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Abstract

Physical activity is an important factor that is considered for the prevention of diseases like

diabetes or hypertension and for rehabilitation. Besides the advancement of technology and

availability of smart-phones creates the opportunity to utilize the power of smartphone’s sen-

sors, for example, accelerometers, to support cost-effective behavioral intervention to promote

physical activities. In this thesis, we attempt to identify basic physical activities of a user

from smartphone’s 3D accelerometer data and then suggest the user through mobile phone

notifications the recommended level of physical activities he/she should undergo.

In our work, we analyze an existing dataset containing accelerometer data with labeled

physical activities, namely standing, walking, stair-up and stair-down and a few others, and

learn the patterns identifying various activities. Once the patterns are learned, we identify series

of activities that a certain user performs from its mobile phone accelerometer data determining

what portion of time the user spends in what activities. Based on this information, we develop

suggestions of performing activities for that user by analyzing his/her current and required

amount of physical activities within a time window using some predefined standard (amount of

activities he/she must undergoes to be fit and healthy). These suggestions are propagated to

the user suggesting him/her to make further engagement in physical activities through mobile

notification system.
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Chapter 1

Introduction

Regular Physical activity is essential for physical and mental wellness of almost everyone. Being

physically active helps one to become pro-active and to stay independent. Regular physical

activity over long periods of time can produce long-term health benefits also. Hence health

experts say that every single person should be active every day to maintain their health. In

addition, regular exercise and physical activity can reduce the risk of developing some diseases

and disabilities that develop as people grow older. In some cases, exercise is an effective

treatment for many chronic illness such as arthritis, heart disease, diabetes and so on [1].

Exercise also helps people with high blood pressure, balance problems, or difficulty in walking.

It can be said that to lead a serene life, physical activities plays an undeniable role.

Due to daily work pressure and sometimes because of human nature, most often people

forget to take part in doing certain amount of physical activities. Hence there is a need for a

reminder that will motivate every individual to perform regular activities.

1.1 Motivation

With the advancement of technology during the last decade the evolution and availability of

inexpensive and wearable sensors such as the accelerometer, GPS receptor, cameras and mi-

crophones along with computational expansion in terms of both hardware and software, has

unlocked a new field of opportunities in the mobile applications domain. These mentioned

1



CHAPTER 1. INTRODUCTION 2

sensors can be easily found in any smartphone, widespread in almost all the mobile telecom-

munications markets. This sensoring world is changing the paradigm of human relation with

machines.

As said earlier, physical activity plays an important role by decreasing risk of obesity,

diabetes, hypertension and many other chronic diseases [1]. The availability of smartphones

pave the way to support cost-effective behavioral intervention to promote physical activities.

Smartphones can potentially help encourage people to exercise and record their physical

activity. As these are equipped with powerful sensors as accelerometers, gyroscopes, and orien-

tation sensors, these can be used to recognize, monitor and recommend various types of physical

activities. Different sensor readings can indicate different kinds of activity. For examples, un-

changing accelerations over time can indicate sedentary activity such as sitting or standing,

whereas sharply varying vertical accelerations can indicate running or climbing stairs. Most

often obese people and diabetic patients have to do a certain amount of exercise every day to

lose their weight and to control their blood sugar level respectively [2, 3]. Not only for them

but also for everyone, smartphones become the best tool to record individuals daily activities,

because people usually carry their phones every day and everywhere. Hence people could check

out their daily activity record on the phone at the end of each day or at some free times of a

day, and they will have a clear picture of their physical activity performance during the day.

Moreover smartphones can be used to suggest each of these individuals about their lacking in

physical activities and can be used to recommend certain amount of activities that will fulfill

the lacking.

1.2 Contribution of this Thesis

The overall goal of this thesis is the development of a physical activity recommendation system,

with two main objectives. On the one hand, the goal is to monitor how far individuals meet

professional recommendations. This means the intensity estimation of performed activities: to

distinguish activities of light, moderate and vigorous effort. On the other hand, to provide
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suggestion to maintain a healthy rate of involvement in physical activities. In this thesis, we

attempt to identify basic physical activities of a user from smartphones accelerometer data and

then suggest the user through mobile phone notifications the recommended level of physical

activities he/she should undergo.

We build this model from a dataset collected for previous works in heterogenity in activity

recognition [4] having as inputs the timestamps, the X, Y, Z axes acceleration values and a label

of which activity is taking place for each record. The framework for the development of feature

extraction relies on the knowledge about each activity considered in order to capture relevant

characteristics aiming the best discrimination between activities. Then we find a modeling

approach for physical activity recognition that enables the minimization of the number of

features needed to have a good classification model. We have tried out various state of the

art activity recognition classification and selected the one which suits our objective. We build

the activity suggestion system that will provide suggestion by calculating the need of physical

activities an user must undergo to maintain a balanced life on regular intervals. This system

will communicate with the user by invoking notifications in the smartphones of them.

The contribution of our thesis can be summarized as follows:

• We classify physical activities from smartphones accelerometer dataset.

• We measure the level of the extracted activities (energy expenditure) within a time win-

dow.

• We generate suggestions by analyzing users current and required amount of performing

activities on the basis of predefined standard.

• We calculate the number of notifications for notifying users to motivate them in perform-

ing suggested amount of activities.

The remainder of this thesis is organized as follows. Chapter 2 introduces some related works.

Chapter 3 describes Activity Recognition using 3D accelerometer data in details. Chapter 4
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discusses the Notification and Suggestion system in brief. Chapter 5 provides some evaluation

of the system with different cases. Conclusion and future work are discussed in Chapter 6.



Chapter 2

Background and Related Work

More attention has been paid to activity recognition in the field of mobile communication

because of the increasing availability of accelerometers in consumer products, like smart-phones,

and because of its many potential applications. In this chapter we start the work by analyzing

the state of the art of activity recognition based on accelerometer data. In relation to the

background about this topic the overview can be found in section 2.1.

The data mining approach for activity recognition involves many techniques as feature

extraction and learning methods. The feature extraction paradigm is approached in section

2.2 along with classification techniques. Finally in section 2.4 we point out various monitoring

research works that are carried away by the researchers in recent times.

2.1 Accelerometer Sensor based Activity Recognition

In order to deal with activity recognition based on accelerometer data, there exist numerous

numbers of approaches though it can be said as a topic of recent interest. The common approach

to the single user activity recognition problem [5, 6, 7], is to apply the techniques proposed via

a two-stage process. First they collected accelerometer raw data by extracting from a batches

of data (normally called sliding windows) and derived features from them. Then they have

applied one or more classifiers to recognize different activities considered in their works.

Bao & Intille [5] have the most referenced work in this topic and can be found almost in all

5
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the works done after 2004. They have collected a sample from 20 subjects in an unsupervised

way, using a network of sensor placed simultaneously in different parts of the body. In this work

[5] they have two conclusions very important for the direction of the research done afterward.

The first indicates that there are good possibilities to create a generalized model. Secondly

they have concluded that the most discriminative accelerometer in terms of which activity is

taking place was placed on the hip, what can be a good indicator for the pocket in pants is

a good placement to collect the input data for the purpose of having a good model and this

conclusions can be also found on other works [7].

In another study, Krishnan et al. [7] examined seven lower body activities using data col-

lected from ten subjects wearing three accelerometers. This method was tested in supervised

and semi-naturalistic settings. Tapia et al. [8] collected data from five accelerometers placed

on various body locations for twenty-one users and used this data to implement a real-time

system to recognize thirty gymnasium activities. A slight increase in performance was made by

incorporating data from a heart monitor in addition to the accelerometer data. Mannini and

Sabitini [9] used five triaxial accelerometers attached to the hip, wrist, arm, ankle, and thigh

in order to recognize twenty activities from thirteen users. Various learning methods were used

to recognize three postures (lying, sitting, and standing) and five movements (walking, stair

climbing, running, and cycling). Foerster and Fahrenberg [10] used data from five accelerom-

eters in one set of experiments and from two of those accelerometers in another for activity

recognition. Thirty one male subjects participated in the study and a hierarchical classification

model was built in order to distinguish between postures such as sitting and lying at specific

angles, and motions such as walking and climbing stairs at different speeds. Subramayana et.

al. [11] addressed similar activities by building a model using data from a tri-axial accelerom-

eter, two micro-phones, photo-transistors, temperature and barometric pressure sensors, and

GPS to distinguish between a stationary state, walking, jogging, driving a vehicle, and climbing

up and down stairs.

While these systems using multiple accelerometers or a combination of accelerometers and

other sensors were capable of identifying a wide range of activities, they are not very practical
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because they involve the user wearing multiple sensors distributed across their body. This

could work for some short term, small scale, highly specialized applications (e.g., in a hospital

setting) but would certainly not work for the applications that we want to foresee.

Some researches have focused on the use of a single accelerometer for activity recognition.

Long, Yin, and Aarts [12] collected accelerometer data from twenty four users using a triaxial

accelerometer worn without regard for orientation at the users waist. Data was collected nat-

uralistically, and decision trees as well as a Bayes classifier combined with a Parzen window

estimator were used to recognize walking, jogging, running, cycling, and sports. Albert et.

al. [13] used a single accelerometer attached to the left waists of five users. Standing, sit-

ting, walking, lying, and running were all recognized with high accuracies using fuzzy c-means

classification.

Another approach was done by Miluzzo et al. [14] by the development of a mobile appli-

cation that involves several classifiers, some of them working on the phone and some back-end

classifiers, producing several levels of classification. The mobile, from the raw accelerometer

data collected by the built in accelerometer, calculates the mean, the standard deviation of

the acceleration and the number of peaks in each batch of data, applying the sequence based

sliding windows [15]. Fom these features they propose a decision tree was trained using J48

in WEKA workbench [16], to classify which activity is taking place. In this work they deal

with the activity recognition problem in a different framework from the previous works, where

all the sensoring and classification takes place on the mobile device that people already use,

but they dont deal with the mobile orientation problem, and the results in the test dataset are

not that good. Yang [17] developed an activity recognition system using the Nokia N95 phone

to distinguish between sitting, standing, walking, running, driving, and bicycling. This work

also explored the use of an activity recognition model to construct physical activity diaries for

the users. Lin et al. [18] focused on physical activity recognition by varying the position and

orientation of smart-phone and by using SVM classifier.
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2.2 Feature Extraction and Classification Techniques

To extract features and classify a dataset, the naive approach is to look inside a machine

learning software package, e.g. Weka Explorer, MATLAB, R and try to find the algorithm

that adjusts the best to the dataset. Although there are several proposals in literature and

software packages in order to deal with different kinds of problems and characteristics in the

datasets, there will be always a problem to deal with a noisy dataset and/or, even more, an

inadequate description of the space domain. There are already learning techniques to deal with

noisy dataset [19] as decision trees or k-NN but the construction of features that represent the

space in the optimal way, creating domains in the space represented without overlapping it will

always improve the results of a classifier.

Preece and Goulermas’ [20] work can be said as the main reference in terms of feature

extraction for this thesis once it is comparing different techniques to extract features. These

authors made a comparison of 14 different works where several feature extraction techniques, in

order to classify activities from accelerometer data, were classified as time-varying acceleration

signal, frequency analysis and wavelet analysis. Features extracted from the three axes as

means, standard deviation [21], first quartile and third quartile or correlations between axes

are commonly used for the classification process but they need some modifications in order to

be reliable in a real application environment. Bayat et al. [22] proposed a low pass filtering

mechanism and also provide suggestions about how to pick the features. He also compared

between various combination of classifiers that might induce more accurate result.

2.3 Activity Monitoring

There exist few works on activity monitoring and promotion. Vathsangam et al. [23] presented

a pilot study on using an application named Strive to monitor physical activity of users and

to motivate them to stay active. They provided some users with the app and advised them to

do their normal activities. After a week they collected the data from the users and show them

a visual (graphical demonstration) to point out the amount of activity they had undergone.
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By Showing these data they tried to motivate the users to become more active by looking into

their daily activity graph. Lane et al. [24] also developed a mobile application to monitor and

promote physical activity, social interaction and sleep time. Besides there are some other works

[25, 26] that also deal with monitoring and promotion facilities.



Chapter 3

Activity Recognition from 3D

Accelerometer Data

Our goal of this thesis is to promote and suggest physical activities to ensure the wellness

of the users. By frequent monitoring of users’ activities through the accelerometer reading

from their smartphones, we are able to provide suggestions on the basis of some benchmark

conditions (such as total calories burned on a given time period an so on). The system that we

build to support the goal is comprised of two major components: Activity Recognition System

and Activity Suggestion System. The first component is responsible for training a model for

activity recognition from a time series of 3D accelerometer data. It predicts users activity

sequence (using the trained model) by analyzing their smartphone’s accelerometer data. The

former component comprised of activity suggester and notification generator uses the sequence

of activities to determine an aggregated level of physical activities for an individual in terms

of some measurable quantity (i.e. amount of calorie expenditure). The activity suggester

suggests activities if the level of activities fall short a certain preset rate; the notification

generator generates the notification that contains the suggestions and propagates it to users’

smart-phones. The overall scenario can be depicted using the following Figure 3.1.

10
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Figure 3.1: Block Diagram of Overall System

In this chapter, we focus on the Activity Recognition system; we describe how to build a

model that can recognize different activities for a span of time from mobile phones accelerometer

data. As we use smartphone’s accelerometer to get data that comprised the basis of this work,

hence we start this chapter with the overview of accelerometer data.

3.1 Accelerometer Data

An accelerometer is a sensor that can measure the force acting upon it, be it from physical

acceleration or from the Earths gravity. Most accelerometers measure acceleration along either

2 (X and Y) or 3 axes (X, Y and Z)(Figure 3.2). The majority of smartphones are fitted with

a triaxial accelerometer (three axes), since the two most used smartphone software platforms

(Android and iPhone) require this type of sensor.

The accelerometer in smartphones is used by the operating system of the phone to perform

orientation-sensitive tasks (such as rotating the screen to match the view of the user), as well

as by various applications installed on the phone. With this useful capability already built into

the phone, our aim is to use this sensor for the task of capturing the forces acting on the phone

due to the owner’s activities. The data thus produced will be the starting point for training an

automated system to recognize the person’s activity from acceleration data.

For obtaining a system to recognize activities, we build upon the large body of work in the

Data Mining field [4]. The input data considered for this work will be streaming data from
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Figure 3.2: Accelerometer readings of a smartphone

accelerometer sensors collected from smartphones with Android systems (although the proposed

method could work just as well on alternative smartphones). More formally, the definition of our

initial problem is: from a stream of accelerometer data, Acc = {acc1, acc2, · · · , accn} with acci =

(accx, accyy, accz),we predict activities from a predefined set of activities A = {a1, a2, · · · , ak}.

We measure the aggregated level of physical activities an user is performing. On the basis

of this, we provide suggestion of doing further activities through mobile phone notification

system. After getting the accelerometer data as input we move onto the specific task of activity

recognition. The physical activity recognition process consists of several basic functionalities

or steps. These are described in the later sections of this chapter.

3.2 Overview of Activity Recognition System

The block diagram enlisted in Figure 3.3 simplifies the activity recognition process that we

used in our thesis.
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Figure 3.3: Block Diagram Activity Recognition Process

The detailed mechanism of Activity Recognition System is explained starting with Data

preparation in the following sections.

3.3 Data Preparation

3.3.1 Noise Reduction

Filtering noise out of sensor data is an important first step while working with any system. It

is quite common that accelerometer data possess noises. To mitigate its effect we applied a

low-pass filter [27]. A simple low-pass filter for data in time domain is a smoothing function.

In other words, the filtered signal is smoother and less dependent on short changes. We used

a low-pass filter to reduce the influence of sudden changes on the accelerometer data. It uses

a low-value filtering factor (β) to generate a value that uses 20% of the unfiltered acceleration

data and 80% of the previously filtered value. This factor was chosen empirically.

Lowaccx = β × Prevaccx + (1− β)× Curaccx

Lowaccy = β × Prevaccy + (1− β)× Curaccy

Lowaccz = β × Prevaccz + (1− β)× Curaccz
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where β = 0.8 and Prev, Cur and Low are previous, current and low pass filtered value of

input accelerometer data respectively.

3.3.2 Selection of Sliding Window

Classifying accelerometer data into physical activities falls under the general problem of dis-

crete time-series classification. In general, associating time-varying data with classes present

problems for machine learning algorithms inferring rules from a set of examples, where each

example is considered separately as an input vector with an output vector. This assumption,

that separating the examples produces no informational loss, requires careful construction of

the input vector. Importantly, the relevant temporal information included in the time-series

has to be accounted for. The most common way to account for this temporal information

in activity recognition [28] is to use a sliding-windows approach. It helps to make the model

actualized. This sampling decision can be a sequence-based window with a fixed dimension of

particular size or a timestamps-based window of a fixed duration as explained by Babcock et.

al [15].

The sequence-based window of size l consists in deciding a dimension, l, to extract infor-

mation from the incoming data. When new data arrives to the processor, it dismisses the older

data. Lets assume a data stream x1i, x2i, · · · , xni where i is the variable and a window of

dimension l , and l < i . The extraction of features in this case will start from 1 to l and then

when the l + 1 instance arrives the first instance is dismissed for this local classification.

To extract features, the main challenge is to decide a dimension of this window, but nor-

mally this decision is made from understanding the problem we are trying to classify, or from

recommendations if the literature related to the problem has already applied this technique.

Although there are different approaches to decide the dimension of this window, it is always

convenient to have in mind that longer windows will be richer in terms of information, thus

producing normally better features to be used in the classification process. Smaller windows

will have the ability to reflect more quickly different classes. There will be always a trade-

off between quality of features produced and the ability to recognize changes in terms of the
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classification. In our work we have selected this time window to be of 10 seconds in length.

Another consideration is the amount of jump between consecutive windows. However,

features extracted between two consecutive windows will not contain much new information and

will increase the running time of the algorithms. Previous research in activity recognition has

successfully employed 50% overlap between adjacent windows [29, 5]. We use this assumption

in our work too.

3.3.3 Feature Extraction

In order to get efficient activity classication, the feature extraction phenomena from smartphone

accelerometer is very crucial. We performed the features extraction for both time and frequency

domain, in order to understand which is the most important to do the classication. In the

time domain the features were based on the following studies [30] [31] and the features in the

frequency domain were based on [32] [33]. We have selected a total of 14 features for this thesis

work.

3.3.3.1 Time-domain Features

These are features derived directly from the window, and usually of a statistical nature. These

features include mean vector, standard deviation vector, euclidean norm of mean vector, eu-

clidean norm of the standard deviation, correlation values and 25th and 75th percentile values.

For our system we get time series accelerometer data indexed by time as input. Let acc(t)

be the time series data that comprised of data from 3 three axes and can be written as acct(t) =

(accx(t), accy(t), accz(t)). The number of data present in a sliding window is defined by N . We

can calculate the time-domain features as follow:

• Mean vector: The mean vector among x axis can be expressed as:

accx =
1

N

N∑
t=1

accx(t)

And similar expression follows for other axes.
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• Standard deviation vector: The standard deviation module of x axis component can

be written as:

σx =

√√√√ 1

N − 1

N∑
t=1

[accx(t)− accx]2

Similar kind of expression follows for other axes.

• Euclidean norm of mean vector: The module of mean vector can be calculated as:

||acc|| =
√
accx

2 + accy
2 + accz

2

• Euclidean norm of the standard deviation: The calculation of standard deviation

module of each component is as follows:

||σi|| =
√
σi
x
2 + σi

y
2 + σi

z
2

• Correlation values: The correlation helps to establish the relationship between the axes

and understand in which direction the signal presented a higher variation. The correlation

between two axis (x and y) is obtained as follows:

corrxy =
1

N − 1

N∑
t=1

accx(t)− accx
σx

× accy(t)− accy
σy

Similarly we can have expression for correlation between x, z and y, z axes.

3.3.3.2 Frequency-domain Features

These are features derived from the Fourier transform of the windowed data. These features

include the specific frequency components, the amplitude of spectrum, the peak frequency in

the spectrum and number of peak values under a certain value in the spectrum.

• FFT: A Fast Fourier Transform (FFT) is an algorithm to compute the discrete Fourier

transform (DFT) and its inverse. A Fourier transform converts time to frequency and vice
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versa; an FFT rapidly computes such transformations. The calculation of the Fast Fourier

Transform, that refers to a way the discrete Fourier Transform (DFT) can be calculated

efficiently, by using symmetries in the calculated terms. The symmetry is highest when

n is a power of 2, and the transform is therefore most efficient for these sizes. We have

done the DFT for y axis data only.

ACCYm =
N−1∑
n=0

accyne
−j 2π

N
mn

where m = 0, 1, 2, · · · , N − 1.

• Peak Frequency: Some activities produce quite clear peaks in the Fourier-spectra and

extracting features at these points lead to valuable features. To extract features at these

points a clear definition of what constitutes a peak needs to be formulated. In this thesis

a simple peak measure is used.

After extraction, all features were organized and normalized in a suitable manner for the

subsequent classication process.

3.4 Classification

After the step of data pre-processing and computation of all additional attributes for feature

extraction as described in previous section, the final attribute vector gets created. This attribute

vector is passed to the classification model which tries to recognize (classify) the appropriate

activity of the user.

3.4.1 Classification Techniques

There exists numerous numbers of classification techniques or we can say learning algorithms,

starting with simple Naive Bayes, k-Nearest Neighbors, Linear Regressions or non-linear models

as Decision Trees, Neural Networks and then moving to ensemble learning methods; it is easy

to achieve the conclusion that this area is already huge and growing. At the same time there
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is a concern in relation to the decision of which learning methodology should be implemented

to a specific problem. Here in our case we have gone through 4 classification models to predict

the incoming activities. They are: k-Nearest Neighbors, Generalized Linear Regression, SVM

and Random Forest model. They are discussed below:

3.4.1.1 Support Vector Machine (SVM)

First developed in the late seventies [34] support vector machines, or SVM, have received a

great deal of attention from the machine learning community. It has by now developed a

strong mathematical foundation and rigorous statistical analysis, which could be contrasted by

the previous methods which rely on heuristics or analogies of human learning. The idea behind

SVM is to find the plane which maximizes the margin between the input data of two classes.

As we intended to differentiate between more than two classes (here activities) we have to deal

with multi-class SVM classification formulation.

3.4.1.1.1 Multi-class SVM: As by nature SVM is a binary classifier, some technique has

to be applied to achieve multi-class classification. A simple approach is to train several binary

SVMs and combine their outputs into a single classification. To achieve this result two most

common methods are:

• One-against-one approach: This approach trains n(n − 1)/2 classifiers, where n is

the total number of classes that needs to be classified. Here each classifier is trained to

distinguish between two classes. The class that has been predicted by the majority of the

classifiers is considered to be the output of the complete classifier.

• One-against-all: This approach trains n classifiers, one for each label. Each single SVM

is trained with one class marked as positive and all other classes treated as negative. The

class of the SVM with the highest decision value is chosen as the output of the complete

classifier
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3.4.1.2 k-Nearest Neighbors

k-Nearest Neighbors algorithm (or k-NN for short) is a non-parametric method used for clas-

sification. Here the input consists of the k closest training examples in the feature space. In

k-NN classification, the output is a class membership. An object is classified by a majority vote

of its neighbors, with the object being assigned to the class most common among its k nearest

neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned

to the class of that single nearest neighbor. It is a type of instance-based learning, or lazy

learning, where the function is only approximated locally and all computation is deferred until

classification. The k-NN algorithm is among the simplest of all machine learning algorithms.

3.4.1.3 Random Forests

Random forests are a combination of tree predictors such that each tree depends on the values

of a random vector sampled independently and with the same distribution for all trees in the

forest. The generalization error for forests converges a.s. to a limit as the number of trees in

the forest becomes large. The generalization error of a forest of tree classifiers depends on the

strength of the individual trees in the forest and the correlation between them.

3.4.1.4 Generalized Linear Regression

Generalized Linear Models provide a unified way to fit responses that do not fit the usual

requirements of least-squares fits. We have used this method to classify various activities by

generating model of separate activities. Later we predicted the outcome using this generated

model.

Among all the described model we have found that multi-class SVM classifier provides

classification with greater accuracy. So we stick with this classifier for the later use.

3.4.2 Classifier Performance Measurement

Algorithms researchers usually calculate the accuracy of the algorithm (i.e., the percentage of

correctly classified examples) and the error predictions to evaluate the performance of different
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classifications. To estimate these measures there exist various methods and different kinds of

measures that can be used to select the best model from available options available. The most

common technique to do so is called cross validation.

3.4.2.1 Cross Validation

The idea behind this validation techniques is to train the algorithm on a subset of the data

and then evaluate it on the part of the data that is unseen during training. This is how a cross

validation procedure starts, but when the training and evaluation is done, it switches a chunk

of the training data with the evaluation data and retrains the algorithm. This procedure is then

iterated until all the data has been trained and evaluated on. The average of the performance

measure for all iterations is the cross validated estimate of the algorithm. The most known way

of splitting the data is k-fold cross-validation. In k-fold cross-validation data is split randomly

into k sets of approximately equal size. In each iteration the algorithm is trained on k− 1 sets

and evaluated on the left out set. Most commonly values set for k are: all samples, also called

leave-one-out, 10 and 5. In our case we have used Leave-one-subject-out cross validation that

is leave one user data out as a test set and use other users data as a train set. Besides this we

have employed tradition 10 fold cross validation technique to ensure the proper validation of

classified data.

3.4.2.2 Confusion Matrix, Accuracy and F-score

We use three matrices to evaluate the performance of each algorithm throughout the thesis.

They are: The confusion matrix, accuracy and F-score. Among these the confusion matrix is

the most informative one. It comprises of a table that compares all classification values to the

true class value. The other two matrices are calculated from this table. However, the amount

of information included in the table makes the measure difficult to comprehend, and cluttered,

thus it is used only when other measures, are not sufficient enough. Accuracy is renowned as

the simplest measure and is defined as all correctly identified examples divided by the total

number of examples present in the classification data. This measure is easy to understand and
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ubiquitous in activity recognition. Most of referenced articles about activity recognition employ

this measure.

For multi-class problems, class specific performances is taken into account for further depth

analysis. Let consider a multi-class problem with errors defined with respect to a particular

class A, represented by the following table:

classifier outputs (class A) classifier outputs (others)
true class (A) true positive(tp) false negative (fn)

true class (others) false positive(fp) true negative (tn)

Table 3.1: Classifier Outcome

Accuracy is defined for a single class as the true positives divided by the sum of true positives

and false negative. It somehow neglects the false positives of the outcome. As a result this

measure can not differentiate between a classifier being overly sensitive to a class and one having

high discrimination for that class.

The third measure that we used in the thesis, the F-score is a performance measure that

takes this effect into account by putting equal emphasis on finding the true classes (i.e. single

class accuracy) that is called recall in information retrieval and being discriminative is called

precision (i.e. not returning many false negatives).

precision =
tp

tp + fp

recall =
tp

tp + fn

The harmonic mean of these two measures form the F-score which lies between 0 and 1.

F-score =
2× precision× recall

precision + recall

3.5 Training and Test Dataset

To recognize activities from newly arrived accelerometer data, a generated classification model

is needed. This model is created using the training datasets. Training dataset contains ac-
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celerometer data but here the data is associated with activity level. So that we are able to

differentiate between accelerometer data of different activities. In our thesis we provided a

label to each accelerometer data on the basis of activity level. Such as for set of activities

A = {a1, a2, · · · , ak}, we provide labels 1, 2, 3, · · · , k. This accelerometer data along with the

labels of activities then fetched into appropriate classifier using a particular time window for

detection that hereafter generates the model that is used for classifying new accelerometer data

(can be termed as test data). This model is generated by following above mentioned steps and

the performance of the classifier that is used is measured. If it provides the best results, then

this model becomes the core component that is used later for detection of activities from newly

coming test datsets. The output or the detection of the activities results in a sequence of label

that we provided before. This label points to the activities that are performed by the user.

3.6 Summary

In short for physical activity recognition, accelerometer data works as input. Then this data

is processed thoroughly using filterization techniques. Later sliding window is selected along

with the extraction of features that are used for classifying various activities. Then using the

features set and using suitable classification model the inputted accelerometer data results in

specific set of activities. This recognized activities creates the possibility of recommending and

suggesting further activities on the basis of some pre-defined factors which is discussed in the

following chapter.



Chapter 4

Activity Suggestions and Adaptive

Notifications

Recognized sequence of activities works as input for the activity suggestion system that suggests

few of the activities from a varied activity set in order to fulfill a certain quota of activities in

a particular time period. This suggested activities are treated as mobile notification that help

an user to maintain a recommended amount of physical work in his/her day to day life. This

chapter explains the activity suggestion procedure as well as the providing adaptive notifications

also.

4.1 Activity Suggestion System

Activity Suggestion System is the core component of this thesis work. After the activity

recognition phase this component comes into play. Activity recognition provides us with a

sequence of activity labels, which indicates what activity the user is performing for a certain

span of time. These labels determines the intensity as well as the continuation of a certain

activity. Let A = {a1, a2,· · · , ak} define a set of activities and they are associated with labels

1, 2, 3, · · · , k respectively. So we are able to determine an activity by the activity label it holds.

Such as activity label of 1 represents the a1 activity from the activity set and so on. As we

23
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discussed in the previous section, training data is labeled with activity level or name and we

later generated the classifier model by using these training accelerometer data along with our

provided labels. When a new data encounters, then the model becomes responsible for the

classification of these data and results in a sequence of recognized activity labels that can be

used for appropriate activity recognition for a particular time frame. The block diagram of

Figure 4.1 shows the output (sequence of activity labels) that is used by the suggestion system

to generate suggestion notification:

Figure 4.1: Sequence of activity labels results from Activity Recognition system

The recognized activity label sequence sometimes may contain some noisy data. To get rid

of these anomalies we have certain mechanisms. These are described in the next section.

4.1.1 Anomaly Reduction

The time frame of our sliding window is of 10 seconds in length. So the recognition system or

the classifier provided us with a label for each 10 second chunk of accelerometer data. When

we get a sequence of data like “1111kkkkk4422” (here 1, 2, 3, · · · , k are labels as before), we

can interpret it as a total of 2 minutes data (as there are 12 labels and each of which is for 10

second window length of accelerometer data) of whose first 40 seconds a1 activity is performed

followed by 40 seconds of ak and 20 seconds of a4 and 20 seconds of a2 activity.
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Sometimes we find singleton activity that is performed only for a very short period of time

(minimum duration of 10 sec). After and before this activity no similar activities are performed,

rather they are all different around. This indicates that this very activity is misclassified amid

a series of other activities. Such types of classification may be resulted in due to some noisy

value from the classifier (Figure 4.2).

Figure 4.2: Presence of anomaly in activity detection

In order to eliminate or reduce such types of anomalies, we have considered the following

two approaches.

• Treating each of the activities that is performed as an independent entity. In this approach

if the activity labels that results from classification are small in width then we will treat

this activity as a non dominant one and will decide that this activity label is the result of

an anomaly. So we will consider that the activity that precedes or succeeds this certain

activity would be the correct activity and will replace the anomalous activity with the

correct one. Here the most critical problem is how to define the smallest width to detect

anomaly. Here by observing practical scenario and analyzing several data sources we

have empirically fixed the length of time that a certain activity has to be performed to

be considered as proper activity rather than the anomalous one is around 20 seconds.

So any activity having performing time less than this value will be treated as anomalous

activity and the correction scheme mentioned above will be applied.

• Treating each activity as dependent to certain extent on one another. In this approach

we will consider the fact that every activity of the activity set has dependency on each

other. For this reason we have to determine a dependency matrix for all the activities of
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the activity set. By using the dependency value between two activities and the posterior

probabilities that results from model classification along with activity label we can derive

a relation of occurring an activity just after a certain kind of other activity. Using this

approach we can also mitigate the effect of anomalous activity.

We have followed the first approach in this thesis. As we were not able to find the de-

pendency matrix in existing works and because of this insufficient information of clear

dependency in collected data, we currently skipped the second approach to avoid mis-

leading correcting scheme and thus stick to the first approach for reducing anomalous

activities.

4.1.2 Assigning Weights to Activities

It is easy to observe that each activity in activity set A differs in term of intensity and energy

expenditure associated with that activity. Different activity has different level of physical

engagement from a user perspective. For example, climbing a stair up is certainly more engaging

then standing still, and biking is surely higher than stair down. In order to provide a more

realistic suggestion about physical activities, each of the activity from the set has to be treated

according to their energy expenditure level. Let we have a set of activities consisting of several

activities such as standing, sitting, walking, stairs climbing, biking and so on. The intensity for

each of them differs quite a bit. For example, in our case standing and sitting might fall under

activities of low intensity where walking might fall under activity of moderate and climbing

stairs or biking might fall under activity of vigorous intensity.

To quantify the level of physical engagement in doing a certain activity, we introduce a weight

factor that is associated for each member of the activity set. So, let W = {w1, w2, · · · , wk}

be the weight set for activities in activity set A. One way to determine weight factors is to

determine how much calorie is burned per activity per unit time. The work at [35] lists a

couple of activities with their associated calorie expenditure per day. We use these values. We

normalize these values and was able to prepare a reliable weight set associated with the activity

set. In the process, we were able to interpret our work of suggesting physical activities on the
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basis of energy level expenditure (amount of work to be done) to the problem of suggesting

activity to maintain calorie expenditure of an user.

4.1.3 Problem Definition of Activity Suggestion

We have a series of accelerometer data as input at a certain sampling rate. As mentioned

before, we made chunks of accelerometer data. The width of each chunk equals to 10 seconds.

Each of the chunk is predicted to be an activity from the activity set A = {a1, a2, · · · , ak}. We

consider a series of such activities ( i.e., 60 activities in a total of 10 minutes) which represents

an activity bundle. This length of such bundle in time (i.e., 10 minutes) constitutes an epoch,

whose length is denoted by τ .

Each user is expected to burn a certain amount of calorie per epoch (which in turn corre-

sponds to a certain level of physical activities rendered in that epoch). Let ρ be the prescribed

calorie expenditure per epoch for an user. So at epoch t (starting from epoch 0), the user is

supposed to burn a total of ρ × t calorie. But the user may not make the full expenditure

depending on the physical engagement he/she made upto that epoch. let C(t) be the current

cumulative expenditure upto epoch t by that user. So, the difference between the expected

amount and the actual performed one gives the amount of deficit upto that time. Hence, we

have

deficit = ρ× t− C(t)

.

A positive value of deficit suggests that the user in indeed falling behind the expectation in

terms of calorie expenditure which needs to rectified by sending active notifications and activity

suggestions. This suggestion will only be triggered if the level of deficit falls short a certain

threshold. In our notification system, we want to give each user a choice to determine this

threshold, which gives the user a control knob to decide when he wants to get notified. We

allow this by a control factor, α < 1, by which the overall expectation of the calorie expenditure

for that user is lowered. That is, the amount of expenditure barely enough to avoid notification
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is to remain slight above (α × ρ × t). In this, we recalculate the modified deficit (denoted as

∆) as follows:

∆ = (α× ρ× t− C(t))

.

If ∆ > 0, then the system will provide activity suggestion for the user for the next epoch

t + 1. The value of α depends on individual user’s choice. And, ρ is dependent on user’s age,

weights, BMI (Body Mass Index), health condition and other physical features. This value

should be fixed after consulting with domain experts or physicians.

The problem of activity suggestions now becomes the following. Given ∆ for a given epoch,

the user needs to receive as suggestions consisting of physical activities along with their possible

duration of engagement that can lead him to fulfill the deficit. Let ti be the suggested duration

of activity ai for a given epoch. Our notification system tries to determine these ti’s.

In this regard, we assume that a user would like to have more time to relax than performing

activities continually within a time frame. So we propose a model that ensures longest relax

time within the time frame by minimizing total engagement time in performing suggested

activities. While suggesting activities, we also want to ensure that the user does not engage

more than a certain maximum rate. In order to avail highest relax time, a user can trivially be

suggested with the most expensive physical activities that burns large amount of calorie within

a short time. But that high workout may be detrimental to health of that person and may harm

the user instead of benefiting. Arguably, there is no point that a user is performing expensive

physical activities when he can achieve the same by doing another activity with lower physical

engagement albeit a bit longer time. For this, we introduce a maximum allowable rate at which

a user can burn calorie during the period of his engagement. This rate is denoted as γ. Figure

4.3 depicts the parameters we have encountered and provides graphical interpretation of them.
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Figure 4.3: Parameters of Activity Suggestion System

Therefore, the problem of activity suggestion can be formulated with the following opti-

mization problem, which asks to find duration ti’s for activity ai so as to—

minimize
k∑

i=1

ti

subject to
k∑

i=1

ti × wi ≥ ∆ + α× ρ

k∑
i=1

ti ≤ τ

k∑
i=1

ti × wi ≤ γ ×
k∑

i=1

ti

ti ≥ 0, real (4.1)

The objective function finds the total time of physical engagement among suggested activ-

ities. The first constraint ensures that the total calorie expenditure by the suggested activities

exceeds deficit ∆, whereas the second on limits total time to be within the epoch duration (τ).

The third one limits the rate of calorie expenditure within the limit the set by γ. Note that γ

can vary from epoch to epoch depending in the amount of deficit the user actually has.
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In our work, we tried to determine γ in two ways.

• It can be extracted from activity label data of previous epoch by considering the most

likely activity an user might want to undergo.

• It can be calculated from mean amount of the activities an user has to undergo to fulfill

the prescribed amount of expenditure (ρ).

The formulation we just mentioned does not, however limit the number of activities a user

needs to perform during an epoch. If the suggestion eventually goes for a long set of activities,

it will be cumbersome for the user to perform (even may hurt him); instead we can limit how

many number of activities the system can suggests. Let us introduce a binary variable xi to

denote whether activity ai is chosen or not. Considering in each epoch, the system should

suggest at most two activities, we can have the following formulation:

minimize
k∑

i=1

xi × ti

subject to
k∑

i=1

xi × ti × wi ≥ ∆ + α× ρ

k∑
i=1

xi × ti ≤ τ

k∑
i=1

xi ≤ 2

k∑
i=1

xi × ti × wi ≤ γ ×
k∑

i=1

ti

ti ≥ 0, xi ∈ {0, 1} (4.2)

This problem is an instance of a non-linear IP (Integer Programming) problem, which is

hard. Due to hardness, we do not proceed with this formulation rather stick to our first one.
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4.1.4 Algorithm for Activity Suggestion

The problem posed in Equation 4.1 is quite similar to a variant of Coin Change Problem [36].

This variant of coin change problem asks a certain amount of money to be constructed from

a given set of coin denominations using the minimum number of coins. Here, in our context,

the target money is the amount of the deficit (∆) in the current epoch plus the expected

amount of expenditure in the next epoch, coins are our performing time for activities and

the denominations correspond to the weights (calorie ratings) of activities. But there is an

important difference. This is the boundary value condition (the third constraint), which is

dependent on the value of max rate (γ).

The algorithm activitySuggestion takes care of the boundary value condition. This algorithm

selects a subset from the available weight-set (corresponding to activity set) on the basis of the

maximum allowable rate(γ). Then it feeds the subset to the activitySelection algorithm to

generate suggestion. The algorithm tries to suggest the activities with rate smaller than γ. But

if we calculate γ by considering the most likely activity then, in order to cope up with the need

of physical activities to be performed, sometimes γ is adjusted.

We devise a dynamic algorithm named activitySelection, inspired from [36]. The technique

is very close to way we construct a certain amount of money in practice (we choose minimum

number of denominations needed to construct the amount). The algorithm outputs a set of

recommended activities along with a set of time of doing each of the suggested activities. Let

S[amnt] be the minimum period of performing activities having respective weights from weight-

set (calorie expenditure rating). Here, amnt = α × ρ + ∆. In the optimal solution to suggest

activities for burning amnt amount of calories, there exist some activity ai with associated

weight wi, where wi ≤ amnt. Furthermore, the remaining amount of calorie expenditure from

amnt in the optimal solution must themselves be the optimal solution to make suggestion for

amnt−wi. Thus, if wi, the corresponding calorie burning weight of activity ai is the first weight

in the optimal solution to make suggestion for amnt amount, then S[amnt] = 1+S[amnt−wi];

i.e., one period of performing wi activity plus S[amnt− wi] periods of performing activities to

optimally make suggestion for amnt−wi amount of calorie expenditure. We dont know which
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activity ai having weight wi is the first weight used in the optimal solution to make suggestion

for amnt amount; however, we may check all k such possibilities (subject to the constraint that

wi ≤ amnt), and the value of the optimal solution must correspond to the minimum value of

1 + S[amnt−wi], by definition. Furthermore, when making suggestion for amount ∆ ≤ 0, the

value of the optimal solution is clearly 0, as we are not providing any suggestion in such case.

We thus have the following recurrence:

S[amnt] =


mini:wi≤amnt{1 + S[amnt− wi]}, if ∆ > 0.

0, otherwise.

Both the algorithms are listed below.

Algorithm 1 Suggest Activities on the basis of γ

1: procedure activitySuggetion(weightSet, γ, amountToBePerformed, τ)
2: sort weightSet in non-decreasing order
3: lower ← immediate lower value than γ from weightSet
4: higher ← immediate higher value than γ from weightSet
5: maximumTime ← time to complete the amountToBePerformed using γ
6: maxAmount← amount of activity achieved by using τ and max weight from weightSet
7: if maximumTime exceeds τ then
8: if amountToBePerformed exceeds maxAmount then
9: suggestion ← maximum activity

10: calculate amountToBeCarried for next period
11: else
12: choose activities from the weightSet that is greater than higher
13: suggestion ← suggested list of activities using activitySelection algorithm
14: end if
15: else
16: if time to finish amountToBePerformed using lower is below τ then
17: choose activities from the weightSet that is smaller than lower
18: else
19: choose activities from the weightSet that is smaller than higher
20: end if
21: suggestion ← suggested list of activities using activitySelection algorithm
22: end if
23: return suggestion and amountToBeCarried
24: end procedure
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Algorithm 2 Selection of Activities

1: procedure activitySelection(weightSet, amnt)
2: S[0] ← 0
3: for i ← 1 to amnt do
4: minimum ← ∞
5: for j ← 1 to size of weightSet do
6: if weightSet[j] ≤ i then
7: if 1 + S[i− weightSet[j]] < minimum then
8: minimum ← 1 + S[i− weightSet[j]]
9: index ← j

10: end if
11: end if
12: end for
13: S[i] ← minimum
14: Index[i] ← index
15: end for
16: generate path using the Index
17: generate activityList using the path, weightSet and S
18: return activityList
19: end procedure

4.2 Adaptive Notification Generator

The suggestion system provides a set of suggested activities along their performing time for

each epoch. Adaptive notification generator propagates these results to the user on the basis of

certain rules. As building adaptive notification generator for mobile devices is itself a huge work

and required extensive amount of working to set the rules that guides the system, we hereby

opted for a very simple type of notification system. Our predefined rules for propagating

suggestions through mobile notification is listed below:

• If the calorie expenditure for t epoch meets the expected calorie expenditure (α× ρ× t),

means when ∆ ≤ 0 then no notification is sent to the user for epoch t+ 1.

• If ∆ > 0, then a list of suggestion is provided to the user that has to be performed in the

t+ 1 epoch.

• If the user does not perform the activities and ∆ rises further greater than 0, then a

reminder notification will be sent for the up coming epoch t+2 along with the suggestion
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notification.

• If this continues then the rate of sending reminder message will be increased after a certain

number of epoch elapsed.

• If ∆ rises higher than a preset threshold value then the rate of sending notification will

be increased too.

By using these several assumptions we build our Adaptive notification generator.

4.2.1 Notification Generation Paradigm

We have decided the maximum number of notifications per epoch is 3. Among this notifications,

the first one contains the suggestion scheme. The later ones include motivational reminders.

The suggestion scheme is comprised of activity names along with the time of performing that

activity. At the beginning of an epoch the notification with the suggestion scheme is fired. The

remaining notifications are sent in preferable time within the epoch length (τ).

4.3 Possible System Design

There exist two alternatives to design the whole system. These are described in the following

sections.

4.3.1 Cloud Assisted Suggestion System

In this system, a mobile client is used to connect with a cloud server. The client initially sends

accelerometer data which is treated as training data. The cloud server processed the data

and use classifiers to learn the model. Previously collected data set can also be used for the

learning purpose as we did using some benchmark data [4]. After learning the model retains

in the server. After a particular epoch length (τ) the client sends data chunk to the server

and the server classifies these data using the classifier model. It predicts the activities and

also prepare suggestion for performing certain amount of activities to maintain the expected
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rate (ρ × α). Then it propagates the suggestion to the mobile client along with the number

of notification required to push the user to perform suggested activities. The mobile client

generates notifications based on these information and notifies the user about his lacking of

performing physical activities.

Figure 4.4: Cloud assisted suggestion System

4.3.2 In-device Suggestion System

The training part of this system is similar to the cloud assisted suggestion system. The main

difference is that, here the learned model is sent back to the mobile client. So for the recognition

and suggestion, the client do not have to send any data to the server. Besides using the model

it can predict and suggest the required amount of activities and notifications by itself. Later

the client generates suggestions according these information.

Among these two system the first one seems costly as a lot of data have to be sent to the

server on a frequent basis. For this thesis, we did not design any of the mentioned system

explicitly. We assume that we have the classification model and and stream of user’s ac-

celerometer data. We have simulated all the possibilities that can arise and mainly focused on
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Figure 4.5: In-device suggestion System

determining the suggested amount of activities (with time preferences) along with the number

of notifications.



Chapter 5

Experimental Results

This chapter includes some experiments that we performed to select a classifier for activity

recognition from time series accelerometer data. Besides this chapter also includes several

performance testing experiments on activity suggestion system along with notification handling.

First of all we present information about our existing dataset and then move into activity

recognition and activity suggestion part. We have used MATLAB for the simulation and

classification purpose.

5.1 Training Data and Test Data

We build model from a dataset collected for previous works in heterogeneity in activity recogni-

tion [4]. This data set contains time series accelerometer data along with the label of associated

activity names. The dataset contains a set of activities and they are {null activity, walking,

standing, stairs up, stairs down, biking}. Here, null activity refers to do nothing at all. The

dataset contains reading of 9 different users performing these mentioned activities for a signifi-

cant amount of time using 8 different models of smartphones. It contains more than 15 millions

of data. We build training and test dataset from this vast dataset for the experimentation

purpose.

We prepared our training dataset in two ways:

37
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1. We treated all data of an user consisting of all the activities that is collected using

smartphones of similar sampling frequency as our training data.

2. We treated data of 3 users that is collected using smartphones of similar sampling fre-

quency as our training data.

We carried out our experiment by using both the datasets and found almost similar results.

Hence we present the results of our experiment on the basis of the first set of training data

throughout the chapter. For the classification purpose, we assigned numeric label to each of

the activities of the activity list. Here we selected the activity labels for the set of activities

{null activity, walking, standing, stairs up, stairs down, biking} to be 0, 1, 2, 3, 4, 5. So 0

resembles null activity, 1 resembles walking and so on.

We select test data from the remaining dataset. We used different users data from various

devices for testing purpose.

5.2 Feature Extraction

We have selected a total of 16 features to detect activities. These include both time and

frequency domain features. Time domain features include mean vector, standard deviation

vector, euclidean norm of mean vector, euclidean norm of the standard deviation, correlation

values and sum of magnitudes up to 25th and 75th percentile values. On the other-hand,

frequency domain features comprise of the specific frequency components, the amplitude of

spectrum, the peak frequency in the spectrum and number of peak values under a certain value

in the spectrum.

5.3 Performance of Classifiers for Activity Recognition

We selected several features for our recognition system (discussed in 3.3.3 section) to be relied

on. We first applied low pass filtering to reduce the noise present in the training data. We used

a sliding window of 10 seconds for our recognition purpose.
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In order to predict the activities from user’s accelerometer data, we have to build a model

that would classify those data using our training dataset. To serve these purpose, we have

to go through several classifiers and few readings regarding classification process. Finally we

have opted for a few classifiers: k-NN, Random Forest, Multi-class SVM as our potential set

of classifiers. After using each of the classifier with various parameter in MATLAB platform,

we selected the best one from them.

We used k-NN algorithm by using built-in MATLAB function and specifying various related

parameter associated with it. The neighbor size is changed thoroughly to get the proper result.

We also opted for the Random Forest ensemble by using the fitensemble method of the MATLAB

to get a proper model using the training data. We also varied the size of the tree that is need

for the ensemble method.

Finally we used MATLAB’s multi-class model which is guaranteed by the use of fitcecoc

method. We provided SVM learner as the learner of this mentioned method. As a result,

this multi-class model classifies the data using the SVM classifier and served the need of using

multi-class SVM classifier.

5.3.1 Cross Validation Results

Here we provide the confusion matrix of 10 fold cross validation test using each of the classifiers

on our training data in Figure 5.1. The labels : 0 ,1 ,2 ,3, 4, 5 represents null activity, walking,

standing, stairs up, stairs down and biking respectively. We used various size of trees for

random forest such as 50, 100, 200 and almost got the similar kind of confusion matrix. We

also used various neighbor size for k-NN and almost got similar results. For Multi-class SVM,

we used “one vs one” and “one vs all” coding for SVM learners. The accuracy, precision and

other performance matrices for the above mentioned classifiers are listed below in Table 5.4.
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(a) Multi-class SVM (one vs one)
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(b) k-NN with neighbor size = 50
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(c) Random Forest Ensemble with tree size = 500

Figure 5.1: Outcome Cross-validation of Various Classifiers Confusion Matrix
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classifiers accuracy precision recall F -score
k-NN ( neighbor size = 20 ) 0.9534 0.91144 0.9224 0.9169
k-NN ( neighbor size = 50 ) 0.95327 0.91015 0.9233 0.9167

Random Forest ( tree size = 100 ) 0.88777 0.71256 1 0.83221
Random Forest ( tree size = 500 ) 0.88778 0.71275 1 0.83228

Multi-class SVM ( one vs one ) 0.99995 0.9998 1 0.9998
Multi-class SVM ( one vs all ) 0.99993 0.99974 1 0.99987

Table 5.1: Comparison of Performance metrics after Cross-validation

5.3.2 Performance Comparison Using Test Data

As we have a huge dataset, we made two scenarios to measure the performance of the classifiers.

They are:

• Train and test a model using a single user. Here we make the training dataset using

several smartphone model’s accelerometer data while keeping a few models data for the

extraction of test data for that user.

• Train using one and test using another user. In this scenario we train the model using all

available accelerometer data of an user and then test another users data with respect to

the previous user.

Here the confusion matrix and table of performance matrices are provided for each of the case

stated above.
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5.3.2.1 Train and Test Using Same User
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(a) Multi-class SVM
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(b) k-NN with neighbor size = 50
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(c) Random Forest Ensemble with tree size = 500

Figure 5.2: Confusion Matrix for different classifiers using a single user data

classifiers accuracy precision recall F -score
Multi-class SVM ( one vs one ) 0.9202 0.8306 0.8946 0.8614
k-NN ( neighbor size = 50 ) 0.8286 0.6714 0.7472 0.7073

Random Forest ( tree size = 500 ) 0.8836 0.7119 0.9745 0.8228

Table 5.2: Comparison of Performance metrics using a single user data
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5.3.2.2 Train and Test Using Different User
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(a) Multi-class SVM
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(b) k-NN with neighbor size = 50

Target Class
0 1 2 3 4 5

O
u

tp
u

t 
C

la
ss

0

1

2

3

4

5

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

964
1.5%

0.0%
100%

0
0.0%

18224
27.5%

0
0.0%

0
0.0%

932
1.4%

0
0.0%

95.1%
4.9%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

17988
27.2%

0.0%
100%

0
0.0%

1764
2.7%

0
0.0%

0
0.0%

1165
1.8%

0
0.0%

0.0%
100%

0
0.0%

1455
2.2%

0
0.0%

0
0.0%

1410
2.1%

0
0.0%

49.2%
50.8%

0
0.0%

3784
5.7%

0
0.0%

0
0.0%

1120
1.7%

17429
26.3%

78.0%
22.0%

NaN%
NaN%

72.2%
27.8%

NaN%
NaN%

NaN%
NaN%

30.5%
69.5%

47.9%
52.1%

56.0%
44.0%

 Confusion Matrix

(c) Random Forest Ensemble with tree size = 500

Figure 5.3: Confusion Matrix for different classifiers using multiple users

classifiers accuracy precision recall F -score
Multi-class SVM ( one vs one ) 0.7132 0.5021 1 0.6685
k-NN ( neighbor size = 50 ) 0.6774 0.4672 0.5954 0.7128

Random Forest ( tree size = 500 ) 0.5596 0.3922 0.9513 0.5554

Table 5.3: Comparison of Performance metrics using multiple users
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We used the variation of these classifiers by:

• Changing the neighbor size of k-NN.

• Changing the tree size of Random forest.

• Changing the coding of SVM.

All the variations produced somewhat similar results. As it is seen from Figure 5.2 and 5.3

Multi-class SVM classifiers produce the best output among these three classifiers, so we selected

this classifier to build a classifier-model that will be used to predict user’s accelerometer data in

future. Besides it is also clear from the matrix and performance matrices that when an user’s

data is predicted using his own training data then the classification becomes more accurate. So

it will be better to use the same user’s data as training data to have more sounding prediction

about the outcome (i.e activities).

5.4 Experimental Evaluation of Activity Suggestion Sys-

tem

In this section, we analyze extensive experiments to evaluate our proposed activity suggestion

system. We experimented about the performance of the system discussed in section 4.1.3 in

MATLAB by varying different parameters. We have assigned weights to each of the activity

using [35] and online calorie expenditure calculator. Rather we normalized the values of the

activities to a smaller one. These weights are dependent on user’s age and weights, BMI and

some other factors. For our experimental case, we set the values 0, 5, 3, 8, 4, 7 (normalized) for

null activity, walking, standing, stairs up, stairs down and biking respectively (Table 5.4). It

interprets as 1 minute of walking burns 5 calories and so on. The suggestion system can suggest

any of the activities from the set except null activities as its weight equals to 0. After setting

these weights, we varied some of our tunable parameters: prescribed calorie expenditure (ρ),

user preference (α) and epoch length (τ) to watch the behavior of our system.
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Activity name Calorie expenditure Assigned weight
Walking 298 cal/hr 5 cal/min
Standing 172 cal/hr 3 cal/min
Stairsup 470 cal/hr 8 cal/min
Stairsdown 234 cal/hr 4 cal/min
Biking 425 cal/hr 7 cal/min

Table 5.4: Calorie expenditure chart for 165 lbs, 170 cm male user [35].

5.4.1 Performance Metrics

In our experiment, we focus on three different performance metrics. These metrics are as

follows:

• The number of notifications sent over a period.

• The amount of suggested activities to overcome calorie deficit per epoch.

• Total relaxation time offered per epoch.
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5.4.2 Impact of Variation of Epoch Length (τ)

When we varied the epoch length, the number of notifications sent decreases with the increase

of the epoch length. Again the relaxation time increases for the larger epoch length. Here we

provided the various outcomes as a measure of graph when the whole experiment was carried

out using the prescribed expenditure rate of 5 cal/min. So, ρ = 5 × τ and α = 0.85. When τ

= 12 minutes, then we have following outcomes.
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Figure 5.4: Comparison among various expenditure rate (τ = 12 minutes)
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Figure 5.5: Outcome of Various performance metrics (Suggestion) τ = 12 minutes
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Figure 5.6: Outcome of Various performance metrics (Notification count and relaxation time)
τ = 12 minutes
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Here, Figure 5.4 illustrates the cumulative expenditure rate’s comparison. The expenditure

rate is calculated by dividing total amount of calorie expenditure of an epoch by the epoch

length(τ). When the current cumulative expenditure rate falls between the actual and expected

cumulative expenditure rate then no suggestion is provided. Suggestion is provided only when

the current cumulative rate falls down the expected one. Figure5.5a illustrates the amount

of expected, current and suggested calorie expenditure of each epoch of 12 minutes in length.

After observing a particular epoch, suggestion is provided for the next epoch on the basis of

deficit as discussed before. Figure 5.5b shows the amount of activities need to be performed

to achieve the goal of calorie expenditure. Figure 5.6a and Figure 5.6b shows the number of

notifications fired and the amount of relaxation time respectively. When we suggest an activity

then relaxation time comes into play. Otherwise it is treated as NaN (which is interpreted as

0 in the graph).

Similarly when τ = 30 minutes, then we have following graphs (Figure 5.7, Figure 5.8,

Figure 5.9). It is clear that in this case relaxation time increases but the number of notification

decreases. Normally such trends occurs but it can not be guaranteed as user’s preference of

performing activities can not be predicted.
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Figure 5.7: Comparison among various expenditure rate (τ = 30 minutes)
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Figure 5.8: Outcome of Various performance metrics (Suggestion) when τ = 30 minutes
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Figure 5.9: Outcome of Various performance metrics (Notification count and relaxation time)
when τ = 30 minutes
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5.4.3 Comparison between High and Low Performing Users

From the user data set we have selected two users of whom one is performing activities in a high

rate and the other one is performing in a quite low rate. We show their cumulative expenditure

rate in Figure 5.10 and Figure 5.12 respectively. The number of notifications or the amount

of suggestions for the user who is performing at a high rate is very low. Sometimes it almost

reduces to zero. Almost negligible amount of suggestions are made for him/her. For the high

performing user (whose current rate of performing activities is greater than the expected rate

as seen in 5.10) no suggestion is made. As a result no notification is sent. Whereas for the low

performing user, the number of notifications increases drastically (Figure 5.14); he/she ought to

receive more amount of suggestions to improve his/her calorie expenditure level (Figure 5.13).

For this scenario we calculated all the necessities and the outcome is listed below:
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Figure 5.10: Comparison among various expenditure rate for a high performing user
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Figure 5.11: Expected, Current and Suggested amount of calorie expenditure for a high
performing user
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Figure 5.12: Comparison among various expenditure rate for a low performing user
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Figure 5.13: Outcome of Various performance metrics (Suggestion) for a low performing user
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Figure 5.14: Outcome of Various performance metrics (Notification count and relaxation
time) for a low performing user
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5.4.4 Impact of Variation of Prescribed Calorie Expenditure (ρ) and

User Preference (α)

When ρ and α increases then the chance of getting notification increases and the time for

relaxation decreases and vice versa. These values can effect the suggestion scheme greatly, as

these creates the expected limit of calorie expenditure that an user would have to achieve.
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(b) Cumulative expenditure
rate when α = .85
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(c) Cumulative expenditure
rate when α = .90
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(d) Suggestion of Activities
when α = .75
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(e) Suggestion of Activities
when α = .85
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(f) Suggestion of Activities
when α = .90
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Figure 5.15: Effect of α

Figure 5.15 shows the effect of α on suggestion; from which we can see that the user get

notifications with suggestions during when the current expenditure rate falls down the expected
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expenditure rate. When α is adjusted to 0.75, then the number of notification that has to be

sent becomes zero as the current cumulative expenditure rate lies with the two rate (expected

and actual). But when α gets higher like 0.9 (Figure 5.15c) then the current cumulative rate

falls down a lot. In such cases a lot of suggestions are made and notifications are propagated to

the user. Moreover when α is set to 0.85 then a moderate amount of notification is fired when

the cumulative expenditure rate falls some what below than the expected one.



Chapter 6

Conclusion

In this thesis we derived an activity suggestion system that provides the user with suggestion

of a set of activities that ensures the calorie expenditure of an user to stay under an expected

level. It also guarantees the maximum relaxation time for an user. Throughout the thesis we

dealt with a huge amount of accelerometer data obtained from [4]. We used various classifier

to check which one provides the better classification and finally used SVM as our classifier as

it produces more accurate result among all the classifiers we used. Then after training the

classifier with the training accelerometer data with explicit activity labels we prepared a model

that is used to predict activities using user’s accelerometer data. This predicted activities are

then used as the input of our proposed activity suggestion system.

As there is no much work on such type of activity suggestion system that provide adaptive

suggestions/notifications for performing certain type of activity based on user need by evaluat-

ing accelerometer data, we have to build the system by using a lot of assumption and boundary

conditions. There exist various scopes to work on to make this system more reliable. In future,

this work can be extended in following areas:

• Currently we have treated the activities as they are independent of each other. But in

reality it is not quite true. There exist some kind of relation between almost each and

every activities. So if we can find this dependency factor among various activities, we can

use them in limiting anomalous activities more accurately.

58
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• In our work, we are not able to suggest activities in a practical way when the amount

of performing activity needed to maintain expected calorie expenditure level rises much

further. On that time it becomes quite impossible to suggest an activity that might reduce

the deficit (∆). In such case we suggest the activity that is high in calorie expenditure to

be performed throughout the particular epoch. But still we can not bring down the high

∆. This case can be improved further in our future work.

• The Adaptive notification system that we applied in our thesis is a very simple one. More

sophisticated techniques can be applied to schedule notification that will help the user to

get more engaged to physical activities using the suggestion provided by the suggestion

system rather than being irritated.

• In future, we will focus on improving the suggestion system by adding a few more of

the practical constraints like preferable time line of performing activities. For example,

someone wants to perform light activities at night but vigorous activities in the morning;

in such case, he/she should be suggested to perform light activities in night without

suggesting to do extensive activities even if it is required and should be suggested to do

the extra amount of activities in the following morning that he/she has escaped during

the night.



References

[1] S. N. Blair, H. W. Kohl, R. S. Paffenbarger, D. G. Clark, K. H. Cooper, and L. W. Gibbons,

“Physical fitness and all-cause mortality: a prospective study of healthy men and women,”

Jama, vol. 262, no. 17, pp. 2395–2401, 1989.

[2] G. N. Healy, K. Wijndaele, D. W. Dunstan, J. E. Shaw, J. Salmon, P. Z. Zimmet, and

N. Owen, “Objectively measured sedentary time, physical activity, and metabolic risk the

australian diabetes, obesity and lifestyle study (ausdiab),” Diabetes care, vol. 31, no. 2,

pp. 369–371, 2008.

[3] A. D. Association et al., “Physical activity/exercise and diabetes,” Diabetes care, vol. 27,

no. suppl 1, pp. s58–s62, 2004.

[4] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey, T. Sonne,

and M. M. Jensen, “Smart devices are different: Assessing and mitigatingmobile sensing

heterogeneities for activity recognition,” in Proceedings of the 13th ACM Conference on

Embedded Networked Sensor Systems, pp. 127–140, ACM, 2015.

[5] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration data,” in

International Conference on Pervasive Computing, pp. 1–17, Springer, 2004.

[6] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone

accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12, no. 2, pp. 74–82, 2011.

60



REFERENCES 61

[7] N. C. Krishnan and S. Panchanathan, “Analysis of low resolution accelerometer data

for continuous human activity recognition,” in 2008 IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 3337–3340, IEEE, 2008.

[8] E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Friedman,

“Real-time recognition of physical activities and their intensities using wireless accelerom-

eters and a heart rate monitor,” in 2007 11th IEEE international symposium on wearable

computers, pp. 37–40, IEEE, 2007.

[9] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human physical

activity from on-body accelerometers,” Sensors, vol. 10, no. 2, pp. 1154–1175, 2010.

[10] F. Foerster and J. Fahrenberg, “Motion pattern and posture: correctly assessed by cal-

ibrated accelerometers,” Behavior research methods, instruments, & computers, vol. 32,

no. 3, pp. 450–457, 2000.

[11] A. Subramanya, A. Raj, J. A. Bilmes, and D. Fox, “Recognizing activities and spatial

context using wearable sensors,” arXiv preprint arXiv:1206.6869, 2012.

[12] X. Long, B. Yin, and R. M. Aarts, “Single-accelerometer-based daily physical activity clas-

sification,” in 2009 Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, pp. 6107–6110, IEEE, 2009.

[13] M. V. Albert, S. Toledo, M. Shapiro, and K. Koerding, “Using mobile phones for activity

recognition in parkinsons patients,” Frontiers in neurology, vol. 3, p. 158, 2012.

[14] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman,

X. Zheng, and A. T. Campbell, “Sensing meets mobile social networks: the design, im-

plementation and evaluation of the cenceme application,” in Proceedings of the 6th ACM

conference on Embedded network sensor systems, pp. 337–350, ACM, 2008.



REFERENCES 62

[15] B. Babcock, M. Datar, and R. Motwani, “Sampling from a moving window over stream-

ing data,” in Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete

algorithms, pp. 633–634, Society for Industrial and Applied Mathematics, 2002.

[16] R. E. G. da Costa Cachucho, J. M. Moreira, and J. Gama, “Activity recognition using,

smartphone based, accelerometer sensors,” 2011.

[17] J. Yang, “Toward physical activity diary: motion recognition using simple acceleration fea-

tures with mobile phones,” in Proceedings of the 1st international workshop on Interactive

multimedia for consumer electronics, pp. 1–10, ACM, 2009.

[18] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li, “Activity recognition on an accelerometer em-

bedded mobile phone with varying positions and orientations,” in International Conference

on Ubiquitous Intelligence and Computing, pp. 548–562, Springer, 2010.

[19] Z. John Lu, “The elements of statistical learning: data mining, inference, and prediction,”

Journal of the Royal Statistical Society: Series A (Statistics in Society), vol. 173, no. 3,

pp. 693–694, 2010.

[20] S. J. Preece, J. Y. Goulermas, L. P. Kenney, and D. Howard, “A comparison of feature

extraction methods for the classification of dynamic activities from accelerometer data,”

IEEE Transactions on Biomedical Engineering, vol. 56, no. 3, pp. 871–879, 2009.

[21] S. Pirttikangas, K. Fujinami, and T. Nakajima, “Feature selection and activity recognition

from wearable sensors,” in International Symposium on Ubiquitious Computing Systems,

pp. 516–527, Springer, 2006.

[22] A. Bayat, M. Pomplun, and D. A. Tran, “A study on human activity recognition using

accelerometer data from smartphones,” Procedia Computer Science, vol. 34, pp. 450–457,

2014.



REFERENCES 63

[23] H. Vathsangam and G. S. Sukhatme, “Using phone-based activity monitors to promote

physical activity in older adults: a pilot study,” in Healthcare Innovation Conference

(HIC), 2014 IEEE, pp. 42–47, IEEE, 2014.

[24] N. D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke,

T. Choudhury, and A. Campbell, “Bewell: A smartphone application to monitor, model

and promote wellbeing,” in 5th international ICST conference on pervasive computing

technologies for healthcare, pp. 23–26, 2011.

[25] L. G. Glynn, P. S. Hayes, M. Casey, F. Glynn, A. Alvarez-Iglesias, J. Newell, G. ÓLaighin,
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