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Abstract

A tree is a connected acyclic graph on n vertices and n− 1 edges. Graceful labeling of a

tree is a labeling of its vertices with the numbers from 0 to n− 1, so that no two vertices

share a label, labels of edges, being absolute difference of the labels of its end points, are

also distinct. There is a famous conjecture named Graceful tree conjecture or Ringel-Kotzig

Conjecture that says “All trees are graceful”. Almost 50-year old conjecture is yet to be

proved. However, researchers have been able to prove that many classes of trees are grace-

ful. In this thesis, we have proved that the classes of Superstar and Extended Superstarare

graceful. A tree with one internal node and k leaves is said to be a star S1,k or a complete

bipartite graph K1,k. Superstar is a tree that consists of several stars all connected to a single

star by sharing their leaves. If we remove all the leaves of a Superstar then we will get a

Spider tree which has already been proved to be graceful. Extended Superstar is a tree that

consists of several Superstars all connected to a single star by sharing their leaves. We have

also proved that extended superstars are graceful.
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Chapter 1

Introduction

Graph labeling is the assignment of labels, where the vertices or edges or both are assigned

real values subject to certain conditions, have often been motivated by their use in various

applied fields and their intrinsic mathematical interest. Most graph labeling methods trace

their origin to one introduced by Rosa [76] in 1967 or given by Graham and Sloane [33]

in 1980. Graph labeling was first introduced in the mid 1960s. In the intervening 50 years,

nearly 200 graph labeling techniques have been studied in over 2000 papers and is still

getting embellished due to increasing number of application driven concepts.

Graph labeling, where the vertices are assigned values subject to certain conditions, have

often been motivated by practical problems. Labeled graphs serve as useful mathematical

models for a broad range of applications such as Coding theory, including the design of

good radar type codes, sync-set codes, missile guidance codes and convolution codes with

optimal auto correlation properties. They facilitate the optimal nonstandard encoding of

integers.

In graph theory, a tree is an undirected graph in which any two vertices are connected

by exactly one path. In other words, any acyclic connected graph is a tree. Given a tree

T (V,E) with |V |= n and |E|= n− 1, if we can label any vertex u ∈ V by f (u) using inte-

gers {0,1, · · · ,n− 1} so that an edge (u,v) is labelled by | f (u)− f (v)| in such a way that

every edge is labelled by a distinct integer from the set {1,2, . . . ,n−1}, then the tree is said

to be gracefully labelled. The Ringel-Kotzig conjecture that all trees are graceful has been

the focus of many papers [2, 3, 4, 14, 17, 19, 22, 30, 41, 43, 50, 66, 74, 78, 96]. Many
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classes of trees have been shown to be graceful [74]. However, it has not yet been possible

to prove the conjecture for all trees. A lot of work have been done by many researchers

towards proving this conjecture. So far some special classes of trees have been shown to be

graceful. For example, paths, caterpillars, symmetrical trees, spider trees, lobster trees, star

trees, firecrackers, banana trees etc. Trees of diameter at most five and trees with up to 35

vertices have also been shown graceful. Our aim is to discover new classes of graceful trees.

1.1 Background Study

There are many graph labeling techniques like Graceful Labeling, Harmonious Labeling,

Magic-type Labeling, Antimagic-type Labeling, Prime and Vertex Prime Labelings, Edge-

graceful Labelings, Radio Labelings, Line-graceful Labelings, k-sequential Labelings, Prod-

uct and Divisor Cordial, Edge Product Cordial, Difference Cordial Labelings, Prime Cor-

dial labelings, Geometric labelings, Mean Labelings, Irregular Total Labelings, Square Sum

Labelings and Square Difference Labeling and so on. However, we shall concentrate on

graceful labeling that has received perhaps attention of a wider scientific community. The

name “Graceful Labeling” has come up thanks to Solomon W. Golomb. In 1967 paper on

graph labeling [76], Alexander Rosa originally gave the name β-labelings to this class of

labeling.

A graceful labeling of a graph with m edges is a labeling of its vertices with the numbers

from 0 to m, so that no two vertices share a label, and so that each edge is uniquely iden-

tified by the positive, or absolute difference between its endpoints. A graph which admits

a graceful labeling is called a graceful graph. A tree with n vertices and m edges is called

graceful if there exists a labeling of its vertices with the numbers from 0 to m such that the

set of absolute values of the differences of the numbers assigned to (vertices) the ends of

each edge is the set {1,2, . . . ,m}.

In graph theory, a major unproven conjecture is the Graceful Tree conjecture (GTC) or

Ringel–Kotzig conjecture, named after Gerhard Ringel and Anton Kotzig, which hypoth-

esizes that “all trees are graceful”. The Ringel-Kotzig conjecture is also known as the

“Graceful Labeling Conjecture”. To prove the conjecture Kotzig once called the effort a

“disease” [43].

2



Here we describe how the graceful tree problem first came up. We follow the description of

[26].

A decomposition of a graph G is a collection {Hi} of nonempty subgraphs such that Hi =

〈Ei〉 for some nonempty subset Ei of E(G), where {Ei} is a partition of E(G). If {Hi} is a

decomposition of a graph G such that, for each i, Hi = H for some graph H, then G is said

to be H-decomposable. If G is an H-decomposable graph, then we write H|G and say that

H decomposes G.

A cyclic decomposition is a decomposition of a graph G into k copies of a subgraph H that

can be obtained in the following manner:

• draw G appropriately

• select a subgraph H1 of G that is isomorphic to H

• rotate the vertices and edges of H1 through an appropriate angle k−1 times to produce

k copies of H in the decomposition.

If H |G then the size of H necessarily divides the size of G, and H is necessarily a subgraph

of G. However, the fact that the size of H divides the size of G is not a sufficient condition

for H |G. For example, 4 |12 but H−G where G = K2,2,2 and H = K1,4. It is easy to see that

every nonempty graph is K2-decomposable.

The following theorem of Kirkman characterizes when such a decomposition is attainable:

Theorem 1. Kn is k3-decomposable if and only if n is odd and 3 |
(n

2

)
We have an example of a balanced incomplete block design whenever Kn is Kk decompos-

able for natural numbers k ≥ 3. Graph decompositions may be viewed as generalized block

design.

In 1963, when Ringel posed the following problem, since then this problem is known as

Ringel’s Conjecture [76].

Conjecture 2. Every tree with m+1 vertices decomposes K2m+1.

Till date this problem is still unsolved. In [76], according to Rosa Kotzig conjectured a

stronger statement than Ringel’s, Kotzig’s Conjecture:

3



Conjecture 3. Every tree with m+1 vertices cyclically decomposes K2m+1.

Intention of Rosa behind publishing the paper [76] was for providing insight into Ringel’s

Conjecture for efficiently addressing the issue. The idea was to use a labeling of the vertices

of a graph H of order m to show that it can cyclically decompose K2m+1. Rosa referred to

a labeling as a valuation of the graph. Consider the following conditions where OG be a

labeling of the vertices of G, VOG be the numbers assigned to the vertices of G and EOG be

the set of numbers assigned to the edges of G.

1. VOG ⊆ {1,2, . . . ,n },

2. VOG ⊆ {1,2, . . . ,2n },

3. EOG ⊆ {1,2, . . . ,n−1 },

4. EOG ⊆ {x1,x2, . . . ,xn }, where xi = i or xi = 2n+1–i,

5. There exists x ∈ {1,2, . . . ,n }, such that for an arbitrary edge viv j of the graph either

ai ≤ x < a j or a j ≤ x < ai, where ak is the label assigned to vk for each k.

From above conditions Rosa defines four types of labelings which are given below :

• A ρ-valuation satisfies conditions (2) and (4).

• A σ-valuation satisfies conditions (2) and (3).

• A β-valuation satisfies conditions (1) and (3).

• A α-valuation satisfies conditions (1), (3) , and (5).

Graceful labeling is the other name of Rosa’s β-valuation. A lot of work have been done

by many researchers to prove the Graceful Tree conjecture (GTC). But The problem still re-

mains open. There are two main approaches in the existing literature to proving the graceful

tree conjecture. Showing that all trees having a particular structure are graceful is the more

mathematical approach and showing that all trees with up to a certain number of vertices are

graceful is more computational approach. The most recent result using the second approach

is that all trees with up to 35 vertices are graceful which was claimed by Wenjie Fang [29]
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and trees of diameter at most five have also been shown graceful. All path graphs, cater-

pillar graphs, lobster graphs with a perfect matching are graceful which is the result of first

approach.

So far research on settling the conjecture has expanded in three directions. The first is to

discover new classes of trees that are graceful. This is how caterpillars, fire crackers, banana

trees, symmetrical trees have been proved to be graceful. The second direction is establish

that all classes of trees of up to certain sizes have been shown graceful by enumerating all

non-isomorphic trees and then finding graceful labeling by extensive computation [17]. Yet

the third direction is to apply integer programming formulation of the problem and then

solve it. We are following the first direction towards proving the Graceful tree conjecture.

1.2 Aims and Objectives of the Thesis

After going through a number of research paper related to graceful labeling of trees we

have set our objective to identifying yet another class of trees that are amenable to graceful

labeling. With this objective we have divided the whole research into

(i) Study the results so far obtained in this area

(ii) Utilize the knowledge to expand the classes of graceful trees

(iii) Develop algorithms for graceful labeling

(iv) Discover more general class of gracefully labeled trees

(v) Develop a generalized algorithm for graceful labeling of new class of tree

1.3 Organization of the Thesis

In Chapter 1 we introduce the problem of graceful labeling. Chapter 2 contains a list of

graph labeling and their applications. Chapter 3 discusses different classes of trees that have

been proved graceful. Chapter 4 introduces the new classes of trees that we have proved

graceful. Experimental results and discussions about parameter are presented in Chapter

5.Chapter 6 discusses our findings and possibility of extending the results. The thesis ends

with a bibliography on the topic.
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Chapter 2

Graph Labeling and its Application

A graph labeling is the assignment of labels, traditionally represented by non negative inte-

gers to the vertices or edges, or both, subject to certain conditions. If the domain is the set

of vertices we speak about the vertex labeling. If the domain is the set of edges, then the

labeling is called the edge labeling. If the labels are assigned to the vertices and also to the

edges of a graph, such a labeling is called total. Moreover, if we consider the plane graphs,

it is also possible to label the faces of these graphs. Graph labellings were first introduced

by Alex Rosa in the mid 1960s. In the last 50 years nearly 200 graph labelling techniques

have been studied in over 2000 papers. Keeping up with new discoveries and finding out

what has been done for any particular kind of labeling is difficult because of the numerous

number of papers and many of the papers have appeared in journals that are not widely

available. Therefore, in this chapter we have tried to give a brief idea on recent results on

graph labeling. Here we have avoided the technical details of any labeling of graphs rather

we included definitions and examples and listed a detailed table of contents and index(as in

[30]).

2.1 Graceful Labeling

In this section we follow the definition as in [5]. A vertex labeling f of a graph G is

called graceful if f is an injective mapping from the set of vertices to the set of integers
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{0,1, . . . |E(G)|} such that the induced mapping

f (xy) = | f (x)− f (y)|, for every xy ∈ E(G),

assigns different labels to different edges of G. The difference | f (x)− f (y)| is called the

weight of the edge xy. A graph G is called graceful, if G admits a graceful labeling.

Graceful labeling was first introduced by Rosa in 1967 [76]. However, Rosa called this

labeling β-valuation. After Several years Golomb [32] studied the same type of labeling and

called this labeling graceful labeling. Graceful labelings were introduced to attack Ringel’s

conjecture [36], i.e. that the complete graph K2n+1 is decomposable into 2n+1 sub-graphs

that are all isomorphic to a given tree of size n.

An example of graceful labeling of K4 is illustrated in the figure 2.1.

Figure 2.1: Graceful labeling of K4.

The Ringel-Kotzig conjecture that all trees are graceful is a very popular open problem.

Some methods for constructing the graceful labelings and α-labelings for certain families of

trees can be found in [4], [22] and [26]. An example of graceful labeling of a Caterpillar is

illustrated in the figure 3.2 in the page 25.

2.2 Harmonious Labeling

Harmonious labeling is a another kind of vertex labeling. It was first introduced by Graham

and Sloane in 1980 [33] to study additive bases. A vertex labeling f of a graph G is called
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Figure 2.2: Graceful labeling of Caterpillar.

harmonious, if f is an injective mapping from the vertex set V (G) to the additive group

(Z,+), such that the mapping f ′ from the edge set E(G) to (Z,+) defined by

f ′(uv) = f (u)+ f (v), for every uv ∈ E(G),

assigns different labels to the edges of G. If the graph G admits a harmonious labeling, then

it is said to be harmonious.

In other words, a connected labeled graph with n number of edges in which all vertices can

be labeled with distinct integers(mod n) so that the sums of the pairs of numbers at the ends

of each edge are also distinct (mod n). The ladder graph, fan, wheel graph,Petersen graph,

tetrahedral graph, dodecahedral graph, and icosahedral graph are all harmonious (Graham

and Sloane 1980) [33].

There are some properties of harmonious labeling [92] which are summarised below,

1. Harmonious labeling is not unique.

2. If f is a Harmonious labeling of any graph G with q edges, then a f (x)+ b is also

harmonious labeling of G, where a is invertible element of Z and b is any arbitrary

element of q (Set of integers modulo q).

3. Any vertex in a harmonious graph can be assigned the label 0.

4. In the case of trees exactly two vertices are assigned the same vertex label which have

been observed by Graham and Sloane [33].
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5. Graham and Sloane [33] conjectured that every tree is harmonious.

6. Aldred and Mckay [3] provided an algorithm and used computer to show that all trees

with at most 26 vertices are harmonious.

7. Golomb [32] proved that complete graph is harmonious if and only if n≤ 4.

8. Graham and Sloane [33] proved that Km,n is harmonious if and only if m or n = 1.

9. Every graph with less than or equal to 5 vertices is harmonious excepting the six

graphs shown in the figure 2.3.

Figure 2.3: Example of graphs (n≤ 5) which are not harmonious.

10. The Peterson graph is Harmonious.

11. Graham and Sloane [33], proved that wheel Wn =Cn +K1 is harmonious.

12. K(2)
n is harmonious if n = 4 but not harmonious if n is odd or n = 6.

The example of harmonious labeling of cycle C5 and fan graph F8 are shown in figures 2.4

and 2.5 in pages 10 and 10 respectively.

Although it is proved that almost no graphs are either graceful (Erdos’ unpublished result)

nor harmonious (Graham and Sloane’s original paper) many authors are still dealing with

these labelings [30]. Motivated by these two types of labelings, they have defined a large

number of different vertex labelings that Gallian [30] divides into two main groups named

variations of graceful labelings and variations of harmonious labelings.
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Figure 2.4: Harmonious labeling of C5.

Figure 2.5: Harmonious labeling of F8.

2.3 Magic Type Labeling

In 1963, motivated by the notion of magic squares in number theory, magic labelings were

introduced by Sedláček [79] . Stewart [89] and [90] studied various ways to label the

edges of a graph in the mid 1960s to solve the problems raised by Sedláček. Therefore,

Stewart calls a connected graph semi-magic if there is a labeling of the edges with integers

such that for each vertex v the sum of the labels of all edges incident with v is the same for

all v. A semi-magic labeling where the edges are labeled with distinct positive integers is

called a magic labeling.

An example of magic labeling of K5 is shown in the figure 2.6 in page 11.

Stewart calls a magic labeling supermagic if the set of edge labels consists of consecutive
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Figure 2.6: Magic labeling of K5.

positive integers. A graph G is called a supermagic graph if it admits a supermagic labeling.

An example of supermagic labeling of K3,3 is shown in figure 2.7 in page 11.

Figure 2.7: Supermagic labeling of K3,3.

A bijection f : V (G)∪E(G)→ {1,2, . . . |V (G)|+ |E(G)|} is called a vertexmagic total la-

beling if there is a constant h, such that vertex-weight of every vertex in G is equal to this

constant, i.e.

wt(x) = f (x)+ ∑
y∈N(x)

f (xy) = h, for every x ∈V (G)

The constant h is called the magic constant for the labeling f . A graph G is called vertex-

magic total, if it admits a vertex-magic total labeling often abbreviated VMT. The concept
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of vertex-magic total labeling was given by MacDougall, Miller, Slamin and Wallis [45].

The Figure 2.8 illustrates vertex-magic total graphs with their vertex magic total labelings

and Figure 2.9 is an example of super vertex-magic total labeling of K5.

Figure 2.8: Vertex-magic total labeling of the generalised Petersen graph P(6,2).

Stewart proved the following [89] and [90]:

– Kn is magic for n = 2 and all n≥ 5 .

– Kn,n is magic for all n≥ 3.

– fans Fn are magic if and only if n is odd and n≥ 3.

– wheels Wn are magic for n≥ 4 and Wn with one spoke deleted is magic for n = 4 and

for n≥ 6.

– Km,n is semi-magic if and only if m = n.

– Kn is supermagic for n≥ 5 if and only if n > 5 and n 6≡ 0 (mod 4).
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Figure 2.9: Super vertex-magic total labeling of K5.

Sedláček [80] showed that Möbius ladders Mn are supermagic when n≥ 3 and n is odd and

that Cn×P2 is magic, but not supermagic, when n≥ 4 and n is even. The Möbius ladder Mn

is the graph obtained from the ladder Pn×P2 by joining the opposite end points of the two

copies of Pn.

Shiu, Lam, and Lee have proved the following [87]:

– the composition of Cm and Kn is supermagic when m≥ 3 and n≥ 2.

– the complete m-partite graph Kn,n,...,n is supermagic when n ≥ 3, m > 5 and m 6≡ 0

(mod 4).

– if G is an r-regular supermagic graph, then so is the composition of G and Kn for

n≥ 3.

That the composition of Km and Kn is supermagic for m = 3 or 5 and n = 2 or n odd have

been shown by Ho and Lee [39]. Bača, Holläander, and Lih [9] have found two families

of 4-regular supermagic graphs. Shiu, Lam, and Cheng [86] proved that for n≥ 2, mKn,n is

supermagic if and only if n is even or both m and n are odd. Ivančo [44] proved that Qn is

supermagic if and only if n= 1 or n is even and greater than 2 and that Cn×Cn and C2m×C2n

are supermagic. He conjectures that Cm×Cn is supermagic for all m and n. Sun, Guan, and

Lee give an efficient algorithm for finding a magic labeling of a graph. Trenklér [93] has
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proved that a connected magic graph with p vertices and q edges other than P2 exists if and

only if 5p
4 < q≤ p(p−1)

2 . One can find more results on magic labeling of graphs in [30].

2.4 Anti-magic Type Labeling

In this section we follow the definitions and notation of paper [5]. A graph G is called

antimagic if the n edges of G can be distinctly labeled 1 through n in such a way that when

taking the sum of the edge labels incident to each vertex, the sums will all be different. An

example of an antimagic labeling of graph K4 is illustrated in the figure 2.10. Note that the

vertex labels are the sums of the labels for the edges incident to the closest vertex.

Figure 2.10: Antimagic labeling of K4.

This type of labeling is sometimes referred to as a strong antimagic labeling due to the

fact that there is also a weak antimagic labeling. A graph is said to have a weak antimagic

labeling if you can label the edges in an antimagic way, still allowing the edges to be integers

less than or equal to the number of edges, without the edge labels necessarily being distinct.

An example of an weak antimagic labeling of graph K4 is illustrated in Figure 2.11. Any

strong antimagic labeling is also a weak antimagic labeling.

In 1989, the concept of an antimagic graph was introduced by Hartsfield and Ringel (see

in the papers [34] and [35]). A bijection f , f : E(G)→ {1,2, . . . , |E(G)|} is called an
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Figure 2.11: Weak Antimagic labeling of K4.

antimagic labeling if all vertex-weights are distinct. More precisely,

w(x) 6= w(y), for all x 6= y ∈V (G)

where

w(x) = ∑
y∈N(x)

f (xy).

This labelings is also known as vertex-antimagic. Hartsfield and Ringel [34] conjecture

that every tree except P2 is antimagic and, moreover, every connected graph except P2 is

antimagic. Alonet al [6] proved that this conjecture is true for all graphs having minimum

degree Ω(log|V (G)|).

As it is easy to label almost all graphs using antimagic labelings researchers started putting

some sort of restrictions. Bodendiek and Walther [20] introduced the concept of an (a,d)-

antimagic labeling in 1996. An antimagic labeling f is called an (a,d)-antimagic if the set

of vertex-weights

W = {w(x) : w(x) = ∑
y∈N(x)

f (xy), x ∈V (G)}

= {a,a+d,a+2d, . . . ,a+(|V (G)−1|)d}

where a > 0 and d ≥ 0 are two fixed integers. Lin et al [59] called this labeling (a,d)-

vertex-antimagic edge labeling, for short an (a,d)-VAE labeling. A graph that admits an

(a,d)-VAE labeling is called an (a,d)-VAE graph.
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An example of (20,1)-VAE labeling of K5 is illustrated in Figure 2.12.

Figure 2.12: A (20,1)-VAE labeling of K5.

A bijection f , f : V (G)∪E(G)→ {1,2, . . . , |V (G)|+ |E(G)|} is called an vertex antimagic

total labeling if the vertex-weights are different, thus

wt(x) 6= wt(y), for all x 6= y ∈V (G)

where

wt(x) = f (x)+ ∑
y∈N(x)

f (xy).

Baća, Bertault et al [8] introduced the notion of an (a,d)-vertex-antimagic total labeling in

2000. A vertex-antimagic total labeling f is called an (a,d)-vertex-antimagic total, (a,d)-

VAT, if the set of vertex-weights is

Wt = {wt(x) : wt(x) = f (x)+ ∑
y∈N(x)

f (xy)}

= {a,a+d,a+2d, . . . ,a+(|V (G)−1|)d}

where a > 0 and d ≥ 0 are two fixed integers. An (a,d)-VAT labeling f is called super (a,d)-

VAT if the vertices are labeled with the smallest possible numbers, i.e. with the numbers

1,2, . . . , |V (G)|. An example of the super (11,1)-VAT labeling of Cycle graph C3 is depicted
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Figure 2.13: A (11,1)-VAT labeling of C3.

in Figure 2.13 in the page 17. Baća et al [8] investigated and introduced basic properties

of (a,d)-VAT labeling and constructed such labeling for some families of graphs. They es-

tablished the relationship between (a,d)-VAT labelings and SVMT labelings, and described

the labeling schemes for Pn, cycle Cn and complete bipartite graphs Km,n. They also pre-

sented VAT labeling for the families of generalized Petersen graphs, prisms, antiprisms and

convex polytope graphs in [7]. Detailed results related to antimagic labelings of graphs can

be found at [30].

2.5 Miscellaneous Labeling

As there are so much of practical applications of graph labeling, researcher got interested in

graph labeling techniques. Therefore, a huge number graph labeling techniques have been

discovered. In this thesis paper we have tried to highlight the most famous graph label-

ing technique which have been already discussed above. Moreover, there are more graph

labeling techniques which also have application in practical fields. These are Sum Graph

Labeling, Prime and Vertex Prime Labeling, Edge-graceful Labelings, Radio Labelings,

Line-graceful Labelings, k-sequential Labelings, Product and Divisor Cordial Labelings,

Edge Product Cordial Labelings, Difference Cordial Labelings, Prime Cordial Labelings,

Geometric Labelings, Mean Labelings, Irregular Total Labelings etc. Some of them are

briefly discussed in rest of this chapter. One can find the details results of those labelings in

[30].
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2.5.1 Edge-Graceful Labelings

Lo [60] introduced the notion of edge-graceful graphs in 1985. A graph G(V,E) is said to

be edge-graceful if there exists a bijection f from E to {1,2, . . . , |E|} such that the induced

mapping f+ from V to 0,1, . . . , |V |−1} given by f+(x) = (∑ f (xy)) (mod |V |) taken over

all edges xy is a bijection. Though an edge-graceful graph is antimagic also. A necessary

condition for a graph with p vertices and q edges to be edge-graceful is that q(q+ 1) ≡

p(p+ 1)/2 (mod p). Lee [57] conjectured that any connected simple (p,q)-graph with

q(q+1)≡ p(p−1)/2 (mod p) vertices is edge-graceful. Lee, Kitagaki, Young, and Kocay

[58] prove that the conjecture is true for maximal outerplanar graphs in the year of 2006.

2.5.2 Line-Graceful Labelings

In paper [31] Gnanajothi has defined a concept similar to edge-graceful. She defined a

graph with n vertices is line-graceful if it is possible to label its edges with 0,1,2, . . . ,n such

that when each vertex is assigned the sum modulo n of all the edge labels incident with that

vertex the resulting vertex labels are 0,1,2, . . . ,n− 1. A necessary condition for the line-

gracefulness of a graph is that its order is not congruent to 2 (mod 4). Among all, some

line-graceful graphs are Pn if and only if n 6≡ (mod 4), Cn if and only if n 6≡ 2 (mod 4),

K1,n if and only if n 6≡ 1 (mod 4), Pn�K1 (combs) if and only if n is even, (Pn�K1)�K1

if and only if n 6≡ 2 (mod 4), mCn when mn is odd, Cn�K1 (crowns) if and only if n is

even, mC4 for all m, complete n-ary trees when n is even, K1,n∪K1,n if and only if n is odd,

odd cycles with a chord, even cycles with a tail, even cycles with a tail of length 1 and a

chord etc. She conjectures that all trees with p 6≡ 2 (mod 4) vertices are line-graceful and

proved this conjecture for p≤ 9.

2.5.3 k-Sequential Labelings

Bange, Barkauskas, and Slater [12] defined a k-sequential labeling f of a graph G(V,E)

as one for which f is a bijection from V ∪E to {k,k+ 1, . . . , |V ∪E|+ k− 1} such that for

each edge xy in E, f (xy) = | f (x)− f (y)|. Bange, Barkauskas, and Slater showed that cycles

are 1-sequential and if G is 1-sequential, then G+K1 is graceful. Hegde and Shetty [37]

have shown that every Tp-tree is 1-sequential. Slater proved: Kn is 1-sequential if and only
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if n≤ 3, for n≥ 2, Kn is not k-sequential for any k ≥ 2, and K1,n is k-sequential if and only

if k divides n. There are some more result on k-sequential Labelings which can be found in

[30].

2.6 Applications of Graph Labeling

Graph labeling were first introduced in the mid sixties. In the middle of the time dozens of

graph labeling technique have been introduced in over 1000 papers. An enormous amount of

literature has grown around the subject and is still getting flourished due to increasing num-

ber of application oriented concepts. Labeled graphs are becoming an increasingly useful

family of mathematical models for a broad range of applications. In diverse fields of human

enquiry a qualitative labeling of graph elements have inspired research such as Conflict res-

olution in social psychology, electrical circuit theory and energy crisis etc. and quantitative

labeling of graphs have led to quite intricate fields of application such as coding theory prob-

lems, including the design of good Radar location codes, Synch-set codes; missile guidance

codes and convolution codes with optimal autocorrelation properties. Moreover, labeled

graphs have also been applied, in determining ambiguities in X-Ray Crystallographic analy-

sis, to Design Communication Network addressing Systems, in determining Optimal Circuit

Layouts and Radio-Astronomy etc.

Graceful labeling technique is a most popular graph labeling technique and traces its origin

to one introduced by Rosa [76]. However, Graceful labeling is not just an appealing research

problem that a non-researcher or non-specialist can understand but a problem with extraor-

dinary versatile applications. Graceful labeling of trees have been used in Multi Protocol

Label Switching (MPLS) routing platform in IP networks. Graceful labeling of directed

graphs have been used to describe some algebraic structures such as cyclic difference sets,

sequenceable groups, generalized complete mappings and neofeilds. The odd graceful la-

beling is one of the most famous and widely used labeling methods of graphs [97]. The

labeling of graphs serves as models in a wide range of applications as listed below.
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2.6.1 The Coding Theory

The design of good non periodic codes for pulse radar and missile guidance is equivalent to

labeling the complete graph in such a way that all the edge labels are distinct. Therefore,

node labels can determine the time positions at which pulses are transmitted.

2.6.2 The X-ray Crystallography

In modern days, X-ray diffraction is one of the most powerful techniques for characterizing

the structural properties of crystalline solids, in which a beam of X-rays strikes a crystal

and diffracts into many specific directions. Position of atom in a crystal structures are made

by X – ray diffraction patterns. Measurements indicate the set of inter atomic distances in

crystal lattices. Mathematically, one can find the finite set of integers to one atom position

, so that diffraction is equivalent to the distinct edge lengths between these two integers.

In some cases more than one structure has the same diffraction information. This problem

is mathematically equivalent to determining all labeling of the appropriate graphs which

produce a pre-specified set of edge labels.

2.6.3 The Communications Network Addressing

A communication network is composed of nodes, each of which has computing power and

can transmit and receive messages over communication links, wireless or cabled. The basic

network topologies are include fully connected, mesh, star, ring, tree, bus. A single network

may consist of several interconnected subnets of different topologies. If one had a commu-

nication network with a fixed number n+1 of communication centers ( i.e. vertex) and they

were numbered 0,1, . . . ,n then the lines between any two centers could be labeled with the

difference between two center labels ( i.e. vertex labels) If the communication center grid

was laid out in a graceful graph, we would then be able to label the connections between

each center such that each connection would have a distinct label. One good advantage of

such a labeling is that if a link goes out, a simple algorithm could detect which two centers

are no longer linked.

20



Chapter 3

Existing Classes of Graceful Trees

Ringel conjecture stating that, the complete graph K2m+1 can be decomposed into trees iso-

morphic to a given tree with m edges was published by Rosa [76] in 1967 . Rosa showed that

if a tree has a graceful labeling, then the conjecture of Ringel will be followed. Right away

Attempts to prove Ringel’s conjecture have therefore focused on obtaining the stronger re-

sult that every tree is graceful, a term given by Golomb [32]. This is the primary motivation

that inspired us to analyse the results that will be covered in this section.

Conjecture 4. (Ringel-Kotzig Conjecture [1964]) All trees are graceful.

In the attempt to prove that all trees are graceful, many classes of trees have been proven

graceful. Initially, the gracefulness of several classes of trees was established by Rosa in

[76]. Since then, other classes have been shown to admit graceful labeling. This referred

paper [30] is contain a great source for finding a list of graceful classes of trees. Yet,

knowing all of them is still not enough to conclude that all trees are graceful. In this section,

we are going to exhibit a lot of those classes.

The list of trees which are known to be graceful are: caterpillars [76], trees with at most 4

end-vertices [43], [98] and [49], trees with diameter at most 5 [98] and [42], symmetrical

trees [16], [72], rooted trees where the roots have odd degree and the lengths of the paths

from the root to the leaves differ by at most one and all the internal vertices have the same

parity [23], rooted trees with diameter D where every vertex has even degree except for one

root and the leaves in level bD/2c [11], rooted trees with diameter D where every vertex

has even degree except for one root and the leaves, which are in level bD/2c [11], rooted
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trees with diameter D where every vertex has even degree except for one root, the vertices

in level bD/2c− 1, and the leaves which are in level bD/2c [11], the graph obtained by

identifying the endpoints any number of paths of a fixed length except for the case that the

length has the form 4r + 1 , r > 1 and the number of paths is of the form 4m with m > r

[81], regular bamboo trees [81] and olive trees [71], [1]. In 2010 Fang [29] Motivated by

Horton’s work [40] used a deterministic back-tracking algorithm to prove that all trees with

at most 35 vertices are graceful. Bahls, Lake, and Wertheim [10] proved that spider trees

are graceful.

In [25] Chen, Lu, and Yeh proved that firecrackers are graceful and conjectured that banana

trees are graceful. Sethuraman and Jesintha [84] and [85] and [46] proved that all banana

trees and extended banana trees are graceful, various kinds of bananas trees had been shown

to be graceful by Bhat-Nayak and Deshmukh [17], by Murugan and Arumugam [67], [68]

and by Vilfred [94].

Forhad et al [41] proved that two new classes of trees named Super Caterpillars and Ex-

tended Super Caterpillars are graceful. Sourabh et al provide an idea in [78] to construct

larger classes of graceful trees which consist of paths and caterpillars. Afsana, Maowa,

Tania and Kaykobad also introduced a new class of graceful trees [66] called Super stars.

The graphs obtained by starting with any number of identical stars, appending an edge to

exactly one edge from each star, then joining the vertices at which the appended edges were

attached to a new vertex have been shown graceful by Zhenbin [99]. Another result that

graphs obtained by starting with any two stars, appending an edge to exactly one edge from

each star, then joining the vertices at which the appended edges were attached to a new vertex

are graceful have also been shown graceful. To generate graceful trees from a graceful star

with n edges, in [47] Jesintha and Sethuraman use a method of Hrnciar and Havier [42].

Eshghi and Azimi in [27] and [28] discuss a programming model for finding graceful

labelings of large graphs. This method is used to verify that all trees with 30, 35, or 40

vertices are graceful. Koh, Rogers, and Tan [52], [53], [55] and Stanton and Zarnke [88]

gave methods for combining graceful trees to yield larger graceful trees. In [75] Rogers and

in [54] Koh, Tan, and Rogers provide recursive constructions to create graceful trees.

The graph obtained from any graceful tree by subdividing every edge has been shown grace-

ful by Burzio and Ferrarese [22]. In year of 1979 Bermond [14] conjectured that lobsters
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are graceful. Morgan [65] has shown that all lobsters with perfect matchings are graceful.

Mishra and Panigrahi [62] and [70] found classes of graceful lobsters of diameter at least

five. They also showed other classes of lobsters graceful [63] and [64]. In [83] Sethura-

man and Jesintha explores how one can generate graceful lobsters from a graceful caterpillar

while in [82] and [85] also in [46] they show how to generate graceful trees from a graceful

star. More special cases of Bermond’s conjecture have been done by Ng [69], by Wang, Jin,

Lu, and Zhang [95], Abhyanker [2], and by Mishra and Panigrahi [63].

Barrientos [13] introduced a new tree named y-tree as a graph obtained from a path by

appending an edge to a vertex of a path adjacent to an end point. He proves that graphs

obtained from a y-tree T by replacing every edge ei of T by a copy of K2,ni in such a way

that the ends of ei are merged with the two independent vertices of K2,ni after removing the

edge ei from T are graceful.

Despite the efforts of many researchers, still the graceful tree conjecture remains open even

for trees with maximum degree 3. Many more results about graceful trees are contained

in [14], [18], [51], [61], [24], [48], and [77]. In [26] Edwards and Howard provide

a detailed and elaborate survey paper on graceful trees. Now some of the trees which are

proved to be graceful in an attempt to prove Graceful Tree Conjecture are discussed below

in detail.

3.1 Paths

In graph theory, a path is a tree whose vertices can be listed in the order v1,v2, . . . ,vn such

that the edges are {vi,vi+1} where i = 1,2, . . . ,n−1. Equivalently, a path with at least two

vertices is connected and has two leaves (vertices’s that have degree 1), while all others (if

any) have degree 2.

Let Pn be the path with n edges and n+1 vertices’s.

Theorem 5. All paths are graceful

Proof. Label Pn by starting at one end of the path and alternating between the least and

greatest remaining label along the path, so that the labels are
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0,n,1,n−1,2, . . .

Figure 3.1: An example of a gracefully labeled Path tree on 6 vertices

3.2 Caterpillars

A caterpillar is a tree such that if one removes all of its leaves, the remaining graph is a path.

This path can be termed as backbone of the caterpillar.

In [76] Rosa proved that all caterpillars are graceful. Now We are going to exhibit a proof

of that fact. Since paths are also caterpillars, it will follow Theorem 5 that paths are also

graceful.

Theorem 6. All caterpillars are graceful.

Proof. Let C be a caterpillar on 14 vertices’s as depicted in Figure 3.2. A caterpillar is

labeled from one end of its backbone with 0 and its adjacent vertices are labeled using so

far unused largest labels ending in labeling the next vertex on the path with the smallest

of the largest labels used. Its adjacent vertices are labeled using the smallest so far unused

labels alternately. In the mean time while we label vertices largest unused edge labels are

generated. It can be noted that for a tree with m edges if f (i) is a graceful labeling then so

is m− f (i). That is why we can label any end of a caterpillar by 0 or by m.

3.3 Super Caterpillars

In this section we follow the definition of paper [41].
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Figure 3.2: An example of gracefully labeled 14-vertex Caterpillar

Let T0 be any arbitrary caterpillar and Ti, i = 1, . . . ,k be caterpillars with |Ti| = m number

of vertices and sum total of vertices’s is the same in odd levels of all pairs T2i+1 and T2i+2.

In case k being an odd number, one caterpillar will be without a pair. Let one end of each

backbone be joined to the vertex v by an edge. Then the resulting tree is called a super-

caterpillar.

Example 7. Two super-caterpillars are illustrated in Figure 3.3 with odd and even k.

Figure 3.3: Example of Super-caterpillar with (a) odd k, (b)even k, with an arbitrary cater-

pillar joined with a root.

Theorem 8. All super-caterpillars are graceful.
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Figure 3.4: Example of gracefully labeled Super-caterpillar

3.4 Extended Super Caterpillars

In this section we follow the definition of paper [41]. Let there be an even number kp

caterpillars, each having m vertices’s and sum total number of vertices’s in odd (or even)

levels of those caterpillars are the same. These caterpillars are grouped in k groups each

having p caterpillars. Let backbones of the group i of caterpillars be connected to a vertex

vi that is connected to vertex v. Then the resulting tree is called a extended super-caterpillar.

An extended super-caterpillar is illustrated in Figure 3.6 in the page 28 with six caterpillars

grouped in two.

Theorem 9. All Extended Super Caterpillars are graceful.

The following examples show the verification of the proof as there are six caterpillars in

figure 3.7 which can be grouped in three (figure 3.8) or two(figure 3.10) (k = 2 or k = 3).

Here each caterpillar has 9 vertices’s (m = 9). Then both these groups are connected with v

and gracefully labeled in figure 3.9 and figure 3.11.

26



Figure 3.5: Another Example of gracefully labeled super-caterpillar with an arbitrary Cater-

pillar where s0 = 2.

3.5 Symmetrical Trees

In this section we follow the definition and proof of paper [41] and [74].

A rooted tree in which every level contains vertices of the same degree is called symmetrical

trees. J.C. Bermond and J. Schonheim [15] proved that all symmetrical trees are graceful.

A gracefully labeled symmetrical tree on 15 vertices is illustrated in Figure 3.12 in the page

31.

Theorem 10. All symmetrical trees are graceful

The proof has been shown by induction on the number of layers that all symmetrical trees

are graceful and there exists a graceful labeling which assigns the number 1 to the root.

If T is a symmetrical tree with 0 layers, then, it consists of 0 edges and just one vertex, and

clearly there is a graceful labeling which assigns 1 to that vertex. Suppose we have proved

that for some l > 0 all symmetrical trees with ≤ l−1 layers are graceful and each of them

has a graceful labeling which assigns the number 1 to the root.

The idea of the induction step is to consider a rooted symmetrical tree for which we know
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Figure 3.6: Example of extended super-caterpillar with two groups consisting three Cater-

pillars.

Figure 3.7: Six graceful Caterpillars.

that its k children T1,T2, . . . ,Tk are graceful (and isomorphic to each other). We label the

children with their (identical) graceful labeling and then add certain numbers to each of the

vertices’s. The way we do this is illustrated in the figure 3.13 in the page 32.

We order the children from left to right. Then, if n is the number of vertices’s in each child,

we start from the 0th layer of the children and add (k−1)n to the root of T1, (k−2)n to the

root of T2, . . . , and 0 to the root of the k-th one. Then, for the first layer, we start from right

to left this time and add (k−1)n to each of the vertices’s in the 1st layer of Tk, then, we add

(k−2)n to each of the vertices’s in the 1st layer of Tk−1, . . . , and 0 to each of the vertices’s

in the first layer of T1. So, then we go on with the second layer and we start from left to

right, and so on until we finish with the last layer. Then, we write nk+1 on the root of the

new tree. Then, we do the transformation x 7→ nk+2−x to each of the vertices’s, so that we

can have 1 at the root and the resulting labeling, as we show in the sequel, is graceful.
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Figure 3.8: Three Grouped Caterpillars are joined with a single vertex vi which are graceful.

Figure 3.9: All groups joined with a root vertex v and gracefully labeled.

3.6 Star Trees

A tree with one internal node and k leaves is said to be a star S1,k that happen to be a complete

bipartite graph K1,k.

Stars can be gracefully labelled by labeling its centre by 0 and other leaves by j, j = 1, ...,k.

An example of gracefully labelled star is shown in the figure 4.1.
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Figure 3.10: Six graceful caterpillars grouped into two each containing three Caterpillars.

Figure 3.11: Both groups joined with a single root vertex.

3.7 m-Stars

A m-Star has a single root node with any number of paths of length m attached to it. An

example of gracefully labelled m-star is shown in the figure 3.15.

3.8 Spider Trees

A spider tree is a tree with at most one vertex of degree greater than 2. If such a vertex

exists, it is called the branch point of the tree. A leg of a spider tree is any one of the paths

from the branch points to a leaf of the tree.
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Figure 3.12: An example of gracefully labeled 15-vertex Symmetrical Tree.

Let S be a spider tree on 31 vertices’s as shown in Figure 3.16.

Bahls, Lake and Wertheim has proved in [10] that all spider trees are graceful.

Theorem 11. Let T be a spider tree with l leg, each of which has length in {m,m+ 1} for

some m > 1. Then, T is gracefil.

Proof. (as in [10]) We assume that l ≥ 3 since otherwise T is a path and we already showed

that paths are graceful. We look at two cases.

Case 1. l is odd. Let l = l0 + l1, where li is the number of legs of length m+ i for i ∈ {0,1}.

Then, T has n = lm+ l1 + 1 vertices’s. We call the legs L1,L2, . . . ,Ll where L1,L2, . . . ,Ll1

are the legs of length m+ 1 and Ll1+1,Ll2+1, . . . ,Ll are the legs of length m. Let v∗ be the

branch point of T and let vi, j be the vertex in Li of distance j from v∗.

We exhibit the following labeling f :

1. f(v∗) = 1,

2. If i and j are both odd, then f (vi, j) = n− i−1
2 −

( j−1)l
2 ,

3. If i and j are both even, then f (vi, j) = n− l−1
2 −

i
2 −

( j−2)l
2 ,

4. If i is even and j is odd, then f (vi, j) =
i
2 +

( j−1)l
2 +1, and,

5. If i is odd and j is even, then f (vi, j) =
l−1

2 + i+1
2 + ( j−2)l

2 +1,

This labeling assigns all numbers from 1 to n to the vertices’s of T since it starts by assign-

ing 1 to v∗ and then traverses the longer legs first, alternating between highest and lowest

remaining unused labels, spirally away from the center. This is illustrated in Figure 3.17 in

the page 36, in which l0 = 2, l1 = 3, and m = 4.
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Figure 3.13: All the steps in a graceful labeling of a Symmetrical Tree.

Then, we have that for i ≡ j(mod 2), f (vi, j)− f (vi, j+1) = n− 1− l−1
2 − i+(1− j)l > 0

and f (vi, j)− f (vi, j−1) = n− 1− l−1
2 − i+(2− j)l > 0. Suppose that there exist (i, j) 6=

(i′, j′) and i′ ≡ j′ (mod 2) and f (vi, j)− f (vi, j+1) = f (vi′, j′)− f (vi′, j′+1). So we get that

i− i′+( j− j′)l = 0, so, l = i−i′
j− j′ (note that if j = j′, then also i = i′, so, (i, j) = (i′, j′), so,

j 6= j′. Thus, |i−i′|< l and | j− j′|> 1, and l = | i−i′
j− j′ |<

l
1 = l, which gives us a contradiction.

Thus, f (vi, j)− f (vi, j+1) 6= f (vi′, j′)− f (vi′, j′+1). Similarly, we get that f (vi, j)− f (vi, j+1) 6=

f (vi′, j′)− f (vi′, j′−1) and f (vi, j)− f (vi, j−1) 6= f (vi′, j′)− f (vi′, j′−1).

Case 2. l is even. Without loss of generality Ll is a leg of length m (otherwise the tree is

symmetric which we already proved is graceful). Remove the leg Ll to get a tree T0 with an

odd number of legs l− 1. From above we get a graceful labeling f0 of T0 with f0(v∗) = 1.

Let V (T0) = n′. Define a new graceful labeling f ′0 of T0 by f ′0(v) = n′+ 1− f0(v) for each

v ∈V (T0).

Now, construct a new tree T1 by appending a new vertex, w1, to T0’s center. Extend f1 on
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Figure 3.14: An example of gracefully labelled star.

V (T1) by f1(w1) = 1 and f1(v) = f ′0(v)+ 1 for all v ∈ V (T0). Define f ′1 on T1 by f1(v) =

n′+ 2− f1(v) for all v. Note that f ′1(w1) = n′+ 1. We can consecutively append vertices’s

w2,w3, . . . ,wm to our l-th leg to obtain a graceful labeling of T . Note that we can append as

many vertices’s as we want, not just m.

3.9 Lobster

A lobster tree is a tree such that if you remove all of its leaves, it becomes a caterpillar. An

exmaple of graceful lobster tree has been illustrated in the figure 3.18 in the page 37.

In [14] Bermond conjectured that all lobsters are graceful in the year of 1979. Many re-

searchers have attempted to resolve this conjecture, although no one has been able to do it

yet. In the year of 2002 Morgan [65] proved that all lobster trees with perfect matching

are graceful. Mishra and Panigrahi [62, 70] found classes of graceful lobsters of diameter

at least five. They also showed [63, 64] that some other classes of lobsters are graceful.

They observed that a lobster having diameter at least five has a unique path H = x0x1 . . .xm

satisfying the property that, besides the adjacency’s in H, both x0 and xm are adjacent to

the centers of at least one K1,s (which is a star with s leaves), where s > 0, and each xi, for
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Figure 3.15: An example of gracefully labelled m-star where m = 2.

1 ≤ i ≤ m− 1, is at most adjacent to the centers of some K1,s, where s ≥ 0. The unique

path H is called the central path of the lobster. There are three types of branches that the

vertices’s of H can be adjacent to: even, odd, and pendant. K1,s is an even branch, if xi is

adjacent to the center of a K1,s where s ≥ 2 is even. Again K1,s is an odd branch, if xi is

adjacent to the center of a K1,s where s is odd. K1,s is called pendant, if xi is adjacent to the

center of a K1,s where s = 0, i.e. xi is adjacent to a leaf. Mishra and Panigrahi in the paper

[63], they give graceful labelings to the lobsters having some special features.

More special cases of classes of graceful lobsters have been found by Sethuraman and

Jesintha in [82], by Ng in [69], by Wang, Jin, Lu, and Zhang in [95], by Abhyanker

in [2].
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Figure 3.16: An example of gracefully labeled 31-vertex Spider Tree.

3.10 Firecrackers

A firecracker F consists of a set of stars, centres of which are connected to a single vertex.

Chen, Lu and Yeh in [25] proved that firecrackers are graceful.

Theorem 12. All firecrackers are graceful.

Proof. (as in [74]) Let F be a firecracker tree, let P(F) have k vertices’s and let each of the

stars attached to them have m− 1 vertices’s (excluding the vertex in P(F) each of them is

attached to, so, m vertices’s with it). So, the total number of vertices’s of F is km.

An example of graceful labeling of firecracker has been illustrated in the figure 3.19.

We number the verticess on the central path with the numbers 1,1+(k−1)m,1+m,1+(k−

2)m,1+2m, . . . from left to right. Then, we number the centers of the stars, from left to right

with the numbers km,m,(k−1)m,2m,(k−2)m, . . . . Then, the remaining m−2 vertices’s of

each star we number with the following: We start from left to right and

1. if the star we are looking at is the 2i+1−st from left to right, then we have numbered
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Figure 3.17: The labeling f for l0 = 2, l1 = 3, and m = 4.

its center vertex with (k− i)m and the top vertex with 1+ im. Then, we number the

remaining m−2 vertices’s of this star with 2+ im,3+ im, . . . ,m−1+ im.

Thus, we get induced edge valuations (since 2i < k): (k− 2i)m− 1,(k− 2i)m−

2, . . . ,(k−2i)m− (m−1).

2. if the star we are looking at is the 2ith from left to right, then we have numbered

its center vertex with im and its top vertex with 1+(k− i)m. Then, we number the

remaining m−2 vertices’s of this star with 2+(k− i)m,3+(k− i)m, . . . ,m−1+(k−

i)m.

Thus, we get induced edge valuations (since 2i < k): (k− 2i)m + 1,(k− 2i)m +

2, . . . ,(k−2i)m+m−1.

Thus, all the edge valuations that we get are different, hence we have exhibited a

graceful labeling.

A generalized firecracker tree is one in which the stars can have different numbers of ver-
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Figure 3.18: An example of gracefully labeled 53-vertex Lobster

Figure 3.19: A graceful labeling of a firecracker

tices’s. According to [26], Chen, Lu and Yeh proved in [25] that all generalized firecracker

trees are also graceful.

3.11 Banana Trees

A banana tree consists of a vertex v joined to one leaf of any number of stars. An example

of graceful labeling of banana tree has been illustrated in the figure 3.20.

Let (2K1,1, . . . ,2K1,n) be the tree obtained by adding a vertex to the union of two copies of

each of K1,1, . . . ,K1,n and joining it to a leaf of each star. The banana tree obtained in this

way is interlaced and therefore graceful. Chen, Lu, and Yeh conjectured in [25] that all

banana trees are graceful.

Bhat-Nayak and Deshmukh [17] have constructed three new families of graceful banana
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Figure 3.20: An example of graceful labeling of a banana tree

trees using an algorithmic labeling proof. Extending the results of Chen, Lu and Yeh [25],

they have shown that the following are graceful:

1. (K1,1, . . . ,K1,t−1,(α+1)K1,t ,K1,t+1, . . . ,K1,n), where 0≤ α < t;

2. (2K1,1, . . . ,2K1,t−1,(α+2)K1,t ,2K1,t+1, . . . ,2K1,n) where 0≤ α < t;

3. (3K1,1,3K1,2, . . . ,3K1,n)

Moreover, Murugan and Arumugam [67] showed that any banana tree where all the stars

have the same size is graceful by constructing a graceful labeling of these banana trees. Note

that a banana tree, in which all the stars have the same size is also a symmetrical tree, so, it

is also graceful by what we have shown before.

3.12 Regular Bamboo Trees

A regular bamboo tree is a rooted tree consisting of one central vertex, and several legs of

equal length attached to it, the leaves of which are identified with leaves of stars of equal

size.

As referenced in [26], Regular bamboo trees were shown to be graceful by C. Sekar in [81]

in the year of 2002.
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V. Ramachandran and C. Sekar in [73] in the year of 2014 has proved Every regular bamboo

tree is one modulo N graceful for every positive integer N > 1. An example of One modulo

5 graceful labeling of regular bamboo tree, where k = 5,n= 5,m= 3 is depicted in the figure

3.21 in the page 39.

Figure 3.21: An example of One modulo 5 graceful labeling of a Regular Bamboo tree

3.13 Coconut Trees

A coconut Tree CT (m,n) is the graph obtained from the path Pn by appending m new pen-

dent edges at an end vertex of Pn.

V. Ramachandran and C. Sekar in [73] in the year of 2014 has proved Every coconut tree is

one modulo N graceful for every positive integer N. An example of One modulo 3 graceful

labeling of coconut tree is depicted in the figure 3.22 in the page 40.
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Figure 3.22: An example of One modulo 3 graceful labeling of a coconut tree

3.14 Olive Trees

An olive tree Tk is a spider tree with k legs with lengths 1,2, . . . ,k respectively.

As referenced in [26], Abhyankar and Bhat-Nayak in [1] gave direct graceful labeling

methods for T2n+1 and T2n. Both of these methods involve assigning labels q = (n+1)(2n+

1) or n to the roots of the trees T2n+1 and T2n respectively and then assigning labels to the

vertices’s on the k paths adjacent to the root depending on the parity of the path label and

the tree in question. Finally, the labels are assigned to the remaining vertices’s of the tree so

that the sum of any two adjacent vertices’s is either q− 1 or q in the case of T2n+1, or q or

q+1 in the case of T2n.

Here two example of Olive trees T5 and T4 are depicted in the figures in 3.23 and 3.24 in the

pages 41 and 42 respectively.
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Figure 3.23: An example of Olive trees T5

3.15 Spraying Pipes

A spraying pipe tree is a path v1,v2, . . . ,vn such that each vertex vi is joined to mi paths at a

leaf of each path, and all paths have the same length. Cheng, Lu and Yeh [25] (as referenced

in [26]) proved that a spraying pipe tree is interlaced if n is even and m2i−1 = m2i for each

1≤ i≤ n
2 .

3.16 Other Results

3.16.1 Two Theorems on Graceful Labelings of Trees

In this section we follow the definition of the paper [78].

Theorem 13. A tree T = (V,E) has a graceful labeling if V has an ordered partition

{V1,V2, ...,Vk} such that the following two conditions hold.
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Figure 3.24: An example of Olive trees T4

1. |V1|= |V2|= |V3|= ...= |Vk| and each |Vi|,1≤ i≤ k, induce a path.

2. Exactly one vertex x in Vi,1 ≤ i ≤ k− 1, has a neighbor y in Vi+1 , and for each

connected component I of G(Vi−{x}) has a corresponding connected component J

of G(Vi−{y}) such that I and J have the same number of vertices.

Theorem 14. A tree T = (V,E) has a graceful labeling if V has an ordered partition

{V1,V2, ...,Vk} such that the following three conditions hold.

1. |V1|= |V2|= |V3|= ...= |Vk| and each |Vi|,1≤ i≤ k induce a caterpillar.

2. For 1≤ i, j ≤ k and i 6= j, caterpillars induced by Vi and V j are pairwise isomorphic.

3. Exactly one vertex x in Vi,1 ≤ i ≤ k− 1, has a neighbor y in Vi+1 , and for each

connected component I of G(Vi−{x}) has a corresponding connected component J

of G(Vi−{y}) such that I and J have the same number of vertices.

The examples of graceful labeling of a tree satisfying the conditions of Theorem 13 and

Theorem 14 are illustrated in figure ??.
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3.16.2 Transformed Trees (TP-Trees)

A class of tree called TP-trees (transformed trees) are created by taking a gracefully labeled

chain and shifting some of the edges.

A(p,q)-graph G = (V,E) is said to be (k,d)-graceful, where k and d are positive integers, if

its p vertices’s admits an assignment of a labeling of numbers 0,1,2, . . . ,k+(q−1)d such

that the values on the edges defined as the absolute difference of the labels of their end

vertices’s form the set {k,k+d, . . . ,k+(q−1)d}.

Suresh Manjanath Hegde and Sudhakar Shetty in [38] proved that a class of trees called TP

trees and subdivision of TP trees are (k,d)-graceful for all positive integers k and d.

Theorem 15. Every TP tree is (k,d)-graceful for all positive integers k and d.

Proof. (as in [38]) Let T be a TP tree with n + 1 vertices’s. By the definition of a TP

tree there exists a parallel transformation P of T such that for the path P(T ) we have (i)

V (P(T )) =V (T ) and (ii) E(P(T )) = (E(T )−Ed)∪EP, where Ed is the set of edges deleted

from T and EP is the set of edges newly added through the sequence P = (P1,P2, . . . ,Pk)

of the ept’s P used to arrive at the path P(T ). Clearly Ed and EP have the same number of

edges.

Now denote the vertices of P(T ) successively as v1,v2,v3, . . . ,vn+1 starting from one pen-

dant vertex of P(T ) right up to other. The labeling f defined by

f (vi) =

k+(q−1)d− i[(i−1)/2]d for odd i, 1≤ i≤ n+1.

[(i/2)−1]d for even i, 2≤ i≤ n+1.

where k and d are positive integers and q is the number of edges of T , f (vi) is a (k,d)-

graceful labeling of the path P(T ).

Let viv j be an edge in T for some indices i and j, 1≤ i < j ≤ n+1 and let P1 be the ept that

deletes this edge and adds the edge vi+tv j−t where t is the distance of vi from vi+t as also the

distance of v j from v j−t . Let P be a parallel transformation of T that contains P1 as one of

the constituent epts. Since vi+tv j−t is an edge in the path P(T ) it follows that i+t+1 = j−t

which implies j = i+2t +1. Therefore i and j are of opposite parity, i.e., i is odd and j is
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even or vice-versa. The value of the edge viv j is given by,

g f (viv j) = g f (vivi+2t+1) = | f (vi)− f (vi+2t+1)|. (3.1)

If i is odd and 1≤ i≤ n, then

f (vi)− f (vi+2t+1) = k+(q−1)d− [(i−1)/2]d− [((i+2t +1)/2)−1]d

= k+(q−1)d− (i+ t−1)d (3.2)

If i is even and 2≤ i≤ n, then

f (vi)− f (vi+2t+1) = [(i/2)−1]d− [k+(q−1)d]+ [(i+2t +1−1)/2]d

= (i+ t−1)d− [k+(q−1)d]. (3.3)

Therefore from 3.1, 3.2 and 3.3,

g f (viv j) = |k+(q−1)d− (i+ t−1)d|, 1≤ i≤ n. (3.4)

Now

g f (vi+tv j−t) = g f (vi+tvi+t+1)

= | f (vi+t)− f (vi+t+1)|

= |k+(q−1)d− (i+ t−1)d|,1≤ i≤ n. (3.5)

Therefore from 3.4 and 3.5,

g f (viv j) = g f (vi+tv j−t). (3.6)

Hence f is a (k,d)-graceful labeling of TP -tree T . The proof is complete.

For example, a (1,1)-graceful labeling of a TP -tree T using Theorem 15, is shown in figure

3.25 in the page 45.

Theorem 16. If T is a TP -tree with q edges then the subdivision tree S(T ) is (k,d)-graceful

for all positive integers k and d.
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Figure 3.25: A graceful labeling of a TP -tree using theorem 15

Proof. If anyone interested to know the proof of this theorem they can find it in [38]. We

intentionally omit it here since it is very long and technical.

For example, a (1,1)-graceful labeling of subdivision of a TP -tree using theorem 16, is

shown in Figure 3.26 in the page 46.

3.16.3 Trees of Diameter at Most Five

The example of Trees with diameter 2 are star trees and they are instances of caterpillars,

hence they are graceful. Rosa proved that trees of diameter at most three are graceful. In

1989 Zhao [98] showed that all trees of diameter four are graceful. In 2001, Hrnciar and

Haviar [42] showed that all trees of diameter five are graceful.

Let T be a tree and let uv∈ E(T ). Then, Tu,v is the sub tree of T induced by the set V (Tu,v) =

{w ∈ (T ) : w = u or v is in a u−w path}.

Hrnciar and Haviar use ransformations in their paper [42]. They use two types of transfers

of end-edges. A u→ v transfer is a transfer of the first type if the end vertices’s of the

transferred end edges have labels k,k+ 1, . . . ,k+m for some k and m. A u→ v transfer is
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Figure 3.26: A graceful labeling of subdivision of a TP -tree using theorem 16

a transfer of the second type if the labels of the end vertices’s of the transferred end edges

form two sections k,k+1, . . . ,k+m and l, l +1, . . . , l +m for some k, l,m.

Transfers of the first type work if f (u)+ f (v) = k+(k+m)(= k+ 1+(k+m− 1) = k+

2+ (k +m− 2) = . . . ). Transfers of the second type work if f (u) + f (v) = k + l +m(=

k+1+(l +m−1) = k+2+(l +m−2) = . . . ).

Theorem 17. Every tree of diameter 4 is graceful.

Proof. (as appears in [42]) It is sufficient, to prove that every tree T of diameter 4 having

the central vertex of an odd degree has a graceful labeling such that the label of the central

vertex is maximal.

Let x be the number of vertices’s of an even degree that are adjacent to the central vertex of

T . Let y be the number of vertices’s of odd degree greater than 1 that are adjacent to the

central vertex of T . Let the degree of the central vertex of T be 2k + 1 and let T have n

edges. We can obtain a graceful labeling of T starting with the tree in the figure on the right

in the figure above by carrying out the following transfers:
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0→ n−1→ 1→ n−2→ 2→ n−3→ . . .

where the first x transfers are of the first type and the next y−1 (if y > 1) transfers are of the

second type (to get the desirable sets of end edges of even cardinality).

Figure 3.27: An example of Transformation of trees

Now we are going to look at trees of diameter 5. Hrnciar and Haviar in [42] first show using

the previously explained methods that every tree with diameter 5 is “nearly” graceful and

after that they prove the main result.

Therefore, they assume T be a tree of diameter 5 and it has two central vertices’s which

they denote by a and b. Let x be a vertex adjacent to the central vertex a such that x 6= b.

The sub-tree Ta,x is a branch (at the vertex a) if Ta,x is a sub-tree of diameter 2. A branch

Ta,x is an odd branch if the degree of the vertex x is even, otherwise, Ta,x is an even branch.

Similarly, they define even and odd branches Tb,y adjacent to b.

Now, let p = No of odd branches at a, r = No of even branches at a, and i = No of endedges

at a. Similarly, let q = No of odd branches at b, s = No of even branches at b, and j = No

of endedges at b. The graceful labelings defined in the sequel depend on those cardinal-

ity, mostly on their parties. In fact, Hrnciar and Haviar in [42] introduced the following

notation: for example (p,r, i;q,s, j)≡ (e,o,o;e,e,e) if p,q,s, j are even and r, iare odd.

Theorem 18. Every tree T of diameter 5 is graceful or nearly graceful, i.e. if the cardinality

of its edge set is n, then, there exists a vertex labeling with the numbers from 1 to n such that

the cardinality of the induced edge labeling is either n−1 or n−2, i.e. at most 2 edges have

the same label.
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Theorem 19. Every tree of diameter 5 is graceful.

The proof of this theorem looks at a number of cases and exhibits specific transfers which

give graceful or nearly graceful labelings of the given tree. They produce graceful labelings

via the transfers defined in the beginning of this section. If anyone interested to know the

proof of this theorem they can find it in [42]. We intentionally omit it here since it is very

long and technical.

3.16.4 A Class of Graceful Diameter-6 Trees

Matthew C. Superdock in [91] surveyed the current state of progress on the Graceful Tree

Conjecture, and then they present several new results toward the conjecture, driven by three

new ideas:

1. It has been proven that generalized banana trees are graceful by rearranging the branches

at the root.

– Consider rearranging branches at all internal vertices’s.

2. The method of transfers has typically involved type-1 transfers and type-2 transfers.

– All type-2 transfers are type-1 transfers in disguise, and hence can be removed

from the discussion.

3. The method of transfers has typically used the sequence of transfers

0→ n→ 1→ n−1→ 2→ n−2→ . . .

– Transfer backwards to manipulate the resulting labels.

Using these ideas, author proved that several classes of diameter-6 trees are graceful, and

therefore generalize some of these classes to larger trees.

Theorem 20. Let T be a rooted diameter-6 tree, with central vertex and root v, with the

following properties:

• The vertex v, and all vertices’s of distance 1 from v, have an odd number of children.
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• All leaves have distance 3 from v.

Then T has a graceful labeling f with f (v) = 0.

Proof. The proof of this theorem are very long and lengthy. Therefore we have omit it here.

One can find the proof of this theorem in [91] for better understanding.

Theorem 21. Let T be a rooted diameter-6 tree, with central vertex and root v, with the

following properties:

• The vertex v, and all vertices’s of distance 1 from v, have an odd number of children.

• All leaves have distance 2 or 3 from v, such that

– No two leaves of distance 2 from v have the same parent.

– Each leaf of distance 2 from v has a sibling with an even number of children.

Then T has a graceful labeling f with f (v) = 0.

Proof. As above, with the following adjustments:

• Remove only the leaves of T with distance 3 from v to get S.

The rest of the proof of this theorem is same as above theorems proof. Therefore we have

omit it here. One can find the proof of this theorem in [91] for better understanding.

Theorem 22. Let T be a rooted diameter-2r tree, with central vertex and root v, with the

following properties:

• The vertex v, and all vertices’s of distance at most r−2 from v, have an odd number

of children.

• The number of vertices of distance r− 1 from v, with an even number of children, is

not 3 (mod 4).

• All leaves have distance r from v.

Then T has a graceful labeling f with f (v) = 0.
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Chapter 4

New Classes of Graceful Trees

In the last 50 years, a lot of effort have been given by researchers to prove Graceful Tree

Conjecture. Although the conjecture has not been proved for all trees researchers have been

continuing their quest for discovering new classes of graceful trees. We have also joined the

quest and proved the conjecture for Superstars and Extended Superstars.

4.1 Superstar

Definition 23. Let Sk be a tree with k leaves joined to a central vertex. Then Sk is said to be

a star.

We know stars can be gracefully labelled by labeling its centre by 0 and other leaves by r

where r = 1, ...,k.

Definition 24. Let a tree T consist of stars S(i,ki), i{i = 0,1, . . . , I} with ki leaves. Each

Si,ki, i = 1, ..., I shares exactly one leaf with S0,k0. This S0,k0 is called the root star whereas

Si,ki, i = 1, ..., I are called leaf stars. Then T is said to be a superstar denoted SS.

Example 25. An example of Superstar is illustrated in Figure 4.2 where m = 34, I = 6 and

l0 = MAXk and MAXk = 5.

Example 26. Another example of Superstar is illustrated in Figure 4.3 in page 53 where

m = 32, I = 5 and l0 = I.
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Figure 4.1: An example of gracefully labelled star.

4.2 Labeling of Superstars

First of all let us discuss how to label a superstar gracefully. The idea is to start labeling

leaf stars consecutively generating edge labels from m sequentially downwards. We must

ensure that in shifting from one leaf star to the second edge connecting vertex common with

the root leaf star must have the immediate next edge label. For this we must label centres of

stars by smallest possible labels and leafs should be labelled with the largest possible labels.

Let centre of S(i,ki) be labelled by li so that l0− li ≥ ki. This necessitates that the center

vertex of root star is labelled by l0 = min{I,MAXk} where MAXk = max
i∈I
{ki}. Then centres

of other stars(leaf stars S(i,ki)) will be labelled by li = 0, ..., I bypassing l0.

If l0 = I then we have to find an arbitrary leaf star i who satisfies the condition, si ≥ l0− i

and label the center vertex of the leaf star by i. In this way, we have to label all the center

vertex of the leaf stars. Now we have to label the leaves of all leaf star starting from the leaf

star whose center vertex got the label 0 then from 1, ..., I−1. During the process of labeling

leaves of leaf star we have to first label the shared leaf of root star and leaf star. Let j = m

and si is the number of leaves of the star whose centre has been labelled li. The shared leaf

will be labelled by j− i− si + l0 and other leaves will be labelled from j down to j− si +1.

Therefore, the label of edges will be produced from j− i, ..., j− si +1 for each leaf star and

the edge which incident to the center vertex of the root star will got label j−si− i. However,
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Figure 4.2: An example of gracefully labelled Superstar where m= 34, I = 6 and l0 =MAXk.

we can say that we are producing edge label in descending order that is j, ...,1. As we have

done labeling of all leaf star, now we have to label the unshared leaf of root star from j down

to I +1.

If l0 = MAXk then for i = 0, ...,MAXk − 1, we have to find an arbitrary leaf star i who

satisfies the condition, si ≥ l0− i and label the center vertex of the leaf star by i and for

i = MAXk + 1, ..., I, find an arbitrary leaf star i who satisfies the condition, ki ≥ l0− i and

label the center vertex of the leaf star by i. Now we have to label the leaves of all leaf star

starting from the leaf star whose center vertex got the label 0 then from 1, ...,MAXk− 1.

During the process of labeling leaves of leaf star we have to first label the shared leaf of

root star and leaf star. The shared leaf will be labelled by j− i− si + l0 and other leaves

will be labelled from j down to j− si + 1. Therefore, the label of edges will be produced

from j− i, ..., j− si + 1 for each leaf star and the edge which incident to the center vertex
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Figure 4.3: An example of gracefully labelled Superstar where m = 32, I = 5 and l0 = I.

of the root star will got label j− si− i. Now we have to label the unshared leaf of root

star by j down to j−total number of unshared leaf of root star. After that, we have to label

the leaves of all leaf star starting from the leaf star whose center vertex got the label from

i = MAXk + 1, ..., I. We have to first label the shared leaf of root star and leaf star. The

shared leaf will be labelled by j−C where C = 0,1, ..., I−MAXk and other leaves will be

labelled from j down to j− si + 1. Therefore, the label of edges will be produced from

j− i, ..., j− si− i+ 1 for each leaf star and the edge which incident to the center vertex of

the root star will got label j− l0. However, we can say that we are producing edge label in

descending order that is from j down to 1.
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Example 1

The steps of graceful labeling of superstar for the example 4.4 which are illustrated in the

figures 4.5,4.6,4.7 and 4.8 where m = 18 and I = 4.

Figure 4.4: An example of Superstar.

Step 1: First of all we have to find out the value of I and MAXk and the center vertex of root

star, l0 will be labeled by min{I,MAXk}. As for the above example I = 4 and MAXk = 5,

therefore, l0 = 4 which is illustrated in the figure 4.5.

Step 2: Next we have to find an arbitrary star, i which satisfies the condition ki ≥ l0− i

where ki is the number of leaves of ith star and have to label the center vertex of all the leaf

stars by li where li = 0,1, ..., I−1. Therefore, we have labelled all the center vertex of leaf

star by 0,1,2,3 which is illustrated in the figure 4.6.

Step 3: Now we have to label the leafs of all star starting from the star whose center vertex

is labelled by 0 and then 1,2,3,4. Therefore, First we have to label the shared vertex by

j− li−ki+ l0 and then label rest of the leafs starting from j = m that means j = 18 down to

j− ki +1 = 14 of all the leafs of star i for which li = 0 which is illustrated in the figure 4.7.

After labeling ith star the value of j will be j− ki and i will be incremented by 1.

Step 4: Now we have labelled the leafs of star i for which li = 1,2,3 which is illustrated

in the figure 4.8. If we follow the procedure to label all the vertices then we got the edge

label in descending order starting from m, ...,1 consecutively. In this way we have labelled

54



Figure 4.5: An example of Superstar to be labelled gracefully where l0 = 4.

the superstar gracefully.

Example 2

The steps of graceful labeling of superstar for the example 4.9 which are illustrated in the

figures 4.10,4.11,4.12,4.13 and 4.14 where m = 23 and I = 5.

Step 1: In the same way explained in the example 1 in the section 4.2 we have to label

l0 = min{I,MAXk}. Therefore, we have labelled l0 = 4 which is illustrated in the figure

4.10 where I = 5 and MAXk = 4.

Step 2: Now we have to label the center vertex of the leaf star in the same way explained in

the example 4.2 for 0, ...,3 and then bypasses 4 the next stars center vertex will be labelled

by 5 as 4 has already been used to label center vertex of root star. The entire situation is

illustrated in the figure 4.11.

Step 3: In this step, we have to label the leafs of star i for which li = 0, ...,3 using previously

explained technique.Therefore, First we have to label the shared vertex by j− li−ki+ l0 and
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Figure 4.6: An example of Superstar to be labelled gracefully where li = 0,1,2,3.

then label rest of the leafs starting from j = m that means j = 23 down to j− ki +1 = 20 of

all the leafs of star i for which li = 0 which is illustrated in the figure 4.12. After labeling

ith star the value of j will be j− ki = 19 and i will be incremented by 1. The next stars leaf

will be labelled starting from j = 19. This process will be continued up to li = 3 which is

illustrated in the figure 4.13.

Step 4: In this step first we have labelled the unshared leaf of root star by j = 9.

Step 5: For the ith star for which li = 5, the shared vertex will be labelled by j−C = 8

where C = 0, ..., I−MAXk−1 = 0 and rest of the leafs will be labelled by j = 7 down to 6.

The entire situation is illustrated in the figure 4.15.

If we follow the above explained procedure to label all the vertices then we got the edge

label in descending order starting from m, ...,1 consecutively. In this way we have labelled

the superstar gracefully.
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Figure 4.7: An example of Superstar to be labelled gracefully where the leafs of the star for

which li = 0 are labelled.

4.2.1 Algorithm

Algorithm 1 Superstar
1: I +1← total number of star of a Superstar, where i = 0,1, . . . , I

2: m← total number of edge of a Superstar

3: k← number of leaf of each star, Si,k

4: Si,k← leaf star of a Superstar

5: SSi← root star

6: SSik← number of leaf of root star

7: Maxk← 0

8: l0← root of SSi

9: C = 0 , where C = 0,1, ..., I−MAXk

10: for i = 0 to I do

11: Count ki for each Si,k

12: if Maxk < ki then

13: Maxk = ki
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Figure 4.8: An example of gracefully labelled Superstar.

Algorithm 1 Superstar continued...
14: end if

15: end for

16: if Maxk > I then

17: l0 = I

18: for i = 0 to I−2 do

19: repeat

20: Find Si,k

21: until ki ≥ l0− i

22: Root of Si,k = i

23: Connect l0 to the leaf of Si,k labeled with m− i− ki + l0

24: for m+1 down to m− ki +1 do

25: Leaf of Si,k = m−1

26: m = m−1

27: end for

28: end for

29: for m down to m− I do
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Figure 4.9: An example of Superstar.

Algorithm 1 Superstar continued...
30: Leaf of SSi = m−1

31: m = m−1

32: end for

33: else

34: l0 = Maxk

35: for i = 0 to Maxk−1 do

36: repeat

37: Find Si,k

38: until ki ≥ l0− i

39: Root of Si,k = i

40: Connect l0 to the leaf of Si,k labeled with m− i− ki + l0

41: for m+1 down to m− ki +1 do

42: Leaf of Si,k = m−1
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Figure 4.10: An example of Superstar to be labelled gracefully where l0 = 4.

Algorithm 1 Superstar continued...
43: m = m−1

44: end for

45: end for

46: for m down to m−SSi,k do

47: Unshared Leaf of SSi = m−1

48: m = m−1

49: end for

50: for i = Maxk +1 to I do

51: repeat

52: Find Si,k

53: until l0− i≥ ki

54: Root of Si,k = i

55: Connect l0 to the leaf of Si,k labeled with m−C
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Figure 4.11: An example of Superstar to be labelled gracefully where we have labelled

li = 0,1,2,3 and li = 5 except l0 as we have labelled it earlier.

Algorithm 1 Superstar continued...
56: C =C+1

57: for m+1 down to m− ki +1 do

58: Leaf of Si,k = m−1

59: m = m−1

60: end for

61: end for

62: end if

Lemma 27. Algorithm 1 labels center vertices of stars by labels 0,1, ...,J, whereas leaves of

stars with root labels 0,1, ..., i labelled consecutively with labels from m to m−∑
i
j=1 ki +1

and edges get labels m down to m−∑
i
j=1 ki− i.

61



Figure 4.12: An example of Superstar to be labelled gracefully where shared vertex of ith

star labeled by j− li− ki + l0 = 23 for which li = 0.

Proof. Let us label leaves of the star centre of which has been labelled i = 1. Since l0− l1 ≤

k1, the leaf common to root star and the star being labelled can be labelled in a way that

root star edge gets label m− k1, leaves get labels from m down to m− k1, edges are labelled

consecutively from m down to m− k1−1+1. Assume that we have labeled i+1 stars with

vertex labels of centres from 0 to i and leaf labels from m down to m−∑
i
j=1 ki +1 inducing

edge labels from m down to m−∑
i
j=1 ki− i. Now we are labelling leaves of star centre of

which has been labelled i+1. We label the leaf common to root star and star centre of which

has been labelled by i+1 in such a way that it induces edge label m−∑
i
j=1 ki− i (we can do

it by virtue of the inequality satisfied by labels of centers and number of leaves of the star),

then the other edge labels up to m−∑
i+1
j=1 ki− i can be generated by using vertex labels from

m−∑
i
j=1 ki to m−∑

i+1
j=1 ki. In case root star vertices are labelled not at the last then its yet

unlabeled vertices should be labelled.
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Figure 4.13: An example of Superstar to be labelled gracefully where we have labelled all

the leaf of ith star for which li = 0.

Theorem 28. All Superstars are graceful.

Proof. By lemma 27, Algorithm 1 systematically labels leaves with labels from m down to

J+1, centres of stars already labeled by 0 to J. This induces edge labels from m down to 1.

Hence this is a graceful labelling of a Superstar.

4.3 Extended Superstar

If a tree T consist of stars S(i,ki), i{i = 0,1, . . . , I} with ki leaves. Each S(i,ki), i = 1, ..., I

shares exactly one leaf with S0,k0. This S(0,k0) is called the root star whereas S(i,ki), i =

1, ..., I are called leaf stars. Then T is said to be a superstar denoted SS.

Definition 29. Let ESS be an Extended Superstar with m edges and Stars S(i,ki), i ∈ I j
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Figure 4.14: An example of Superstar to be labelled gracefully where we have labelled all

the leaf of ith star for which li = 0, ...,3 and unshared leaf of root star by 9

contained in the Superstar SS j where j = 1,2, ...,J. Among all the Stars S(i,ki) one star is

a root star and rest of them are included in leaf Superstars. Therefore, total number of leaf

Superstars is J. If all the leaf Superstars SS j share exactly one leaf with the leaf of the root

then the resulting tree is called an Extended Superstar ESS.

Example 30. An example of gracefully labelled Extended Superstar is illustrated in Figure

4.16.

Example 31. Another example of Gracefully labelled Extended Superstar is illustrated in

Figure 4.17 where three Superstar are share their leaves with one root star.
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Figure 4.15: An example of gracefully labelled Superstar.

4.4 Labeling of Extended Superstars

Consider the example given in the figure 4.17. In this section we will discus how to label

this tree gracefully which are illustrated in the figures 4.18,4.19,4.20 and 4.21.

Step 1: First we have to identify total number superstar in the given Extended Superstar

which is j = 3 for the example in the figure 4.17 and total number of edges m = 69. There-

fore, We have to take an arbitrary Superstar j = 1 and label the Superstar gracefully using 1

where p = m. After labeling jth Superstar the value of p = 51 and i = 4. Then we have to

label the center vertex of root star, l0,0 by i = 5 and shared vertex of root star by p which is

illustrated in the figure 4.18.

Step 2: Now we have to label the unshared leaf of root star by p down to p- total number of

Unshared leaf of root star that is 2. Therefore the unshared leaf of root star will be labelled

by 50 and 49 which is shown in the figure 4.19.
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Figure 4.16: An example of gracefully labelled Extended Superstar.

Step 3: Now take another Superstar and first label the shared leaf of root star by p = 48.

Now p = 47 and i = 6. Then label the Superstar in the same way which is illustrated in the

figure 4.20.

Step 4: In this step we have to label the Superstar for j = 3 and we have p = 31 and i = 12.

As j > 2, therefore, first we have to label the Superstar gracefully in the same way then have

to label the shared vertex of root star by p− i+ 1+ l0,0 = 25 which is shown in the figure

4.21 .

66



Figure 4.17: Another example of gracefully labelled Extended Superstar.

4.4.1 Algorithm

Algorithm 2 Extended Superstar
1: i =← least possible label

2: p = m← largest possible label

3: call Superstar(i, p)

4: label center of the root star← i

5: label shared vertex of root star and leaf Superstar, SS1← p

6: label shared vertex of root star and leaf Superstar, SS2← p−1

7: call Superstar(i, p)

8: for j = 3 to J do

9: call Superstar(i, p)

10: label shared vertex of root star and leaf Superstar, SS j← p−1− i+ l0,0

11: end for

Theorem 32. All Extended Superstars are graceful.

Proof. We have already discussed how to label Superstar gracefully therefore, we have omit-

ted the labeling technique of Superstar here.

Let us assume for simplicity, SS j is a Superstar and ESS is an Extended Superstar. Now

let l0,0 be the label of the center of root star. First take an arbitrary Superstar SS j for j =
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Figure 4.18: An example of Extended Superstar to be labelled gracefully where first Super-

star have already been labelled.

1,2, ...,J and using previously described algorithm 1 label the Superstar gracefully. Let p =

be the largest possible label yet be used after labeling SS1. Then label the center of root

star, l0,0 = i where i is the immediate next least possible label and label the shared leaf of

root star and Superstar SS1 by p. Now we have to label the unshared leaf of root star from

p down to total number of unshared leaf of root star. After that, the shared leaf of root star

and Superstar SS2 will be labelled by p−1. Then for j = 2 take another arbitrary Superstar

and label the Superstar in the same way. But for j = 3, ...,J the shared leaf of root star and

Superstar SS j will be labelled by p−1− i+ l0,0 and the remaining Superstars will be labelled

by using the same algorithm1 which is used to label the Superstar. Therefore, all the label

of vertices and edges of Extended Superstar will be distinct and from the set {1,2, ...,m}

and {0,2, ...,m} respectively. This way we have labelled all the vertices and edges of the

Extended Superstar gracefully.
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Figure 4.19: An example of Extended Superstar to be labelled gracefully where unshared

leaf of root star have been labelled.

Figure 4.20: An example of Extended Superstar to be labelled gracefully where another

Superstar have been gracefully labelled.
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Figure 4.21: An example of gracefully labelled Extended Superstar.
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Chapter 5

Experimental Analysis

5.1 Device

The codes implemented for our research were developed in a device running ofWindow OS.

The minimum requirement for the example demonstration is the installation of Flash Player

(minimum version 11). An update web browser will help in that case. The codes can be

executed smoothly in Windows or Linux based devices.

5.2 Language

The language used for the development of the samples provided with this paper is Action-

Script 3.0. It is an object-oriented programming language which was originally developed

by Macromedia Inc., later dissolved by Adobe Systems. It is a superset of the syntax and

semantics of the language JavaScript. The language is primarily used for the development

of websites and software targeting the Adobe Flash Player platform.

5.3 IDE

The IDE used for the development of the algorithms and the example codes provided with

this paper was Adobe Flash Professional CS6. It is a part of the Adobe CS6 Master Col-

lection. Adobe Flash Professional is a multimedia authoring program used to create content
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for Adobe Engagement Platform. It is used to develop web applications, games, movies,

content for mobile phones and other embedded devices. The platform supports the scripting

language ActionScript 3.0 in case of user interaction and graphical manipulation. The ver-

sion, Adobe Flash Professional CS6 as released in 2012. It was upgraded from the previous

versions by integrating the support of HTML5 and the ability to generate spread sheets.

5.4 Code Specification for Superstar

In order to execute the algorithm 1 , two integer variables has to be provided to the function.

The number of arms for each star will be provided as armsNumber1 and armsNumber2

respectively, where armsNumber1 is a positive integer and armsNumber2 is a non-negative

integer. After the simulation, the vertexNumber array will contain the labels of nodes in

graceful manner. The sequence will be as follows :

• Initial index (0) will contain label of the center node of first star

• Following armsNumber1 indices will contain the labels of the arms of the first star

• The next index will contain the label of the center node of the second star

• Following armsNumber2 indices will contain the labels of the arms of the second star

• The last index, i.e. the index indicating the number of vertices will contain the label

of the joining node (nth vertex).

Apart from the array, two variables join1 and join2 will contain the edge numbers of the

edges joining the nth vertex with the observed arms of the first star and second star respec-

tively.

5.5 Input Format for Superstar

The input for the simulation of the Superstar are integer number. The first input textbox

is for the number of arms of the first star, which must be a positive integer. The second

textbox is for the number of arms of the second star. Pressing simulate will provide the
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required graphical illustration of the gracefully labeled Superstar. In the provided test case,

the inputs were 5 and 7 in the figure 5.1.

Figure 5.1: An example of gracefully labelled Superstar.
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Chapter 6

Conclusion & Recommendation

In this chapter, we draw conclusion by highlighting the major contributions made in this

thesis. We have also provided some directions for future research. In Section 6.1, the

contribution of our thesis is elaborated. Then in Section 6.2 we shed light into possible

future research directions. Finally, the Section 6.3 summarizes the whole thesis.

6.1 Contribution

In this thesis paper we described Graceful and Graceful-like various graph labelings tech-

niques and their connections to a few well known combinatorial problems. Moreover, we

also describe how the graceful tree problem first came up. Additionally, we have discussed

some known results of Graceful labeling. As advances in the area of graceful labeling would

have an impact on such areas as map colourings, graph decomposition and Latin squares the

traditional approach to this problem has been to construct graceful and graceful-like label-

ings for particular classes of graphs or trees. We have particularly focused on the Graceful

labeling of trees. It seems that there is a general consensus among the researchers working

in the area that a different approach is needed to prove Graceful Tree Conjecture. So far

research on settling the conjecture has expanded in three directions. The first is to discover

new classes of trees that are graceful. This is how caterpillars, fire crackers, banana trees,

symmetrical trees have been proved to be graceful. The second direction is to establish that

all classes of trees of up to certain sizes have been shown graceful by enumerating all non-

isomorphic trees and then finding graceful labeling by extensive computation. Yet the third
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direction is to apply integer programming formulation of the problem and then solve it. We

have followed the first direction.

The search for a class of Gracefully labeled trees began in an effort to prove Graceful Tree

Conjecture. Therefore, We have proved that two fairly general classes of trees named Super-

star and Extended Superstar are graceful. In particular, if a tree containing number of Stars

where one is a root Star and the remaining Stars are leaf Star and all the leaf Stars share

exactly one leaf with the root star’s leaf then the resulting tree is called a Superstar. In the

same way if a tree containing number of Superstars and a root Star and the leaf of Superstars

share exactly one leaf with the root star’s leaf then the resulting tree is called an Extended

Superstar. Moreover, we have provided a generalized algorithm to label all Superstars and

Extended Superstars gracefully.

6.2 Suggestion for Future Works

During the research period a number of future research directions arise out of our work.

For example, it would be interesting to see whether we can extend the level of Extended

Superstars and prove them graceful.

In addition to these, we propose the following research directions for the general area of

graceful labeling.

• Identify new classes of trees that are graceful. The ultimate goal within this research

direction would be to give a complete characterization of graceful trees, but this is

clearly a very challenging task. For example, it would imply a solution to the Graceful

Tree Conjecture. We propose that making use of spectral graph theory, a powerful

method with a potential to eliminate certain classes of trees as graceful candidates.

• Improve the bounds of known results for size of graceful trees. In particular, it would

be interesting to focus on trees with bounded degree and a perfect matching. As trees

with a perfect matching are particularly important as the existence of graceful labeling

for them implies the existence of α-labeling for other related trees. Therefore, Kotzig

[56] showed that if at least one connected subgraph S of a tree T containing the base

of T has a graceful labeling then T has a α-labeling. Although, every tree T has a
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subgraph that contains the base of T and has a perfect matching [21] therefore if

every tree with a perfect matching has a graceful labeling then every tree has a α-

labeling. In turn, α-labeling for all trees implies Ringel’s conjecture.

• For Graceful labelings of a path with n vertices investigate the allowed combinations

for labels of end vertices of the path.

6.3 Summary

In Chapter 1 we introduce the problem of graceful labeling and the origin of this problem.

Chapter 2 contains a list of graph labeling and their applications in the real world problem.

Chapter 3 discusses different classes of trees that have been proved graceful to strengthen the

Graceful Tree Conjecture that All trees are Graceful. Chapter 4 introduces the new classes

of trees that we have proved graceful which implies a partial effort to prove Graceful Tree

Conjecture. Experimental results and discussions about parameter are presented in Chapter

5.

76



REFERENCES

[1] V. J. Abhyankar and V. N. Bhat-Nayak. Easiest graceful labeling of olive trees. Bull.,

Bombay Math. Coll.,, 14:16–25, 2000.

[2] V. J. Abhyanker. Direct methods of gracefully labelling graphs. Technical report,

University of Mumbai, 2002.

[3] R. Alfred and B. McKay. Graceful and harmonious labeling of trees. Bull. Inst.Appl.,

23:69–72, 1998.

[4] R. Alfred, J. Siran, and M. Siran. A note on the number of graceful labelings of paths.

Discrete Math., 261:27–30, 2003.

[5] G. Ali. Graph labelings. Technical report, Ph. D. Thesis, Abdus Salam School of

Mathematical Sciences, 2005.

[6] N. Alon, G. Kaplan, A. Lev, Y. Roditty, and R. Yuster. Dense graphs are antimagic. J.

Graph Theory, (47):297–309, 2004.
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[80] J. Sedláček. On magic graphs. Math. Slov., 26:329–335, 1976.

[81] C. Sekar. Studies in graph theory. Technical report, Ph.D. Thesis, Madurai Kamaraj

University,, 2002.

[82] G. Sethuraman and J. Jesintha. Generating new graceful trees. Proc. Inter. Conf. Math.

Comput. Sci., July, pages 67–73, 2008.

[83] G. Sethuraman and J. Jesintha. A new class of graceful lobsters. J. Combin. Math.

Combin. Computing,, (67):99–109, 2008.

[84] G. Sethuraman and J. Jesintha. All extended banana trees are graceful. Advances and

Applications Disc. Math.,, 4:53–68, 2009.

[85] G. Sethuraman and J. Jesintha. Generation of graceful trees. Proc. Inter. Conf. Math.

Comput Sci., (1):1–3, 2009.

[86] W. C. Shiu, P. C. B. Lam, and H. L. Cheng. Supermagic labeling of an s-duplicate of

kn,n. Math. Combin. Comput., 146:119–124, 2000.

[87] W. C. Shiu, P. C. B. Lam, and S. M. Lee. On a construction of supermagic graphs. J.

Combin. Math. Combin. Comput., 42:147–160, 2002.

[88] R. Stanton and C. Zarnke. Labeling of balanced trees. Proc. 4th Southeast Conf.

Combin., Graph Theory, Comput., pages 479–495, 1973.

[89] B. M. Stewart. Magic graphs. Canadian J. Math., 18:1031–1059, 1966.

[90] B. M. Stewart. Supermagic complete graphs. Canadian J. Math., 19:427–438, 1966.

[91] M. C. Superdock. The graceful tree conjecture: A class of graceful diameter-6 trees.

Technical report, B.Sc Thesis, Princeton University, 2013.

83



[92] D. Tanna. Harmonious labeling of certain graphs. International Journal of Advanced

Engineering Research and Studies, II(IV):46–48, 2013.

[93] M. Trenklér. Numbers of vertices and edges of magic graphs. Ars Combin., 55:93–96,

2000.

[94] V. Vilfred. Families of graceful banana trees. Internat. J. Management and Systems,

to appear.

[95] J.-G. Wang, D. J. Jin, X.-G. Lu, and D. Zhang. The gracefulness of a class of lobster

trees. Math. Comput. Modelling, (20):105–110, 1994.

[96] R. L. Watson. A survey on the graceful labeling of graphs. Technical report, B.S.,

Roanoke College, 1972.

[97] J. Yunker. Graceful labeling necklace graphs. Technical report, June, 2012.

[98] S. L. Zhao. All trees of diameter four are graceful. Graph Theory and its Applica-

tions:East and West (Jinan, 1986, page 700–706, 1989.

[99] G. Zhenbin. The labelings of a variation of banana trees. Ars Combin., 94, pages

175–181, 2010.


	Msc_thesis Maowa updated.pdf
	scan0005.pdf
	Msc_thesis Maowa updated - Copy.pdf
	scan0006.pdf
	Msc_thesis Maowa updated - Copy (2).pdf



