Date : 14/01/2017

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-1 B. Arch. Examinations 2015-2016

Sub : **ARCH 341** (Art and Architecture IV)

Full Marks: 140

Time: 3 Hours The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer Q. No. 1 and any TWO from the rest.

1. Write short notes on the followings:

 $(15 \times 2 = 30)$

(a) Alai Darwaza.

(b) Extension of Qutb Complex.

- (15) 2. (a) With illustration describe the different parts of an ideal mosque. (b) Explain why the design scheme of khirki mosque was not replicated later. (5)
- (10)3. (a) Show the evolution of dome during the slave dynasty with necessary illustrations. (b) Describe the salient features of the tomb of Iltutmish. (10)
- 4. (a) Describe the 'Hawa Mahal' of Kotla Firoz Shah at Delhi with sketches. (10) (10) (b) Briefly describe the octagonal tomb of Telengani with illustrations.

SECTION – B

There are FOUR questions in this section. Answer Q. No. 8 and any TWO from the rest.

5. (a) Draw an isometric view and show the essential features of an Indian Mosque. (22) (b) Explain different types of domes of Mughul architecture including those of Humayun's tomb, tomb of Itmatud Dowla and Tajmahal. Comment on their places of origin, evolution etc. Use sketches.

(c) Explain how the drum of the dome is negotiated in the front elevation of a Mughul mosque.

6. (a) Illustrate and describe Fatehpur Sikri with reference to:

(i) Concept of Multiple axis.

(ii) Planning, layout and zoning.

(iii) Visual unity.

(b) State in brief the architectural features of Raja Birbal's palace.

Contd P/2

(22)

ARCH 341

(i) Buland Darwaza: mitigation of scale and proportion from both inside and outside.

(ii) Akbar's Mousolcum: an architectural retrogression.

(iii) Diwan-i-Khas of Fatehpur Sikri: specialities of central pillar.

8. (a) Draw the site plan and elevation of Tajmahal and elucidate:

(i) the logical proportion in its measurements.

(ii) the quality and texture of its materials in relation to the atmospheric condition and backdrop.

(iii) landscaping features and ornamental gardens with their purpose.

(b) Elucidate the factors determining the aesthetic qualities of Tajmahal which marks the 'Perfect Monument' in the evolution of architecture during the Mughul period.

(26)

(22)

= 2 =

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-1 B. Arch. Examinations 2015-2016

Sub : ME 363 (Mechanical Equipment)

Full Marks: 140

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

<u>SECTION – A</u>

There are **FOUR** questions in this section. Answer any **THREE**. Refrigeration and A/C Data Book will be provided. Assume reasonable values for missing data. All symbols have their usual meaning.

1. (a) Make comparison between window type and split type air conditioning system with (12) respective schematic diagram. (b) Briefly describe the working principle of central air conditioning system with $(11\frac{1}{3})$ schematic diagram. 2. (a) Draw the schematic diagram of electric traction lift and show its different components. $(8\frac{1}{3})$ (5) (b) What are the requirements for the ideal performance passenger elevators? (c) For an office building, downtown, diversified use, 15 rentable floors above the lobby, each 1500 m².net. Floor-to-floor height = 3.7 m, determine a workable elevator system (10)arrangement. 3. (a) What are the major reasons for spread of Fire? (5) (b) Classify fire and specify which type of extinguisher will be used for different type of fire. $(8\frac{1}{3})$ (c) Make brief comparison between Standpipe-Hose system and Sprinkler system for fire protection with respective schematic diagram. (10)4. (a) For a facility having building of light hazard-II type, 20 rentable floors, each 1000 m² net. Floor-to-floor height = 3.7 m. According to BNBC determine the storage capacity of water for fire protection for that building. $(8\frac{1}{3})$ (b) Draw the typical diagram for fire protection in different water supply zones with gravity tanks of a tall building (according to BNBC). (7) (c) Draw the schematic diagram of different arrangements of escalator. (8)

Contd P/2

ME 363/ARCH

SECTION – B

= 2 =

There are FOUR questions in this section. Answer any THREE. Assume reasonable value (if necessary) for design calculations. Use supplied Tables and Charts of Air Conditioning Handbook.

- 5. (a) With a simple diagram showing necessary equipment mention the 4 processes of an ideal vapor-compression refrigeration cycle. Plot the processes in (i) P-h and in (ii) T-s diagram.
 - (b) Draw and label a split type air-conditioner with necessary equipment separated by a wall.

(c) A vapor-compression refrigeration system has to handle a cooling load of 1.75 ton. Find the power required by its compressor in kW if COP of the system is 3.5.

6. (a) What are the desirable properties of a refrigerant? Give an example a most widely used refrigerant with its chemical formula and boiling point.

(b) A refrigeration system of a vapor-compression cycle with R 134a has a cooling capacity of 8 kW. The refrigerant enter the compressor as saturated vapor at 0.15 MPa and is compressed iso-entropically to 2 MPa. The refrigerant leaves the condenser as saturated liquid and expands adiabatically through an expansion valve. Draw the processes in a P-h plot and determine following: (Use P-h diagram for R 134a)

(i) Mass flow rate of the refrigerant.

- (ii) The quality of the refrigerant at the end of the throttling process
- (iii) The power input to the compressor
- (iv) COP
- 7. (a) An air-conditioning system takes outdoor air at 10°C and 30% RH at a steady rate of 45 m³/min to condition it to 25°C and 60% RH. The outdoor air is first heated to 22°C in the heating chamber and then humidified in the humidifier (by the injection of hot steam). Determine (i) the rate of heat supply in the heating chamber and (ii) mass flow rate of steam $(13\frac{1}{3})$ required in the humidifier (Assume, the entire process takes place at atmospheric pressure). (b) 1 kg of air at 25°C and 0.012 kg/kg dry air is mixed with 3 kg of air at 40°C and 0.02 kg/kg dry air to form a mixture. Determine the following properties of the mixture:
 - (i) Dry bulb temperature
 - (ii) Absolute humidity
 - (iii) Enthalpy

Contd P/3

 $(8\frac{1}{3})$

(10)

 $(8\frac{1}{3})$

(5)

(15)

(10)

ME 363/ARCH

8. Estimate the cooling load for a classroom of 50 students with following data:

Location : Chittagong, Bangladesh

Dimension: East-West 11m, North-South 8 m, height 3.64 m

Highest time/month: 1800 hrs/June

Roof: Suspended ceiling, 12.7 mm Gypsum board

Walls: 254 mm brick with 12.7 mm plaster both sides

Lights: 400 Watts, on for 8 hours, B classification

Ventilation: 7.5 l/s

Infiltration: 0.5

Assume no heat transfer through floor. East and West walls, door and windows in south only into a varanda.

1 Door: 1.22×2.13 m high $\times 25$ mm thick plywood

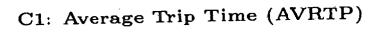
2 windows: 1.83 m \times 1.22 high \times 3 mm clear glass

Use the Tables and Charts provided.

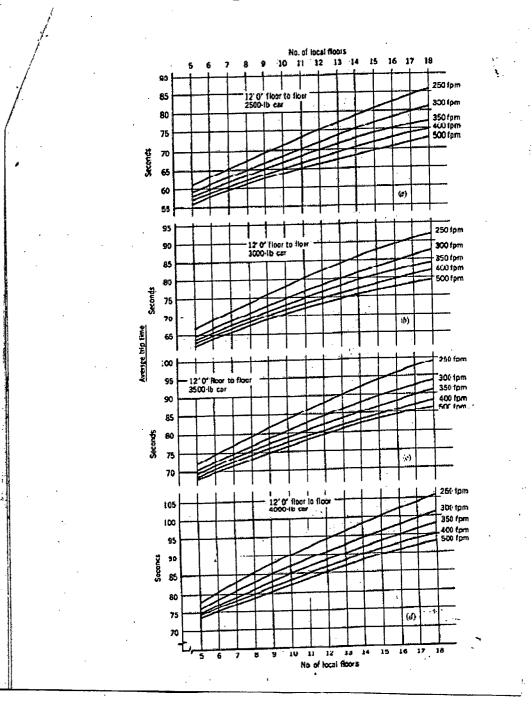
 $(23\frac{1}{3})$

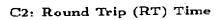
Waiting Times

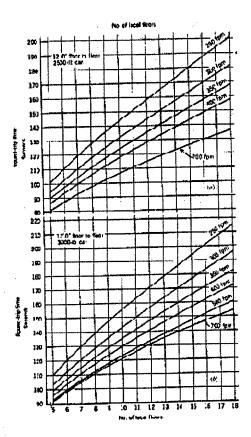
Facility Type	Interval (sec)	Waiting Time* (sec)
OFFICE	BUILDINGS	
Excellent service	15-24	S-14
	25-29	15-17
Fair service	30-39	18-23
Pour service	40-49	24-29
Unacceptable service	50+	30+
RES	DENT AL	
Prestige apartments	50-70	30-42
Midcle-income	60-80	36-48
apartments		
Low-income apartments	8C-120	48-72
Dormitories	60-80	36-48
Hotels—first quality	30-50	18-30
Hotels-second quality	50-70	30-42


T2: Minimum PIIC

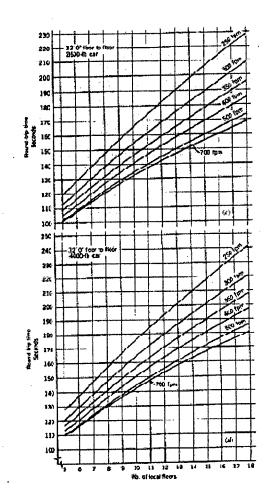
Facility	Percent of Population to Be Carried In 5 Minutes
OFF CE BUILD NGS	· · · · · · · · · · · · · · · · · · ·
Center city Investment Single-purpose	12-14 11,5-13 14-16
RESIDENTAL	
Prestige Other Domitories Hotels—first quality Hotels second quality	5–7 6–8* 10–11 12–15 10–12


 $\left(\right)$


T3: Car Passenger Capacity (p)


Elevator	Maximum	, Normal Passenger*
Capacity lb (kg)	Passenger S Capacity	Load per Trip
2000 (907)	12	10
2500 (1134)	17	- 13
3000 (1361)	20	16
3500 (1588)	23	19
4000 (18:4)	28	. 22

- 4=



T4: Population of Typical Buildings

Building Type	Net Area
OFFICE BUILD NGS	FT2 PER PERSON (M2/PERSON)
Diversified (multiple tenancy)	
Normal Prestige	110-130 (10-12) ⁴ 150-250 (14-23)
Single tenancy * Normal Prestige	90–1 10 (8–10) 1 30–200 (12–19)
HOTELS	PERSONS FER SLEEPING ROOM
Normal use Conventions	1.3 1.9
HOSPITALS	VISITORS AND STAFF PER BED
General private General public (large wards)	3 3_1
APARTMENT HOUSES	PERSONS FER BEDROOM
High-rental housing Moderate-rental housing	1.5 2.0
Low-cast housing	2.5-3.0

T5: Office Building Occupancy

Building Height	Net Usable Area as Percentage of Gross Area
0-10 floors	Approximately 80%
0-20 floors	Floors 1-10 approximately 75%
	11–20 approximately 80%
• 0 ≕30 floors	Floors 1-10 approximately 70%
	11–20 approximately 75%
	21–30 approximately 80%
0-40 floors	Floors 1–10 approximately 70%
	11–20 approximately 75%
	21–30 approximately 80%
	31–40 approximately 85%

<u>=6</u>-

тв:	Elevator	Equipment	Recommendations
-----	----------	-----------	-----------------

	େ (କୋମ୍ପର)		1 4 - Cong - Con	n.	Minimum? C	<u>ar/Speed</u> m/s
Building Type	2500 {2500 {3000 (3500	1250 1360 1600	0-125 126-225 226-275 276-375 Above 375	0-40 41-70 71-85 86-115 >115	350-400 500-600 700 800 1000	2.0 2.5 3.6 4.0 5.0
Hotel	{2500 3000	1250 1360	As above		As above	
Hospital	{3500 {4000	1600 2000	0-60 61-100 101-125 126-175 176-250 >250	0-20 21-30 31-40 41-55 56-75 >75	150 200-250 250-300 350-400 500-600 700	0.63 1.0 1.6 2.0 2.5 3.6
Apartments	{2000 2500	1000 1250	075 76-125 126-200 >200	0–25 26-40 41-60 >60	100 200 250-300 350-400	0.63 1.0 1.6 2.0
Stores	3500 4000 5000	1600 2000 2500	0-100 101-150 151-200 >200	0-30 31-45 46-60 >60	200 250–300 350–400 500	1.0 1.6 2.0 2.5

BNBC 2006

Table 4.4.1 Fire Protection Flow Requirements

Building Type	Sprinkler System (1/min.)*	Standpipe and hose System (l/min.)*	Duration** • (minute, min.)							
Light hazard- I Light hazard- II Ordinary hazard- I Ordinary hazard - II Ordinary hazard - II Ordinary hazard - III	1000 1900 2650 3200 4800	1000 1900 1900 1900 1900	30 50 75 75 75 75							
 Ordinary hazard - III Notes: Values will be for one riser serving floor area of 1000 m². * These durations shall be for a building up to the height of 51 m. For greater height of 51-102 m and above 102 m, the duration will be 1.25 times and 1.5 times of the specified values respectively. Light hazard - I : Occupancy groups, A1, A2, A3, E1 Light hazard - II : Occupancy groups, A4, A5, B, C, D,E2, E3, I2, I4, Ordinary hazard - I : Occupancy groups, I1, I3, I5, F2, F3, G1 Ordinary hazard - II : Occupancy groups, G2, H1 Ordinary hazard - III : Occupancy groups, H2 :Occupancy group J - pressure and flow requirement for this group shall be determined by Fire Department but shall not be less than required value for Ordinary hazard-III 										

Date : 24/01/2017

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-1 B. Arch. Examinations 2015-2016

Sub : CE 365 (Structure III: Mechanics of Solids)

Full Marks : 140

Time : 3 Hours

The figures in the margin indicate full marks.

Assume reasonable values for missing data, if any.

USE SEPARATE SCRIPTS FOR EACH SECTION

<u>SECTION – A</u>

There are SEVEN questions in this section. Answer any FIVE.

- 1. (a) Illustrate and explain statically indeterminate elastic beam. (4+4+3+3)
 - (b) Write a short note on effective length factor in column.
 - (c) Explain the term 'shear flow'.
 - (d) Elaborate on the basic deformation assumption in bending of beam.
- Find the approximate location of the shear center for a beam with the cross section shown in Figure 1. (14)
- A cantilever beam is shown in Figure 2. If it carries an upward concentrated load of 3000 lb at the free end, determine the maximum bending stresses at a section 5 feet from the free end. Assume the weight of the beam is 60 lb/ft.
- Determine the shearing stresses at the levels indicated of the *I* beam given in Figure 3.
 Neglect the weight of the beam.
- 5. The simply-supported beam cross-section shown in Figure 4 is a composite beam where the upper 5" \times 10" is made up of wood and the bottom 0.5" \times 5" strap is made of steel. If this beam is subjected to an uniformly distributed load of 600 lb/ft, what are the maximum stresses in the wood and steel? Neglect the weight of the beam and assume $E_s = 30 \times 10^6$ psi and $E_w = 1.6 \times 10^6$ psi.
- 6. Determine the equation of the elastic curve for the beam shown in Figure 5. Also calculate the value of the deflection at mid-span.
- 7. The beam shown in Figure 6 is comprised of two wooden planks. If it transmits a vertical shear of 720 lb and allowable shearing force per nail is 180 lb, what is the necessary spacing of the nails between the two planks to make the beam act as a unit?

Contd P/2

(14)

(14)

(14)

(14)

(14)

<u>CE 365/ARCH</u>

<u>SECTION – B</u>

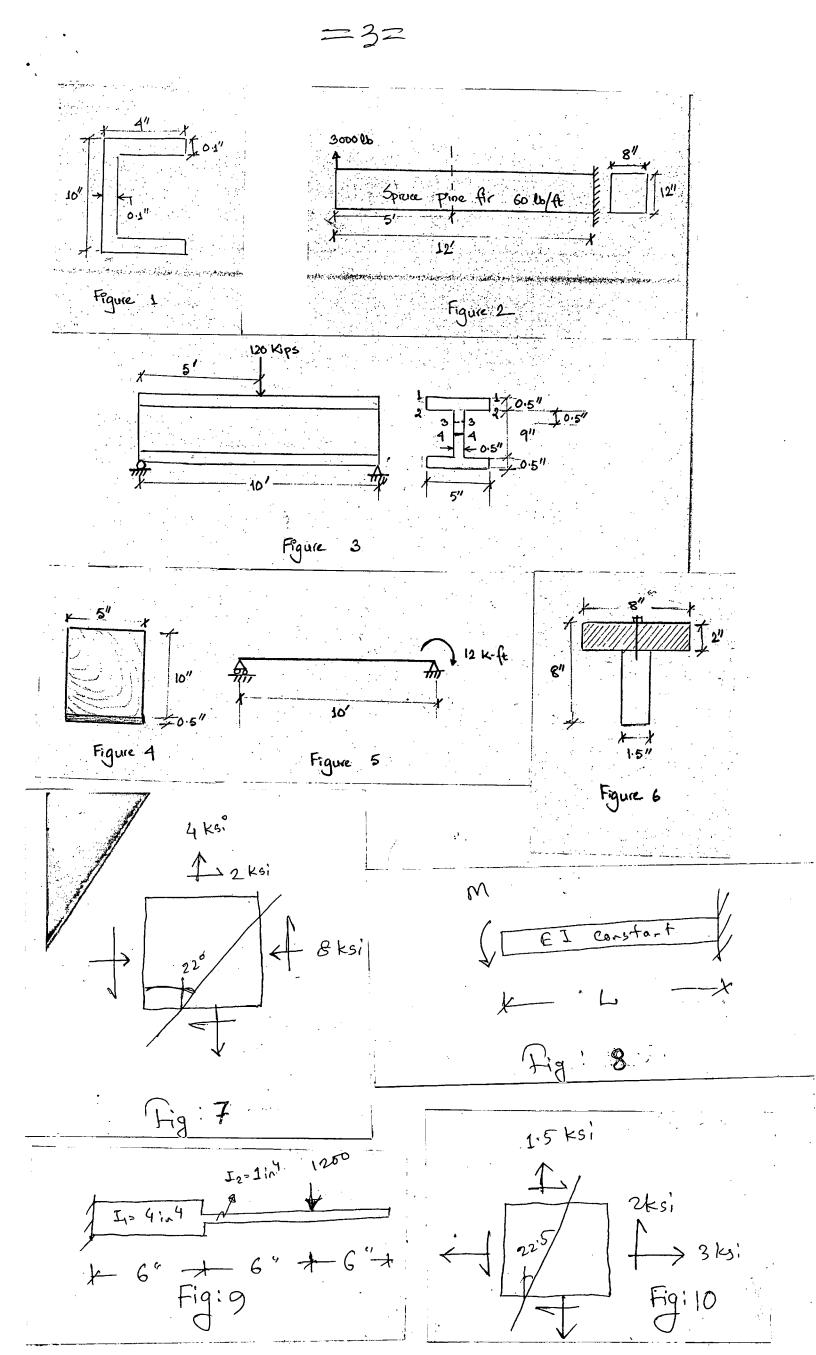
There are SEVEN questions in this section. Answer any FIVE.

- 8. Using Mohr's circle of stresses, for the element shown in Figure 7.
 (a) Find the principal stresses and show their direction on properly oriented element.
 (b) Find the maximum shear stress and associated normal stresses, if any and show their direction on properly oriented element.
- A bending moment M is applied at the free end of the cantilever beam of length L as shown in Figure 8. Find the equation of the elastic curve. Given: the beam has a constant flexural rigidity of EI.
- 10. Consider a cantilever beam of 18 inch long with a 1200 lb force applied 6 inch from the free end as shown in Figure 9. The moment of inertia, *I*, of the beam varies as shown in the figure. Find the deflection and angular rotation of the free end. Given: Neglect the weight of the beam and assume $E = 10^7$ psi.
- 11. For the state of stress shown in the element presented in Figure 10, using the general equation for the transformation of stress(a) Find the principal stresses and show their direction on properly oriented element.

(b) Find the maximum shear stress and associated normal stresses, if any and shown their direction on properly oriented element.

- 12. Design a steel column to support a dead load of 80 kips and a live load of 100 kips. The column is pin-pin supported on both ends about either principal axes. Given, F_y = 36 ksi, E = 29000 ksi, unsupported length of column 12 feet. Use Annexure 1.
- 13. Determine the capacity of a column that is 10 feet long and has a W12×14 section. The column is fixed-pin supported on both ends about either principal axes. Given, F_y = 36 ksi, E = 29000 ksi, A = 4.36 in², I_x = 88.6 in⁴, I_y = 2.36 in⁴. (14)
- 14. In a simply supported beam, find the maximum deflection and rotation of the elastic curve at the ends caused by the application of a uniformly distributed load of p lb/foot. The length of the beam is L and the flexural rigidity, EI is constant.

(14)


(14)

(14)

(14)

(14)

(14)

· · ·		· · · · · · · · · · · · · · · · · · ·									ŀ	ł'nr	rex	wre		- 1			•					1	$\tilde{\boldsymbol{\mathcal{D}}}$		\`
0	+* + *					-IAP ensic		•					•			•	· · · ·		A	N SH Prop	IAPE erties	S		↓ ⁴ / ↓ / _w	Y ALT	¥	•
				۷	Veb			Flan			KG	stanci		Nom- Inal		ompa					Ela	stic P	ropertic	3		Pla: Mod	
	Area A	Dept d	h [Thickn fw		<u>tw</u> 2	Widt by	h	Thickn 4	1	7	ĸ	<u>k1</u>	Wt.		Section			xis X-X		A	xis Y-Y					
sig- tion	in. ²	in.	_	in.		in. 7/8	in. 13.385	133/8	in. 2.955		In. 9½	in. 3 ¹¹ /16	in.	ft Ib	<u>br</u> 24	h tw	Fy''' ksi	X ₁ Ksi	$\frac{X_2 \times 10^6}{(1/ksi)^2}$. <u>I</u>	S In. ³	<u>r</u> .in.	<u>I</u> in. ⁴	S In. ³	<u>r</u> in.:	Z_x ln. ³	Zy In. ³
×305* ×279* ×252* ×230*	98.8 89.6 81.9 74.1 67.7 61.8 55.8 50.0 44.7 39.9 35.3 31.2 28.2 28.2 25.6 23.2 21.1 19.1	16.32 15.85 15.41 15.05 14.71 14.38 14.03 13.71 13.41 13.41 13.41 12.53 12.38 12.25 12.12	16% 15% 15% 15% 14% 13% 14% 13% 12% 12% 12% 12% 12% 12%	1.775 1.625 1.395 1.395 1.285 1.180 1.060 0.960 0.870 0.790 0.710 0.610 0.550 0.515 0.470 0.390	1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1	1340 34 1340 1340 58 94 14 14 14 14 14 14 14 14 14 14 14 14 14	13.235	131/4	2.705 2.470 2.250 2.070 1.900 1.735 1.560 1.400 1.250 1.105 0.990 0.900 0.810 0.735 0.670 0.605	2 ¹⁵ /18 211/16 211/16 21/10 21/16 2	99999999999999999999999999999999999999	37/18 37/18 215/18 255/18 255/18 255/18 255/18 255/18 255/18 255/18 113/18 113/18 113/18 113/18 113/18 113/18 113/18 113/18 15	17/18 13/8 15/18 15/18 11/4 13/18 11/18 11/18 11/18 11/18 11/18 7/8 7/8 7/8 7/8 7/8 13/18 13/18	336 305 279 252 230 210 170 152 136 120 106 96 87 79 72 65	23 24 27 29 3.1 3.4 3.7 4.0 4.5 5.0 5.8 6.2 6.8 7.6 8.2 6.8 7.6 9.0 9.9	5.5 6.0 7.0 7.6 8.2 9.2 10.1 11.2 12.3 13.7 15.9 17.7 18.9 20.7 22.6 24.9		12800 11800 11000 9390 9390 9390 9390 7940 7940 7940 7940 5850 5240 4650 5240 4650 3880 3230 3230 2940	6:05 8.17 10.8 14.7 19.7 26:6 37.0 54.0 79.3 119 184 285 405 586 639 1180 1720	4060 3550 3110 2720 2420 2420 2140 1650 1430 1430 1430 1430 1430 1070 933 833 740 662 597 533	483 435 393 353 321 292 263 235 209 186 163 145 131 118 107 97.4 87.9	8.41 8.29 6.18 8.06 5.89 5.82 5.74 5.68 5.51 5.47 5.44 5.38 5.51 5.47 5.44 5.38 5.31 5.28	1190 1050 937 828 742 664 589 517 454 398 345 301 270 241 216 195 174	177 159 143 127 115 104 93.0 82.3 72.8 64.2 56.0 49.3 44.4 39.7 35.8 32.4 29.1	3.47 3.42 3.38 3.34 3.28 3.25 3.22 3.19 3.16 3.13 3.11 3.09 3.07 3.07 3.04 3.02	603 537 481 428 386 348 311 275 243 214 180 184 147 132 119 108 96.8 86.4	274 244 220 198 177 159 143 126 111 98.0 85.4 75.1 67.5 60.4 54.3 49.2 44.1 32.5
×58 ×53	17.0 15.6	12.19 12.06	12¼ 12	0.360 0.345	3%8 3%8	³ /18 ³ /18	9,995	10	0.575 0.640	9/16 5/8	91⁄2 91⁄2	11/4 13/8	¹³ / ₁₆	58 53	8.7	27.0 28.1	=	3070 2820	1470 2100	475	78.0 70.6 64.7	5.28 5.23 5.18	107 95.8 56.3	21.4 19.2 13.9	2.51 2.48 1.96	77.9	29.1 21.4
2×5D ×45 ×40	14.7 13.2 11.8	12.19 12.06 11.94	12¼ 12 12	0.370 0.335 0.295	3% 5/18 5/18	3/18 3/18 3/18	8.080 8.045 8.005	81/5 8 8	0.575	9/18	9½ 9½	11/4 11/4	13/18 3/4	50 45 40	6.3 7.0 7.8	29.0	59	3170 2870 2580	1410 2070 3110	394 350 310	58.1 51.9	5.15 5.15 5.13	50.0 50.0 44.1	12.4 11.0	1.94 1.93	64.7 57.5	19.0 16.8
2×35 ×30 ×26	10.3 8,79 7.65		12½ 12% 12¼	0.300 0.260 0.230	14	³ /18 ¹ /8 ¹ /8	6.560 6.520 6.490	61/2	0.520 0.440 0.380		10½ 10½ 10½	16/18 7/8	1/2	35 30 26	6.3 7.4 8.5	41.8 47.2	37 29	2420 2090 1820	7950 13900	285 238 204	45.6 38.0 33.4		24.5 20.3 17,3	6.24 5.34	1.54 1.52 1.51	51.2 43.1 37.2	11.5 9.5 8.1
12×22 ×19 ×16 ×14	6.48 5.57 4.71 4.10	12.18	12¼ 12½ 12 11%		14	1/8 1/8 1/8 1/8	4.030 4.005 3.990 3.970	4	0.425 0.350 0.265 0.225	3% 1/4	10½ 10½ 10½ 10½	13/18 3/4	1/2	22 19 18 14	4.7 5.7 7.5 8.8	46.2	30	2160 1890 1610 1450	15600 32000	156 130 103 88.6	25.4 21.3 17.1 14.9	4.91 4.82 4.67 4.62	4.66 3.76 2.82 2.36	3 1.86 2 1.41	1 0.847 3 0.822 1 0.773 9 0.753	20.1	3.6 2.9 2.2 1.9
				× 1																							

Date : 29/01/2017

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-1 B. Arch. Examinations 2015-2016

Sub : PLAN 319 (Theory and Practice of Planning)

Full Marks : 140

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

<u>SECTION – A</u>

There are **FOUR** questions in this section. Answer any **THREE**.

1.	(a) Analysis of environment is an important part of planning process. Briefly explain the	
	factors of external environment those are likely to affect the outcome of a project. Use a	(1 = 1/)
	relevant example.	$(15\frac{1}{3})$
	(b) Define stakeholders. State the steps that should be followed for stakeholder analysis.	(8)
2.	(a) Describe the characteristics of good objectives with relevant examples.	(15)
	(b) Briefly explain the process of evaluating different alternative solutions to an identified	
	problem.	$(8\frac{1}{3})$
	· ·	
3.	(a) Describe the fundamental ethical approaches in planning	(6)
	(b) There are many techniques to ensure public participation in planning. Describe any	
	three of those techniques.	$(7\frac{1}{3})$
	(c) Differentiate between –	(5×2=10)
	(i) Blue Print Planning and Process Planning.	
	(ii) Normative Planning and Functional Planning.	~
4.	(a) There are different levels and types of participation in planning process. Briefly	
	explain those levels with reference to the ladder of citizen participation.	(11 1/3)
	(b) Write short note on –	(12)
	(i) Advocacy Planning	

(ii) Traditional Planning.

SECTION - B

There are FOUR questions in this section. Answer any THREE.

- 5. (a) Give a brief description about the development plans of Dhaka, prepared by planning agencies at different time frames. $(16\frac{1}{3})$
 - (b) What functions does the Structure Plan Perform?

Contd P/2

(7)

PLAN 319

6. (a) Which features need to be reviewed by the planning authority during the preparation (6) of development plan? (b) What were the major assumptions of Dhaka Master Plan, 1959? Briefly describe the industrial land use proposals of this plan. $(6+11\frac{1}{3})$ $(14\frac{1}{3})$ 7. (a) Describe different characteristics of an urban area. (b) What do you understand by Action area plan and Subject plan? Explain with examples. (9) 8. (a) Which methods or techniques can be applied in land development? Discuss about two (8+12) land development techniques those are suitable for the fringe area and vacant land. (b) In the application of land use zoning in an existing town, what aspects should be $(3\frac{1}{3})$ taken into account?