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ABSTRACT 

This thesis deals with the stress analysis of sandwich structured composite materials. 

Materials under consideration are assumed to be perfectly bonded together. Finite 

difference method is used for the solution of two dimensional elastic problems. A 

numerical model for rectangular geometry based on displacement potential function 

has been developed to investigate the problem. In each layer of the composite the 

mechanical properties are assumed to be isotropic.  

At the interface, there is a single value for each displacement component but two 

different values for each stress component of the laminated composite having 

different mechanical properties in layers. Like usual critical zone of a sandwich 

structured composite under mechanical loading, the two interfacial zones are also 

zone of critical stresses. Changing the Poisson’s ratio in any layer (case or core) has 

significant effects on the results of all layers of the sandwich structured composite. 

Due to the mathematical expressions of stresses and displacements for two 

dimensional elastic problems, the study of the effects of Poisson’s ratio is intricate 

rather the study of the effects of Modulus of elasticity is straightforward. In general, 

the material having higher modulus of elasticity experiences higher stresses. 

Finite difference scheme has been developed for the management of boundary 

conditions so that all possible mixed boundary conditions can be applied in any 

boundary points as well as at the interfaces of isotropic layers. Special numerical 

formulations yield to new formula structures are employed at the interfaces. An 

effective programming code has been developed by FORTRAN language to solve 

the problems of sandwich structured composites. In order to compare the results by 

the present finite difference method, another numerical technique namely finite 

element method is used. Validation of the results is performed by using 

commercially available FEM package software. It is observed that the results agree 

well within the acceptable limit, which also confirms to the reliability of the finite 

difference method. 
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 CHAPTER 1  

INTRODUCTION 

 
1.1 General 

At the present time composite is a very common word because of its multipurpose 

application in many industries such as aerospace, automotive, marine, construction 

etc. The word “composite” means ‘consisting of two or more distinct parts’. 

Composites are formed by combining materials together to form an overall structure 

that is better than the individual components. The constituent materials have 

significantly different physical or chemical properties, that when combined, produce 

a material with characteristics different from the individual components. The 

individual components remain separate and distinct within the finished structure.  

The use of composite materials is gradually increasing day-by-day, especially, to 

satisfy the demand of lightweight structures. The use of short composite columns or 

struts in the construction of engineering structures and machines is quite extensive. It 

is known that the mechanical properties like, strength, toughness of a fiber reinforced 

composite differ significantly from those of the isotropic materials, which eventually 

play an important role in defining the state of stress and displacement of the 

corresponding structure under loading [1]. 

A sandwich-structured composite is a special class of composite materials that is 

usually fabricated by attaching two thin but stiff layers to a lightweight but thick 

core. The core material is normally low strength material, but its higher thickness 

provides the sandwich composite with high bending stiffness with overall low 

density. Sandwich panels are used in applications where high structural rigidity and 

low weight are required. Sandwich-structured composite are used in aircrafts, where 

mechanical performance and weight saving is essential.  

Almost all structures consist of assembly of simple elements which are connected to 

each other by joints. Joints or connections that are made in the composite structures 

can be broadly divided into two categories: adhesively bonded and mechanically 
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fastened using bolts or rivets. Adhesive bonding has been applied successfully in 

many technologies. [2-3]. 

Cladding, the application of one material over another to provide a skin or layer is 

another process to form a sandwich-structured composite. In cladding, a metal 

coating bonded onto another metal under high pressure and temperature.  

Anodic bonding is a bonding procedure without any intermediate layer. This bonding 

technique, also known as field assisted bonding or electrostatic sealing, is mostly 

used for connecting silicon/glass and metal/glass through electric fields [4]. In this 

bonding two layers are connected at the molecular level. In this type of bonding there 

is no slip at the interface [5]. 

1.2 Background of the study 

Because of the necessity of utilizing (existing and prospective) sandwich-structured 

materials in many engineering fields, it is of great importance to understand the 

behavior of the sandwich-structured composite.  For the solution of the problem 

several methodologies could be followed, however, all of the methods could be 

classified into three general categories: Experimental, analytical and numerical 

method. Though experimental methods give the most reliable results, it requires 

special equipments, testing facilities, thus, very costly. Analytical solution of every 

problem is almost impossible because of complex boundary conditions and 

geometries. For this reason the numerical methods had become the ultimate choice 

by the researchers in the last few decades. Invention and rapid improvement of the 

computing machine, i.e. sophisticated high performance computers have accelerated 

the popularity of the numerical methods.     

Stress analysis of sandwich-structured composite requires the solution of partial 

differential equations. There are various numerical methods available for the solution 

of partial differential equations. Among them the most popular methods are Finite 

Element Method (FEM) and Finite Difference Method (FDM). Finite difference 

method is an ideal numerical approach for solving partial differential equations. The 

difference equations that are used to model governing equations in FDM are very 
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simple to code and the global coefficient matrix produced by FDM is a banded 

structure and is very effective to good solution. In spite of these characteristics, now-

a-days, finite difference method is replaced in most of the engineering applications 

by the finite element method. Because finite element method is very efficient at 

managing complex boundary shapes and produces reliable result within the body of 

the structure. It is noted that critical stresses occur most frequently at the boundary of 

the structures and Dow et al. [6] verified that the accuracy of finite difference method 

in reproducing the state of stresses along the boundary surfaces was much higher 

than that of the finite element method. Not only that, Hossain et al. [7] showed that if 

an efficient approach is developed based on finite difference method, the 

computational effort is greatly reduced as compared to other methods. 

The present work is confined to isotropic, homogeneous, and elastic properties in 

each layer of the sandwich-structured composite. This work considers every (three) 

layers of sandwich structured composite as isotropic and homogeneous solid 

material.  

Almost all engineering materials possess to a certain extent the property of elasticity. 

The response of a solid body to the external load is influenced by the geometric 

configuration of the body as well as the mechanical properties of the material. In this 

study the mechanical properties are different in casing and core of sandwich-

structured composite.  
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1.3 Objectives of the present study 

The specific objectives of the present research work are as follows:  

(a) Development of a finite difference scheme with special treatment of 

governing equation and boundary conditions for interfaces of 

sandwich-structured composite. 

(b) Numerical study of 2D elastic problem of sandwich-structured 

composite by finite difference method. 

(c) To determine the displacement and stress distribution in the layers as 

well as at the interfaces of the elastic problem. 

(d) To compare the results obtained by the finite difference and finite 

element methods. 

 

 

1.4 Literature Review 

First application of finite difference equations, i.e. numerical method, in elasticity 

was done by Runge [8], who used this method in solving torsional problems. 

Subsequently finite difference method found very wide application in publications of 

stress analysis. Successful application of the stress function in conjunction with the 

finite difference method was reported in 1951 by Conway et al. [9]. The main 

shortcoming of the stress function formulation is that it accepts boundary conditions 

in terms of boundary loadings only. So problems containing boundary conditions in 

terms of restraints only or in terms of both loading and restraints (mixed boundary 

value problems) could not be solved by this stress function formulation. With a view 

to solving the problems of mixed boundary conditions, Uddin [10] proposed a 

formulation for the solution of two dimensional such mixed boundary value 

problems using the displacement potential function formulation and successfully 

applied this formulation for the solution of many two dimensional elastic mixed 

boundary value problems [11-16]. Not only that, Hossain [17] extended the 

displacement potential function formulation for three dimensional elastic problems 

and obtained reliable solution for some classical problems of solid mechanics [18].  

Solution of the two dimensional elastic problem with hole is successfully carried out 



5 
 

by Rahman [19]. However, these works are limited to single isotropic material only. 

Beside the finite difference method, another numerical method namely finite element 

method was first successfully applied for the two dimensional elastic problem by 

Turner et al. [20] and Clough [21]. Afterwards it became very popular and reliable 

with the rapid development of the digital computers and used by researchers in both 

two dimension and three dimension [22]. 

Long et al. [23] predicted the nominal stress-strain curves of a multi-layered 

composite material by FE Analysis. Sevecek et al. [24] analytically performed stress-

strain analysis of the laminates with orthotropic (isotropic) layers using Classical 

Laminate Theory and compared it with finite element analysis considering the 

thermal loading. Some other researchers have used finite element technique for stress 

analysis of some layered materials [25-27]. Arbaoui et al. [28] Analyzed numerical 

simulation and experimental bending behavior of multi-layered sandwich-structures. 

Problems with various mechanical loadings were not present in these studies.   

Later, the displacement potential function approach of the finite difference method 

had been extended for investigating bond-line stresses of tire tread section by Sankar 

et al. [29] and determination of the stresses for composite lamina considering 

directional mechanical properties was performed by Alam et al. [30]. After that, 

Bhuiyan [31] extended the finite difference technique with displacement potential 

function approach for a different type of composite made of two bonded isotropic 

materials. Therefore, stress analysis of a sandwich-structured material is yet to be 

attempted by this approach. 

From the above survey it is evident that, the present study of finding state of stress 

and displacement in sandwich-structured composite for various mechanical loadings 

is not only an interesting practical subject, but also of great importance because of its 

presence and prospect in many structural components. Application of finite 

difference technique based on displacement potential function for the solution of 

stresses of sandwich-structured composite will be a new attempt to extend the 

capability of displacement potential formulation. 
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1.5 Scope of the present study 

This thesis consists of five chapters. A detail literature review is provided in Chapter 

1. It illustrates the earlier research works showing various achievements and events 

that occurred in the field of stress analysis, theory of elasticity, application of various 

solution techniques and the evolution of sandwich-structured composite material 

research. In chapter 2, the relevant basic theories are stated in brief to understand the 

theories of elasticity. The mathematical model, used for the finite difference scheme 

of the study is described for better understanding of displacement potential function 

formulation. 

Chapter 3 depicts the numerical modeling of the problem, mainly the finite 

difference formulation of the fourth order partial differential governing equation and 

different boundary conditions. This chapter also describes the treatment of the 

formulation of boundary conditions. Later in the chapter, a summary is also made on 

finite element method since finite element method is the supporting tool for 

validation of finite difference results of the study. 

In chapter 4, detailed analysis of results is presented accompanied by a validation. A 

similar problem is solved by the FDM and FEM. Both results are compared with 

each other. Results obtained from the finite difference technique for different 

boundary conditions are critically analyzed. Effects of different combination of 

poisson’s ratios and modulus of elasticity are analyzed.   

Finally in Chapter 5, the exposition is completed with the main conclusions and the 

recommendations for future works. 

 



 

 

CHAPTER 2  

MATHEMATICAL MODEL 
 

2.1 Introduction 

Almost all engineering materials possess the property of elasticity to a certain extent. 

The external forces producing deformations do not exceed certain limit which is 

called the elastic limit and the deformation disappears as the removal of forces within 

this limit. In the analysis, it will be assumed that the sandwich-structured composite 

materials undergoing the action of mechanical loadings are perfectly elastic and the 

deformations are very small. So to apply and understand the theories of elasticity 

completely, it is necessary to introduce some basic terms related to the theory of 

elasticity. 

2.2 Stresses at a Point 

Under the action of external forces, internal forces are produced within the elastic 

body. The intensity i.e. internal forces per unit area of the surface on which they act 

is called stress. External forces may be of two types: surface force and body force. 

Forces distributed over the surface of a body, such as hydrostatic pressure, are called 

surface forces. Forces distributed over the volume of the body, such as gravitational 

force or inertia force, are called body force. As the effect of body forces as compared 

to the surface forces is very small, in most practical cases body forces are neglected. 

In the present study only the surface forces are taken into consideration. 

The displacements, strains and stresses in a deformable body are interlinked. 

Additionally, they all depend on the geometry and material of the work piece, 

external forces and supports. The discussion is beginning on the governing equations 

with the concept of stress at a point. To understand the concept of stress at a point, 

consider a body subjected to external forces and supported in a suitable fashion, as 

shown in Figure 2.1. Note that, as soon as the forces are applied, the body gets 

deformed and sometimes displaced if the supports do not restrain the rigid body 

motion of the body. Thus, Figure 2.1 shows the deformed configuration. In fact, 

throughout this section, the configuration considered will be the deformed 
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configuration. First, the stress vector (on a plane) is defined at point P of the body. 

For this, a plane (called as cutting plane) is passed through point P having a unit 

normal n. On each half of the body, there are distributed internal forces acting on the 

cutting plane and exerted by the other half. On the left half, a small area ΔA is 

considered around point P of the cutting plane. Let ΔF be the resultant of the 

distributed internal forces (acting on ΔA) exerted by the right half. Then, the stress 

vector (or traction) at point P (on the plane with normal n) is defined as 

𝒕𝑛 =  lim
∆𝐴→0

∆𝑭

∆𝐴
 

          (2.1) 

 

 

Figure 2.1: Stress vector at a point on a plane CC. (a) Cutting plane passing through 

point P of the deformed configuration, (b) Stress vector tn , normal stress component  

σn and shear stress component σs acting at point P on the cutting plane 

Cutting Plane 

C 

C 

b 

a 
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The component of tn normal to the plane is called as the normal stress component. It 

is denoted by σn and The component of tn along the plane is called as the shear stress 

component. It is denoted by σs. Note that, on the right half, the normal to the cutting 

plane will be -n and the stress vector at P will be –tn as per the Newton’s third law.  

It can be shown that a stress vector on any arbitrary plane can be uniquely 

represented in terms of the stress vectors on three mutually orthogonal planes. To 

show this, we consider x, y and z planes as the three planes, having normal vectors 

along the three Cartesian directions x, y and z respectively. Let the stress vectors on 

x, y and z planes be denoted by tx, ty and tz respectively. Further, we denote their 

components along x, y and z directions as follows [48]: 

tx = σxx .i+ σxy.j + σxz.k       (2.2) 

ty = σyx .i+ σyy.j + σyz.k       (2.3) 

tx = σzx .i+ σzy.j + σzz.k       (2.4) 

where, (i, j ,k) are the unit vectors along(x, y ,z ) axes. The stress vectors and their 

components are shown in Figure 2.2.To derive the above result, we consider a small 

element at point P whose shape is that of a tetrahedron. The three sides of the 

tetrahedron are chosen perpendicular to x, y and z axes and the slant face is chosen 

normal to vector n. Then, equilibrium of the tetrahedron in the limit as its size goes 

to zero leads to the following result:  

tn = tx .nx + ty. ny +tz.nz        (2.5) 

where, nx, ny, and nz  are the components of the normal vector n. This result is true 

for every stress vector at point P no matter what the orientation of the normal vector 

n is. Further, this result remains valid even if the body forces are not zero or the body 

is accelerating. 
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Let the components of the stress vector tn be 

tn = (tn)x. i + (tn)y. j + (tn)z. k      (2.6) 

  

 

Figure 2.2: Stress vectors and their components on x, y, and z plane. (a) Stress vector 

and its components on x plane, (b) Stress vector and its components on y plane, (c) 

Stress vector and its components on z plane 

Substituting Eqs. (2.2-2.4) and (2.6), we get the component form of Eq. (2.5) as 

follows:  

{

(𝑡𝑛)𝑥

(𝑡𝑛)𝑦

(𝑡𝑛)𝑧

} = [

𝜎𝑥𝑥 𝜎𝑦𝑥 𝜎𝑧𝑥

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑧𝑦

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

] . {

𝑛𝑥

𝑛𝑦

𝑛𝑧

}     (2.7) 

In array notation, this can be written as  

y-plane 

z-plane 

x-plane 
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{𝑡𝑛} = [𝜎]𝑇 . {𝑛}       (2.8) 

Where, the stress matrix [𝜎] is 

[𝜎] =     [

𝜎𝑥𝑥 𝜎𝑦𝑥 𝜎𝑧𝑥

𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑧𝑦

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

]      (2.9)  

Therefore, it is evident that the stress at a point can be completely described by 

means of just three stress vectors tx , ty and tz acting on mutually orthogonal planes 

or by their nine components: σxx, σyy, σzz, σxy, σyx. σyz, σzy, σxz, and σzx.  In the notation 

of stresses, the first index describes the direction of the normal to the plane on which 

the stress component acts while the second index represents the direction of the stress 

component itself. Thus, σxy indicates a stress component acting in y -direction on x -

plane.  

 

Figure 2.3: Stress components in a cubic element 

σxx 

σxz 

σxy 

σyz 

σyy 

σyx 

σxy 

σxz σxx 

σyx 

σyz 

σyy 

σzz 

σzy 

σzx 

σzx 

σzy 

σzz 

y 

x 

z 
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When both the indices are same, it means the stress component is along the normal to 

the plane on which it acts. It is called as the normal stress component. Thus, σxx , σyy 

and σzz are the normal stress components. When the two indices are different, it 

means the direction of the component is within the plane. Such a component is called 

as the shear stress component. These components could be better understood with 

reference to a cubic element as shown in Figure 2.3. Based on the consideration of 

the static equilibrium of the element it could be shown that σxy= σyx, σyz= σzy, and 

σxz= σzx. As a result, the nine components of stress are reduced to six independent 

components only. 

2.3 Sign Convention for Stresses 

In the present study, the following sign convention is adopted for the stress 

components. First positive and negative planes have been defined. A plane i is 

considered positive if the outward normal to it points in the positive i direction, 

otherwise it is considered as negative. A stress component is considered positive if it 

acts in positive direction on positive plane or in negative direction on negative plane. 

Otherwise, it is considered as negative. Figure 2.4 illustrates positive and negative 

normal and shear stress components. Throughout the finite difference analysis of the 

present problem, this sign convention has been used. 

 

Figure 2.4: Sign convention for normal and shear stress components (a) Small 

element at point ‘P’ in the deformed configuration. Forces on the body and supports 

are not shown, (b) Positive and negative ‘σxx’, (c) Positive and negative ‘σxy’ 
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2.4 Stress-Strain Relationship 

Deformation at a point is related to the displacement of the neighborhood of that 

point. The neighborhood of a point is defined as a set of points in the close vicinity 

of that point. The displacement consists of three parts: (i) displacement due to 

translation of the neighborhood of that point, (ii) displacement due to rotation of the 

neighborhood of that point and (iii) displacement due to deformation of the 

neighborhood of that point. In this analysis the deformations of the elastic body is 

considered very small hence, the deformation is elastic. The state of strain at any 

point could be completely defined by six components of strain: εx, εy, εz, γxy, γyz, and 

γzx. 

By definition the normal and shear strain can be given by [31] 

𝜀𝑥 =  
𝜕𝑢𝑥

𝜕𝑥
,  𝜀𝑦 =  

𝜕𝑢𝑦

𝜕𝑦
,  𝜀𝑧 =  

𝜕𝑢𝑧

𝜕𝑧
        (2.10) 

𝛾𝑥𝑦 =  
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
 ,  𝛾𝑦𝑧 =  

𝜕𝑢𝑦

𝜕𝑧
+

𝜕𝑢𝑧

𝜕𝑦
 , 𝛾𝑧𝑥 =  

𝜕𝑢𝑥

𝜕𝑧
+

𝜕𝑢𝑥

𝜕𝑧
     (2.11) 

where, εx, εy, εz  are the strain components parallel to the coordinate axes called 

normal strain and γxy, γyz, γzx are strain components acting on the planes xy, yz and 

zx planes respectively called shear strain. 

The stresses are related to the strains by the Hooke’s law. The generalized Hooke’s 

law suggests that each of the stress components is the linear function of the strain 

components. The stresses are related to the strains by the Hooke’s law and Poisson’s 

law as follows [14]: 

𝜀𝑥 =  
1

𝐸
 [𝜎𝑥 −  𝜇(𝜎𝑦 + 𝜎𝑧)]  

𝜀𝑦 =  
1

𝐸
 [𝜎𝑦 −  𝜇(𝜎𝑥 + 𝜎𝑧)]       (2.12) 

𝜀𝑧 =  
1

𝐸
 [𝜎𝑧 −  𝜇(𝜎𝑥 + 𝜎𝑦)]  

where, E is the modulus of elasticity and μ is the poisson’s ratio. 
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2.5 Plane Stress and Plane Strain 

Although practically all the bodies are three dimensional, most of the practical 

problems of stress analysis could be reduced to two dimensional under two 

simplifying assumptions. One, the loading on the body is confined in a plane and the 

dimension of the body in the direction perpendicular to this plane is relatively small 

as compared to the others.  In such cases, the stresses in the body perpendicular to 

the plane of loading are usually very small and thus can be neglected. As a result 

these problems become two dimensional, usually referred to as plane stress 

problems. Two, one of the three dimensions of the body is relatively large or 

straining in a particular direction is restrained. In such cases, the stresses in the large 

or restrained direction are zero. As a result these problems become two dimensional 

and usually referred to as plane strain problems. 

If a thin plate is loaded by forces applied at the boundary, parallel to the plane of the 

plate and distributed over the thickness (Figure 2.5), the stress components σzz, σzx, 

σyz become zero on both faces of the plate and it may assumed that they are also zero 

within the plate. Thus in a plane stress problems the state of stress is defined by σxx, 

σyy, σxy only. 

 

Figure 2.5: Plane stress problem 

A similar simplification is possible when the dimension of the body in the z-direction 

is very large. If a long cylindrical or prismatic body is loaded by forces that are 

x 

z 

x 

y 

x 
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perpendicular to the longitudinal elements and do not vary along the length, it may 

be assumed that all the cross sections are in the same condition.  

 

(a)

 

(b) 

Figure 2.6: Plane Strain problem 

Problems like a retaining wall with lateral pressure (Figure 2.6a), a culvert, 

cylindrical tube with internal pressure (Figure 2.6b) etc. can be considered as the 

plane strain problems. In plane strain problems εz, γyz, γzx are zero and thus the stress 

components σzx, σyz become zero. Thus the state of stress is defined by σxx, σyy, σxy 

only.  
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2.6 Differential Equations of Equilibrium and Boundary Conditions 

 For static equilibrium of the infinitesimal cubic element as shown in Figure 2.3 the 

following equations can be obtained, [31] 

𝜕𝜎𝑥𝑥

𝜕𝑥
+ 

𝜕𝜎𝑥𝑦

𝜕𝑦
+

𝜕𝜎𝑥𝑧

𝜕𝑧
+ 𝑋 = 0 

𝜕𝜎𝑦𝑦

𝜕𝑦
+ 

𝜕𝜎𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑧

𝜕𝑧
+ 𝑌 = 0         (2.13) 

𝜕𝜎𝑧𝑧

𝜕𝑧
+ 

𝜕𝜎𝑥𝑧

𝜕𝑥
+

𝜕𝜎𝑦𝑧

𝜕𝑦
+ 𝑍 = 0 

These equations (2.13) are known as the equations of equilibrium, where X, Y, and Z 

are the components of body force per unit volume of the element in x, y, and z-

directions respectively. The body forces can be eliminated due to their negligible 

effect as compared to that of surface forces. For plane stress condition the cubic 

element reduces to a thin rectangular block and no body forces acting on that block, 

hence the equilibrium equations yields to 

𝜕𝜎𝑥𝑥

𝜕𝑥
+ 

𝜕𝜎𝑥𝑦

𝜕𝑦
= 0 

𝜕𝜎𝑦𝑦

𝜕𝑦
+ 

𝜕𝜎𝑥𝑦

𝜕𝑥
= 0             (2.14) 

Above equations must be satisfied at all points throughout the body. The stress 

components vary over the volume of the block. At the boundary they must be in 

equilibrium with external forces on the boundary and the external forces may be 

considered as the continuation of the internal stress distribution. So the conditions of 

equilibrium at the boundary can be written as [31], 

𝜎𝑛 =  𝜎𝑥𝑥 . 𝑙2 + 𝜎𝑦𝑦 . 𝑚2 + 2𝜎𝑥𝑦 . 𝑙 𝑚 

𝜎𝑡 =  𝜎𝑥𝑦 . (𝑙2 − 𝑚2) + (𝜎𝑦𝑦 − 𝜎𝑥𝑥). 𝑙 𝑚     (2.15) 
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where, σn and σt are the normal and tangential components of the surface forces 

acting on the boundary per unit area and l, m are the direction cosines of the normal 

to the surface. 

Similarly, normal component of displacement un and the tangential component ut 

acting on the boundary surface can be expressed by 

𝑢𝑛 =  𝑢𝑥. 𝑙 + 𝑢𝑦 . 𝑚 

𝑢𝑡 =  𝑢𝑦 . 𝑙 − 𝑢𝑥. 𝑚        (2.16) 

Generally normal components (σn and un) are considered to be positive when act 

outward on the boundary and the tangential components (σt and ut) are considered 

positive if they act in the anti-clockwise direction on the body. 

2.7 Compatibility Equations 

To determine the state of stress in the two-dimensional elastic body, it is necessary to 

find the solution of the equilibrium equations (Eq. 2.14), which must satisfy the 

boundary conditions (Eq. 2.15 and 2.16) at the boundary. Since these two equations 

contain three unknown stress components (σxx, σyy, and σxy), they are not sufficient to 

determine the three components. Therefore, the problem is a statically indeterminate 

one. As a result, to obtain the solution, the elastic deformations of the body must be 

taken into consideration. For two dimensional body three strain components can be 

expressed in terms of the displacement components as  

𝜀𝑥 =  
𝜕𝑢𝑥

𝜕𝑥
;   𝜀𝑦 =  

𝜕𝑢𝑦

𝜕𝑦
;    𝛾𝑥𝑦 =  

𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
    (2.17) 

Since these three strain components are expressed by two functions only, they cannot 

be related arbitrarily among themselves. There exists a certain relationship among 

the strain components, which is expressed as, 

𝜕2𝜀𝑥

𝜕𝑦2 +
𝜕2𝜀𝑦

𝜕𝑥2 =  
𝜕2𝛾𝑥𝑦

𝜕𝑥.𝜕𝑦
       (2.18) 
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This differential relation is called the condition of compatibility. It must be satisfied 

by the strain components to ensure the existence of functions σx and uy connected 

with the strain components by Eq. 2.17 

Elimination of strains in terms of stresses, equation 2.18 yields to 

(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2) (𝜎𝑥 + 𝜎𝑦) = 0       (2.19) 

The equations (Eq. 2.14) of equilibrium together with the boundary conditions (Eq. 

2.15) and the above compatibility equation (Eq. 2.19) give us a system of equations 

that is usually sufficient for the complete solution of stress distribution in a two 

dimensional problem. 

2.8 Solution Technique for 2-D Problems with Known Stresses at the Boundary 

The solution of two dimensional elastic problems requires integration of the 

differential equations of equilibrium (Eq. 2.14) together with the compatibility 

equations (Eq. 2.19) and the boundary conditions (Eq. 2.15). 

The usual method of solving these equations is through the introduction of a function 

φ(x,y), known as Airy stress function, defined as 

𝜎𝑥 =  
𝜕2𝜙

𝜕𝑦2 ,   𝜎𝑦 =  
𝜕2𝜙

𝜕𝑥2  ,  𝜎𝑥𝑦 =  
𝜕2𝜙

𝜕𝑥.𝜕𝑦
  (2.20) 

which satisfies equations (Eq. 2.14) and transforms the equation (Eq. 2.19) into 

𝜕4
𝜙

𝜕𝑥4 +  2
𝜕4

𝜙

𝜕𝑥2.𝜕𝑦2 +
𝜕4

𝜙

𝜕𝑦4 = 0        (2.21) 

Ultimately, equation (Eq. 2.21) has to be integrated satisfying equation (Eq. 2.15) at 

the boundary. But the solution approach stated above through the stress function 

φ(x,y) is a special case of a general problem. Only a problem with pure known stress 

at the boundary can be solved by this approach. But, most of the practical 

engineering problems are with the mixed boundary conditions, that is, the conditions 

at the boundary might include known stresses, known displacements or combination 
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of stresses and displacements with different conditions in different segments at the 

boundary. A problem of this kind can not be solved through Airy’s stress function 

φ(x,y), defined in equation (Eq. 2.20). 

2.9 Mathematical Formulation in terms of Displacement Potential Function 

In absence of body forces, the equilibrium equations for two dimensional plane 

stress/ plane strain elastic problems in terms of displacements components [33] are as 

follows 

𝜕2𝑢

𝜕𝑥2 + (
1−𝜇

2
) 

𝜕2𝑢

𝜕𝑦2 + (
1+𝜇

2
)

𝜕2𝑣

𝜕𝑥.𝜕𝑦
= 0       

 
𝜕2𝑣

𝜕𝑦2 + (
1−𝜇

2
) 

𝜕2𝑣

𝜕𝑥2 + (
1+𝜇

2
)

𝜕2𝑢

𝜕𝑥.𝜕𝑦
= 0      (2.22) 

These two homogeneous elliptic partial differential equations with the appropriate 

boundary conditions should be sufficient for the evaluation of the two functions u 

and v, and the knowledge of these functions over the region concerned will uniquely 

determine the stress components. 

Although the above two differential equations are sufficient to solve mixed boundary 

value elastic problems but in reality it is difficult to solve for two functions 

simultaneously. So, to overcome this difficulty, investigations are necessary to 

convert equations (Eq. 2.22) into a single equation of a single function. If that 

function is defined in terms of the displacement component u and v, then the 

determination of that function uniquely determines the stress functions sought for. 

A potential function approach involves investigation of the existence of a function 

defined in terms of the displacement components. In this approach attempt had been 

made to reduce the problem to the determination of a single variable. A function 

ψ(x,y) is thus defined in terms of displacement components as,  

𝑢 =
𝜕2𝜓

𝜕𝑥.𝜕𝑦
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𝑣 = − [(
1−𝜇

1+𝜇
)

𝜕2𝜓

𝜕𝑦2 + (
2

1+𝜇
)

𝜕2𝜓

𝜕𝑥2]       (2.23) 

with this definition of ψ(x,y), the first of the two equations (Eq. 2.22) is 

automatically satisfied. Therefore, ψ has only to satisfy the second equation. Thus, 

the condition that ψ has to satisfy is  

𝜕
4

𝜓

𝜕𝑥4 +  2
𝜕

4
𝜓

𝜕𝑥2.𝜕𝑦2 +
𝜕

4
𝜓

𝜕𝑦4 = 0        (2.24) 

Therefore, the problem is reduced to the evaluation of a single variable ψ(x,y) from 

the above bi-harmonic partial differential equation. 

2.10 Boundary Conditions for the Function ψ for Mixed Boundary Value 

Problems 

In order to solve the problem by solving for the function ψ of the bi-harmonic 

equation (Eq. 2.24), the boundary conditions should be expressed in terms of ψ. The 

boundary conditions are known restraints and loadings, that is, known values of 

components of stresses and displacements at the boundary. The relation between 

known functions and the potential function ψ at the boundary are [10] 

𝑢 =
𝜕2𝜓

𝜕𝑥.𝜕𝑦
  

𝑣 = − [(
1−𝜇

1+𝜇
)

𝜕2𝜓

𝜕𝑦2 + (
2

1+𝜇
)

𝜕2𝜓

𝜕𝑥2]       (2.25) 

𝜎𝑥 =
𝐸

(1+𝜇)2 [
𝜕3𝜓

𝜕𝑥2𝜕𝑦
− 𝜇

𝜕3𝜓

𝜕𝑦3]  

𝜎𝑦 = −
𝐸

(1+𝜇)2 [
𝜕3𝜓

𝜕𝑦3 + (2 + 𝜇)
𝜕3𝜓

𝜕𝑥2𝜕𝑦
]     (2.26) 

𝜎𝑥𝑦 =
𝐸

(1+𝜇)2 [𝜇
𝜕3𝜓

𝜕𝑥2𝜕𝑦
−

𝜕3𝜓

𝜕𝑥3]  
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From the above expressions it is found that, as far as boundary conditions are 

concerned, either known restraints or known stresses or combinations of stresses and 

displacements, all can be converted to finite difference expressions in terms of ψ at 

the boundary. 

Considering a pragmatic applicability, the rectangular components are converted into 

normal and tangential components, as these are actually known at the boundary using 

the following relationship (Eq. 2.15 and Eq. 2.16) [32]. 

𝑢𝑛 =  𝑢𝑥. 𝑙 + 𝑢𝑦 . 𝑚 

𝑢𝑡 =  𝑢𝑦 . 𝑙 − 𝑢𝑥. 𝑚        (2.16) 

𝜎𝑛 =  𝜎𝑥𝑥 . 𝑙2 + 𝜎𝑦𝑦 . 𝑚2 + 2𝜎𝑥𝑦 . 𝑙 𝑚 

𝜎𝑡 =  𝜎𝑥𝑦 . (𝑙2 − 𝑚2) + (𝜎𝑦𝑦 − 𝜎𝑥𝑥). 𝑙 𝑚     (2.15) 

2.11 Treatment at the interfaces of three layer (sandwich-structure) 

In the present study, casing materials are considered as perfectly bonded with the 

core material at the interface as it is considered molecular bonding between 

materials. The components of displacement (u and v) at the interfaces for the 

material layers are same. Hence, the displacement components u and v, defining the 

deformation are continuous over the three layers. It is interesting to note that in the 

case of constant body forces the compatibility equation (Eq. 2.19) determining stress 

distribution is independent of the elastic constants of the materials. In absence of 

body forces, the new displacement potential function approach yields a bi-harmonic 

partial differential equation (Eq. 2.24) from the equilibrium equations (Eq. 2.22). The 

obtained bi-harmonic equation is independent of the elastic constant such as 

poisson’s ratio and modulus of elasticity of the materials, making it a continuity 

equation over the materials unless there is no separation at the interfaces of the 

materials. Therefore, the governing equation (Eq. 2.24) is valid at the inner points of 

the interface line of the layers as well as in the layers until any separation occurs at 

the interface. At the boundary points of the interface lines, the boundary conditions 
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have the contribution to both the materials. Hence, special numerical technique is 

required to account the effects of boundary conditions on the three material layers 

simultaneously. This is discussed in chapter 3 of the dissertation. 

2.12 Selection of Boundary Conditions 

The possible known boundary components at a boundary point are any two out of 

four quantities, namely, un and ut, the normal and tangential displacement 

components, σn and σt, the normal and tangential stress components. The possible 

sets of boundary conditions can be- 

(i)  Normal displacement component (un) 

Tangential displacement component (ut) 

 

(ii) Normal displacement component (un) 

 Normal stress component (σn) 

 

(iii) Normal displacement component (un) 

 Tangential stress component (σt) 

 

(iv) Tangential displacement component (ut) 

Normal stress component (σn) 

 

(v) Tangential displacement component (ut) 

Tangential stress component (σt) 

 

(vi) Normal stress component (σn) 

Tangential stress component (σt) 

 

But among the above six sets of boundary conditions, sets (ii) and (v) do not usually 

occur in practical problems. So the remaining four possible sets of boundary 

conditions at any point on the boundary, which are considered in the present study 

are 
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1. (un, ut) 

2. (un, σt) 

3. (ut, σn) 

4. (σn, σt) 



CHAPTER 3  

NUMERICAL MODEL 

3.1 Introduction 

Numerical models are mathematical models that utilize the numerical tools to obtain 

approximate solutions (not the exact solutions) of mathematical problems. In order to 

save computational time and cost, researchers are extensively using numerical 

methods to find solutions for the problems which are inconvenient to solve using 

analytical methods. For the plates of isotropic materials, analytical solutions for 

deflection, strain, and stress are available since 1898 [34]. But solving the problems 

of sandwich-structured composite by analytical method is still at preliminary stage. 

Therefore, the problems of sandwich-structured composite could not be solved 

analytically and it became necessary to solve the problem by experimental and 

numerical techniques. This study is based on the numerical techniques of solving the 

governing differential equations of a sandwich-structured composite and the process 

is described thereby. 

The solution for the two-dimensional sandwich-structured composite comprises the 

solution of a fourth order partial differential equation with necessary boundary 

conditions, as stated in last chapters. Therefore, this chapter focuses on the solution 

of the problem by two well established numerical methods which are:  

(i) Finite Difference method and  

(ii) Finite Element method. 

3.2 Finite Difference Method 

The derivatives of a differential equation are replaced by the finite divided difference 

formulae (approximations of Taylor’s series) for derivatives in finite difference 

technique. So a differential equation is converted into a set of linear algebraic 

equation which can be solved by a suitable technique. Since all finite difference 

formulae are approximation of infinite series of differences, it is necessary that the 



26 
 

series should converge or the error caused by the truncation should be sufficiently 

small to give a reliable result. 

In this method, the region of the body under consideration is divided by lines parallel 

to the co-ordinate axes. And points hence formed at the intersection of the these lines 

are treated as a grid of finite number of discrete points which are called node points 

as shown in Figure 3.1. The finite difference form of governing partial differential 

equation is applied to all node points except the boundary node points and that of 

appropriate boundary conditions are applied to the boundary node points. This gives 

a complete set of simultaneous equations, i.e. number of equations in the set is equal 

to the number of grid points, which is solved by a suitable numerical technique. 

 

In the remaining portion of the chapter, the conversion procedure of the partial 

differential equation (2.24) and boundary conditions (2.25 and 2.26) in the form of 

difference equations is provided.   

3.2.1 Application Technique of Finite Difference Formulae in Rectangular Grid 

Usually in the region of study, where the dependent function (ψ(x, y)) has to be 
evaluated, the governing differential equation (Eq. 2.24) is applied at all node points 
except the boundary node points and boundary conditions (Eq. 2.25 and 2.26) are 
applied at boundary node points. For a rectangular shaped body usually two 
boundary conditions are known in each side of the rectangle. If a very simple 

node 
points 

physical 
boundary 

Figure 3.1: Discretization of rectangular body into a grid of points. 

x 

i,j 
i, j+1 
i-1, j 

i, j-1 

i+1, j 

k 

h 
y 
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problem of a sandwich-structured cantilever beam (Figure 3.2a) is considered then 
boundary conditions are shown in Figure 3.2c. So each side has two boundary 
conditions and if this body is transformed into a grid of discrete points then can be 
shown by Figure 3.2c.  

 

 
 
 

 

 
Figure 3.2: Boundary conditions for a cantilever beam 
 

To overcome this problem a boundary near the physical boundary is assumed to exist 

which is named as imaginary boundary. If only top boundary is considered then it 

can be shown by Figure 3.3b. Top boundary nodes have two boundary conditions to 

satisfy, i.e. σn=0, σt=0. Hence an imaginary boundary is assumed at the outside of top 

physical boundary, immediate top grid points of the top boundary node points, as 

(b) 
(a) 
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well as at all other boundaries of the rectangle. Both the boundary conditions σn=0 

and σt=0 are satisfied at the inner physical boundary but for assigning the equations 

for each node (physical or imaginary) one of them is assigned for the physical node 

and the other one is assigned at the imaginary node, or vice versa. So the system of 

linear equations will have same number of variables and equations. In this work this 

technique is followed. 

 

So the difference equations have to develop in such a way that they would cover the 

physical boundary points, inner points and imaginary points also. These finite 

difference forms are described in the following sections. 

3.2.2 Finite Difference Form of the Bi-harmonic Governing Equation 

The governing equation in terms of displacement potential function can be written as, 

from Eq. 2.24, [10] 

𝜕4
𝜓

𝜕𝑥4 +  2
𝜕4

𝜓

𝜕𝑥2.𝜕𝑦2 +
𝜕4

𝜓

𝜕𝑦4 = 0     

By using the difference formula of ∂4f/∂x4, ∂4f/∂x2∂y2 and ∂4f/∂y4, the above equation 

can be written as  

σt=0 equation assigned at 
all inner top (physical) 
boundary nodes 

σn=0 equation assigned at all 
outer top (imaginary) 
boundary nodes 

Figure 3.3: Boundary condition management with imaginary 
boundary 

Physical boundary (b) Imaginary boundary 

E1, μ1 

E1, μ1 

E2, μ2 

Interface 
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zk1{ψ(i − 2, j) + ψ(i + 2, j)} −  zk2{ψ(i − 1, j) + ψ(i + 1, j)} − zk3{ψ(i, j + 1) +

ψ(i, j − 1)} + zk4. ψ(i, j) + zk5{ψ(i − 1, j − 1) + ψ(i − 1, j + 1) + ψ(i + 1, j −

1) + ψ(i + 1, j + 1) + ψ(i, j − 2) + ψ(i, j + 2)} = 0    (3.1) 

where,  zk1 = r4 

zk2 = 4(r4 + r2) 

zk3 = 4(1 + r2) 

zk4 = (6r4 + 8r2 + 6) 

zk5 = 2r2 

The above equation (Eq. 3.1) is the finite difference approximation of the bi-

harmonic partial differential equation and valid for all inner node points of the region 

i.e. all points of the region except the boundary points. The stencil of this equation is 

shown in Figure 3.4. 

 

Figure 3.4: Stencil Arrangement of the governing equation 

3.2.3 Finite Difference Form of the Boundary Conditions 

For the application of boundary conditions the whole region is divided into five 

sectors, mentioned earlier in this chapter, which are i) top-left, ii) bottom-left, iii) 

bottom-right, iv) top-right, and v) boundary region associated with the interface. So a 

combination of forward, backward and central finite difference forms are required 

for different sections, such as for top-left boundary it requires both i-forward, j- 

forward difference equations.  

j 

i 

i,j 
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3.2.4.1 Top-Left 

The expressions of boundary conditions for top-left section (A-B-C section in Figure 

3.8) are stated below. Boundary conditions in terms of displacement potential 

function can be written from equation (Eq. 2.25). 

ux(i, j) = (
∂2ψ

∂x. ∂y
)

i,j

 

         = s1. [9ψ(i, j) − 12{ψ(i, j + 1) + ψ(i + 1, j)} + 16ψ(i + 1, j + 1) +

ψ(i + 2, j + 2) + 3{ψ(i, j + 2) + ψ(i + 2, j)} − 4{ψ(i + 1, j + 2) + ψ(i + 2, j + 1)}]                
          (3.2) 

uy(i, j) = − [(
1 − μ

1 + μ
)

∂2ψ

∂y2
+ (

2

1 + μ
)

∂2ψ

∂x2
] 

  = s2. [zk7{ψ(i − 1, j) + ψ(i + 1, j)} + zk6{ψ(i, j + 1) + ψ(i, j − 1)} −

ψ(i, j)] 

(3.3) 

σx

E
=

1

(1 + μ)2
[

∂3ψ

∂x2 ∂y
− μ

∂3ψ

∂y3
] 

 = s3[1.5ψ(i, j − 1) + (6zk9 − 5)ψ(i, j) + (6 − 8zk9)ψ(i, j + 1) +

(2zk9 − 3)ψ(i, j + 2) + 0.5ψ(i, j + 3) − 3zk9{ψ(i − 1, j) + ψ(i + 1, j)} +

4zk9{ψ(i − 1, j + 1) + ψ(i + 1, j + 1)} − zk9{ψ(i − 1, j + 2) +

ψ(i + 1, j + 2)}]        (3.4) 

σy

E
= −

1

(1 + μ)2
[
∂3ψ

∂y3
+ (2 + μ)

∂3ψ

∂x2 ∂y
] 

= s4[1.5ψ(i, j − 1) + (6zk10 − 5)ψ(i, j) + (6 − 8zk10)ψ(i, j + 1) +

(2zk10 − 3)ψ(i, j + 2) + 0.5ψ(i, j + 3) − 3zk10{ψ(i − 1, j) +

ψ(i + 1, j)} + 4zk10{ψ(i − 1, j + 1) + ψ(i + 1, j + 1)} − zk10{ψ(i − 1, j +

2) + ψ(i + 1, j + 2)}]       (3.5) 
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σxy

E
=

1

(1 + μ)2
[μ

∂3ψ

∂x2 ∂y
−

∂3ψ

∂x3
] 

= r. s3[−1.5{ψ(i, j − 1) + ψ(i, j + 1)} + (3 − 10zk9)ψ(i, j) + 3zk9ψ(i −

1, j) + 2{ψ(i + 1, j − 1) + ψ(i + 1, j + 1)} − 0.5{ψ(i + 2, j − 1) +

ψ(i + 2, j + 1)} + (12zk9 − 4)ψ(i + 1, j) + (1 − 6zk9)ψ(i + 2, j) +

zk9ψ(i + 3, j)]        (3.6) 

Where,  

s1 =
1

4rh2
 ;                      s2 = −

1

zk8
 ;                      s3 = −

1

p2
 ;                  s4 = −

1

μip2
 

p2 =
(1 + μi)

2r3h3

μi
;             zk6 =

(1 − μi)

2(1 − μi + 2r2)
 ;           zk7 =

r2

2(1 − μi + 2r2)
 ; 

 zk8 =
(1 + μi)r2h2

2(1 − μi + 2r2)
 ;      zk9 =

r2

2μi
 ;                                zk10 =

r2(1 + μi)

2
 

i=1 for the upper portion of the interface, i=2 for the lower portion of the interface  

The programming scheme is used in such a way that there is a single parameter in the 

formula but the constants are subsequently changed depending on the points located 

in upper or lower portion of the interface.  

For the application of the formulae of the boundary conditions, only the single set of 

formulae for top-left (A-B-C) can be applied at the other boundary sections such as 

bottom-left (D-E-F), top-right (A-J-I) and bottom-right (F-G-H) as shown in Figure 

3.5 incorporating the replacement of some constants mentioned in Table 3.1. 
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Figure 3.5: Different sections in a specified problem 

Table 3.1: Formula conversion at the different sections of the boundary of the 

sandwich structured composite 

Boundary region 
Type of difference 

formula required 
Replacement required 

Top-left  i-forward j-forward No change required 

Bottom-left  i-backward j-forward 
r by –r, s1 by –s1, i-* by i+* 

and i+* by i-* 

Bottom-right  i-backward j- backward 

s3 by –s3, s4 by –s4, i-* by 

i+*, i+* by i-*, j-* by j+*, and 

j+* by j-* 

Top-right  i- backward, j- forward 

r by –r, s3 by –s3, s4 by –s4, i-

* by i+*, i+* by i-*, j-* by j+*, 

and j+* by j-* 

Where, * stands for digits 1 or 2 or 3 etc. 

A 

C 

K 

H 

G 

I 

E F 

B 

Interface 
i 

j 

E1,     μ1 

E2,     μ2 

D 

L 

Interface 

E1,     μ1 

J 
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The stencils of the equations of the boundary conditions are illustrated in Figure 3.6 

and 3.7. 

 

Figure 3.6: Stencils of ux  and uy for different region of the boundary 

 

Figure 3.7: Stencils of σx , σy and σxy for different region of any two layer of the 

boundary 

3.2.4.2 Interface-Left  

At the interface, different combinations of formula structures are trialed, but the 

successful one is illustrated in the next section of the dissertation. The displacement 

component ux is independent of the material properties and continuous over the 

Interface 

Pivot point σx or σy 

σxy 

σxy σxy 

σxy 

σx or σy 

σx or σy 

Interface 

Interface 

Pivot point 

ux 

uy 

ux ux 

ux 

uy 

uy uy 

Interface 

σx or σy 
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sandwich structured composite. Thus, the formulation of ux remains same as the 

earlier section 3.2.4.1, 3.2.4.2, 3.2.4.3, and 3.2.4.4. 

ux(i, j) = (
∂2ψ

∂x. ∂y
)

i,j

 

= s1. [9ψ(i, j) − 12{ψ(i, j + 1) + ψ(i + 1, j)} + 16ψ(i + 1, j + 1) +

ψ(i + 2, j + 2) + 3{ψ(i, j + 2) + ψ(i + 2, j)} − 4{ψ(i + 1, j + 2) +

ψ(i + 2, j + 1)}]            (3.41) 

The displacement component uy is dependent on the material properties and 

continuous over the layers of sandwich-structured composite. At the interface, two 

materials are perfectly bonded together, hence the displacement component uy of the 

common node point is the average of the two displacement components uy1 and uy2 

considering through the each side of the material with average of poisons ratios. So, 

at the left side of the upper interface it could be written as  

uylu = − [(
1 − μ

1 + μ
)

∂2ψ

∂y2
+ (

2

1 + μ
)

∂2ψ

∂x2
] 

  = s2u. [e71{ψ(i − 1, j) + ψ(i + 1, j)} + e61{ψ(i, j + 1) + ψ(i, j − 1)} −

ψ(i, j)] 

(3.7) 

Where, 

s2u = −
1

e81
 ; 

 e61 =
(1 − (μ1 + μ2)/2)

2[1 − {(μ1 + μ2)/2} + 2r2]
 ;           e71 =

r2

2[1 − {(μ1 + μ2)/2} + 2r2]
 ; 

e81 =
(1 + (μ1 + μ2)/2)r2h2

2[1 − {(μ1 + μ2)/2} + 2r2]
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And, at the left side of the lower interface it could be written as 

uyll = − [(
1 − μ

1 + μ
)

∂2ψ

∂y2
+ (

2

1 + μ
)

∂2ψ

∂x2
] 

  = s2l. [e72{ψ(i − 1, j) + ψ(i + 1, j)} + e62{ψ(i, j + 1) + ψ(i, j − 1)} −

ψ(i, j)] 

(3.8) 

Where, 

s2l = −
1

e82
 ; 

 e62 =
(1 − (μ2 + μ3)/2)

2[1 − {(μ2 + μ3)/2} + 2r2]
 ;           e72 =

r2

2[1 − {(μ2 + μ3)/2} + 2r2]
 ; 

e82 =
(1 + (μ2 + μ3)/2)r2h2

2[1 − {(μ2 + μ3)/2} + 2r2]
 

The stencil of the displacement component is illustrated in the following Figure 3.8. 

 

Figure 3.8: Stencil of uy at the left points of two interface line 

 

 

 

j 

i 

interface 

 pivot point 
o associated node 

point 
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3.2.4.3 Interface-Right  

 

Figure 3.9: At the right interface point (a) Normal stress (b) Shear stress 

At the interface two points from upper and lower material are actually bonded 

together in each of the two layers of a sandwich-structured composite beam. The 

normal stress acting at the interface boundary point is shown in Figure 3.9 (a).  

The average of normal stresses based on the displacement potential function of upper 

material and that of lower material should be equal to the applied normal stress at 

that point. Thus for the upper right interface it could be written as- 

σyru

E
= −

1

(1 + μ)2
[
∂3ψ

∂y3
+ (2 + μ)

∂3ψ

∂x2 ∂y
] 

= s4u[1.5ψ(i, j − 1) + (6e10 − 5)ψ(i, j) + (6 − 8e10)ψ(i, j + 1) +

(2e10 − 3)ψ(i, j + 2) + 0.5ψ(i, j + 3) − 3e10{ψ(i − 1, j) + ψ(i + 1, j)} +

4e10{ψ(i − 1, j + 1) + ψ(i + 1, j + 1)} − e10{ψ(i − 1, j + 2) +

ψ(i + 1, j + 2)}]       (3.9) 

Where,  

𝜎𝑦̅̅ ̅ 

𝜎𝑦̅̅ ̅ 

𝜎𝑦̅̅ ̅ 

𝜎𝑦̅̅ ̅ 

𝜎𝑦̅̅ ̅ 
𝜎𝑦̅̅ ̅ 

Interface 

Upper 
Material  

Lower 
Material  

E1, μ1 

E2, μ2 
𝜎𝑥𝑦̅̅ ̅̅̅ 

𝜎𝑥𝑦̅̅ ̅̅̅ 
E1, μ1 

E2, μ2 

𝜎𝑥𝑦 

(a) (b) 

𝜎𝑥𝑦 

𝜎̅𝑦 =
𝜎𝑦1

𝐸1
=

𝜎𝑦2

𝐸2
 𝜎̅𝑥𝑦 =

𝜎𝑥𝑦1

𝐸1
=

𝜎𝑥𝑦2

𝐸2
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s4u = −
2

(μ1 + μ2)p2
;            e10 =

r2{1 + (μ1 + μ2)/2}

2
 

And for the lower right interface it could be written as- 

σyrl

E
= −

1

(1 + μ)2
[
∂3ψ

∂y3
+ (2 + μ)

∂3ψ

∂x2 ∂y
] 

= s4l[1.5ψ(i, j − 1) + (6e11 − 5)ψ(i, j) + (6 − 8e11)ψ(i, j + 1) +

(2e11 − 3)ψ(i, j + 2) + 0.5ψ(i, j + 3) − 3e11{ψ(i − 1, j) + ψ(i + 1, j)} +

4e11{ψ(i − 1, j + 1) + ψ(i + 1, j + 1)} − e11{ψ(i − 1, j + 2) +

ψ(i + 1, j + 2)}]       (3.10) 

Where,  

s4l = −
2

(μ1 + μ2)p2
;            e11 =

r2{1 + (μ2 + μ3)/2}

2
 

The stencil of the normal stress at the interface is shown in Figure 3.13(a). 

 

 

 

 

 

 

Figure 3.10: Stencil of the (a) normal stress (b) tangential stress at the right point of 

the interface line 

The tangential stress acting at the interface boundary point is shown in Figure 3.10 

(b). According to the sign convention, shear stress causes anticlockwise moment to 

the body is considered as positive. The positive shear stresses are shown in Figure 

3.10 (b) at the interfaces of the layers of sandwich-structured composite. The average 

                  

     

 

 

o associated node point 
 pivot point 
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of shear stresses based on the displacement potential function of upper material and 

that of lower material should be equal to the applied shear stress at that point. Thus 

for right side of upper interface it could be written as- 

σxyru

E
=

1

(1 + μ)2
[μ

∂3ψ

∂x2 ∂y
−

∂3ψ

∂x3
] 

= r. s3u[−1.5{ψ(i, j − 1) + ψ(i, j + 1)} + (3 − 10e8)ψ(i, j) +

3e8ψ(i − 1, j) + 2{ψ(i + 1, j − 1) + ψ(i + 1, j + 1)} − 0.5{ψ(i + 2, j − 1) +

ψ(i + 2, j + 1)} + (12e8 − 4)ψ(i + 1, j) + (1 − 6e8)ψ(i + 2, j) +

e8ψ(i + 3, j)]        (3.11) 

Where,  

s3u = −
1

p2
 ;           e8 =

r2

μ1 + μ2
  

And for right side of lower interface it could be written as- 

σxyrl

E
=

1

(1 + μ)2
[μ

∂3ψ

∂x2 ∂y
−

∂3ψ

∂x3
] 

= r. s3l[−1.5{ψ(i, j − 1) + ψ(i, j + 1)} + (3 − 10e9)ψ(i, j) + 3e9ψ(i −

1, j) + 2{ψ(i + 1, j − 1) + ψ(i + 1, j + 1)} − 0.5{ψ(i + 2, j − 1) +

ψ(i + 2, j + 1)} + (12e9 − 4)ψ(i + 1, j) + (1 − 6e9)ψ(i + 2, j) +

e9ψ(i + 3, j)]        (3.12) 

Where,  

s3l = −
1

p2
 ;           e9 =

r2

μ2 + μ3
  

3.2.5 Evaluation of ψ 

If the whole region is placed in a rectangular grid then the region gives a finite 

number of node points which include reference boundary points, imaginary boundary 

points and inner body points (node points other than the reference and imaginary 
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boundary points). Finite difference expressions of the boundary conditions should be 

applied in all reference boundary and imaginary boundary node points. And Finite 

difference expressions of the governing equation should be applied in all inner body 

points. So every point gives rise to a linear algebraic equation and the whole region 

gives a set of linear algebraic equations equal to the number of total node points in 

the region. The set of linear equations can be shown as, 

11 12 13 1n 1 1

21 22 23 2n 2 2

31 32 33 3n 3 3

n1 n2 n3 nn n n

a a a . . . a ψ c
a a a . . . a ψ c
a a a . . . a ψ c
. . . . . . . . .
. . . . . . . . .

a a a . . . a ψ c

     
     
     
        

     
     
     
     
         

                                                        (3.13) 

    

or
A ψ C

 

where, a11, a12 ……ann are coefficients, n  is the number of total node points, [A] is 

called coefficient matrix and [C] is constant matrix. 

In this equation only unknowns are the ψ’s. Many numerical techniques are available 

to solve this type of equation such as L-U decomposition, cholesky composition, 

gauss-siedel method, matrix portioning, matrix inversion, relaxation method etc. 

Here L-U decomposition method is used and hence value of ψ at each node point 

will be found. 

3.2.6 Determination of Stress and Displacement Component at Each Grid Point 

Once value of ψ at every node points are evaluated the stress and displacement 

components at each point can be found from the equations (Eq. 2.25and 2.26).  

In order to calculate stress and displacement the finite difference expressions of these 

equations are required and as before the expressions depend on the section of the 

region where these should be applied. For bottom-left section the finite difference 

equations are given by equations 3.2 to 3.6.  
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These equations can also be used for the other sections of the region except at the 

interface by changing signs of the constants i, j, s1, s2, s3, and s4 as shown in Table 

3.2. The formula structures to calculate the stresses and displacements in the 

different sections (Figure 3.11) of the sandwich-structured composite are shown in 

Figure 3.12, and 3.14. 

 

Figure 3.11: Different sections of a two dimensional rectangular body 
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Table 3.2: Formula conversion at the different sections of the body 

Boundary section of 

the region 

Type of difference 

formula required 
Replacement required 

Top-left (ABCK) i-forward j-forward No change required 

Bottom-left (DEFL) i-backward j-forward 
r by –r, s1 by –s1, i-* by i+* 

and i+* by i-* 

Bottom-right (LFGH) i-backward j- backward 

s3 by –s3, s4 by –s4, i-* by 

i+*, i+* by i-*, j-* by j+*, and 

j+* by j-* 

Top-right (IJAK) i- backward, j- forward 

r by –r, s3 by –s3, s4 by –s4, i-

* by i+*, i+* by i-*, j-* by j+*, 

and j+* by j-* 

Where, * stands for digits 1 or 2 or 3 etc. 

At the interface, special formulations are required for the calculation of stress and 

displacement. The formulation is derived in such a way that no nodal point of the 

formulation of one material lies to the region of another material. The formula 

structures to calculate the stresses and displacements at the interface line of the 

composite are shown in Figure 3.13, and 3.15. Although there are two points at the 

interface, the displacement components ux and uy are same for the two points, as the 

two points at the interface are perfectly bonded together. But the stress components 

vary at the two points as the mechanical properties are different for upper and lower 

portion of the interface. 

For left side of the interface line for upper portion of the sandwich-structured 

composite- 

ux(i, j) = (
∂2ψ

∂x. ∂y
)

i,j
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= s1. [−9ψ(i, j) + 12{ψ(i, j − 1) + ψ(i − 1, j)} − 16ψ(i − 1, j − 1) +

ψ(i − 2, j − 2) − 3{ψ(i, j − 2) + ψ(i − 2, j)} + 4{ψ(i − 1, j − 2) +

ψ(i − 2, j − 1)}]        (3.14)            

uy =
1

2
{uy1)

i,j
+ uy2)

i,j
} 

uy =
1

2
{(−2c21 + 2c31 − 2c22 + 2c32)ψ(i, j) + (c21 + c22)ψ(i, j + 1) +

(c21 + c22)ψ(i − 1, j) − 5c31. ψ(i − 1, j) + 4c31. ψ(i − 2, j) − c31. ψ(i − 3, j) −

5c32. ψ(i + 1, j) + 4c32. ψ(i + 2, j) − c32. ψ(i + 3, j)}   (3.15)            

σx1

E1
=

1

(1 + μ1)2
[

∂3ψ

∂x2 ∂y
− μ1

∂3ψ

∂y3
] 

σx1

E1
= 3c51. ψ(i, j − 1) + (−6c41 − 10c51). ψ(i, j) + (8c41 + 12c51). ψ(i, j + 1) +

(−2c51 − 6c51). ψ(i, j + 2) + c51. ψ(i, j + 3) + 15c41. ψ(i − 1, j) − 12c41. ψ(i −

2, j) + 3c41. ψ(i − 3, j) − 20c41. ψ(i − 1, j + 1) + 16c41. ψ(i − 2, j + 1) −

4c41. ψ(i − 3, j + 1) + 5c41. ψ(i − 1, j + 2) − 4c41. ψ(i − 2, j + 2) +

c41. ψ(i − 3, j + 2)         (3.16)            

Where,  

c41 =
1

2rh3(1 + μ1)2
 ;           c51 =

μ1

2r3h3. (1 + μ1)2
 

σy1

E1
= −

1

(1 + μ1)2
[
∂3ψ

∂y3
+ (2 + μ1)

∂3ψ

∂x2 ∂y
] 

σy1

E1
= 3c71. ψ(i, j − 1) + (6c61 − 10c71). ψ(i, j) + (−8c61 + 12c71). ψ(i, j +

1) + (2c61 − 6c71). ψ(i, j + 2) + c71. ψ(i, j + 3) − 15c61. ψ(i − 1, j) +

12c61. ψ(i − 2, j) − 3c61. ψ(i − 3, j) + 20c61. ψ(i − 1, j + 1) − 16c61. ψ(i −

2, j + 1) + 4c61. ψ(i − 3, j + 1) − 5c61. ψ(i − 1, j + 2) + 4c61. ψ(i − 2, j + 2) −

c61. ψ(i − 3, j + 2)         (3.17)            

σxy1

E1
=

1

(1 + μ1)2
[μ1

∂3ψ

∂x2 ∂y
−

∂3ψ

∂x3
] 
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σxy1

E1
= 3c81. ψ(i, j − 1) + d31. ψ(i, j) + 3c81. ψ(i, j + 1) − 4c81ψ(i − 1, j − 1) +

c81. ψ(i − 2, j − 1) + d41. ψ(i − 1, j) + d51. ψ(i − 2, j) + c91. ψ(i − 3, j) −

4c81. ψ(i − 1, j + 1) + c81. ψ(i − 2, j + 1)     (3.18)            

These equations can also be used for the other parts of the interface line by following 

the replacements of the constants as shown in Table 3.3.  

3.2.7 Computer Program for the Finite Difference Solution 

A computer program based on the FORTRAN language is developed for the finite 

difference solution of sandwich structured composite. The program has several 

subroutines to perform different tasks. In the flow chart as shown in Figure 3.16, the 

whole program is briefly expressed. It is actually a parsimonious representation of 

the whole program. First the program reads data from two input files. Input file 1 

contains data about the region’s shape specified in Cartesian coordinate, material 

properties, boundary conditions and the loading conditions. And input file 2 contains 

data about the interface position in the region, its shape expressed in Cartesian 

coordinate, interface boundary condition loading condition. It is mentionable that the 

input files have to prepare in a prescribed way, otherwise the program won’t read and 

will show error message. Some typical input files and guideline to generate input 

files are shown in the Annexure A.  
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Table 3.3: Formula conversion at the different sections of the interface line of the 

sandwich-structured composite 

Section at the 

interface 

Type of difference 

formula required 
Replacement required 

Upper-left i- backward j-forward No change required 

Lower-left i- forward j-forward 

E1 by E2, μ1 by μ2,  i-* by i+*, i+* by 

i-*, c81 by -c82, d31 by –d31, d41 by 

–d42, d51 by –d52, c91 by –c92 

Upper-right i-backward j- backward 

j-* by j+*, j+* by j-*, c41 by –c41, 

c51 by –c51, c61 by –c61, c71 by –

c71 

Lower-right i- backward, j- forward 

E1 by E2, μ1 by μ2, j-* by j+*, j+* by 

j-*, c41 by –c41, c51 by –c51, c61 by 

–c61, c71 by –c71 

Where, * stands for digits 1 or 2 or 3 etc. 
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Figure 3.12: Different formula structures for stress calculation at different sections of 

the composite 

 

Figure 3.13: Different formula structures for stress calculation at the interfaces 
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Figure 3.14: Different formula structures for displacement calculation at different 

sections of the composite 

 

Figure 3.15: Different formula structures for displacement calculation at the interface 
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 So the first subroutine reads these data from these input files and passes to the next 

subroutine which forms the grid. That means this subroutine divides the whole region 

into the rectangular grid as specified in the input file and hence makes the reference 

boundary, imaginary boundary and inner body node points as mentioned earlier in 

this chapter. It also does the node numbering and the printing of these numbering. 

Then the next subroutine generates the set of linear equations, i.e. the coefficient 

matrix and constant matrix by using the finite difference form of the boundary 

conditions (Eq. 3.41, 3.42, 3.43 and 3.44), as specified in the input files, and the 

governing equation (Eq. 3.40). For the solution of the set of equation it is necessary 

that the diagonal coefficients must be non zero. So if it happens that any one of the 

diagonal coefficient becomes zero then program will give error message and will 

stop automatically. To fix the problem the input files should be checked and then has 

to find the possible sources of error, such as error in specifying the boundary 

conditions or the coordinate of the region. So if everything is all right then the next 

subroutine decomposes the matrix and finds the solution of the only variable ψ(x, y) 

in every node point. And after that the next subroutine calculates the stress and 

displacement components at every node point by using the finite difference equations 

Start 

Input file 1 

Input file 2 

Grid formation 
(reference, imaginary 
and inner node)  

Coefficient and 
constant matrix 
formation 

Evaluation of ψ (LU 
decomposition) 

Calculation of stress 
and displacement 
components 

1 

1 

2 

2 

Diagonal 
coefficient 
equals zero  

yes 

no 

Print and Plot 
the results 

Figure 3.16: Flowchart of the computer program for finite difference solution 
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stated before (Eq. 3.68, 3.77, 3.78. 3.79 and 3.80). Then three to four subroutines 

come to action for the printing and plotting of the result in a user defined way. 

 

3.3 Finite Element Method 

Finite element method is a very popular numerical method and used by many 

researchers over the world for solving a wide range of problems. In the previous 

method, finite difference method, the whole region is divided into a grid of discrete 

points or nodes and in each node finite difference form of the differential equation is 

applied which offers a point wise approximation. In contrast to the finite difference 

method, the finite element method divides the solution region into simply shaped 

regions or elements. An approximate solution for the differential equation is 

developed for each of these elements and the total solution is then generated by 

linking together the individual solutions to ensure the continuity at the inter-element 

boundary. So this technique provides piece wise approximation of the region rather 

than the point wise approximation found in the finite difference method. Based on 

finite element method several commercial software is available such as ANSYS, 

NASTRAN & PATRAN, FEMLAB, LS DIANA etc. which are very reliable and 

equally popular. In this study ANSYS is used to solve the problems and hence gives 

a way to compare and validate the finite difference results. Since finite difference 

solution is the main target of this work, finite element method here performs as a 

supporting tool. Therefore details of the solution procedures by commercial software 

ANSYS (finite element method) are not mentioned here. 

However, brief description of the FEM modeling are depicted hereunder- 

Details of FEM Modeling: 
Preference: Structural 
Element Type: Plane182- Solid- Quad 4 node 182 
PLANE182 is used for 2-D modeling of solid structures. The element can be used as 
either a plane element (plane stress, plane strain or generalized plane strain) or an 
axisymmetric element. It is defined by four nodes having two degrees of freedom at 
each node: translations in the nodal x and y directions. 
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Material Model : 
Material Model No 1: Linear Isotropic EXY=1.0, PRXY=0.29 
Material Model No 2: Linear Isotropic EXY=0.9, PRXY=0.31 
Modeling: Created by Key Points in Active Co-ordinate System  
Geometry: a=1.00 unit and b=2.54054 unit 
Key Points:  
1(0,0); 2(2.54,0); 3(0, -0.16); 4(2.54,-0.16);  
5(0,-0.68); 6(2.54,-0.68); 7(0,-1); 8(2.54,-1) 
Element No: (47x37)=1739 
Boundary Conditions: Left side Displacement is zero in all degree of freedom 
 Load assigned in specific nodes. 

 
Figure 3.17: Geometry of FEM Model 
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Figure 3.18: Contour Image of deformed FEM model in case of bending 
 



CHAPTER 4 

RESULT AND DISCUSSION 

4.1 Introduction 

In this chapter, initially the numerical solution of sandwich structured composite 

through finite difference scheme are validated by comparison with finite element 

solution. For specific problem of sandwich-structured composite having same 

combination of material properties, same boundary conditions and same loading 

condition; the problem solved by both finite difference method and finite element 

method and results are compared. This comparison of results established the 

reliability and accuracy of the proposed technique. After validation, an isotropic 

material in each layer of sandwich-structured composite is considered under bending 

(cantilever). After that, mechanical properties of the case and core materials are 

varied and the obtained results are analyzed. For similar mechanical properties, 

loading condition also varied and the obtained results are also analyzed. The 

distribution of stress and displacement for various combinations of material 

properties having various boundary condition and various loading conditions are 

obtained.  For simplification, all results of stress are normalized by n =3 x 10-4 

4.2 Validation of the solutions of Finite Difference Method (FDM) by the 

solutions obtained by Finite Element Method (FEM) 

4.2.1. Validation under uniform axial displacement 

A sandwich-structured composite material with uniform axial displacement as shown 

in Figure 4.1 has been solved for displacement and stress. The problem is considered 

as plane stress problem. The left side of the sandwich-structured composite material 

is fixed and the right side is under uniform displacement. The other sides of the 

material are free surface. So, at the left side un=0, ut=0, at the right side un= 3.0x10-4, 

σ̅t = 0.0;  and at the top and bottom surfaces σ̅n = 0.0, σ̅t = 0.0. E1, E2 are the 

modulus of elasticity, μ1, μ2 are the Poissons’ ratios of the case and core material 

respectively. The geometry of the problem is a rectangle having a=9.25 unit where 

thickness of casing materials are considered as a1=0.16a and b=23.5 unit. This 
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problem is solved for stress and displacement distribution by using finite difference 

method and finite element method taking μ1=0.29, μ2=0.31. The results obtained are 

compared to each other.  

Number of mesh is selected for both the FDM and FEM analysis are = 47 x 37, mesh 

dimension h=0.5 and k=0.25.  

For the problem Modulus of elasticity of casing materials of the sandwich-structured 

composite are considered as E1=1.0 Er and modulus of elasticity of core material is 

considered as E2=0.9Er where Er is the ratio of Modulus of elasticity of core and casing 

materials i.e. E2/E1. 

 

Figure 4.1: Sandwich-structured composite with uniform axial displacement 

In both FDM and FEM analysis, u and v are continuous over the layers of a 

sandwich-structured composite except a slight variation in “v” for right sided region 

at the interfaces. In case of stress, there are two different values for each stress 

component, i.e. for upper and lower materials of interfaces of each layer. And there 

is a discontinuity at the two interfaces of the sandwich-structured composite.  
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Figure 4.2 shows the comparison of displacement (u/a) distribution at various 

sections of sandwich-structured composite obtained by both FDM and FEM analysis. 

At y/b=0.00, two results are zero as the fixed boundary assigned at left side. At the 

right sided sections from the left, value of the displacement component is increased 

and the graph is almost similar for FDM and FEM curves.  For every section, the 

curves are symmetrical because material properties of upper and lower material are 

same as the model is sandwich-structured composite. For the right most section, the 

slop of the curve is greater.  

The distributions of displacement component (v/b) as shown in Figure 4.3 have also 

similar results for FDM and FEM analysis. There is comparatively more significant 

variation found at the interfaces by FDM method especially for the sections near 

right boundary i.e. at y/b=0.75 and y/b=1.00.because of the interface treatments of 

FDM modeling.  

Figure 4.4 shows distribution of normal stress component x/n for different sections 

of the model by both FDM and FEM method. From the Figure it is depicted that, at 

the left boundary normal stress x/n is maximum and the results by two methods 

vary slightly.  

The distribution of normal stress y/n at various sections of the sandwich-structured 

composite is illustrated in Figure 4.5. There is a significant jump found in the Figure 

at the interfaces of the layers of sandwich-structured composite. Both FDM and FEM 

method depicts similar results with small differences especially at the fixed boundary 

regions.  

In all Figures, the distributions of the stresses and displacement components are 

perfectly symmetrical about the center of the sandwich-structured composite model 

as they should be. The same computer program is used for all the FDM analyses used 

for different combinations of mechanical properties of the sandwich-structured 

composite model. This validates that the computer program used for the analysis of 

sandwich-structured composite is correct. 
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Figure 4.2: Comparison of normalized displacement (u/a) distribution at various 

sections of the Sandwich-Structured Composite 
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Figure 4.3: Comparison of normalized displacement (v/b) distribution at various 

sections of the material 
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Figure 4.4: Comparison of normalized normal stress (σx / σn) distribution at different 

sections of the Sandwich-Structured Composite.  
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Figure 4.5: Comparison of normalized normal stress (σy / σn ) distribution at different 

sections of the Sandwich-Structured Composite. 
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4.2.2. Validation under bending 

Here, similar material combination with same dimension is considered under 

bending. A bending stress σ=3.0x10-4 is assigned at five nodes of the right side of top 

surface. As the sandwich-structured composite object is placed at a fixed end at left 

and at right it has specific bending load, it may be considered as cantilever beam. 

 

Figure 4.6: Sandwich-structured composite under bending. 

The sandwich-structured cantilever model is depicted in Figure 4.6. Figure 4.7 shows 

the comparison of displacement (u/a) distribution at various sections of sandwich-

structured composite obtained by both FDM and FEM analysis. Results obtained by 

two methods are almost same except the first and last point of each graph because, 

boundary conditions assigned at the top and bottom left edge are different 

(displacement parameter is zero in case of FEM modeling but at those specific two 

points displacement parameter is non-zero in case of FDM modeling). 

The comparison of displacement distribution (v/a) at various sections of sandwich 

structure composite is illustrated in Figure 4.8. The graphs are also similar with a 

variation at initial and end points and the reason is stated in earlier para. 
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Figure 4.9 shows distribution of normal stress component x /n for different 

sections of the model by both FDM and FEM method. From the Figure it is depicted 

that, at the left boundary normal stress x/n is maximum and the results by two 

methods vary slightly. At right boundary the normal stress is almost zero and graph 

for both method are same.  

The distribution of normal stress y/n at various sections of the sandwich-structured 

composite is illustrated in Figure 4.10 There is a significant jump found in the Figure 

at the interfaces of the layers of sandwich-structured composite. Both FDM and FEM 

method depicts similar results with small differences especially at the fixed boundary 

regions.  

Comparison of normalized shear stress distribution xy/n is also illustrated in Figure 

4.11 and the results found are almost same. 

In all Figures, the distributions of the stresses and displacement components are 

symmetrical about the center of the sandwich-structured composite model as they 

should be. The same computer program is used for all the FDM analyses used for 

different combinations of mechanical properties of the sandwich-structured 

composite model. This validates that the computer program used for the analysis of 

sandwich-structured composite is correct. 

From the above discussion, it could be accomplished that the FEM and FDM results 

for the specified problems in Figure 4.1 and 4.6 are mostly consistent to each other; 

hence the FDM results are verified. For all the problems of sandwich-structured 

composite, the same computer program is used for the analyses of displacement 

component distribution, normal stress distribution, shear stress distribution and other 

results of interest at the interfacial zones of the layers. 
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Figure 4.7: Comparison of normalized displacement (u/a) distribution at various 

sections of the Sandwich-Structured Composite 
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Figure 4.8: Comparison of normalized displacement (v/b) distribution at various 

sections of the material 
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Figure 4.9: Comparison of normalized normal stress (σX / σn) distribution at different 

sections of the Sandwich-Structured Composite.  
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Figure 4.10: Comparison of normalized normal stress (σY / σn ) distribution at 

different sections of the Sandwich-Structured Composite. 
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Figure 4.11: Comparison of normalized shear stress (σxy / σn ) distribution at different 

sections of the Sandwich-Structured Composite. 

4.3 FDM solution for isotropic material having poisson’s ratio μ=0.29 under 

bending (cantilever).  

For steel, Poissons ratio varies from 0.27 to 0.30 and for many other materials, 

poosson’s ratios are almost similar. To analyze the properties of sandwich-structured 

composite having isotropic layers, firstly an isotropic model with poisons ratio 

equals to 0.29 throughout the model under bending is considered.  

Here the problem is solved taking a=37 and b=47. Modulus of elasticity is also 

considered same as the material kept under consideration is isotropic in nature. 

Isotropic solution is considered to compare the solution with sandwich-structured 

composite. 

The two dimensional isotropic model of rectangular geometry is subjected to bending 

stress at the right side and is fixed at the left side as shown in Figure 4.12. The other 

two sides are free. Using the proper boundary conditions and formulations as 

mentioned in chapter 3, the following results are obtained.  
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The distribution of displacement component ‘u’ is shown in Figure 4.13. The Figure 

depicts that, value of displacement component ‘u’ is equal to zero at left boundary 

i.e. y/b=0.00 which conforms the applied fixed boundary condition at left. Graphs for 

every value of y/b are almost linear but the magnitude of displacement component 

increases with increasing the value of  y/b. The value of displacement component ‘u’ 

is maximum at right boundary i.e. y/b=1.00 which also conforms the applied 

boundary load i.e. cantilever.  

Figure 4.14 depicts the normalized displacement component (v/a) distribution of the 

isotropic model. As shown in Figure 4.14, the variation of displacement component 

(v) is almost linear with x/a. At section, y/b=0, the displacement is nil as it is 

assigned as the boundary condition. With increasing the value of y/b till 1.00, the 

magnitude of displacement component is increasing. Though the value of magnitude 

of displacement varies largely near the left boundary than right boundary, i.e. it can 

easily segregate the graph for y/b=0.25 and y/b=0.50 but it hardly differs in the graph 

for y/b=0.75 and y/b=1.00. The value of displacement jumps a bit at the interfaces, 

i.e. for same value of x/a, there is two different value of ‘v’ at the interfaces. The 

maximum magnitude of displacement component for each layer occurs at the free 

surface i.e at x/a=0.00 for upper material and x/a=1.00 for lower material. 

The variation of normalized normal stress (σx/ σn) at different sections of a sandwich-

structured composite is depicted in Figure 4.15. At the left boundary i.e. y/b=0.00, 

distribution of normalized normal stress is linear at the center region of the model. At 

the upper and lower regions of the model, the distributions are non-linear but having 

large magnitude of stress. Maximum magnitude found near the Top-Left and 

Bottom-Right boundary. Main differences in the curve of left and right boundary are 

the magnitude of stresses is positive in upper regions for the left boundary whereas 

the magnitude is negative in upper regions for the right boundary. At the same time, 

magnitude of stresses is negative at the lower regions of left boundary whereas the 

magnitude is positive at the lower regions of right boundary. The graph for values of 

y/b=0.25, y/b=0.50 and y/b=0.75 could hardly be segregated. The value of stress ‘σx’ 

is almost zero for the maximum portion of these graphs.  
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Figure 4.16 depicts the normal stress (σy/σn) distribution at various sections of the 

isotropic model. The magnitude of stresses is maximum at the upper and lower edges 

of the body. At the right boundary, the magnitude is also zero which conforms the 

applied boundary conditions i.e. right side is free. As the graph reaches the left 

boundary, i.e. y/b reduces from 1.00 to 0.00, the magnitude of stress is increasing. At 

the left boundary, the magnitudes of stress ‘σy/σn’ are maximum. The magnitudes of 

stress are larger in upper and lower regions than the middle regions of the model. 

Overall, there is a downward slope for every curve from top to bottom portion of the 

model.  

Normalized shear stress (σxy/σn) distribution at various sections of the material is 

shown in Figure 4.17. The magnitudes of shear stress are very small at the middle 

region with a change in the outer regions i.e. upper and lower regions. The graph for 

left and right boundaries i.e. y/b=0.00 and 1.00 are almost linear for the middle 

regions with a slight concave shape while the graph for y/b=0.25, y/b=0.50 and 

y/b=0.75 are convex shaped for core material. At the upper and lower regions, the 

magnitude varies drastically with abrupt change in the left boundary.  

 

Figure 4.12: Physical elastic problem under bending (cantilever). 
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Figure 4.13: Normalized displacement component (u/a) distribution at different 

sections of an isotropic material. 

x / a

0.0 0.2 0.4 0.6 0.8 1.0 1.2

v
 /
 b

-0.0006

-0.0004

-0.0002

0.0000

0.0002

0.0004

0.0006

y/b = 0.00

y/b = 0.25

y/b = 0.50

y/b = 0.75

y/b = 1.00

 

Figure 4.14: Normalized displacement component (v/b) distribution at different 
sections of an isotropic material.  
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Figure 4.15: Normalized normal stress (σX/ σn) distribution at different sections of an 
isotropic material. 
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Figure 4.16: Normalized normal stress (σY / σn) distribution at different sections of an 
isotropic material. 
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Figure 4.17: Normalized shear stress (σxy / σn) distribution at different sections of a 
an isotropic material. 
 

4.4 FDM solution for sandwich-structured composite under bending 

For pragmatic purpose, detail analyses of displacement and stresses are shown in the 

next section of the dissertation taking μ1=0.29 and μ2=0.31. The problem is solved 

taking a=37 unit b=47 unit as the dimension of the body. For simplification of 

analysis, the values of E are normalized and for the particular problem, ratio of the 

modulus of elasticity E2/E1 is taken as 0.90.  

The two dimensional sandwich-structured composite of rectangular geometry is 

subjected to cantilever stress at the right side and is fixed at the left side as shown in 

Figure 4.6 where other two sides are free. Using the proper boundary conditions and 

formulations as mentioned in chapter 3, the following results are obtained.  

The distribution of displacement component ‘u’ is shown in Figure 4.18. The Figure 

depicts that, value of displacement component ‘u’ is equal to zero at left boundary 

i.e. y/b=0.00 which conforms the applied fixed boundary condition at left. Graphs for 
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every value of y/b are almost linear but the magnitude of displacement component 

increases with increasing the value of y/b. The value of displacement component ‘u’ 

is maximum at right boundary i.e. y/b=1.00 which also conforms the applied 

boundary load i.e. cantilever load at boundary.  

Figure 4.19 depicts the normalized displacement component (v/b) distribution of the 

sandwich-structured composite. As shown in Figure 4.20, the variation of 

displacement component (v) is almost linear with x/a. At section, y/b=0, the 

displacement is nil as it is assigned as the boundary condition. With increasing the 

value of y/b till 1.00, the magnitude of displacement component is increasing. 

Though the value of magnitude of displacement varies largely near the left boundary 

than right boundary, i.e. it can easily segregate the graph for y/b=0.25 and y/b=0.50 

but it hardly differs in the graph for y/b=0.75 and y/b=1.00. The value of 

displacement jumps a bit at the interfaces, i.e. for same value of x/a, there is two 

different value of ‘u’ at the interfaces. The maximum magnitude of displacement 

component for each layer occurs at the free surface i.e at x/a=0.00 for upper material 

and x/a=1.00 for lower material. 

The variation of normalized normal stress (σx/ σn) at different sections of a sandwich-

structured composite is depicted in Figure 4.21. At the left boundary i.e. y/b=0.00, 

distribution of normalized normal stress is linear at the core material. At the upper 

and lower casing material of sandwich-structured composite, the distribution are non-

linear but having large magnitude of stress. Maximum magnitude found near the 

Top- Left and Bottom-Right boundary. There is also a significant variation of the 

values of stresses at the interfaces of layers of the sandwich-structured composite. At 

the right boundary, i.e. y/b=1.00, magnitude of stress is maximum at the interfaces. 

Main differences in the curve of left and right boundary are the magnitude of stresses 

is positive in upper layer for the left boundary whereas the magnitude is negative in 

upper layer for the right boundary. At the same time, magnitude of stresses is 

negative at the lower layer of left boundary whereas the magnitude is positive at the 

lower layer of right boundary. The graph for values of y/b=0.25, y/b=0.50 and 

y/b=0.75 could hardly be segregated. The value of stress ‘σx/ σn’ is almost zero for 
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the maximum portion of these graphs. Though there are always two different values 

of stress at every graph for the interfaces of layers. 

Figure 4.22 depicts the normal stress (σy/σn) distribution at various sections of the 

sandwich-structured composite. The magnitude of stresses is maximum at the upper 

and lower edges of the body. At the right boundary, the magnitude is also zero which 

conforms the applied boundary conditions i.e. right side is free. Towards left 

boundary i.e. y/b reduces from 1.00 to 0.00, the magnitude of stress is increasing. At 

the left boundary, the magnitudes of stress ‘σy/σn‘ are maximum. There is a clear 

variation in the magnitude of stresses at the interfaces of layers of sandwich-

structured composite. The magnitudes of stress are larger in casing material than the 

core materials of sandwich-structured composite. Overall, there is a downward slope 

for every curve from top to bottom portion of the sandwich structured composite. 

The curve is linear for the core material portion of the sandwich-structured 

composite. Thus, more stress developed at top and bottom portion of left boundary 

and are at the interfaces of layers of sandwich-structured composite.  

Normalized shear stress (σxy/ σn ) distribution at various sections of the material is 

shown in Figure 4.22. The magnitudes of shear stress are very small at the core 

material with a change in the casing materials. The graph for left and right 

boundaries i.e. y/b=0.00 and 1.00 are almost linear for the core material with a slight 

concave shape while the graph for y/b=0.25, y/b=0.50 and y/b=0.75 are convex 

shaped for core material. At the upper and lower materials, the magnitude varies 

drastically with abrupt change in the left boundary. At the interfaces the values of 

shear stress also contains two different magnitudes for two different layers.   

. 
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Figure 4.18: Normalized displacement component (u/a) distribution at different 

sections of a sandwich-structured composite 
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Figure 4.19: Normalized displacement component (v/b) distribution at different 
sections of a sandwich-structured composite.  
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Figure 4.20: Normalized normal stress (σx/ σn) distribution at different sections of a 
sandwich-structured composite 
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Figure 4.21: Normalized normal stress (σy / σn) distribution at different sections of a 
sandwich-structured composite.  

Interface 
Interface 



70 
 

x / a

0.0 0.2 0.4 0.6 0.8 1.0 1.2

X
Y
 /
 

n

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

y/b = 0.00

y/b = 0.25

y/b = 0.50

y/b = 0.75

y/b = 1.00

 
Figure 4.22: Normalized shear stress (σxy/ σn) distribution at different sections of a 

sandwich-structured composite. 

4.5 FDM solution for sandwich-structured composite under uniform axial 

tension. 

To consider the scenario for different loading conditions with the effect of modulus 

of elasticity, the model of sandwich-structured composite is kept under consideration 

with uniform axial tension. The combination of material is considered as same 

poissons ratio throughout the model i.e. μ1= μ2 = 0.29 but different modulus of 

elasticity for the layers. The ratio of modulus of elasticity of core material and casing 

layers are considered as 0.80.Figure 4.23 shows the model.  

The distribution of normalized displacement component ‘u/a’ is illustrated in Figure 

4.24. In the Figure it is depicted that, the pattern of each graph is linear. And the 

magnitudes of displacement component are maximum at the upper and lower regions 

of the model.  

In Figure 4.25, distribution of normalized displacement component ‘v/b’ is 

illustrated. Graphs for all sections are almost linear and horizontal with the x-axis. At 
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the right side of the model, graph is slightly convex shaped. That means, for uniform 

axial tension throughout the body, soft core material elongates more than the 

comparatively hard case materials. 

The variation of normalized normal stress (σx/ σn) at different sections of a sandwich-

structured composite is depicted in Figure 4.26. At the left boundary i.e. y/b=0.00, 

distribution of normalized normal stress is linear at the core material and found 

almost horizontal to x-axis. At the upper and lower casing material of sandwich-

structured composite, the distribution are non-linear but having large magnitude of 

stress. There is also a significant variation of the values of stresses at the interfaces of 

layers of the sandwich-structured composite. At, y/b=0.25, y/b=0.50 and y/b=0.75 

the graph depicts normalized normal stress as zero. Though there are always two 

different values of stress at every graph for the interfaces of layers. 

Figure 4.27 depicts the normal stress (σy/ σn) distribution at various sections of the 

sandwich-structured composite. The magnitude of stresses is maximum at the upper 

and lower edges of the body. At the right boundary, the magnitude is equal to the 

assigned value which conforms the applied boundary conditions i.e. right side the 

axial tension acts. There is a clear variation in the magnitude of stresses at the 

interfaces of layers of sandwich-structured composite. The magnitudes of stress are 

larger in casing material than the core materials of sandwich-structured composite. 

There is critical zones are at the top and bottom portion of left boundary and are at 

the interfaces of layers of sandwich-structured composite.  

Normalized shear stress (σxy/ σn ) distribution at various sections of the material is 

shown in Figure 4.28. The magnitudes of shear stress are very small at the core 

material with a change in the casing materials. Shear stress is almost zero throughout 

the model with some significant change for the top left and bottom left boundaries. 

At the interfaces the values of shear stress also contains two different magnitudes for 

two different layers.   
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Figure 4.23: Physical elastic problem under axial tension 
.
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Figure 4.24: Normalized displacement component (u/a) distribution at different 

sections of a sandwich-structured composite 
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Figure 4.25: Normalized displacement component (v/b) distribution at different 
sections of a sandwich-structured composite.  
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Figure 4.26: Normalized normal stress (σx/ σn) distribution at different sections of a 
sandwich-structured composite 
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Figure 4.27: Normalized normal stress (σy /σn ) distribution at different sections of a 
sandwich-structured composite.  
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Figure 4.28: Normalized shear stress (σxy/ σn) distribution at different sections of a 

sandwich-structured composite. 
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4.6 FDM solution for sandwich-structured composite having uniform axial 

displacement . 

Figure 4.29 shows the comparison of displacement (u/a) distribution at various 

sections of sandwich-structured composite. At y/b=0.00, results are zero as the fixed 

boundary assigned at left side. At the right sided sections from the left, value of the 

displacement component is increased.  For every section, the curves are symmetrical 

because material properties of upper and lower material are same as the model is 

sandwich-structured composite. For the right most section, the slop of the curve is 

greater.  

The distributions of displacement component (v/b) as shown in Figure 4.30 have also 

depicted linear curves as shown in curve for axial tension model. All the graphs are 

almost parallel to horizontal axis. Here variation of magnitude found at the interfaces 

especially for the sections near right boundary i.e. at y/b=0.75 and y/b=1.00. 

Figure 4.31 shows distribution of normal stress component x/n for different 

sections of the model. From the Figure it is depicted that, at the left boundary normal 

stress x/n is maximum. At the right boundary the normal stress is almost zero.  

The distribution of normal stress y/n at various sections of the sandwich-structured 

composite is illustrated in Figure 4.32. There is a significant jump found in the 

Figure at the interfaces of the layers of sandwich-structured composite. 

Normalized shear stress (σxy/n) distribution at various sections of the material is 

shown in Figure 4.33. The magnitudes of shear stresses are almost zero throughout 

the layers. At the interfaces the values of shear stress also contains two different 

magnitudes for different layers of sandwich-structured composite.   

 
 



76 
 

x / a

0.0 0.2 0.4 0.6 0.8 1.0 1.2

u
 /
 a

-3e-6

-2e-6

-1e-6

0

1e-6

2e-6

3e-6

y/b = 0.00

y/b = 0.25

y/b = 0.50

y/b = 0.75

y/b = 1.00

 
Figure 4.29: Normalized displacement component (u/a) distribution at different 

sections of a sandwich-structured composite 
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Figure 4.30: Normalized displacement component (v/b) distribution at different 
sections of a sandwich-structured composite.  
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Figure 4.31: Normalized normal stress (σX/ σn ) distribution at different sections of a 
sandwich-structured composite 
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Figure 4.32: Normalized normal stress (σy / σn ) distribution at different sections of a 
sandwich-structured composite.  
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Figure 4.33: Normalized shear stress (σxy/σn) distribution at different sections of a 

sandwich-structured composite. 

4.7 Effect of Modulus of Elasticity on FDM solution for sandwich-structured 

composite having uniform axial displacement. 

To analyze the effect of modulus of elasticity, same model of uniform displacement 

at right boundary are kept into consideration with different modulus of elasticity. As 

the ratio of modulus of elasticity is taken into consideration for simplification of 

procedure for solution, 03 different modulus of elasticity ratio are considered. Figure 

4.1 shows the model on which the effect of modulus of elasticity is illustrated.  

The variation of stress components are found for changing modulus of elasticity. For 

increasing the modulus of elasticity of core materials, the normalized stress σx / σn 

distribution curve became more concave for the core material regions as depicted in 

Figure 4.34. 

In Figure 4.35, it is found that the normalized stress σy/σn distribution have 

significant changes due to change in the value of modulus of elasticity for the core 
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materials. As the value of modulus of elasticity reduces, the magnitude of normalized 

normal stress σy/σn also reduces.  

The comparison of normalized shear stress distribution is illustrated in Figure 4.36. It 

is found that, as the value of modulus of elasticity increases the magnitude of shear 

stress also increases which was almost zero for the less modulus of elasticity.  
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Figure 4.34: Comparison of normalized normal stress (σx/ σn) distribution at section 
y/b=0.75 of a sandwich-structured composite. 
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Figure 4.35: Comparison normalized normal stress (σy / σn ) distribution at different 
sections of a sandwich-structured composite.  
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Figure 4.36: Comparison normalized shear stress (σxy / σn ) distribution at different 

sections of a sandwich-structured composite. 



 
 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In this study a finite difference approach based on the displacement potential 

function formulation has been developed for the solution of two-dimensional elastic 

problems of sandwich-structured composite. The rectangular layers being perfectly 

bonded together to form a sandwich-structured composite are solved for stresses and 

displacement distributions in each layer by this approach. Since this approach deals 

with a single variable displacement potential function (ψ), it is found to be 

convenient to work with. An appropriate boundary management technique is 

followed to manage the interfacial boundary conditions. A programming code in the 

FOTRAN language is developed for this finite difference approach. Finite element 

results are obtained by using the commercial software. Results are presented in the 

graphs as non-dimensional form. Effects of Poisson’s ratio and different loading 

condition are critically analyzed. Finally, the following conclusions are drawn in 

relation to the present research work: 

1. The recently available methodology for the numerical solutions of mixed 

boundary-value elastic problem based on the ψ-formulation can be applied to 

the body of isotropic mechanical properties. Thus, a sandwich-structured 

composite of different mechanical properties in each layer cannot be solved 

by this available methodology. An extended and completely new 

computational approach of this ψ-formulation for sandwich-structured 

composite is presented in this thesis removing the limitations associated with 

the interfacial boundaries. 

2. Completely new numerical formulations are developed in this thesis to solve 

the sandwich-structured composite problem. The numerical formulations with 

greater inclusion points at the interface provide better solution of the 

sandwich-structured composite as they ensure proper compatibility between 

the material layers.  
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3. The obtained solutions from the finite difference method are validated in 

numerous ways like comparison with the solution from finite element 

method, well-known published results and by qualitative intuition. 

Comparison between the results by the present finite difference method and 

the existing standard commercial software based on finite element method 

provide the good agreement. The computer program for sandwich-structure 

composite is also verified by keeping the same mechanical properties in each 

layer of the triple-layered material and obtaining the symmetrical results in 

each layer. 

4. The stress and displacement distributions are presented in the present analysis 

for various combinations of mechanical properties and loadings. It is revealed 

that, when a sandwich-structured composite is subjected to mechanical 

loading, the corner zone as well as the interfacial zone is the most critical 

zone in engineering point of view. The stresses have a bumping effect at the 

interface due to different mechanical properties at the layers of the sandwich-

structured composite. 

5. To study the effect of modulus of elasticity, several problems of sandwich-

structured composite are solved by FDM method keeping other properties 

and loading condition same. Here, the variation of modulus of elasticity in the 

materials has a significant effect on the distributions of stresses but less 

significant effect on the distribution of displacements. 

6. In general, higher the modulus of elasticity causes higher normal and shear 

stresses in the material. 

5.2 Recommendations for further research  

The present study is perhaps the first attempt for the analysis of stresses by 

displacement potential function for two-dimensional elastic problems of sandwich-

structured composite. The present formulation as well as the new computer program 

based on finite difference method has been developed to provide a new avenue for 

the investigations of two-dimensional elastic problems of sandwich-structured 

composite with all kinds of mixed boundary conditions of interest. In this 

connection, it is recommended that the program is further modified to incorporate the 
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following improvements in the investigations of sandwich-structured composite 

problems. 

 Attempts should be made to increase the total number of mesh points for 

more accurate results. Moreover, it will be appropriate to use smaller 

mesh size all along the boundary and the interface line. To incorporate the 

scheme a large coefficient matrix for a large number of unknowns has to 

be handled. It is, thus, suggested that the computer program should be 

organized in such a fashion that the partition of the matrix could be 

achieved by sub-dividing the coefficient matrix into four partitioned 

matrices. 

 Experimental analysis could be performed to determine the stress and 

displacement of the sandwich-structured composite. 

 The present computer program is applicable to double interface i.e. three 

layers in the composite material.  A scrupulous effort could be made to 

develop a new computer program considering the same numerical 

formulations used in the present study. Thereby, it would be possible to 

solve multi-layered material by the new computer program and further, 

the rigorous effort could open a new horizon for three-dimensional 

analysis of the composite material. 
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APPENDIX-A 
 

Flowchart of the contribution of present study to the original main program 
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APPENDIX-A 
 

Input file: 1 (For boundary conditions and mechanical properties of the 
problem) 
 
 
Boundary conditions and values 
   mm lmn1 lmn2 bmn rmn1 rmn2 q1 q2 q3  itoplf ibotlf ibotrg itoprg er1 er2 
   168 31   56   86   140   115 0.29 0.31 0.29 25   62  109 146 0.90 1.00 
 
  transfer & position controllers of the b.c. 
      j    i    ktb   kor    khv   kfld(i),i=1,mm) 
        1   24      4     1      1    1 
      25   25      4     1      1    1 
      26   31      1     1      2    1 
      32   43      1     1      2    2 
      44   44      1     2      2    2 
      45   56      1     2      2    2 
      57   61      1     2      2    3 
      62   62      4     2      1    3 
      63   86      4     2      1    3 
      87  108     4     3      1    3 
     109 109     4     3      1    3 
     110 112     4     3      2    3 
     113 114     4     3      2    3 
     115 115     4     3      2    2 
     116 126     4     3      2    2 
     127 127     4     3      2    2 
     128 129     4     4      2    2 
     129 139     4     4      2    2 
     140 140     4     4      2    1 
     141 142     4     4      2    1 
     143 145     4     4      2    1 
     146 146     4     4      1    1 
     147 168     4     4      1    1 
 
     non-zero  boundary values (j,cnd1,cnd2) 
147 -3.00E-04 0.00E+00 
148       -3.00E-04 0.00E+00 
149 -3.00E-04 0.00E+00 
150       -3.00E-04 0.00E+00 
151 -3.00E-04 0.00E+00 
169 -0.000E-04 0.00E+00 
 
TRANSFER & POSITION CONTROLLERS FOR ADDITIONAL B.C. 
  it(i)    kb(i)     kr(i)  kfd(i)  kh(i),i=1,ixces) 
    25       2       1       1       2 
    62       2       2       3       2 
    109      4       3       3       2 
    146      4       4       1       2 
 
boundary values for additional points 
(u v sigx sigy or sigxy anyone j=1,ixces) 
        0.0 
 0.0 
        0.0 
 0.0 
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Date revised 18052014 
 Boundary conditions and values 
   mm lmn1 lmn2 bmn rmn1 rmn2 q1 q2 q3  itoplf ibotlf ibotrg itoprg er1 er2 
   168 31   56   86   140   115 0.3 0.3 0.3 25   62  109 146 0.80 1.00 
 
  transfer & position controllers of the b.c. 
      j    i    ktb   kor    khv   kfld(i),i=1,mm) 
      1   24     4     1      1    1 
     25   25     4     1      1    1 
     26   31     1     1      2    1 
     32   43     1     1      2    2 
     44   44     1     2      2    2 
     45   56     1     2      2    2 
     57   61     1     2      2    3 
     62   62     4     2      1    3 
     63   86     4     2      1    3 
     87  108     4     3      1    3 
     109 109     4     3      1    3 
     110 112     4     3      2    3 
     113 114     4     3      2    3 
     115 115     4     3      2    2 
     116 126     4     3      2    2 
     127 127     4     3      2    2 
     128 129     4     4      2    2 
     129 139     4     4      2    2 
     140 140     4     4      2    1 
     141 142     4     4      2    1 
     143 145     4     4      2    1 
     146 146     4     4      1    1 
     147 168     4     4      1    1 
 
     non-zero  boundary values (j,cnd1,cnd2) 
110 3.00E-04 0.00E+00 
111         3.00E-04 0.00E+00 
112 3.00E-04 0.00E+00 
113         3.00E-04 0.00E+00 
114 3.00E-04 0.00E+00 
115 3.00E-04 0.00E+00 
116         3.00E-04 0.00E+00 
117 3.00E-04 0.00E+00 
118         3.00E-04 0.00E+00 
119 3.00E-04 0.00E+00 
120 3.00E-04 0.00E+00 
121         3.00E-04 0.00E+00 
122 3.00E-04 0.00E+00 
123         3.00E-04 0.00E+00 
124 3.00E-04 0.00E+00 
125         3.00E-04 0.00E+00 
126 3.00E-04 0.00E+00 
127 3.00E-04 0.00E+00 
128         3.00E-04 0.00E+00 
129 3.00E-04 0.00E+00 
130         3.00E-04 0.00E+00 
131 3.00E-04 0.00E+00 
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132 3.00E-04 0.00E+00 
133         3.00E-04 0.00E+00 
134 3.00E-04 0.00E+00 
135 3.00E-04 0.00E+00 
136         3.00E-04 0.00E+00 
137 3.00E-04 0.00E+00 
138         3.00E-04 0.00E+00 
139 3.00E-04 0.00E+00 
140 3.00E-04 0.00E+00 
141 3.00E-04 0.00E+00 
142         3.00E-04 0.00E+00 
143 3.00E-04 0.00E+00 
144         3.00E-04 0.00E+00 
145 3.00E-04 0.00E+00 
169 0.000E-04 0.00E+00 
 
TRANSFER & POSITION CONTROLLERS FOR ADDITIONAL B.C. 
  it(i)    kb(i)     kr(i)  kfd(i)  kh(i),i=1,ixces) 
    25       2       1       1       2 
    62       2       2       3       2 
    109      4       3       3       2 
    146      4       4       1       2 
 
boundary values for additional points 
(u v sigx sigy or sigxy anyone j=1,ixces) 
        0.0 
 0.0 
        3.00E-04 
 3.00E-04 
 
 
 
 
Date revised 18052014 
 Boundary conditions and values 
   mm lmn1 lmn2 bmn rmn1 rmn2 q1 q2 q3  itoplf ibotlf ibotrg itoprg er1 er2 
   168 31   56   86   140   115 0.29 0.29 0.29 25   62  109 146 1.00 1.00 
 
  transfer & position controllers of the b.c. 
      j    i    ktb   kor    khv   kfld(i),i=1,mm) 
      1   24     4     1      1    1 
     25   25     4     1      1    1 
     26   31     1     1      2    1 
     32   43     1     1      2    2 
     44   44     1     2      2    2 
     45   56     1     2      2    2 
     57   61     1     2      2    3 
     62   62     4     2      1    3 
     63   86     4     2      1    3 
     87  108     4     3      1    3 
     109 109     4     3      1    3 
     110 112     4     3      2    3 
     113 114     4     3      2    3 
     115 115     4     3      2    2 
     116 126     4     3      2    2 
     127 127     4     3      2    2 
     128 129     4     4      2    2 
     129 139     4     4      2    2 
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     140 140     4     4      2    1 
     141 142     4     4      2    1 
     143 145     4     4      2    1 
     146 146     4     4      1    1 
     147 168     4     4      1    1 
 
     non-zero  boundary values (j,cnd1,cnd2) 
147 -3.00E-04 0.00E+00 
148        -3.00E-04 0.00E+00 
149 -3.00E-04 0.00E+00 
150      - 3.00E-04 0.00E+00 
151 -3.00E-04 0.00E+00 
169 -0.000E-04 0.00E+00 
 
TRANSFER & POSITION CONTROLLERS FOR ADDITIONAL B.C. 
  it(i)    kb(i)     kr(i)  kfd(i)  kh(i),i=1,ixces) 
    25       2       1       1       2 
    62       2       2       3       2 
    109      4       3       3       2 
    146      4       4       1       2 
 
boundary values for additional points 
(u v sigx sigy or sigxy anyone j=1,ixces) 
        0.0 
 0.0 
        0.0 
 0.0 
 
 
 
Date revised 18052014 
 Boundary conditions and values 
   mm lmn1 lmn2 bmn rmn1 rmn2 q1 q2 q3  itoplf ibotlf ibotrg itoprg er1 er2 
   168 31   56   86   140   115 0.29 0.31 0.29 25   62  109 146 0.90 1.00 
 
  transfer & position controllers of the b.c. 
      j    i    ktb   kor    khv   kfld(i),i=1,mm) 
      1   24     4     1      1    1 
     25   25     4     1      1    1 
     26   31     1     1      2    1 
     32   43     1     1      2    2 
     44   44     1     2      2    2 
     45   56     1     2      2    2 
     57   61     1     2      2    3 
     62   62     4     2      1    3 
     63   86     4     2      1    3 
     87  108     4     3      1    3 
     109 109     4     3      1    3 
     110 112     2     3      2    3 
     113 114     2     3      2    3 
     115 115     2     3      2    2 
     116 126     2     3      2    2 
     127 127     2     3      2    2 
     128 129     2     4      2    2 
     129 139     2     4      2    2 
     140 140     2     4      2    1 
     141 142     2     4      2    1 
     143 145     2     4      2    1 
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     146 146     4     4      1    1 
     147 168     4     4      1    1 
 
     non-zero  boundary values (j,cnd1,cnd2) 
109 0.00E-04 0.00E+00 
110 3.00E-04 0.00E+00 
111         3.00E-04 0.00E+00 
112 3.00E-04 0.00E+00 
113         3.00E-04 0.00E+00 
114 3.00E-04 0.00E+00 
115 3.00E-04 0.00E+00 
116         3.00E-04 0.00E+00 
117 3.00E-04 0.00E+00 
118         3.00E-04 0.00E+00 
119 3.00E-04 0.00E+00 
120 3.00E-04 0.00E+00 
121         3.00E-04 0.00E+00 
122 3.00E-04 0.00E+00 
123         3.00E-04 0.00E+00 
124 3.00E-04 0.00E+00 
125         3.00E-04 0.00E+00 
126 3.00E-04 0.00E+00 
127 3.00E-04 0.00E+00 
128         3.00E-04 0.00E+00 
129 3.00E-04 0.00E+00 
130         3.00E-04 0.00E+00 
131 3.00E-04 0.00E+00 
132 3.00E-04 0.00E+00 
133         3.00E-04 0.00E+00 
134 3.00E-04 0.00E+00 
135 3.00E-04 0.00E+00 
136         3.00E-04 0.00E+00 
137 3.00E-04 0.00E+00 
138         3.00E-04 0.00E+00 
139 3.00E-04 0.00E+00 
140 3.00E-04 0.00E+00 
141 3.00E-04 0.00E+00 
142         3.00E-04 0.00E+00 
143 3.00E-04 0.00E+00 
144         3.00E-04 0.00E+00 
145 3.00E-04 0.00E+00 
146 0.00E-04 0.00E+00 
169 0.000E-04 0.00E+00 
 
TRANSFER & POSITION CONTROLLERS FOR ADDITIONAL B.C. 
  it(i)    kb(i)     kr(i)  kfd(i)  kh(i),i=1,ixces) 
    25       2       1       1       2 
    62       2       2       3       2 
    109      2       3       3       2 
    146      2       4       1       2 
 
boundary values for additional points 
(u v sigx sigy or sigxy anyone j=1,ixces) 
        0.0 
 0.0 
        3.00E-04 
 3.00E-04   
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APPENDIX-A 
 
Portion of the computer program for sandwich-structure formulation 

   PROGRAM Main1 
      PARAMETER(mtx=2500,net=100) 
      Dimension a1(net,net) 
 
      INTEGER a1,lyr 
 
      real*8 r,h, x(mtx) 
      real*8 uu(mtx),vv(mtx),ssgx(mtx),ssgy(mtx),ssgxy(mtx) 
      REAL*8 uiu(mtx),viu(mtx),sxiu(mtx),syiu(mtx),sxyiu(mtx) 
      REAL*8 uil(mtx),vil(mtx),sxil(mtx),syil(mtx),sxyil(mtx) 
      REAL*8 uit(mtx),vit(mtx),sxit(mtx),syit(mtx),sxyit(mtx) 
      REAL*8 uib(mtx),vib(mtx),sxib(mtx),syib(mtx),sxyib(mtx) 
 
      common /o1a/a1 
      common /o1b/lyr 
      common /o2/r,h 
      common /o3/kki,kkj,intfc1,intfc2,jdelams,jdelame 
      common /o41a/nog 
      COMMON /o42/x 
      common /o44/uu,vv,ssgx,ssgy,ssgxy 
      common /o45/uiu,viu,sxiu,syiu,sxyiu 
      common /o46/uil,vil,sxil,syil,sxyil 
      common /o47/uit,vit,sxit,syit,sxyit 
      common /o48/uib,vib,sxib,syib,sxyib 
 
      open(1,file='paramtr.txt',status='old') 
      open(2,file='a3fld.txt',status='unknown') 
      open(7,file='rslt090516x16.txt',status='unknown') 
      open(8,file='si1.txt',status='unknown') 
 
* initializing result parameters** 
      do i=1,mtx 
      uu(i)=0 
      vv(i)=0 
      ssgx(i)=0 
      ssgy(i)=0 
      ssgxy(i)=0 
      uiu(i)=0 
      viu(i)=0 
      sxiu(i)=0 
      syiu(i)=0 
      sxyiu(i)=0 
      uil(i)=0 
      vil(i)=0 
      sxil(i)=0 
      syil(i)=0 
      sxyil(i)=0 
      uit(i)=0 
      vit(i)=0 
      sxit(i)=0 
      syit(i)=0 
      sxyit(i)=0 
      uib(i)=0 
      vib(i)=0 
      sxib(i)=0 
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      syib(i)=0 
      sxyib(i)=0 
      end do 
 
* field Generation 
      read(1,*)   r, h, kki, kkj, intfc1, intfc2 
      write(*,*)   r, h, kki, kkj, intfc1, intfc2 
 
      WRITE(*,*) '     input value of lyr=' 
      read (*,*)lyr 
* Initialize 
      do i=1,kki 
         do j=1,kkj 
           a1(i,j)=0 
         end do 
      end do 
 
************* a1 field node numbering ***************** 
* 1st line 
        No=1 
        do j=2,kkj-1 
          a1(1,j)=No 
          No=No+1 
        END do 
 
   do i=2,kki-1 
         do j=1,kkj 
           a1(i,j)=No 
           No=No+1 
         END do 
       END do 
        do j=2,kkj-1 
           a1(kki,j)=No 
           No=No+1 
         END do 
       nog=No-1 
 
      GOTO 103 
 
 
 103  WRITE(2,*)' nog    =', nog 
      WRITE(2,*)' kki    =', kki 
      WRITE(2,*)' kkj    =', kkj 
      WRITE(2,*)' lyr    =', lyr 
 
      do i=1,intfc1 
      WRITE(2,11) (a1(i,j), j=1,kkj) 
      end do 
      do i=intfc1+1,intfc2 
      WRITE(2,11) (a1(i,j), j=1,kkj) 
      end do 
      do i=intfc2+1,kki 
      WRITE(2,11) (a1(i,j), j=1,kkj) 
      end do 
 
  11  FORMAT(9x,25i5) 
      WRITE(*,*)'   run successful' 
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      write(*,*)'OK.  coef      is executing........' 
      call coef 
 
      write(*,*)'OK.  dcom      is executing........' 
      call dcom 
 
      write(*,*)'OK.  calc      is executing........' 
      call calc 
 
      do 125 i = 2, kki-1 
  125 write(8,666) (x(a1(i,j)),j=2,kkj-1) 
 
      WRITE(7,*)'uu' 
      do 120 i = 2, kki-1 
  120 write(7,666) (uu(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'vv' 
      do 121 i = 2, kki-1 
  121 write(7,666) (vv(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'ssgx' 
      do 122 i = 2, kki-1 
  122 write(7,666) (ssgx(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'ssgy' 
      do 123 i = 2, kki-1 
  123 write(7,666) (ssgy(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'ssgxy' 
      do 124 i = 2, kki-1 
  124 write(7,666) (ssgxy(a1(i,j)),j=2,kkj-1) 
 
      i = intfc1 
      WRITE(7,*)'uiu' 
      write(7,666) (uiu(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'uil' 
      write(7,666) (uil(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'viu' 
      write(7,666) (viu(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'vil' 
      write(7,666) (vil(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'sxiu' 
      write(7,666) (sxiu(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'sxil' 
      write(7,666) (sxil(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'syiu' 
      write(7,666) (syiu(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'syil' 
      write(7,666) (syil(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'sxyiu' 
      write(7,666) (sxyiu(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'sxyil' 
      write(7,666) (sxyil(a1(i,j)),j=2,kkj-1) 
 
      i = intfc2 
      WRITE(7,*)'uit' 
      write(7,666) (uit(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'uib' 
      write(7,666) (uib(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'vit' 
      write(7,666) (vit(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'vib' 
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      write(7,666) (vib(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'sxit' 
      write(7,666) (sxit(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'sxib' 
      write(7,666) (sxib(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'syit' 
      write(7,666) (syit(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'syib' 
      write(7,666) (syib(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'sxyit' 
      write(7,666) (sxyit(a1(i,j)),j=2,kkj-1) 
      WRITE(7,*)'sxyib' 
      write(7,666) (sxyib(a1(i,j)),j=2,kkj-1) 
 
 
  666 format(1x, 50e12.4) 
 
      stop 
      END PROGRAM 
 
***************************************************************** 
      subroutine coef 
***************************************************************** 
      parameter (net=100, ibx=200,ics=10) 
      parameter (mtx=2500) 
 
      dimension a1(net,net) 
      DIMENSION ktb(ibx),kor(ibx),khv(ibx),kfld(ibx),i1(ibx),j1(ibx) 
      DIMENSION it(ics),kb(ics),kr(ics),kfd(ics),kh(ics),extrab(ics) 
*      dimension i1(ibx),j1(ibx),i2(ibx),j2(ibx) 
 
      integer a1,bmn,rmn1,rmn2,lyr 
 
      character*1 head(65) 
 
      REAL*8 sik(mtx,mtx),ck(mtx) 
      real*8 zk1,zk2,zk3,zk4,zk5,q1,q2,q3,cnd1,cnd2,e,er1,er2,h 
*      real*8 x1,x2,x3 
      real*8 r,rs,c,c1,c2,p2 
      real*8 u(ibx),v(ibx),sigx(ibx),sigy(ibx),sigxy(ibx) 
      real*8 zk6,zk7,zk8,zk9,zk10,zk83,zk93 
      REAL*8 e8,e9,e10,e11,e61,e62,e71,e72 
 
      common /o1a/a1 
      common /o1b/lyr 
      common /o2/r,h 
      common /o3/kki,kkj,intfc1,intfc2,jdelams,jdelame 
      common /o4/mm /o19/i1,j1 
      COMMON /o5/q1,q2,q3,e,er1,er2 
      COMMON /o41/ sik, ck 
      common /o41a/nog 
      COMMON /o51/zk1,zk2,zk3,zk4,zk5,zk6,zk7,zk8,zk9,zk10,zk83,zk93 
      COMMON /o58/e8,e9,e10,e11,e61,e62,e71,e72 
 
      open(3,file='sikii.txt',status='unknown') 
      open(4,file='in09516a.txt',status='old') 
      open(5,file='inout3.txt',status='unknown') 
      open(6,file='check.txt',status='unknown') 
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      WRITE(3,*)' nog    =', nog 
      WRITE(3,*)' kki    =', kki 
      WRITE(3,*)' kkj    =', kkj 
      WRITE(3,*)' intfc1 =', intfc1 
      WRITE(3,*)' intfc2 =', intfc2 
      WRITE(3,*)' jdelams=', jdelams 
      WRITE(3,*)' jdelame=', jdelame 
 
********************************************************************* 
*.................FOR THE POINTS AT BOUNDARY........................* 
********************************************************************* 
      read(4,53) (head(i),i=1,65) 
      read(4,53) (head(i),i=1,65) 
      read(4,53) (head(i),i=1,65) 
      read(4,*)   mm,lmn1,lmn2,bmn,rmn1,rmn2,q1,q2,q3,itoplf,ibotlf, 
     + ibotrg,itoprg,er1,er2 
      write(5,52) mm,lmn1,lmn2,bmn,rmn1,rmn2,q1,q2,q3,itoplf,ibotlf, 
     + ibotrg,itoprg,er1,er2 
   52 format(1x,6i5,3f5.2,4i8,2f5.2) 
 
      read(4,53) (head(i),i=1,65) 
      read(4,53) (head(i),i=1,65) 
      read(4,53) (head(i),i=1,65) 
      write(5,53)(head(i),i=1,65) 
   53 format(5x,65a1) 
 
  32  read(4,*) j,i, ktb(j),kor(j),khv(j),kfld(j) 
      write(5,59)j,i, ktb(j),kor(j),khv(j),kfld(j) 
      IF(j .LT. i)then 
          do j=j+1,i 
          ktb(j)=ktb(j-1) 
          kor(j)=kor(j-1) 
          khv(j)=khv(j-1) 
          kfld(j)=kfld(j-1) 
          end do 
      else 
      endif 
          IF(i .lt. mm)GOTO 32 
   59 format(1x,6i6) 
 
*initialize the boundary values 
      do i=1,mm 
         u(i)=0.0 
         v(i)=0.0 
         sigx(i)=0.0 
         sigy(i)=0.0 
         sigxy(i)=0.0 
      end DO 
 
      do 18 i=1,nog 
        do 19 j=1,nog 
          sik(i,j)=0.0 
   19   continue 
        ck(i)=0.0 
   18 continue 
 
* read & assign the non-zero boundary values started 



98 
 

      read(4,53) (head(i),i=1,65) 
      read(4,53) (head(i),i=1,65) 
      write(5,53)(head(i),i=1,65) 
 
  33  read(4,*) j,cnd1,cnd2 
      write(5,60) j,cnd1,cnd2 
      l1=ktb(j) 
      l3=khv(j) 
      goto (34,35,36,37) l1 
 34   IF(l3 .EQ. 1)then 
        u(j)=cnd1 
        v(j)=cnd2 
      else 
        v(j)=cnd1 
        u(j)=cnd2 
      endif 
      IF(j .le. mm)goto 33 
 
 35   IF(l3 .EQ. 1)then 
        u(j)=cnd1 
        sigxy(j)=cnd2 
      else 
        v(j)=cnd1 
        sigxy(j)=cnd2 
      endif 
      IF(j .le. mm)goto 33 
 
 36   IF(l3 .EQ. 1)then 
        sigx(j)=cnd1 
        v(j)=cnd2 
      else 
        sigy(j)=cnd1 
        u(j)=cnd2 
      endif 
      IF(j .le. mm)goto 33 
 
 37   IF(l3 .EQ. 1)then 
        sigx(j)=cnd1 
        sigxy(j)=cnd2 
      else 
        sigy(j)=cnd1 
        sigxy(j)=cnd2 
      endif 
      IF(j .le. mm)goto 33 
      WRITE(*,*)'   line 257' 
   60 format(1x,i4,1x,2e12.4) 
* read & assign the boundary values for excess points 
      read(4,53) (head(i),i=1,65) 
      read(4,53) (head(i),i=1,65) 
      read(4,53) (head(i),i=1,65) 
      write(5,53)(head(i),i=1,65) 
      do i=1,4 
        read(4,*) it(i),kb(i),kr(i),kfd(i),kh(i) 
        write(5,59) it(i),kb(i),kr(i),kfd(i),kh(i) 
      END do 
 
      read(4,53) (head(i),i=1,65) 
      read(4,53) (head(i),i=1,65) 
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      read(4,53) (head(i),i=1,65) 
      write(5,53)(head(i),i=1,65) 
      do i=1,4 
        read(4,*) extrab(i) 
        write(5,*) extrab(i) 
      END do 
 
* read & assign the non-zero boundary values finished 
* i1 & j1 set 
 
      k=itoplf+1 
      do  i=1,itoplf 
          i1(i)=2 
          j1(i)=k 
          k=k-1 
      end do 
 
      k=3 
      do i=itoplf+1,ibotlf 
          i1(i)=k 
          j1(i)=2 
          k=k+1 
      end do 
 
      k=3 
      do  i=ibotlf+1, ibotrg 
          i1(i)=kki-1 
          j1(i)=k 
          k=k+1 
      end do 
 
      k=kki-2 
      do i=ibotrg+1,itoprg 
          i1(i)=k 
          j1(i)=kkj-1 
          k=k-1 
      end do 
 
      k=kkj-2 
      do  i=itoprg+1,mm 
          i1(i)=2 
          j1(i)=k 
          k=k-1 
      end do 
 
        write(3,*) '    ' 
        write(3,*) '    i  i1  j1   ' 
      do i=1,mm 
        write(3,13) i,i1(i),j1(i) 
      end do 
  13   format(1x,3i4) 
* i1 j1 set finished* 
 
 
********************************************************************* 
*.................FOR THE POINTS on bounfary of THE BODY............* 
********************************************************************* 
 



100 
 

* coefficient generation for boundary nodes started 
*        IF (lyr .eq. 1) THEN 
*         q2=q1 
*         er=1.0 
*      else 
*      END IF 
 
*            c21=(q1-1)/((1+q1)*r*r*h*h) 
*            c22=(q2-1)/((1+q2)*r*r*h*h) 
*            c23=(q3-1)/((1+q3)*r*r*h*h) 
*            c31=(-2)/((1+q1)*h*h) 
*            c32=(-2)/((1+q2)*h*h) 
*            c33=(-2)/((1+q3)*h*h) 
*            c61=(2+q1)/(2*r*h*h*h*(1+q1)*(1+q1)) 
*            c62=(2+q2)/(2*r*h*h*h*(1+q2)*(1+q2)) 
*            c63=(2+q3)/(2*r*h*h*h*(1+q3)*(1+q3)) 
*            c71=1/(2*r*r*r*h*h*h*(1+q1)*(1+q1)) 
*            c72=1/(2*r*r*r*h*h*h*(1+q2)*(1+q2)) 
*            c73=1/(2*r*r*r*h*h*h*(1+q3)*(1+q3)) 
*            c81=q1/((1+q1)*(1+q1)*2*r*r*h*h*h) 
*            c82=q2/((1+q2)*(1+q2)*2*r*r*h*h*h) 
*            c83=q3/((1+q3)*(1+q3)*2*r*r*h*h*h) 
*            c91=1/(2*h*h*h*(1+q1)*(1+q1)) 
*            c92=1/(2*h*h*h*(1+q2)*(1+q2)) 
*            c93=1/(2*h*h*h*(1+q3)*(1+q3)) 
 
*            d31=-(6*c81)-c91 
*            d41=(8*c81)+(3*c91) 
*            d51=-(2*c81)-(3*c91) 
*            d32=-(6*c82)-c92 
*            d42=(8*c82)+(3*c92) 
*            d52=-(2*c82)-(3*c92) 
*            d33=-(6*c83)-c93 
*            d43=(8*c83)+(3*c93) 
*            d53=-(2*c83)-(3*c93) 
     e8=(r*r)/(2.0*((q1+q2)/2.0)) 
            e9=(r*r)/(2.0*((q2+q3)/2.0)) 
            e10=(r*r*(2.0+((q1+q2)/2)))/2.0 
            e11=(r*r*(2.0+((q2+q3)/2)))/2.0 
            e61=((1-((q1+q2)/2.0))/2.0)/((1-((q1+q2)/2.0))+(2.0*r*r)) 
            e62=((1-((q2+q3)/2.0))/2.0)/((1-((q2+q3)/2.0))+(2.0*r*r)) 
            e71=(r*r)/((1-((q1+q2)/2.0))+(2.0*r*r)) 
            e72=(r*r)/((1-((q2+q3)/2.0))+(2.0*r*r)) 
            e81=(r*r*h*h*(1.0+((q1+q2)/2.0)))/(2.0*((1.0-((q1+q2)/2)) 
     ++(2.0*r*r))) 
            e82=(r*r*h*h*(1.0+((q2+q3)/2.0)))/(2.0*((1.0-((q2+q3)/2)) 
     ++(2.0*r*r))) 
 
      do  40 jj = 1, mm 
 
              l1 = ktb(jj) 
              l2 = kor(jj) 
              l3 = khv(jj) 
              l4 = kfld(jj) 
 
*.......mu1 & mu2,  E1 & E2 assigned starts 
      IF(l4 .EQ. 1)then 
          c=q1 
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          e=1.0 
      elseif(l4 .EQ. 2)then 
          c=q2 
          e=er1 
      elseif(l4 .EQ. 3)then 
          c=q3 
          e=er2 
      else 
      endif 
       c1=1.0-c 
       c2=1.0+c 
 
   zk6=(c1/2.0)/(c1+(2.0*r*r)) 
   zk7=(r*r)/(c1+(2.0*r*r)) 
   zk9=(r*r)/(2.0*c) 
   zk10=(r*r*(2.0+c))/2.0 
 
   zk8=(r*r*h*h*c2)/(2.0*(c1+(2.0*r*r))) 
   p2=(c2*c2*r*r*r*h*h*h)/c 
          zk83=c/(2*r*r*h*h*h*c2*c2) 
          zk93=1/(2*h*h*h*c2*c2) 
 
*.......mu1 & mu2,  E1 & E2 assigned  finished 
 
      if (jj.eq.lmn1 .and. lyr .ne. 1) GOTO 112 
      if (jj.eq.lmn2 .and. lyr .ne. 1) GOTO 212 
 
      if (jj.eq.rmn2 .and. lyr .ne. 1) GOTO 213 
      if (jj.eq.rmn1 .and. lyr .ne. 1) GOTO 113 
 
****** for regular boundary formulas from now on ********** 
 
        if(l2 .eq. 1) then 
            x1=1.0 
            x2=1.0 
            x3=1.0 
            i0=1 
            j0=1 
        else if(l2 .eq. 2) then 
            x1=-1.0 
            x2=1.0 
            x3=-1.0 
            i0=-1 
            j0=1 
        else if(l2 .eq. 3) then 
            x1=1.0 
            x2=-1.0 
            x3=-1.0 
            i0=-1 
            j0=-1 
        else if(l2 .eq. 4) then 
            x1=-1.0 
            x2=-1.0 
            x3=1.0 
            i0=1 
            j0=-1 
        else 
        endif 
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         i = i1(jj) 
         j = j1(jj) 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
*............................................................ 
      IF(l3 .EQ. 1)then 
 
       goto (41,42,43,44),l1 
         
 41       sik(m1,m1)=9.0 
   sik(m1,m4)=-12.0 
   sik(m1,m7)=3.0 
   sik(m1,m5)=-12.0 
   sik(m1,m6)=16.0 
   sik(m1,m10)=-4.0 
   sik(m1,m8)=3.0 
   sik(m1,m9)=-4.0 
   sik(m1,m11)=1.0 
   ck(m1)=4.0*r*h*h*x1*u(jj) 
 
          sik(m2,m2)=zk7 
   sik(m2,m1)=-1.0 
   sik(m2,m4)=zk6 
   sik(m2,m3)=zk6 
   sik(m2,m5)=zk7 
   ck(m2)=-zk8*v(jj) 
       goto 40 
 
 42       sik(m1,m1)=9.0 
   sik(m1,m4)=-12.0 
   sik(m1,m7)=3.0 
   sik(m1,m5)=-12.0 
   sik(m1,m6)=16.0 
   sik(m1,m10)=-4.0 
   sik(m1,m8)=3.0 
   sik(m1,m9)=-4.0 
   sik(m1,m11)=1.0 
   ck(m1)=4.0*r*h*h*x1*u(jj) 
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          sik(m2,m2)=(3.*zk9) 
   sik(m2,m1)=3.-(10.*zk9) 
   sik(m2,m3)=-1.5 
   sik(m2,m4)=-1.5 
   sik(m2,m5)=(12.*zk9)-4. 
   sik(m2,m15)=2. 
   sik(m2,m6)=2. 
   sik(m2,m8)=1.-(6.*zk9) 
   sik(m2,m16)=-0.5 
   sik(m2,m9)=-0.5 
   sik(m2,m17)=zk9 
   ck(m2)=(p2/r)*x3*sigxy(jj)/e 
       goto 40 
 
 43       sik(m1,m1)=((6.*zk9)-5.) 
   sik(m1,m4)=(6.-(8.*zk9)) 
   sik(m1,m7)=((2.*zk9)-3.) 
   sik(m1,m14)=0.5 
   sik(m1,m3)=1.5 
   sik(m1,m2)=-(3.*zk9) 
   sik(m1,m12)=(4.*zk9) 
   sik(m1,m13)=-zk9 
   sik(m1,m5)=-(3.*zk9) 
   sik(m1,m6)=(4.*zk9) 
   sik(m1,m10)=-zk9 
   ck(m1)=p2*x2*sigx(jj)/e 
 
          sik(m2,m2)=zk7 
   sik(m2,m1)=-1.0 
   sik(m2,m4)=zk6 
   sik(m2,m3)=zk6 
   sik(m2,m5)=zk7 
   ck(m2)=-zk8*v(jj) 
       goto 40 
 
 44       sik(m1,m1)=((6.*zk9)-5.) 
   sik(m1,m4)=(6.-(8.*zk9)) 
   sik(m1,m7)=((2.*zk9)-3.) 
   sik(m1,m14)=0.5 
   sik(m1,m3)=1.5 
   sik(m1,m2)=-(3.*zk9) 
   sik(m1,m12)=(4.*zk9) 
   sik(m1,m13)=-zk9 
   sik(m1,m5)=-(3.*zk9) 
   sik(m1,m6)=(4.*zk9) 
   sik(m1,m10)=-zk9 
   ck(m1)=p2*x2*sigx(jj)/e 
 
          sik(m2,m2)=3.*zk9 
   sik(m2,m1)=3.-(10.*zk9) 
   sik(m2,m3)=-1.5 
   sik(m2,m4)=-1.5 
   sik(m2,m5)=(12.*zk9)-4. 
   sik(m2,m15)=2. 
   sik(m2,m6)=2. 
   sik(m2,m8)=1.-(6.*zk9) 
   sik(m2,m16)=-0.5 
   sik(m2,m9)=-0.5 
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   sik(m2,m17)=zk9 
   ck(m2)=(p2/r)*x3*sigxy(jj)/e 
 
      ELSEIF(l3 .EQ. 2)then 
 
      goto (45,46,47,48),l1 
         
 45       sik(m3,m2)=zk7 
   sik(m3,m1)=-1.0 
   sik(m3,m4)=zk6 
   sik(m3,m3)=zk6 
   sik(m3,m5)=zk7 
   ck(m3)=-zk8*v(jj) 
 
          sik(m1,m1)=9.0 
   sik(m1,m4)=-12.0 
   sik(m1,m7)=3.0 
   sik(m1,m5)=-12.0 
   sik(m1,m6)=16.0 
   sik(m1,m10)=-4.0 
   sik(m1,m8)=3.0 
   sik(m1,m9)=-4.0 
   sik(m1,m11)=1.0 
   ck(m1)=4.0*r*h*h*x1*u(jj) 
       goto 40 
 
 46       sik(m3,m2)=zk7 
   sik(m3,m1)=-1.0 
   sik(m3,m4)=zk6 
   sik(m3,m3)=zk6 
   sik(m3,m5)=zk7 
   ck(m3)=-zk8*v(jj) 
 
          sik(m1,m2)=3.*zk9 
   sik(m1,m1)=3.-(10.*zk9) 
   sik(m1,m3)=-1.5 
   sik(m1,m4)=-1.5 
   sik(m1,m5)=(12.*zk9)-4. 
   sik(m1,m15)=2. 
   sik(m1,m6)=2. 
   sik(m1,m8)=1.-(6.*zk9) 
   sik(m1,m16)=-0.5 
   sik(m1,m9)=-0.5 
   sik(m1,m17)=zk9 
   ck(m1)=(p2/r)*x3*sigxy(jj)/e 
       goto 40 
 
 47       sik(m3,m3)=-1.5 
   sik(m3,m1)=5.0+(6.0*zk10) 
   sik(m3,m4)=-(6.+(8.*zk10)) 
   sik(m3,m7)=(3.0+(2.*zk10)) 
   sik(m3,m14)=-0.5 
   sik(m3,m2)=-(3.*zk10) 
   sik(m3,m12)=(4.*zk10) 
   sik(m3,m13)=-zk10 
   sik(m3,m5)=-(3.*zk10) 
   sik(m3,m6)=(4.*zk10) 
   sik(m3,m10)=-zk10 
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   ck(m3)=-c*p2*x2*sigy(jj)/e 
 
          sik(m1,m1)=9.0 
   sik(m1,m4)=-12.0 
   sik(m1,m7)=3.0 
   sik(m1,m5)=-12.0 
   sik(m1,m6)=16.0 
   sik(m1,m10)=-4.0 
   sik(m1,m8)=3.0 
   sik(m1,m9)=-4.0 
   sik(m1,m11)=1.0 
   ck(m1)=4.0*r*h*h*x1*u(jj) 
       goto 40 
 
 48       sik(m3,m3)=-1.5 
   sik(m3,m1)=(5.0+(6.0*zk10)) 
   sik(m3,m4)=-(6.+(8.*zk10)) 
   sik(m3,m7)=(3.0+(2.*zk10)) 
   sik(m3,m14)=-0.5 
   sik(m3,m2)=-(3.*zk10) 
   sik(m3,m12)=(4.*zk10) 
   sik(m3,m13)=-zk10 
   sik(m3,m5)=-(3.*zk10) 
   sik(m3,m6)=(4.*zk10) 
   sik(m3,m10)=-zk10 
   ck(m3)=-c*p2*x2*sigy(jj)/e 
 
          sik(m1,m2)=(3.*zk9) 
   sik(m1,m1)=(3.-(10.*zk9)) 
   sik(m1,m3)=-1.5 
   sik(m1,m4)=-1.5 
   sik(m1,m5)=((12.*zk9)-4.) 
   sik(m1,m15)=2. 
   sik(m1,m6)=2. 
   sik(m1,m8)=(1.-(6.*zk9)) 
   sik(m1,m16)=-0.5 
   sik(m1,m9)=-0.5 
   sik(m1,m17)=zk9 
   ck(m1)=(p2/r)*x3*sigxy(jj)/e 
 
      else 
      endif 
 
      WRITE(6,10)jj,l1,l2,l3,l4,m1,m2,m3,zk7,zk8,zk9 
   10 FORMAT(1x,8i5,1x,3f10.7) 
 
        GOTO 40 
 
 112     i = i1(jj) 
         j = j1(jj) 
 
            x1=1.0 
            x2=1.0 
            x3=1.0 
            i0=1 
            j0=1 
 
             m1 = a1(i,j) 
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             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
          sik(m3,m2)=e71 
   sik(m3,m1)=-1.0 
   sik(m3,m4)=e61 
   sik(m3,m3)=e61 
   sik(m3,m5)=e71 
   ck(m3)=-e81*v(jj) 
 
          sik(m1,m1)=9.0 
   sik(m1,m4)=-12.0 
   sik(m1,m7)=3.0 
   sik(m1,m5)=-12.0 
   sik(m1,m6)=16.0 
   sik(m1,m10)=-4.0 
   sik(m1,m8)=3.0 
   sik(m1,m9)=-4.0 
   sik(m1,m11)=1.0 
   ck(m1)=4.0*r*h*h*x1*u(jj) 
 
       IF(jj .EQ. 18) WRITE(*,*)m1,m3 
 
          GOTO 40 
 
 212     i = i1(jj) 
         j = j1(jj) 
 
            x1=-1.0 
            x2=1.0 
            x3=-1.0 
            i0=-1 
            j0=1 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
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             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
          sik(m3,m2)=e72 
   sik(m3,m1)=-1.0 
   sik(m3,m4)=e62 
   sik(m3,m3)=e62 
   sik(m3,m5)=e72 
   ck(m3)=-e82*v(jj) 
 
          sik(m1,m1)=9.0 
   sik(m1,m4)=-12.0 
   sik(m1,m7)=3.0 
   sik(m1,m5)=-12.0 
   sik(m1,m6)=16.0 
   sik(m1,m10)=-4.0 
   sik(m1,m8)=3.0 
   sik(m1,m9)=-4.0 
   sik(m1,m11)=1.0 
   ck(m1)=4.0*r*h*h*x1*u(jj) 
 
       IF(jj .EQ. 18) WRITE(*,*)m1,m3 
 
          GOTO 40 
 
  213    i = i1(jj) 
        j = j1(jj) 
 
            x1=-1.0 
            x2=-1.0 
            x3=1.0 
            i0=1 
            j0=-1 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
          sik(m3,m3)=-1.5 
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   sik(m3,m1)=(5.0+(6.0*e11)) 
   sik(m3,m4)=-(6.+(8.*e11)) 
   sik(m3,m7)=(3.0+(2.*e11)) 
   sik(m3,m14)=-0.5 
   sik(m3,m2)=-(3.*e11) 
   sik(m3,m12)=(4.*e11) 
   sik(m3,m13)=-e11 
   sik(m3,m5)=-(3.*e11) 
   sik(m3,m6)=(4.*e11) 
   sik(m3,m10)=-e11 
   ck(m3)=-c*p2*x2*sigy(jj)/e 
 
          sik(m1,m2)=(3.*e9) 
   sik(m1,m1)=(3.-(10.*e9)) 
   sik(m1,m3)=-1.5 
   sik(m1,m4)=-1.5 
   sik(m1,m5)=((12.*e9)-4.) 
   sik(m1,m15)=2. 
   sik(m1,m6)=2. 
   sik(m1,m8)=(1.-(6.*e9)) 
   sik(m1,m16)=-0.5 
   sik(m1,m9)=-0.5 
   sik(m1,m17)=e9 
   ck(m1)=(p2/r)*x3*sigxy(jj)/e 
 
       IF(jj .EQ. 52) WRITE(*,*)m1,m3 
 
          GOTO 40 
 
  113    i = i1(jj) 
         j = j1(jj) 
 
            x1=1.0 
            x2=-1.0 
            x3=-1.0 
            i0=-1 
            j0=-1 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
          sik(m3,m3)=-1.5 
   sik(m3,m1)=(5.0+(6.0*e10)) 
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   sik(m3,m4)=-(6.+(8.*e10)) 
   sik(m3,m7)=(3.0+(2.*e10)) 
   sik(m3,m14)=-0.5 
   sik(m3,m2)=-(3.*e10) 
   sik(m3,m12)=(4.*e10) 
   sik(m3,m13)=-e10 
   sik(m3,m5)=-(3.*e10) 
   sik(m3,m6)=(4.*e10) 
   sik(m3,m10)=-e10 
   ck(m3)=-c*p2*x2*sigy(jj)/e 
 
          sik(m1,m2)=(3.*e8) 
   sik(m1,m1)=(3.-(10.*e8)) 
   sik(m1,m3)=-1.5 
   sik(m1,m4)=-1.5 
   sik(m1,m5)=((12.*e8)-4.) 
   sik(m1,m15)=2. 
   sik(m1,m6)=2. 
   sik(m1,m8)=(1.-(6.*e8)) 
   sik(m1,m16)=-0.5 
   sik(m1,m9)=-0.5 
   sik(m1,m17)=e8 
   ck(m1)=(p2/r)*x3*sigxy(jj)/e 
 
       IF(jj .EQ. 52) WRITE(*,*)m1,m3 
 
 
 40   continue 
********************************************************************* 
*.................FOR THE POINTS INSIDE THE BODY....................* 
********************************************************************* 
       rs = r*r 
         zk1=rs*rs 
   zk2=4.0*(rs*rs+rs) 
   zk3=4.0*(1.0+rs) 
   zk4=6.0+(8.0*rs)+(6.0*rs*rs) 
   zk5=2.0*rs 
 
* Gov Eqn Formula Loop 
 
      GOTO 104 
  104   do 93 i=3, kki-2 
         do 94 j= 3, kkj-2 
 
             m1 = a1(i,j) 
             m2 = a1(i,j+1) 
             m3 = a1(i,j-1) 
             m4 = a1(i+1,j) 
             m5 = a1(i-1,j) 
             m6 = a1(i+1,j+1) 
             m7 = a1(i-1,j+1) 
             m8 = a1(i-1,j-1) 
             m9 = a1(i+1,j-1) 
             m10 = a1(i,j+2) 
             m11 = a1(i-2,j) 
             m12 = a1(i,j-2) 
             m13 = a1(i+2,j) 
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             sik(m1,m1) =zk4 
             sik(m1,m2) =-zk3 
             sik(m1,m3) =-zk3 
             sik(m1,m4) =-zk2 
             sik(m1,m5) =-zk2 
             sik(m1,m6) =zk5 
             sik(m1,m7) =zk5 
             sik(m1,m8) =zk5 
             sik(m1,m9) =zk5 
             sik(m1,m10) =1.0 
             sik(m1,m11) =zk1 
             sik(m1,m12) =1.0 
             sik(m1,m13) =zk1 
             ck(m1) =0.0 
 
  94     continue 
  93   continue 
      write (*,*) '  line no. 1101', lyr 
      GOTO 106 
 
  106    do 70 jj = 1, 4 
              l5 = kb(jj) 
              l6 = kr(jj) 
              l7 = kfd(jj) 
              l8 = kh(jj) 
 
        if(l6 .eq. 1) then 
            x1=1.0 
            x2=1.0 
            x3=1.0 
            i0=1 
            j0=1 
        else if(l6 .eq. 2) then 
            x1=-1.0 
            x2=1.0 
            x3=-1.0 
            i0=-1 
            j0=1 
        else if(l6 .eq. 3) then 
            x1=1.0 
            x2=-1.0 
            x3=-1.0 
            i0=-1 
            j0=-1 
        else if(l6 .eq. 4) then 
            x1=-1.0 
            x2=-1.0 
            x3=1.0 
            i0=1 
            j0=-1 
        else 
        endif 
 
      IF (l7 .eq. 1) THEN 
          c=q1 
          e=1.0 
      elseif(l7 .EQ. 2)then 
          c=q2 
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          e=er1 
      elseif(l7 .EQ. 3)then 
          c=q3 
          e=er2 
      else 
      endif 
           c1=1.0-c 
       c2=1.0+c 
 
   zk6=(c1/2.0)/(c1+(2.0*r*r)) 
   zk7=(r*r)/(c1+(2.0*r*r)) 
   zk9=(r*r)/(2.0*c) 
   zk10=(r*r*(2.0+c))/2.0 
 
   zk8=(r*r*h*h*c2)/(2.0*(c1+(2.0*r*r))) 
   p2=(c2*c2*r*r*r*h*h*h)/c 
 
         i = i1(it(jj)) 
         j = j1(it(jj)) 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
      IF(l8 .EQ. 1)then 
         me = m2 
      else 
         me = m3 
      endif 
*............................................................ 
      goto (71,72,73,74,75),l5 
 
  71       sik(me,m1)=9*x1 
   sik(me,m4)=-12*x1 
   sik(me,m7)=3*x1 
   sik(me,m5)=-12*x1 
   sik(me,m6)=16*x1 
   sik(me,m10)=-4*x1 
   sik(me,m8)=3*x1 
   sik(me,m9)=-4*x1 
   sik(me,m11)=1*x1 
   ck(me)=4*r*h*h*extrab(jj) 
       goto 70 
  72        sik(me,m2)=zk7 
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   sik(me,m1)=-1.0 
   sik(me,m4)=zk6 
   sik(me,m3)=zk6 
   sik(me,m5)=zk7 
   ck(me)=-zk8*extrab(jj) 
       goto 70 
  73       sik(me,m1)=(6*zk9-5) 
   sik(me,m4)=(6-8*zk9) 
   sik(me,m7)=(2*zk9-3) 
   sik(me,m14)=0.5 
   sik(me,m3)=1.5 
   sik(me,m2)=-3*zk9 
   sik(me,m12)=4*zk9 
   sik(me,m13)=-zk9 
   sik(me,m5)=-3*zk9 
   sik(me,m6)=4*zk9 
   sik(me,m10)=-zk9 
   ck(me)=p2*x2*extrab(jj) 
       goto 70 
  74       sik(me,m3)=-1.5 
   sik(me,m1)=(5+6*zk10) 
   sik(me,m4)=-(6+8*zk10) 
   sik(me,m7)=(3+2*zk10) 
   sik(me,m14)=-0.5 
   sik(me,m2)=-3*zk10 
   sik(me,m12)=4*zk10 
   sik(me,m13)=-zk10 
   sik(me,m5)=-3*zk10 
   sik(me,m6)=4*zk10 
   sik(me,m10)=-zk10 
   ck(me)=-c*p2*x2*extrab(jj) 
       goto 70 
  75        sik(me,m2)=3*zk9 
   sik(me,m1)=(3-10*zk9) 
   sik(me,m3)=-1.5 
   sik(me,m4)=-1.5 
   sik(me,m5)=(12*zk9-4) 
   sik(me,m15)=2 
   sik(me,m6)=2 
   sik(me,m8)=(1-6*zk9) 
   sik(me,m16)=-0.5 
   sik(me,m9)=-0.5 
   sik(me,m17)=zk9 
   ck(me)=(p2/r)*x3*extrab(jj) 
  70   continue 
* for excess point finished 
 
******************************************* 
       if (lyr.eq.3) GOTO 107 
 
 
 107  WRITE(*,*)'    line= 1251' 
 
      WRITE(3,*)'     nog =   ', nog 
      do 28 i =1, nog 
         write(3,12) sik(i,i), ck(i), i 
  28  continue 
  12  FORMAT(1x, 2e12.5, i4) 
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************************************************************** 
*   SUBROUTINE "DCOM" FOR THE DECOMPOSITION INTO LOWER AND   * 
*   UPPER TRAINGULAR MATRICES TO GET SOLUTION                * 
************************************************************** 
      subroutine dcom 
 
      parameter (mtx=2500) 
      real*8  a(mtx,mtx),al(mtx,mtx),au(mtx,mtx),z(mtx),x(mtx),b(mtx) 
      common /o41/a,b 
      common /o41a/n 
      common /o42/x 
 
      do 50 i=1,n 
      x(i)=0.0 
      z(i)=0.0 
      do 50 j=1,n 
      al(i,j)=0.0 
      au(i,j)=0.0  
50    continue 
      do 60 i=1,n 
      au(i,i)=1.0 
      al(i,1)=a(i,1) 
60    au(1,i)=a(1,i)/al(1,1) 
      do 10 j=2,n 
      do 20 i=j,n 
      sum=0.0 
      do 18 k=1,(j-1) 
18    sum=sum+al(i,k)*au(k,j) 
20    al(i,j)=a(i,j)-sum 
      if (j .eq. n) go to 10 
      do 40 jj=(j+1),n 
      sum=0.0 
      do 70 kk=1,(j-1) 
70    sum=sum+al(j,kk)*au(kk,jj) 
40    au(j,jj)=(a(j,jj)-sum)/al(j,j) 
10    continue 
      z(1)=b(1)/al(1,1) 
      do 80 i=2,n 
      sum=0.0 
      do 90 k=1,(i-1) 
90    sum=sum+al(i,k)*z(k) 
80    z(i)=(b(i)-sum)/al(i,i) 
      x(n)=z(n) 
      do 100 i=2,n 
      l=n-i+1 
      sum=0.0 
      do 110 k=(l+1),n 
110   sum=sum+au(l,k)*x(k) 
100   x(l)=z(l)-sum 
      return 
      end 
***************************************************************** 
      subroutine calc 
***************************************************************** 
      parameter (net=100, ibx=200) 
      parameter (mtx=2500) 
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      dimension a1(net,net) 
      dimension i1(ibx),j1(ibx) 
 
      integer a1,lyr 
 
      real*8 x1,x2,x3 
      real*8 h,r,c,c1,c2,p2 
      real*8 si(mtx) 
      real*8 uu(mtx),vv(mtx),ssgx(mtx),ssgy(mtx),ssgxy(mtx) 
 
*      REAL*8 c21,c22,c23,c31,c32,c33,e8,e9,e10,e11,e61,e62,e71,e72 
      REAL*8 c121,c131,c141,c151,c161,c171,c181,c191,d131,d141,d151 
      REAL*8 c122,c132,c142,c152,c162,c172,c182,c192,d132,d142,d152 
      REAL*8 c123,c133,c143,c153,c163,c173,c183,c193,d133,d143,d153 
 
      REAL*8 uiu(mtx),viu(mtx),sxiu(mtx),syiu(mtx),sxyiu(mtx) 
      REAL*8 uil(mtx),vil(mtx),sxil(mtx),syil(mtx),sxyil(mtx) 
      REAL*8 uit(mtx),vit(mtx),sxit(mtx),syit(mtx),sxyit(mtx) 
      REAL*8 uib(mtx),vib(mtx),sxib(mtx),syib(mtx),sxyib(mtx) 
 
      real*8 zk1,zk2,zk3,zk4,zk5,zk6,zk7,zk8,zk9,zk10,zk83,zk93 
      REAL*8 q1,q2,q3, e, er1,er2 
      REAL*8 e8,e9,e10,e11,e61,e62,e71,e72 
 
      common /o1a/a1 
      common /o1b/lyr 
      common /o2/r,h 
      common /o3/kki,kkj,intfc1,intfc2,jdelams,jdelame 
      common /o4/mm /o19/i1,j1 
      COMMON /o5/q1,q2,q3,e,er1,er2 
      COMMON /o51/zk1,zk2,zk3,zk4,zk5,zk6,zk7,zk8,zk9,zk10,zk83,zk93 
      COMMON /o58/e8,e9,e10,e11,e61,e62,e71,e72 
 
      COMMON /o41/ sik, ck 
 
      common /o41a/nog 
      common /o42/si 
      common /o44/uu,vv,ssgx,ssgy,ssgxy 
      common /o45/uiu,viu,sxiu,syiu,sxyiu 
      common /o46/uil,vil,sxil,syil,sxyil 
      common /o47/uit,vit,sxit,syit,sxyit 
      common /o48/uib,vib,sxib,syib,sxyib 
 
*************************************** 
      write (*,*)'lyr=  ',lyr 
      GOTO (208,209,210) lyr 
 
  210      iia=intfc1/2 
           jja=kkj/2 
 
 
*      upper field calculation started 
           e=1.0 
           c=q1 
           c1=1.0-c 
           c2=1.0+c 
   zk6=(c1/2.0)/(c1+(2.0*r*r)) 
   zk7=(r*r)/(c1+(2.0*r*r)) 
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   zk9=(r*r)/(2.0*c) 
   zk10=(r*r*(2.0+c))/2.0 
 
   zk8=(r*r*h*h*c2)/(2.0*(c1+(2.0*r*r))) 
   p2=(c2*c2*r*r*r*h*h*h)/c 
 
      do 91 i = 2, intfc1-1 
        do 92 j = 2, kkj-1 
 
        IF(i .LE. iia .and. j .le. jja)then 
            x1=1.0 
            x2=1.0 
            x3=1.0 
            i0=1 
            j0=1 
        else IF(i .gt. iia .and. j .le. jja)then 
            x1=-1.0 
            x2=1.0 
            x3=-1.0 
            i0=-1 
            j0=1 
        else IF(i .gt. iia .and. j .gt. jja)then 
            x1=1.0 
            x2=-1.0 
            x3=-1.0 
            i0=-1 
            j0=-1 
        else IF(i .le. iia .and. j .gt. jja)then 
            x1=-1.0 
            x2=-1.0 
            x3=1.0 
            i0=1 
            j0=-1 
        else 
        endif 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
*........................................................... 
      uu(m1)=(9.0*si(m1)-12.0*si(m4)+3.0*si(m7)-12.0*si(m5)+16.0*si(m6) 
     +-4.0*si(m10)+3.0*si(m8)-4.0*si(m9)+si(m11))/(4.0*r*h*h*x1) 
 
      vv(m1)=(zk7*(si(m2)+si(m5))+zk6*(si(m3)+si(m4))-si(m1))/(-zk8) 
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      ssgx(m1)=(si(m1)*(6.*zk9-5.)+si(m4)*(6.-8.*zk9)+ 
     +si(m7)*(2.*zk9-3.)+si(m14)*0.5+si(m3)*1.5+si(m2)*(-3.*zk9)+ 
     +si(m12)*4.*zk9+si(m13)*(-zk9)+si(m5)*(-3.*zk9)+si(m6)*4.*zk9+ 
     +si(m10)*(-zk9))*e/(p2*x2) 
 
      ssgy(m1)=(si(m3)*(-1.5)+si(m1)*(5.0+6.0*zk10)-si(m4)*(6.+8.*zk10) 
     ++si(m7)*(3.0+2.*zk10)-si(m14)*0.5-si(m2)*3.*zk10+si(m12)*4.*zk10 
     +-si(m13)*zk10-si(m5)*3.*zk10+si(m6)*4.*zk10 
     +-si(m10)*zk10)*e/(-c*p2*x2) 
 
      ssgxy(m1)=(si(m2)*3.*zk9+si(m1)*(3.-10.*zk9)-si(m3)*1.5- 
     +si(m4)*1.5+si(m5)*(12.*zk9-4.)+si(m15)*2.+si(m6)*2.+ 
     +si(m8)*(1.-6.*zk9)-si(m16)*0.5- 
     +si(m9)*0.5+si(m17)*zk9)*(r*e/(p2*x3)) 
  92   continue 
  91  continue 
*  upper field finished 
 
 
*      upper interface calculation started 
*           iid=intfc1 
           jjd=kkj/2 
           e=(1.0+er1)/2 
           c=(q1+q2)/2 
           c1=1.0-c 
           c2=1.0+c 
   zk6=(c1/2.0)/(c1+(2.0*r*r)) 
   zk7=(r*r)/(c1+(2.0*r*r)) 
   zk9=(r*r)/(2.0*c) 
   zk10=(r*r*(2.0+c))/2.0 
 
   zk8=(r*r*h*h*c2)/(2.0*(c1+(2.0*r*r))) 
   p2=(c2*c2*r*r*r*h*h*h)/c 
   e8=(r*r)/(2.0*((q1+q2)/2.0)) 
*          e9=(r*r)/(2.0*((q2+q3)/2.0)) 
          e10=(r*r*(2.0+((q1+q2)/2)))/2.0 
*          e11=(r*r*(2.0+((q2+q3)/2)))/2.0 
            e61=((1-((q1+q2)/2.0))/2.0)/((1-((q1+q2)/2.0))+(2.0*r*r)) 
*            e62=((1-((q2+q3)/2.0))/2.0)/((1-((q2+q3)/2.0))+(2.0*r*r)) 
            e71=(r*r)/((1-((q1+q2)/2.0))+(2.0*r*r)) 
*            e72=(r*r)/((1-((q2+q3)/2.0))+(2.0*r*r)) 
            e81=(r*r*h*h*(1.0+((q1+q2)/2.0)))/(2.0*((1.0-((q1+q2)/2)) 
     ++(2.0*r*r))) 
*           e82=(r*r*h*h*(1.0+((q2+q3)/2.0)))/(2.0*((1.0-((q2+q3)/2)) 
*     ++(2.0*r*r))) 
 
      i = intfc1 
        do 592 j = 2, kkj-1 
 
        IF(j .le. jjd)then 
            x1=1.0 
            x2=1.0 
            x3=1.0 
            i0=1 
            j0=1 
        else IF(j .gt. jjd)then 
            x1=-1.0 
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            x2=-1.0 
            x3=1.0 
            i0=1 
            j0=-1 
        else 
        endif 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
*........................................................... 
      uu(m1)=(9.0*si(m1)-12.0*si(m4)+3.0*si(m7)-12.0*si(m5)+16.0*si(m6) 
     +-4.0*si(m10)+3.0*si(m8)-4.0*si(m9)+si(m11))/(4.0*r*h*h*x1) 
 
      vv(m1)=(e71*(si(m2)+si(m5))+e61*(si(m3)+si(m4))-si(m1))/(-e81) 
 
      ssgx(m1)=(si(m1)*(6.*zk9-5.)+si(m4)*(6.-8.*zk9)+ 
     +si(m7)*(2.*zk9-3.)+si(m14)*0.5+si(m3)*1.5+si(m2)*(-3.*zk9)+ 
     +si(m12)*4.*zk9+si(m13)*(-zk9)+si(m5)*(-3.*zk9)+si(m6)*4.*zk9+ 
     +si(m10)*(-zk9))*e/(p2*x2) 
 
      ssgy(m1)=(si(m3)*(-1.5)+si(m1)*(5.0+6.0*e10)-si(m4)*(6.+8.*e10) 
     ++si(m7)*(3.0+2.*e10)-si(m14)*0.5-si(m2)*3.*e10+si(m12)*4.*e10 
     +-si(m13)*e10-si(m5)*3.*e10+si(m6)*4.*e10 
     +-si(m10)*e10)*e/(-c*p2*x2) 
 
      ssgxy(m1)=(si(m2)*3.*e8+si(m1)*(3.-10.*e8)-si(m3)*1.5- 
     +si(m4)*1.5+si(m5)*(12.*e8-4.)+si(m15)*2.+si(m6)*2.+ 
     +si(m8)*(1.-6.*e8)-si(m16)*0.5- 
     +si(m9)*0.5+si(m17)*e8)*(r*e/(p2*x3)) 
 592   continue 
*  upper interface calculation finished 
 
****  middle field  calculation started 
          iib=(intfc2+intfc1)/2 
          jjb=kkj/2 
           e=er1 
           c=q2 
           c1=1.0-c 
           c2=1.0+c 
   zk6=(c1/2.0)/(c1+(2.0*r*r)) 
   zk7=(r*r)/(c1+(2.0*r*r)) 
   zk9=(r*r)/(2.0*c) 
   zk10=(r*r*(2.0+c))/2.0 
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   zk8=(r*r*h*h*c2)/(2.0*(c1+(2.0*r*r))) 
   p2=(c2*c2*r*r*r*h*h*h)/c 
 
      do 93 i = intfc1+1,intfc2-1 
        do 94 j = 2, kkj-1 
 
        IF(i .LE. iib .and. j .le. jjb)then 
            x1=1.0 
            x2=1.0 
            x3=1.0 
            i0=1 
            j0=1 
        else IF(i .gt. iib .and. j .le. jjb)then 
            x1=-1.0 
            x2=1.0 
            x3=-1.0 
            i0=-1 
            j0=1 
        else IF(i .gt. iib .and. j .gt. jjb)then 
            x1=1.0 
            x2=-1.0 
            x3=-1.0 
            i0=-1 
            j0=-1 
        else IF(i .LE. iib .and. j .gt. jjb)then 
            x1=-1.0 
            x2=-1.0 
            x3=1.0 
            i0=1 
            j0=-1 
        else 
        endif 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
*............................................................ 
      uu(m1)=(9.0*si(m1)-12.0*si(m4)+3.0*si(m7)-12.0*si(m5)+16.0*si(m6) 
     + -4.0*si(m10)+3.0*si(m8)-4.0*si(m9)+si(m11))/(4.0*r*h*h*x1) 
 
      vv(m1)=(zk7*(si(m2)+si(m5))+zk6*(si(m3)+si(m4))-si(m1))/(-zk8) 
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      ssgx(m1)=(si(m1)*(6*zk9-5)+si(m4)*(6.-8.*zk9)+si(m7)*(2*zk9-3) 
     ++si(m14)*0.5+si(m3)*1.5+si(m2)*(-3*zk9)+si(m12)*4.*zk9 
     ++si(m13)*(-zk9)+si(m5)*(-3.*zk9)+si(m6)*4.*zk9 
     ++si(m10)*(-zk9))*e*x2/(p2) 
 
      ssgy(m1)=(si(m3)*(-1.5)+si(m1)*(5.0+6.0*zk10)-si(m4)*(6.+8.*zk10) 
     +  +si(m7)*(3.0+2.*zk10)-si(m14)*0.5-si(m2)*3.*zk10+si(m12)*4.*zk10 
     +  -si(m13)*zk10-si(m5)*3.*zk10+si(m6)*4.*zk10 
     +  -si(m10)*zk10)*e/(-c*p2*x2) 
 
      ssgxy(m1)=(si(m2)*3.*zk9+si(m1)*(3.-10.*zk9)-si(m3)*1.5-si(m4)*1.5 
     +   +si(m5)*(12.*zk9-4.)+si(m15)*2.+si(m6)*2.+si(m8)*(1.-6.*zk9) 
     +   -si(m16)*0.5-si(m9)*0.5+si(m17)*zk9)*(r*e/(p2*x3)) 
  94   continue 
  93  continue 
****  middle field calculation finished 
 
****  lower interface  calculation started 
*          iie=intfc2 
          jje=kkj/2 
           e=(er1+er2)/2 
           c=(q2+q3)/2 
           c1=1.0-c 
           c2=1.0+c 
   zk6=(c1/2.0)/(c1+(2.0*r*r)) 
   zk7=(r*r)/(c1+(2.0*r*r)) 
   zk9=(r*r)/(2.0*c) 
   zk10=(r*r*(2.0+c))/2.0 
 
   zk8=(r*r*h*h*c2)/(2.0*(c1+(2.0*r*r))) 
   p2=(c2*c2*r*r*r*h*h*h)/c 
*   e8=(r*r)/(2.0*((q1+q2)/2.0)) 
          e9=(r*r)/(2.0*((q2+q3)/2.0)) 
*          e10=(r*r*(2.0+((q1+q2)/2)))/2.0 
          e11=(r*r*(2.0+((q2+q3)/2)))/2.0 
*            e61=((1-((q1+q2)/2.0))/2.0)/((1-((q1+q2)/2.0))+(2.0*r*r)) 
            e62=((1-((q2+q3)/2.0))/2.0)/((1-((q2+q3)/2.0))+(2.0*r*r)) 
*            e71=(r*r)/((1-((q1+q2)/2.0))+(2.0*r*r)) 
            e72=(r*r)/((1-((q2+q3)/2.0))+(2.0*r*r)) 
*            e81=(r*r*h*h*(1.0+((q1+q2)/2.0)))/(2.0*((1.0-((q1+q2)/2)) 
*     ++(2.0*r*r))) 
           e82=(r*r*h*h*(1.0+((q2+q3)/2.0)))/(2.0*((1.0-((q2+q3)/2)) 
     ++(2.0*r*r))) 
 
 
       i = intfc2 
        do 594 j = 2, kkj-1 
 
        IF(j .le. jje)then 
            x1=1.0 
            x2=1.0 
            x3=1.0 
            i0=1 
            j0=1 
        else IF(j .gt. jje)then 
            x1=-1.0 
            x2=-1.0 
            x3=+1.0 
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            i0=+1 
            j0=-1 
        else 
        endif 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
*............................................................ 
      uu(m1)=(9.0*si(m1)-12.0*si(m4)+3.0*si(m7)-12.0*si(m5)+16.0*si(m6) 
     + -4.0*si(m10)+3.0*si(m8)-4.0*si(m9)+si(m11))/(4.0*r*h*h*x1) 
 
      vv(m1)=(e72*(si(m2)+si(m5))+e62*(si(m3)+si(m4))-si(m1))/(-e82) 
 
      ssgx(m1)=(si(m1)*(6*zk9-5)+si(m4)*(6.-8.*zk9)+si(m7)*(2*zk9-3) 
     ++si(m14)*0.5+si(m3)*1.5+si(m2)*(-3*zk9)+si(m12)*4.*zk9 
     ++si(m13)*(-zk9)+si(m5)*(-3.*zk9)+si(m6)*4.*zk9 
     ++si(m10)*(-zk9))*e*x2/(p2) 
 
      ssgy(m1)=(si(m3)*(-1.5)+si(m1)*(5.0+6.0*e11)-si(m4)*(6.+8.*e11) 
     +  +si(m7)*(3.0+2.*e11)-si(m14)*0.5-si(m2)*3.*e11+si(m12)*4.*e11 
     +  -si(m13)*e11-si(m5)*3.*e11+si(m6)*4.*e11 
     +  -si(m10)*e11)*e/(-c*p2*x2) 
 
      ssgxy(m1)=(si(m2)*3.*e9+si(m1)*(3.-10.*e9)-si(m3)*1.5-si(m4)*1.5 
     +   +si(m5)*(12.*e9-4.)+si(m15)*2.+si(m6)*2.+si(m8)*(1.-6.*e9) 
     +   -si(m16)*0.5-si(m9)*0.5+si(m17)*e9)*(r*e/(p2*x3)) 
 594   continue 
****  lower interface calculation finished 
 
****  lower field  calculation started 
          iic=(kki+intfc2)/2 
          jjc=kkj/2 
           e=er2 
           c=q3 
           c1=1.0-c 
           c2=1.0+c 
   zk6=(c1/2.0)/(c1+(2.0*r*r)) 
   zk7=(r*r)/(c1+(2.0*r*r)) 
   zk9=(r*r)/(2.0*c) 
   zk10=(r*r*(2.0+c))/2.0 
 
   zk8=(r*r*h*h*c2)/(2.0*(c1+(2.0*r*r))) 
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   p2=(c2*c2*r*r*r*h*h*h)/c 
 
      do 95 i = intfc2+1,kki-1 
        do 996 j = 2, kkj-1 
 
        IF(i .LE. iic .and. j .le. jjc)then 
            x1=1.0 
            x2=1.0 
            x3=1.0 
            i0=1 
            j0=1 
        else IF(i .gt. iic .and. j .le. jjc)then 
            x1=-1.0 
            x2=1.0 
            x3=-1.0 
            i0=-1 
            j0=1 
        else IF(i .gt. iic .and. j .gt. jjc)then 
            x1=1.0 
            x2=-1.0 
            x3=-1.0 
            i0=-1 
            j0=-1 
        else IF(i .LE. iic .and. j .gt. jjc)then 
            x1=-1.0 
            x2=-1.0 
            x3=1.0 
            i0=1 
            j0=-1 
        else 
        endif 
 
             m1 = a1(i,j) 
             m2 = a1(i-i0,j) 
             m3 = a1(i,j-j0) 
             m4 = a1(i,j+j0) 
             m5 = a1(i+i0,j) 
             m6 = a1(i+i0,j+j0) 
             m7 = a1(i,j+2*j0) 
             m8 = a1(i+2*i0,j) 
             m9 = a1(i+2*i0,j+j0) 
             m10=a1(i+i0,j+2*j0) 
             m11=a1(i+2*i0,j+2*j0) 
             m12=a1(i-i0,j+j0) 
             m13=a1(i-i0,j+2*j0) 
             m14=a1(i,j+3*j0) 
             m15=a1(i+i0,j-j0) 
             m16=a1(i+2*i0,j-j0) 
             m17=a1(i+3*i0,j) 
 
*............................................................ 
      uu(m1)=(9.0*si(m1)-12.0*si(m4)+3.0*si(m7)-12.0*si(m5)+16.0*si(m6) 
     + -4.0*si(m10)+3.0*si(m8)-4.0*si(m9)+si(m11))/(4.0*r*h*h*x1) 
 
      vv(m1)=(zk7*(si(m2)+si(m5))+zk6*(si(m3)+si(m4))-si(m1))/(-zk8) 
 
      ssgx(m1)=(si(m1)*(6*zk9-5)+si(m4)*(6.-8.*zk9)+si(m7)*(2*zk9-3) 
     ++si(m14)*0.5+si(m3)*1.5+si(m2)*(-3*zk9)+si(m12)*4.*zk9 
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     ++si(m13)*(-zk9)+si(m5)*(-3.*zk9)+si(m6)*4.*zk9 
     ++si(m10)*(-zk9))*e*x2/(p2) 
 
      ssgy(m1)=(si(m3)*(-1.5)+si(m1)*(5.0+6.0*zk10)-si(m4)*(6.+8.*zk10) 
     +  +si(m7)*(3.0+2.*zk10)-si(m14)*0.5-si(m2)*3.*zk10+si(m12)*4.*zk10 
     +  -si(m13)*zk10-si(m5)*3.*zk10+si(m6)*4.*zk10 
     +  -si(m10)*zk10)*e/(-c*p2*x2) 
 
      ssgxy(m1)=(si(m2)*3.*zk9+si(m1)*(3.-10.*zk9)-si(m3)*1.5-si(m4)*1.5 
     +   +si(m5)*(12.*zk9-4.)+si(m15)*2.+si(m6)*2.+si(m8)*(1.-6.*zk9) 
     +   -si(m16)*0.5-si(m9)*0.5+si(m17)*zk9)*(r*e/(p2*x3)) 
  996  continue 
  95   continue 
 
  110 WRITE(*,*)'lyr = ',lyr 
 
*      upper interface double calculation started     upper interface double calculation started          
upper interface double calculation started 
             c121=(q1-1)/((1+q1)*r*r*h*h) 
             c131=-2/((1+q1)*h*h) 
             c161=(2+q1)/((1+q1)*(1+q1)*2*r*h*h*h) 
             c171=1/((1+q1)*(1+q1)*2*r*r*r*h*h*h) 
             c181=q1/((1+q1)*(1+q1)*2*r*r*h*h*h) 
             c191=1/((1+q1)*(1+q1)*2*h*h*h) 
             d131=-6*c181-c191 
             d141=8*c181+3*c191 
             d151=-2*c181-3*c191 
 
             c122=(q2-1)/((1+q2)*r*r*h*h) 
             c132=-2/((1+q2)*h*h) 
             c162=(2+q2)/((1+q2)*(1+q2)*2*r*h*h*h) 
             c172=1/((1+q2)*(1+q2)*2*r*r*r*h*h*h) 
             c182=q2/((1+q2)*(1+q2)*2*r*r*h*h*h) 
             c192=1/((1+q2)*(1+q2)*2*h*h*h) 
             d132=-6*c182-c192 
             d142=8*c182+3*c192 
             d152=-2*c182-3*c192 
 
             c123=(q3-1)/((1+q3)*r*r*h*h) 
             c133=-2/((1+q3)*h*h) 
             c163=(2+q3)/((1+q3)*(1+q3)*2*r*h*h*h) 
             c173=1/((1+q3)*(1+q3)*2*r*r*r*h*h*h) 
             c183=q3/((1+q3)*(1+q3)*2*r*r*h*h*h) 
             c193=1/((1+q3)*(1+q3)*2*h*h*h) 
             d133=-6*c183-c193 
             d143=8*c183+3*c193 
             d153=-2*c183-3*c193 
 
*..............needed only for Calc....for sigx calc... 
             c141=1/((1+q1)*(1+q1)*2*r*h*h*h) 
             c151=q1/((1+q1)*(1+q1)*2*r*r*r*h*h*h) 
 
             c142=1/((1+q2)*(1+q2)*2*r*h*h*h) 
             c152=q2/((1+q2)*(1+q2)*2*r*r*r*h*h*h) 
 
             c143=1/((1+q3)*(1+q3)*2*r*h*h*h) 
             c153=q2/((1+q3)*(1+q3)*2*r*r*r*h*h*h) 
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*..............needed only for Calc....for sigx calc... 
          jjm=kkj/2 
 
       i = intfc1 
        do 591 j = 2, kkj-1 
 
        IF(j .le. jjm)then 
            x1=1.0 
            i0=1 
            j0=1 
        else IF(j .gt. jjm)then 
            x1=-1.0 
            i0=1 
            j0=-1 
        else 
        endif 
 
             m1 = a1(i,j) 
             m2 = a1(i,j+j0) 
             m3 = a1(i,j-j0) 
             m4 = a1(i-i0,j-j0) 
             m5 = a1(i-i0,j) 
             m6 = a1(i-i0,j+j0) 
             m7 = a1(i-2*i0,j-j0) 
             m8 = a1(i-2*i0,j) 
             m9 = a1(i-2*i0,j+j0) 
             m10 = a1(i-3*i0,j) 
             m11 = a1(i+i0,j-j0) 
             m12 = a1(i+i0,j) 
             m13 = a1(i+i0,j+j0) 
             m14 = a1(i+2*i0,j-j0) 
             m15 = a1(i+2*i0,j) 
             m16 = a1(i+2*i0,j+j0) 
             m17 = a1(i+3*i0,j) 
*             m18 = a1(i-3*i0,j-j0) 
             m19 = a1(i-3*i0,j+j0) 
*             m20 = a1(i+3*i0,j-j0) 
             m21 = a1(i+3*i0,j+j0) 
             m22 = a1(i,j+2*j0) 
             m23 = a1(i+i0,j+2*j0) 
             m24 = a1(i+2*i0,j+2*j0) 
             m25 = a1(i-i0,j+2*j0) 
             m26 = a1(i,j+3*j0) 
             m27 = a1(i-2*i0,j+2*j0) 
             m28 = a1(i-3*i0,j+2*j0) 
             m29 = a1(i+3*i0,j+2*j0) 
 
 
*  New Calc formula   for interface  Upperbody..... 
 
      uiu(m1)=(1.0/(4.0*r*h*h))*x1*(-9.*si(m1)+12.*si(m2)-3.*si(m22)+ 
     +12.*si(m5)-16.*si(m6)+4.*si(m25)-3.*si(m8)+4.*si(m9)-si(m27)) 
 
      viu(m1)=(-2.*c121+2.*c131)*si(m1)+c121*si(m2)+c121*si(m3)- 
     +  5.*c131*si(m5)+4.*c131*si(m8)-c131*si(m10) 
 
      sxiu(m1)=x1*((-6.*c141-10.*c151)*si(m1)+(8.*c141+12.*c151)*si(m2)+ 
     +  3.*c151*si(m3)+(-2.*c141-6.*c151)*si(m22)+c151*si(m26)+ 
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     +  15.*c141*si(m5)-20.*c141*si(m6)+5.*c141*si(m25)-12.*c141*si(m8)+ 
     +  16.*c141*si(m9)-4.*c141*si(m27)+3.*c141*si(m10)-4.*c141*si(m19)+ 
     +  c141*si(m28)) 
 
      syiu(m1)=x1*((6.*c161-10.*c171)*si(m1)+(-8.*c161+12.*c171)*si(m2)+ 
     +  3.*c171*si(m3)+(2.*c161-6.*c171)*si(m22)+c171*si(m26)- 
     +  15.*c161*si(m5)+20.*c161*si(m6)-5.*c161*si(m25)+12.*c161*si(m8)- 
     +  16.*c161*si(m9)+4.*c161*si(m27)-3.*c161*si(m10)+4.*c161*si(m19)- 
     +  c161*si(m28)) 
 
      sxyiu(m1)=d131*si(m1)+3.*c181*si(m2)+3.*c181*si(m3)- 
     +  4.*c181*si(m4)+d141*si(m5)-4.*c181*si(m6)+c181*si(m7)+ 
     +  d151*si(m8)+c181*si(m9)+c191*si(m10) 
 
*  New Calc formula for interface Lowerbody..... 
 
      uil(m1)=(1.0/(4.0*r*h*h))*x1*(9.*si(m1)-12.*si(m2)+3.*si(m22)- 
     +12.*si(m12)+16.*si(m13)-4.*si(m23)+3.*si(m15)-4.*si(m16)+si(m24)) 

 
      vil(m1)=(-2.*c122+2.*c132)*si(m1)+c122*si(m2)+c122*si(m3)- 
     +  5.*c132*si(m12)+4.*c132*si(m15)-c132*si(m17) 
 
      sxil(m1)=x1*((-6.*c142-10.*c152)*si(m1)+(8.*c142+12.*c152)*si(m2)+ 
     +  3.*c152*si(m3)+(-2.*c142-6.*c152)*si(m22)+c152*si(m26)+ 
     +  15.*c142*si(m12)-20.*c142*si(m13)+5.*c142*si(m23)- 
     +  12.*c142*si(m15)+16.*c142*si(m16)- 
     +  4.*c142*si(m24)+3.*c142*si(m17)-4.*c142*si(m21)+ 
     +  c142*si(m29))*er1 
 
      syil(m1)=x1*((6.*c162-10.*c172)*si(m1)+(-8.*c162+12.*c172)*si(m2)+ 
     +  3.*c172*si(m3)+(2.*c162-6.*c172)*si(m22)+c172*si(m26)- 
     +  15.*c162*si(m12)+20.*c162*si(m13)-5.*c162*si(m23)+ 
     +  12.*c162*si(m15)-16.*c162*si(m16)+ 
     +  4.*c162*si(m24)-3.*c162*si(m17)+4.*c162*si(m21)- 
     +  c162*si(m29))*er1 
 
      sxyil(m1)=(-d132*si(m1)-3.*c182*si(m2)-3.*c182*si(m3)+ 
     +  4.*c182*si(m11)-d142*si(m12)+4.*c182*si(m13)-c182*si(m14)- 
     +  d152*si(m15)-c182*si(m16)-c192*si(m17))*er1 
      IF(m1 .EQ. 192) WRITE(*,*) m1, uiu(m1),uil(m1) 
 591  continue 
*  upper interface calculation finished 
 
*      lower interface double calculation started        *      lower interface double calculation started          
*      lower interface double calculation started 
 
           jjn=kkj/2 
 
       i = intfc2 
        do 593 j = 2, kkj-1 
 
        IF(j .le. jjn)then 
            x1=1.0 
            i0=1 
            j0=1 
        else IF(j .gt. jjn)then 
            x1=-1.0 
            i0=1 
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            j0=-1 
        else 
        endif 
 
 
             m1 = a1(i,j) 
             m2 = a1(i,j+j0) 
             m3 = a1(i,j-j0) 
             m4 = a1(i-i0,j-j0) 
             m5 = a1(i-i0,j) 
             m6 = a1(i-i0,j+j0) 
             m7 = a1(i-2*i0,j-j0) 
             m8 = a1(i-2*i0,j) 
             m9 = a1(i-2*i0,j+j0) 
             m10 = a1(i-3*i0,j) 
             m11 = a1(i+i0,j-j0) 
             m12 = a1(i+i0,j) 
             m13 = a1(i+i0,j+j0) 
             m14 = a1(i+2*i0,j-j0) 
             m15 = a1(i+2*i0,j) 
             m16 = a1(i+2*i0,j+j0) 
             m17 = a1(i+3*i0,j) 
*             m18 = a1(i-3*i0,j-j0) 
             m19 = a1(i-3*i0,j+j0) 
*             m20 = a1(i+3*i0,j-j0) 
             m21 = a1(i+3*i0,j+j0) 
             m22 = a1(i,j+2*j0) 
             m23 = a1(i+i0,j+2*j0) 
             m24 = a1(i+2*i0,j+2*j0) 
             m25 = a1(i-i0,j+2*j0) 
             m26 = a1(i,j+3*j0) 
             m27 = a1(i-2*i0,j+2*j0) 
             m28 = a1(i-3*i0,j+2*j0) 
             m29 = a1(i+3*i0,j+2*j0) 
 
*  New Calc formula for interface  Upperbody..... 
 
      uit(m1)=(1.0/(4.0*r*h*h))*x1*(-9.*si(m1)+12.*si(m2)-3.*si(m22)+ 
     +12.*si(m5)-16.*si(m6)+4.*si(m25)-3.*si(m8)+4.*si(m9)-si(m27)) 
 
      vit(m1)=(-2.*c122+2.*c132)*si(m1)+c122*si(m2)+c122*si(m3)- 
     +  5.*c132*si(m5)+4.*c132*si(m8)-c132*si(m10) 
 
      sxit(m1)=x1*((-6.*c142-10.*c152)*si(m1)+(8.*c142+12.*c152)*si(m2)+ 
     +  3.*c152*si(m3)+(-2.*c142-6.*c152)*si(m22)+c152*si(m26)+ 
     +  15.*c142*si(m5)-20.*c142*si(m6)+5.*c142*si(m25)-12.*c142*si(m8)+ 
     +  16.*c142*si(m9)-4.*c142*si(m27)+3.*c142*si(m10)-4.*c142*si(m19)+ 
     +  c142*si(m28))*er1 
 
      syit(m1)=x1*((6.*c162-10.*c172)*si(m1)+(-8.*c162+12.*c172)*si(m2)+ 
     +  3.*c172*si(m3)+(2.*c162-6.*c172)*si(m22)+c172*si(m26)- 
     +  15.*c162*si(m5)+20.*c162*si(m6)-5.*c162*si(m25)+12.*c162*si(m8)- 
     +  16.*c162*si(m9)+4.*c162*si(m27)-3.*c162*si(m10)+4.*c162*si(m19)- 
     +  c162*si(m28))*er1 
 
      sxyit(m1)=(d132*si(m1)+3.*c182*si(m2)+3.*c182*si(m3)- 
     +  4.*c182*si(m4)+d142*si(m5)-4.*c182*si(m6)+c182*si(m7)+ 
     +  d152*si(m8)+c182*si(m9)+c192*si(m10))*er1 
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*  New Calc formula for interface Lowerbody..... 
 
      uib(m1)=(1.0/(4.0*r*h*h))*x1*(9.*si(m1)-12.*si(m2)+3.*si(m22)- 
     +12.*si(m12)+16.*si(m13)-4.*si(m23)+3.*si(m15)-4.*si(m16)+si(m24)) 
 
      vib(m1)=(-2.*c123+2.*c133)*si(m1)+c123*si(m2)+c123*si(m3)- 
     +  5.*c133*si(m12)+4.*c133*si(m15)-c133*si(m17) 
 
      sxib(m1)=x1*((-6.*c143-10.*c153)*si(m1)+(8.*c143+12.*c153)*si(m2)+ 
     +  3.*c153*si(m3)+(-2.*c143-6.*c153)*si(m22)+c153*si(m26)+ 
     +  15.*c143*si(m12)-20.*c143*si(m13)+5.*c143*si(m23)- 
     +  12.*c143*si(m15)+16.*c143*si(m16)- 
     +  4.*c143*si(m24)+3.*c143*si(m17)-4.*c143*si(m21)+ 
     +  c143*si(m29))*er2 
 
      syib(m1)=x1*((6.*c163-10.*c173)*si(m1)+(-8.*c163+12.*c173)*si(m2)+ 
     +  3.*c173*si(m3)+(2.*c163-6.*c173)*si(m22)+c173*si(m26)- 
     +  15.*c163*si(m12)+20.*c163*si(m13)-5.*c163*si(m23)+ 
     +  12.*c163*si(m15)-16.*c163*si(m16)+ 
     +  4.*c163*si(m24)-3.*c163*si(m17)+4.*c163*si(m21)- 
     +  c163*si(m29))*er2 
 
      sxyib(m1)=(-d133*si(m1)-3.*c183*si(m2)-3.*c183*si(m3)+ 
     +  4.*c183*si(m11)-d143*si(m12)+4.*c183*si(m13)-c183*si(m14)- 
     +  d153*si(m15)-c183*si(m16)-c193*si(m17))*er2 
 
      IF(m1.EQ.1627)WRITE(*,616)m1,c142,c143,c152,c153,sxit(m1),sxib(m1) 
      IF(m1.EQ.1628)WRITE(*,616)m1,c142,c143,c152,c153,sxit(m1),sxib(m1) 
      IF(m1.EQ.1629)WRITE(*,616)m1,c142,c143,c152,c153,sxit(m1),sxib(m1) 
 616  FORMAT(1x, i5,6e12.4) 
 593  continue 
*  lower interface calculation finished 
 
      return 
      end 
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APPENDIX-A 

Tables required for input data files 

Table A1: Selection of boundary conditions 

ktb kpc kdc ktc 

value control value control value control value control 

1 un, ut 1 

 

0  -1 n 

2 un, σt 2 

 

1  1 t 

3 σn, ut 3 

 

-1  0 n, t 

4 σn, σt 4 

 

  2 (skip) 

 

 

t t 

t t 

n 

n n 

n 

t t 

t t 

n 

n n 

n 

n n 

n n 

t 

t t 

t 

n n 

n n 

t 

t t 

t 
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APPENDIX-A 

Table A2: Selection of boundary conditions for excess points 

it 
ipc idc ivs 

value control value control value control 

Serial number of 

the boundary 

point 

corresponding to 

the additional or 

previously 

omitted boundary 

or for given ψ 

values 

1 

 

0 
lp=l(ij+0) 

mp=m(ij+0) 

1 ut 

2 un 

2 

 

1 
lp=l(ij+1) 

mp=m(ij+1) 

3 σn 

4 σt 

3 

 

-1 
lp=l(ij-1) 

mp=m(ij-1) 
5 

Declaration 

of ψ values 

[Note: For comprehensive understanding of these two tables (Table A1 and A2) 

reference [27] can be looked into] 
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