
M. Sc. Engineering Thesis

Online Algorithms for Facility
Assignment Problem

By

Abu Reyan Ahmed

Student no.: 0413052001

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science & Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology(BUET)

Dhaka-1000, Bangladesh

July, 2016

ii

iii

Contents

Board of Examiners ii

Candidate’s Declaration iv

Acknowledgments viii

Abstract ix

1 Introduction 1

1.1 Applications of Online Algorithms 3
1.2 Facility Assignment Problem 5
1.3 Motivation . 6

1.3.1 Online Food Delivery 6
1.3.2 Parallel Computing . 7
1.3.3 Communication Network 8

1.4 Objectives . 9
1.5 Literature Review . 10
1.6 Results of this Thesis . 13
1.7 Thesis Organization . 14
1.8 Conclusion . 15

2 Preliminaries 16

2.1 Offline and Online Optimization Problems 16
2.2 The Competitive Ratio and Competitiveness 19
2.3 Games and Adversaries . 21
2.4 The k-Server Problem . 21

2.4.1 The formulation of the Model 22
2.4.2 Some Basic Aspects of the k-Server Problem 24
2.4.3 k-Servers on a Line . 29

2.5 Randomized Algorithms . 32
2.5.1 Adversary Models . 32

iv

2.5.2 Randomized k-Server Algorithm 36

2.6 Conclusion . 38

3 Facility Assignment on Straight Lines 39

3.1 A Greedy Approach . 39

3.1.1 Algorithm Greedy . 40

3.1.2 Competitive Analysis 40

3.2 Introducing Randomization in Greedy Approach 42

3.2.1 Algorithm σ-Randomized-Greedy 43

3.2.2 Competitive Analysis 44

3.3 A More Complex Approach 45

3.3.1 Algorithm Optimal-Fill 45

3.3.2 Competitive Analysis 46

3.4 Capacity Sensitive Greedy Approach 47

3.5 Conclusion . 50

4 Facility Assignment on Connected Unweighted Graphs 51

4.1 Graph Terminology . 51

4.2 Competitive Analysis of Algorithm Greedy 52

4.3 Competitive Analysis of Algorithm Optimal-Fill 54

4.4 Facility Assignment with Finite Service Time 55

4.5 Conclusion . 56

5 Experimental Competitive Ratio 57

5.1 Experimental Setup . 57

5.2 Simulation Results . 58

5.2.1 Performance of Algorithm Greedy 60

5.2.2 Performance of Algorithm Randomized-Greedy 61

5.2.3 Performance of Algorithm Optimal-Fill 61

5.2.4 Comparison . 62

5.3 Facility Assignment with Preference 63

5.3.1 Performance of Algorithm Greedy 64

5.3.2 Performance of Algorithm Randomized-Greedy 65

5.3.3 Performance of Algorithm Optimal-Fill 65

5.3.4 Comparison . 66

5.4 Conclusion . 67

6 Conclusion 69

A Code of Simulation 78

v

Index 95

vi

List of Figures

2.1 A 3-node graph . 25

3.1 The configurations of Algorithm Greedy and OPT 42
3.2 Worst case for Algorithm Optimal-Fill 46

4.1 The configurations of Algorithm Greedy and OPT 53
4.2 The configurations of Algorithm Greedy and OPT for a cycle . 53
4.3 Worst case of Algorithm Optimal-Fill 55

5.1 The flow of simulation . 59
5.2 Algorithm Greedy . 60
5.3 Algorithm Randomized-Greedy 62
5.4 Algorithm Optimal-Fill . 62
5.5 Comparison . 63
5.6 Algorithm Greedy with preference 65
5.7 Algorithm Randomized-Greedy with preference 66
5.8 Algorithm Optimal-Fill with preference 66
5.9 Comparison . 67

vii

Acknowledgments

I would like to thank my supervisor Professor Dr. Md. Saidur Rahman
for introducing me to the field of graph theory, graph drawing and online
problems. I have learned from him how to write, speak and present well.
I thank him for his patience in reviewing my so many inferior drafts, for
correcting my language, suggesting new ways of thinking and encouraging
me to continue my work.

I would like to thank all the members of the examination board, Prof.
Dr. M. Sohel Rahman, Prof. Dr. M. Kaykobad, Dr. Tanzima Hashem and
Prof. Dr. Muhammad Mahbub Alam, for their valuable comments.

I would also like to thank Mrs. Shaheena Sultana, Mrs. Nazmun Nessa
Moon, Mr. Md. Manzurul Hasan, Mr. Mohammad Al-Mahmud, Mr. Md.
Mizanur Rahman and all the members of my research group for their valuable
suggestions and continual encouragements.

My special thanks goes to Dr. Md. Iqbal Hossain for his helps. My par-
ents, family members and friends also supported me to the best of their
ability. My heart-felt gratitude goes to them.

viii

Abstract

Consider an online facility assignment problem where a set of facilities F of

equal capacity l is situated on a metric space and customers arrive one by one

in an online manner on that space. We assign a customer ci to a facility fj be-

fore a new customer ci+1 arrives. The cost of this assignment is the distance

between ci and fj. The objective of this problem is to minimize the sum of all

assignment costs. In this thesis we first consider F is situated on a straight

line having equal distance between adjacent facilities and customers appear

anywhere on the same straight line. We propose Algorithm Greedy which

is 4|F |-competitive. After introducing randomization in Algorithm Greedy,

we show that it is 9
2
-competitive for a class of input sequences. We provide

another method Algorithm Optimal-Fill which is |F |-competitive. We also

study another greedy method named Algorithm Capacity-Sensitive-Greedy.

Consider now instead of a straight line, F is situated on the vertices of a con-

nected unweighted graph G and customers arrive one by one having positions

on the vertices of G. We show Algorithm Greedy is 2|E(G)|-competitive and

Algorithm Optimal-Fill is |E(G)||F |/r-competitive where r is the radius of

G. We introduce service time parameter t in our modeling and show that no

ix

deterministic algorithm is competitive when t = 2. We also provide a sim-

ulation of the algorithms and define a new parameter named experimental

competitive ratio. We analyse the simulation data in terms of experimental

competitive ratio.

x

Chapter 1

Introduction

There are many general classes of problems that arise in theoretical com-

puter science. For instance: given a sequence of integers, find the largest

one; given a set, list all its subsets; given a set of integers, put them in in-

creasing order; given a network, find the shortest path between two vertices.

When presented with such a problem, the first thing to do is to construct a

model that translates the problem into a mathematical context. A method

is needed that will solve the general problem using the model. Ideally, what

is required is a procedure that follows a sequence of steps that leads to the

desired answer. Such a sequence of steps is called an algorithm. The term

algorithm is a corruption of the name al-Khowarizmi, a mathematician of the

ninth century, whose book on Hindu numerals is the basis of modern decimal

notation [29]. Originally, the word algorism was used for the rules for per-

forming arithmetic using decimal notation. Algorism evolved into the word

algorithm by the eighteenth century. With the growing interest in computing

machines, the concept of an algorithm was given a more general meaning, to

1

include all definite procedures for solving problems, not just the procedures

for performing arithmetic.

Consider that we have a list of elements and we have to sort the elements

in ascending order. The bubble sort is one of the simplest sorting algorithms,

but not one of the most efficient. It puts a list into increasing order by

successively comparing adjacent elements, interchanging them if they are

in the wrong order. To carry out the bubble sort, we perform the basic

operation, that is, interchanging a larger element with a smaller one following

it, starting at the beginning of the list, for a full pass. We iterate this

procedure until the sort is complete.

In order to get correct output from the bubble sort algorithm it is required

to provide the whole input data from the beginning. If instead of providing

the whole input data at the beginning, one new number is given in every step

of the algorithm, the output may become incorrect. Algorithms having such

property are called offline algorithms. An online algorithm takes decisions

based of past events without secure information about the future. It can

provide a correct output without knowing the whole input ahead of time.

Consider a sorting algorithm which is online in nature. At the beginning of

the iteration, the whole input is not given. Instead, the numbers appear in

an online manner one by one and the list of current numbers must be sorted

before a before a new number appears.

The insertion sort is an online sorting algorithm. To sort a list with n

elements, the insertion sort begins with the second element. The insertion

2

sort compares this second element with the first element and inserts it before

the first element if it does not exceed the first element and after the first

element if it exceeds the first element. In the jth step of the insertion sort,

the jth element of the list is inserted into the correct position in the list of

the previously sorted j − 1 elements. To insert the jth element in the list, a

linear search technique is used; the jth element is successively compared with

the already sorted j−1 elements at the start of the list until the first element

that is not less than this element is found or until it has been compared with

all j − 1 elements; the jth element is inserted in the correct position so that

the first j elements are sorted. The algorithm continues until the last element

is placed in the correct position relative to the already sorted list of the first

n− 1 elements.

1.1 Applications of Online Algorithms

Online algorithms are a natural topic of interest in many disciplines such

as computer science, economics, and operations research [7]. Many com-

putational problems are intrinsically online in that they require immediate

decisions to be made in real time. Paging in a virtual memory system is

perhaps the most studied of such computational problems. Consider the fol-

lowing two-level virtual memory system. Each level can store a number of

fixed-size memory units (or ”slots”) called pages. The first level called the

slow memory, stores a fixed set P = {p1, p2, . . . , pN} of N pages. The second

level, called the fast memory, can store any k-subset of P where k < N .

3

Given a request for a page pi, the system must make page pi available in the

fast memory. If pi is already in the fast memory (called a hit), the system

need not do anything. Otherwise (on a miss), the system incurs one page

fault and must copy the page pi from the slow memory to one of the loca-

tions in the fast memory. In doing so, the system is faced with the problem

of which page to evict from the fast memory to make space for pi. In order

to minimize the number of page faults, the choice of which page to evict

must be made wisely. We naturally view paging as an online problem, which

means that the decision of how to service the next request for a page can

depend only on previous requests.

In the area of parallel processing, processes are assigned and periodically

reassigned to processors or machines in order to balance the load over all

processors. We can consider this scenario as an online problem. There is a

set of (perhaps different) machines and a sequence of jobs is arriving where

each job is specified by its processing cost, called the load. Each job must

be either refused or assigned to one of the machines upon arrival. If the

machines are not identical, then each job may have different loads depending

on the machine to which the job is assigned. This is called the load balancing

problem. The bin packing problem concerns a different machine assignment

optimization. Assume that we have an unbounded number of identical ma-

chines (called bins), each having a bounded identical capacity (e.g., without

loss of generality, assume that this bound is 1). Given a sequence of requests

r1, r2, . . . with each request ri ≤ 1 representing a load or size that must be

4

(permanently) assigned to some bin, the goal in the bin packing problem is

to minimize the number of bins needed to assign all the requests without

exceeding the capacity of any bin.

Routing in communications networks is another obvious application. A

call arrives with a specified bandwidth requirement, and this call must be

routed from its origin to its destination in a network where each of the links

(i.e., edges) has limited capacity. The call is routed on a dedicated path in the

network, thereby consuming the required bandwidth on each edge of the path

(i.e., virtually obtaining a dedicated path in the network). For congestion

minimization, the goal is to minimize the load on any edge relative to the

capacity.

1.2 Facility Assignment Problem

In this thesis, we study an online facility assignment problem where a set

of facilities F = {f1, f2, . . . , f|F |} of equal capacity l is situated on a metric

space and customers arrive one by one in an online manner on that space.

We assign a customer ci to a facility fj before a new customer ci+1 arrives.

The cost of this assignment is the distance between ci and fj. The objective

of this problem is to minimize the sum of all assignment costs. We first

consider F is situated on a straight line having equal distance between ad-

jacent facilities and customers appear anywhere on the same straight line.

We next consider instead of a straight line, F is situated on the vertices of

a connected unweighted graph G and customers arrive one by one having

5

positions on the vertices of G. We propose some online algorithms for this

problem and analyse their performance.

1.3 Motivation

In this section we provide applications of online facility assignment in mod-

eling some real world problems.

1.3.1 Online Food Delivery

Our first example is an application in algorithmic decision making in the field

of finance. Consider a restaurants company has some restaurants located on

an area. The customers of that company are also located in the same area.

There are many competitors of that restaurants company from which the

customers enjoy foods too. The company is planning to increase their profit

by increasing their sells to customers. In order to increase the number of

sells they have decided to provide home delivery service. Now customers

can order foods from their home. The delivery cost is proportional to the

distance between the location of a customer and the restaurant from which

the food will be delivered. We can model the area with a graph such that

the restaurants of that company are located on the vertices of that graph.

We assume that the restaurants have equal capacity. Customers appear in

an online manner on the vertices of the graph. We assign a customer to a

restaurant before a new customer appears. The restaurant will deliver the

food to the customer. The delivery cost is equal to the distance between the

6

location of the customer and the restaurant. The objective is to minimize

the total delivery cost. This modeling is exactly similar to the online facil-

ity assignment problem. Hence we can use the algorithms of online facility

assignment to solve this problem.

1.3.2 Parallel Computing

We now provide another application of the facility assignment problem in par-

allel computing. The role of concurrency in accelerating computing elements

has been recognized for several decades. However, their role in providing

multiplicity of datapaths, increased access to storage elements (both mem-

ory and disk), scalable performance, and lower costs is reflected in the wide

variety of applications of parallel computing. Desktop machines, engineering

workstations, and computer servers with two, four, or even eight processors

connected together are becoming common platforms for design applications.

Large scale applications in science and engineering rely on larger configura-

tions of parallel computers, often comprising hundreds of processors. Data

intensive platforms such as database or web servers and applications such

as transaction processing and data mining often use clusters of workstations

that provide high aggregate disk bandwidth. Applications in graphics and

visualization use multiple rendering pipes and processing elements to com-

pute and render realistic environments with millions of polygons in real time.

Applications requiring high availability rely on parallel and distributed plat-

forms for redundancy.

In parallel computing processors are connected through a network. A

7

wide variety of network topologies have been used in interconnection net-

works. These topologies try to trade off cost and scalability with perfor-

mance. Bus-based networks, crossbar networks, multistage networks, completely-

connected network, star-connected network, linear arrays, meshes, and k-d

meshes, tree-based Networks are examples of some network topologies used

in parallel computing. We can represent these topologies by a graph such

that the processors are situated on the vertices of that graph. The time

taken to communicate a message between two processors is proportional to

the distance between them. The processors are divided into two categories:

masters and slaves. Masters are designated to manage the pool of available

tasks. Slaves communicate with masters to get tasks and provide the results

of those tasks. We can model this scenario using online facility assignment.

A set of masters with equal capacity is situated on the vertices of a graph.

A set of slaves is also situated on the vertices of the same graph. The slaves

communicate with the masters in an online manner to get tasks. The com-

munication cost is proportional to the distance between the master and slave.

The objective is to minimize the total communication cost. We can use the

algorithms of online facility assignment to solve this problem.

1.3.3 Communication Network

We now provide another important application of online facility assignment

in communication networks. In a wireless communication network a set of

routers is situated on some specific positions. We represent the network using

a graph in which the routers are situated on the vertices of that graph. Clients

8

appear in the vertices of the same graph and connect to the routers to start

communication. We assume that each router has equal capacity l. A router is

capable to provide connection to at most l Clients. A client wants to connect

to a available router immediately after its appearance. The connection cost

is the distance between the client and the router which is equal to the hop

count of the vertices on which they are situated. This scenario is similar to the

online facility assignment problem. The routers and clients are analogous to

the facilities and customers of the facility assignment problem respectively.

The algorithms of the online facility assignment problem provide different

protocols to get efficient assignments of clients to routers.

1.4 Objectives

The objective of this thesis is to provide algorithms for the online facility

assignment problem mentioned in Section 1.2. We will study the problem on

some specific metric spaces like straight lines and graphs. We will provide

the analysis to determine the performance of the algorithms in these metric

spaces. The approach of analyzing online algorithms is different from the

traditional approach of offline algorithms. The approach of analyzing online

algorithms is called competitive analysis where the quality of an online al-

gorithm on each input sequence is measured by comparing its performance

to an optimal offline algorithm. We will provide the competitiveness of the

algorithms we will provide for the facility assignment problem. Also we will

provide an experiment to determine the practical performance of our algo-

9

rithms.

1.5 Literature Review

Facility location problems are concerned with selecting and/or placing cer-

tain facilities to serve given demands efficiently. In this problem, a set of

customers/demands are given. A set of facilities need to be located to cover

all the customers with some specific objectives like minimizing the cost of

covering customers. Many economical decision problems can be solved us-

ing facility location modeling. Some examples are manufacturing storage

facilities, warehouses, networks, fire stations, base stations for wireless ser-

vices etc. The Fermat-Weber problem is considered the first facility location

problem, studied as early as in the 17th century. Later this problem has

been extensively studied by different researchers [11, 9, 14, 18, 19, 25]. It

is a MAX-SNP hard problem and Shmoys et al. [33] have provided the first

constant approximation algorithm. Charikar [10] and Sviridenko [31] later

improved approximation ratio to 1.728 and 1.67 respectively. These approxi-

mation algorithms can be divided into three categories: rounding algorithms

that rely on linear programming, primal-dual and local search algorithms. All

of these previous works are based on an offline environment, where demand

points (customers) are known ahead of time. Meyerson [27] have provided an

O(log n)-competitive algorithm for an online variant of facility location. In

this modeling, a set of demand points appear in online. In order to provide

services to these demands some facility centers have to be opened provid-

10

ing a facility cost for each center. Also each demand point has to pay a

service cost to take service from a center. The objective of this problem is

to minimize the total facility cost plus service cost. Fotakis [17] presented

the first deterministic online algorithm for the same problem which achieves

the optimal competitive ratio of O(log n
log logn

). Anagnostopoulos [3] et al. have

further investigated online facility location for similar modelings.

A recently proposed variant of the facility location problem is the r-

gathering problem. An r-gathering of a set of customers C to a set of facilities

F is an assignment of C to open facilities F ′ ⊂ F such that r or more

customers are assigned to each open facility. Armon [1] has given a simple

3-approximation algorithm for this problem. Akagi and Nakano [4] have

provided a O((|C|+|F |) log |C|+ |F |) time algorithm to solve the r-gathering

problem when all customers in C and facilities in F are on the real line.

The k-server problem is an well known online problem proposed by Man-

asse, McGeoch, and Sleator [28]. Given a metric space M, an algorithm

of the k-server problem controls k mobile servers, which are located on

points of M with |M| > k. The algorithm is presented with a sequence

I = {r1, r2, . . . , rn} of requests where a request ri is a point in the space.

We say that a request r is served if one of the servers lies on r. By moving

servers, the algorithm must serve all requests sequentially. The objective is

to minimize the total distance moved by the servers. Manasse [28] et al.

provided a 2-competitive algorithm named residues for the 2-server problem,

and a k-competitive algorithm named balance for the k-server problem on

11

(k + 1) points metric spaces. Kleinberg [21] showed a universal lower bound

on the competitive ratio of any balancing algorithm for 2-server and the lower

bound is equal to (5 +
√
7)/2.

The famous k-server conjecture that any metric space allows for a de-

terministic k-competitive k-server algorithm [28], is still an open problem.

This conjecture played a significant role for the development of competitive

analysis. The k-server conjecture has been proved for some special cases,

including uniform spaces [32], lines [12], trees[13], weighted stars (all the re-

quests are placed at the leaves of a weighted star) [8], the 3-server problem

in the Manhattan plane [6], and spaces with k + 2 points [24].

Despite the many similarities, there is a major difference between the

k-server problem and the online facility assignment problem. The servers

of the k-server problem are movable. However the positions of facilities are

fixed in the online facility assignment problem. Therefore a customer placed

very close to a previous customer is easily served in the server problem which

is not true for the facility assignment problem.

The facility assignment problem is related to the matching problem [30]

which is one of the most fundamental and well-studied optimization prob-

lems. The online variation of the matching problem has been extensively

studied in the computer science literature [23, 22, 26, 5, 2]. Kao et al. [26]

have provided a randomized lower bound of 4.5911 for the online matching on

a line problem. We provide a randomized algorithm which is 9
2
-competitive

for a class of input sequences. Antoniadis et al. [2] have provided a o(n)-

12

competitive deterministic algorithm for online matching on a line. They

have related the lost cow problem to the matching problem to provide this

algorithm. We study online facility assignment directly without using any

relation to the search problems.

1.6 Results of this Thesis

We study a problem in a modeling where the location of facilities are defined

before the arrival of customers. Let M be a metric space where M is a

set of points. Let F = {f1, f2, . . . , f|F |} be a set of facilities located on

points of M with |M| > |F |. Each facility fi has an initial capacity limit

capacityi. The capacity of a facility reduces by one after providing service to

a customer. A facility fi is called free if capacityi > 0. The input sequence

I = {c1, c2, . . . , cn} is a set of customers which arrive in an online manner and

a customer ci is a point in the spaceM. An algorithm assigns each customer

ci to a free facility fj. The distance between ci and fj is the cost of that

assignment. For any input sequence I and a facility assignment algorithm

ALG, Cost ALG(I) is defined as the total cost of all assignments made by

ALG.

We first assume that the metric space M is a straight line and a set of

facilities F is situated onM having equal distance between adjacent facilities.

The customers arrive in an online manner one by one having position onM

and each point is assigned to a facility before the arrival of next customer.

We propose an algorithm named Greedy for this problem which is 4|F |-

13

competitive. We also introduce randomization in Greedy method and show

that it performs better than that without randomization in particular cases.

We propose another algorithm named Optimal-Fill which is |F |-competitive.

We also study another greedy method named Algorithm Capacity-Sensitive-

Greedy. We next assume thatM is a connected unweighted graph G. A set

of facilities F is situated on the vertices of G and a set of customers arrive one

by one in an online manner having position on the vertices of G. We show

Greedy is 2|E(G)|-competitive and Optimal-Fill is |E(G)||F |/r-competitive

where r is the radius ofG. Next we consider that a customer does not stay in a

facility forever after its assignment. Instead it leaves the facility after getting

service from the facility. We define service time as the amount of time needed

to get service from a facility. We study the facility assignment problem with

a limited service time. We also provide a simulation of the algorithms and

define a new parameter named experimental competitive ratio. Finally we

analyse the simulation data in terms of experimental competitive ratio.

1.7 Thesis Organization

The remaining of the thesis is organized as follows. In Chapter 2 we provide

the preliminaries used throughout the paper. We show the competitive anal-

ysis techniques in the context of the k-server problem. We study the proofs of

determining competitive ratio of some k-server algorithms demonstrating the

basic methods like averaging technique, potential function which are utilized

in many other proofs of different online problems. In Chapter 3 we study

14

the online facility assignment problem on straight lines. In Chapter 4 we

study the problem on connected unweighted graphs. We also introduce ser-

vice time parameter t in our model and show that no deterministic algorithm

is competitive when t = 2. Finally, in Chapter 5 we provide a simulation

of the algorithms of the online facility assignment problem and show the

experimental results.

1.8 Conclusion

In this chapter we have characterized online algorithms in the context of the

sorting problem. We have provided some applications of online algorithms

like paging in a virtual memory system, load balancing in parallel processing

and routing in communications networks. We have defined the facility as-

signment problem, which is the problem we are going to study in this thesis.

We have presented its motivation and the objective of this thesis. We have

introduced the similar problems found in the literature. Finally we have

provided the results of this thesis and its organization.

15

Chapter 2

Preliminaries

In this chapter we give necessary definitions and terminologies which will be

used throughout the thesis. Most of the contents of this chapter are taken

from the existing literature [7] in order to study the basic methodologies of

analyzing online algorithms. We study the competitive analysis techniques

in the context of the k-server problem, a problem of significant historical,

theoretical, and practical interest. Before defining the k-server problem, we

describe the basic concepts and definitions that will be used throughout our

study.

2.1 Offline and Online Optimization Problems

We begin with a discussion of the concept of an optimization problem, which

may be one of either cost minimization or profit maximization. An optimiza-

tion problem P of cost minimization consists of a set I of inputs and a cost

function C. There is a set of feasible outputs (or solutions) F (I) associated

with every input I. There is a positive real, C(I, O), representing the cost

16

of the output O with respect to the input I. The kind of optimization prob-

lems we are typically concerned with are of cost minimization; therefore, the

discussion here is primarily in terms of cost problems. It is not difficult to

develop the analogous concepts for profit maximization problems.

For example, consider the bin packing problem. This problem presents an

unbounded number of uniform bins, each having some fixed size or capacity,

say 1. An input is a sequence of items x1, x2, . . . , xn where xi represents

the size of the ith item. All item sizes satisfy 0 < xi ≤ 1. The goal is to

pack all items into bins in the most compact way. Given an input, a feasible

solution is any assignment of all the input items xi such that the sum of the

item sizes assigned to any bin does not exceed the bin capacity (which is 1).

The cost of a (feasible) solution is the number of bins used to pack all the

items. Originally, this bin packing problem was studied as an offline problem.

That is, an algorithm is allowed to consider the entire list of items in order to

compute the best solution. In order to view bin packing as an online problem,

each item xi must be assigned without knowledge of items xi+1, . . . , xn and,

of course, the assignment of items x1, . . . , xi must be a feasible solution for

each i; furthermore, when we pack xi, we are not allowed to alter the bin

assignment of previously packed items. Thus, an online feasible solution is

a sequence of assignments. Exactly as in the offline problem, the total cost

of an online solution is the total number of bins used. Equivalently, we can

consider the cost of each online assignment of one item to be either 0 or 1,

depending on whether or not the item assignment opened a new bin (during

17

the online assignment) and the total cost becomes the sum of the individual

item assignment costs.

Given any legal input I, an algorithm ALG for an optimization problem

P computes a feasible output (solution) ALG[I] ∈ F (I). The cost associated

with this feasible output is denoted by ALG(I) = C(I, ALG[I]). An optimal

algorithm OPT is such that for all legal inputs,

OPT(I) = minO∈F (I)C(I, O)

An algorithm ALG is a c-approximation algorithm for a minimization

problem P if there is a constant α ≥ 0 such that for all legal inputs

ALG(I)− c.OPT(I) ≤ α

More precisely, such an algorithm is called an asymptotic c-approximation

algorithm; we reserve the term c-approximation algorithm to mean α = 0.

In the analogous definition of a maximization problem, we require that

OPT(I)− c.ALG(I) ≤ α, where ALG(I) denotes the profit of ALG. In both

cases, the approximation factor is greater than or equal 1; the closer it is to

1, the better the approximation.

Optimization problems in which the input is received in an online manner

and in which the output must be produced online are called online problems.

The complication inherent in online algorithms is that each online output

influences the cost of the overall solution. This suggests a natural partition of

optimization problems into online and offline problems (and their respective

algorithms). Many problems are intrinsically offline. For example, in most

18

instances of linear programming, it is natural to assume that the input is

given offline. In other optimization problems, such as job scheduling and bin

packing, both the online and offline versions of the problem are naturally

meaningful. Last, many problem such as paging, telephone circuit switching,

and investment planning are intrinsically online. For these problems, offline

algorithms are not acceptable. Nevertheless, even for intrinsically online

problems, we could hypothesize an offline algorithm (that must then have

clairvoyant abilities).

2.2 The Competitive Ratio and Competitive-

ness

An online algorithm ALG is c-competitive if there is a constant α such that

for all finite input sequences I,

ALG(I) ≤ c.OPT(I) + α

When the additive constant α is less than or equal to zero (i.e., ALG(I) ≤

c.OPT(I)), we may say for emphasis that ALG is strictly c-competitive. Al-

lowing a positive constant α reflects the view that for intrinsic online prob-

lems such as paging, list accessing, and so on, we have an arbitrarily long

input sequence with unbounded cost. The constant α becomes insignifi-

cant as we consider longer and longer (and more costly) initial subsequences.

Moreover, for finite input sequences, the use of the additive constant α allows

for an intrinsic performance ratio that does not depend on initial conditions.

However, for bounded cost optimization problems such as (offline or online)

19

graph coloring where at most N colorings are needed, it is clearly more sig-

nificant if and how α depends on N , the size of the problem.

A (strictly) c-competitive online algorithm ALG is a c-approximation

algorithm with the restriction that ALG must compute online. Thus, for

each input I, a c-competitive algorithm is guaranteed to incur a cost within

a factor c of the optimal offline cost (up to the additive constant α). We note

again that the competitive ratio is always at least 1, and the smaller it is,

the better ALG performs with respect to OPT. If ALG is c-competitive, we

sometimes say that ALG attains a competitive ratio c. An algorithm is called

competitive if it attains a constant competitive ratio c. Although c may be

a function of the problem parameters, it must be independent of the input

I. For example, in a scheduling problem concerning N machines, we might

have a competitive ratio c that depends on N , but c must be independent of

the number and type of jobs being scheduled. The infimum over the set of

all values c such that ALG is c-competitive is called the competitive ratio of

ALG and is denoted by R(ALG).

We make no requirements or assumptions concerning the computational

efficiency of a competitive online algorithm. In the more traditional offline

complexity studies, we are primarily concerned with approximation algo-

rithms that compute within polynomial time. Thus, strictly speaking, c-

competitive online algorithms and polynomial time c-approximation algo-

rithms are not comparable. However, in practice, we usually seek efficient

competitive online algorithms and, in particular, algorithms that do compute

20

within polynomial (in the relevant parameters) time.

2.3 Games and Adversaries

There are several meaningful ways to view the problem of analyzing online al-

gorithms. One way, which we use throughout the text, is to view the problem

as a game between an online player and a malicious adversary. The online

player runs an online algorithm on an input that is created by the adversary.

The adversary, based on the knowledge of the algorithm used by the online

player, constructs the worst possible input so as to maximize the competi-

tive ratio. That is, the adversary tries to make the task costly to the online

player but, at the same time, inexpensive for the optimal offline algorithm.

We sometimes identify the adversary and the optimal offline algorithm as one

entity, the offline player. For deterministic online algorithms, the adversary

knows exactly what the online players response will be to each input element.

In other words, the offline player determines the malicious input sequence in

advance. For randomized online algorithms, the nature of the offline player is

a more subtle issue. We defer the discussion on randomized competitiveness

to Section 2.5.

2.4 The k-Server Problem

In this section we study the k-server problem proposed by Manasse, Mc-

Geoch, and Sleator [28]. This model provides an interesting abstraction for

a number of problems. Moreover, the model and the k-server conjecture has

21

been a significant catalyst for the development of competitive analysis.

2.4.1 The formulation of the Model

Let k > 1 be an integer, and let M = (M, d) be a metric space where M

is a set of points with |M| > k and d is a metric over M. An algorithm

controls k mobile servers, which are located on points ofM. The algorithm is

presented with a sequence σ = r1, r2, . . . , rn of requests where a request ri is

a point in the space. We say that a request r is served if one of the servers lies

on r. By moving servers, the algorithm must serve all requests sequentially.

For any request sequence σ and any k-server algorithm ALG,ALG(σ) is

defined as the total distance (measured by the metric d) moved by ALG’s

servers in servicing σ. The k-server problem revolves around the question

of finding competitive online k-server algorithms for arbitrary and special

metric spaces.

For convenience, we sometimes refer to and specify metric spaces as

weighted graphs. In this case, we use the standard graph terminology, and

we may interchange points with vertices, distance values with edge weights,

and so on. M may be a finite or infinite space. When the metric spaceM

is finite, we use N = |M| to denote the size ofM.

We define the (h, k)-server problem the performance of the online algo-

rithm with k servers is compared against that of the optimal offline algorithm,

which has only h ≤ k servers. In the asymmetric version of the problem the

distance function d is not symmetric (therefore, the space is not metric).

We assume symmetric problems throughout the chapter. Let G = (V,E,w)

22

be any edge weighted undirected (respectively, directed) graph. G induces

a k-server (respectively, asymmetric k-server) problem by letting d(x, y) be

w(x, y) if (x, y) is an edge in E; otherwise, it is the distance induced by the

transitive closure of the relation w (i.e., the least cost path with respect to

the edge weights w).

The k-server model provides an abstraction of various interesting prob-

lems. Listed below are some examples of problems that are captured by the

k-server model.

• Paging: An instance of the k-server problem with a uniform metric

space (all distances are 1) where the k servers represent the k memory

slots in the cache and N = |M| is the number of slow memory pages.

• Weighted paging: A paging problem in which the cost of copying dif-

ferent pages into the cache varies. These problems naturally occurs in

computer systems. For example, in a distributed operating system that

uses a distributed file system, page access costs may vary depending

on communication costs and architectures of the various machines. A

virtual memory management system in which pages can have different

sizes (e.g., the bitmaps of fonts that must be cached by the display

unit) provides another example of weighted paging. Weighted paging

is an instance of an asymmetric k-server problem in which the cost of

moving a server from point x to point y (i.e., evicting x in order to

bring in y) can be different from the cost of moving the server from y

to x. Alternatively, we can view weighted paging as a symmetric server

23

system.

• Two-headed (k-headed) disk: Two (k) read/write heads move along

a line segment that is a radius of the disk. When coordinated with

the disk spin, they can access every location on each disk track. An

algorithm must determine which of the two (k) heads to move in order

to service the next read/write request from/to a certain location in a

given track. One meaningful way to measure the performance of such

a system is to measure the total distance moved by the heads. This is

equivalent to the 2-server (k-server) problem on a line segment.

2.4.2 Some Basic Aspects of the k-Server Problem

In this section we present some basic concepts and observations concerning

k-server problems from the existing literature [7].

The Optimal Offline Algorithm

For any request sequence σ, the optimal offline cost and the optimal offline

schedule to serve σ can be computed by using dynamic programming. The

straightforward dynamic programming approach to computing an optimal

offline k-server schedule is not the most efficient algorithm. An alternative,

faster method of computing the optimal offline cost and schedule is achieved

by reduction to a minimum cost/maximization flow problem. When we use

this method, the time needed to calculate the optimal offline cost and sched-

ule is O(kn2), where n is the number of requests in σ.

24

b b b
a b c

Figure 2.1: A 3-node graph

The Greedy Policy is Not Competitive

For the k-server problem, we can define a greedy online algorithm as any

algorithm that processes each request in order to minimize the cost (or max-

imize the profit) on the input sequence seen thus far. In general, there can be

many greedy choices for a given request. It is equivalent to say that greedy

algorithms must process each request in order to minimize the individual

cost for serving the request; that is, serve each request with a server that is

nearest to the request.

It is easy to see why a greedy policy is not necessarily competitive. Con-

sider the 2-server problem when the metric space is the 3 node graph shown

in Figure 2.1. In the figure, d(a, b) < d(b, c). No matter what the initial

positions of the two server are, the greedy algorithm will service the request

sequence c, b, a, b, a, b, a, . . . as follows: one server will remain at c forever,

and all the requests for a and b will be served by a single server incurring an

unbounded cost. Clearly, the optimal offline algorithm can serve this request

sequence (from any starting configuration) with a total cost no greater than

d(a, b) + 2d(b, c).

Lazy Algorithms

A straightforward observation is that we may restrict our attention to server

algorithms that move at most one server in response to each request, and we

25

may do so only if the request is not presently covered by a server. We call

such algorithms lazy . The reduction is easily justified: since each request

can be serviced by one server, if an algorithm wants to move other servers

to some new locations, it can store these locations in memory and move a

server (according to the stored locations) only when it is its turn to service

a request. According to the triangle inequality, the total distance incurred

by the modified algorithm is no more than the total distance incurred by the

original one.

The k-Server Conjecture

The following conjecture was formulated by Manasse, McGeoch, and Sleator [28]:

The k-server conjecture: Any metric space allows for a deterministic

k-competitive, k-server algorithm.

After considerable effort, researchers have ”nearly” solved the k-server

conjecture. Koutsoupias and Papadimitriou [24] have shown that there is a

generic k-server algorithm (the work function algorithm) that is (2k − 1)-

competitive in any metric space. In addition, there are various examples of

special metric spaces that allow for k-competitive server algorithms. Con-

sidering these results, we may believe that the conjecture is true. On the

other hand, it may appear somewhat strange if this conjecture holds: most

other natural generalizations of the results on paging (that hold for paging)

are known to be false for k servers. Here are two examples:

• It is not true that any metric space allows for a deterministic k
k−h+1

-

26

competitive k-server algorithm for the (h, k)-server problem (in con-

trast, LRU and many other algorithms are k
k−h+1

-competitive for pag-

ing).

• It is not true that in any metric space a randomized competitive ratio

of Hk is attainable against an oblivious adversary. In contrast, there is

an Hk-competitive for paging.

In addition, the k-server conjecture does not generalize to asymmetric

spaces.

A Deterministic Lower Bound

In this section we present a lower bound of k on the competitive ratio of

any deterministic k-server algorithm in a metric space with at least k + 1

points proved by Manasse et al. [28]. In fact, we have a stronger result, a

lower bound of k
k−h+1

on the competitive ratio of any server algorithm for the

(h, k)-server problem. The proof of the following lower bound will make use

of an averaging technique that is utilized in many other proofs of different

online problems. In this technique we make use of a cruel adversary that

causes the online player to pay the maximum for every request.

Theorem 1. [28] Let M be any metric space with at least k + 1 points.

For any 1 ≤ h ≤ k, k
k−h+1

is a lower bound on the competitive ratio of any

online (h, k)-server algorithm forM.

Proof. Let ALG be any k-server algorithm. We show that there exists an ar-

bitrarily long (cruel) request sequence σ such that ALG(σ) ≥ (k
k−h+1

).OPT(σ).

Without loss of generality, we assume that ALG is lazy. For the construc-

tion of the cruel request sequence, fix any set M of k+1 points in the space.

27

Let the initial configuration of ALG be {1, 2, . . . , k}. Since ALG is lazy, it

always occupies exactly k distinct points in M (assuming that ALG’s initial

configuration contains k distinct points). Let σ = r1, r2, . . . , rn be a sequence

requesting at each step the (unique) point unoccupied by ALG. This means

that ALG serves ri with the server positioned on the point ri+1 incurring a

cost of d(ri+1, ri). For such a (cruel) request sequence σ of length n ≥ 2, the

total cost incurred by ALG is
ALG(σ) =

∑n−1
i=1 d(ri+1, ri)

=
∑n−1

i=1 d(ri, ri+1) (using symmetry)
We now prove the existence of an offline h-server algorithm that serves σ

while incurring a cost of no more than ALG(σ)/(k
k−h+1

).

We define a set B of particular h-server algorithms. For each h-subset

S ⊂ M with r1 ∈ S (recall that r1 = 0 is the unique point not occupied by

ALG in the initial configuration), let BS be an offline algorithm that operates

as follows:

Algorithm BS starts in the initial configuration S and serves an uncovered

request ri(i = 2, 3, . . . , n) with the server occupying ri−1 (by definition r1 ∈
S). Note that BS is well defined, since one of its servers must occupy ri−1

when ri is requested. Note: If one assumes that the adversary starts from

the same configuration as ALG, then BS will pay at most maxp∈Md(p, 0) to

move to the initial configuration.

Let B be the set of all such algorithms BS. We now claim that the

number of algorithms in the set B is fixed throughout the game; that is,

after each request is processed, different algorithms will always be in different

configurations. To prove this claim, it is useful to use the following notation:

for each algorithm BS (with an initial configuration S), let Si, i = 0, 1, 2, . . .

denote the configuration of BS after it serves the ith request (S0 = S). We

prove the claim by induction on i, where the induction statement is:

Induction statement: If S1 6= S2, then the algorithms BS1 and BS2 are

such that Si
1 6= Si

2 for all i = 0, 1, . . . , n.

The base case (i = 0) is true by definition. A brief case analysis proves

the induction step:

• Case 1: ri is in Si−1
1 and Si−1

2 . In this case, both algorithms do not

move; therefore, according to the induction hypothesis, Si
1 = Si−1

1 6=
Si−1
2 = Si

2.

• Case 2: ri is in, for example, Si−1
1 but not in Si−1

2 . BS1 does not

28

move, and BS2 serves the request with the server located at ri−1. Thus,

Si
1 = Si−1

1 contains ri−1 but Si
2 does not.

• Case 3: ri is in neither Si−1
1 not Si−1

2 . Clearly, Si−1
1 − {ri−1} 6= Si−1

2 −
{ri−1}, and both algorithms serve the request with the server from ri−1,

so Si
1 6= Si

2.

We conclude that the configurations of the algorithms in B remain distinct

throughout the game. Hence, at all times B contains exactly
(

k

h−1

)

algorithms

corresponding to all h-subsets of M that include the first request. Now, what

is the total cost incurred by all algorithms in B?
For each request ri (except the first one), exactly

(

k−1
h−1

)

algorithms move a

server (from ri−1) in order to serve this request. These algorithms correspond

to all (h− 1)-subsets of M that include ri−1 but not ri. Hence, the total cost

incurred by all algorithms in B is

(

k − 1

h− 1

)

.

n
∑

i=2

d(ri−1, ri) =

(

k − 1

h− 1

)

.

n−1
∑

i=1

d(ri, ri−1)

It follows that the average performance of these algorithms is
(

k−1
h−1

)

(

k

h−1

) .

n−1
∑

i=1

d(ri, ri+1) =

(

k − h+ 1

k

)

.

n−1
∑

i=1

d(ri, ri+1)

Since at least one of these algorithms incurs costs no greater than this

average, the proof is complete.

2.4.3 k-Servers on a Line

For most natural geometric structures (e.g., the Euclidean plane of the circle),

no simple k-competitive deterministic algorithms are known. In contrast,

there is a simple k-competitive algorithm for the Euclidean line [12], and

this algorithm can be generalized to metric spaces defined by trees.

We only consider the real line with Euclidean metric. The metric space

allows for a simple deterministic k-competitive k-server algorithm. The al-

gorithm is one of the most elegant k-server algorithms. This line algorithm

29

naturally generalizes to trees and subsequently has several interesting appli-

cations. We now describe the algorithm for the real line called DOUBLE-

COVERAGE or DC for short.

Algorithm DC: If the request falls outside the convex hull of the servers,

serve it with the nearest server. Otherwise, the request is in between two

adjacent servers. In this case, move both these servers toward the request at

equal speeds until (at least) one server reaches it. (If two servers occupy the

same point, then choose one arbitrarily.)

Notice that DC is not a lazy algorithm; it may move one or two servers as

a response to some requests. Of course, it may operate as a lazy algorithm by

remembering the virtual locations of the servers as described before. How-

ever, sometimes (and, indeed, in this case) it is more intuitive and easier to

analyze nonlazy algorithms, especially since the nonlazy moves have some

intuitive meaning.

Consider the response of DC (with two servers) to the request sequence

that defeated the greedy algorithm (see Figure 2.1). Suppose that the two

servers, s1 and s2, of DC are positioned on b and c, respectively. Assume,

for this example, that d(a, b) << d(b, c). Consider the behavior of DC in

response to the sequence a, b, a, b, a, b, . . . of requests. The first request for

a is served by s1; then, the request for b is also served by s1, but this time

s2 moves a distance d(a, b) toward b. This pattern of response continues;

consequently, DC does not fall for the greedy trap by gradually shuttling the

server s2 to help server s1 on the western front. Clearly, after sufficiently

30

many such repetitions, DC positions its two servers on a and b.

Theorem 2. [12] DC is k-competitive.

Proof. Let Mmin denote the minimum cost matching between OPT’s and

DC’s servers. For i = 1, 2, . . . , k, denote by si DC’s servers. Let
∑

DC

denote the sum of all interpoint distances between DC’s servers:
∑

DC =
∑

i<j d(si, sj). The proof uses the following potential function:

Φ = k.Mmin +
∑

DC

Note that Φ is nonnegative and, hence, bounded below as required for

a potential function. Using the potential function method it is sufficient to

prove the following. (i) If the adversary moves a distance d, the potential is

increased by at most kd. (ii) If DC moves d, the potential is decreased by at

least d.

Proving that (i) holds is almost trivial (notice that the adversary’s move

does not affect the
∑

DC-component and, clearly, Mmin cannot increase by

more than d). To prove that (ii) holds, we consider two possible kinds of

moves by DC. First, suppose DC moves a single server, say, a distance d.

According to the definition of DC, this server is an extreme point of the

convex hull of all the servers. Since this server is moving away from all

other servers,
∑

DC increases by (k − 1)d. However, there exists a minimum

weight matching in which this moving server is matched to the request, so

Mmin decreases by at least d. Thus, the total decrease of potential is at least

kd− (k − 1)d = d, which is exactly the cost incurred by DC.

In the second case, suppose servers s1 and s2 move toward the request

from opposite sides. Suppose also that each of these servers moves a distance

d. Clearly, one of these servers is matched to the request (in some minimum

weight matching), so its move decreasesMmin by at least d. The other moving

server may move away a distance d from its match. Hence, Mmin does not

increase overall. Now consider the change in
∑

DC . The change in the sum of

distances from s1 and s2 to any other server q is zero: one of them is moving

away a distance d from q, and the other is moving a distance d toward q.

However, the distance between s1 and s2 is shortened by 2d, which is the

total online move. This prove (ii).

31

2.5 Randomized Algorithms

When dealing with deterministic online algorithms, we have one natural

model for the adversary. This adversary knows the online algorithm and

chooses the worst input sequence in order to maximize the competitive ra-

tio. This is no longer the case with randomized algorithms. In randomized

algorithms online players use randomness. The adversary does not exactly

know the outcomes of the random choices made by the online player. By

concealing such knowledge from the adversary, the online player can fool the

adversary so that there is uncertainty as to what is the worst possible request

sequence.

As in the deterministic case, we should like to measure the quality of

a randomized online algorithm by a quantity similar to competitive ratio.

That is, we consider a game between an online player (algorithm) and an

adversary that constructs the input sequence in order to maximize the ratio

of the expected online cost to the adversary cost. However, this adversary

cost may have various forms depending on the exact nature of the adversary

model [7].

2.5.1 Adversary Models

The key issue that requires distinction between possible adversary models

is the extent to which the adversary knows (and can exploit) the outcomes

of the random choices made by the online player. We first demonstrate the

simplest adversary model which is called the oblivious adversary.

32

Let ALG be a randomized online algorithm. Based on the knowledge

of the probability distribution(s) ALG uses, the oblivious adversary must

choose a finite request sequence σ in advance. ALG is c-competitive against

an oblivious adversary if for every such σ,

E[ALG(σ)] ≤ c.OPT(σ) + α

Here α is a constant independent of σ and E[.] is the mathematical ex-

pectation operator taken with respect to the random choices made by ALG.

Since the offline player does not have information about the outcomes of the

random choices made by the online player, OPT(σ) is not a random variable;

consequently, there is no need to take its expectation. As is true for deter-

ministic algorithms, the infimum c, such that ALG is c-competitive against

an oblivious adversary, is called ALG’s expected competitive ratio against

an oblivious adversary. We write R(ALG) = c.

We now introduce two other types of adversaries. In all three type, we

assume that the adversary knows the online algorithm (including, of course,

the probability distributions used by the algorithm).

The first distinction is between oblivious and adaptive adversaries: at

each time, an adaptive adversary knows all the actions taken by the online

player for servicing the requests thus far. The adaptive adversary may choose

the next request based on this knowledge. In contrast, an oblivious adversary

must choose the entire request sequence in advance, without any knowledge

of the actions taken by the online player. Oblivious adversaries are more

standard in that they correspond to the adversaries that we use in the analysis

33

of offline randomized algorithms. Adaptive adversaries can be motivated in

several ways. First, we can envisage online problems where the actions of

the online algorithm do influence future requests. For example, consider a

paging algorithm being used by a real time application that reads the system

clock to determine appropriate actions. A random choice by the paging

algorithm will influence the timing and, consequently, the actions (including

future page requests) of the real time application. Another motivation for

studying adaptive adversaries is that in some cases it may be easy to design

a randomized algorithm that is competitive against an adaptive adversary.

The oblivious adversary cost is measured exactly as in the determinis-

tic case: via the optimal offline cost. Measuring the adversary cost of the

adaptive adversary is a bit more subtle, and we make a further distinction

between two types of adaptive adversaries. The first type is called adaptive-

offline, and its adversary cost is, again, the optimal offline cost (on the re-

quest sequence that is created online by this adversary). There is also an

intermediate type of adversary called adaptive-online, which is less power-

ful. This adversary must service each request it generates before the online

player services the request: in a sense, then, the adaptive online adversary

is also performing in an online fashion except that it knows its own strategy

for generating requests as well as the description of the online algorithm and

all its actions taken thus far. To summarize, we consider the following three

types of adversaries:

• OBL (oblivious): must construct the request sequence in advance and

34

pays optimally.

• ADON (adaptive-online): serves the current request online and then

chooses the next request based on the online algorithm’s actions so far.

• ADOF (adaptive-offline): chooses the next request based on the online

algorithm’s actions thus far, but pays the optimal offline cost to service

the resulting request sequence.

Having defined these three adversary types, we have yet to define the

competitive ratio with respect to each adversary. In general, let ADV be an

adversary (of type OBL, ADON, or ADOF). We say that the online algorithm

ALG is c-competitive against ADV if there exists a constant α such that for

all request sequences, σ,

E[ALG(σ)− c.ADV(σ)] ≤ α

Here the expectation is taken over the random choices made by ALG,

and ADV(σ) is the adversary cost. As usual, α is referred to as the adaptive

constant.

Both OBL(σ) and ADOF(σ) are exactly OPT(σ). That is, the adver-

sary cost in the case of oblivious or adaptive-offline adversaries is exactly the

optimal offline cost to serve σ. However, there is a fundamental difference

between OBL(σ) and ADOF(σ). OBL(σ) is a fixed quantity, since the obliv-

ious adversary constructs the request sequence independently of the random

choices made by ALG. On the other hand, ADOF(σ) is a random variable,

since the choice of σ depends on the random choices made by ALG. That

35

is, σ is a random variable and, therefore, ADOF(σ) = OPT(σ) is a random

variable as well.

In the case of an adaptive-online adversary, σ and therefore ADON(σ)

are again, random variables. However, in this case, we do not have a concise

characterization of the adversary cost (such as the optimal offline cost).

To summarize, in the case of an oblivious adversary, the inequality defin-

ing the competitive ratio can be written as

E[ALG(σ)]− c.OPT(σ) ≤ α

In the case of the adaptive-offline adversary,

E[ALG(σ)− c.OPT(σ)] ≤ α

Given any problem and a randomized online algorithm ALG for this prob-

lem, we define RADV (ALG), the competitiveness of ALG against an adver-

sary of type ADV, as the infimum over all numbers c such that ALG is

c-competitive against ADV. Whenever the type of the adversary ADV is

clear, we may omit the subscript ADV from the functional R.

2.5.2 Randomized k-Server Algorithm

In this section we present a k-server algorithm for the circle [20]. The algo-

rithm works against oblivious adversary. The algorithm works in any metric

space that can be embedded in a circle and attains a competitive ratio of 2k.

We now describe the algorithm called CIRC for a circle with circumference

C.

36

Algorithm CIRC: The online player chooses randomly and uniformly a

point P on the circumference of the circle. Think about the point P , which

remains unknown to the (oblivious) adversary, as a roadblock that breaks

the circle into a line segment. On this line segment the online player plays

the k-server game according to the optimal (deterministic) line algorithm DC

(DOUBLE-COVERAGE) of Section 2.4.3.

Clearly, the above algorithm is a mixed algorithm; it makes only a sin-

gle random choice. Note, however, that this single random choice is a real

number. A more important feature is that this algorithm introduces a gen-

eral approach for constructing randomized algorithms against an oblivious

adversary.

Theorem 3. [20] CIRC is 2k-competitive against an oblivious adversary.

Proof. Call OPT-LINE the optimal offline algorithm that serves a request

within the line segment (as defined by P). OPT is the optimal offline algo-

rithm for the circle. Clearly, for any request sequence σ,

CIRC(σ) ≤ k.OPT-LINE(σ) (2.1)

We now bound OPT-LINE(σ) from above in terms of OPT(σ). Consider

an algorithm OPT’ that behaves exactly as OPT does except that whenever

OPT crosses the point P , OPT’ makes a detour along the circle, paying C.

Since OPT’ is an algorithm for the line segment, OPT-LINE(σ) ≤ OPT’(σ).

Every distance di traveled by OPT’s servers crosses P with probability at

most di
C
. Hence the expected cost for all detours is at most D =

∑

i
di
C
.C =

OPT(σ). To summarize, we obtained

OPT-LINE(σ) ≤ E[OPT’(σ)] ≤ OPT(σ) +D = 2.OPT(σ) (2.2)

From equations 2.1 and 2.2,

E[CIRC(σ)] ≤ 2kOPT(σ)

37

2.6 Conclusion

In this chapter we have studied the competitive analysis techniques in the

context of the k-server problem. The competitive analysis can be viewed

as a game between an online player and a malicious adversary. The adver-

sary tries to make the task costly to the online player but, at the same time,

inexpensive for the optimal offline algorithm. There are different kinds of ad-

versaries when the online player uses randomized algorithm. We have studied

these models of adversaries. We have studied the proofs of determining com-

petitive ratio of some k-server algorithms demonstrating the basic methods

like averaging technique, potential function which are utilized in many other

proofs of different online problems.

38

Chapter 3

Facility Assignment on Straight

Lines

In this chapter, we study online facility assignment on straight lines. We

assume a set of facilities F of equal capacity l is situated on a straight line

having equal distance between adjacent facilities and customers arrive one by

one having position anywhere on the straight line of facilities. In Section 3.1

we first propose Algorithm Greedy which is 4|F |-competitive. In Section 3.2

we introduce randomization in the greedy method and show that it is 9
2
-

competitive for a class of input sequences. In Section 3.3 we provide another

method Algorithm Optimal-Fill which is |F |-competitive.

3.1 A Greedy Approach

It is hard, if not impossible, to define precisely what is meant by a greedy

algorithm. An algorithm is greedy if it builds up a solution in small steps,

choosing a decision at each step myopically to optimize some underlying

criterion. One can often design many different greedy algorithms for the same

39

problem, each one locally, incrementally optimizing some different measure

on its way to a solution.

3.1.1 Algorithm Greedy

In this section we propose Algorithm Greedy to solve the problem. Algorithm

Greedy assigns a customer to the nearest free facility. The algorithm is given

below.

Algorithm Greedy

Input: F = {f1, f2, . . . , f|F |}:facilities, l:capacity limit,
I = {c1, c2, . . . , cn}:input customers

Output: An assignment of the customers to the facilities and the
total cost of that assignment

for i← 1 to f do
capacityi = l;

for i← 1 to n do
min←∞;
index← −1;
for j ← 1 to f do

if capacityj > 0 and distance(fj, ci) < min then
min← distance(fj, ci);
index← j;

assign ci to findex;
capacityindex ← capacityindex − 1;
sum← sum+min;

Result: An assignment of the customers having total cost equal to
sum

3.1.2 Competitive Analysis

There are several meaningful ways to view the problem of analyzing online

algorithms. A problem can be viewed as a game between an online player

and a malicious adversary. The online player runs an online algorithm on

an input that is created by the adversary. The adversary, based on the

40

knowledge of the algorithm used by the online player, constructs the worst

possible input so as to maximize the competitive ratio. In the context of

facility assignment problem, the online player runs Algorithm Greedy. The

adversary runs the optimal algorithm OPT. The adversary tries to make the

task costly for Algorithm Greedy but, at the same time, inexpensive for the

OPT. The following lemma provides a lower bound for the expense of OPT.

Lemma 1. Let d be the distance between two adjacent facilities. If the as-

signments of OPT and Algorithm Greedy are not same, then optimal cost is

at least d
2
.

Proof. Let cx be the first customer for which the assignments of OPT and

Algorithm Greedy are different. The optimal cost for assigning cx is at least
d
2
. Hence the total optimal cost is at least d

2
.

The following theorem determines the worst input sequence an adversary

can construct for Algorithm Greedy and provides the competitive ratio.

Theorem 4. LetM be a straight line and a set of facilities F is situated on

M having equal distance between two adjacent facilities. Then R(Algorithm
Greedy) ≤ 4|F |.

Proof. We can consider two types of input sequences an adversary can con-

struct; in the optimum assignment all customers have cost less than d (dis-

tance between two adjacent facilities) and k customers have distance greater

than d. For both cases, we can simply assume that the facilities have unit

capacity since the analysis is similar for capacity l, where l > 1. Also we

consider all points are placed between the first and last facilities since com-

petitive ratio does not increase if points are placed outside of this area.

We first consider all customers have cost less than d in the optimum

assignment. If an input I of customers has this property then we say I is

well distributed. In the worst case, the adversary places all the customers very

close to the facilities except the first customer c1 as illustrated in Figure 3.1.

The total cost of Algorithm Greedy is no more than 2|F |d. In optimum

assignment all customers ci have cost εi except c1. The cost of first customer

c1 is γ, where γ > d
2
(lemma 1).

41

f1f2f3f4f5 c1c2c3c4c5

Greedy OPT

ε5 ε4 ε3 ε2 γ

Figure 3.1: The configurations of Algorithm Greedy and OPT

Cost Algorithm Greedy(I)

Cost OPT(I)
≤ 2|F |d

d
2

= 4|F |

In the second case, k customers have cost greater than d in optimum

assignment. Hence total cost of optimum assignment is at least kd. It has

been assumed that the customers having distance less than d are assigned

with cost zero by optimal algorithm. There are |F | − k such customers. In

the assignment of Algorithm Greedy, each of these customers would have cost

at most d. Notice that if any of these customers have cost greater than d

then that assignment can be easily transformed to an equivalent assignment

such that total cost is same as original assignment and |F | − k customers

have cost no more than d. Each of the remaining k points would have a cost

at most (|F | − 1)d.
Cost Algorithm Greedy(I)

Cost OPT(I)
≤ (|F |−1)dk+(|F |−k)d

kd

= |F |(k+1)−2k
k

= (k+1)|F |
k
− 2

3.2 Introducing Randomization in Greedy Ap-

proach

In this section we introduce randomness to the greedy method of previous

section and show that smaller competitive ratios are attainable if the online

player uses randomness. When dealing with deterministic online algorithms,

the adversary knows the online algorithm and chooses the worst input se-

quence in order to maximize the competitive ratio. This is no longer the case

42

with randomized algorithms. In this case, the adversary does not exactly

know the outcomes of the random choices made by the online player. By

concealing such knowledge from the adversary, the online player can fool the

adversary so that there is uncertainty as to what is the worst possible request

sequence.

Let ALG be a randomized online algorithm. Based on the knowledge

of the probability distribution(s) ALG uses, the oblivious adversary must

choose a finite request sequence I in advance. ALG is c-competitive against

an oblivious adversary if for every such I,

E[Cost ALG(I)] ≤ c.Cost OPT(I) + α

where α is a constant independent of I, and E[.] is the mathematical ex-

pectation operator taken with respect to the random choices made by ALG.

Since the offline player does not have information about the outcomes of the

random choices made by the online player, Cost OPT(I) is not a random

variable; consequently, there is no need to take its expectation.

3.2.1 Algorithm σ-Randomized-Greedy

We introduce randomness in the Greedy method described in previous section

and call the new method Algorithm σ-Randomized-Greedy. Let fx be a

facility which is nearest to the the customer cy and σ is a real number. σ-

Randomized-Greedy checks whether distance between cy and fx is less than

σ or not. If it is less than σ, cy is assigned to fx. Otherwise σ-Randomized-

Greedy tosses a fair coin before assigning a customer to a facility. It chooses

43

the nearest free facility at right (left) side when head (tail) appears. Our

algorithm is given below.

Algorithm σ-Randomized-Greedy

Input: F = {f1, f2, . . . , f|F |}:facilities, l:capacity limit,
I = {c1, c2, . . . , cn}:input customers

Output: An assignment of the customers to the facilities and the
total cost of that assignment

for i← 1 to |F | do
capacityi = l;

for i← 1 to n do
min←∞;
index← −1;
for j ← 1 to |F | do

if capacityj > 0 and distance(fj, ci) < min then
min← distance(fj, ci);
index← j;

if min ≥ σ then
randomly select a facility fk from the nearest left and right free
facilities;
min← distance(fk, ci);
index← k;

assign ci to findex;
capacityindex ← capacityindex − 1;
sum← sum+min;

Result: An assignment of the customers having total cost equal to
sum

3.2.2 Competitive Analysis

Algorithm σ-Randomized-Greedy performs better than Algorithm Greedy as

shown in the following theorem.

Theorem 5. Let I be a well distributed request sequence for Algorithm

Greedy. Let γ be the optimal cost of first customer and εi be the optimal

cost of ith customer where i > 1 . If σ > εi for all i and σ ≤ γ then

Algorithm σ-Randomized-Greedy is 9
2
-competitive for I.

44

Proof. In Theorem 4, a well distributed request sequence for Algorithm

Greedy has been defined. The first customer c1 is placed relatively closer

to f2 (Figure 3.1) in order to fool Algorithm Greedy. Algorithm Greedy

assigns c1 to f2. Except the first customer c1, the adversary places every

customer ck very close to facility fk. Since Algorithm Greedy has already

assigned c1 to f2, it can not assign c2 to the same facility. Similarly for every

customer ck, Greedy assigns it to fk+1 although it is very close to fk. Algo-

rithm σ-Randomized-Greedy overcomes this situation by using randomness.

Consider the first customer c1 which is close to f2. Algorithm σ-Randomized-

Greedy chooses either f1 or f2 with equal probability 1
2
. Similarly for every

customer ck, Algorithm σ-Randomized-Greedy chooses either fk+1 or fk with

equal probability 1
2
.

E[Cost σ-Randomized-Greedy(I)] = d
4
+
∑|F |−2

i=1 { 1
2i+1 (2id− d

2
)}

+ 1
2|F |−1{2(|F | − 1)d− d

2
}

< d
4
+ d

∑|F |−2
i=1

i
2i

< d
4
+ 2d

= 9d
4

Since optimum cost is at least d/2, Algorithm σ-Randomized-Greedy is
9
2
-competitive for I.

3.3 A More Complex Approach

In Section 3.1, it has been shown that Algorithm Greedy can be easily fooled

by placing all the customers very close to the facilities except the first cus-

tomer. In this section, Algorithm Optimal-Fill is proposed which is more

efficient than Algorithm Greedy.

3.3.1 Algorithm Optimal-Fill

When a new customer ci is placed, Algorithm Optimal-Fill finds out the new

facility fj that would be selected by an optimal assignment of the customers

c1, c2, . . . , ci. Algorithm Optimal-Fill then assigns ci to fj. The algorithm is

45

c5c1c2 c3c4

Optimal-Fill OPT

Figure 3.2: Worst case for Algorithm Optimal-Fill

given below.

Algorithm Optimal-Fill

Input: F = {f1, f2, . . . , f|F |}:facilities, I = {c1, c2, . . . , cn}:input
customers

Output: An assignment of the customers to the facilities and the
total cost of that assignment

for i← 1 to n do
let fj be the new facility chosen by an optimal assignment of the
customers c1, c2, . . . , ci;
assign ci to fj;
sum← sum+ distance(fj, ci);

Result: An assignment of the customers having total cost equal to
sum

3.3.2 Competitive Analysis

The following theorem shows that Algorithm Optimal-Fill performs better

than deterministic greedy method.

Theorem 6. LetM be a straight line and a set of facilities F is situated on

M having equal distance between two adjacent facilities. Then R(Algorithm
Optimal-Fill) ≤ |F |.

Proof. In the worst case, the adversary places the customers such that it can

assign them with out any cost. However Algorithm Optimal-Fill has to pay

a large amount of cost for each of these customers. The adversary pays only

for the first customer (see Figure 3.2).

For the following customers the adversary does not pay any cost, because

they are situated exactly on their facilities. However Algorithm Optimal-Fill

have to pay at least d for these customers.

46

Cost Algorithm Optimal-Fill(I)
Cost OPT(I)

=
d+2d+···+(|F |−1)d+ d

2
|F |d
2

= |F |(|F |−1)+1
|F |

< |F |(|F |−1)+|F |
|F |

= |F |
Algorithm Optimal-Fill pays the maximum cost possible in each step.

Hence the total cost of Algorithm Optimal-Fill does not increase in other

cases. However the total cost of OPT may increase. Therefore R(Algorithm
Optimal-Fill) ≤ |F |.

3.4 Capacity Sensitive Greedy Approach

In Section 3.1 we provide Algorithm Greedy which assigns a customer to the

nearest free facility. The algorithm divides the whole metric space in some

cover areas. Consider a facility fi has two adjacent free facilities fj and fk.

Let p1 (p2) be the middle point of fi and fj (fk). The cover area of fi is

the line segment from p1 to p2. If a customer ci appears in the cover area

of fi then ci is assigned to fi. The cover area of a facility in Algorithm

Greedy is not sensitive to the amount of capacity. The distance between a

customer and a facility is defined as the euclidean distance between them.

The assignment of a customer to a facility is made based on this distance and

the capacity of facilities does not play a significant role in this assignment.

Also the competitive analysis of these algorithms does not depend on the

value of initial capacity of the facilities. The analysis is similar for the cases

where initial capacity is greater than one and equal to one. The following

lemma provides an upper bound for Algorithm Greedy.

Lemma 2. LetM be a straight line and two facilities having distance d are

47

situated onM. Then Cost Algorithm Greedy(I) ≤ Cost OPT(I) + |I|d
2
.

Proof. We assume that the facilities have initial capacity equal to l. Hence

the number of customers |I| is at most 2l. In the worst case, the adversary

places the first l customers on the middle of two facilities. Let Algorithm

Greedy assigns the customers to f1. The adversary places the next l cus-

tomers on f1. Cost OPT(I) is equal to ld
2
. Cost Algorithm Greedy(I) is

equal to 3ld
2

= Cost OPT(I) + |I|d
2
.

We now introduce the idea of capacity sensitive approach. In this ap-

proach the cover area of a facility changes with its capacity.The algorithm is

given below.

48

Algorithm Capacity-Sensitive-Greedy

Input: F = {f1, f2, . . . , f|F |}:facilities, l:capacity limit,
I = {c1, c2, . . . , cn}:input customers

Output: An assignment of the customers to the facilities and the
total cost of that assignment

for i← 1 to f do
capacityi = l;

let d be the distance between adjacent facilities;
for i← 1 to f do

left cover areai =
d
2
;

right cover areai =
d
2
;

for i← 1 to n do
index← −1;
for j ← 1 to f do

if capacityj > 0 and ci appears in the cover area of fj then
index← j;

assign ci to findex;
capacityindex ← capacityindex − 1;
let fl be the left adjacent free facility of findex;
if capacityindex > capacityl then

left cover areaindex = distance(findex,fl)

21+(capacityindex−capacityl)
;

right cover areal = distance(findex, fl)− left cover areaindex;

else

right cover areal =
distance(findex,fl)

21+(capacityl−capacityindex) ;
left cover areaindex = distance(findex, fl)− right cover areal;

similarly update cover area of right adjacent facility;
sum← sum+ distance(findex, ci);

Result: An assignment of the customers having total cost equal to
sum

We name this new approach Algorithm Capacity-Sensitive-Greedy. We

use CSG to denote Algorithm Capacity-Sensitive-Greedy. The following

lemma provides a upper bound for CSG.

Lemma 3. LetM be a straight line and two facilities having distance d are

situated onM. Then Cost CSG(I) ≤ Cost OPT(I) + |I|d
4
.

Proof. We assume that the facilities have initial capacity equal to l. Hence

49

the number of customers |I| is at most 2l. In the worst case, the adver-

sary places a customer on the middle of two facilities. Let CSG assigns the

customers to f1. The adversary places the next customer on f2. This pro-

cess continues for the next l − 2 customers. The adversary places the next

l customers on f1. Cost OPT(I) is equal to ld
4
. Cost CSG(I) is equal to

Cost OPT(I) + |I|d
4
.

3.5 Conclusion

We have proposed some algorithms (Greedy, Randomized-Greedy, Optimal-

Fill and Capacity-Sensitive-Greedy) for the facility assignment problem. It

has been assumed that the facilities are situated on a straight line having

equal distance between adjacent facilities. Exploring this problem in a more

complex network would be interesting. Also analyzing different randomized

approaches to solve this problem may lead to many prominent results.

50

Chapter 4

Facility Assignment on

Connected Unweighted Graphs

We now study the facility assignment problem on connected unweighted

graphs. A set of facilities F of equal capacity l is situated on the vertices of

a connected unweighted graph. A set of customers arrive one by one hav-

ing position on the vertices of the same graph. We assign a customer to a

facility before a new customer arrives. In Section 4.1 we provide the graph

terminologies used throughout this chapter. We show the competitive anal-

ysis of Algorithm Greedy and Algorithm Optimal-Fill in Section 4.2 and 4.3

respectively.

4.1 Graph Terminology

In this section we give necessary definitions and terminologies which will

be used throughout the paper. A graph G is a tuple (V,E) which consists

of a finite set V of vertices and a finite set E of edges; each edge is an

unordered pair of vertices. We often denote the set of vertices G by V (G)

51

and the set of edges by E(G). We say G is unweighted if every edge of G

has equal weight. Let u and v be two vertices of G. If G has a u, v-path,

then the distance from u to v is the length of a shortest u, v-path. The

distance from u to v in G is denoted by dG(u, v) or simply by d(u, v). If

G has no u, v-path then d(u, v) = ∞. The diameter of G is the longest

distance among the distances of all pair of vertices in G. The eccentricity of

a vertex u in G is maxv∈V (G)d(u, v) and denoted by ǫ(u). The radius r of G

is minu∈V (G)ǫ(u). The center of G is the subgraph of G induced by vertices

of minimum eccentricity.

4.2 Competitive Analysis of Algorithm Greedy

In Section 3.1 we show competitive analysis of Algorithm Greedy when the

metric space is a straight line. The following theorem determines the perfor-

mance of Algorithm Greedy when the space is a graph.

Theorem 7. Let M be a connected unweighted graph. Then R(Algorithm
Greedy) ≤ 2|E(M)|.

Proof. We assume that the facilities have unit capacity since the analysis is

similar for capacity l, where l > 1. Two facilities fi and fj are adjacent if

there exists a path P from fi to fj such that no other facilities are situated

on P . We say an input I is well distributed if there is at least one customer

between two adjacent facilities. We first prove the claim for an input I which

is well distributed or we can transfer I to I ′ such that I ′ is well distributed

and the competitive ratios of I and I ′ are same.

We can consider two cases; M is a tree and M contains at least one

cycle. If M is a tree, we assume that every leaves contain a facility since

R(Algorithm Greedy) does not increase in other cases. In the worst case

Cost Greedy(I) is less than 2|E(M)| and Cost OPT(I) is equal to one as

52

b

b

b

b

b

b

b

1

2 3

4

56

Greedy OPT

Figure 4.1: The configurations of Algorithm Greedy and OPT

b 2

6

Greedy OPT

b 4

b

b

b

b

1

3

5

Figure 4.2: The configurations of Algorithm Greedy and OPT for a cycle

shown in Figure 4.1. A square box represents a facility and the input cus-

tomers are shown by their sequence numbers. In this case competitive ratio

is less than 2|E(M)|.
IfM contains a cycle, R(Algorithm Greedy) does not increase. Consider

a set of facilities F is situated on a cycle. In the worst case Cost Greedy(I)

is less than |E(M)| and Cost OPT(I) is equal to one as shown in Figure 4.2.

In this case competitive ratio is less than |E(M)|.
We now assume that I is not an well distributed input. Let M′ be the

minimum subgraph ofM such that all customers are situated onM′. There

is a set of facilities situated onM′. In the worst case the customers assigned

to those facilities by Algorithm Greedy incur total cost less than 2|E(M′)|
and OPT incurs only unit cost. If OPT incurs x amount of cost to assign

53

a customer to a remaining facility, then Algorithm Greedy incurs at most

x+ |E(M′)| amount of cost to assign a customer to that facility. Hence,

Cost Greedy(I) ≤ Cost OPT(I)−1+|E(M′)|(|E(M)|−|E(M′)|)+2|E(M′)|

According to this equation, if |E(M′)| is small then Algorithm Greedy will

perform similar to OPT. The larger the value of |E(M′)| the more well

distributed the input I becomes. Hence R(Algorithm Greedy) is no more

than 2|E(M)|.

Theorem 7 immediately yields the following corollary.

Corollary 1. LetM be a connected unweighted graph and a set of facilities

F is situated on the vertices ofM having equal distance between two adjacent

facilities. Then R(Algorithm Greedy) ≤ 4|F |.

Proof. Let the distance between two adjacent facilities be d. In the worst

case, each path between two adjacent facilities is visited no more than twice.

Hence Cost Greedy(I) is less than 2|F |d. According to lemma 1 Cost OPT(I)

is greater than d/2. Hence R(Algorithm Greedy) is no more than 4|F |.

4.3 Competitive Analysis of Algorithm Optimal-

Fill

In Section 3.3 we show Algorithm Optimal-Fill is more efficient than Algo-

rithm Greedy when the metric space is a straight line. However when the

metric space is a connected unweighted graph, it is not straight forward to

find whether Algorithm Optimal-Fill is better than Algorithm Greedy. In

this case it depends on the number of edges, facilities and the radius of

the graph. The following theorem determines the performance of Algorithm

Optimal-Fill when the space is a graph.

54

b
1

2 3

456

Optimal-Fill OPT

Figure 4.3: Worst case of Algorithm Optimal-Fill

Theorem 8. Let M be a connected unweighted graph and a set of facili-

ties F is situated on the vertices of M. Then R(Algorithm Optimal-Fill) ≤
|E(M)||F |

r
.

Proof. The proof is similar to the analysis of theorem 7. It is sufficient to

consider the case when M is a tree and I is well distributed. Let x be a

vertex in the center of M which is not a facility. If no such vertex exists,

the first customer c1 is placed on a vertex which is not a facility and the

distance from the center of M is minimum. Otherwise, c1 is placed on x.

In the worst case, Algorithm Optimal-Fill pays a cost equal to the distance

between two facilities for each customers except the first one (see Figure 4.3).

The adversary pays a cost which is no more than radius only for the first

customer. Optimal-Fill traverses an edge no more than |F | times. Hence,

R(Algorithm Optimal-Fill) is no more than |E(M)||F |
r

.

4.4 Facility Assignment with Finite Service

Time

Until now we have considered that if a customer cw is assigned to a facility,

then cw stays there forever. In other words, service time of an assignment

is infinite. Hence a facility with capacity l can provide service to at most

l customers. If there are f facilities, total number of customers is limited

55

to fl. In this section we study the facility assignment problem with a finite

service time t. It can be assumed that a customer arrives after one unit

time of its previous customer. When t = 1, service time is unit. Let cw be

assigned to fx in this scenario. Consider that a facility center can give service

to only one customer (l = 1). If cy is next to cw then we can also assign cy

to fx although cw was assigned to fx. For unit service time, both Algorithm

Greedy and Algorithm Optimal-Fill provide optimal solution. When service

time is two (t = 2), we can not assign cy to fx. However if cz arrives just

after cy, then we can assign cz to fx. The following theorem demonstrates

the scenario when t = 2.

Theorem 9. Let t be the time needed to provide service to a assigned cus-

tomer. Then no deterministic algorithm ALG is competitive for t = 2.

Proof. Let I = (c1, c2, . . . , cn) be the input sequence. The adversary places

the first customer c1 between any two adjacent facilities fi and fi+1. Suppose

ALG has assigned c1 to fi. The adversary now places c2, c3, . . . , cn exactly

on the facilities assigned for c1, c2, . . . , cn−1. The adversary runs the optimal

algorithm. It assigns c1 to fi+1, which incurs cost less than x, the distance

between fi and fi+1. The adversary does not pay any cost for the later

assignments, because each customer is placed exactly on a facility. However

ALG pays x for each assignment except the first one.

4.5 Conclusion

We have studied the online facility assignment problem on connected un-

weighted graphs and explored two algorithms (Greedy, Optimal-Fill) for this

problem. We also introduced service time parameter to that problem. It

would be an interesting problem to find out other deterministic and random-

ized algorithms which can perform better than the given methods.

56

Chapter 5

Experimental Competitive

Ratio

In this chapter we perform an experiment to understand the performance of

different algorithms of online facility assignment in practical scenarios.

5.1 Experimental Setup

In order to perform the simulation we take a graph G of 100 vertices. The

structure of G varies for different algorithms. For Algorithm Greedy and

Algorithm Optimal-Fill G is a connected unweighted graph. The edges of

G are generated randomly such that G remains connected. For Algorithm

Randomized-Greedy G is a path. For both cases the number of vertices of

G is 100. We take n facilities situated on the vertices of G. The vertices are

selected randomly. Similarly we also generate n customers located on the

vertices of G. After generating the facilities and the customers we run all

algorithms (Greedy, Randomized-Greedy and Optimal-Fill). We also run the

optimal algorithm. When G is not a path, in optimal algorithm we generate

57

all possible assignment of the customers to the facilities. The assignment cost

is equal to the distance between the customer and the facility on which the

customer has been assigned. We take the assignment which have minimum

total assignment cost. This is the optimal assignment. When G is a path, we

assign the customers to the facilities in monotonic order to get the optimal

assignment [4]. We take the ratio of the assignment cost of online algorithms

(Greedy, Randomized-Greedy and Optimal-Fill) and the assignment cost of

optimal assignment. We call these values experimental competitive ratios.

After that we again generate the positions of facilities and the customers

randomly and determine the experimental competitive ratios. We continue

this process for 20 times. We take the average and the maximum value of

the experimental competitive ratios. We vary the value of n from 1 to 15 and

analyse the data for each algorithms. This process is briefly demonstrated in

Figure 5.1.

5.2 Simulation Results

In this section we study the simulation result to understand the performance

of different algorithms of online facility assignment. The experimental com-

petitive ratios of all algorithms are shown in Table 5.1. We vary the value of

n (number of facilities) and draw graphs to see the relationship between the

experimental competitive ratios with the number of facilities in the following

sections.

58

Start

Generate a graph of 100 vertices

Randomly generate customers and facilities

Run the online algorithm

Determine the optimal assignment

Repeat the process 20 times

Take the average and maximum ratios

End

Figure 5.1: The flow of simulation

Facilities
Greedy Randomized-Greedy Optimal-Fill

Average Maximum Average Maximum Average Maximum

1 1.00 1.00 1.00 1.00 1.00 1.00

2 1.02 1.44 1.22 3.32 1.02 1.44

3 1.03 1.29 1.12 1.67 1.03 1.29

4 1.19 2.20 1.46 2.87 1.19 2.20

5 1.13 1.89 1.29 2.87 1.15 1.89

6 1.11 1.76 1.50 3.63 1.16 1.90

7 1.18 1.45 1.62 3.96 1.18 1.45

8 1.18 1.84 1.34 3.75 1.16 1.74

9 1.13 1.42 1.38 2.29 1.15 1.56

10 1.17 1.96 1.55 3.72 1.13 1.46

11 1.26 2.01 1.46 2.29 1.21 1.45

12 1.29 2.20 1.60 3.92 1.30 1.82

13 1.23 1.89 1.76 3.69 1.26 2.11

14 1.21 1.48 1.66 3.39 1.25 1.81

15 1.18 1.62 1.64 3.72 1.32 2.33

Table 5.1: Experimental Competitive Ratios

59

5.2.1 Performance of Algorithm Greedy

Algorithm Greedy is the simplest approach among other algorithms. It as-

signs a customer to the nearest free facility. The performance of Algorithm

Greedy is shown in Figure 5.2. The average ratio increases a little bit as the

number of facilities increases. According to Theorem 7 the maximum ratio

should increase linearly as the number of facilities increases. In the worst case

the graph is a tree and all the facilities are situated in the leaves of that tree.

Also the customers must appear in a particular order. However the graph,

the positions of facilities and customers are generated randomly and there

is no guarantee that the worst case is generated. Hence the experimental

competitive ratios deviate from theoretical results.

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14

E
xp

er
im

en
ta

l c
om

pe
tit

iv
e

ra
tio

Number of facilities

Average
Maximum

Figure 5.2: Algorithm Greedy

60

5.2.2 Performance of Algorithm Randomized-Greedy

We introduce randomness in the Algorithm Greedy and call the new method

Algorithm σ-Randomized-Greedy. Let fx be a facility which is nearest to

the the customer cy and σ is a real number. σ-Randomized-Greedy checks

whether distance between cy and fx is less than σ or not. If it is less than

σ, cy is assigned to fx. Otherwise σ-Randomized-Greedy tosses a fair coin

before assigning a customer to a facility. It chooses the nearest free facility

at right (left) side when head (tail) appears. In this simulation we assume σ

is equal to one and call it Algorithm Randomized-Greedy. The performance

of Algorithm Randomized-Greedy is shown in Figure 5.3. Both the aver-

age and maximum ratios are relatively larger than the ratios of Algorithm

Greedy. Note that the theoretical result of Algorithm Randomized-Greedy in

Theorem 5 assumes that the input of customers has a special characteristics.

However the simulation generates the input sequence randomly. Hence the

ratio is different from theoretical result.

5.2.3 Performance of Algorithm Optimal-Fill

In Algorithm Optimal-Fill when a new customer ci is placed, Algorithm

Optimal-Fill finds out the new facility fj that would be selected by an opti-

mal assignment of the customers c1, c2, . . . , ci. Algorithm Optimal-Fill then

assigns ci to fj. The performance of Algorithm Optimal-Fill is shown in

Figure 5.4. Practically it performs similar to Algorithm Greedy.

61

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 4 6 8 10 12 14

E
xp

er
im

en
ta

l c
om

pe
tit

iv
e

ra
tio

Number of facilities

Average
Maximum

Figure 5.3: Algorithm Randomized-Greedy

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14

E
xp

er
im

en
ta

l c
om

pe
tit

iv
e

ra
tio

Number of facilities

Average
Maximum

Figure 5.4: Algorithm Optimal-Fill

5.2.4 Comparison

We have plotted all the curves of average experimental competitive ratio in

Figure 5.5. The performance of Algorithm Greedy and Algorithm Optimal-

62

Fill are similar. The perfermonce of Algorithm Randomized-Greedy is worst.

In Theorem 5 we have shown that Algorithm Randomized-Greedy performs

very well when the input is distributed in the whole metric space. However

from the experimental results it seems that, Algorithm Randomized-Greedy

does not perform well in all cases.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12 14

E
xp

er
im

en
ta

l c
om

pe
tit

iv
e

ra
tio

Number of facilities

Greedy
Randomized-Greedy

Optimal-Fill

Figure 5.5: Comparison

5.3 Facility Assignment with Preference

Till now we have considered that all facilities are same which is similar to the

assumption of the theoretical results of previous chapters. We have defined

the assignment cost as the distance between the customer and facility and

it does not depend on any other criteria. In this section we consider that

the customers have a preference list of facilities. The assignment cost de-

pends both on the distance and the preference of the customer. We conduct

63

Facilities
Greedy Randomized-Greedy Optimal-Fill

Average Maximum Average Maximum Average Maximum

1 1.00 1.00 1.00 1.00 1.00 1.00

2 1.02 1.45 1.15 3.00 1.02 1.45

3 1.05 1.67 1.10 1.62 1.06 1.66

4 1.18 1.57 1.32 4.61 1.20 1.57

5 1.11 1.32 1.29 1.87 1.15 1.49

6 1.15 1.64 1.46 2.22 1.16 1.45

7 1.15 1.55 1.36 2.67 1.19 1.55

8 1.16 1.50 1.43 2.01 1.26 1.76

9 1.17 1.40 1.41 2.05 1.26 1.53

10 1.25 1.48 1.68 2.14 1.32 1.48

11 1.22 1.52 1.59 2.46 1.32 1.69

12 1.18 1.45 1.73 2.83 1.32 1.54

13 1.21 1.50 1.67 2.34 1.39 1.96

14 1.19 1.38 1.69 2.34 1.32 1.63

15 1.23 1.42 1.81 2.57 1.45 1.78

Table 5.2: Experimental Competitive Ratios

a simulation to provide the performance of different algorithms in this cir-

cumstance. The experimental competitive ratios of all algorithms are shown

in Table 5.2.

5.3.1 Performance of Algorithm Greedy

The algorithm is similar to Algorithm Greedy. However the definition of

distance has been changed. Previously the distance between a customer and a

facility was defined as the euclidean distance between them. Now the distance

depends on both the euclidean distance and the preference of customer. The

preference of customer is generated randomly. The performance of Algorithm

Greedy is shown in Figure 5.6.

64

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12 14

E
xp

er
im

en
ta

l c
om

pe
tit

iv
e

ra
tio

Number of facilities

Average
Maximum

Figure 5.6: Algorithm Greedy with preference

5.3.2 Performance of Algorithm Randomized-Greedy

The algorithm is similar to Algorithm σ-Randomized-Greedy except the def-

inition of distance. In this simulation we assume σ is equal to one and call it

Algorithm Randomized-Greedy. The performance of Algorithm Randomized-

Greedy is shown in Figure 5.7. Both the average and maximum ratios are

relatively larger than the ratios of Algorithm Greedy.

5.3.3 Performance of Algorithm Optimal-Fill

The performance of Algorithm Optimal-Fill is shown in Figure 5.8. Practi-

cally it performs similar to Algorithm Greedy.

65

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 4 6 8 10 12 14

E
xp

er
im

en
ta

l c
om

pe
tit

iv
e

ra
tio

Number of facilities

Average
Maximum

Figure 5.7: Algorithm Randomized-Greedy with preference

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2 4 6 8 10 12 14

E
xp

er
im

en
ta

l c
om

pe
tit

iv
e

ra
tio

Number of facilities

Average
Maximum

Figure 5.8: Algorithm Optimal-Fill with preference

5.3.4 Comparison

We have plotted all the curves of average experimental competitive ratio in

Figure 5.9. The performance of Algorithm Greedy and Algorithm Optimal-

66

Fill are similar. However the ratio of Algorithm Greedy is smallest. The

perfermonce of Algorithm Randomized-Greedy is worst.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12 14

E
xp

er
im

en
ta

l c
om

pe
tit

iv
e

ra
tio

Number of facilities

Greedy
Randomized-Greedy

Optimal-Fill

Figure 5.9: Comparison

5.4 Conclusion

In this chapter we have conducted a simulation to see the practical perfor-

mance of different algorithms of online facility assignment problem. We have

studied the theoretical results in Chapter 3 and Chapter 4. Most of the the-

oretical results consider the worst case performances. We have generated the

metric spaces, customers and facilities randomly. In this situation the proba-

bility of the worst case scenario is very low. Hence the practical performances

are better than the worst cases found in theoretical results. According to the

theoretical results the competitive ratio increases as the number of facility

increases. However this in not necessarily true for an experiment where the

67

scenarios are generated randomly. Hence we have found the curves as zigzag

lines. We have also considered that a customer has a preference list of fa-

cilities. From the results of the simulation it seems that the experimental

competitive ratio does not change significantly with this modification in the

problem. The code of this simulation is provided in the appendix.

68

Chapter 6

Conclusion

In this thesis we have studied an online facility assignment problem. We

have given some algorithms for this problem and provided their competitive

analysis. We have also conducted a simulation of these algorithms. We now

briefly describe the content of each chapter of this thesis.

In Chapter 1 we have characterized online algorithms in the context of

the sorting problem. We have provided some applications of online algo-

rithms like paging in a virtual memory system, load balancing in parallel

processing and routing in communications networks. We have defined the

facility assignment problem, which we have studied in this thesis. We have

presented its motivation and the objective of this thesis. We have introduced

the similar problems found in the literature. Finally we have provided the

results of this thesis and its organization.

In Chapter 2 we have studied the competitive analysis techniques in the

context of the k-server problem. The competitive analysis can be viewed

as a game between an online player and a malicious adversary. The adver-

69

sary tries to make the task costly to the online player but, at the same time,

inexpensive for the optimal offline algorithm. There are different kinds of ad-

versaries when the online player uses randomized algorithm. We have studied

these models of adversaries. We have studied the proofs of determining com-

petitive ratio of some k-server algorithms demonstrating the basic methods

like averaging technique, potential function which are utilized in many other

proofs of different online problems.

In Chapter 3 we have given some algorithms (Greedy, Randomized-Greedy,

Optimal-Fill and Capacity-Sensitive-Greedy) for the facility assignment prob-

lem. It has been assumed that the facilities are situated on a straight line

having equal distance between adjacent facilities. We have showed that

Algorithm Greedy is 4|F |-competitive and Algorithm Optimal-Fill is |F |-

competitive. Kao et al. [26] have provided a randomized lower bound of

4.5911 for the online matching on a line problem. We have proved that Al-

gorithm Randomized-Greedy is 9
2
-competitive for a class of input sequences.

We have also provided another method named Algorithm Capacity-Sensitive-

Greedy.

In Chapter 4 we have analyzed the online facility assignment problem on

connected unweighted graphs. We have proved Algorithm Greedy is 2|E(G)|-

competitive and Algorithm Optimal-Fill is |E(G)||F |/radius-competitive.

We have also introduced service time parameter t in our modeling and show

that no deterministic algorithm is competitive when t = 2.

Finally in Chapter 5 we have conducted a simulation to see the practical

70

performance of different algorithms of online facility assignment problem. We

have also considered that a customer has a preference list of facilities. From

the results of the simulation it seems that the experimental competitive ratio

does not change significantly with this modification in the problem. The code

of this simulation is provided in the appendix.

We now present some open problems and future research scopes related

to this thesis.

1. In Theorem 4 we have shown that Algorithm Greedy is 4|F |-competitive

when the input I is well distributed. In Theorem 5 we have proved

that Algorithm Randomized-Greedy is 9
2
-competitive when I is well

distributed. However the competitive ratio for input sequences which

are not well distributed is not known. It is an interesting problem to

determine the competitive ratio of Algorithm Randomized-Greedy for

general input sequences.

2. We have provided the competitive analysis of Algorithm Randomized-

Greedy when the metric space is a line. It would be interesting to

analyse it on a more complex metric space like graph.

3. In Section 3.4 we have provided Algorithm Capacity-Sensitive-Greedy

and shown a relation between the cost of this algorithm and the optimal

algorithm. Determining the competitiveness of Algorithm Capacity-

Sensitive-Greedy is an open problem.

4. In this thesis we have considered that we can always assign a customer

71

to a facility when it is free. We can introduce a probability of the

availability of each facility. It would be really interesting to analyse

the facility assignment problem with uncertainty.

5. We can analyse the facility assignment problem with an objective to

maximize the total assignment cost.

6. We can analyse the facility assignment problem when the metric space

is a weighted graph.

72

Bibliography

[1] Armon, A., “On min-max r-gatherings”, Theoretical Computer Science,

Vol. 412, No. 7, pp. 573-582, 2011.

[2] Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K. and Scquizzato, M.

“A o(n)-competitive deterministic algorithm for online matching on a

line”, Proc. of Approximation and Online Algorithms: 12th Interna-

tional Workshop (WAOA 2014), Lecture Notes in Computer Science,

Vol. 8952, pp. 11-22, 2015.

[3] Anagnostopoulos, A., Bent, R., Upfal, E., and Hentenryck P. V., “A

simple and deterministic competitive algorithm for online facility loca-

tion”, Information and Computation, Vol. 194, No. 2, pp. 175-202, 2004.

[4] Akagi, T., and Nakano, S., “On r-gatherings on the line”, Proc. of Fron-

tiers in Algorithmics Workshop (FAW 2015), Lecture Notes in Computer

Science, Vol. 9130, Springer, pp. 25-32, 2015.

[5] Bansal, N., Buchbinder, N., Gupta, A., and Naor, J. S., “An O(log2 k)-

competitive algorithm for metric bipartite matching”, Algorithmica,

Vol. 68, No. 2, pp. 390-403, 2012.

73

[6] Bein, W. W., Chrobak, M., and Larmore, L. L., “The 3-server problem

in the plane”, Theoretical Computer Science, Vol. 289, No. 1, pp. 335-

354, 2002.

[7] Borodin, A., and El-Yaniv, R., “Online Computation and Competitive

Analysis”, Cambridge University Press, 1998.

[8] Bartal, Y., and Koutsoupias, E., “On the competitive ratio of the work

function algorithm for the k-server problem”, Theoretical Computer Sci-

ence, Vol. 324, No. 23, pp. 337-345, 2004.

[9] Chudak, F. A., “Improved algorithms for uncapacitated facility location

problem”, Proc. of the 10th ACM-SIAM Symposium on Discrete Al-

gorithms, Lecture Notes in Computer Science, Vol. 1412, pp. 180-194,

1998.

[10] Charikar, M., and Guha, S.,“Improved combinatorial algorithms for the

facility location and k-median problems”, Proc. of the 40th Annual IEEE

Symposium on Foundations of Computer Science, pp. 378-388, 1999.

[11] Charikar, M., Guha, S., Tardos, É., and Shmoys, D. B., “A constant-

factor approximation algorithm for the k-median problem”, Journal of

Computer and System Sciences, Vol. 65, No. 1, pp. 129-149, 2002.

[12] Chrobak, M., Karloff, H., Payne, T., and Vishwanathan, S., “New re-

sults on server problems”, SIAM Journal on Discrete Mathematics, Vol.

4, No. 2, pp. 172-181, 1991.

74

[13] Chrobak, M., and Larmore, L. L., “An optimal on-line algorithm for

k-servers on trees”, SIAM Journal on Computing, Vol. 20, No. 1, pp.

144-148, 1991.

[14] Chudak, F. A., and Shmoys., D. B., “Improved approximation algo-

rithms for capacitated facility location problem”, Mathematical Pro-

gramming, Vol. 102, No. 2, pp. 207-222, 2005.

[15] Drezner, Z., “Facility Location: A Survey of Applications and Methods”,

Springer, 1995.

[16] Drezner, Z., and Hamacher, H. W., “Facility Location: Applications and

Theory”, Springer, 2006.

[17] Fotakis, D., “On the competitive ratio for online facility location”, Al-

gorithmica, Vol. 50, No. 1, Springer, pp. 1-57, 2008.

[18] Guha, S., and Khuller, S., “Greedy strikes back: improved facility lo-

cation algorithms”, Journal of Algorithms, Vol. 31, No. 1, pp. 228-248,

1999.

[19] Jain, K., and Vazirani, V. V., “Approximation algorithms for metric

facility location and k-median problems using the primal-dual schema

and lagrangian relaxation”, Journal of the ACM, Vol. 48, No. 2, pp.

274-296, 2001.

[20] Karp, R. M., “A 2k-competitive algorithm for the circle”, 1989. Unpub-

lished manuscript.

75

[21] Kleinberg, J. M., “A lower bound for two-server balancing algorithms”,

Information Processing Letters, Vol. 52, No. 1, pp. 39-43, 1994.

[22] Khuller, S., and Mitchell, S. G., and Vazirani, V. V., “On-line algo-

rithms for weighted bipartite matching and stable marriages”, Theoret-

ical Computer Science, Vol. 127, No. 2, pp. 255-267, 1994.

[23] Kalyanasundaram, B., and Pruhs, K., “Online weighted matching”,

Journal of Algorithms, Vol. 14, No. 3, pp. 478-488, 1993.

[24] Koutsoupias, E. and Papadimitriou, C., “The 2-evader problem”, Infor-

mation Processing Letters, Vol. 57, No. 5, pp. 249-252, 1996.

[25] Korupolu, M. R., Plaxton, C. G., and Rajaraman R., “Analysis of a local

search heuristic for facility location problems”, Journal of Algorithms,

Vol. 37, No. 1, pp. 146-188, 2000.

[26] Kao, M., Reif, J. H., and Tate, S. R., “Searching in an unknown envi-

ronment: an optimal randomized algorithm for the cow-path problem”,

Information and Computation, Vol. 131, No. 1, pp. 63-79, 1996.

[27] Meyerson, A., “Online facility location”, Proc. of the 42nd IEEE sympo-

sium on Foundations of Computer Science (FOCS ’01), IEEE Computer

Society, pp. 426-431, 2001.

[28] Manasse, M. S., McGeoch, L. A., and Sleator, D. D., “Competitive

algorithms for server problems”, Journal of Algorithms, Vol. 11, No. 2,

pp. 208-230, 1990.

76

[29] Rosen, K. H., “Discrete Mathematics and Its Applications”, McGraw-

Hill, 2012.

[30] Schrijver, A., “Combinatorial Optimization: Polyhedra and Efficiency”,

Springer, 2003.

[31] Sviridenko, M.,“An improved approximation algorithm for the met-

ric uncapacitated facility location problem”, Integer Programming and

Combinatorial Optimization, Lecture Notes in Computer Science, Vol.

2337, Springer, pp. 240-257, 2002.

[32] Sleator, D. D., and Tarjan, R. E., “Amortized efficiency of list update

and paging rules”, Communications of the ACM, Vol. 28, No. 2, pp.

202-208, 1985.

[33] Shmoys, D. B., Tardos, É., and Aardal, K.,“Approximation algorithms

for facility location problems”, Proc. of the twenty-ninth annual ACM

symposium on Theory of computing (STOC ’97), pp. 265-274, 1997.

77

Appendix A

Code of Simulation

#include <s t d i o . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#define MAXCAPACITY 1
#define STRAIGHT LINE 1
#define GRAPH 2
#define MAX VERTICES 200
#define EXTRA 10
#define INFINITY 1000000
#define EDGES PER STEP 10
int adjacency matr ix [MAX VERTICES + EXTRA] [MAX VERTICES + EXTRA] ;
int numbe r o f v e r t i c e s ;
int n umb e r o f f a c i l i t i e s ;
int capac i ty ;
int number of customers ;
int f a c i l i t i e s [MAX VERTICES + EXTRA] ;
int s o r t e d f a c i l i t i e s [MAX VERTICES + EXTRA] ;
int c a p a c i t i e s [MAX VERTICES + EXTRA] ;
int l a s t c a p a c i t i e s [MAX VERTICES + EXTRA] ;
int marker [MAX VERTICES + EXTRA] ;
int customers [MAX VERTICES ∗ MAXCAPACITY + EXTRA] ;
int a s s i g n e d f a c i l i t i e s [MAX VERTICES ∗ MAXCAPACITY + EXTRA] ;
int minimum assignment [MAX VERTICES ∗ MAXCAPACITY + EXTRA] ;
int b r u t e f o r c e c o s t ;
int minimum brute force cost ;
int so r t ed cus tomer s [MAX VERTICES ∗ MAXCAPACITY + EXTRA] ;
int d i s t anc e [MAX VERTICES + EXTRA] [MAX VERTICES + EXTRA] ;

78

int t o t a l c o s t o f g r e e d y ;
int t o t a l c o s t o f o p t im a l ;
int t o t a l c o s t o f o p t i m a l f i l l ;
int t o t a l c o s t o f r andom i z ed g r e edy ;
FILE ∗ o u t p u t f i l e ;
void c lean marker ()
{
int i ;
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
marker [i]=0;
}
}
void c l e an p r ev i ou s da t a ()
{
int i ;
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
int j ;
for (j =0; j<numbe r o f v e r t i c e s ; j++)
{
adjacency matr ix [i] [j]=0;
d i s t anc e [i] [j]=0;
}
}
c lean marker () ;
t o t a l c o s t o f g r e e d y = 0 ;
t o t a l c o s t o f o p t im a l = 0 ;
t o t a l c o s t o f o p t i m a l f i l l = 0 ;
t o t a l c o s t o f r andom i z ed g r e edy = 0 ;
number of customers = 0 ;
capac i ty = 0 ;
n umb e r o f f a c i l i t i e s = 0 ;
numbe r o f v e r t i c e s = 0 ;
}
void d e p t h f i r s t s e a r c h (int v)
{
int i ;
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
i f (ad jacency matr ix [v] [i])

79

{
i f (! marker [i])
{
marker [i] = 1 ;
d e p t h f i r s t s e a r c h (i) ;
}
}
}
}
int i s c onne c t ed ()
{
d e p t h f i r s t s e a r c h (0) ;
// i s a l l v i s i t e d ?
int count = 0 ;
int i ;
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
i f (marker [i]) count++;
}
c lean marker () ;
i f (count == number o f v e r t i c e s) return 1 ;
else return 0 ;
}
void generate graph ()
{
do{
int edges = EDGES PER STEP;
while (edges−−)
{
int generated = 0 ;
while (! generated)
{
int u = rand () % numbe r o f v e r t i c e s ;
int v = rand () % numbe r o f v e r t i c e s ;
while (v==u)
{
v = rand () % numbe r o f v e r t i c e s ;
}
i f (! ad jacency matr ix [u] [v])
{
adjacency matr ix [u] [v] = 1 ;

80

adjacency matr ix [v] [u] = 1 ;
generated = 1 ;
}
}
i f (i s c onne c t ed ()) break ;
}
}while (! i s c onne c t ed ()) ;
}
void generate path ()
{
int i ;
for (i =1; i<numbe r o f v e r t i c e s ; i++)
{
adjacency matr ix [i] [i −1] = 1 ;
ad jacency matr ix [i −1] [i] = 1 ;
}
}
void r a n d om l y g e n e r a t e f a c i l i t i e s ()
{
p r i n t f (” f a c i l i t i e s : ”) ;
f p r i n t f (o u t pu t f i l e , ” f a c i l i t i e s : ”) ;
int i ;
for (i =0; i<n umb e r o f f a c i l i t i e s ; i++)
{
int n e x t f a c i l i t y ;
do{
n e x t f a c i l i t y = rand () % numbe r o f v e r t i c e s ;
}while (marker [n e x t f a c i l i t y]) ;
f a c i l i t i e s [i] = n e x t f a c i l i t y ;
marker [n e x t f a c i l i t y]=1;
p r i n t f (” %d” , n e x t f a c i l i t y) ;
f p r i n t f (o u t pu t f i l e , ” %d” , n e x t f a c i l i t y) ;
}
p r i n t f (”\n”) ;
f p r i n t f (o u t pu t f i l e , ”\n”) ;
c l ean marker () ;
}
void generate cus tomers ()
{
p r i n t f (” customers : ”) ;
f p r i n t f (o u t pu t f i l e , ” customers : ”) ;

81

int i ;
for (i =0; i<number of customers ; i++)
{
customers [i] = rand () % numbe r o f v e r t i c e s ;
p r i n t f (” %d” , customers [i]) ;
f p r i n t f (o u t pu t f i l e , ” %d” , customers [i]) ;
}
p r i n t f (”\n”) ;
f p r i n t f (o u t pu t f i l e , ”\n”) ;
}
void f i n d a l l p a i r s h o r t e s t p a t h ()
{
int i ;
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
int j ;
for (j =0; j<numbe r o f v e r t i c e s ; j++)
{
i f (ad jacency matr ix [i] [j]) d i s t anc e [i] [j] = 1 ;
else d i s t anc e [i] [j] = INFINITY ;
}
}
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
int j ;
for (j =0; j<numbe r o f v e r t i c e s ; j++)
{
int k ;
for (k=0;k<numbe r o f v e r t i c e s ; k++)
{
i f ((d i s t anc e [j] [i] + d i s t anc e [i] [k]) < d i s t anc e [j] [k])
d i s t anc e [j] [k] = d i s t anc e [j] [i] + d i s t anc e [i] [k] ;

}
}
}
/∗ f o r (i =0; i<numbe r o f v e r t i c e s ; i++)
{
i n t j ;
f o r (j =0; j<numbe r o f v e r t i c e s ; j++)
{
p r i n t f (”%d ” , d i s t ance [i] [j]) ;

82

}
p r i n t f (”\n ”) ;
}∗/
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
d i s t anc e [i] [i]=0;
}
}
void a lgor i thm greedy ()
{
int i ;
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
c a p a c i t i e s [i]= capac i ty ;
}
for (i =0; i<number of customers ; i++)
{
// f i nd minimum cos t
int min = INFINITY ;
int f ;
int j ;
for (j =0; j<n umb e r o f f a c i l i t i e s ; j++)
{
i f (c a p a c i t i e s [f a c i l i t i e s [j]]>0)
{
i f (d i s t anc e [customers [i]] [f a c i l i t i e s [j]] < min)
{
min = d i s t anc e [customers [i]] [f a c i l i t i e s [j]] ;
f= f a c i l i t i e s [j] ;
}
}
}
t o t a l c o s t o f g r e e d y += min ;
c a p a c i t i e s [f]−−;
// p r i n t f (” customer %d ass i gned to f a c i l i t y %d with co s t %d\n” ,
customers [i] , f , min) ;
}
}
void a lgor i thm randomized greedy (int sigma)
{
int i , j , k ;

83

int s o r t e d f a c i l i t i e s [MAX VERTICES + EXTRA] ;
for (i =0; i<n umb e r o f f a c i l i t i e s ; i++)
{
s o r t e d f a c i l i t i e s [i] = f a c i l i t i e s [i] ;
}
// so r t the f a c i l i t i e s
for (j =1; j<n umb e r o f f a c i l i t i e s ; j++)
{
i =0;
while (s o r t e d f a c i l i t i e s [j] > s o r t e d f a c i l i t i e s [i])
i++;

long int temp = s o r t e d f a c i l i t i e s [j] ;
for (k=0; k<=(j−i −1); k++)
s o r t e d f a c i l i t i e s [j−k] = s o r t e d f a c i l i t i e s [j−k−1] ;

s o r t e d f a c i l i t i e s [i] = temp ;
}

for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
c a p a c i t i e s [i]= capac i ty ;
}
for (i =0; i<number of customers ; i++)
{
int as s i gned = 0 ;
int min = INFINITY ;
int f=−1;
for (k=0;k<n umb e r o f f a c i l i t i e s ; k++)
{
i f ((c a p a c i t i e s [s o r t e d f a c i l i t i e s [k]]>0)&&
(d i s t anc e [customers [i]] [s o r t e d f a c i l i t i e s [k]] <= sigma))
{
i f (d i s t anc e [customers [i]] [s o r t e d f a c i l i t i e s [k]] < min)
{
f = s o r t e d f a c i l i t i e s [k] ;
min = d i s t anc e [customers [i]] [s o r t e d f a c i l i t i e s [k]] ;
}
}
}
i f (f != −1)
{
as s i gned = 1 ;

84

c a p a c i t i e s [f]−−;
t o t a l c o s t o f r andom i z ed g r e edy += min ;
}
i f (! a s s i gned)
{
for (j =0; j<n umb e r o f f a c i l i t i e s ; j++)
{
i f (customers [i] <= s o r t e d f a c i l i t i e s [j])
break ;

}
i f ((rand()%2)==1)
{
for (k=j ; k<n umb e r o f f a c i l i t i e s ; k++)
{
i f (c a p a c i t i e s [s o r t e d f a c i l i t i e s [k]]>0)
{
as s i gned = 1 ;
c a p a c i t i e s [s o r t e d f a c i l i t i e s [k]]−−;
t o t a l c o s t o f r andom i z ed g r e edy +=
d i s t anc e [customers [i]] [s o r t e d f a c i l i t i e s [k]] ;
break ;
}
}
}
else

{
for (k=j −1;k>=0;k−−)
{
i f (c a p a c i t i e s [s o r t e d f a c i l i t i e s [k]]>0)
{
as s i gned = 1 ;
c a p a c i t i e s [s o r t e d f a c i l i t i e s [k]]−−;
t o t a l c o s t o f r andom i z ed g r e edy +=
d i s t anc e [customers [i]] [s o r t e d f a c i l i t i e s [k]] ;
break ;
}
}
}

i f (! a s s i gned)
{

85

min = INFINITY ;
f = −1;
for (k=0;k<n umb e r o f f a c i l i t i e s ; k++)
{
i f (c a p a c i t i e s [s o r t e d f a c i l i t i e s [k]]>0)
{
i f (d i s t anc e [customers [i]] [s o r t e d f a c i l i t i e s [k]] < min)
{
f = s o r t e d f a c i l i t i e s [k] ;
min = d i s t anc e [customers [i]] [s o r t e d f a c i l i t i e s [k]] ;
}
}
}
c a p a c i t i e s [f]−−;
t o t a l c o s t o f r andom i z ed g r e edy += min ;
}
}
}
}
void op t ima l a l g o r i t hm fo r pa th ()
{
int i ;
for (i =0; i<number of customers ; i++)
{
so r t ed cus tomer s [i] = customers [i] ;
}
// so r t the customers
int j , k ;
for (j =1; j<number of customers ; j++)
{
i =0;
while (so r t ed cus tomer s [j] > so r t ed cus tomer s [i])
i++;

int temp = sor t ed cus tomer s [j] ;
for (k=0; k<=(j−i −1); k++)
sor t ed cus tomer s [j−k] = sor t ed cus tomer s [j−k−1] ;

s o r t ed cus tomer s [i] = temp ;
}

for (i =0; i<n umb e r o f f a c i l i t i e s ; i++)

86

{
s o r t e d f a c i l i t i e s [i] = f a c i l i t i e s [i] ;
}
// so r t the f a c i l i t i e s
for (j =1; j<n umb e r o f f a c i l i t i e s ; j++)
{
i =0;
while (s o r t e d f a c i l i t i e s [j] > s o r t e d f a c i l i t i e s [i])
i++;

int temp = s o r t e d f a c i l i t i e s [j] ;
for (k=0; k<=(j−i −1); k++)
s o r t e d f a c i l i t i e s [j−k] = s o r t e d f a c i l i t i e s [j−k−1] ;

s o r t e d f a c i l i t i e s [i] = temp ;
}

for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
c a p a c i t i e s [i]= capac i ty ;
}
for (i =0; i<number of customers ; i++)
{
for (j =0; j<n umb e r o f f a c i l i t i e s ; j++)
{
i f (c a p a c i t i e s [s o r t e d f a c i l i t i e s [j]]>0)
{
t o t a l c o s t o f o p t im a l +=
d i s t anc e [so r t ed cus tomer s [i]] [s o r t e d f a c i l i t i e s [j]] ;
c a p a c i t i e s [s o r t e d f a c i l i t i e s [j]]−−;
break ;
}
}
}
}
void b ru t e f o r c e (int nCustomers , int c i)
{
// p r i n t f (” i n s i d e burute f o r c e \n ”) ;
// i f a l l customer as s i gned update minimum i f needed and re turn
i f (c i == nCustomers)
{

87

// p r i n t f (” i n s i d e end cond i t i on \n ”) ;
i f (b r u t e f o r c e c o s t < minimum brute force cost)
{
int i ;
for (i =0; i<number of customers ; i++)
{
minimum assignment [i] = a s s i g n e d f a c i l i t i e s [i] ;
}
// p r i n t f (” l a s t c a p a c i t i e s : ”) ;
for (i =0; i<numbe r o f v e r t i c e s ; i++)
{
l a s t c a p a c i t i e s [i] = c a p a c i t i e s [i] ;
// p r i n t f (” %d” , l a s t c a p a c i t i e s [i]) ;
}
// p r i n t f (”\n ”) ;
minimum brute force cost = b r u t e f o r c e c o s t ;
}
return ;
}
// f o r a l l a v a i l a b l e f a c i l i t y f
int i ;
for (i =0; i<n umb e r o f f a c i l i t i e s ; i++)
{
// p r i n t f (” r e c u r s i v e l y \n ”) ;
// as s i gn the f i r s t unass igned customer to f
i f (c a p a c i t i e s [f a c i l i t i e s [i]]>0)
{
i f ((b r u t e f o r c e c o s t+d i s t anc e [customers [c i]] [f a c i l i t i e s [i]])
> minimum brute force cost)
continue ;
a s s i g n e d f a c i l i t i e s [c i] = f a c i l i t i e s [i] ;
b r u t e f o r c e c o s t += d i s t anc e [customers [c i]] [f a c i l i t i e s [i]] ;
c a p a c i t i e s [f a c i l i t i e s [i]]−−;
// c a l l r e c u r s i v e l y
b ru t e f o r c e (nCustomers , c i +1);
// unass ign the customer
b r u t e f o r c e c o s t −= di s t anc e [customers [c i]] [f a c i l i t i e s [i]] ;
c a p a c i t i e s [f a c i l i t i e s [i]]++;
}
}
}

88

void opt ima l a lgor i thm with some customers (int nCustomers)
{
int i ;
/∗ f o r (i =0; i<number of customers ; i++)
{
a s s i g n e d f a c i l i t i e s [i] = −1;
}∗/
for (i =0; i<numbe r o f v e r t i c e s ; i++)
c a p a c i t i e s [i] = capac i ty ;

b r u t e f o r c e c o s t = 0 ;
min imum brute force cost = INFINITY ;
b r u t e f o r c e (nCustomers , 0) ;
}
void opt ima l a lgor i thm ()
{
opt ima l a lgor i thm with some customers (number of customers) ;
}
void op t ima l a l go r i t hm fo r g raph ()
{
opt ima l a lgor i thm () ;
}
void a l g o r i t hm op t ima l f i l l ()
{
int o p t i m a l f i l l c a p a c i t i e s [MAX VERTICES + EXTRA] ;
int i ;
for (i =0; i<numbe r o f v e r t i c e s ; i++)
o p t i m a l f i l l c a p a c i t i e s [i] = capac i ty ;

for (i =0; i<number of customers ; i++)
{
opt ima l a lgor i thm with some customers (i +1);
int j ;
// p r i n t f (” o p t i m a l f i l l c a p a c i t i e s : ”) ;
for (j =0; j<numbe r o f v e r t i c e s ; j++)
{
// p r i n t f (” %d” , o p t i m a l f i l l c a p a c i t i e s [j]) ;
i f (o p t i m a l f i l l c a p a c i t i e s [j] != l a s t c a p a c i t i e s [j])
break ;

}
// p r i n t f (”\n ”) ;
t o t a l c o s t o f o p t i m a l f i l l += d i s t anc e [customers [i]] [j] ;
o p t i m a l f i l l c a p a c i t i e s [j]−−;

89

// p r i n t f (” customer %d ass i gned to f a c i l i t y %d with co s t %d\n” ,
customers [i] , j , d i s t anc e [customers [i]] [j]) ;
}
}
void s t a r t s imu l a t i o n (int number o f s imulat ions ,
int type , int p r e f e r en c e)
{
t ime t t ;
srand ((unsigned) time(&t)) ;

int f i ;
for (f i =1; f i <=15; f i ++)
{
unsigned int s t a r t t ime = (unsigned) time (NULL) ;
double avg greedy = 0 , avg rand = 0 , a v g o p t f i l l = 0 ,
max greedy = 0 , max rand = 0 , max op t f i l l = 0 ;

int i ;
for (i =0; i<number o f s imu la t i ons ; i++)
{
do{
// numbe r o f v e r t i c e s = rand () % (MAX VERTICES+1);
numbe r o f v e r t i c e s = 100 ;
}while (! numbe r o f v e r t i c e s) ;
// numbe r o f v e r t i c e s = 5;
p r i n t f (”number o f v e r t i c e s :%d\n” , numbe r o f v e r t i c e s) ;
f p r i n t f (o u t pu t f i l e , ”number o f v e r t i c e s :%d\n” ,
numbe r o f v e r t i c e s) ;
do{
// n umb e r o f f a c i l i t i e s = rand () % (numbe r o f v e r t i c e s +1);
n umb e r o f f a c i l i t i e s = f i ;
}while (! n umb e r o f f a c i l i t i e s) ;
p r i n t f (”number o f f a c i l i t i e s :%d\n” , n umb e r o f f a c i l i t i e s) ;
f p r i n t f (o u t pu t f i l e , ”number o f f a c i l i t i e s :%d\n” ,
n umb e r o f f a c i l i t i e s) ;
i f (type == GRAPH) generate graph () ;
else i f (type == STRAIGHT LINE) generate path () ;
r a n d om l y g e n e r a t e f a c i l i t i e s () ;
do{
// capac i t y = rand () % (MAX CAPACITY+1);
capac i ty = 1 ;

90

}while (! capac i ty) ;
p r i n t f (” capac i ty :%d\n” , capac i ty) ;
f p r i n t f (o u t pu t f i l e , ” capac i ty :%d\n” , capac i ty) ;
number of customers = n umb e r o f f a c i l i t i e s ∗ capac i ty ;
p r i n t f (”number o f customers :%d\n” , number of customers) ;
f p r i n t f (o u t pu t f i l e , ”number o f customers :%d\n” , number of customers) ;
generate cus tomers () ;
f i n d a l l p a i r s h o r t e s t p a t h () ;
i f (p r e f e r en c e)
{
int p r e f e r e n c e un i t = 5 ;
int j ;
for (j =0; j<number of customers ; j++)
{
c lean marker () ;
int k ;
for (k=0;k<n umb e r o f f a c i l i t i e s ; k++)
{
int r a n d f a c i l i t y ;
do

{
r a n d f a c i l i t y = rand () % numb e r o f f a c i l i t i e s ;
}while (marker [r a n d f a c i l i t y]) ;
marker [r a n d f a c i l i t y]=1;
d i s t anc e [customers [j]] [f a c i l i t i e s [r a n d f a c i l i t y]] +=

(k+1) ∗ p r e f e r e n c e un i t ;
}
}
c lean marker () ;
}
//run a l go r i t hms
a lgor i thm greedy () ;
i f (type == STRAIGHT LINE) a lgor i thm randomized greedy (1) ;
a l g o r i t hm op t ima l f i l l () ;
i f ((type == GRAPH) | | (p r e f e r en c e))
{
op t ima l a l go r i t hm fo r g raph () ;
t o t a l c o s t o f o p t im a l = min imum brute force cost ;
}
else i f (type == STRAIGHT LINE) op t ima l a l g o r i t hm fo r pa th () ;
// op t ima l a l go r i t hm () ;

91

// p r i n t r e s u l t
p r i n t f (” t o t a l co s t o f greedy :%d\n” ,
t o t a l c o s t o f g r e e d y) ;
f p r i n t f (o u t pu t f i l e , ” t o t a l co s t o f greedy :%d\n” ,
t o t a l c o s t o f g r e e d y) ;
p r i n t f (” t o t a l co s t o f randomized greedy :%d\n” ,
t o t a l c o s t o f r andom i z ed g r e edy) ;
f p r i n t f (o u t pu t f i l e , ” t o t a l co s t o f randomized greedy :%d\n” ,
t o t a l c o s t o f r andom i z ed g r e edy) ;
p r i n t f (” t o t a l co s t o f opt imal f i l l :%d\n” ,
t o t a l c o s t o f o p t i m a l f i l l) ;
f p r i n t f (o u t pu t f i l e , ” t o t a l co s t o f opt imal f i l l :%d\n” ,
t o t a l c o s t o f o p t i m a l f i l l) ;
p r i n t f (” t o t a l co s t o f opt imal :%d\n” ,
t o t a l c o s t o f o p t im a l) ;
f p r i n t f (o u t pu t f i l e , ” t o t a l co s t o f opt imal :%d\n” ,
t o t a l c o s t o f o p t im a l) ;
double temp=0;
i f (t o t a l c o s t o f o p t ima l >0)temp =
(t o t a l c o s t o f g r e e d y ∗1 .0/ t o t a l c o s t o f o p t im a l) ;
avg greedy += temp ;
i f (max greedy < temp)max greedy = temp ;
p r i n t f (” r a t i o o f greedy :% l f \n” , temp) ;
f p r i n t f (o u t pu t f i l e , ” r a t i o o f greedy :% l f \n” , temp) ;
i f (t o t a l c o s t o f o p t ima l >0)temp =
(t o t a l c o s t o f r andom i z ed g r e edy ∗1 .0/ t o t a l c o s t o f o p t im a l) ;
avg rand += temp ;
i f (max rand < temp)max rand = temp ;
p r i n t f (” r a t i o o f randomized greedy :% l f \n” , temp) ;
f p r i n t f (o u t pu t f i l e , ” r a t i o o f randomized greedy :% l f \n” , temp) ;
i f (t o t a l c o s t o f o p t ima l >0)temp =
(t o t a l c o s t o f o p t i m a l f i l l ∗1 .0/ t o t a l c o s t o f o p t im a l) ;
a v g o p t f i l l += temp ;
i f (max op t f i l l < temp) max op t f i l l = temp ;
p r i n t f (” r a t i o o f opt imal f i l l :% l f \n” , temp) ;
f p r i n t f (o u t pu t f i l e , ” r a t i o o f opt imal f i l l :% l f \n” , temp) ;
// p r i n t f (” t o t a l c o s t o f b ru t e f o r c e :%d\n” ,
minimum brute force cost) ;
c l e an p r ev i ou s da t a () ;
}

92

p r i n t f (” avg greedy :% l f \n” , avg greedy) ;
p r i n t f (” number o f s imu la t i ons :%d\n” , number o f s imu la t i ons) ;

avg greedy = avg greedy / number o f s imu la t i ons ;
p r i n t f (” average r a t i o o f greedy f o r %d f a c i l i t i e s :% l f \n” ,
f i , avg greedy) ;
p r i n t f (”maximum r a t i o o f greedy f o r %d f a c i l i t i e s :% l f \n” ,
f i , max greedy) ;
f p r i n t f (o u t pu t f i l e , ” average r a t i o o f greedy f o r %d f a c i l i t i e s :% l f \n” ,
f i , avg greedy) ;
f p r i n t f (o u t pu t f i l e , ”maximum r a t i o o f greedy f o r %d f a c i l i t i e s :% l f \n” ,
f i , max greedy) ;

avg rand = avg rand/ number o f s imu la t i ons ;
p r i n t f (” average r a t i o o f randomized greedy f o r %d f a c i l i t i e s :% l f \n” ,
f i , avg rand) ;
p r i n t f (”maximum r a t i o o f randomized greedy f o r %d f a c i l i t i e s :% l f \n” ,
f i , max rand) ;
f p r i n t f (o u t pu t f i l e , ” average r a t i o o f randomized greedy f o r
%d f a c i l i t i e s :% l f \n” , f i , avg rand) ;
f p r i n t f (o u t pu t f i l e , ”maximum r a t i o o f randomized greedy f o r
%d f a c i l i t i e s :% l f \n” , f i , max rand) ;

a v g o p t f i l l = a v g o p t f i l l / number o f s imu la t i ons ;
p r i n t f (” average r a t i o o f opt imal f i l l f o r %d f a c i l i t i e s :% l f \n” ,
f i , a v g o p t f i l l) ;
p r i n t f (”maximum r a t i o o f opt imal f i l l f o r %d f a c i l i t i e s :% l f \n” ,
f i , max op t f i l l) ;
f p r i n t f (o u t pu t f i l e , ” average r a t i o o f opt imal f i l l f o r
%d f a c i l i t i e s :% l f \n” , f i , a v g o p t f i l l) ;
f p r i n t f (o u t pu t f i l e , ”maximum r a t i o o f opt imal f i l l f o r
%d f a c i l i t i e s :% l f \n” , f i , max op t f i l l) ;

p r i n t f (” time taken :%u\n” , ((unsigned) time (NULL) − s t a r t t ime)) ;
f p r i n t f (o u t pu t f i l e , ” time taken :%u\n” ,
((unsigned) time (NULL) − s t a r t t ime)) ;
p r i n t f (”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”) ;
f p r i n t f (o u t pu t f i l e , ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n”) ;
}
}

93

int main ()
{
char f i l e name [2 0 0 0] ;
s t r cpy (f i l e name , ”output−”) ;
char temp str [2 0 0] ;
s p r i n t f (temp str , ”%u” , (unsigned) time (NULL)) ;
s t r c a t (f i l e name , temp str) ;

o u t p u t f i l e = fopen (f i l e name , ”w”) ;

s t a r t s imu l a t i o n (20 , STRAIGHT LINE, 0) ;
// s t a r t s imu l a t i o n (20 , STRAIGHT LINE, 1) ;
// s t a r t s imu l a t i o n (100 , GRAPH) ;

f c l o s e (o u t p u t f i l e) ;
return 0 ;
}

94

Index

(h, k)-server problem, 22

c-competitive, 19

k-Server Conjecture, 26

k-server problem, 11, 21

r-gathering, 11

adaptive adversary, 35

adaptive-offline, 35

adaptive-online, 35

adversary, 21, 33

adversary model, 34

algorithm, 1

averaging technique, 27

bin packing, 4, 17

bubble sort, 2

center, 55

competitive, 20

diameter, 55

eccentricity, 55

facility assignment, 5

Facility location, 10

game, 21

graph, 54

greedy, 25, 41, 55

k-server conjecture, 12

lazy, 26

load balancing, 4

oblivious adversary, 34

offline algorithms, 2

online algorithm, 2

optimal algorithm, 18

optimal-fill, 48, 58

optimization problem, 16

Paging, 3, 23

parallel processing, 4

potential function, 32

95

radius, 55

randomized algorithm, 33, 45

Routing, 5

service time, 14, 59

sort, 2

strictly c-competitive, 19

unweighted, 55

virtual memory, 3

Weighted paging, 23

96

