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Abstract

With the increasing use of mobile devices, now it is possible to collect different data

about the day-to-day activities of personal life of the user. Call Detail Record (CDR) is

the available mobile phone usage dataset at large-scale, as they are already constantly

collected by the mobile operator mostly for billing purpose. By examining this data it

is possible to analyze the activities of the people in urban areas and discover the

human behavioral patterns of their daily life. These datasets can be used for many

applications that vary from urban and transportation planning to predictive analytics of

human behavior. In our research work, we have proposed a hierarchical analytical

model for finding facts from CDR dataset for progressive exploration of facts on the

day-to-day social activities of urban users in multiple layers. In our model, only the

raw CDR data are used as the input in the initial layer and the outputs from each

consecutive layer is used as new input combined with the original CDR data in the

next layers to learn more detailed and deeper facts on social interaction, work and

travel activity, friends, family and working relationship and predicting social groups

based on these facts. Our proposed model starts with an aggregated overview of the

activities of the users in their social life and allows us to gradually focus on smaller

groups, using multiple layers of abstraction by applying clustering techniques and

prediction classifiers. The uniqueness of our model is that the output in each layer is

dependent on the results of the previous layers, thus, allow us to explore fact on social

relationships and groups which can not be predicted in a single layered approach. This

model utilized the CDR dataset of one month collected from the Dhaka city, which is

one of the most densely populated cities of the world. So, our main focus of this

research work is to explore the applications of CDR data containing spatio-temporal

traces of the mobile phone users for progressive predicting of facts and features of

social groups and relationships in a busy city.
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Chapter 1

Introduction

With the rapid developments in technologies involving hand-held devices and wireless

communications people are increasingly using more mobile phones day by day. The

ubiquitous mobile devices carried by people all over the world are regularly being used

as a massive source of spatio-temporal data collected for different purposes [21].

Spatio-temporal data collected from any mobile device are a very convenient tool to

understand city dynamics, environment, traveling and the behavioral patterns of the

people within [39, 15, 28]. All the modern smartphones has a number of sensors (GPS,

g-sensor, magnetic sensor, etc.) in-built which facilitate us to collect spatio-temporal

data about user activity very easily. But, as not everyone uses smartphone and all the

variations of smartphones do not have similar sets of sensors. Even, if they have, using

the sensor is dependent on the decision of the users. So, collecting data in this way can

be expensive and inconvenient at times.

Mobile phone service providers continuously collect data in trace files from all the

active mobile phones using cellular service from the towers of their cell networks.

Although this data is primarily collected for billing purposes and network traffic

analysis [18], they contain spatio-temporal traces of the mobile phone users. This

spatio-temporal trace proves to be a valuable source of inexpensive data about user

activity, which is being collected continuously. Furthermore, in this method all types

of mobile phones, ranging from the cheapest phone to most expensive smartphone

functions as a similar type of spatial-temporal sensor. This kind of data can be very

effective in understanding the relationship of the people and their daily activities in the
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context of an urban setup.

By analyzing such data, it is possible to identify patterns and relations, revealing

insightful information about the city, which in turn facilitates the authority, service

providers and citizens with a better way of understanding, decision-making, discovery

and exploration of the urban life [38]. Again, analysis of human behavior and mobility

patterns is a very important research topic in various fields such as geography, urban

and transportation planning, telecom sector, social science, and human psychology.

Accompanied by the usage of increasing number of mobile phone users, the mobile

networks have become an enormous ubiquitous sensing system. These networks are

constantly collecting call data logs from mobile phones of all types. So, mobile phone

call data recorded by various cell towers all over the city are a cheap and

easy-to-collect source of data contains a huge amount of spatio-temporal traces of the

users. As mobile devices are regularly being carried by a huge part of the overall

population of earth, those are potentially a very effective tool of pervasive sensing

platform for collecting nearly real-time, fine-grained spatio-temporal data. This data is

collected more effectively with finer granularity in highly populated urban areas and

particularly in the developed and developing countries, where mobile phone

penetration is almost hundred percent. Therefore, utilization of these spatio-temporal

responses from mobile device users can be a prospective option for the researchers to

formulate various methods for observing and sensing the city dynamics, identifying

mobility patterns and predicting social features of the citizens in the urban area.

1.1 Overview of Problem Domain

Call Detail Record (CDR) is a data record generated by telecommunication equipment

like a telephone exchange or cell tower. This data records are log files containing

details of a single instance of communication activity, like voice calls, short messaging

service (SMS) texts, and Internet and data services initiated by the phone user, which

has been processed by specific telecommunication equipment. The mobile phone

service providers keep records of all outgoing communication activity of mobile

devices for billing and other purposes. Every single entry of CDR data includes the

2



Figure 1.1: Examples of (a) user accessible CDR (b) encrypted CDR collected by a cell
operator

following parameters along with others: a random ID number of the phone,

independent of the user, device and phone number; the exact time and date; call

duration and location in latitude and longitude of the cell tower that provided the

network signal for the communication activity of the mobile device. The CDR data is

stored in encrypted files for ensuring the anonymity and privacy of the mobile device

users.

The two major limitations of the CDR data are that, a data entry is generated only when

a communication activity is initiated and the location of that activity is recorded as the

geographic position of the cell tower facilitating the activity. So, the availability of data

is dependent on the frequency of the user activity in mobile devices. On the other hand,

the spatial granularity of the location data depends on the granularity of a cell tower

and the density of cell tower varies in different areas. According to the International

Telecommunication Union (ITU), in 2011 there were more than 85 mobile phone users

among every 100 residents of many major which has increased almost 5 times from

2001 to 2011 [39]. Because of the much greater number of cell towers and frequency

of communication activity, the CDR data collected from a densely populated city can
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largely overcome the aforementioned limitations and make urban activity analysis more

effective.

Furthermore, massively collected spatio-temporal data or Big Data like CDR consists

of billions of lines of data entries in log files, mostly in basic text format, which can

take terabytes of space in the storage media. So, applying the proper techniques for

preprocessing and finding facts from them is another challenge[18]. Processing these

massive data demands a good amount of computational resources. Although, given the

recent development of processing power and storage capability, it is becoming easier

to handle these kinds of data. Yet, without well-handled techniques and optimized

algorithms, processing and fact finding from big data can be a challenging task.

1.2 Limitations of Previous Works and Our Motivation

Many of the foundational concepts of sociology and social psychology have originated

from the observation of the activities of people living in urban areas. A social group

within social sciences has been defined as two or more people who interact with one

another, share similar characteristics, and collectively have a sense of unity.

Individuals in groups are connected to each other by social relationships. CDRs from

mobile phones have become very popular in social and urban activity analysis over the

last decade. Researchers from Sensible City Lab, MIT developed City Browser, a

software tool to perform spatio-temporal analysis of CDR data to discover human

activity, mobility behavior and flow of people across the city in a time window [1]. By

presenting an insightful overview, Steenbruggen and others developed a typology of

the various studies which utilize mobile phone data for spatial research in a smart city

environment [39]. In a related research work, a strong correlation is established in

daily activity patterns within the group of people who share a common work area’s

profile using CDR [28]. A few more works were done to establish correlations

between CDR data and daily life activity patterns of the citizens of urban area

[23, 8, 7]. Likewise, CDR data were used for estimating the presence of citizens and

its spatio-temporal pattern in different urban regions [40].

Another promising research area is using CDR data to analyze travel activities like
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origin-destination matrix, human trajectory and traffic flow analysis, etc.

[15, 16, 46, 42]. In a research, information was found on how the usage of mobile

phones correlates with individual travel behavior by exploring the correlation between

mobile phone call frequencies and three indicators of travel behavior: radius,

eccentricity, and entropy [46]. Another recent work on human activity-travel behavior

(ATB) showed the monthly variability in human activity spaces and locations after

analyzing one year’s CDR data [17].

As we can see that, CDRs have been used extensively in a good number of researches

on social and urban analysis. Although many researches has been done exploring

different kinds of urban activity from CDR, no efforts have been made so far to

identify different social groups, their relationships and investigate city area based on

social group activities. The research works done so far mainly focused on analysis of

various types of user activities, travel behaviors or city dynamics from a different

perspective. Besides, the frameworks proposed in all the previous works used CDR

data in a single-layered procedure to find facts, which has limited exploration

potential. According to the best of our knowledge, no hierarchical exploration model

with multiple layer is applied so far for analyzing spatio-temporal CDR data for

finding social groups and relationships in urban areas.

The efficient processing and utilization of CDR data are also major challenges for the

researchers, especially since there is a vast amount of information collected, which

renders the problem as a Big Data problem. In order to address the large volume of the

data, our proposed solution provides a unique and novel framework comprising layered

approach which begins with an aggregated overview of the whole CDR and allows

gradual focus on smaller sets of data.

1.3 Objectives and Scope of the Thesis

The objective of our thesis is to progressively explore social activities, social groups and

relationships by applying fact finding techniques on CDR data in a hierarchical layer

approach. Using our proposed framework we have predicted the social interactions

between mobile phone users and social groups based on social interaction, work and
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travel activity, friends, family and working relationship, and investigated status of the

city areas based on social activities [20].

Our main objective is to discover social relationships and groups from CDR data

gradually by using our proposed hierarchical exploration model with multiple layers.

We have proposed a set off algorithms in different layers based on predictive classifiers

and clustering techniques to investigate social groups and relationships by statistical

analysis of the CDR. From our comprehensive analysis of the CDR we predict social

groups such as extroverts and introverts, regular and irregular working people,

frequent travelers, family, friends, co-workers, etc. in different layers progressively.

The information obtained in different layers of our model led to the investigation of

social lifestyles, like, working patterns, traveling patterns, patterns of social relations

in a densely populated urban area.

Investigating some city area features related to social activities is another objective of

our research. Using our framework on CDR data we have identified city areas like

places of common interests, densely populated area, residential area, commercial area,

etc. and predicted the status of social activities in these areas in different time periods.

As the feature of any city is highly dependent on the underlying social structure and

culture, exploration of these features is very much correlated with the investigation of

social activities and relationships.

To accomplish the objective we formulate and devise a progressively exploring

hierarchical prediction model with expandable numbers of layers utilizing fact finding

algorithms for investigation of social groups and related facts from CDR data. The

novelty of our work is that, the hierarchical framework provides flexibility of

exploration and as the number of layers increase we can learn deeper facts on the city

based on CDR data. In each of the layers we propose a set of prediction classifier and

clustering techniques to find facts and predict social patterns.

The auxiliary objective of our work is to develop software for preprocessing the CDR

data, applying fact finding algorithms and visualizing the different results obtained in

progressive layers of our model in an automated or semi-automated way.
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1.4 Our Solution Overview

In this thesis work, we have used CDR data to identify social groups and relationships

in a hierarchically designed layered approach for progressive exploration by analyzing

and correlating different facts including social interactions, work and travel activities.

Our proposed model starts with an aggregated overview of the activities of the users

in their social life and allows us to gradually focus on smaller groups, using multiple

layers of abstraction. In each of the layers we have designed and employed a number of

prediction classifiers and clustering techniques for finding facts on social activities and

investigating social groups. As we proceed deeper within the layers, we obtain more

detailed information using the facts obtained in the previous layers. Obtained facts from

the modules in each layers are stored in a combined knowledge base along with the raw

CDR utilized in the layers progressively.

In the very first layer, at first we introduce a number of feature extraction algorithms that

addresses the challenges of extracting information from massive CDR data and extract

features comprising calling pattern and unique locations visited by individual users.

Then, we have used the raw CDR data to analyze the daily call activity and calling

pattern of the citizens to predict a number of social groups including Heavy callers,

Regular callers, Minimal callers, late-night callers, professional callers. We propose

linear prediction classifier by using values for each feature of call activity to predict

caller groups. Also, we examine the overall calling pattern of the city in different time

periods and locations. Additionally, we generate a call graph to determine the possible

relations among callers.

In the next layer, we propose algorithms based on two clustering techniques, X-means

and EM to detect the home, workplace and other frequently visited places, collectively

called Points of Interest (POIs) for the users. We have applied both centroid-based

clustering, X-means and distribution based clustering, EM for finding POIs of the users

and compared their performances. This is one of the critical information for our work,

as most of the major social relations are based on home and workplace of the citizens.

Also, we have developed prediction models to successfully predict working days and

weekends of a user, rush hours and non-rush hours in different city areas in different

times of the day.
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Using the classifiers proposed in the third layer, we apply knowledge gathered so far to

categorize the regular working people like professionals, businessmen, students, etc.

and the home staying people like homemakers, retired and unemployed people, etc.

Further, we have classified the working people on the basis of their mobility and

traveling distance in the city and developed a prediction model to predict their regular

traveling routes to workplace. Additionally, in this layer, our city area tagging

classifier categorizes city areas as residential and commercial.

The fourth layer involves microlevel analysis of social groups and relationships to find

smaller social circles, as now we have enough information in our combined knowledge

database. At first we propose some hypotheses based on our observation of the social

groups and then apply them to formulate a set of classifiers to predict social groups like,

neighbors, co-workers, and special relationship groups like fellow travelers and people

living in official accommodations.

In our final layer, we formulate and devise prediction classifiers to find the personal level

social relationships and groups revolving around them based on social communications

and interaction. The social groups we predicted here are family, friends, colleagues and

closely acquainted people based on common relationship features.

Furthermore, we propose a statistical prediction model to find the closeness of two users

based on the social interactions between them predicted in different layers. As a final

result of our overall fact finding scheme, we calculated a score from all the combined

facts to measure the probability of social closeness between two users, which we call

the Aggregated Social Closeness (ASC) between them.

We have used real life CDR collected from the largest telecom operator of a busy city as

a test dataset to design our progressive exploration model. We evaluated the accuracy

of our methods using k-fold cross validation on our test CDR data. Also, as the users

identification in our CDR is encrypted by the provider telecom operator to maintain

anonymity, we have collected call record data form some volunteer users with known

social relationships and group membership from the same city and validated our model

further. From our validation we can see that in the initial layers, the accuracy of our

results are almost 100 percent. But, as we explore deeper into the social groups and

relationships in the later layers, the accuracy of our results diminishes.
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1.5 Applications

The main application of our model is to formulate and devise methods and tools for

the concerned people to help them visualizing and understanding the social activities,

social groups and their relationship, as well as providing a better way of discovery and

exploration of a busy city. Among many possibilities, a group of applications comprises

those whose main beneficiary is the owner of a mobile phone. Even the simples phone

acts as an intermediate tool to access data on its location and will position it on a map.

Some of the possible applications for mobile phone users are as follows:

• interactive information service

• traffic services

• advertisements and news services

• recommender services

• social group and networking services

Another series of applications consists of those whose main beneficiary is not the

owner of a mobile phone but rather other bodies, generally public authorities and

private companies. This group of applications includes the services that this paper is

concerned with, and some of them are listed here:

• mobile phone operators

• emergency services

• family safety services

• law-enforcement authorities

• real time traffic systems

• transport management authorities

• city planning authorities

• online shops and telemarketers

These applications represent one of the sectors with greatest market potential in the

context of mobile telecommunications systems. The ongoing trends are already

showing that in future, these services will become one of the principal sources of

income for phone operators. In addition, non-operator corporations may well think up

new applications and/or modify existing ones, thanks to the possibilities offered by
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localization processes, which will help add value to their products, boost sales and

open up fresh opportunities in new markets.

Furthermore, our work has applicability for research in the fields of geography, urban

and transportation planning, telecom sector, business, social science, predictive

analytics, etc. Also, this unique research work was done based on the CDR from a

densely populated urban area of an underdeveloped country with many distinctive

features. We have designed and developed a software tool and visualizer that will

assist city managers and different service providers to render better service to the

citizens.

1.6 Outline of the thesis

In Chapter 2, we have presented some of the recent research works with different

objectives using CDR related to our topic.

Chapter 3 briefly explains some preliminary topics related to our problem and

proposed framework. Then, we have discussed the framework of our proposed

hierarchical exploration model in Chapter 4.

Chapter 5 illustrates the detail of different methods and algorithms we have used in

different layers of our model. This chapter presents the overall technical detail of our

methodology

Chapter 6 focuses on the experimental setups and results. It also illustrates the

experimental data as well as environment of our research and examines the

experimental results. Finally, the analysis of different experimental results are

presented in this chapter.

We have presented the software in Chapter 7, which we developed as a part of our

thesis work to process the CDR using our proposed model and visualize the results.

Here we demonstrate all the features of our software. Additionally, the supplementary

tools used in our work is discussed briefly in this chapter.

Finally, Chapter 8 concludes our thesis. This Chapter also includes the outlines of

some future works related to this dissertation.
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Chapter 2

Related Works

A rapidly increasing number of mobile phone users has motivated researchers from

various fields to study its social and economic impact. With the extensive records of

mobile phone data such as calling pattern and location of the mobile phone user,

analyses have been performed on numerous aspects including behavioral routine, call

prediction, and dynamics in human mobility. Over the years, diverse approaches are

taken by researchers to exploit the applicability of simple mobile phone call logs, in

several cases combining with GSM/WiFi/GPS traces or other types of additional data.

2.1 City Status Analysis

An insightful overview is given and a typology is developed of the various studies

which utilize mobile phone data for spatial research in a smart city environment by

Steenbruggen et al [39]. A research was done showing the relevance between real

human trajectory and the one obtained through mobile phone data of real cellular

network activity in the Boston metropolitan area using different interpolation methods

and taking mobility parameters into consideration [15]. In a similar work based on a

large mobile phone data of nearly one million records of the users in the central

Metro-Boston area, a strong correlation is established in daily activity patterns within

the group of people who share a common work areas profile [28]. In addition, within

the group itself, the similarity in activity patterns decreases as their work places

become apart. A software tool named City Browser was developed by researchers
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from Sensible City Lab, MIT to perform spatio-temporal analysis of CDR data to

discover human mobility behavior and flow of people across the city in given time

windows [1].

An article [14] presents a field experiment nicknamed Mobile Century, which included

100 vehicles carrying a GPS-enabled Nokia N95 phone driving loops on a 10-mile

stretch of I-880 near Union City, California, for 8 hours. Data were collected using

virtual trip lines, which are geographical markers stored in the handset that

probabilistically trigger position and speed updates when the handset crosses them. A

survey was done in [21] on existing mobile phone sensing algorithms, applications,

and systems used in many sectors, including business, healthcare, social networks,

environmental monitoring, and transportation. A review is presented in [33]

considering the state of practice in relation to using mobile phones as traffic probes,

assesses the prospects for this data collection option and identifies unresolved issues

that may have implications for obtaining realtime traffic information using mobile

phones as probes.

A research group presented Nericell [25], a system that performs rich sensing by

piggybacking on smartphones that user carry with them in normal course. In this work,

they focus specifically on the sensing component, which uses the accelerometer,

microphone, GSM radio, and/or GPS sensors in these phones to detect potholes,

bumps, braking, and honking. Another paper [38] provides a systematic overview of

the main studies and projects addressing the use of data derived from mobile phone

networks to obtain location and traffic estimations of individuals, as a starting point for

further research on incident and traffic management. In addition to a literature review,

the main findings on a project called Current City project are presented, which is a test

system in Amsterdam, Netherlands for the extraction of mobile phone data and for the

analysis of the spatial network activity patterns. In [38], authors extracted GSM

signaling data from a selected area around Munich, Germany for three months in order

to detect road traffic congestion information directly from the mobile network.

Another work is done in [24] which present a method to analyze the urban blocks’

property and activity patterns based on real world cell phone data from Beijing.
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2.2 Human Mobility and Activity Pattern Analysis

Human mobility pattern is highly predictable, especially, for urban citizens who tends

to live a well-organized routine life. People tend to return a few frequent locations and

follow simple repeated patterns despite the diversity of the their travel history. Gonzalez

et al. [13] examine six-month trajectory of 100,000 mobile phone users and find a high

regularity degree in human trajectories contrasting with estimation by Levy flight and

random walk models. The most recent study in human mobility based on a large mobile

phone data by Song et al. [37], whose result is consistent with Gonzalez et al.s [13] that

human mobility is highly predictable. Based on data from 50,000 mobile phone users,

they find that predictability in human mobility is independent of distance that each

individual regularly travel and show that the predictability is stabled at 93 percent for

all regular traveled distances of more than 10km. Using GPS data, Do et al. [10] found

out that most people visit 2 - 4 places every day and calendar (day/time) has significant

impact on peoples pattern of visiting places.

Azevedo et al. [2] study pedestrian mobility behavior using GPS traces captured at

Quinta da Boa Vistas Park in Rio de Janeiro (Brazil). Movement elements are analyzed

from data collected from 120 pedestrians. They find that the velocity and acceleration

elements follow a normal distribution while the direction angle change and the pause

time measure fit better to log normal distribution. Based on 226 daily GPS traces of

101 subjects, Lee et al. [23] develop a mobility model that captures the effect of

human mobility patterns characterized by some fundamental statistical functions. With

analytical and empirical evidence, they show that human movement can be expressed

using gaps among fractal waypoints [30] It is also reflected from their work, that

people are more attracted to more popular places. With a large set of mobile phone

data, Candia et al. [8] study spatiotemporal human dynamics as well as social

interactions. They investigate the patterns in anomalous events, which can be useful in

real-time detection of emergency situation. At the individual level, they find that the

interevent time of consecutive calls can be described by heavy-tailed distribution,

which is consistent with the previous reports on other human related activities.

Research works cane out with a strong assumption that users move linearly over time.

This hypothesis is in a high contrast with the results obtained in [12] that show the
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tendency of users to stay in the vicinity of their call places. Authors in [12] propose a

probabilistic inter-call mobility model, using a finite Gaussian mixture model to

determine users position between their consecutive communication events (call or

SMS) using Call Data Records. The model evaluates the density estimation of the

spatio-temporal probability distribution of users position between calls, but it does not

give an approximation of the fine-grained trajectory between calls. User displacements

using GPS traces have been analyzed in [31]; the authors find the displacement

behavior show Levy walk properties. Another research suggested that human

interaction data, or human proximity, obtained by mobile phone Bluetooth sensor data,

can be integrated with human location data, obtained by mobile cell tower

connections, to mine meaningful details about human activities from large and noisy

datasets [11]. A literature proposed NextMe a novel scheme to enhance the location

prediction accuracy by leveraging the social interplay revealed in the cellular calls

[47]. While very interesting in order to model inter-contact time distributions and

general massive mobility, such random-based approaches cannot give precise

approximations between given points on a per-user basis.

2.3 Traffic and Transportation Analysis

Spatio-temporal data collected from mobiles phones have been used extensively for

traffic and transportation analysis in urban area for a long time. The paper in [4]

provides a review about how to obtain parameters related to traffic from

cellular-network-based data, describing methods used in existing simulation works as

well as field tests in the academic and industrial field. Similarly, a technical note [22]

was published on Collection Methods and Applications of Road Traffic Data. Another

work in [9] presents two Bayesian framework based traffic estimation models by the

measurement of cell handoff data of floating vehicles.

An analysis of mobile phone call intensity and taxi volume in Lisbon, Portugal was

carried out in [29, 41], where, based on one month of observation, the authors found

that the variation in the amount of mobile phone calls was strongly correlated with the

taxi volume of the previous two hours. Hence taxi volume can be used to predict

mobile phone call intensity of the next two hours. In addition, they found that the level
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of inter-predictability varied across different time of the day; taxi was a predictor

during PM hours while mobile phone call intensity became a predictor for taxi volume

in AM hours. Another research provided a deeper understanding of how usage of

mobile phones correlates with individual travel behavior by exploring the correlation

between mobile phone call frequencies and three indicators of travel behavior: radius,

eccentricity, and entropy [46]. The methodology is applied to a large dataset from

Harbin city in China.

An approach for extracting origin destination information from mobile phone data was

made in [45] and the work is updated in [44]. Origin-destination matrices was

developed in another work using the same CDR data form Dhaka which we used for

our work [16]. Traffic origin destination data is one of the most important pieces of

information required for effective network management and strategic planning. Origin

destination (OD) matrices provide an estimate of the number of vehicles traveling

between points on a network over a given period of time. A similar effort is made in

[6] using opportunistically collected mobile phone location data from one million

users in Boston Metropolitan Area. Another approach was proposed in [5], where the

flow of mobile phones in a cell-phone network is measured and correlated to traffic

flow. This methodology is based on the fact that a mobile phone moving on a specific

route always tends to change the base station nearly at the same position.

Some work was done on Human activity-travel behaviour (ATB), which is a complex

pattern of paths and activities in space and time and is the outcome of the

interconnection between individual factors, interaction with other individuals, and

external factors such as the surrounding environment and social structure [17]. It is

reshaped by the socio-economic attributes, as well as the needs, life values,

preferences, attitudes, prejudices and habits of individuals. The degree of variability

clearly varies due to methodological differences in how human ATB and it was

measured by some reserachers [35]. Variability in individual weekly ATB has been

examined in some studies covering from one week up to a period of six weeks [34].

The results suggest a weekly pattern in human ATB that is spatially and temporally

stable: individual ATB is more routine during the working week, while at weekends it

is more dispersed with respect to activities and spatial extent. In contrast, Buliung et
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al. [3] found the spatial extent of ATB to be larger during weekdays, whereas the first

study also reported greater day-to-day variation in spatial behaviour during the week

than on weekends. However, the latter study suggests that, towards the weekend,

activities are more impulsive in terms of perceived flexibility in time and space. On the

other hand, Schnfelder and Axhausen [36] argue that some activities are performed

over different durations, which results in different patterns for certain activities, such

as leisure activities or shopping in particular. Overall, Buliung et al. [3] note that while

a set of various factors influencing individual ATB has been explored, less effort has

been directed towards the study of temporal variation in ATB.

2.4 Other Works

Many other diversified research work was done using CDR and other spatio-temporal

data. Authors in [43] infer the top-k routes traversing a given location sequence within

a specified travel time from uncertain trajectories. Here, they use check-in datasets

from mobile social applications. Their proposed methods permit to identify the most

popular travel routes in a city, but they do not allow constructing time-sensitive routes.

Authors in [26] propose a spacetime prism approach, where the prism represents

reachable positions as a spacetime cube, given users origin and destination points i.e.,

the assumption of knowing the location of a user at one time and then again at another

time fits well mobile phone data in which we only know users position during their

communication events as well as time budget and maximum speed. Spatial prisms so

allow evaluating of binary statements, such as the potential of encounter between two

moving users. However, the maximum speed cannot be set for all users in general,

which limits the model applicability. There is an US patent [19] for a method and

gadget for providing vehicular traffic information using existing mobile phone

network. There are two Google Patents, one on method and apparatus for collecting

diagnostic messages and collating them into correlated groups to be matched to

specific calls, to identify and diagnose issues with those calls [27] and another on

method and apparatus for analyzing customer call data and related call information to

determine call characteristics [32].
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2.5 Summary

In this chapter have reviewed some of the research works done in the past decades

related to our work. The purpose of the overall discussion in this chapter is to setup a

baseline for the framework we are going to propose in the following chapter.
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Chapter 3

Preliminaries

3.1 Preliminaries

3.1.1 Machine Learning for Spatio-temporal Prediction

Machine learning is the science of getting computers to act without being explicitly

programmed. In the past decade, machine learning has given us self-driving cars,

practical speech recognition, effective web search, and a vastly improved

understanding of the human genome. Machine learning explores the study and

construction of algorithms that can learn from and make predictions on data. Such

algorithms operate by building a model from example inputs in order to make

data-driven predictions or decisions, rather than following strictly static program

instructions.

Machine learning is closely related to computational statistics, which aims at the

design of algorithm for implementing statistical methods on computers. It has strong

ties to mathematical optimization, which delivers methods, theory and application

domains to the field. Machine learning is employed in a range of computing tasks

where designing and programming explicit algorithms is infeasible. Example

applications include spam filtering, optical character recognition (OCR), search

engines and computer vision. Machine learning is sometimes conflated with data

mining, although that focuses more on exploratory data analysis. Machine learning

and pattern recognition ”can be viewed as two facets of the same field.” When
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employed in industrial contexts, machine learning methods may be referred to as

predictive analytics.

Machine learning tasks are typically classified into three broad categories, depending on

the nature of the learning ”signal” or ”feedback” available to a learning system. These

are,

Supervised learning: The computer is presented with example inputs and their desired

outputs, given by a ”teacher”, and the goal is to learn a general rule that maps inputs to

outputs.

Unsupervised learning: No labels are given to the learning algorithm, leaving it on

its own to find structure in its input. Unsupervised learning can be a goal in itself

(discovering hidden patterns in data) or a means towards an end.

Between supervised and unsupervised learning is semi-supervised learning, where the

teacher gives an incomplete training signal: a training set with some (often many) of

the target outputs missing. Transduction is a special case of this principle where the

entire set of problem instances is known at learning time, except that part of the targets

are missing.

3.1.2 Techniques for finding facts from Big Data

The process of finding and predicting facts or data mining is the computational process

of discovering patterns in large data sets (”big data”) involving methods at the

intersection of artificial intelligence, machine learning, statistics, and database

systems. The overall goal of the data mining process is to extract information from a

data set and transform it into an understandable structure for further use. Aside from

the raw analysis step, it involves database and data management aspects, data

pre-processing, model and inference considerations, interestingness metrics,

complexity considerations, post-processing of discovered structures, visualization, and

online updating. Here, the goal is the extraction of patterns and knowledge from large

amount of data, not the extraction (mining) of data itself. So, it is applied to any form

of large-scale data or information processing like collection, extraction, warehousing,

analysis, and statistics as well as any application of computer decision support system,
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Figure 3.1: Process of Knowledge Discovery in Databases (KDD)

including artificial intelligence, machine learning, and business intelligence. The

actual data mining task is the automatic or semi-automatic analysis of large quantities

of data to extract previously unknown, interesting patterns such as groups of data

records (cluster analysis), unusual records (anomaly detection), and dependencies

(association rule mining). These patterns can then be seen as a kind of summary of the

input data, and may be used in further analysis or, for example, in machine learning

and predictive analytics. For example, the data mining step might identify multiple

groups in the data, which can then be used to obtain more accurate prediction results

by a decision support system. Neither the data collection, data preparation and

preprocessing, nor result interpretation,reporting and visualization is part of the data

mining step, but do belong to the overall knowledge discovery in databases (KDD)

process as additional steps.

Data mining involves six common classes of tasks. They are, Anomaly detection,

Association rule learning, Clustering, Classification, Regression and Summarization.

In our work, we have mainly used Classification and Clustering for finding social

groups from the spatio-temporal information inside CDR.

3.1.3 Classification

In machine learning and statistics, classification is the problem of identifying to which

of a set of categories a new observation belongs, on the basis of a training set of data

containing observations or instances whose category membership is known. In the

terminology of machine learning, classification is considered an instance of supervised

learning, i.e. learning where a training set of correctly identified observations is
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available. The corresponding unsupervised procedure is known as clustering, and

involves grouping data into categories based on some measure of inherent similarity or

distance.

Often, the individual observations are analyzed into a set of quantifiable properties,

known variously as explanatory variables or features. An algorithm that implements

classification, especially in a concrete implementation, is known as a classifier. The

term ”classifier” sometimes also refers to the mathematical function, implemented by a

classification algorithm, that maps input data to a category. Terminology across fields

is quite varied. In statistics, where classification is often done with logistic regression

or a similar procedure, the properties of observations are termed explanatory variables

and the categories to be predicted are known as outcomes, which are considered to be

possible values of the dependent variable. In machine learning, the observations are

often known as instances, the explanatory variables are termed features (grouped into a

feature vector), and the possible categories to be predicted are classes.

Linear classifiers

A large number of algorithms for classification can be phrased in terms of a linear

function that assigns a score to each possible category k by combining the feature vector

of an instance with a vector of weights, using a dot product. The predicted category is

the one with the highest score. This type of score function is known as a linear predictor

function and has the following general form:

score(Xi,k) = βk.Xi (3.1)

where Xi is the feature vector for instance i,βk is the vector of weights corresponding to

category k, and score (Xi,k) is the score associated with assigning instance i to category

k. In discrete choice theory, where instances represent people and categories represent

choices, the score is considered the utility associated with person i choosing category k.

Algorithms with this basic setup are known as linear classifiers. What distinguishes

them is the procedure for determining (training) the optimal weights/coefficients and

the way that the score is interpreted.
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3.1.4 Naive Bayes classifier

In machine learning, naive Bayes classifiers are a family of simple probabilistic

classifiers based on applying Bayes’ theorem with strong (naive) independence

assumptions between the features. Naive Bayes classifiers are highly scalable,

requiring a number of parameters linear in the number of variables

(features/predictors) in a learning problem. Maximum-likelihood training can be done

by evaluating a closed-form expression, which takes linear time, rather than by

expensive iterative approximation as used for many other types of classifiers.

Naive Bayes is a simple technique for constructing classifiers: models that assign class

labels to problem instances, represented as vectors of feature values, where the class

labels are drawn from some finite set. It is not a single algorithm for training such

classifiers, but a family of algorithms based on a common principle: all naive Bayes

classifiers assume that the value of a particular feature is independent of the value of

any other feature, given the class variable. Abstractly, naive Bayes is a conditional

probability model: given a problem instance to be classified, represented by a vector

X = (x1, ...,xn) representing some n features (independent variables), it assigns to this

instance probabilities

p(Ck|x1, ...,xn) (3.2)

for each of K possible outcomes or classes.

3.1.5 Support Vector Machines

In machine learning, support vector machines (SVMs) are supervised learning models

with associated learning algorithms that analyze data and recognize patterns, used for

classification and regression analysis. Given a set of training examples, each marked

for belonging to one of two categories, an SVM training algorithm builds a model that

assigns new examples into one category or the other, making it a non-probabilistic

binary linear classifier. An SVM model is a representation of the examples as points in

space, mapped so that the examples of the separate categories are divided by a clear
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gap that is as wide as possible. New examples are then mapped into that same space

and predicted to belong to a category based on which side of the gap they fall on.

In addition to performing linear classification, SVMs can efficiently perform a

non-linear classification using what is called the kernel trick, implicitly mapping their

inputs into high-dimensional feature spaces. When data is not labeled, a supervised

learning is not possible, and an unsupervised learning is required, that would find

natural clustering of the data to groups, and map new data to these formed groups. The

clustering algorithm which provides an improvement to the support vector machines is

called support vector clustering is highly used in industrial applications either when

data is not labeled or when only some data is labeled as a preprocessing for a

classification pass; the clustering method was published.

3.1.6 Clustering

Cluster analysis is the assignment of a set of observations into subsets (called clusters)

so that observations within the same cluster are similar according to some

predesignated criterion or criteria, while observations drawn from different clusters are

dissimilar. Different clustering techniques make different assumptions on the structure

of the data, often defined by some similarity metric and evaluated for example by

internal compactness (similarity between members of the same cluster) and separation

between different clusters. Other methods are based on estimated density and graph

connectivity. Clustering is a method of unsupervised learning, and a common

technique for statistical data analysis.

Cluster analysis itself is not one specific algorithm, but the general task to be solved. It

can be achieved by various algorithms that differ significantly in their notion of what

constitutes a cluster and how to efficiently find them. Popular notions of clusters

include groups with small distances among the cluster members, dense areas of the

data space, intervals or particular statistical distributions. Clustering can therefore be

formulated as a multi-objective optimization problem. The appropriate clustering

algorithm and parameter settings (including values such as the distance function to

use, a density threshold or the number of expected clusters) depend on the individual

data set and intended use of the results. Cluster analysis as such is not an automatic
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task, but an iterative process of knowledge discovery or interactive multi-objective

optimization that involves trial and failure. It will often be necessary to modify data

preprocessing and model parameters until the result achieves the desired properties.

Here we have discussed some of the popular clustering algorithms which we have used

in our work.

K-means clustering

k-means clustering is a method of vector quantization, originally from signal

processing, that is popular for cluster analysis in data mining. k-means clustering aims

to partition n observations into k clusters in which each observation belongs to the

cluster with the nearest mean, serving as a prototype of the cluster. This results in a

partitioning of the data space into Voronoi cells.

The problem is computationally difficult (NP-hard); however, there are efficient

heuristic algorithms that are commonly employed and converge quickly to a local

optimum. These are usually similar to the expectation-maximization algorithm for

mixtures of Gaussian distributions via an iterative refinement approach employed by

both algorithms. Additionally, they both use cluster centers to model the data;

however, k-means clustering tends to find clusters of comparable spatial extent, while

the expectation-maximization mechanism allows clusters to have different shapes.

X-means Clustering

Despite its popularity for general clustering, k-means suffers three major

shortcomings; it scales poorly computationally, the number of clusters K has to be

supplied by the user, and the search is prone to local minima. X-means provides

solutions for the first two problems, and a partial remedy for the third. Building on

prior work for algorithmic acceleration that is not based on approximation, it introduce

a new algorithm that efficiently, searches the space of cluster locations and number of

clusters to optimize the Bayesian Information Criterion (BIC) or the Akaike

Information Criterion (AIC) measure. The innovations include two new ways of

exploiting cached sufficient statistics and a new very efficient test that in one k-means
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Algorithm 1 KMEANS(X ,k)
Input:

1: X ← { x1,x2, ...,xn }
2: k← (number of clusters)
3: MaxIters← (limit of iterations)
4: S← some initial candidate solution
5: for each ci ∈C do
6: ci← e j ∈ E (e.g. random selection)
7: end for
8: for each ei ∈ E do
9: l(ei)← argminDistance(ei,e j) j ∈ 1...k

10: end for
11: changed← f alse
12: iter← 0
13: repeat
14: for each ci ∈C do
15: U pdateCluster(ci)
16: end for
17: for each ei ∈ E do
18: minDist← argminDistance(ei,e j) j ∈ 1...k
19: if minDist 6= l(ei then
20: l(ei)← minDist
21: changed← true
22: end if
23: end for
24: until changed = true and iter ≤ maxIters
25: return S
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sweep selects the most promising subset of classes for refinement. This gives rise to a

fast, statistically founded algorithm that outputs both the number of classes and their

parameters. Experiments show this technique reveals the true number of classes in the

underlying distribution, and that it is much faster than repeatedly using accelerated

k-means for different values of K.

ExpectationMaximization (EM) algorithm

In statistics, an expectationmaximization (EM) algorithm is an iterative method for

finding maximum likelihood or maximum a posteriori (MAP) estimates of parameters

in statistical models, where the model depends on unobserved latent variables. The

EM iteration alternates between performing an expectation (E) step, which creates a

function for the expectation of the log-likelihood evaluated using the current estimate

for the parameters, and a maximization (M) step, which computes parameters

maximizing the expected log-likelihood found on the E step. These

parameter-estimates are then used to determine the distribution of the latent variables

in the next E step.

The EM algorithm is used to find (locally) maximum likelihood parameters of a

statistical model in cases where the equations cannot be solved directly. Typically

these models involve latent variables in addition to unknown parameters and known

data observations. That is, either there are missing values among the data, or the model

can be formulated more simply by assuming the existence of additional unobserved

data points. For example, a mixture model can be described more simply by assuming

that each observed data point has a corresponding unobserved data point, or latent

variable, specifying the mixture component that each data point belongs to.

Finding a maximum likelihood solution typically requires taking the derivatives of the

likelihood function with respect to all the unknown values viz. the parameters and

the latent variables and simultaneously solving the resulting equations. In statistical

models with latent variables, this usually is not possible. Instead, the result is typically

a set of interlocking equations in which the solution to the parameters requires the

values of the latent variables and vice versa, but substituting one set of equations into

the other produces an unsolvable equation.
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The EM algorithm proceeds from the observation that the following is a way to solve

these two sets of equations numerically. One can simply pick arbitrary values for one

of the two sets of unknowns, use them to estimate the second set, then use these new

values to find a better estimate of the first set, and then keep alternating between the

two until the resulting values both converge to fixed points. It is not obvious that this

will work at all, but in fact it can be proven that in this particular context it does, and

that the derivative of the likelihood is (arbitrarily close to) zero at that point, which

in turn means that the point is either a maximum or a saddle point. In general there

may be multiple maxima, and there is no guarantee that the global maximum will be

found. Some likelihoods also have singularities in them, i.e. nonsensical maxima. For

example, one of the ”solutions” that may be found by EM in a mixture model involves

setting one of the components to have zero variance and the mean parameter for the

same component to be equal to one of the data points.

Algorithm 2 ExpectationMaximization(X ,Z)
Input:

1: Given observed variables X , unobserved Z
2: Define (θ′|θ) = EZ|X ,θ[logP(X ,Z|θ′)]
3: Where θ = [πµ ji]
4: E Step:
5: Calculate P(Z(n)|X(n),θ) for each example X(n).
6: Use this to construct Q(θ′|θ)
7: M Step:
8: Replace current θ by θ← argmaxQ(θ′|θ)

3.2 Summary

In the opening section of this chapter we have introduced some of the preliminary topics

related to our work, which included, machine learning, data mining and clustering,

the technique we have used after certain modification in the layers of our hierarchical

exploration model.
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Chapter 4

Our Proposed Framework

Our proposed framework consist of a hierarchical exploration model which contain

multiple numbers of layers for finding facts from CDR to discover useful information

on social activities and relationships in urban areas. Each of these layer has a number

of module developed using automated or semi-automated supervised and unsupervised

learning algorithms with modification to make them suitable for our intended fact

finding procedures. Each modules works independently using the overall knowledge

base, containing the basic CDR database and amassed information from previous

layers. Thus, informations acquired from each modules of every layers contributes in

the overall knowledge base which can be used for further progressive exploration of

fact in the subsequent layers. Therefore, our proposed framework, modeled after the

deep learning technique is capable of progressive exploration of deeper facts as the

number of layers increases and develop a larger knowledge base.

4.1 The Hierarchical Exploration Model

The CDR data entries contain the date, time, duration and geographical location of the

cell tower facilitating the communication activity. This information can be considered

as digital footprints of user activities and can be utilized to detect facts like social

activity patterns, social groups, their relationships and properties of city area based on

social activities by applying a set of fact finding techniques if a reasonable amount of

data is given. Dhaka is a densely populated city with frequent communication activity
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Figure 4.1: The Layered Approach

and has greater number of the cell towers generating fine grained CDR useful for

effective fact finding.

In our work, the developed hierarchical exploration model with multiple layers can be

expanded further for processing and analyzing large volume of CDR data collected

from any large city to discover complex facts about the social groups and relationships

in different layers. For each layer of our model we furnished a set of fact finding

algorithms, including regressions, prediction classifiers and clustering techniques for

analyzing spatio-temporal data to obtain information on social activities and

relationships. The novelty of our proposed model is that, every new layer exploits the

facts derived in the preceding layers for progressive exploration of new facts. By

utilizing this multilayer hierarchical learning approach, as we explore deeper we

discover more significant information on the smaller social groups with closer

relationships, which can not be detectable in a single layered approach.
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4.2 The Layered Approach

The hierarchical model starts with the basic CDR dataset, starting with a large-scale

overview of the social groups and activities and gradually focus on more specific subsets

of the large amount of data, which leads to the discovery of the smaller and closer

groups. The first layer of our model uses the CDR data to find facts like places of

interest, resident, workplace, etc. of the users and their basic social activity patterns,

like, calling pattern, type of callers, frequencies of calls in different times of the day, etc.

In the next layer we obtain informations on further social activity patterns like working

patterns, traveling routes and patterns, etc. Using this information, in the subsequent

layers, we find different groups of people based on their social activity patterns and

find broader social groups, like, regular/irregular working groups, home-staying groups,

frequent traveling groups, etc and the possible interactions and relationships inside and

among these groups. As we go deeper with these layers, we progressively narrow down

these groups and identify more distinguishable social groups like, family members,

friends and acquaintances, neighbors, co-workers, etc. and their social activity patterns

and relationships. We have developed our framework with the hierarchical model to go

even deeper and narrow down professional groups, family and friend circles with similar

social activity and traveling patterns. Furthermore, we classify city areas based on the

activities and properties of social groups discovered in each layers from spatio-temporal

perspectives. In this work, with the CDR data with limited attributes we have explored

up to five layers using our framework which leads us to a bulk of useful information with

the progressive exploration and expansion of the combined knowledge base. We have

elaborated the frameworks of the layers in the next subsections. It is worth mentioning

that, given a CDR dataset with a reasonably good number of attributes, our framework

allows us to expand the hierarchical exploration model deeper up to as many layer as

possible until there is no useful information is left to find.

4.2.1 Layer 1

The first layer mainly deals with the raw CDR dataset only. So, procedures in this

layer focus on preparing the data for using in the subsequent layer, rather than finding
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major facts. Here, the objectives is to find simpler facts using statistical classifiers

from the raw CDR data and integrating them to the knowledge base. We perform the

basic analysis of our raw data in this layer. Here we obtain information about the

concentration of user activities and calling pattern of users in different time periods of

the day in the dates we have record in the CDR. For example, visualizing the overall

calling pattern of our data we can clearly see that people make social interaction over

phone more on holidays. The spatial variation of the call activity at any given time

can be conveniently displayed by means of maps divided in Voronoi cells showing the

service area of each cell tower. The information obtained from Voronoi diagram reflect

the obvious and apparently known notions regarding the calling habits of the users,

i.e. people talk more in the daytime to before midnight and less after the midnight till

dawn, where as a certain group talks more after midnight. However, this is considered

as detection of minor social group.

By using our software, we isolate and summarize the call activity of every single user

and able to generate user based call log and location based call log in this layer. We

call all the Unique Calling Locations of an user as UCL. From the concentration of

call activity of users, we classify three groups, Minimal users, Regular users and Heavy

users. from other calling patterns, we classify other types of users. Definitely, this

three grouping give us some idea gives us idea about socially extroverts and introverts

peoples.

One important and resource consuming task done in this layer is generation of a call

graph. In our CDR, we do not have the information of the callee for call activities. So,

we have furnished a way to develop a caller-callee relationship graph by considering

calls made in same time with equal duration as an identical call and establish a calling

relationship among the user. However, the original CDR data collected by cell operator

contains callee information which would enable skipping this step and allows using our

model more efficiently.

4.2.2 Layer 2

The major fact finding task done in this layer is identifying the locations of home,

workplace and other frequently visited places for every single user. This information
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is crucial for next layers as homes and workplaces have a pivotal role in the society.

We call home, workplace and other frequently visited places commonly as Places of

Interests or POI for individual users and store them in the main knowledge base. We

use the call log of an user to determine the POI from where he makes most of the calls

using our clustering algorithm. Using classifiers on the top POIs and the concentration

of call activity in usual working hours and off-hours leads to the discovery of the home

and workplace of an user. Other POIs are considered as locations where the user visited

frequently. Working days and holidays of the regular working people is also identified

in this layer.

Also, starting from this layer, we identify some of the city area features based on the

knowledge of calling activity from previous layer. The CDR data have fixed number of

unique locations, which are the locations of the cell towers providing service to the

users. We consider every unique location as a zone of the city and use a classifier to

find the concentration of call activities in different times of the day, which determines

how busy or densely populated the zone is at a certain time of the day. From the

concentration of calling activity in city areas in different time periods of day and days

of week we identified the busy areas in working hours and holidays, even in different

times of the year. These facts indicate a very important social feature of a city.

4.2.3 Layer 3

As we reach deeper upto Layer 3, we already have a good knowledge base consisting of

the base CDR and information learned from the previous layer. Therefore, in this layer

we explore some really useful information about social activities and social groups.

Using the home and workplace information, at first we classify two major social

groups based on the working hour activity patterns, regular working people and

irregular working people. The group of regular working people includes the users who

spend their working hours and off-hours in different places, in their office and home

respectively. People from this group regularly travel from their home to workplace and

have a recognizable traveling pattern. Office workers, businessmen, students, etc. are

part of this group. The other group comprises of people who spend both working hours

and off-hours in same place. They can be retired people, homemakers or even people
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who works in the same place as their home.

By considering the UCLs of an user who travel from his home to workplace, we have

predicted his regular traveling route. It is done by applying a single source shortest

path algorithm considering the UCLs as nodes, home location as source and workplace

as destination. Finding traveling route is more effective when we have a good number

call data of the user making calls en route to his workplace from home. Also, we have

predicted the type of transport used from the distance crossed in a given time using this

information.

Another social group detectable from this layer is based on the traveling distance of the

users. Some people travel a very short distance to their workplace, where others have

to pass a long way. We classify the people of the city in classes based on the range of

their distance traveled from home to workplace.

In this layer we also identify and tag city blocks as Residential, Commercial or other

miscellaneous types of area by considering the number of home, workplace or other

types of POI located in a certain city block.

4.2.4 Layer 4

As we explore deeper into our CDR and knowledge base in Layer 4, we find closer

social relationships and activity patterns, which leads to the discovery of smaller social

groups consisting of smaller set of users. In this layer we propose a number of

probabilistic prediction classifiers based on several hypotheses performing statistical

analysis of the facts found in the preceding layers. We have discussed here some of the

hypotheses used to design classifiers and applied on our data. The prediction

classifiers designed based on the CDR are later validated with real call data we

collected from volunteers.

Hypothesis 1. A group of users have the same home locations means that they lives in

the same neighborhood. So, we can classify these loosely connected social groups as

neighbors and members have a high probability of interaction.

Hypothesis 2. If a group of users have the same workplace locations, they have a high

probability of being acquaintances, even colleagues.
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Hypothesis 3. The type of transport used by a user can be classified and grouped from

his traveling route and information of time differences and distances among call

activities made by him in the same day on that route.

Hypothesis 4. If a two or more persons have common home, workplace or more than

one common POIs and same or overlapping regular traveling route, we can perform

predictive analysis of their social relationship and group membership using available

information.

4.2.5 Layer 5

Layer 5 utilizes the knowledge of calling relationship either present in the CDR or

derived from the call graph generated in the previous layer. To use this relationship

information we propose some prediction models based on the following hypotheses to

detect social groups, including family, friends, colleagues and closely acquainted people

featuring more complex and deeper relationships. The prediction classifiers designed

based on our CDR are later validated with real call data we collected from volunteers.

Hypothesis 5. If two or more persons share the same home location and have a frequent

calling relationship, we can predict the probability of them being family members or

close acquaintances.

Hypothesis 6. If two or more persons share the same workplace location and have a

frequent calling relationship, we can predict the probability of them being colleagues,

co-workers or friends.

Hypothesis 7. If two or more persons visit or stay in same POIs multiple times in same

time periods and have a calling relationship, we can predict the aggregated probability

of them being member of a social group like family, friends or other types of close

relationships.

4.2.6 Beyond Layer 5

As we mentioned earlier, our framework allows us to explore the hierarchical

exploration model deeper up to as many layer as possible, the feasibility of which is
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limited by the attribute and size of the base dataset. Given our dataset, it is possible,

but not feasible to explore beyond Layer 5. More mining opportunity can be explored

within the limit of Layer 5. Our work focuses on limited scale to detect patterns of

social group based activities and traveling pattern of social groups.

4.3 Aggregated Social Closeness (ASC) Score

After exploring all the layer, we have our combined knowledge database which contain

the different group membership information of the users. Now, for utilizing this

knowledge about all the user, we have developed a statistical prediction model which

calculate the Aggregated Social Closeness (ASC) between two users. we consider all

the social relation predicted in different layers and combining them using a statistical

prediction model, we calculate ASC between two users, which predict the depth of

their relationship and interactions. Evidently, a higher ASC value indicates that the

two users are family members or close friends, on the other hand, a lower ASC means

that they have no relation or interaction at all.

4.4 Summary

This chapter elaborates on the framework of our hierarchical exploration model for

progressive discovery of social groups by detecting social activities from a CDR

dataset. We have explained the layered approach of our model by over-viewing they

layers and fact finding activities performed in them. The technical details of the fact

finding techniques and algorithms applied in these layers are explored in the following

chapter.
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Chapter 5

Methodology

This chapter presents the algorithms used in the layers of our hierarchical exploration

model and their explanations. Our proposed model works with multiple layers for

processing and analyzing large volume of CDR data collected from any widespread

urban area for progressive discovery of facts about the social groups and relationships.

The proposed algorithms employs supervised and unsupervised learning methods

mostly consists of regression, statistical classifiers and clustering techniques for

predicting social groups and relationships. The algorithms are designed as single

modules. In this hierarchical exploration model all the module in every layer works as

an autonomous dataset processor capable of handling the expected input feature vector

and produce output independently. Collectively, all the modules works as the complete

hierarchical exploration model which produce output in different layers. In our work,

we have used the prediction models in both automated and semi-automated ways.

After finding every facts in different layers they are added in the combined knowledge

which also contain the main CDR data.

The raw CDR data are contained in simple but very large text files containing spatio-

temporal information on the call activity of users. In our model, this information is

considered as digital footprints of user activities and utilized to detect facts like social

activity patterns, social groups, their relationships and properties of city area based

on social activities by applying our proposed statistical prediction algorithms on the

available massive amount of data after necessary preprocessing. Dhaka is a densely

populated city with frequent communication activity and has greater number of the cell
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towers generating fine grained CDR useful for effective fact finding.

In every layers of our model, a set of preprocessing tasks are required to effectively use

the original CDR data. Even some of the output files from different layers require

preprocessing. Each layer employs a number of statistical classifier and clustering

algorithms to predict facts. The initial layers of our model use the CDR data to find

basic facts like places of interest, resident, workplace, etc. of the users and their social

activities like working patterns, traveling routes and patterns, etc as well as some

broader social groups. Using this information, in the next layers, we classify people

based on their activity patterns and find smaller social groups, like, regular/irregular

working groups, home-staying groups, frequent traveling groups, etc and the possible

interactions and relationships among members of these groups. In the subsequent

layers, we explore deeper to progressively narrow down these groups and identify

more distinguishable social groups like, family members, friends and acquaintances,

neighbors, colleagues and co-workers, etc. and their social activity patterns and

relationships. Additionally, we classify and tag city areas based on social group

activities discovered in each layers from spatio-temporal perspectives. Finally, a

statistical prediction algorithm is proposed to find the possible closeness among two

users based on our aggregated findings in the layered exploration model. Our

experimental results are presented using tables, charts, maps and other necessary

visualizations in the following chapter.

5.1 Validation

We evaluate the accuracy of our methods using k-fold cross validation. CDR Dataset

of n call records is randomly divided into two parts- training set and validation set. Let,

nt be the number of training set and nv be the number of validation set. Because we are

using k-fold cross validation, at each fold number of training data is nt = d (k−1)∗n
k e and

number of validating data is nv = bn
kc. We perform all the analysis on training dataset

which contains nt number of call records and propose our model based on this dataset.

Afterwards, we verify our model using validation set which contains nv number of call

records. Further, we have validated our prediction results using some unencrypted call

data collected from a number of volunteer users with known social relations and groups
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Figure 5.1: The Hierarchical Progressive Exploration Model
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Figure 5.2: Tree-based Hierarchical Presentation of Predicted Groups in Five Layers

memberships.

5.2 Preprocessing

Preprocessing is necessary to effectively use the raw data for fact finding. Even some

of the output files from different layers require preprocessing. As a matter of fact that,

some of the output files from the first few layers itself are large files containing overview

of the extracted facts about the whole city. This preprocessing techniques generates the

appropriate feature vectors from the CDR data and knowledge base obtained from the

layers to be given as input for every modules. The data entries from our original CDR

contain the encrypted user id, date, time, duration and geographical location of the cell

tower facilitating the communication activity. The preprocessing involves automatic

or semi-automatic extraction of feature vectors for each modules. None of the single

modules uses all the features available in the CDR data. For better representation of

the features they are represented using some symbols and notations in this text. The

definition of the symbols and notations used corresponded to the features of original

CDR is summarized in 5.1.

The raw CDR data contains six features which we used in different layers of our
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Table 5.1: Notations used in this text and their definition
Notation/Symbol Definition
CDR The full call detail record
u Encrypted User ID assigned to every user
LUsr List of all unique users in a full dataset
dt Date of a call/communication activity
tm Time of starting a call/communication activity
dur Duration of a call
lat Latitude of the cell tower providing the call
lon Longitude of the cell tower providing the call
loc A location consisting of a (lat, lon) pair
LLoc List of all unique location in a full dataset

framework to find fact. We have considered each entry of the raw CDR as a

6-dimensional feature vector xi where i = 1,2, ...,n and n is a positive integer

indicating the number of entry in the available CDR. Each The features contained in

each xi are (u,dt, tm,dur, loc(lat, lon)). The set of feature vectors containing the full

CDR data is X , where

X = {xi|{u,dt, tm,dur, loc(lat, lon)} ∈ xi, i ∈ Z+} (5.1)

In every layer, necessary features are extracted from X using different types of

preprocessing operations as necessary. Preprocessing is a computationally resource

demanding process when applied to big dataset like our CDR, which is stored as a

unstructured database in a text-based log file format.

In the following sections, we have explained the algorithms used in every layer for

finding different facts on social groups and relationships.

5.3 Layer 1

At the first layer, using the raw CDR data we apply linear classifiers and predict

comprehensive facts and identify patterns in it. As, the objectives is to find

comprehensive facts from the raw CDR data, we have developed algorithms using

simple linear classifiers to perform statistical analysis in this layer. Here, we propose

algorithms for extracting information from massive CDR data and extract features
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comprising calling pattern and unique locations visited by individual users. Then, we

have used the raw CDR data to analyze the daily call activity and calling pattern of the

citizens to predict social groups including heavy callers, regular callers, minimal

callers, late-night callers and professional callers by using values for each features of

call activity and propose prediction classifiers to predict caller groups. Also we

examine the overall calling pattern of the city in different time periods and locations.

Finally, We generate a call graph to determine the possible relations among callers.

To begin with, we isolate CDR logs for every single user and generate a log

summarizing his call activities in all the unique locations he visited in the given time

period of the available CDR using Algorithm 3. In this log we calculate the usage

score ζloc of that user in every unique locations from no of call nc and total of call

durations dur in that location using following equation,

ζloc = ncloc +ω∑durloc (5.2)

Where, ω is a constant weight factor

These user based logs generated in this layer are inputs for the individual and aggregated

facts prediction classifiers in the next layers.

Next, we determine facts about the daily concentration of user activities and calling

pattern of users. Later, we find the concentration of the call activities in different time

periods of the day of the dates available in CDR. The call activity is measures by

calculating busyness score β in a certain time period T . Busyness score, Number of

calls made and active user in different dates is detected using Algorithm 4. The

algorithm uses a straight forward counting approach to count the user and call number

in a day, where T = 24 hours of a day and uses them to calculate β for everyday using

the following equation.

βT,loc = ω1NUT,loc +ω2NCT,loc (5.3)

Where,

NUT,loc = total user in time period T in location loc
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Algorithm 3 INDLUSER(X ,U)
Input:

1: X ← { x1,x2, ...,xn }(n entires in full CDR)
2: U ← unique ID of user U

Output:
3: CDRU ← (call detail for user U)
4: nc(loc)← (number of calls made in location loc)
5: dur(loc)← (duration in location loc)
6: µ(loc)← (usage score in location loc)
7: uloclist← {loc,nc(loc),dur(loc),us(loc)}(list for m unique loc for U)
8: BEGIN
9: for all xn ∈ X do

10: if uidn ∈ xn = u then
11: CDRU ← ADD x(n) to the list
12: end if
13: if locn /∈ uloclist then
14: uloclist← ADD locn to the list
15: nc(locn)← nc(locn)+1
16: dur(locn)← dur(locn)+dur(n)
17: else
18: nc(locn)← nc(locn)+1
19: dur(locn)← dur(locn)+dur(n)
20: end if
21: end for
22: for all locm ∈ uloclist do
23: Calculate ζlocm

24: end for
25: END

NCT,loc = total number of call in time period T in location loc

ω1 and ω1 are constant weight factors, whose values are tuned up using a linear

classifier.

The spatial variation of the call activity at any given time can be conveniently displayed

by means of maps divided in cells of Voronoi tessellation, which delimit the area of

influence of each cell tower or antenna. The Voronoi tessellation partitions the plane

into polygonal regions, associating each region with one cell tower. The partition is such

that all points within a given Voronoi cell are closer to its corresponding tower than to

any other tower in the map. These information reflect the obvious and apparently known

notions regarding the calling habits of the users, i.e. people talk more in the daytime

to before midnight and less after the midnight till dawn, where as a certain group talks

more after midnight. Comparing the Voronoi diagram of different time periods leads
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Algorithm 4 TCALLACTIVITY(X ,LUsr)
Input:

1: X ← { x1,x2, ...,xn }(n entires in full CDR)
2: LT ← { T1,T2, ...,Tm }(list of defined time periods in CDR)
3: LUsr← { u1,u2, ...,ui }(list of i unique users)

Output:
4: CallNo← { cn1,cn2, ...,cn j }(number of calls in every Tj)
5: UserNo← { un1,un2, ...,un j }(number of active users in Tj)
6: BEGIN
7: for all Tj ∈ LT do
8: cn j← count number of calls
9: un j← count number of active users

10: Calculate βT j = ω1NUT j+ω2NCT j
11: end for
12: END

the discovery of different, spatially distinct activity patterns. Besides different spatial

patterns, each particular time of the day, as well as each day of the week, is characterized

by a different overall level of activity.

The call volume shows strong variations with time and day of the week, but differences

across subsequent weeks are generally mild, provided one considers call traffic in the

same place, time and day of the week. To capture the weekly periodicity of the observed

patterns, we define nci(loc, t,T ) as the number of calls recorded at location loc, which

can either denote a single Voronoi cell or a group of neighboring cells during the ith

week between times t and t +T .. As we have access to continuous data for N weeks,

the mean call activity is given by,

n(loc, t,T ) =
1
N

N

∑
i=1

ni(loc, t,T ) (5.4)

On the basis of concentration of monthly call activities, we classify three groups with

the name of Minimal users, Regular users and Heavy users using a linear classification

algorithm. First we calculate the usage score µ of every user using the following

formula,

µ = ωcNC+ωd ∑dur (5.5)
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Where, NC = number of calls made by the user in a month

∑dur = total duration (in second) of calls made by user in a month

ωc and ωd are constant weight factors, whose values are tuned up using a linear

classifier.

Now we define the aforementioned three groups on the basis of µ tuned up based on

our training data found from k-fold cross validation. We assign every user in the right

group based on his µ. This classification shows us the overview of the mobile phone

usage pattern of a city, which is closely related to it’s social feature.

Algorithm 5 USEAGEGROUP(U,LUsr)
Input:

1: U ← unique ID of user U
2: LUsr← { u1,u2, ...,ui }(list of i unique users)
3: µlist←{µ1,µ2, ...,µi} (usage score for each of i unique users)
4: NCminM,NCmaxM,NCmaxR,NCmaxH ← (Ranges for number of calls)

Output:
5: LUH ← (List of Heavy Users)
6: LUR← (List of Regular Users)
7: LUM← (List of Minimal User)
8: BEGIN
9: for all ni ∈ NoC do

10: Calculate µi = ωcNCi +ωd ∑duri
11: if NCminM ≤ µi ≤ NCmaxC then
12: ADD ui to LUM
13: else
14: if NCmaxC ≤ µi ≤ NCmaxM then
15: ADD ui to LUR
16: else
17: if NCmaxM ≤ µi ≤ NCmaxH then
18: ADD ui to LUH
19: end if
20: end if
21: end if
22: end for
23: END

Using similar linear classifiers we find other minor social groups with known

properties based on call activities. For example, a certain group of people talks more

after midnight. Combined this with real life fact that a group of teenagers tends to have

this types of calling pattern. Another example is that, we can see that a group of people

talk noticeably more in business hours. We can deduce that these people are a group of
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professionals whose business prerequisite is to communicating with people. These are

very helpful information to narrow down the list of social and professional groups. To

predict this group using a linear classifier we use the following equation based on

Equation 5.3 and Equation 5.5.

µ = ωcNCT +ωd ∑durT (5.6)

Where, T is the time period of activity for a certain user group.

Another important task done in this layer, which provides critical information in the next

layers, is generating caller-callee relationship graph. We have the time and duration

of every call activity of user. By cross referencing the whole database we detect the

destination of the call activity for every user. That is done by using Algorithm 6 by

considering the fact that if two call activity is taking place in the same time and have

the same call duration, the two user is actually communicating with each other. This

way we generate a calling relationship graph among the users in our CDR. The number

of call made by two user is assigned as the weight of calling relationship edge of two

user node.

Algorithm 6 USERRELATIONGRAPH(X ,LUsr)
Input:

1: X ← { x1,x2, ...,xn }(n entires in full CDR)
2: LUsr← { u1,u2, ...,ui }(list of i unique users)

Output:
3: rpq ← number of calls made between random user p,up and user q,uq, indicate

calling relationship
4: R← {set of rpq}
5: BEGIN
6: for all ui ∈UID⊆ X do
7: for all x j ∈ X do
8: if there is an entry where dti = dt j AND tmi = tm j AND duri = dur j then
9: ri j ∈ R

10: end if
11: end for
12: end for
13: END

This step is simpler if we use the CDR which contains both the source and destination

of all the call activities. In that case we only count the number of calls made between
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users which denotes the weight of relational edge between them. But, as our main CDR

does not contain this information, we had to acquire this information using algorithm 6

5.4 Layer 2

In this layer we predict the locations of home, workplace and other frequently visited

places for every single user. We call home, workplace and other frequently visited

places commonly as ”Place of Interest” or POI. After detecting home, workplace and

other POIs for individual users, we store them in the main knowledge base. We use the

call log of an user to determine the top POI locations from where he makes most of

the calls activity determined by his usage score µ for those locations. Then, from the

maximum usage score u in usual working hours and off-hours leads to the discovery of

the home and workplace respectively from the list of POIs. Other POIs are locations

where the user visits frequently. It is a well-derived fact that all user have a home

location, a good number of user, who are working people, have an workplace location

and a small percentage of user have one or more regularly visited POIs.

We have used clustering based techniques in Algorithm 7 and Algorithm 8 to find the

POIs of an user. Every sizable clusters from the list of cluster detected by a clustering

algorithm is considered as a POI. From the various clustering algorithms, we have

selected X-Means and EM clustering algorithms to find the POIs based on the

performance of our experimental result.

Algorithm 7 use X-Means clustering to predict the POIs of an user. As we already

discussed, X-Means is an extension of K-means with additional capabilities. In our

work, our main limitation of using k-means is that, we don’t know the number of POIs

or clusters a user have, which needs to be supplied as value of k to use k-means. For X-

means we don’t have to provide the number of cluster as it is calculated by the algorithm

it self. X-means provide us the number of POI i.e. clusters as well as the value of

the clusters i.e. the locations of the POIs in a automated way. Besides X-means is

computationally more feasible then K-means. So, we choose X-means to find the POIs

from our user data.

The performance of X-Means on our datasets diverges on the activity pattern of every
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Algorithm 7 POIXMEANS(X ,U)
Input:

1: U ← user id of the user whose POI is to be detected
2: X ← { x1,x2, ...,xk } (The full CDR)

Output:
3: CDRU ← { x1,x2, ...,x j } (CDR for U)
4: POIU ← List of POI for user U
5: BEGIN Call INDLUSER(X ,U) and assign returned values to CDRU
6: CList← List of loci clustered locations with percentile value
7: T h←Minimum percentile value of cluster to be POI
8: Call XMEANS(CDRU) and assign returned values to CList
9: for all loci ∈CList ⊂ LLoc do

10: if loci is in a cluster with value ≥ T h then
11: ADD loci to POIU
12: end if
13: end for
14: return POIU
15: END

Algorithm 8 POIEM(X ,U)
Input:

1: U ← user id of the user whose POI is to be detected
2: X ← { x1,x2, ...,xk } (The full CDR)

Output:
3: CDRU ← { x1,x2, ...,x j } (CDR for U)
4: POIU ← List of POI for user U
5: BEGIN Call INDLUSER(X ,U) and assign returned values to CDRU
6: CList← List of loci clustered locations with percentile value
7: T h←Minimum percentile value of cluster to be POI
8: Call EM(CDRU) and assign returned values to CList
9: for all loci ∈CList ⊂ LLoc do

10: if loci is in a cluster with value ≥ T h then
11: ADD loci to POIU
12: end if
13: end for
14: return POIU
15: END
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individual user. As every user has unique mobility pattern, for most of the users X-

Means perform well, while for some it fails to detect all the POIs. The reason is that

as X-Means is a centroid-based clustering, it assumes the variance of the distribution

of each attribute is spherical, which is not true for all the users. As a result, for some

users a distribution-based clustering performs better for finding POIs. So, we also use a

distribution-based clustering, expectation-maximization (EM) algorithm to predict the

POIs too. Then we compare the list of POIs from both algorithms and select the optimal

solution. Algorithm 8 use EM clustering to predict the POIs of an user.

After finding the list of POIs for a user, we can predict his home, regular workplace, if

available and also other places of special interest. It is a known fact that every user has

a home, a more or less permanent place to live regularly which is prominently visible

in his daily activity pattern. Excluding a negligibly few exceptions, all the users spend

his off-hours, which is in the night, in his home. From this knowledge we predict the

home of an user by comparing his usage score µ at every POIs at off-hours in the full

time period of available CDR data. Here, µ is calculated using the following formula,

µpoi = ωcNCT,poi +ωd ∑durT,poi (5.7)

Where,

NC = number of calls made by the user in T period from a POI

∑dur = total duration (in second) of calls made by user in T period from a POI

T = OFF-HOURS/WORKING-HOURS of the city

ωc and ωd are constant weight factors, whose values are tuned up using a linear

classifier.

Obviously, the POI with highest µ in OFF-HOURS is the home of any user. Algorithm

9 predicts the home of any user.

We use a similar technique by finding µ of POIs in WORKING-HOURS to find

workplace. WORKING-HOURS are quite similar in most of the urban areas of the

world and for every city it is a known fact. The important thing we need to consider

while predicting workplace is that all the user do not have a work places and a good
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Algorithm 9 FINDHOME(U,CDRU ,POIU )
Input:

1: U ← user id of the user whose home is to be detected
2: CDRU ← { x1,x2, ...,x j } (CDR for U)
3: POIU ← { loc1, loc2, ..., loci } (List of POI for user U)

Output:
4: home(lat, long)← Location of home for user U
5: BEGIN
6: Define T ← OFF-HOURS for the city
7: for all loci ∈ POIU do
8: Calculate µpoi = ωcNCT,poi +ωd ∑durT,poi from CDRU
9: end for

10: Find POI with Maximum Value of µpoi and assign to home(lat, long)
11: return home(lat, long)
12: END

number of users stays at home. For them, the maximum valued POI detected during

WORKING-HOURS also indicate home. But, we can easily identify this type of users

by matching the location of maximum valued POI detected during

WORKING-HOURS with the location of home. Algorithm 10 predicts if the user has

a workplace and find it’s location.

Algorithm 10 FINDWORKPLACE(U,CDRU ,POIU )
Input:

1: U ← user id of the user whose workplace is to be detected
2: CDRU ← { x1,x2, ...,x j } (CDR for U)
3: POIU ← { loc1, loc2, ..., loci } (List of POI for user U)

Output:
4: workplace(lat, long)← Location of workplace for user U
5: BEGIN
6: Define T ←WORKING-HOURS for the city
7: for all loci ∈ POIU do
8: Calculate µpoi = ωcNCT,poi +ωd ∑durT,poi from CDRU
9: end for

10: Find POI with Maximum Value of µpoi and assign to workplace(lat, long)
11: if workplace = FINDHOME(U,CDRU ,POIU) then
12: return ”NO WORKPLACE”
13: else
14: return workplace(lat, long)
15: end if
16: END
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5.4.1 Classifying City blocks

We classify city areas based on their level of activity (BUSY/IDLE) in different time

periods. The CDR has a fixed number of unique locations and we consider them as a

zone of the city. We find the concentration of call activities and no of active users in

different times of the day, which determines how busy or densely populated the zone

is at a certain time period of the day, including working hours and holidays. We have

used Linear SVM to develop our prediction classifier to find the status of a location as

BUSY, denoted by 1 or IDLE denoted by -1. Here, we use the feature vector set L⊂ X

extracted in the first layer, where,

L = {Lloc|{NUT,loc,NCT,loc} ∈ Lloc, loc ∈ Z+} (5.8)

NUT,loc = total user in time period T in location loc

NCT,loc = total number of call in time period T in location loc

Now, given some training data D ∈ L, a set of n points of the form

D = (Lloc,sloc)|Lloc ∈ L,sloc ∈ {−1,1}n
loc=1 (5.9)

where the sloc is either 1 or 1, indicating the class to which the point Lloc belongs. Each

Lloc is a p-dimensional real vector. We want to find the maximum-margin hyperplane

that divides the points having sloc = 1 from those having sloc = −1. Any hyperplane

can be written as the set of points Lloc satisfying

w.Lloc−b = 0 (5.10)

where ”.” (dot) denotes the dot product and w the normal vector to the hyperplane.

The parameter b
w determines the offset of the hyperplane from the origin along the

normal vector w. As the training data are linearly separable for busyness of city area,

we can select two hyperplanes in a way that they separate the data and there are no

points between them, and then try to maximize their distance. These hyperplanes can
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be described by the equations for two groups respectively,

w.Lloci−b≥ 1 (5.11)

w.Lloci−b≤−1 (5.12)

We have used busyness score β from Equation 5.3 in our SVM and by doing so the final

form of Equation would be,

w.βloci−b = 0 (5.13)

Algorithm 11 CLASSIFYCITYBLOCK(L,ULoc,T )
Input:

1: L← { L1,L2, ...,L j } ( j entries in CDR)
2: ULoc← { loc1, loc2, ..., loci } (List of i unique locations in CDR)
3: T ← Time Period in which level of activity to be detected

Output:
4: loclists← list of locations with status (BUSY/IDLE)
5: BEGIN
6: for all loci ∈ULoc do
7: Calculate βloci,T for T from X
8: end for
9: for all ci ∈C do

10: if w.βloci,T −b≥ 1 then
11: loci← BUSY
12: else
13: loci← IDLE
14: end if
15: end for
16: END

5.5 Layer 3

The first operation performed in this layer is to find out the home and workplace (if

any) of all the users. Using the home and workplace information, at first we

distinguish two major social groups based on the working activity patterns, the

working people, who regularly goes to a certain workplace and irregular working
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people, who either stays home or have some indistinguishable irregular working

pattern. The group of regular working people spend their working-hours in their office

and off-hours in their home. People from this group regularly travel from their home to

workplace and have a recognizable traveling pattern. People like professionals, office

workers, businessmen and students belongs to this group. The irregular working group

includes home staying people like homemakers, retired and unemployed people. We

have used a linear classifier based on SVM to predict these two major social groups.

Algorithm 12 WORKINGGROUP(X)
Input:

1: X ← { x1,x2, ...,x j } ( j entries in CDR)
2: LUsr← { u1,u2, ...,ui } (list of i number of unique users)

Output:
3: WGROUP,NGROUP (grouplist of working and non-working users respectively)
4: ∆Tui ← Traveling distance of user ui
5: BEGIN
6: for all ui ∈ LUsr ⊂ X do
7: CDRU ← Call INDLUSER(X ,ui)
8: POIU ← Call POIEM(X ,ui)
9: home← Call FINDHOME(U,CDRU ,POIU)

10: workplace←call FINDWORKPLACE(U,CDRU ,POIU)
11: if FINDWORKPLACE(U,CDRU ,POIU) 6= ”NO WORKPLACE” then
12: ADD ui to WGROUP
13: else
14: ADD ui to NGROUP
15: end if
16: ∆Tui ← HAV ERSINE(home,workplace))
17: end for
18: END

The other social groups discovered from this layer is based on the traveling distance

DeltaT of the users. While, finding home and workplaces of the users, we also

calculated their traveling distance from home to workplace, if any. Some of the

working people travel a very short distance to their workplace, while others have to

pass a long way. We have created five groups based on the regular traveling distance of

the working people. We have used the Haversine formula to calculate the great-circle

(surface of Earth) distances between the home and workplace from their longitudes

and latitudes. We calculate distance between two location using the Algorithm 13,

where the coordinates of the two locations are (lat1, lon1) and (lat2, lon2).

We have predicted the regular traveling route of an user by considering his UCLs
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Algorithm 13 HAVERSINE(lat1, lon1, lat2, lon2)
Input: lat1, lon1, lat2, lon2
Output: d← (Distance between two places)

1: BEGIN
2: R← (The radius of the Earth)
3: dlon← lon2− lon1
4: dlat← lat2− lat1
5: a← (sin(dlat/2))2 + cos(lat1)∗ cos(lat2)∗ (sin(dlon/2))2

6: c← 2∗atan2(
√

(a),
√

(1−a))
7: d← R∗ c
8: return d
9: END

(Unique Call Locations) during his travels between home to workplace. It is done by

applying Dijkstra’s algorithm for finding single-source shortest paths considering the

UCLs as nodes, home location as source and workplace as destination. To do so first a

graph G(V,E) is created, where,

V ← loc1, loc2, ..., loci, List of UCL of the user.

E ← edges representing all possible paths between ever pairs of UCL of the user,

created from the real map data and the distance between them are the values of edges.

Algorithm 14 TRAVELINGROUTE(U,CDRU )
Input:

1: U ← for whom traveling route to be predicted
2: CDRU ← CDR for user U
3: homeU ← Home loaction for user U
4: workplaceU ←Workplace location for user U

Output:
5: T R← { loc1, loc2, ..., locn } (Sequential list of all locations in the traveling route)
6: BEGIN
7: MAPDATA← real world map data
8: V ← Find all unique calling locations { loc1, loc2, ..., locm } of U
9: for all pairs of locations locp, locq pairs ∈ULoc do

10: if path exists between locp and locq as per MAPDATA then
11: Epq← Calculate HAVERSINE(locp, locq)
12: end if
13: end for
14: Create Graph G(V,E)
15: T R← DIJKST RA(G(V,E),homeU ,workplaceU)
16: Verify T R with MAPDATA for a valid path
17: END
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5.5.1 Tagging City blocks

Here we classify the type of city area from the types Residential, Commercial and

Miscellaneous and tag them accordingly. We consider all the unique locations for

tagging the city area. Here, we have used a linear SVM for developing the classifier to

tag a location as residential (tagged as RES), denoted by 1 or commercial (tagged as

COM) denoted by -1. Given some training data D ∈ Z, a set of n points of the form

D = (zloc,sloc)|zloc ∈ Z,sloc ∈ {−1,1}n
loc=1 (5.14)

where the sloc is either 1 or 1, indicating the class to which the point zloc belongs. Each

zloc is a p-dimensional real vector and member of the feature vector set Z. The full

feature vectore set Z can be defined as follows

Z = {zloc|{nHloc,nWloc,βT 1,βT 2} ∈ zloc, loc ∈ LLoc} (5.15)

Where,

nHloc = Number of home in loc

nWloc = Number of workplace in loc

βT 1 = Busyness Score of loc in WORKING-HOURS, T 1

βT 2 = Busyness Score of loc in OFF-HOURS, T 2

Combining Equation 5.15 with Equation 5.3 we can say that every feature vector zloc

contains the features, NUT,loc,NCT,loc,nHloc and nWloc. We want to find the maximum-

margin hyperplane that divides the points having sloc = 1 from those having sloc =−1.

Any hyperplane can be written as the set of points zloc satisfying

w.zloc−b = 0 (5.16)

Here, w is the normal vector to the hyperplane and the parameter b
w determines the offset

of the hyperplane from the origin along w. For this linearly separable data, we can select
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two hyperplanes in a way that they separate the data and there are no points between

them, and then try to maximize their distance. For two classes these hyperplanes can be

described by the following equations,

w.zloci−b≥ 1 (5.17)

w.zloci−b≤−1 (5.18)

We tag different location of the the city using the following algorithm based on the

linear SVM discussed in this section.

Algorithm 15 CITYAREATAG(X ,LUsr,LLoc)
Input:

1: LUsr← { u1,u2, ...,ui } (list of i number of unique users)
2: X ← { x1,x2, ...,x j } ( j entries in CDR)
3: LLoc← { loc1, loc2, ..., lock }List of all unique location

Output:
4: LLtag← List oftype (RES/COM) of all area ∈ LLoc
5: BEGIN
6: nHloc← Number of home in loc
7: nWloc← Number of workplace in loc
8: for all ui ∈ LUsr do
9: if FINDHOME(ui) = loc then

10: nHloc← nHloc +1
11: end if
12: if FINDWORKPLACE(ui) = loc then
13: nWloc← nWloc +1
14: end if
15: end for
16: for all lock ∈ LLoc do
17: Calculate βT 1,lock and βT 2,lock using Equation 5.3
18: SELECT {nHlock ,nWloc,βT 1,βT 2} ∈ zlock

19: if w.zlock−b≥ 1 then
20: Taglock ← RES
21: else
22: Taglock ← COM
23: end if
24: end for
25: return LLtag
26: END
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5.6 Layer 4

In Layer 4, we explore more closer social relationships and activity patterns, which

leads to the discovery of smaller social groups. We have proposed some probabilistic

prediction models using statistical classifier based on the hypotheses introduced in the

previous chapter.

Hypothesis 1. A group of users have the same home locations means that they lives in

the same neighborhood. So, we can classify these loosely connected social groups as

neighbors and members of same group have a high probability of interaction.

The first hypothesis explains that, the people who live in the same area, which is under

the same cell tower can be predicted as neighbors, which is an important social group

in almost all culture of the world. Also, the probability of two random people living

in the same area and having any kind of social relationship is much higher than two

random people living in two different area. Let us consider there is n people, and the

probability that two people, A and B, chosen at random know each other or have a social

relationship, rAB is,

P(rAB) ∈ (0,1) (5.19)

Now, if we randomly choose three people, A,B and C, so that A and B live in same

neighborhood and C lives in different one. In that case, the fact predicted from previous

layers of our model would be,

FINDHOME(A) = FINDHOME(B)

and

FINDHOME(A) 6= FINDHOME(C)

In that case, using Equation 5.19 we can explain Hypothesis 1 as follows,

P(rAB)> P(rAC) (5.20)

The calculation of P(rAB) and P(rAC) can be calculated through a chain of ≤ k people,
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where k ≤ n. But, this calculation is out of our context.

Here, according to Equation 5.20 we consider that people living in same neighborhood

belongs to a social group and has a good probability of knowing each other. Also, this

probability is inversely proportional to, n, the number of people living in that

neighborhood as represented below,

P(rAB) ∝
1
n

(5.21)

The number of people living in an area, n, can be estimated by multiplying the number

of active user in that area and percentage of mobile phone user in that city. So, we

propose Algorithm 16 to predict the social groups of people who live in the same

neighborhood according to Hypothesis 1. This algorithm finds the location of home

information of all the user, check in which neighborhood the home location belongs

and add that user to that neighbor group. Besides, it keeps a counter for the number of

member in each group, which helps us to measure the probability of social relation

among members. Thus, we predict the group membership of all the users and total

number of members in each group.

Algorithm 16 NEIGHBORGROUPS(LUsr,LLoc)
Input:

1: LUsr← { u1,u2, ...,u j } (list of i number of unique users)
2: LLoc← { loc1, loc2, ..., loci } (List of i unique locations in CDR)

Output:
3: NeighborGroups ← { ng1,ng2, ...,ngi } (List of all neighbor groups and their

members)
4: BEGIN
5: NeighborGroups←ULoc (Assign every unique location to a group’s location,i.e.

locngi ← loci)
6: for all u j ∈ LUsr do
7: homeu j ← FINDHOME(u j)
8: for all locngi ∈ NeighborGroups do
9: if locngi = homeu j then

10: ADD u j to ngi
11: end if
12: Count number of u j added to hgi
13: end for
14: end for
15: END
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Hypothesis 2. If a group of users have the same workplace locations, they have a high

probability of being acquaintances, even colleagues.

Hypothesis 2 works in a similar fashion as Hypothesis 1 for predicting relationship

among people who have workplace in the same city area. From real life experience we

know that, people working in the same area may know each other, may even work in the

same office making a group of office workers. Also, people who have business or shops

in the same area usually have a kind of mutual relationship which indicates a social

group of businessman. The probabilistic calculations are same as we did for people live

in same neighborhood and we can apply all the equation for working groups too.

The proposed algorithm finds the workplace location information of all the user, check

in which workplace group the location belongs and add that user to that group. As

previous algorithm, we keep a counter for number of member for each of the groups.

Thus, we predict the group membership of all the users and total number of members

in each working group.

Algorithm 17 WORKGROUPS(LUsr,LLoc)
Input:

1: LUsr← { u1,u2, ...,u j } (list of i number of unique users)
2: LLoc← { loc1, loc2, ..., loci } (List of i unique locations in CDR)

Output:
3: WorkGroups← { wg1,wg2, ...,wgi } (List of all work groups and their members)
4: BEGIN
5: WorkGroups ← ULoc (Assign every unique location to a group’s location,i.e.

locngi ← loci)
6: for all u j ∈ LUsr do
7: workplaceu j ←WORKPLACE(u j)
8: for all locngi ∈WorkGroups do
9: if locngi = workplaceu j then

10: ADD u j to wgi
11: end if
12: Count number of u j added to wgi
13: end for
14: end for
15: END

Hypothesis 3. The type of transport used by an user can be classified and grouped

from his traveling route and information of time differences and distances among call

activities made by him in the same day on that route.
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Using the Algorithm 18 based on Hypothesis 3 we have predicted the class of transport

used by users in their trips through traveling routes. To do so, we calculated the speed

of transport by calculating distance between two locations and time difference from

consecutive CDR entries. Then, we calculated the average speed and used these

features in a SVM to detect the class of a transport. We have used Linear SVM to

develop our prediction classifier to find the type of transport,T pt for each trips

T = (T1,T2, ...,Tk). Here the T ptk is either MANUAL, denoted by 1 or MOTORIZED

denoted by -1, indicating the class to which the transport type belongs. Given some

training data D ∈ X , a set of n points of the form

D = (Tk,T ptk)|Tk ∈ T,T ptk ∈ {−1,1}n
k=1 (5.22)

Algorithm 18 TRANSPORTCLASS(U,CDRU )
Input:

1: T R← (T1,T2, ...,Tk) Trips through traveling route T R for user U
2: Tk← (x1,x2, ...,xn) ∈CDRU CDR entries in trip Tk for user U

Output:
3: T pt← class of the transport (MANUAL, MOTORIZED)
4: BEGIN
5: for all xi,x j pair in T R do
6: Distance← HAVERSINE(loci, loc j);
7: TimeDi f f erence← |tmi− tm j|;
8: Calculate Speed from Distance and TimeDi f f erence;
9: end for

10: Calculate Average AV G(Speed)
11: for all Tk ∈ T R do
12: if w.Tk−b≥ 1 then
13: T ptk←MANUAL
14: else
15: T ptk←MOTORIZED
16: end if
17: end for
18: END

We want to find the maximum-margin hyperplane that divides the points having T ptk =

1 from those having T ptk =−1, which can be written as the set of points Tk satisfying

w.Tk−b = 0 (5.23)
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We select two hyperplanes in a way that they separate the data and there are no points

between them, and then maximize their distance. These hyperplanes can be described

by the equations for two groups respectively,

w.Tk−b≥ 1 (5.24)

w.Tk−b≤−1 (5.25)

Using these equations in Algorithm 18 we predict the class of transport user by a user

in a trip.

Hypothesis 4. If a two or more persons have common home, workplace or more than

one common POIs and same or overlapping regular traveling route, we can perform

predictive analysis of their social relationship and group membership using available

information.

We have applied this hypothesis to predict social relationship based on probability of

interactions, working and traveling pattern. For, example If a group of people share the

same home and workplace, we can predict that they are co-workers and live in same

residential facility, which may be provided by the employer. This prediction would be

more established is we find a similar traveling pattern, which we detect by predicting

this traveling route and time period of traveling.

Any traveling route, R is a sequential set of i number of location coordinates as below,

R = loc1, loc2, ..., loci

So, if RA and RB is the traveling route of user A and B respectively, we predict their

common or intersecting traveling route RAB in T time period, where,

RAB,T = RA,T ∪RB,T (5.26)

Thus we predict the common or intersecting traveling route for two random users.

In this layer, we predict individual user’s social profile based on the predictions about
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him up to this layer. We examine the time period and location based social activities

using a modified version of Equation 5.6 which is as follows,

µu = ωcNCT,loc +ωd ∑durT,loc (5.27)

Where,

T is the time period of call activity for user u.

loc is the location of call activity for user u.

Here, we can change the parameters for location and time period of the user and find

his group membership. For example, the users with high usage score in the time period

12 AM to 4 AM are late night callers. Similarly, working user with high usage score

during working hours belongs to special group of professionals who highly focus on

communication. Also, location based prediction is an important feature of our

exploration model. For example, if an user has a working place in an university area,

he has a high probability of being a student or teacher of that university. Now, if he

lives in the residential area for students and a late night caller, it is more likely that he

is a student. Similarly, user with workplace in a large shopping is likely a shopkeeper,

user with workplace in a cantonment is a prospective member of military and user with

workplace in a hospital area is probably a doctor, nurse or medical personnel. We

predict the working days and offdays of a working user from his days staying in

workplace during working hours.

5.7 Layer 5

In the fifth layer we consider the knowledge of calling relationships among the

members of the groups detected earlier and design algorithms to utilize them for

exploring deeper into more intimate social relationships and groups. In this layer we

use the hypotheses proposed in the previous chapter. We detect social relationships

and groups including family, friends, colleagues and closely acquainted people by

combining the relationship knowledge predicted in previous layer and calling

relationship graph. the calling relationship graph itself is a huge social network.
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Hypothesis 5. If two or more people share the same home location and have a frequent

calling relationship, we can predict the probability of them being family members or

close acquaintances.

According to Hypothesis 5, we use calling relationship to find the family members of

the users. As calling relationship is the strongest indication of any social relationship,

we predict that the users who have calling relationship and live in the same place have a

good probability of being a family member or at least close acquaintance. The number

of calls made between two users is another important factor for predicting closeness of

social relation. The closeness of this type of relationship can be further investigated

by examining the time and duration of calls and frequency of call made. We propose

Algorithm 19 to predict the family members of a user considering this facts.

Algorithm 19 FAMILYMEMBERS(LUsr,R)
Input:

1: LUsr← { u1,u2, ...,un } (list of i number of unique users)
2: R← Calling Relationship graph

Output:
3: RLun ← List of users having social relation with un
4: BEGIN
5: rth← minimum number of call made between two users in a certain time period to

consider a calling relation as social relation
6: for all u j,ui pair ∈ LUsr do
7: if FINDHOME(u j) = FINDHOME(ui) AND u j 6= ui then
8: if rui,u j ∈ R and rui,u j > th then
9: ADD u j to RLui as Familymember

10: ADD ui to RLu j as Familymember
11: end if
12: end if
13: end for
14: END

Hypothesis 6. If two or more people share the same workplace location and have a

frequent calling relationship, we can predict the probability of them being colleagues,

co-workers or friends.

Similarly, Hypothesis 6 explore the workplace based relationships among users. All the

people work in the same area can be considered as colleagues or friends based on their

calling relationship pattern. Calling relationship is analyzed to predict the type of this

relationship. The features from calling relationship we considered are the time of call,
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call duration and frequency of call made. If two users from same workplace call each

other in the off hours and even after midnight frequently, it indicates a closer social

relationship. Also, call duration and frequency of call made is proportional to closeness

of social relationship. That means, socially close people call more often and talk for

longer time.

5.8 ASC Score and Aggregated Social Group Prediction Model

Hypothesis 7. If two or more persons visit or stay in same POIs multiple times in same

time periods and have a calling relationship, we can predict the aggregated probability

of them being member of a social group like family, friends or other types of close

relationships.

Using the combined knowledge database about all the user, we have developed a

statistical prediction model which calculate the Aggregated Social Closeness (ASC)

score between two users and predict aggregated Social Group. we consider all the

results of the classifiers in different layers and combining them using a statistical

prediction model, we calculate ASC between two users, which predict the probability

of closeness. Evidently, a higher ASC value indicate that the two users are family

members or close friends, on the other hand, a lower ASC means that they have no

relation or interaction at all.

ASC is calculated using the chain rule of probability. To calculate the ACR between

two user A and B, We consider the following probability found in different layers of

our model.

PAB(H) = Probability of A and B’s home in same location. PAB(W ) = Probability of

A and B’s workplace in same location. PAB(cr) = Probability of A and B’s calling

relation. PAB(tr) = Probability of A and B’s overlapping traveling route.

ACR = PAB(H)PAB(W )PAB(cr)PAB(tr) (5.28)

We have developed our aggregated social group prediction model based on naive

Bayes probabilistic model. All our findings in the previous layers are represented by a
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feature vector, R = (r1, ...,rn) representing n types of social relationship, it assigns to

this instance probabilities

p(Ck|x1, ...,xn) (5.29)

for each of K possible outcomes or classes. Its’ equivalent joint probability model is,

p(Ck,x1, ...,xn) (5.30)

Which can be rewritten as follows, using the chain rule for repeated applications of the

definition of conditional probability:

p(Ck)p(x1, ...,xn|Ck) (5.31)

Using the naive Bayes probability model we can propose a naive Bayes classifier. It is

the following function that assigns a class label y =Ck for some k as follows:

y = argmaxk∈1,...,k p(Ck)
n

∏
i=1

p(xi|Ck) (5.32)

This naive Bayes classifier give us a social group prediction model based on our finding

in the previous layers. We calculate ASC between two users, which predict the depth of

their relationship and interactions. Clearly, a higher ASC value indicates that the two

users are family members or close friends, on the other hand, a lower ASC means that

they have no relation or interaction at all.

5.9 Summary

In this chapter we discuss the detailed methodology of our work base on the

framework of our hierarchical exploration model explained in the previous chapter. So,

we presented the algorithms we developed for applying in different layers to explore

progressively the fact on social groups and their relationship.
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Chapter 6

Results and Analysis

We implement our proposed algorithms, executed them on our CDR and perform

validation test with some real life data collected from some people around us, who

volunteered to provide us their personal call data. This chapter contains the detail of

the datasest, experimental settings, results and analysis of our thesis work. In Section

6.1, we explain our datasets. Afterwards, in Section 6.2, we explain our experimental

environment and settings for our implementation. Rest of this chapter contains the

experimental results and analysis of the results.

6.1 Data Collection and Dataset

This research work is done using the data of the people who live in Dhaka, the capital

city of Bangladesh. Our datasets are CDR data obtained from Grameenphone Ltd, a

major telecom operator of Bangladesh. This comprises of 971.33 million anonymous

call records made by 6.9 million users, which are more than 55 percent of the total

population of the study area. It was collected for a duration of one month, from June 19,

2012 to July 18, 2012. As we have already mentioned, for each record the CDR Dataset

has the following parameters: a random ID number of the phone; the exact time and

date; call duration and location (latitude and longitude) of the cell tower that provided

the network signal for the mobile device activities. The random ID number is generated

by the operator for every mobile phone, independent to the phone or the SIM card

number, which allows us to link each phone owner with their mobile device activities.
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Data were recorded following the legislations of Bangladesh for billing purposes by

the operator and not for our study. Geographical information was obtained from the

geographical coordinates (latitude and longitude) of network antennas. The precision

of the spatial accuracy of the mobile device activity corresponds to the coverage of

a network antenna. The coverage area is not spatially fixed and varies according to

population density. As Dhaka is one of the most densely populated cities of the world,

the analysis on the sample collected from here gives us some unique results because of

the uniqueness of the city.

Table 6.1: Sample data from CDR dataset
User ID Date Time Duration Latitude Longitude
AAH03JAAQAAAO9VAA+ 20120714 10:44:04 68 23.758301 90.402199
AAH03JAAQAAAO9VAA+ 20120714 21:16:23 60 23.758301 90.402199
AAH03JAAQAAAO9VAA/ 20120708 22:10:37 1527 23.701700 90.429199
AAH03JAAQAAAO9VAA/ 20120711 12:12:54 1103 23.724199 90.405602
AAH03JAAQAAAO9VAA/ 20120711 10:26:33 304 23.722200 90.409203

Another smaller set of data we have used in our work is the personal CDR form a few

volunteers to validate the results found from our hierarchical exploration model using

the massive anonymous CDR data. Now, most of the mobile operators allow the users

to retrive their personal CDR data but using online user account. We took the benefit of

this feature and collected the CDR data form the online account of a few users. this data

is more comprehensive in feature and they contain the information about the Call Date,

Time, Called Number, Actual, Duration(Sec), Charges in BDT, Call Type (IN, OUT),

FNF, Usage Type (VOICE, SMS, DATA) for every call activity. We have collected this

type of personal CDR in a limited scale and validated the results obtained from the

original massive CDR collected from the phone operator.

6.2 Experimental Setup

In our thesis work, the proposed hierarchical exploration model with multiple layers

for processing the CDR data for identifying the user activities and mobility patterns.

According to the framework of our model, in each layer we have used a set of fact

finding and prediction algorithms to find out different information, detect patterns about

the social activity, relationships and group belongingness of the users. To do so we
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started with the raw CDR data in the initial layer and later the information obtained

in each layers is added in the combined knowledge base alongside the original CDR.

The novelty of our proposed model is that, the algorithms in every layer use the original

CDR data and also the information and facts derived in the preceding layers collectively

present in the combined knowledge base to discover new facts and patterns. Thus, as

further we go on with the layers, gradually we focus on more detailed information

about smaller groups and closer relationships, which were not identifiable using the

original CDR data directly in a single layered approach. Therefore, algorithms in each

layer is dependent on the outputs of the previous layers justifying the requisite of the

hierarchical approach.

The raw CDR data are contained in simple but very large text files. For processing this

data using our algorithm we developed a programs based on our proposed prediction

classifiers and clustering algorithms in the layers of our hierarchical framework using

JAVA. We also utilize WEKA data mining tool to implement all these classifier and

clustering techniques in JAVA. We have obtained most of the the outputs in two types,

output files and visualizations, while some of the summarized results are simply shown

in a GUI. For better understanding of the results discovered in different layers, the

visualization of the location data is necessary. For different visualizations related to

map and location data, we have used Google Maps API in our JAVA programs.

The experiments on Big Data like CDR is resource demanding and time consuming. So,

all the experimental implementations of this thesis are done on a number of personal

computer parallelly equipped with Intel Core i5 CPUs running at 2.0 GHz or more and

equipped with 4 to 6 GB RAM.

Figure 6.1: Directory structure of the combined knowledge database
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Figure 6.2: a) Number of calls per day b) Number of active user per day

6.3 Results

In this section, the results are presented and discussed as they are obtained in different

layers of our hierarchical exploration model.

Layer 1

In the first layer, we perform some analysis of our raw CDR data. For understanding

the city dynamics, we can detect the call activities of all users in any given time slot of

the day. It gave us an idea about intensity of activity in the city during different periods

of the day, as phone calls are directly related to other regular activities of urban life.

Figure 6.2 shows the number of calls made per day and number of active user per day

in the whole city, which presents us with a pattern representing the city status in days of

the week. Here we can see that, maximum number of active user and call is on 5th July,

2012, which was a national holiday in Dhaka city. So, we can clearly see that people

make social interaction over phone more on holidays. On the other hand it is also clear

that people make less call on weekends. These two fact are significant information on

social activity.

Also, we have detected the call activity in different times of the day, which reflect the

overall activity and dynamics of the city (Table IV and Figure V). The time slots can

be selected as per the requirement of analysis. We divided the day in four slots and

identified the user activity accordingly.
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Table 6.2: User activity in different periods of the day
Timeslot Number of Calls Number of Active Users

12 AM to 6 AM 370311 192928
6 AM to 10 AM 1256755 578975
10 AM to 5 PM 3442933 960704
5 PM to 12 AM 3187238 968891

Figure 6.3: User activity in different periods of the day

Voronoi tessellation is used to conveniently display the spatial variation of the call

activity at any given time. Maps divided in Voronoi cells delimiting the area of

influence of each cell tower or antenna. The Voronoi tessellation partitions the plane

into polygonal regions, associating each region with one cell tower. The partition is

such that all points within a given Voronoi cell are closer to its corresponding tower

than to any other tower in the map. These information reflect the obvious and

apparently known notions regarding the calling habits of the users, i.e. people talk

more in the daytime to before midnight and less after the midnight till dawn, where as

a certain group talks more after midnight.

Figure 6.6 shows activity maps for aggregated data corresponding to a 1-hour interval.

The left panel shows the activity pattern for a peak hour, while the right panel shows

the same neighborhood of Dhaka city during an off-peak hour . The differences

between both panels reflect the intrinsic rhythm and pulse of the city. We can expect

call patterns during peak hours to be dominated by the hectic activity around business

and office areas, whereas other, presumably residential and leisure areas can show

increased activity during off-peak times, thus leading to different, spatially distinct

activity patterns. Besides different spatial patterns, each particular time of the day, as
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Figure 6.4: Initial voronoi diagram on the city map

Figure 6.5: Voronoi diagram on the city map after colorization based on call activity
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Figure 6.6: Voronoi diagram showing call activity in different times of day

Table 6.3: Comparing call traffic variation in two consecutive weeks
Day Date No of users No of calls Date No of users No of calls
Tuesday 19-Jun 2780393 16376825 26-Jun 2774048 16259300
Wednesday 20-Jun 2782646 16437123 27-Jun 2780499 16359352
Thursday 21-Jun 2793478 16589529 28-Jun 2807500 16878637
Friday 22-Jun 2717526 14660436 29-Jun 2751396 15178572
Saturday 23-Jun 2714540 15030609 30-Jun 2741296 15477377
Sunday 24-Jun 2744098 15682032 1-Jul 2805570 16514478
Monday 25-Jun 2758351 16005153 2-Jul 2805998 16673047

well as each day of the week, is characterized by a different overall level of activity.

The call volume shows strong variations with time and day of the week, as shown

in Figure 6.6, but differences across subsequent weeks are generally mild, even if we

consider call traffic of the whole city as shown in Table 6.3 and . It is more prominent

if we consider call traffic in the same place, time and day of the week.

From the usage score US, which signifies call activity of users, we classify three groups,

Minimal users, Regular users and Heavy users. To perform all kinds of calling pattern

analysis we only considered the active users from our whole data sample. Active users

are the people who made 10 or more calls in our one month window. The users who

made less then 10 calls are inactive users and can’t provide sufficient data to analysis.

We assumed that these user are redundant users who have another primary connection.

It is a common scenario due to the inexpensiveness and availability of mobile phone

connecting SIM cards. According to our analysis, more than 20 percent of the total

users are inactive. Among the active user, we have shown the percentage of above

three group memberships of users in 6.4. This classification has a prominent social

implication. It can be safely inferred that, the heavy users are socially more active,
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Figure 6.7: Comparing call traffic variations from usage score, µ in three consecutive
weeks

while other two groups are less active proportionately.

Table 6.4: Classifying user based on call activity
Group No of Users Percentage
Minimal users 2478480 36
Regular users 4036447 58
Heavy users 412046 6

We generate caller-callee relationship graph by cross referencing the call activities

taking place in same time with same duration. Thus we detected the both participant

call activity for every user. 6.5 shows a few lines of this relationships detected by our

algorithms. Every relationship is given a score based on number of calls and call

duration between two users.

Table 6.5: Detected calling relationship among users
USER A Call Time Call Duration USER B

AAH03JAAQAAAO9VAAR 75209 145 AAH03JAARAAACttAjh
AAH03JAAQAAAO9VAAq 43246 32 AAH03JAAbAAH86JAAN
AAH03JAAQAAAO9VABK 75633 33 AAH03JAAbAAH86JAZ8
AAH03JAAQAAAO9VAAj 67063 54 AAH03JAAbAAH86KAOE
AAH03JAAQAAAO9VAA1 71834 12 AAH03JAB+AAAgO5AUv
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Layer 2

In this layer, we have used the CDR data the find the POIs of the users. For every user, in

the CDR data, we have their locations with the date and times of the call activity made.

We have used clustering algorithms to find clusters from user log, which are the POIs.

Every clusters found from the algorithms is a POI. As we want the automated detection

of number of POIs or clusters, we have used X-Means and EM clustering algorithms to

find the POIs. Due to much better performance, we selected EM and used it for next

algorithms to find home and workplace. For this method to work effectively, we need

a reasonably good number of call record or each user. As, we have massive amount of

CDR data, which is practically achievable in minimal efforts. Also, in Dhaka city the

density of the cell tower is reasonably high we have considered the location of the cell

tower providing the signal for the call activity as the approximate location of the users.

6.6 is showing the POIs of a random user predicted using clustering algorithm. Also

the following figures illustrates the clusters and visualization of POIs.

Table 6.6: POIs of a random user
Location No of Total

Calls
No of Calls
in Working
Hours

No of Calls
in Off
Hours

”23.856100”,”90.402802” 95 88 7
”23.858900”,”90.408302” 66 23 43
”23.819201”,”90.417198” 26 26 0
”23.783300”,”90.395302” 12 12 0
”23.928600”,”90.300301” 11 11 0

Later, we predicted the home and workplace of the same user using the same clustering

technique. We know the usual working hour of Dhaka city, which is 9 AM to 5 PM

or a slight variation of this time-slot. Now, for each of the POIS, if a user made most

of the calls in the working hours, we consider it as his workplace. On the other hand,

if the user made most of the calls from a stay location during the off-hours or in the

usual holidays, we considered it as his home. By applying this fact with our clustering

algorithm, while predicting home, we take the top cluster of the calls made in off-hours,

and, for predicting workplace we consider the calls made in working hours only.

On the map of Figure 6.12, we can see the visualization of the POIs of a single user.

A map marker is placed in the locations from where he has made one or more calls.
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Figure 6.8: Result of using EM clustering algorithm on the CDR to find POIs

Figure 6.9: Visualization of clusters as a result of EM indicating POIs

Figure 6.10: Finding Home of an User using a) EM Clustering Algorithm b)XMeans
Clustering Algorithm
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Figure 6.11: Finding Workplace of an User using a) EM Clustering Algorithm
b)XMeans Clustering Algorithm

The home and workplace are marked with different symbols. Beside every marker the

number of calls made from that location is mentioned. From this visualization, we

get the complete picture of the mobility and city area covered by a single user. This

information is used to find UCLs, which later utilized to predict the usual routes of

traveling in the city.

We classifying city areas in two classes BUSY and IDLE in different time periods of the

day using a linear classifier based on SVM. We have 1360 unique locations in our CDR

and we consider them as a zone of the city. We find the concentration of call activities

in different times of the day, which determines how busy or densely populated the zone

is at a certain time of the day. The Voronoi tessellation created in layer one is useful to

visualize this information.

Table 6.7: Status of City Areas in Working Hour
Location Status
”23.856100”,”90.402802” BUSY
”23.858900”,”90.408302” BUSY
”23.819201”,”90.417198” IDLE
”23.783300”,”90.395302” BUSY
”23.928600”,”90.300301” BUSY

Layer 3

In this layer we process the whole CDR database to find the home and workplace of

all the users using our classifier iteratively. The result is a list containing the home,

workplace and additional information of all the 6.9 million users, which is another Big
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Figure 6.12: Visualization of home, workplace and other POIs of an user
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Table 6.8: Part of Home and Workplace information data of all the users
User ID Home Workplace Distance NCall Dur Call US

AAH86JAa9 23.789 90.408 23.787 90.415 0.72 22 3469 80
AAH86JAa7 23.796 90.364 NA NA NA 966 78429 2273
AAH86JAA8 23.707 90.410 NA NA NA 165 18731 477
AAH86JAA9 23.846 90.421 23.793 90.402 6.20 50 6262 154
AAH86JAAA 23.710 90.404 23.812 90.255 18.93 26 4201 96
AAH86JAa8 23.723 90.384 NA NA NA 101 23433 492

Data file. A sample of complete predicted data is shown in Table 6.8

After prediction of the two most important social hubs, home and workplaces of all the

users in our CDR, we have used this information to investigate closer social relations

and smaller social groups. When, we applied our SVM based classifier on our home

and workplace database of all users, we found two groups of people based on their

working patterns. One group, the regular workers, has a certain call activity pattern

which enabled us to distinguish their home and workplace. Another group has no

regular working pattern for distinguishing home and workplace and they are the

irregular workers.

Subsequently, when the home and workplace of the regular working group is found, we

have used this information to calculate the regular distance traveled between their home

and working place. We calculated it from the coordinates of their home and working

applying Haversine algorithm.

Table 6.9: Working pattern of the Users: Regular vs Irregular

Irregular worker 5163239 74.5 Percent

Regular Worker 1763734 25.5 Percent

Using our method we have seen that 1.8 million (25.5 percent) of the 6.9 million users

of our CDR data have a consistent working schedule and the home and workplace of

these people is clearly detected. The other 74.5 percent people have irregular patterns

of home and workplace (Table III). According to our rational hypothesis, people like

housewives, retired people, part-time and irregular workers, etc. or people who work

and live in the same places belong to this group. This indicates that we have worked

with a sample of around 12 percent of the total 15.4 million people [29] of Dhaka City.
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Figure 6.13: Working pattern of the users: Regular vs Irregular

By applying this method on all regular workers in our CDR data, we have found their

distances traveled for attending workplace from home. Based on this information, we

have classified these people in some groups for having some idea about the traveling

pattern of the working people.

Table 6.10: Traveling distance to workplace for regular workers

Traveling Distance No of User Percentage

0-2 km 951217 53.93

2-5 km 368484 20.89

5-10 km 258620 14.66

10-20 km 149168 8.46

20-100 km 36245 2.06

From our findings presented in Table 6.10 we can see that 53.93 percent of the regularly

working people live within two kilometers of their workplace and only 2.06 percent

people live more than 20 km away from their workplace. By analyzing these groups,

we can see that most of the people try to stay near their workplace and they try to travel

less for going to the workplace as much as possible. Consequently, they usually select

their home near their workplace or select their workplace near their home, as traveling

in a densely populated city like Dhaka is difficult.

We have predicted the regular traveling route of an user by considering his UCLs during

his travels between home to workplace. It is done by applying Dijkstra’s algorithm for

finding single-source shortest paths considering the UCLs as nodes, home location as

source and workplace as destination.
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Figure 6.14: Mobility Pattern of Regular Working Users

Figure 6.15: Traveling Route of an user from home to workplace
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Table 6.11: Traveling Route of a user
LAT LONG Remarks
23.878599 90.390602 Home
23.843901 90.279404
23.848301 90.274696
23.8547 90.312202
23.855801 90.266701
23.864401 90.3992
23.869699 90.402496
23.875 90.389397
23.875799 90.289398
23.8792 90.400597
23.883101 90.331703 Traveling Route
23.8908 90.387497
23.937799 90.2714
23.942801 90.270798
23.948299 90.277496
23.949699 90.274399
23.9606 90.271103
23.9781 90.267502
23.9928 90.256699
24.025 90.244202 Workplace

The traveling route is actually a list of sequential coordinates predicted from the list of

UCL of the user. The traveling route of a random user is shown in Table 6.11. The

traveling route can be visualized using map as presented in 6.15.

Layer 4

In layer 4, we find closer social relationships and activity patterns, which leads to the

discovery of smaller social groups consisting of lesser set of users. The results predicted

from layer 4 is presented below.

The type of transport used by an user can be classified and grouped from his traveling

route and information of time differences and distances among call activities made by

him in the same day on that route. For example, our prediction model can predict a fact

which means,

”User X travel from Location P to Location Q using traveling route R using transport

type T1 and T2 everyday”. The following Table 6.13 is showing the part of the trace file

generated by the transport type detection classifier.
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Table 6.12: Part of list of users living in same neighbor-group
User ID Home Lat Home Long

AAH03JAAbAAH86JAck 23.5394 90.1717
AAH03JAAQAAAO9VAWj 23.5394 90.1717
AAH03JAAQAAAO9WAau 23.5394 90.1717
AAH03JAARAAACttAW5 23.5394 90.1717
AAH03JAARAAACtuAJF 23.5394 90.1717
AAH03JAASAAAF6rAOi 23.5394 90.1717

AAH03JAAUAAABBDAAs 23.5394 90.1717
AAH03JAAUAAABBEAlt 23.5394 90.1717
AAH03JAAVAAAFwhATb 23.5394 90.1717
AAH03JAAVAAAFwiAnN 23.5394 90.1717
AAH03JAB/AAAQwpALF 23.5394 90.1717

If a two or more people have common or overlapping regular traveling route from home

to workplace, we can predict the probability of their interaction. Also, If two or more

people have same home and workplace and use same traveling route in same time, we

can predict the probability of closeness and using the same transport.

We predict social profile of users based on the facts detected in the previous layer

about of home, workplace, POIs, regular traveling routes and working pattern. Some

examples of predicted user profiles is shown in Table 6.14.

Layer 5

Using the calling relationship information with our prediction models we detect closer

social groups, including family, friends, colleagues and closely acquainted people

featuring deeper relationships. Then we validate the prediction classifiers designed

based on our CDR with real call data from volunteers.

If two or more people share the same home location and have a frequent calling

relationship, we can predict the probability of them being family members or close

acquaintances. We can find the relationship from our predicted knowledge of home

location and calling relation from previous layers. 6.16 illustrates an example of such

relationship. We can strongly infer that that two highlighted users are closely related.
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Table 6.13: Tracefile generated by Transport Type classifier
CallTime Lat Long Dis. Tra Mob.Status Time diff Speed Avg Sp. Tpt Type
8:37:11 23.879 90.391 0 Home
8:53:34 23.879 90.391 0 Home
9:13:41 23.891 90.387 1.393 Traveling
9:51:04 23.938 90.271 12.91 Traveling 0:37:23 20.38

10:33:24 23.978 90.268 4.499 Traveling 0:22:38 11.74
10:46:03 23.993 90.257 1.969 Traveling 0:12:39 9.09 13.74 Manual
10:59:41 24.025 90.244 3.799 Workplace
11:51:31 24.025 90.244 0 Workplace
13:25:18 24.025 90.244 0 Workplace
16:35:41 24.001 90.250 2.783 POI
16:36:09 24.001 90.250 0 POI
18:39:41 24.001 90.250 0 POI
21:39:07 23.891 90.387 18.53 Traveling
21:49:16 23.879 90.401 1.854 Traveling 0:10:09 11.12
21:50:35 23.870 90.402 1.074 Traveling 0:01:19 53.70
21:51:59 23.864 90.399 0.6778 Traveling 0:01:24 33.89 32.90 Motorized
22:13:11 23.879 90.391 1.805 Home
0:17:19 23.879 90.391 0 Home
8:35:49 23.879 90.391 0 Home

Table 6.14: Examples of user profile predicted upto Layer 3
User ID P4EAcw BBDAYO Pv/ADl
User type Regular Worker Irregular Worker Regular Worker
Home 23.703501, 90.456299 23.8106, 90.371399 23.881701, 90.308899
Workplace 23.9508,90.2714 NA 23.751101,90.426399
Traveling distance 33.31 0 18.81
Predicted Working Hours 10 AM to 6 PM NA 8 AM to 4 PM
Predicted Off days Friday NA Friday, Saturday
Predicted Social Group Service Holder Homemaker Student

Figure 6.16: Finding family members from home location and calling relation

6.4 Validation and Accuracy

Beside using k-fold cross validation, we have validated our results using some

unencrypted call data collected from a number of volunteer users. In this dataset the
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Figure 6.17: Part of data collected directly from users for validation

users and their social relations and group memberships are known. This data was

collected from mobile phones of the users and by downloading operator provided

personal CDR data which is available from web. We applied our techniques on this

data and compared the results with the results found using the original CDR. Also,

some of the city area related validation is done with the help of Google Map and

available area information.

The results obtains in the first layer is considered hundred percent accurate as they are

facts found from statistical analysis from actual data collected from real life. Also,

the results as not related to the identity of the users which is the only unknown factor

in our main CDR, thus, discards the requirement of validations. In the second layer,
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the accuracy of predicting home, workplace and other POIs is validated using our data

collected directly form the users. The accuracy of our method found is summarized

below.

Table 6.15: Accuracy of predicting home, workplace and other POIs
Type of place Accuracy
Home 100%
Workplace 90%
Other POIs 70%

In Layer 3, our prediction model detects regular working people more accurately than

users with irregular working pattern. The reason for that is, many seemingly irregular

worker has a hidden regular working pattern which is not visible from their calling

activity. The accuracy found on our data is as below,

Table 6.16: Accuracy of predicting working groups
Type of place Accuracy
Regular Worker 100%
Irregular Worker 60%

Our model can tag city areas very accurately. Some example of city area predicted

by our model and the result later validated from Google Map is presented in the table

below.

Table 6.17: Prediction of city area type
Location Our Prediction Validated from Map
23.750299,90.358597 Residential Area Kaderabad Housing
23.729401,90.383904 Residential Area Azimpur Govt Officers Quarter
23.7075, 90.438599 Commercial Area Jatrabari Bazar
23.740299,90.372803 Residential Area Dhanmondi Residential Area
23.755301, 90.389198 Commercial Area Farmgate Intersection
23.8333,90.415298 Residential Area Nikunja-2 Residential Area
23.8717,90.390099 Residential Area Uttara Residential Area
23.7817, 90.4058 Commercial Area Mohakhali Commercial Area

The accuracy of predicting social groups declines as we explore deeper with the layers.

The accuracy of predicting social groups found using our validation data in the final

layer is mentioned in the table below,
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Table 6.18: Accuracy of detecting social groups in the final layer
Social Groups Accuracy
Family/Friend 75%
Coworker/Colleague 45%

6.5 Summary

In this chapter at first we have discussed the datasets used in our experiments and how

we obtained it. Later we have explained our experimental setup and their parameters.

Finally, we presented the findings and results of our work in the form of facts and

figures.
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Chapter 7

Software and Visualization

We have designed a software using JAVA for preprocessing and executing the modified

machine learning algorithms and provides us with output and report files. The software

also present visualization of the outputs.

7.1 Graphical User Interfaces

The GUI of our software provides the basic functionality to use our hierarchical model

for exploration of informations by using our modified data mining algorithms. The

software has a main menu for running the data processing operations using different

modules in the layers of our model.

Figure 7.2 shows the screen shot of the Home and Workplace Finder Module of our

software. Here, the user select the file containing the CDR of an individual user. As

output the GUI display the location of the Home and Workplace of that user followed

by a summary of calls made by him from different locations in working hours and off-

hours.

Our software has a built-in map viewer which utilizes Google Map API to show

different POI of the users. Figure 7.3 shows the screenshot of a map view of the

location of home of a user using our integrated Mapviewer.

Figure 7.4 represents the interface of the Home and Workplace Analyzer of our

visualization software. This module works in the second and third layers of our
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Figure 7.1: Main menu of our software

Figure 7.2: GUI for finding home and workplace for a single user
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Figure 7.3: Built-in Map Viewer for viewing home and workplace

Figure 7.4: GUI for processing full CDR for home workplace info
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Figure 7.5: GUI showing output summary after successful completion of execution

software. Here, we provide the CDR datafile as input for processing. Our software can

handle files in both text (.txt) and comma-separated values (.csv) formats as input.

After processing the input file a summary is generated and the details information

found from the data mining process is saved in a CSV datafile.

The summary of output generated from our Home and Workplace Analyzer can be

seen Figure in the 7.5. The GUI mainly show the message regarding the successful

generation of the output file. Also a summarized overview of the distance traveled by

the working people of the city is displayed here, which is a output from the third layer

of our model.

7.2 Outputs and Visualizations

The output file generated after the successful completion of the processing of the dataset

is shown in 7.6. It is a CSV file storing the home and workplace information of all the

users present in our main CDR file. Mentionable, the are many users who does not

travel to a workplace from home. Our algorithm assigns zero values in places of the

location of their workplaces. Obviously, the traveling distances are zero in those cases.
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Figure 7.6: The generated output file showing the location of home and workplaces of
users and traveling distance between two locations

Figure 7.7: The generated output file showing the predicted traveling pattern of a user
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Figure 7.8: Preprocessing CDR for Clustering Using Weka

7.7 shows output file of the predicted traveling pattern of a user which includes the

traveling route from home to work place and type of vehicle used for traveling.

7.3 Supplementary Visualization Tools

7.3.1 Weka

Besides the software tool we developed, we have used Weka as an additional tool to

perform some of the clustering tasks required for our work. Weka is a workbench that

contains a collection of visualization tools and algorithms for data analysis and

predictive modeling, together with graphical user interfaces for easy access to these

functions. The original non-Java version of Weka was a Tcl/Tk front-end to modeling

algorithms implemented in other programming languages, plus data preprocessing

utilities in C, and a Makefile-based system for running machine learning experiments.

This original version was primarily designed as a tool for analyzing data from

agricultural domains, but the more recent fully Java-based version (Weka 3), for which

development started in 1997, is now used in many different application areas, in

particular for educational purposes and research.
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Figure 7.9: Using Google Map API for location data visualization

Weka supports several standard data mining tasks, more specifically, data

preprocessing, clustering, classification, regression, visualization, and feature

selection. All of Weka’s techniques are predicated on the assumption that the data is

available as one flat file or relation, where each data point is described by a fixed

number of attributes. Weka provides access to SQL databases using Java Database

Connectivity and can process the result returned by a database query.

7.3.2 Google Map API

Also, for visualizing map data, we have used Google Map API. We have embedded

Google Map API into our software to develop our built-in map viewer. By using the

Google Maps API, it is possible to embed Google Maps site into an external website or

application, on to which specific data can be overlaid. Although initially only a

JavaScript API, the Maps API was expanded to include an API for Adobe Flash

applications , a service for retrieving static map images, and web services for

performing geocoding, generating driving directions, and obtaining elevation profiles.

We have presented our spatial map data like home, workplace, traveling routes etc

using Google Map API.
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7.4 Summary

This chapter explains the features and functionalities of the software we developed for

performing the fact finding task we have done in different layers of our framework.

Also, we have discussed briefly about the additional tools we have used for our work.
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Chapter 8

Conclusion and Future Works

8.1 Conclusion

In our thesis, we have used the spatio-temporal data extracted from CDR to identify

and analyze user activity and mobility pattern by applying our proposed hierarchical

model. We have been motivated by the advantage of using the CDR data for urban

analysis, which is easy to collect in massive scale from a densely populated city to

overcome its limitations. From the initial implementation of our model, in the first

layer we have found various facts for individual users, like the locations of his home,

workplace, frequently visited places, etc. Also, as a part of the bigger picture of the city

we have detected the types of people in the city on the basis of their working pattern.

In the next layer, with the support of the data found in the first layer we have identified

facts like distance traveled by people to reach their workplaces, the city area covered in

a certain time frame, mobility patterns, etc. Information obtains from different layers of

our model has application in the investigation of the dynamics of a densely populated

city by analyzing human activity and mobility pattern. As we continue deeper with

more layers of our model, they enable us to identify further detailed activities including

crowd and traffic density in different areas of city, social gathering, traveling routes of

citizens, utilizing the facts found in the previous layers to identify and understand the

city dynamics in a higher degree.
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8.2 Future Works

We have developed and proposed the hierarchical exploration model and applied that

on CDR for finding social activities and relationships from the perspective of the

cellphone users. As a future work, our hierarchical model can be used effectively as a

generalized model for applying on any types of spatio-temporal big datasets for

prediction and progressive exploration of information from different depths of the

layers.

The CDR we used has limited attributes which constrained us to discover informations

from a narrower perspective. The full CDR data from the cell operators contains more

than hundreds of attributes. The availability of CDR data is limited by the cellphone

operator for maintain the anonymity and protect the personal information of their users.

Using our model on the full CDR data will unlock a good number of useful information

on the bigger picture of social characteristics and other features of a busy city. Also, the

amount of data we have initially worked with is limited to one month. By using more

data from a longer period of time, the efficiency of this model can be enhanced greatly.
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