled pressure-drop between the ends of the rigid tubes or by controlling the flow rate. At 
sufficiently large Reynolds numbers, the system produced self-excited oscillations, and 
exhibited hysteresis in transition between dynamical states, multiple modes of oscillations 
(each having distinct frequency range), rich and complex nonlinear dynamics (Bertram et al.,  
1990). If the external pressure exceeds the fluid pressure by a sufficiently large amount, the 
tube buckles non-axisymmetrically, which then leads to a nonlinear relation between 
pressure-drop and flow rate. The inertia and resistance of the fluid in the supporting rigid 
tubes have an important influence on the system’s overall dynamics. Meanwhile, Bertram and 
Pedley (1982), Bertram et al. (1990) investigated two-dimensional channel theoretical model 
with one wall of the channel was replaced by a membrane under longitudinal tension and 
viscous flow was driven through the channel by an imposed pressure-drop. The variation 
between the external pressure and the internal flow was determined the deformation of the 
membrane. The dynamics of the problem was described by nonlinear ODE’s whose numerical 
solutions exhibited oscillatory behavior in this experiment. Despite the difficulties of 
producing two-dimensional flows experimentally, this system still attracted considerable 
theoretical attentions.  
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Meanwhile, Makinde et al. (2002) investigated the mathematical model of physical 
phenomena in nonlinear equations for some unknown function. The solutions of these 
nonlinear systems were dominated by their singularities. Physically, a real singularity controls 
the behaviour of a solution. There is a long tradition in applied mathematics to solve nonlinear 
problems by expansion in powers of some “small” perturbation parameter. The advantage of 
this approach is that it reduces the original nonlinear problem to a sequence of linear 
problems. However, it is not always possible to find an unlimited number of terms of power 
series. Often it is possible to obtain a finite number of terms of that series and these may 
contain a remarkable amount of information. One can reveal the solution behaviour near the 
critical points by analysing partial sum (Makinde, 2001). Over the last quarter century, highly 
specialised techniques have been developed to improve the series summation and also used to 
extract the required information of the singularities from a finite number of series coefficients. 
The most frequently used methods include Domb and Sykes (1957), Shafer (1974), Hunter 
and Guerrieri (1980), Sergeev (1986), Drazin and Tourigny (1996)  etc. 
 
Makinde (2005) investigated the flow of a viscous incompressible fluid in a collapsible tube. 
A special type of Hermite-Padé approximants technique was presented and utilized to analyze 
the flow structure. The chief merit of this new method was its ability to reveal the dominant 
singularity in the flow field together with solution branches of the underlying problem in 
addition to the one represented by the original series. Odejide et al. (2008) examined an 
incompressible viscous fluid flow and heat transfer in a collapsible tube. They investigated on 
the change in Prandtl number that leaded to the change in the rate of heat transfer. 
 
In this thesis, the second problem is solved by the series solution and approximation technique 
where the MHD effect on collapsible tube is represented and compares it with the behavior of 
normal tube.  
 
Moreover, the MHD effect of fluid flow and heat transfer through a collapsible tube with 
obstacle is the third problem of my thesis. Flow through collapsible tube with obstacle is an 
important research area due to its wide range of biological and engineering applications. 
Although, the geometry of a bluff body (obstacle) can be simple, the flow behind it is chaotic 
and time-dependent after a certain value of Reynolds number. Forces acting on the body also 
vary in time, and can cause periodic loading on the body. These forces originate from 
momentum transfer from fluid to the body, and they are strongly related to the shape of the 
body and properties of the flow. It was experimentally investigated by Norberg (1987) that 
when Reynolds number (Re) of flow over a circular cylinder exceeded 48, vortices separated 
from the boundary layer, and started to move through the downstream, where steady state 
behavior of the flow turned into a time-dependent state. Also, the flow over a three-
dimensional (3D) circular cylinder was analyzed by Aradag (2009) using Large Eddy 
Simulation (LES) without a sub grid turbulence modeling, where CD and St number were 
evaluated as 1.2 and 0.2 respectively. The dynamical and thermal behavior of the flow around 
a circular cylinder submitted to blowing was experimentally investigated by Mathelin et al. 
(2005). 
 
In this thesis, the MHD effect on fluid flow through a collapsible tube with the presence of 
obstacle is represented by the variation of stream line, temperature contour, velocity contour 
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and the rate of heat transfer. However, the deviation of velocity and temperature by the 
increase and decrease of Reynolds and Hartmann number are studied. 
 
 
1.3 OBJECTIVE OF THE THESIS 
 
The objective of this thesis is to investigate the flow through a tube with different 
circumstances. Here, we mainly investigate the presence of magnetic field and obstacle how 
changes the flow pattern, velocity profile, temperature and rate of heat transfer. The specific 
objectives are described below. 
 
To develop mathematical model on wall driven flow and collapsible tube with obstacle and 
hydro magnetic effect using approximation method and finite element method. To compare 
the result of collapsible tube with normal tube hence to determine the critical Reynolds 
number for stability and the effect of magnetic field on flow stability. To study the effect of 
contraction and expansion on velocity, temperature and rate of heat transfer and the presence 
of obstacle how change the velocity, temperature and rate of heat transfer. Also discuss the 
magnetic effect on vortex formation, diminish and displacement. 
 
 
 
1.4 OUTLINE OF THE THESIS 
 
In this thesis, the fluid flow through a tube is represented with different situations where 
presence of magnetic field and obstacle is the main focused area.  
 
In Chapter 2, MHD effects on wall driven flow and heat transfer through a porous tube is 
presented. A mathematical model is developed and the problem is solved by the 
approximation method and perturbation method. The magnetic effect on velocity, 
temperature, rate of heat transfer and above all the stability of flow are illustrated. 
 
In Chapter 3, MHD effects on fluid flow and heat transfer through a collapsible tube is 
described. This problem is solved by the approximation method. The behavior of collapsible 
tube is compare with the normal tube. The MHD effect on fluid flow, temperature, rate of heat 
transfer and the stability of flow are demonstrated.   
 
In Chapter 4, MHD flow through a collapsible tube with and without obstacle is discussed and 
solved using finite element method. The effect of dimensionless number on velocity, 
temperature and rate of heat transfer in collapsible tube with and without obstacle are 
discussed. The effect of obstacle and magnetic field on stream line, isothermal line, vortex 
formation, diminish and its displacement is presented.  
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Chapter 2 
 

MHD effect on wall driven flow and heat transfer through a 
porous tube 

 
 

 
 
2.1 INTRODUCTION 
 

Wall driven flow of a viscous fluid with heat transfer and an externally applied homogeneous 
magnetic field through a two-dimensional symmetrical porous tube of circular cross-section is 
investigated. Analytical solutions are constructed for the governing nonlinear boundary-value 
problem using series solution and approximation method based on computer extended series 
solution and the important properties of the overall flow structure are discussed. 
 
The study of the flow of a viscous fluid through tube of circular cross section is very common 
in industrial and biological systems. This flow has been considered by many researchers due 
to its wide area of applications such as oil industries, blood flow in veins, gaseous diffusion in 
binary mixtures, natural transpiration and cooling etc. Several authors eg Berman (1953), 
Makinde (1996), Makinde (2001), Makinde et al. (2006), Odejide and Aregbesola (2006) etc. 
have investigated the flow through different channel with different geometries under various 
situations. 
 
In this work, wall driven flow of an incompressible viscous fluid through a porous tube of 
circular cross section in the presence of hydro-magnetic field is considered. Our objectives are 
to study the hydro-magnetic effect on velocity profile, temperature profile, shear stress and 
rate of heat transfer through the wall and examine the effect of different dimensionless 
number. The mathematical formulation of the problem is established and the graphical 
interpretation of the result is presented. 
 
 
2.2 MATHEMATICAL FORMULATION 
 
Consider laminar flow of an incompressible viscous fluid through a uniformly porous tube of 
circular cross section. A polar coordinate system 𝑟, 𝑧 is taken where oz lies along the center of 
the tube, 𝑟 is the radial distance. Let 𝑢 and 𝑣 be the velocity components in the directions of 
length and radius of tube respectively, 𝐵0 is the induction of magnetic field that applied along 
the length of tube. 𝑎 is the characterize radius. Characterizes the axial wall velocity is 𝐸 as 
shown in Figure -2.0. 
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Figure 2.0: Geometry of the problem 
 
The continuity, momentum and energy equations for axisymetric steady incompressible 
viscous flow are: 
 
𝜕(𝑟𝑣)

𝜕𝑟
+ 𝑟

𝜕𝑢

𝜕𝑧
= 0                                                                                                                                (2.1) 

                                   

𝑢
𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝜈(𝛻2𝑢) − 𝐵0

2
𝜎

𝜌
𝑢                                                                                   (2.2) 

                                                             

𝑢
𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑟
+ 𝜈 (𝛻2𝑣 −

𝑣

𝑟2
)                                                                                         (2.3) 

                                              

𝜌𝐶𝑝 (𝑢
𝜕𝑇

𝜕𝑧
+ 𝑣

𝜕𝑇

𝜕𝑟
) = 𝜅𝛻2𝑇                                                                                                              (2.4) 

          
Where, 𝛻2 =

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑧2
,  𝑃 is the pressure, 𝑇 is the temperature, 𝜌 the density, 𝜈 the 

kinematic viscosity of the fluid, 𝜅 thermal conductivity, 𝐶𝑝 the specific heat capacity at 
constant pressure, 𝜎 electric conductivity and 𝐵0 the induction of magnetic field. 
 
The boundary conditions are: 
Along z-axis 
𝜕𝑢

𝜕𝑟
= 0, 𝑣 = 0,

𝜕𝑇

𝜕𝑟
= 0     𝑜𝑛          𝑟 = 0                                                                        (2.5) 

        
The axial velocity, the normal velocity as well as temperature at the wall are  
𝑢 = 𝐸𝑧, 𝑣 = 𝐸𝑎, 𝑇𝑤 = 𝑇0 (1 +

𝑧

𝑎
)     𝑜𝑛    𝑟 = 𝑎                                                          (2.6) 

where 𝑇0 is the reference temperature at the center and 𝐸 is constant parameter for 
characterizing the wall velocity. 
 
Introducing the stream function 𝛹 and vorticity 𝜔 as follows: 
 
𝑢 =

1

𝑟
(

𝜕𝛹

𝜕𝑟
)     𝑣 = −

1

𝑟
(

𝜕𝛹

𝜕𝑧
)                                                                                                              (2.7)                                                                                

  

𝑎 

𝑇𝑤 = 𝑇0(𝑧) 𝐵0 

𝑢 = 𝐸𝑧, 𝑣 = 𝐸𝑎 

𝑣 

𝑢 

𝑇0 

𝑧 𝑜 
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𝜔 =
𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑟
= −

1

𝑟

𝜕2𝛹

𝜕𝑧2
−

1

𝑟

𝜕2𝛹

𝜕𝑟2
+

1

𝑟2

𝜕𝛹

𝜕𝑟
                                                                                (2.8) 

        
 Eliminating pressure 𝑃 from (2.2) and (2.3) by using (2.7), (2.8) we have 
 
1

𝑟
(

𝜕𝛹

𝜕𝑟

𝜕𝜔

𝜕𝑧
−

𝜕𝛹

𝜕𝑧

𝜕𝜔

𝜕𝑟
) +

𝜔

𝑟2

𝜕𝛹

𝜕𝑧
−

𝐵0
2𝜎

𝜌

𝜕

𝜕𝑟
(

1

𝑟

𝜕𝛹

𝜕𝑟
) = 𝜈 (𝛻2𝜔 −

𝜔

𝑟2
)                                        (2.9) 

       
Also using (2.7) in (2.4), we obtain 
 

𝜌𝐶𝑃

1

𝑟
(

𝜕𝛹

𝜕𝑟

𝜕𝑇

𝜕𝑧
−

𝜕𝛹

𝜕𝑧

𝜕𝑇

𝜕𝑟
) = 𝜅𝛻2𝑇                                                                                                 (2.10) 

                                                                           
Introducing the following dimensionless variables 
 

�̅� =
𝜔

𝐸
, 𝑧̅ =

𝑧

𝑎
, �̅� =

𝑟

𝑎
, �̅� =

𝛹

𝐸𝑎3
,   �̅� =

𝑇

𝑇0
                                                         (2.11) 

         
We have    
 

𝑅𝑒 [
1

�̅�
(

𝜕�̅�

𝜕�̅�

𝜕�̅�

𝜕𝑧̅
−

𝜕�̅�

𝜕𝑧̅

𝜕�̅�

𝜕�̅�
) +

�̅�

𝑟2̅̅ ̅

𝜕�̅�

𝜕𝑧̅
− 𝐻𝑎2

𝜕

𝜕�̅�
(

1

�̅�

𝜕�̅�

𝜕�̅�
)] = 𝛻2�̅� −

�̅�

𝑟2̅̅ ̅
                                 (2.12) 

       

𝑃𝑟 𝑅𝑒 ⌈
1

�̅�
(

𝜕�̅�

𝜕�̅�

𝜕�̅�

𝜕𝑧̅
−

𝜕�̅�

𝜕𝑧̅

𝜕�̅�

𝜕�̅�
)⌉ = 𝛻2�̅�                                                                                          (2.13) 

          

Where   𝑅𝑒 =  
𝐸𝑎2

𝜈
       is the flow Reynolds number, 𝐻𝑎 = 𝐵𝑜√

𝜎

𝜌𝐸
  is the magnetic field 

parameter and 𝑃𝑟 𝑅𝑒 =
𝜌𝐶𝑃𝐸𝑎2

𝜅
 is the product of the Prandtl number and the Reynolds number 

(i.e. Peclet number). 
 
The similarity form of solution (Berman, 1953) is below.  
 
�̅� = 𝑧̅𝐹(�̅�),   �̅� = −𝑧̅𝐺(�̅�),   �̅� = 𝜃(�̅�)                                                                                         (2.14)
         
 
Equations (2.8), (2.12), (2.13) and (2.14) become 
 

𝐺 =
𝑑

𝑑�̅�
[
1

�̅�

𝑑𝐹

𝑑�̅�
]                                                                                                                                   (2.15) 

 
𝑑

𝑑�̅�
[
1

�̅�

𝑑(�̅�𝐺)

𝑑�̅�
] = 𝑅𝑒 [

𝐺

�̅�

𝑑𝐹

𝑑�̅�
− 𝐹

𝑑

𝑑�̅�
(

𝐺

�̅�
) − 𝐻𝑎2𝐺]                                                                      (2.16) 
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𝑑

𝑑�̅�
[�̅�

𝑑𝜃

𝑑�̅�
] = 𝑃𝑟 𝑅𝑒 [𝜃

𝑑𝐹

𝑑�̅�
− 𝐹

𝑑𝜃

𝑑�̅�
]                                                                                                (2.17) 

         
 
The boundary conditions (2.5) and (2.6) become 
 

𝐹 = 0,
𝑑

𝑑�̅�
(

1

�̅�

𝑑𝐹

𝑑�̅�
) = 0,

𝑑𝜃

𝑑�̅�
= 0    𝑜𝑛    �̅� = 0                                                              (2.18) 

        

𝐹 = −1,
𝑑𝐹

𝑑�̅�
= 1, 𝜃 = 1  𝑜𝑛  �̅� = 1                                                                                        (2.19) 

         
For small 𝑅𝑒 we seek the solution of the equations (2.15)-(2.17) as a perturbation series in 
terms of the parameter 𝑅𝑒  i.e. 
 

𝜔(�̅�) = ∑ 𝜔𝑖𝑅𝑒𝑖

𝑛

𝑖=0

                                                                                                                            (2.20) 

           

𝜃(�̅�) = ∑ 𝜃𝑖𝑅𝑒𝑖

𝑛

𝑖=0

                                                                                                                              (2.21) 

           
Where ω can be either  𝐹(�̅�, 𝑅𝑒)   or  𝐺(�̅�, 𝑅𝑒). 
 
Substituting equations (2.20) and (2.21) into equations (2.16)-(2.19), neglecting the bars for 
clarity, and collecting the coefficients of like powers of  𝑅𝑒, the resulting equations are 
 

𝐺𝑛 = [
1

𝑟
𝐹𝑛

′]
′

                                                                                                                                       (2.22) 
  

[
1

𝑟
(𝑟𝐺𝑛)′]

′

= 𝑅𝑒 ∑ [𝐺𝑖 (
𝐹𝑛−𝑖−1

′

𝑟
) − 𝐹𝑖 (

𝐺𝑛−𝑖−1

𝑟
)

′

− 𝐻𝑎2𝐺𝑖]

𝑛−1

𝑖−0

                                               (2.23) 

       

[𝑟𝜃𝑛
′ ]′ = Pr 𝑅𝑒 ∑[𝜃𝑖𝐹𝑛−𝑖−1

′ − 𝐹𝑖𝜃𝑛−𝑖−1
′ ]

𝑛−1

𝑖=0

                                                                                 (2.24) 

       

𝐹𝑛 = 0, [
1

𝑟
𝐹𝑛

′]
′

= 0,    𝜃𝑛
′ = 0     𝑜𝑛   𝑟 = 0                                                                          (2.25) 

        
𝐹0 = −1, 𝐹𝑛+1 = 0,    𝐹0

′ = 1,    𝐹𝑛+1
′ = 0       𝜃𝑛 = 1   𝑜𝑛   𝑟 = 1                                  (2.26) 
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Where 𝑛 = 0,1,2 …. and the prime symbol denotes differentiation with respect to 𝑟. Solving 
equations (2.23) and (2.24) using (2.26) and (2.27), we obtain the first 52 terms of 𝐹 and 𝐺. 
Here we represent some of them. 
 

𝐹0 =
1

2
𝑟2(3𝑟2 − 5) 

 

𝐹1 = (−
3

16
−

1

16
𝐻𝑎2) 𝑟2 + (

7

16
+

1

8
𝐻𝑎2) 𝑟4 + (−

5

16
−

1

16
𝐻𝑎2) 𝑟6 +

1

16
𝑟8                             (2.27)  

                                  
𝐺0 = 12𝑟 
 
 

 𝐺1 = (
7

2
+ 𝐻𝑎2) 𝑟 + (−

15

2
−

3

2
𝐻𝑎2) 𝑟3 + 3𝑟5                                                                                      (2.28) 

       
The stream function 𝐹(𝑟) and shear stress 𝐺(𝑟) is represented as 

𝐹(𝑟) =
1

2
𝑟2(3𝑟2 − 5)

+ ((−
3

16
−

1

16
𝐻𝑎2) 𝑟2 + (

7

16
+

1

8
𝐻𝑎2) 𝑟4 + (−

5

16
−

1

16
𝐻𝑎2) 𝑟6 +

1

16
𝑟8) 𝑅𝑒

+ 𝑂(𝑅𝑒2) 
 

         (2.29) 
 

𝐺(𝑟) = 12𝑟 + ((
7

2
+ 𝐻𝑎2) 𝑟 + (−

15

2
−

3

2
𝐻𝑎2) 𝑟3 + 3𝑟5) 𝑅𝑒 + 𝑂(𝑅𝑒2) 

 
(2.30) 

 
Solving (2.25) using (2.26), (2.27) and (2.28), we obtain the first two terms of 𝜃 as  
 
𝜃0 = 1 
 

𝜃1 = 1 +
7

8
𝑃𝑟𝑅𝑒 −

5

4
𝑃𝑟𝑅𝑒 𝑟2 +

3

8
𝑃𝑟𝑅𝑒 𝑟4 

                                                                                    (2.31)       
 
Substituting (2.32) into (2.22), we have  
 

𝜃 = 1 + (1 +
7

8
𝑃𝑟𝑅𝑒 −

5

4
𝑃𝑟𝑅𝑒 𝑟2 +

3

8
𝑃𝑟𝑅𝑒 𝑟4) 𝑅𝑒 + 𝑂(𝑅𝑒2)                                          (2.32) 
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Hence 𝑇 = 𝑧 𝜃(𝑟) becomes  
 

𝑇 = 𝑧 (1 + (1 +
7

8
𝑃𝑟𝑅𝑒 −

5

4
𝑃𝑟𝑅𝑒 𝑟2 +

3

8
𝑃𝑟𝑅𝑒 𝑟4) 𝑅𝑒 + 𝑂(𝑅𝑒2))                                  (2.33) 

                                                                                              
Equation (2.33) represents the temperature distribution of the fluid flow pattern in the tube. 
 
The wall shear stress 𝐺(1) is given by 
 

𝐺(1) = 12 + (−1 −
17

105
𝐻𝑎2) 𝑅𝑒 + (−

11

30
−

689

10395
𝐻𝑎2 +

229

2646000
𝐻𝑎4) 𝑅𝑒2 … … … 

(2.34)             
Also the rate of heat transfer across the wall 𝑁𝑢 = −

𝑑𝜃

𝑑𝑟
 on 𝑟 = 1 is given as  

𝑁𝑢 = 𝑃𝑟𝑅𝑒 + (−𝑃𝑟 −
19

16
𝑃𝑟2) 𝑅𝑒2

− (— 𝑃𝑟 −
119

96
𝑃𝑟2 −

767

83160
𝑃𝑟2𝐻𝑎2 −

73

64
𝑃𝑟3) 𝑅𝑒3 … 

(2.35) 
 
 
Shear stress consists of Reynolds number and Magnetic field parameter. On the other hand, 
the rate of heat transfer is controlled by the Prandtl number, Reynolds number and Magnetic 
field parameter. 
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2.3 COMPARISON OF SERIES SOLUTION 
 
Many researchers demonstrate their interest on wall driven flow. We mainly observed and 
reproduced all the graphs of the paper of Makinde et al. (2006) using our series where they 
described the wall driven incompressible viscous flow through a tube and focused the effect 
of Prandtl number and Reynolds number on temperature, rate of heat transfer and shear stress 
are displayed below. 
 

           
Figure 2.1: Temperature distribution  (Re=1)                 Figure 2.2: Temperature distribution (Pr=7.1) 
 

           
Figure 2.3: The wall shear stress versus Reynolds number      Figure 2.4: Heat transfer versus Reynolds number  
 
Temperature increases with increase of Prandtl number and Reynolds number. Shear stress is 
parabolic in nature with maximum shear stress of 𝐺(1) = 12 corresponding to 𝑅𝑒 = 0.  The 
rate of heat transfer increases with increase of Reynolds number and Prandtl number. 
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2.4 RESULT AND DISCUSSION 
 
In this chapter, our main concern is to focus the effect of magnetic field on the wall driven 
flow through a tube. Here we discuss the magnetic effect on critical Reynolds number, 
velocity, temperature and rate of heat transfer. 
 
2.4.1 Stability Analysis 

 

Stability analysis is a very important measure of fluid dynamics. In this topic, stability of flow 
depends on Reynolds number as well as magnetic field parameter. The magnetic effect on 
critical Reynolds number is investigated using Drazin and Tourigny (1996) method.  
 
The table below describes the critical value of Reynolds number and critical exponent of the 
series for different degree of approximation method. 
 
Table 2.1: Critical Reynolds number and convergence of series  

𝒅 𝑵 𝑹𝒆𝒄 𝜶𝒄 

2 7 1.896440685191754385393533376278298109137 0.14309372552923471272 

3 12 1.855555297011919084542066622465085810909 0.5011432705264477896 

4 18 1.855615791833465515448011802910196755818 0.5000654158029171952 

5 25 1.855617095905333898765805967710516717693 0.5000000401206471702 

6 33 1.855617096301163238736762524848150427362 0.5000000000055305208 

7 42 1.855617096301194304949411235916147573222 0.5000000000000006897 

8 52 1.855617096301194307370092402753737201182 0.5000000000000000017 

Here, 𝑑 indicates the degree or order of the approximation method, 𝑁 represents the number 
of terms is used in approximation method, 𝑅𝑒𝑐 represents the critical Reynolds number for 
stability, 𝛼𝑐 is the critical exponent that indicates convergence of the series. 
 

               
Figure 2.5 (a): Shear stress versus Reynolds number        Figure 2.5 (b): Shear stress versus Reynolds number 
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Figure 2.5 (c): Shear stress versus Reynolds number  

 
Figures 2.5 (a,b,c) represent the shear stress versus Reynolds number. These figures are drawn 
according to the appriximation of Drazin and Tourigny (1996). Generally, this enables us to 
obtain solution branches of the series problem. These figures indicate the critical Reynolds 
number (maximum Reynolds number for laminar flow) is 1.855. Flow within this critical 
Reynolds number is laminar and the beyond this Reynolds number is turbulent.   
 

 
It is very clear from this table that the increase of Magnetic effect decreases the critical 
Reynolds number and increase the scope of instability. 
 

 
Figure (2.6) : Velocity versus distance from center for different Reynolds number. 

 
Figure (2.6) demonstrates the curve of velocity versus distance from center of the tube on 
different Reynolds number. the Reynolds number for the solid curve is one (within critical 
Reynolds number) where the velocity profile is parabolic and flow is laminar. The Reynolds 
number of other two curves is higher than the critical limit where velocity profile change its 
shape become chaotic and the flow is unstable.  
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2.4.2 Hydro magnetic Effect 

 
In this section, we demonstrate the effect of magnetic field on critical Reynolds number, 
velocity, temperature and rate of heat transfer. 
 
The table below describes critical Reynolds number and critical exponent for different 
Hartmann number. 
 
Table 2.2: Magnetic effect on the critical Reynolds number 

𝐻𝑎 𝑅𝑒𝑐 𝛼𝑐 

0 1.855617096301194307370092402753737201182 0.5000000000000000017 

1 1.638108201874584719607741425559563592311 0.5000000000000000011 

2 1.239888494401073609369135616633954544803 0.5000000000000000015 

3 0.9077797498781283388121675356039423477681 0.4999999999999999987 

4 0.6743496105532700649617455094493058845383 0.5000000000000000071 

5 0.5140860675518937643664582692218663298302 0.5000000000000000098 

6 0.4022324127049437013339760901700789123709 0.4999999999999999879 

7 0.3221079026305581527128502997992374818216 0.4999999999999999883 

8 0.2631670688144713895249751751246670407251 0.5000000000000019006 

15 0.09257273145910536963336024511472910148543 0.5000000000000032051 

20 0.05529930523597997025023808856228618046559 0.5000000000000395214 

 
Here, increase of Hartmann number decreases the critical Reynolds number and enhances the 
scope of instability.  

 
Figure (2.7) : Shear stress versus Reynolds number for different Magnetic field values. 
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Figure (2.7) illustrates the Shear stress versus Reynolds number on different magnetic field 
parameter. This figure is drawn according to the appriximation of Drazin and Tourigny 
(1996). These figures describe the critical Reynolds number is shift towards the origin with 
the increases of Magnetic field parameter (Hydro magnetic effect). Increase of magnetic 
effect decreases the critical Reynolds number and enhances the scope of instability. 
Physically, magnetic field creates an opposite velocity along the tube that distorts the main 
flow.  
 

 
Figure (2.8) : Velocity versus distance from center for different Magnetic field values. 

 
Figure (2.8) illustrates the velocity versus distance from center for different magnetic field 
parameter. Velocity is induced by the wall driven force so the velocity of fluid at the wall is 
one. At the center of the tube, velocity is negative where flow is in the opposite direction. 
Magnetic effect creates a negative force along the flow so increse of magnetic field parameter 
increases the negatic velocity (decreases the velocity) at the center of the tube.  
 

 
Figure (2.9) : Temperature versus distance from center for different Magnetic field values 

 
Figure (2.9) illustrates the temperature versus the distance from center for different value of 
magnetic field parameter. The increase of magnetic field intensity increases opposite force 
that creates thermal conduction from heated wall. So, increase of magnetic field intensity 
increases the temperature of the center of the tube.   

-1 -0.5 0 0.5 1
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

Ha=0, Re=1
Ha=2, Re=1
Ha=2.5, Re=1

u

r

-1 -0.5 0 0.5 1

15

20

25

30

35

40

45
Ha=0, Re=1, Pr=0.71
Ha=2, Re=1, Pr=0.71
Ha=3, Re=1, Pr=0.71

r



Chapter 2: MHD effect on wall driven flow and heat transfer through a porous tube 
 

17 
 

 

 
Figure (2.10) : Nusselt number versus Magnetic field intensity. 

 
Figure (2.10) demonstrates the Nusselt number versus Magnetic field parameter. Magnetic 
effect creates an opposite flow towards the main flow. This oppsite flow increases 
temperature due to thermal conduction from heated wall. So, magnetic field parameter 
increases the temperature of the fluid. That is why, the rate of heat transfer increases with 
increases of Magnetic field parameter.  
 
  
 
 
2.5 CONCLUSION 
 
Magnetic effect on fluid flow and heat transfer through a porous tube is very significant. In 
this chapter, the hydro-magnetic effect on critical Reynolds number, velocity, temperature and 
rate of heat transfer are analyzed. The result reveals the followings. 
 
1) Magnetic effect decreases the magnitude of critical Reynolds number which increases the 
scope of instability. 
 
2) Magnetic effect decreases the velocity and increases the temperature of the fluid. 
 
3) Magnetic effect enhances the rate of heat transfer. 
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Chapter 3 
 

MHD effect on fluid flow and heat transfer through a 
collapsible tube 

 
 
 
3.1 INTRODUCTION 
 
In human body, all the conduits are flexible and collapsible. That is, when the external 
pressure exceeds the internal pressure, the tube cross-sectional area can be significantly 
reduced, but not fully diminished. Many researchers worked on collapsible tube due to its 
extensive use in human body and different sophisticated machineries. Contrad (1969), Cowley 
(1982, 1983), Heil (1997), Makinde et al. (2002) have comprehensive contribution on elastic 
or collapsible tube. Specially, Makinde (2005) represented the perturbation technique to solve 
the collapsible tube problem. He also performed the bifurcation study with a special type of 
Hermite-Padé approximants. 
 
 In this chapter, a mathematical model describing the fluid dynamics of a collapsible tube with 
thermal and magnetic effect is presented. Analytical solutions are constructed for the problem 
using approximation technique. The computer extension of the resulting power series 
solutions, its analysis and analytic continuation is performed.  
 
 
 
3.2. PHYSICAL MODEL 
 
The problem under consideration is that of unsteady flow of a viscous incompressible fluid in 
a collapsible tube. Take a cylindrical coordinate system (𝑟, 𝑧) where oz lies along the centre 
of the tube, 𝑟 is the distance measured radially. Let 𝑢 and 𝑣 be the velocity components in the 
directions of length and radius of the tube respectively. It is assumed that the tube’s wall is at 
𝑟 = 𝑎0 (characteristic radius of the tube) at time 𝑡 = 0 as shown in figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.0:  Geometry of the problem 

𝑟 = 𝑎0(𝑡) , 𝑇 = 𝑇0(𝑧, 𝑡) 
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Then, for axisymmetric unsteady viscous incompressible flow, the continuity, Navier-Stokes, 
Energy equations are 
 
The equation of continuity is  
𝜕

𝜕𝑟
(𝑟𝑣) + 𝑟

𝜕𝑢

𝜕𝑧
= 0                                                                                                                           (3.1) 

                   
the Navier-Stokes equations 
 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝜐𝛻2𝑢 − 𝐵0

2
𝜎

𝜌
𝑢                                                                         (3.2) 

                                           
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑟
+ 𝜐 (𝛻2𝑣 −

𝑣

𝑟2
)                                                                            (3.3) 

                                      
Energy equation 
 

𝜌𝐶𝑃  {
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑧
+ 𝑣

𝜕𝑇

𝜕𝑟
} = 𝜅𝛻2𝑇                                                                                                (3.4) 

              

Where  𝛻2 =
𝜕2

𝜕𝑟2
+

𝜕

𝑟𝜕𝑟
+

𝜕2

𝜕𝑧2
, 𝑃 is the pressure, 𝜌 the density and 𝜈 the kinematic 

viscosity of the fluid, 𝑇 is the temperature, 𝜅 the coefficient of thermal conductivity, 𝜇 the 
coefficient of viscosity and 𝐶𝑃 is the specific heat capacity at constant pressure. 
. 
The appropriate boundary conditions are: 
 Along z-axis 
𝜕𝑢

𝜕𝑟
= 0, 𝑣 = 0,

𝜕𝑇

𝜕𝑟
= 0         𝑜𝑛 𝑟 = 0                                                                                   (3.5) 

                        
The axial and normal velocities at the wall are prescribed as 

𝑢 = 0, 𝑣 =
𝑑𝑎

𝑑𝑡
 , 𝑇 =

𝑇0𝑧

𝑎0√1 − 𝛼𝑡
     𝑜𝑛   𝑟 = 𝑎(𝑡)                                                     (3.6) 

                       
We introduce the stream-function 𝛹,  vortices 𝜔 is the following manner: 
 

𝑢 =
1

𝑟

𝜕𝜓

𝜕𝑟
   𝑎𝑛𝑑    𝑣 = −

1

𝑟

𝜕𝜓

𝜕𝑧
                                                                                                       (3.7) 

                                                                   

𝜔 =
𝜕𝑣

𝜕𝑧
−

𝜕𝑢

𝜕𝑟
= −

1

𝑟

𝜕2𝜓

𝜕𝑧2
−

1

𝑟

𝜕2𝜓

𝜕𝑟2
+

1

𝑟2

𝜕𝜓

𝜕𝑟
                                                                               (3.8) 

                                           
 
 
 



Chapter 3: MHD effect on fluid flow and heat transfer through a collapsible tube 
 

20 
 

 
Eliminating pressure P from (3.2), (3.3), (3.4),(3.5) and (3.6) by using (3.7) and (3.8) we get: 
 
𝜕𝜔

𝜕𝑡
+

1

𝑟

𝜕(𝜓, 𝜔)

𝜕(𝑟, 𝑧)
+

𝜔

𝑟2

𝜕𝜓

𝜕𝑧
− 𝐵0

2
𝜎

𝜌
 

𝜕

𝜕𝑟
(

1

𝑟

𝜕𝛹

𝜕𝑟
) = 𝜐 [𝛻2𝜔 −

𝜔

𝑟2
] , ω = −𝛻2𝜓                 (3.9) 

 
𝜕𝑇

𝜕𝑡
+

1

𝑟

𝜕(𝜓, 𝑇)

𝜕(𝑟, 𝑧)
=

𝜅

𝜌𝐶𝑃
𝛻2𝑇                                                                                                             (3.10) 

                                                                                     
𝜕𝜓

𝜕𝑟
= 0,

𝜕𝜓

𝜕𝑧
= −𝑎

𝑑𝑎

𝑑𝑡
,    𝑇 =

𝑇0𝑧

𝑎0√1 − 𝛼𝑡
       𝑜𝑛         𝑟 = 𝑎(𝑡)                                              (3.11) 

                             
𝜕

𝜕𝑟
(

1

𝑟

𝜕𝜓

𝜕𝑟
) = 0,   

𝜕𝜓

𝜕𝑧
= 0,     

𝜕𝑇

𝜕𝑟
= 0            𝑜𝑛    𝑟 = 0                                                            (3.12) 

                                              
We introduce the following transformations: 

η =
𝑟

𝑎0√1 − 𝛼𝑡
 , 𝛹 =

𝛼𝑧𝐹(𝜂)𝑎0 
2

2
 , 𝜔 =

𝛼𝑧𝐺(𝜂)

2𝑎0( √1 − 𝛼𝑡)
3  , 𝑇 =

𝑇0𝑧𝜃(𝜂)

𝑎0√1 − 𝛼𝑡
                      (3.13) 

    
Substituting equation (3.13) into equations (3.9) – (3.12), we obtain; 
 
𝑑

𝑑𝜂
[
1

𝜂

𝑑(𝜂𝐺)

𝑑𝜂
] = 𝑅𝑒 [

𝐺

𝜂

𝑑𝐹

𝑑𝜂
− 𝐹

𝑑

𝑑𝜂
(

𝐺

𝜂
) + 𝜂

𝑑𝐺

𝑑𝜂
+ 3𝐺 + 𝐻𝑎2𝐺] , 𝐺 = −

𝑑

𝑑𝜂
(

1

𝜂

𝑑𝐹

𝑑𝜂
)          (3.14) 

         
𝑑

𝑑𝜂
(𝜂

𝑑𝜃

𝑑𝜂
) = Pr 𝑅𝑒 [𝜃

𝑑𝐹

𝑑𝜂
− 𝐹

𝑑𝜃

𝑑𝜂
+ 𝜂2

𝑑𝜃

𝑑𝜂
+ 𝜂𝜃]                                                                     (3.15) 

                                                          
𝑑𝐹

𝑑𝜂
= 0, 𝐹 = 1,   𝜃 = 1       𝑜𝑛  𝜂 = 1                                                                                            (3.16) 

                                                                     
𝑑

𝑑𝜂
(

1

𝜂

𝑑𝐹

𝑑𝜂
) = 0, 𝐹 = 0,    

𝑑𝜃

𝑑𝜂
= 0         𝑜𝑛  𝜂 = 0                                                                        (3.17) 

                                                          
Where 𝑅𝑒 = 𝑎0 

2 𝛼/2𝜐 is the local Reynolds number (𝑅𝑒 > 0 represents contraction while 

𝑅𝑒 < 0 represents expansion of the tube’s wall). 𝑅𝑒𝑃𝑟 =  
𝜌𝐶𝑃𝑎0

2

2𝐾
𝛼,  𝐻𝑎 = 𝐵0√

2𝜎

𝜌𝛼
(1 − 𝛼𝑡) is 

the magnetic field parameter. 
 
 
Method of solution  

 
To solve equations (3.14)-(3.17), it is convenient to take a power series expansion in terms of 
local Reynolds number 𝑅𝑒 ie. 
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𝐹 = ∑ 𝐹𝑖𝑅𝑒𝑖,       𝐺 =

𝑛

𝑖=0

∑ 𝐺𝑖𝑅𝑒𝑖,      𝜃 =  ∑ 𝜃𝑖𝑅𝑒𝑖

𝑛

𝑖=0

   

𝑛

𝑖=0

                                                             (3.18) 

                            
Substitute (3.18) into equations (3.14)-(3.17) and collecting the coefficients of like power of 
𝑅𝑒, we obtain the following : 
 

Zeroth Order: 

𝑑

𝑑𝜂
(

1

𝜂

𝑑(𝜂𝐺0)

𝑑𝜂
) = 0,      𝐺0  = −

𝑑

𝑑𝜂
(

1

𝜂

𝑑𝐹0

𝑑𝜂
)       

𝑑

𝑑𝜂
(𝜂

𝑑(𝜃0)

𝑑𝜂
) = 0                                     (3.19) 

                          
𝑑𝐹0

𝑑𝜂
= 0 ,         𝐹0 = 1, 𝜃0 = 1     𝑜𝑛         𝜂 = 1                                                                   (3.20) 

                                                        
𝑑

𝑑𝜂
(

1

𝜂

𝑑𝐹0

𝑑𝜂
) = 0,     𝐹0 = 0,

𝑑𝜃𝑛

𝑑𝜂
= 0    𝑜𝑛     𝜂 = 0                                                            (3.21) 

                                                
Higher  Order   (𝑛 ≥ 1): 
 
𝑑

𝑑𝜂
(

1

𝜂

𝑑(𝜂𝐺𝑛)

𝑑𝜂
) = 𝑅𝑒 [∑ (

𝐺𝑖

𝜂

𝑑𝐹𝑛−𝑖+1

𝑑𝜂
− 𝐹𝑖

𝑑

𝑑𝜂
(

𝐺𝑛−𝑖−1

𝜂
)) + 𝜂

𝑑𝐺𝑛−1

𝑑𝜂
+ 3𝐺𝑛−1 + 𝐻𝑎2𝐺𝑛−1

𝑛−1

𝑖=0

], 

 

𝐺𝑛 =
𝑑

𝑑𝜂
(

1

𝜂

𝑑𝐹𝑛

𝑑𝜂
),   

                                                                                                                                
(3.22) 

𝑑

𝑑𝜂
(𝜂

𝑑𝜃𝑛

𝑑𝜂
) = 𝑃𝑟 [∑ (𝜃𝑖

𝑑𝐹𝑛−𝑖−1

𝑑𝜂
− 𝐹𝑖

𝑑𝜃𝑛−𝑖−1

𝑑𝜂
) + 𝜂2

𝑑𝜃𝑛−1

𝑑𝜂

𝑛−1

𝑖=0

+ 𝜂𝜃𝑛−1] 

 
𝑑𝐹𝑛

𝑑𝜂
= 0   ,      𝐹𝑛 = 0 , 𝜃𝑛 = 0     𝑜𝑛    𝜂 = 1                                                                        (3.23) 

 
𝑑

𝑑𝜂
(

1

𝜂

𝑑𝐹𝑛

𝑑𝜂
) = 0,     𝐹𝑛 = 0,   

 𝑑𝜃𝑛

𝑑𝜂
= 0  𝑜𝑛    𝜂 = 0                                                                   (3.24)  
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We have written a MAPLE program that calculates successively the coefficients of the 
solution series.   

𝐹(𝜂) = 2𝜂2 − 𝜂4 + ((−
5

18
−

1

24
𝐻𝑎2) 𝜂2 + (

7

12
+

1

12
𝐻𝑎2) 𝜂4 + (−

1

24
𝐻𝑎2 −

1

3
) 𝜂6 +

1

36
𝜂8) 𝑅𝑒

+ ((
1

576
𝐻𝑎4 +

1057

10800
+

113

4320
𝐻𝑎2) 𝜂2 + (−

271

1080
−

191

2880
𝐻𝑎2 −

5

1152
𝐻𝑎4) 𝜂4

+ (
47

216
+

1

18
𝐻𝑎2 +

1

288
𝐻𝑎4) 𝜂6 + (−

2

27
−

29

1728
𝐻𝑎2 −

1

1152
𝐻𝑎4) 𝜂8

+ (
7

720
+

1

720
𝐻𝑎2) 𝜂10 −

1

5400
𝜂12) 𝑅𝑒2 + 𝑂(𝑅𝑒3) 

                           
 

                                                                                                                                     
(3.25)                                                                                                                     

𝐺(𝜂) = 8𝜂 + ((−
14

3
−

2

3
𝐻𝑎2) 𝜂 + (𝐻𝑎2 + 8)𝜂3 −

4

3
𝜂5) 𝑅𝑒

+ ((
271

135
+

191

360
𝐻𝑎2 +

5

144
𝐻𝑎4) 𝜂 + (−

47

9
−

4

3
𝐻𝑎2 −

1

12
𝐻𝑎4) 𝜂3

+ (
32

9
+

29

36
𝐻𝑎2 +

1

24
𝐻𝑎4) 𝜂5 + (−

7

9
−

1

9
𝐻𝑎2) 𝜂7 +

1

45
𝜂9) 𝑅𝑒2

+ 𝑂(𝑅𝑒3)                            
            

                                                
(3.26) 

                                                                       

𝜃(𝜂) = 1 + (−𝑃𝑟 +
5

4
𝑃𝑟 𝜂2 −

1

4
𝑃𝑟 𝜂4) 𝑅𝑒

+ (
13

288
𝑃𝑟 +

485

576
𝑃𝑟2 +

1

144
𝑃𝑟 𝐻𝑎2 + (−

5

4
𝑃𝑟2 −

5

36
𝑃𝑟 −

1

48
𝑃𝑟 𝐻𝑎2) 𝜂2

+ (
31

64
𝑃𝑟2 +

7

48
𝑃𝑟 +

1

48
𝑃𝑟 𝐻𝑎2) 𝜂4

+ (−
11

144
𝑃𝑟2 −

1

144
𝑃𝑟 𝐻𝑎2 −

1

18
𝑃𝑟) 𝜂6 +

1

288
𝑃𝑟 𝜂8) 𝑅𝑒2

+ 𝑂(𝑅𝑒3)              
                                                          

(3.27) 
 
The series of 𝐹(𝜂) represents the stream line which consists of Reynolds number and 
Magnetic field parameter. Similarly, the series 𝐺(𝜂) represents the shear stress that also 
consists of Reynolds number and Magnetic field parameter. However, the temperature is 
represented by the 𝜃(𝜂) which has three dimensionless number such as Reynolds number, 
Prandtl number and Hartmann number. 
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3.3 COMPARISON OF SERIES SOLUTION 
 
Collapsible tube is a popular topic among the researcher. In this thesis, we observed and 
reproduced the graphs of the paper of Odejide et al. (2008) using our series where they 
described the laminar flow of an incompressible viscous fluid through a collapsible tube and 
focused on the effect of temperature along the tube as the increases of Reynolds number and 
Prandtl number. Those graphs are described below. 
 
 

           
Figure 3.1: Temperature profile for different Prandtl number.         Figure 3.2: Temperature profile for different Prandtl 
number.  
 

           
Figure 3.3: Temperature profile for different Reynolds number.         Figure 3.4: Nusselt number versus Reynolds number.  
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Figure 3.5: Nusselt number versus Reynolds number.         Figure 3.6: Velocity profile for different Reynolds number.  
 
From the above graphs, it is very clear that temperature increases with increase of Reynolds 
number. Thermal behavior of the collapsible tube for the change of Prandtl number is 
dramatic. When the value of Prandtl number is less than one then temperature decreases with 
increases of Prandtl number. Whereas, the value of Prandtl number is greater than one then 
temperature increases with increases of Prandtl number. It is important to note that wall 
expansion is represented by negative values of flow Reynolds number (𝑅𝑒 < 0) while wall 
contraction is represented by positive values of flow Reynolds number (𝑅𝑒 > 0). The rate of 
heat transfer increases with increase of Prandtl number when the Reynolds number is 
negative. On the other hand, the rate of heat transfer decreases with the increase of Prandtl 
number when the Reynolds number is positive.  
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3.4 RESULT AND DISCUSSION 
 
In this chapter, we focus on the effect of Magnetic field on collapsible tube. Here, we 
represent the magnetic effect on critical Reynolds number, velocity, temperature and rate of 
heat transfer.  
 
3.4.1 Stability Analysis 

 

Stability analysis is very significant issue for the fluid dynamics. Using approximation 
method (Drazin and Tourigny, 1996) the critical Reynolds number is determined.  
 
The table below describes the critical value of Reynolds number and critical exponent of the 
series for different degree of approximation method. 
 
Table 3.1: Critical Reynolds number and critical exponent  

𝒅 𝑵 𝑹𝒆𝒄 𝜶𝒄 

2 7 -1.678295274145824762908903212789620190726 0.28855247649542405227 

3 12 -1.674435369415888764713281828653548287784 0.4847843128226708516 

4 18 -1.673938117622300488495796179886101039652 0.4999047587882879221 

5 25 -1.673936734782069208912879201224538927240 0.4999999989355867503 

6 33 -1.673936734772090594610251674277102045209 0.4999999999980358454 

7 42 -1.673936734772080863691199717732618868296 0.4999999999999998898 

8 52 -1.673936734772080863360033970733103868389 0.4999999999999999995 

 
Here, 𝑑 indicates the degree or order of the approximation method, 𝑁 represents the number 
of terms are used in approximation method, 𝑅𝑒𝑐 represents the critical Reynolds number for 
stability, 𝛼𝑐 is the critical exponent that indicates convergence of the series. 
 

 
 Figure 3.7: Shear stress versus Reynolds number 
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Figure (3.7) describes the shear stress versus Reynolds number. These figures are drawn 
according to approximation of Drazin and Tourigny (1996). Generally, this enables us to 
obtain solution branches of the series problem. These figures indicate the critical Reynolds 
number (maximum Reynolds number for laminar flow) is -1.6739. Reynolds number is 
always positive. The negative Reynolds number indicates the expansion of collapsible tube. 
So, the critical Reynolds number is 1.6739. Flow within this critical Reynolds number is 
stable and the beyond this Reynolds number is unstable. 
 
 

 
Figure 3.8: Velocity versus distance from center for different Reynolds number 

 
Figure (3.8) demonstrates the curve of velocity versus distance from center on different 
Reynolds number. the reynolds number for the solid curve is 1.5 (within critical Reynolds 
number) where the velocity profile is parabolic and flow is laminar. the Reynolds number of 
other curve is 2.2 (higher than the critical limit) where velocity profile change its shape and 
the flow is unstable.  
 

3.4.2 Effect of Magnetic Field on Critical Reynolds Number 
 
In MHD flow, the effect of Hartmann number on stability and critical Reynolds number is 
very significant. 
 
The table below describes critical Reynolds number and critical exponent for different 
Hartmann number. 
 
Table 3.2: Magnetic effect on critical Reynolds number 

𝐻𝑎 𝑹𝒆𝒄 𝜶𝒄 

0 -1.673936734772080863691199717732618868296 0.4999999999999998898 

1 -1.527738503071394012401972021220987990984 0.4999999999999998652 

2 -1.219882420144165521295062416708963777195 0.4999999999999949670 

3 -0.9247760150070194319014325730745220163455 0.4999999999999966897 
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Here, increase of Hartmann number decreases rapidly the critical Reynolds number and 
enhances the scope of instability.  
 

 
 

Figure 3.9: Shear stress versus Reynolds number for different Magnetic field values 
 

Figure (3.9) illustrates the Shear stress versus Reynolds number on different Magnetic field 
parameter. This figure is drawn according to the appriximation of Drazin and Tourigny 
(1996). These figures describe the critical Reynolds number is shift towards the origin with 
the increases of Magnetic field intensity (Hydro-magnetic effect). Increase of Magnetic field 
intensity decreases the critical Reynolds number and enhances the scope of instability. 
 

 

3.4.3 Effect of Magnetic Field on Velocity and Temperature 

 

 
 

Figure 3.10: Velocity versus distance from center for different magnetic field parameter 
 

The Figure (3.10) illustrates the cross sectional velocity profile for different magnetic field 
parameter. Magnetic field is applied along the tube that creates a force along the opposite 
direction of the flow that is why; increase of magnetic field parameter decreases the velocity.  
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Figure 3.11: Temperature versus Prandtl number 
 

The Figure (3.11) describes the temperature versus Prandtl number. Thermal behavior of fluid 
depends on the value of Prandtl number whether it is less than one or greater than one.  When 
the value of Prandtl number is less than one, thermal diffusion is dominated where 
temperature slightly decreases with the increase of Prandtl number. However, the value of 
Prandtl number is greater than one, viscous diffusion is dominated that increases thermal 
convection and rises the temperature very rapidly.     
 
 

 
 

Figure 3.12: Temperature versus distance from center for different magnetic field parameter 
 

Figure (3.12) describes the cross sectional temperature profile for different magnetic field 
parameter where maximum temperature at the wall and minimum temperature at the center of 
the tube. The value of Prandtl number (0.71) is less than one, thermal diffusion is occurred. 
Increase of Magnetic effect decreases the velocity that increases the thermal convection and 
rises the temperature. 
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Figure 3.13: Temperature versus distance from center for different magnetic field parameter 
 
 

Figure (3.13) illustrates the cross sectional temperature profile for different magnetic field 
parameter. This graph shows the maximum temperature at the center of the tube and 
minimum temperature at the wall. The value of Prandtl number is 7.1 where the viscous 
diffusion is occurred increase of magnetic effect decreases the velocity that increases the 
thermal convection and rises the temperature. 
 
 
 

 
 

Figure 3.14: Nusselt number versus magnetic field parameter at Prandtl number < 1 
 

The Figure (3.14) describes the Nusselt number versus magnetic field parameter on different 
Prandtl number. In figure (3.14), Prandtl number is less than one and wall temperature is 
higher than fluid. This figure displays the heat transfer from wall to the fluid that is why the 
rate of heat transfer is negative. Hartmann number increases the temperature due to thermal 
conduction at the center line of the tube that reduces the heat transfer rate. 
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Figure 3.15: Nusselt number versus magnetic field parameter at Prandtl number > 1 

 
The Figure (3.15) describes the Nusselt number versus magnetic field parameter on different 
Prandtl number. On the other hand, in figure (3.15), where Prandtl number greater than one 
and temperature at center is high than the temperature at wall. So the heat transfers from fluid 
to wall. Magnetic field creates a opposite flow that increase temperature due to thermal 
conduction from heated wall to fluid. High temperature at center increases the rate of heat 
transfer through wall. 
 
 

 

 

 
 
 
3.5 CONCLUSION 
 
Fluid flow through collapsible tube is very popular research topic. Many researchers 
investigate the behavior of collapsible tube due to its extensive use including human body. In 
this chapter, magnetic effect on collapsible is the main focused area. The findings of this 
study are described below. 
 
1)  Increase of magnetic effect decrease the value of critical Reynolds number that increases 
the scope of instability. 
 
2) Increase of magnetic effect decreases the velocity of fluid. 
 
3) Increase of magnetic effect increases the temperature and rate of heat transfer.   
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Chapter 4 
 

MHD effect on fluid flow and heat transfer through a 
collapsible tube with obstacle and without obstacle 

 
 
 
4.1 INTRODUCTION 
 
Laminar flows in a tube or a collapsible tube with three-dimensional obstacles are common in 
nature and occur in many applications including oil industries, blood flow in veins, flow 
around tall buildings, bridges and vehicles. Understanding and predicting the properties of 
these flows are necessary for safe, effective and economical engineering designs. 
Experimental techniques are expensive and often provide data that is not sufficiently detailed. 
With the advent of computers it has become possible to investigate these flows using 
numerical simulations. 
 
Numerous authors, for example Berman (1953), Norberg (1987), Mathelin et al. (2005), 
Makinde (2005)  etc. have developed and generalized the exact solution for the flow in a pipe 
driven by uniform wall suction. The application of computer technologies and numerical 
methods for modeling the flow phenomena has been very popular due to their development 
which gives effective results. CFD programs (Computational Fluid Dynamics) permit an 
analysis of flow problems, at the same time rejecting the time consuming and costly research 
during the designing cycle or upgrading of devices. In case of research concerning flows in 
channels, numerical calculations give information which may be useful in hydraulics, 
aviation, chemical engineering and process engineering. 
 
The results are presented in this chapter is to explain how the geometry of obstacles, 
contraction and expansion of tube affect the image of the flow and the formation of vortex 
structures. Numerical calculations for the flow problem were performed by solving equations 
describing a steady flow of fluid in a collapsible tube by using the finite element package. The 
finite element method (FEM) is one of the numerical methods that have received popularity 
due to its capability for solving complex problems. In this study FEM will be applied for 
discretization of the governing equations. It is assumed that the incoming fluid flows in the 
tube are two dimensional, viscous and incompressible. The solution of the governing 
equations along with the boundary conditions will be obtained through the Galerkin finite 
element formulation. 
 
The remainder of this chapter is as follows. In section 4.2, the physical configurations of the 
current research interest are shown. Then the appropriate mathematical model (both 
governing equations and boundary conditions) is considered in section 4.3. Dimensional 
analysis of the mathematical model is presented in the section 4.4. 
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4.2 PHYSICAL MODEL 
 
The geometry of the problem which is investigated in this chapter is depicted in fig. 4.0. A 
polar co-ordinate system is used with origin at the left middle point of the computational 
domain. The system consists of a collapsible tube of length L and radius 𝑎, wall of tube is 
collapsible where wall temperature Tw. The depth of contraction is dc. Magnetic field Bo is 
applied normal to the z axis. Another tube contains a solid adiabatic block as obstacle with 
diameter do. It is assumed that the incoming flow is at a uniform velocity U0 and at the 
temperature T0. 

 

 

 
 
                 
           
 

 
 
 

Figure 4.0: Geometry of Problem 
 

4.3 GOVERNING EQUATION 
 
The fundamental laws used to solve the fluid flow and heat transfer problems are the 
conservation of mass (continuity equations), conservation of momentums (momentum 
equations), and conservation of energy (energy equations), which constitute a set of coupled, 
nonlinear, partial differential equations. The governing equations for the two-dimensional 
flow expressed as  
 
Continuity Equation 
 
𝜕𝑟𝑣

𝜕𝑟
+ 𝑟

𝜕𝑢

𝜕𝑧
= 0                                                                                                                                   (4.1) 

 
Momentum Equations 
 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝜈(𝛻2𝑢) − 𝐵0

2
𝜎

𝜌
𝑢                                                                       (4.2) 

 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑟
+ 𝜈 (𝛻2𝑣 −

𝑣

𝑟2
)                                                                              (4.3) 

 
 
 
 
 

Case 1 

𝑇0, 𝑈0 𝐵0 

Fluid 
Out 

Fluid 
In 

𝑣 

𝑢 

𝑇𝑤 

Case 2  

Fluid Out Fluid In 

𝐵0 𝑇𝑤 
𝑇0, 𝑈0

 
Type equation here. 
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Energy Equation 
 

𝜌𝐶𝑃 (
𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑇

𝜕𝑟
+ 𝑢

𝜕𝑇

𝜕𝑧
) = 𝜅𝛻2𝑇                                                                                                  (4.4) 

 
In this chapter, steady flow is considered. Then the governing equations become as below. 
                                                             
𝜕𝑟𝑣

𝜕𝑟
+ 𝑟

𝜕𝑢

𝜕𝑧
= 0                                                                                                                                   (4.5) 

  

𝑢
𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝜈(𝛻2𝑢) − 𝐵0

2
𝜎

𝜌
𝑢                                                                                  (4.6) 

                                                                                                                                                                                                                       

𝑢
𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑟
+ 𝜈 (𝛻2𝑣 −

𝑣

𝑟2
)                                                                                        (4.7) 

 

𝜌𝐶𝑃 (𝑣
𝜕𝑇

𝜕𝑟
+ 𝑢

𝜕𝑇

𝜕𝑧
) = 𝜅𝛻2𝑇                                                                                                             (4.8) 

 
Where 𝑟 and 𝑧 are the distance measured along the radius and horizontal directions 
respectively, 𝑢 and 𝑣 are the velocity components in the length and radius of the tube   
respectively, 𝑇 and 𝑇𝑤  denote the fluid and wall temperature respectively, 𝑇0 denotes the 
initial temperature of the fluid, 𝑃 is the pressure and 𝜌 is the fluid density, 𝐶𝑃 is the fluid 
specific heat, 𝜅 the thermal conductivity of fluid. 
 

 

Boundary conditions  

 
The boundary conditions for the present problem are specified as follows: 
 
At the inlet                                                                                      
𝑢 = 𝑈0, 𝑣 = 0, 𝑇 = 𝑇0                                                                                                                        (4.9) 
 
At the outlet  
𝜕𝑢

𝜕𝑧
= 0, 𝑣 = 0,

𝜕𝑇

𝜕𝑧
= 0                                                                                                                     (4.10) 

 
At the wall of the tube 
𝑢 = 0, 𝑣 = 0, 𝑇 = 𝑇𝑤                                                                                                                        (4.11) 
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4.4 DIMENSIONLESS ANALYSIS 
 
Non-dimensional variables are used for making the governing equations (4.5-4.8) into 
dimensionless form are stated as follows: 
                                                      

�̅� =
𝑟

𝑎
, 𝑧̅ =

𝑧

𝑎
, �̅� =

𝑢

𝑈0
, �̅� =

𝑣

𝑈0
, �̅� =

𝑃

𝜌𝑈0
2 , 𝜃 =

(𝑇 − 𝑇𝑤)

(𝑇0 − 𝑇𝑤)
           (4.12) 

 
Where 𝑧̅ and �̅� are the coordinates varying along horizontal and vertical directions 
respectively. �̅� and �̅� are the velocity components in the 𝑧̅ and �̅� directions respectively. 𝜃 is 
the dimensionless temperature and �̅� is the dimensionless pressure. After substitution of the 
dimensionless variables into the equations (4.5-4.8), we get the following dimensionless 
equations as. 
                                                                                       
𝜕�̅��̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕𝑧̅
= 0                                                                                                                                 (4.13) 

 

�̅�
𝜕�̅�

𝜕𝑧̅
+ �̅�

𝜕�̅�

𝜕�̅�
= −

𝜕�̅�

𝜕𝑧̅
+

1

𝑅𝑒
(𝛻2�̅�) −

𝐻𝑎2

𝑅𝑒
�̅�                                                                                (4.14) 

 

�̅�
𝜕�̅�

𝜕𝑧̅
+ �̅�

𝜕�̅�

𝜕�̅�
= −

𝜕�̅�

𝜕�̅�
+

1

𝑅𝑒
(𝛻2�̅� −

�̅�

�̅�2
)                                                                                      (4.15) 

 

(�̅�
𝜕𝜃

𝜕�̅�
+ �̅�

𝜕𝜃

𝜕𝑧̅
) =

1

Pr 𝑅𝑒
𝛻2𝜃                                                                                                          (4.16) 

 
The dimensionless parameters appearing in the equations (4.13) to (4.16) are the Reynolds 
number 𝑅𝑒, Prandtl number 𝑃𝑟, Hartmann number 𝐻𝑎, and solid fluid thermal conductivity 
ratio 𝜅 they are respectively defined as follows: 

𝑅𝑒 =  
𝑈0𝑎

𝜐
  , 𝑃𝑟 =

𝜐𝜌𝐶𝑃

𝜅
, 𝐻𝑎 = 𝐵0𝑎√

𝜎

𝜇
                                                                    (4.17) 

The dimensionless boundary conditions under consideration can be written as: 
At the inlet:                                                                                 
�̅� = 1, �̅� = 0, 𝜃 = 1                                                                                                          (4.18) 
 
At the outlet:                                                        
𝜕�̅�

𝜕𝑧̅
= 0, �̅� = 0,

𝜕𝜃

𝜕𝑧̅
= 0                                                                                                    (4.19) 

 
At the wall of the tube            
�̅� = 0, �̅� = 0, 𝜃 = 0                                                                                                         (4.20) 
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Eliminating bar sign, we get 
 
𝜕𝑟𝑣

𝜕𝑟
+ 𝑟

𝜕𝑢

𝜕𝑧
= 0                                                                                                                                  (4.21) 

 

𝑢
𝜕𝑢

𝜕𝑧
+ 𝑣

𝜕𝑢

𝜕𝑟
= −

𝜕𝑃

𝜕𝑧
+

1

𝑅𝑒
(𝛻2𝑢) −

𝐻𝑎2

𝑅𝑒
𝑢                                                                                 (4.22) 

 

𝑢
𝜕𝑣

𝜕𝑧
+ 𝑣

𝜕𝑣

𝜕𝑟
= −

𝜕𝑃

𝜕𝑟
+

1

𝑅𝑒
(𝛻2𝑣 −

𝑣

𝑟2
)                                                                                       (4.23) 

 

𝜌𝐶𝑃 (𝑣
𝜕𝜃

𝜕𝑟
+ 𝑢

𝜕𝜃

𝜕𝑧
) = 𝜅𝛻2𝜃                                                                                                           (4.24) 

 
 
At the inlet:                                                                                      
𝑢 = 1, 𝑣 = 0, 𝜃 = 1                                                                                                         (4.25) 
 
At the outlet:                                                          
𝜕𝑢

𝜕𝑧
= 0, 𝑣 = 0,

𝜕𝜃

𝜕𝑧
= 0                                                                                                     (4.26) 

 
At the wall of the tube:           
𝑢 = 0, 𝑣 = 0, 𝜃 = 0                                                                                                         (4.27) 
 

 

 

 

 

4.5 FINITE ELEMENTS FORMULATION AND COMPUTATION 

 
The Galerkin finite element method of Taylor and Hood (1973) and Dechaumphai (1999) is 
used to solve the governing equations along with boundary conditions for the considered 
problem. The equation of continuity has been used as a constraint due to mass conservation 
and this restriction may be used to find the pressure distribution. The finite element method is 
used to solve the Eqs. (4.21) - (4.27). The continuity equation is automatically fulfilled for 
large values of this penalty constraint. Then the velocity components (𝑢, 𝑣), and temperature 
(𝜃) are expanded using a basis set. The Galerkin finite element technique yields the 
subsequent nonlinear residual equations. Three points Gaussian quadrature is used to evaluate 
the integrals in these equations. The convergence of solutions is assumed when the relative 
error for each variable between consecutive iterations is recorded below the convergence 
criterion 𝜀 such that 𝜓𝑛+1 − 𝜓𝑛 ≤ 10−4 where 𝑛 is the number of iteration and 𝜓 is a 
function of 𝑢, 𝑣 or 𝜃. 
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In finite element method, the mesh generation is the technique to subdivide a domain into a 
set of sub-domains, called finite elements, control volume etc. The discrete locations are 
defined by the numerical grid, at which the variables are to be calculated. It is basically a 
discrete representation of the geometric domain on which the problem is to be solved. The 
computational domains with irregular geometries by a collection of finite elements make the 
method a valuable practical tool for the solution of boundary value problems arising in 
various fields of engineering. Figure-4.0 displays the physical domain and it is solved by 
nonlinear solver. 
 
 
 
Grid refinement test 

 
In order to obtain grid independent solution, a grid refinement test was performed for the 
collapsible tube at respective values of  𝑅𝑒 = 100, 𝑃𝑟 = 0.71, 𝐻𝑎 = 10.  Triangular mesh is 
used for two-dimensional simulation. The Figure (4.1) describes the satisfactory result of grid 
refinement test. In this problem, 5228 number of elements in collapsible tube is used. Using 
more number of elements is time consuming and effect on result is not significant. 
 
Table 4.1: Grid sensitivity test (where 𝑅𝑒 = 100, 𝑃𝑟 = 0.71, 𝐻𝑎 = 10). 

Elements 1444 2540 5228 15432 

Nodes 9824 17095 34784 101537 

Nu 0.565723 0.565577 0.565313 0.565154 

θav 0.800965 0.800946 0.800934 0.800928 

Time (s) 8.515 15.171 43.828 200.578 

 

              
 

Figure 4.1 (a, b) : Nusselt number and Average Temperature versus mesh of the elements 
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4.6 RESULT AND DISCUSSION 
 
Flow through axisymmetric collapsible tube has long been of interest to researcher. In this 
chapter, we focused on the effect of obstacle and the effect of magnetic field.  
 

4.6.1 Velocity Profile of Collapsible Tube  
 

               
Figure 4.2 (a, b): Velocity versus radius of the tube for different Reynolds number and Hartmann number. 

 
Figure 4.2 (a, b) illustrates the velocity versus radius of the collapsible tube. Velocity 
increases along the center line of the tube with the increases of Reynolds number. On the 
other hand, velocity decreases along the center line of the tube with increase of Hartmann 
number. 
 
 

4.6.2 Effect of Obstacle on Collapsible Tube 
 

 
Figure 4.3: Velocity versus Reynolds number for obstacle and without obstacle. 

 
Figure 4.3 illustrates the velocity versus Reynolds number in collapsible tube with obstacle 
and without obstacle. Velocity increases with the increase of Reynolds number. In collapsible 
tube with obstacle, velocity decreases at high Reynolds number for the creation of vortex. In 
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collapsible tube without obstacle, velocity increases with increase of Reynolds number. 
Whereas, very high Reynolds number, vortex is created at the collapsible wall that slightly 
reduces velocity.  
 

 

 
Figure 4.4: Temperature versus Reynolds number for obstacle and without obstacle at Pr=.71. 

 
Figure 4.4 illustrates the temperature versus Reynolds number in collapsible tube with 
obstacle and without obstacle. Reynolds number increases velocity that increases thermal 
convection. So, Reynolds number increases temperature. Presence of obstacle in the 
collapsible tube enhances the temperature. 

 
Figure 4.5: Rate of heat transfer versus Reynolds number for obstacle and without obstacle at Pr=.71 

 
Figure 4.5 demonstrates the Nusselt number versus Reynolds number in collapsible tube with 
obstacle and without obstacle. Reynolds number increases temperature that increases rate of 
heat transfer. Presence of obstacle improves the rate of heat transfer. 
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Figure 4.6: Temperature versus Hartmann number for obstacle and without obstacle at Pr=.71 

 
Figure 4.6 describes the temperature versus Hartmann number in collapsible tube with 
obstacle and without obstacle. Hartmann number creates an opposite flow that reduces 
thermal convection. So, increase of Hartmann number decreases the temperature. Presence of 
obstacle reduces the effect of Hartmann number on temperature. 
 

 
Figure 4.7: Rate of Heat transfer versus Hartmann number for obstacle and without obstacle at Pr=.71 (Air) 

 
Figure 4.7 displays the Nusselt number versus Hartmann number in collapsible with obstacle 
and without obstacle. Increase of Hartmann number slightly decreases the rate of heat 
transfer. Hartmann number decreases velocity and decreases thermal convection. So 
Hartmann number decreases temperature and rate of Heat transfer. Presence of obstacle 
increases rate of heat transfer in collapsible tube.  
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4.6.3 Effect of Hartmann Number on Heat Transfer 
 

 
Figure 4.8: Rate of heat transfer versus Hartmann number with obstacle in air and water 

 
Figure 4.8 shows the Nusselt number versus Hartmann number for two different fluids (Air, 
Water) with obstacle in collapsible tube. Hartmann number is more effective on highly 
viscous fluid. On Air, the effect of magnetic field is insignificant. On the other hand, on 
water, Hartmann number increases the rate of heat transfer drastically. 
 
 
 
4.6.4 Effect of Reynolds Number on Temperature 
 

 
Figure 4.9 (a):  Isothermal line on a collapsible tube without obstacle at Re=1. 
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Figure 4.9 (b):  Isothermal line on a collapsible tube with obstacle at Re=1. 

 

 
Figure 4.9 (c):  Isothermal line on a collapsible tube without obstacle at Re=10. 

 
Figure 4.9 (d):  Isothermal line on a collapsible tube with obstacle at Re=10. 
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Figure 4.9 (e):  Isothermal line on a collapsible tube without obstacle at Re=40. 

 

 
Figure 4.9 (f):  Isothermal line on a collapsible tube with obstacle at Re=40. 

 
 

Figure 4.9 displays the isothermal line on the collapsible tube for different Reynolds number. 
Increase of Reynolds number increases the intensity of isothermal line. However, the obstacle 
reduces the temperature of the tube. 
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4.6.5 Effect of Reynolds Number on Vortex 

 

 
    

Figure 4.10 (a):  Stream line on a collapsible tube with obstacle at Re=100. 
 

 
 

    
Figure 4.10 (b):  Stream line on a collapsible tube with obstacle at Re=200. 

 

 
 

Figure 4.10 (c):  Stream line on a collapsible tube with obstacle at Re=300. 
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Figure 4.10 (d):  Stream line on a collapsible tube with obstacle at Re=400. 

 
 
 

Figure 4.10 displays the stream line around the vortex for different Reynolds number. 
Increase of Reynolds number increases the length of the vortex. 

 

 
Figure 4.11:  Vortex center distance from the obstacle versus Reynolds number 

 
Figure 4.11 describes vortex center distance from the obstacle versus Reynolds number. The 
distance of the center of the vortex from the obstacle increases with increase of Reynolds 
number. On the other way, vortex center moves away from the obstacle due to increase of 
Reynolds number.  
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Figure 4.12:  Vortex length from the obstacle versus Reynolds number  

 
Figure (4.12) illustrates the vortex length versus Reynolds number. Vortex length increases 
with increase of Reynolds number. 
 
 
 

4.6.6 Effect of Hartmann Number on Vortex 
 

In this section, we describe how the small amount of Hartmann number diminishes the vortex. 
Here, we represent five picture of vortex around an obstacle to realize the magnetic effect.    

 
     

Figure 4.13 (a):  Stream line on a tube with obstacle at Re=400, Ha=0.   
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Figure 4.13 (b): Stream line on a tube with obstacle at Re=400, Ha=20. 

 

 
 

Figure 4.13 (c):  Stream line on a tube with obstacle at Re=400, Ha=40.  
 
 
 

 
Figure 4.13 (d):  Stream line on a tube with obstacle at Re=400, Ha=60.   
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Figure 4.13 (e) :  Stream line on a tube with obstacle at Re=400, Ha=80.   

 
 

Figures (4.13) demonstrate the effect of Hartmann number on stream line for the fluid flow 
through a collapsible tube with obstacle. These figure shows the vortex is diminished by the 
increase of Hartmann number. Here, magnetic field is applied normal to the axis of the tube. 
Its effect acts at the opposite direction of velocity so it reduces the velocity and diminishes the 
size of the vortex.  
 
 
In this section, we represent the effect of Hartmann number on vortex length and 
displacement of center of the vortex.  

 
Figure 4.14:  Vortex center distance from the obstacle versus Hartman number. 

 
Figure (4.14) illustrates the vortex center distance from the obstacle versus Hartmann number. 
Vortex center distance decreases with increase of Hartmann number.  
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Figure 4.15:  Vortex length from the obstacle versus Hartmann number. 

 
Similarly, Figure 4.15 describes the vortex length from the obstacle versus Hartmann number. 
Vortex length decreases with increase of Hartmann number. The slope of the curve increases 
with increase of Hartmann number. 
 
 
 
 
 
 
 
4.7 CONCLUSION 
 
In this chapter, collapsible tube is represented with obstacle and magnetic field. The velocity 
and temperature of the tube varies with different dimensionless number in collapsible tube. 
The presence of obstacle and magnetic field change the velocity and temperature profile. The 
findings of this study are described below. 
 

1) Temperature and rate of heat transfer increases with increase of Reynolds number. 

2) Temperature and rate of heat transfer decreases with increase of Hartmann number. 

3) Reynolds number increases the length of the vortex and it enhances the displacement of the 
center of vortex away from obstacle. 

4) Hartmann number decreases the length of the vortex and it enhances the displacement of 
the center of the vortex towards the obstacle. 
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Chapter 5 

 
 
 
 
CONCLUSION 
 
In this thesis, analyze magneto-hydrodynamics with three different situations and investigate 
flow pattern, formation of vortex, profile of velocity and temperature, shear stress, flow 
stability and rate of heat transfer. In the 2nd chapter, the topic is MHD effect on wall driven 
flow and heat transfer through a porous tube where effect of magnetic field on flow stability is 
focused. Hartmann number decreases the critical Reynolds number, flow becomes unstable 
with the high intensity of magnetic field. However, Hartmann number increases the 
temperature and rate of heat transfer. In the 3rd chapter, the topic is MHD effect on fluid flow 
and heat transfer through a collapsible tube where magnetic field effect on stability of flow is 
focused. Critical Reynolds number of collapsible tube decreases with increases of magnetic 
effect. Magnetic field enhances the instability of this flow.  However, temperature and rate of 
heat transfer increases with increase of Hartmann number. In the 4th chapter, the topic is 
MHD effect on fluid flow and heat transfer through collapsible tube with obstacle and without 
obstacle where effect of magnetic field and obstacle on stream line, isothermal line and vortex 
formation is focused. Reynolds number increases velocity, temperature and rate of heat 
transfer. In the presence of obstacle, Reynolds number increases the length of vortex and 
enhances the displacement of vortex.  On the other hand, Hartmann number decreases 
velocity, temperature and rate of heat transfer. In the presence of obstacle, Hartmann number 
decreases the length of the vortex and enhances the displacement of vortex center towards the 
obstacle that diminishes the vortex in the flow.  
 
Considering all topics, it is clear that Increase of Hartmann number decreases the velocity and 
Reynolds number increases temperature and rate of heat transfer. On the wall driven flow and 
collapsible tube, Hartmann number increases the scope of instability due to decrease of 
critical Reynolds number. On the collapsible tube with obstacle, Hartmann number reduces 
the vortex formation opportunity. 
 
In this thesis, two separate methods such as finite element method and approximation method 
are used. The results of these two methods are not equal but similar. Here we discuss the main 
causes for this difference in the table below. 
 

Approximation method Finite elements method 

 Unsteady fluid flow is considered Steady fluid flow is considered 

Length of the tube is infinite Length of the tube is fixed 

Boundary condition is used for a circular cross 
section of the tube 

Boundary condition is used for fixed inlet, outlet 
and two walls 
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That is why, we get similar pattern graphs from these two methods but the value of these 
graph results vary from one another. 

Both methods are effective on different situations. Approximation method is very useful to 
determine the critical condition. This method sharply calculates the critical Reynolds number 
which indicates the stability of flow. Accuracy of approximation method depends on number 
of terms in the series. On the other hand, finite element method is very useful to determine the 
streamline, isothermal line of the problem. It is convenient for the irregular geometry and 
heterogeneous materials. Accuracy of the method depends on number of grid in the domain.  
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