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Abstract

Art  gallery problem  is a well known visibility  problem  where objective

is  to cover the whole gallery by the minimum   number   of cameras.   In

computa-  tional geometry galleries are represented by two dimensional

polygons.   There  are many variants of the art gallery problem.   One such

variant is the minimum  length sliding camera   (MLSC)  problem which uses

sliding cameras that travel  along the boundary   of  the polygon and cover

orthogonally inside it. Here the objective  is to cover the whole polygon by

traversing  the minimum   length  in  the polygon’s  boundary.   There   is an

algorithm  which solves MLSC problem  in O(n2  ) time for orthogonal

polygons.   In this thesis we show that for some  subclasses of orthogonal

polygons one major step of that algorithm shows lower time complexity.  So far,

all the results of the art gallery problem with sliding  cameras are for

orthogonal polygons. But  in reality some non-orthogonal edges  may   be

incorporated  in the polygon.   Based   on this  requirement  we develop  an

algorithm that solves MLSC problem for some subclasses of semi-orthogonal

polygons in O(n2 ) time.  The class of semi-orthogonal polygons is a superclass of

orthogonal polygons.  As a byproduct of our work, we establish some relations

among different components of an orthogonal polygon after it is being rectan-

gulated.   Advancement  in the wireless technology  introduces  new variants

in the art gallery problem.  One such variant is MLSCk problem.  We consider

few modifications in the MLSCk problem and termed it as modified MLSCk

prob- lem.  Here sliding k-transmitters are used which have infinite broadcast

range,  can penetrate at most k number of walls (k is an integer and k > 0),

travel along  the boundaries   of  an orthogonal polygon and can cover

orthogonally inside the  polygon.   The   objective  is to find the minimum-

length  sliding k-transmitters  that cover the entire orthogonal polygon. We

develop an algorithm which finds the minimum length cover in O(n2 ) time.
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Chapter 1

Introduction

Computational Geometry involves study of  algorithms for solving geometric

problems by a computer.  The field of computational geometry focuses mostly

on problems  in  2-dimensional  space  and  to a  lesser extent in  3-dimensional

space.  It primarily  deals with straight or flat objects like lines, line segments,

polygons, planes and polyhedra  or simple curved objects  such as circles.  The

main   impetus  for the development  of computational  geometry  as a

discipline  was progress in computer  graphics, computer  aided design and

computer  aided  manufacturing  (CAD/CAM).  But many   problem   in

computational  geometry  are classical in nature, and may come from

mathematical visualization.

Art gallery problem or museum problem is a well-studied visibility problem

in computational geometry.  It originates from a real-world problem of guarding

an art gallery with the minimum  number  of guards  who together can observe

the whole gallery.  Figure 1.1 illustrates  the art gallery problem.  Two dimen-

Figure 1.1: An illustration of art gallery problem.

sional drawing in this figure represents an art gallery. Whole gallery divided into



some rooms. Objective of the problem is to guard the gallery by the minimum

number  of cameras.  The circles inside the gallery represents cameras to guard.

For this particular gallery, at least four cameras are required to cover the entire

region.  In the computational geometry version of the problem the layout of a

art gallery is represented by a simple polygon and each guard is represented by

a point in the polygon. A set S of points is said to guard a polygon if, for every

point p in the polygon, there is some q ∈ S such that the line segment between

p and  q does not leave the polygon.  The  rest of this chapter is organized  as

follows.  In the next section we present some historical aspects of art gallery

problem.  In Section 1.2, we define the MSC and MLSC problems, which is the

central idea of this thesis.  Section 1.3 describes some interesting applications of

MLSC problem.  In Section 1.4, we present relevant results on MSC and MLSC

problems.   In Section  1.5, we describe the scope and  objective  of this  thesis.

The last section i.e. Section 1.6, presents the organization of this thesis.

1.1   Historical  Background

The original art gallery problem, presented to Chvtal by Victor Klee [15] to find

the smallest number  of guards  require to cover a polygon of n edges.  In 1975

Chvtal [6] stated, occasionally necessary and always sufficient number  of cam-

eras to cover an n vertex polygon.  In 1975 Steve Fisk gave a proof on Chvtal

theorem  by polygon triangulation  and graph   coloring.   Avis and Toussaint

[3]  in 1981 using the basic idea of Fisk, developed an O(nlogn)   algorithm for

lo- cating those stationary guards.   Khan,  Klaw and  Kleitman   [11] in 1983

first  investigate  the art gallery problem   for orthogonal  or rectilinear

polygons.  In

1995 Schuchardt and Hecker [18] showed that art gallery problem is NP-Hard

for orthogonal polygons.

There are numerous variations in the original problem that are also referred to

as art gallery problem.  One such variants of art gallery involve mobile guards.

Here the requirement is that every point of gallery is visible by some guards at

some points along his path. Kay and Guay [10] gave an algorithm for the prob-

lem of determining whether a given polygon can be guarded  by a single guard

patrolling along a single line segment.  In 2011 Katz and Morgenstern [12] intro-



duced a new problem on mobile guard i.e. the minimum sliding camera (MSC)

problem.  Later in 2013 Durocher and Mehrabi [8] changed the objective of MSC

problem and introduced another problem which they termed as the  minimum

length sliding camera  (MLSC) problem.   Our  research  work is focused on art

gallery problem with sliding camera variant.

1.2   Covering Polygon by Sliding Cameras

Let P  be a simple orthogonal polygon.  An orthogonal line segment s ⊆ P  is

called segment  guard  or seguard.  A guard  s sees a point  p ∈ P  if there  exist

a point  q ∈ S, such that the line segment  pq is orthogonal  and  contained  in

P .   Let  v(s)  the region of P  that is seen by a seguard  s  and  say a seguard

set  S  guards  P  if 
S 

v(s)|s ∈ S  = P .   The  objective  of MSC problem  is to

find such  the set of minimum  cardinality.   We  can  consider  seguard  s  as  a

security camera sliding back and forth along horizontal or vertical track.  It can

see orthogonally inside the polygon along its traveling track.   Figure  1.2 (b)

describes the MSC problem  for an  input orthogonal  polygon given in Figure

1.2 (a).   Here only two  cameras  are required  to cover the whole polygon.  In

s4
3

1                                                                                  s6

s1                             s5
2

2

(a)                                    (b)                                               (c)

Figure 1.2: An illustration of MSC and MLSC problem.  Each grid cell has size
1x1.  (a)  a simple orthogonal  polygon P .   (b)  two  sliding cameras  can cover
the whole polygon in MSC problem (c) six sliding cameras required for MLSC
problem.

the MLSC problem objective changed to the minimum sliding length from the

minimum  number  of sliding  cameras  (MSC).  Here the minimum  number  of

guards is not the constraint rather total traveling length by the cameras is the

constraint factor.  A sliding camera travels back and forth along an orthogonal

line segment s ⊆ P .  The camera (i.e.  the guarding  line segment s) can see a

s
s

s
s
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point  p ∈ P  (equivalently,  p is orthogonally  visible to s)  if and  only if there

exists a point q on s such that pq is normal to s and is completely contained in

P . Objective of the problem is to cover the whole polygon minimizing the total

length  of trajectories  along which the camera  travels.  Figure  1.2(c) describes

the MLSC problem  for an  input polygon given in Figure  1.2(a).   For  MLSC

problem  total six cameras  are  required  to cover the whole polygon.   In  the

Figure 1.3: An illustration of MLSCk problem for k = 2. (a) a simple orthogonal
polygon P . (b) position of minimum-length sliding k-transmitters(dotted lines).

MLSCk problem sliding k-transmitters  are used.   Sliding k-transmitters  travel

back and forth along axis aligned line segment s inside P , have infinite omni-

directional  broadcast  range  and  can penetrate  up to k number  of walls(for a

fixed integer k > 0).  A point p is covered by this guard  if there exist a point

q ∈ s such that pq is a line segment  normal  to s and  is completely  inside P .

Again pq has at most k intersections with the polygon’s boundary  walls.  The

objective is to find minimum-length sliding k-transmitters that cover the entire

P .  In other words the goal is to find the minimum  total length of trajectories

on which the sliding k-transmitters travel to cover the entire polygon.  Figure

1.3(b)  indicates the position of minimum-length sliding k-transmitters by the

dotted lines for the input orthogonal polygon described in Figure 1.3(a)

1.3   Applications

The most extensive use of MSC and MLSC problems is in the field of robotics.

Scientist are always been interested by the idea of interaction between a robot

and its environment.  This kind of robots are called autonomous robot.  Close

and effective interaction between robots, environment and human  are very im-

portant to the success of autonomous robot [20]. Sliding sensors can be used to

control the movement of autonomous robot inside a museum or gallery.  While



moving these  sensors can instantly  gather  surrounding   informations  also.

By the minimum sliding length we can find the shortest path movement of an

au- tonomous robot.  Again by the minimum  sliding cameras  we can reduce

the number  of sensors to control the autonomous robot.

Beside robotics MSC and  MLSC problems  have several many  applications in

practice like placing security cameras in showroom, arranging the lighting source,

placing sensors or placing radar  station in mountain area.

1.4   Previous Results

As stated in Section 1.1 Katz and Morgenstern [12] in 2011 gave a O(n2 ) time

solution  for the MSC problem   using only vertical  or horizontal  track.

Beside that they presented a 3-approximation algorithm for the same problem

if both the orientations  are allowed.  In 2013 Durocher  et al. [7] presented  a

O(n5/2 )-  time and (7/2)-approximation algorithm for  this problem.   Later

Durocher and  Mehrabi [8] introduced the  MLSC problem with a O(n2 ) time

solution even for  orthogonal polygons with holes. In that work they showed

that the MSC prob- lem is NP-hard  when P  is allowed with holes. De Berg et

al. [5] gave a linear-  time dynamic   programming   algorithm for the MSC

problem  on x-monotone orthogonal polygons.   More generally their algorithm

can be used to solve the MSC problem  in linear time  on a simple orthogonal

polygon P  for which the dual graph induced by the vertical decomposition of

P  is a path. There result was first polynomial-time exact algorithm for MSC

problems on a non-trivial  subclass of orthogonal polygons.    Durocher   and

Mehrabi  in 2014 [9]  gave an improvement from their earlier solution of MSC

problem.   They gave an O(n3 )-  time 3-approximation algorithm for the MSC

problem on any simple orthogonal polygon with n vertices.  Mahdavi et al. [13]

in 2014 introduced sliding cameras with k-transmitter. Such a guard can travel

back and forth  along and line seg-  ments like earlier sliding camera but

difference is that it  can penetrate k no of  boundary walls of the polygon. The

objective is to minimize the sum of traveling  length of the sliding k-

transmitters to cover the entire polygon.   They showed that this problem is

NP-complete and presented a 2-approximation algorithm  for it. In 2009

Fabila-Monroy   et al. [17] first gave the concept of k -transmitter.  In 2013

Ballinger et al. [4] develop a lower and upper  bounds  for the number



of k -transmitters that are necessary and sufficient to cover a given collection of

line segments, polygonal chains and polygons. In 2015 Aichholzer et al. [2] gave

some restrictions on the number  of k-transmitters for monotone polygons and

monotone orthogonal polygons.

1.5   Scope of this  Thesis

Though  the existing algorithm solves the MLSC problem  in O(n2 ) time but

during  our research  we found that few of the steps  of the existing  algorithm

can be improved  for some subclasses of orthogonal polygons.  Beside this we

notice that all the existing work on sliding camera  problem  take orthogonal

polygons as input. But in practice geometric shapes are not always orthogonal.

Some non-orthogonal  edges may  be incorporated  there.   It encourages  us to

give an  effort  to increase  the type  of input polygon  for the same  problem.

While working on MLSC problem  we found some important relations among

different components of an orthogonal polygon, after it is being rectangulated

by a rectangulation technique. We present those relations expecting that these

relations may  contribute in  the future research  work.   We  introduce a  new

problem modifying the MLSCk problem and we develop an algorithm  for the

new problem.  The main results of this thesis are as follows.

• An improved algorithm that solves MLSC problem for monotone orthog- 
onal polygons.

• More improved  algorithm  that solves MLSC problem  for FAT  and  MIN
AREA grid n-ogons.

• An algorithm that solves MLSC problem for sub-classes of semi-orthogonal 
polygons.

• Relations  among different  components  of an orthogonal  polygon after  
it is being rectangulated by a rectangulation technique.

• An algorithm that solves modified MLSCk problem for orthogonal poly- 
gons.



1.6   Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we give some basic

terminologies of polygon, graph  theory and algorithm analysis.  In Chapter 3,

we present the improvement of the existing algorithm for some subclasses of or-

thogonal polygons. In Chapter 4, we describe the algorithm on MLSC problem

for semi-orthogonal polygons as input.   In this chapter we also present some

relations  between  different  components  of orthogonal  polygons when it is

be- ing rectangulated by a rectangulation technique.  In Chapter 5 we present

an  algorithm on MLSCk problem with few modifications.  Finally, Chapter 6

sum-  marizes our contribution, discusses the open problem in this field and

gives this thesis an ending.



Chapter 2

Preliminaries

In this chapter, we define some basic terminologies of polygons, graph  theory,

graph  algorithms, algorithm theory that will be used throughout this thesis.

Definitions which are not included in this chapter will be introduced as they are

needed.  We review, in Section 2.1, polygons and their different classes, different

partitioning techniques of polygons, some standard definitions on polygons and

sweeping technique of plane.  In Section 2.3, we discuss about basic terminologies

on graphs.   In Section   2.4 we give a brief description  on different  subclasses

of graphs  which are used in later chapters.  Section  2.5 describes some graph

related problems those are important for the ideas and concepts used in the later

parts of this thesis. Finally, we introduce different terminologies on algorithms

and their complexity in Section 2.6.

2.1   Basic Terminologies of Polygons

In this section we give some definitions on polygon, its subclasses and  their

components.

2.1.1   Polygon

A polygon is a plane that is bounded by a finite chain of straight line segments

closing in a loop to form a closed chain or circuit. These segments are called its

edges or sides and the points where two edges meet are the polygon’s vertices or

corners. The interior of the polygon sometimes called its body.  A polygon is a 2-

dimensional example of the more general polytope in any number of dimensions.



There are many different types of polygons basing on the construction of their

edges and bodies.  Few of such polygons are defined below.  A simple polygon

is defined as a flat  shape consisting  of straight non-intersecting  line

segments  or sides that are joined pair-wise to form a closed path. Figure 2.1

shows some

examples of simple polygons.

Figure 2.1: Different simple polygons.

If the sides of a polygon intersects then the polygon is not simple. A simple

polygon ensures following properties:

1 Encloses a region which always has a measurable  area;

2 The line segments that make up such a polygon only meet at their end-

points;

3 Exactly two edges meet at each vertex;

4 The number  of edges is always equals the number  of vertices.

2.1.2   Orthogonal  Polygon

An orthogonal polygon or rectilinear polygon is a polygon where all of whose

edges meet at right angles.  Thus the interior angle at each vertex is either 90◦

or 270◦.  It can be defined in another way, an orthogonal polygon is a polygon

with sides parallel to the axis of cartesian coordinates.  Figure 2.2 shows some

examples of orthogonal polygons.

From the second definition it can be easily said that an orthogonal polygon

has two types of edges i.e. horizontal edges and vertical edges. It has also two

types of vertices.  If the interior angle of a vertex is 90◦ then it is called a

convex  vertex.  On the other hand   if the angle is 270◦  then it is called a

concave or a



reflex vertex.  A knob in an orthogonal polygon is an edge whose two endpoints

are convex corners.  An antiknob  is an edge whose two endpoints are concave

corners.  An orthogonal polygon is simple if it does not have any hole inside.



10
10

Figure 2.2: Different examples of orthogonal polygons.

2.1.3   Semi-orthogonal  Polygon

A semi-orthogonal   polygon is a polygon that contains two types of edges i.e.

orthogonal edges and non-orthogonal edges. All the orthogonal edges (i.e. hor-

izontal and vertical edges) meet each other at right angles. Thus interior angles

of vertices those contains horizontal and vertical edges, are always 90◦ or 270◦.

Non-orthogonal edges of a semi-orthogonal polygon always meet with the or-

thogonal edges and maintain an interior angle less than 270◦. That means two

neighboring  edges of a non-orthogonal edge are always orthogonal.  Again in-

terior angles of the vetices of a non-orthogonal edge are always less than 270◦.

The  class of semi-orthogonal polygons is a superclass of orthogonal polygons.

Figure 2.3 shows an example of a semi-orthogonal polygon.

Figure 2.3: Example of a semi-orthogonal polygon.

In this polygon there are two non-orthogonal edges, i.e.  ab and  cd.  Two

neighboring edges of ab and cd are orthogonal.  Interior angle at a, b, c and d are

less than 270◦.   Beside that all the orthogonal edges meet each other at right

angle.



2.1.4   Monotone  and Non-Monotone  Orthogonal  Poly-

gon

Figure  2.4:  Different  monotonicity  in orthogonal  polygons.  (a)  xy-monotone
(b)  y-non monotone/x-monotone (c)  x-non  monotone/y-monotone (d)xy-non
monotone.

A polygon P  in the plane is called monotone with respect to a straight line

L, if every line orthogonal to L intersects P  at most twice.  Here the reference

line L can be X -axis or Y -axis or both.  If the polygon is both orthogonal and

monotone then the polygon is called a monotone orthogonal polygon. If an or-

thogonal line drawn from X -axis intersects an orthogonal polygon at most twice

then the orthogonal polygon is called a x-monotone polygon.  If an orthogonal

line drawn from X -axis intersects the polygon more than twice then the orthog-

onal polygon is a x non-monotone  polygon. Again if the orthogonal line drawn

from Y -axis intersects an orthogonal polygon at most twice then the orthogonal

polygon is y-monotone . If an orthogonal line drawn from Y -axis intersects the

polygon more than  twice then the orthogonal polygon is y non-monotone.   If

orthogonal line drawn from both X and Y  axis intersects the orthogonal poly-

gon at most twice then it is termed as xy-monotone orthogonal polygon. Figure

2.4 shows different types of monotonicity in orthogonal polygon.

2.1.5   Grid n-ogon

An n vertex  orthogonal  polygon is called an n-ogon.  An n-ogon P  is in gen-

eral   position   if and   only if every horizontal  and   vertical  line contain  at

most one edge of P , i.e.  if and only if P  has no collinear edges.  If an n-ogon

is in general position and if it can be defined in a  n × n square grid then it is

called 2        2



grid n-ogon.  A rectilinear cut (r-cut)  of an n-ogon P  is obtained by extending

each edge incident to reflex vertices of P  towards interior of P  until it hits the

boundary  of P .  This  partition is denoted  by Π(P ) and  the number  of its

el-

ements (pieces) by |Π(P )|.  A grid n-ogon Q is called FAT  grid n-ogon  if and

only if |Π(Q)| ≥ |Π(P )|,  for all grid n-ogons P .  Similarly, a grid n-ogon Q is

called THIN  grid n-ogon  if and only if |Π(Q)||  ≤ |Π(P )|,  for all grid n-ogons

P . Figure 2.5 shows different subclasses of grid n-ogons.

( a ) ( b 
)

( c )

Figure 2.5: Examples of different grid n-ogons.  (a) FAT grid n-ogon (b) THIN
grid n-ogon (c) MIN AREA grid n-ogon.

O´ Rourke [15] gave a relation between number   of convex and reflex

vertices in an orthogonal polygon.  The relation is n = 2r + 4, where n is the

number of convex vertices and r is the number of reflex vertices.  Bajuelos et al

[1] gave

the following result for FAT  grid n-ogon on number  of r-cut.( 
 3r  2 +6r  +4

|Π(P )| = 4              
for r is even

3(r  +1)2

4            
for r is odd

If orthogonal polygon P  is THIN grid n-ogon then |Π(P )| = 2r + 1

The area  of a grid n-ogon P  represented by A(P ) and it is the number  of grid

cells in interior  of P .   Bajuelos et al.[1] also gave following relations

between the maximum and the minimum number of grid cells with the number

of reflex

vertex for a grid n-ogon: 2r + 1 ≤ A(P ) ≤ r2 + 3 for r ≥ 2. If for a grid n-
ogon

A(P ) = r2 + 3 then that grid n-ogon is called MAX AREA grid n-ogon.  Again

if A(P ) = 2r + 1 then that grid n-ogon is called MIN AREA grid n-ogon.



2.2   Polygon Partitioning  and Plane Sweeping

In computational geometry polygons are usually  triangulated to perform  dif-

ferent  computational  tasks.   Polygon  triangulation  is the decomposition  of a
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polygonal area (simple polygon) P  into a set of triangles i.e.  finding a set of

triangles with pairwise non-intersecting interiors whose union is P .  Over time

a number  of algorithms  have been proposed  to triangulate  a polygon.  If the

input polygon is orthogonal  then sometimes  the polygons are  rectangulated.

In rectangulation technique orthogonal polygons are decomposed of some adja-

cent, non-overlapping  rectangles that fully cover the input orthogonal polygon.

In the subsequent paragraph we describe some triangulation and rectangulation

algorithm of polygons.

2.2.1   Convex Polygon Triangulation

A convex polygon is a simple polygon (not self-intersecting) where all interior

angles are less than 180◦.  A convex polygon is trivial  to triangulate  in

linear time,  by  adding  diagonals  from  one vertex to all  other vertices.   The

total  number   of ways to triangulate a convex n-gon by non-intersecting

diagonals is
n(n + 1)....(2n − 4)

the n − 2-th catalan number  which equals,

2.6 bellow a convex polygon is triangulated.
(n − 2)!

.  In the Figure

a

Figure 2.6: Triangulation of a convex polygon.

Here diagonals are drawn to all other vertices except the neighbor vertices

from the vertex marked by a circle a.  All the diagonals decomposed the orthog-

onal polygon in to some adjacent non-overlapping  triangles.

2.2.2   Ear Clipping Method

Any simple polygon with at least 4 vertices without holes has at least two ears.

An ear  is a triangle with two sides being the edges of the polygon and the third



one remains completely inside the polygon.  Ear clipping method triangulate a

polygon based  on ears.   The  algorithm finds such an ear,  remove it from the

polygon (which results in a new polygon that  still meets the conditions) and

repeating until there is only one triangle left.  Figure 2.7 describes triangulation

by ear clipping method.

Figure 2.7: Triangulation by ear clipping method.

This algorithm is easy to implement, but slower than some other algorithms,

and  it only works on polygons without holes.  An implementation that keeps

separate lists of convex and concave vertices will run in O(n2 ) time.  This

method is known as ear clipping and sometimes ear trimming.

2.2.3   Rectangulation  using Reflex vertices

Two vertices are co-grid if they do not share the same edges in the orthogonal

polygon but lie on the same horizontal or vertical line. A chord is a line segment

fully contained in P  that connect two co-grid reflex vertices. If the orthogonal

polygon is without co-grid then following algorithm can be used to rectangulate:

Algorithm Rectangulation without  Chord 

Input  : A n vertex simple orthogonal polygon P .

Output : Polygon P  with rectangulation.

1 For each reflex vertex, select one of its incident edges.(Two edges are

incident to each reflex vertex.)

2 Extend this edge until it hits another such extended edge, or a 

bound- ary edge of P .



Figure 2.8: An illustration of rectangulation of a chord free orthogonal polygon.

Figure 2.8 describes the rectangulation of an orthogonal polygon without

chord.  In this

figure all horizontal edges of reflex vertices are extended. As all the hori-

zontal edges of the reflex vertices are extended, all the extensions meet at

the boundary  of the orthogonal polygon.

If the orthogonal  polygon has co-grid then we can use the following algo-

rithm:

Algorithm Rectangulation with Chord

Input  : A n vertex simple orthogonal polygon P .

Output : An orthogonal polygon P  with rectangulation.

1 Find chords of P .

2 Construct a bipartite graph  with edges between vertices in the sets

V   and  H , where each vertex  in V   corresponds  to a vertical  chord,

and  each vertex in H  corresponds  to a horizontal chord.   Draw an

edge between vertices v ∈ V  and h ∈ H iff the chords corresponding

to v and h intersect.

3 Find the maximum matching M of bipartite graph.

4 Use M  to find the maximum  independent set S  of vertices of the

bipartite graph.  (This corresponds to the maximum set of non inter-

secting chords of P .)

5 Draw  the chords  corresponding  to S  in P .This  subdivides  P  into

S + 1 smaller polygons, none of which contains a chord.



6 Use earlier algorithm to rectangulate each of the chord less polygons.

7 Output the union of the rectangulations of the previous step.

Figure 2.9 illustrates the above algorithm.  In this algorithm all the chords

v1           v2        v3           v4         v5

v3
v1

h2                  
v5

v2
h1               h2

Figure  2.9:  An  illustration of rectangulation of an  orthogonal polygon with
chords

are   first  identified.   There   are   two  types  of chords   i.e.   horizontal  and

verti- cal.   In the Figure  2.9(a)  h1 , h2   are horizontal  chords  and  v1 , v2 , v3 , v4

, v5  are vertical chords.  This algorithm constructs a bipartite graph  taking h1,

h2   and  v1, v2 , v3 , v4 , v5   are two partite set of vertices.  Two vertices are

neighbor if the  corresponding cords intersect each other. Figure 2.9(b) is

constructed from Fig- ure 2.9(a).  In the Figure 2.9(b), v1  and h1  are neighbor

as they intersected in the polygon.  All other connectivity between the vertices

of two partite set are made similar way.  Algorithm then finds the maximum

matching M  from the bipartite graph.   This  M  is used to find the maximum

independent set S  of vertices of that graph.  Then corresponding chords in S

are drawn to P . At the end earlier algorithm is utilized to rectangulate each of

the chord less polygon.

2.2.4   Sweep Line Algorithm

A sweep line algorithm uses a conceptual sweep line or sweep surface to  solve

various problem  in euclidean space.  It is one of the key technique in compu-

tational geometry.  The  idea behind  this algorithm is to imagine a line which

moves across a plane and stops at some points.  Different geometric operations

are executed whenever it stops and the complete solution is available when the



Figure 2.10: An illustration of sweep line algorithms

line pass over all the objects in the plane.  Figure 2.10 describes the sweep line

algorithm. In this figure the continuous vertical line moves towards right over a

surface.  Circles are representing objects on the surface.  While moving towards

right when the vertical line found any object then it stops and  execute some

operations.  The dotted lines represent the stop of the vertical line on its move.

2.3   Basic Terminology of Graph

In this section we give some definitions of standard graph-theoretical terms used

throughout this thesis.

2.3.1   Graphs

A graph G is a tuple  (V, E)  which consists  of a finite  set  V   of vertices and

a finite set E of edges; each edge being an unordered  pair of vertices.

Figure 2.11 depicts a graph G = (V, E) where each vertex in V  = {v1 , v2 , · · · , v6 }

is drawn as a small circle and each edge in E = {e1 , e2 , · · · , e8 } is drawn by a

line segment.

We denote an edge joining two vertices u and v of the graph G = (V, E) by

(u, v) or simply by uv. If uv ∈ E then the two vertices u and v of the graph G

are said to be adjacent;  the edge uv is then said to be incident to the vertices u
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v1                  e1                      
v2

e6                  e8                                     e2

v6    
                               e  7                            v3

e5                                                             e3

v5                 e4                      v4

Figure 2.11: A graph with six vertices and eight edges.

and v; also the vertex u is said to be a neighbor of the vertex v (and vice versa).

The degree of a vertex v in G, denoted by d(v) is the number  of edges incident

to v.  In the graph  shown in Figure  2.11 vertices  v1  and  v2  are adjacent,  and

d(v6) = 4, since four of the edges, namely e5 , e6 , e7  and e8  are incident to v6.

2.3.2   Simple Graphs and Multigraphs

If a graph G has no “multiple edges” or “loops”, then G is said to be a simple

graph.  Multiple edges join the same pair of vertices, while a loop joins a vertex

with itself.  The graph in Figure 2.11 is a simple graph.

A graph in which loops and multiple edges are allowed is called a multigraph.

Multi graphs can arise from various application.  One example is the “call graph”

that represents the telephone call history of a network.  Figure 2.12 illustrates

multigraphs with multiple edges and loops.

Figure 2.12: Multigraphs.

Often it is clear from the context that the graph is simple. In such cases, a

simple graph is called a graph.  In the remainder  of thesis we will only concern

about simple graphs.



2.3.3   Directed and Undirected Graphs

In a directed  graph, the edges do have a direction  but in an undirected  

graph, the edges are undirected.  Mathematically,  the edges in a directed  

graphs  are

2-tuple  while for undirected  graphs  they  are  2-member  subset  of the vertex

set.  In Figure  2.13(a) and  (b),  we show an undirected  and  a directed  graphs

Figure 2.13: Directed and undirected graphs.

respectively.

2.3.4    Weighted  and Unweighted
Graphs

Each vertex or each edge in a graph can be assigned by a label which is called

weight.   This  kind of graph  are called weighted graph.   Weights  are usually

a  real  number.    They   may   be restricted to rational number   or integers.

This  numbers   are assigned basing on the characteristics of the vertices and

edges in  the real scenario.   Figure   2.14(a) and   2.14(b) describe the node

weighted  and edge weighted graph  respectively.  Numbers  associated with the

vertices and edges are the weights of that vertices and edges.

Certain algorithms require further restrictions on weights; for instance, Dijk-

stra’s algorithm works properly only for positive weights. Many extended prob-

lems are introduced basing on the weights of graph  like the minimum  weight

vertex  cover etc.   The   weight  of a path or the weight  of a tree  in a

weighted graph  is the sum of the weights  of the selected  edges.  Sometimes  a

non-edge  (a vertex pair with no connecting edge) is indicated by labeling it

with a spe- cial weight representing infinity.  Sometimes the word cost is used



instead of weight.  When stated without any qualification,  a graph  is always

assumed to
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Figure 2.14: Node and edge weighted graphs.

be unweighted graph.  In some writing on graph  theory the term network is a

synonym for a weighted graph.

2.3.5   Subgraphs

A subgraph of a graph  G = (V, E)  is a graph  G′  = (V ′, E ′)  such that V ′ ⊆ V

and E ′ ⊆ E.  If G′ contains all the edges of G that join two vertices in V ′, then

G′ is said to be the subgraph induced by V ′.  Figure 2.15 depicts a subgraph  of

G in Figure 2.11.

v2

e7                                           e2
v6 v3

e5                                                                 
e3

v4v5                        e4

Figure 2.15: A subgraph  of the graph in the Figure 2.11.

We often construct new graphs  from old ones by deleting some vertices or

edges. If v is a vertex of a given graph G = (V, E), then G − v is the subgraph

of G obtained by deleting the vertex v and  all the edges incident to v.  More

generally, if V ′ is a subset of V , then G − V ′ is the subgraph  of G obtained by

deleting the vertices in V ′ and all the edges incident to them.  Then G − V ′ is a



subgraph of G induced by V − V ′. Similarly, if e is an edge of a G, then G − e is

the subgraph  of G obtained by deleting the edge e. More generally, if E ′  ⊆ E,

then G − E ′  is the subgraph  of G obtained by deleting the edges in E ′.

2.4   Different  Classes of Graphs

In this section we give some definitions of special classes of graphs  related to

planar graphs and non planar graphs used in this thesis.  For readers interested

in planar  graphs

2.4.1   Planar Graphs

A planar  graph  is a graph  that can be embedded  in the plane,  i.e., it can be

drawn on the plane in such a way that its edges intersect only at their endpoints.

In other words, it can be drawn in such a way that no edges cross each other.

Such a drawing is called a plane graph or planar embedding of the graph.  Figure

2.16(a),(b) and (c) show three different examples of planer and non planar graph

v1

v1                                        v1                        v2
v2                                                               v3

v4

v2                        v3
v4                        v3 v4                      v5

Figure 2.16: Example of planner  and non planner  graphs.

A plane graph can be defined as a planar  graph with a mapping from every

node to a point on a plane, and from every edge to a plane curve on that plane,

such that the extreme points of each curve are the points mapped from its end

nodes, and all curves are disjoint except on their extreme points.

2.4.2   Eular’s  Theorem on Planar Graphs

Euler’s formula states that if a finite, connected, planar  graph is drawn in the 

plane  without  any  edge intersections,  and  v is the number  of vertices,  e is
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the number  of edges and f is the number  of faces (regions bounded  by edges,

including the outer,  infinitely  large region), then the relations  among them

is

v − e + f = 2. Figure 2.17 illustrates the Eular’s formula.  Here the graph is a

v1

v4

v2                         v3

Figure 2.17: An illustration of Eular’s formual.

planer graph.  In this planer graph total number of vertices v = 4, total number

of edges e = 6 and  total number  of faces (including  outer  face) f = 4.  After

executing the formula we found the result 2.

2.4.3  Bipartite Graphs

A bipartite   graph   is a graph   whose vertices  can be divided   into  two

disjoint sets U and  V   (i.e.  U and  V   are each independent sets) such that

every edge connects a vertex in U to one in V .  Vertex set U and V  are often

denoted as partite sets.  In bipartite graph there will be no edge connecting the

two vertices  within one partite set.  Figure 2.18 bellow is an example of

bipartite graph

In this graph vetices are divided in to two groups i.e. U and V . Each vertex

from U is connected to the vertices of V . No two vertices from the same group

are neighbor.

2.4.4  Convex Bipartite Graphs
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A convex bipartite  graph is a bipartite graph with specific properties.  A bipar-

tite graph  (U ∪ V, E)  is said to be convex over the vertex  set  U , if U can be

enumerated such that for all v ∈ V  the vertices adjacent to v are consecutive.



u1                 u2             u3               u4             u5

v1               v2               v3               v4

Figure 2.18: Example of a bipartite graph.

Convexity over V  can be defined analogously.  A bipartite graph (U ∪ V, E) that

is convex over both U and V   is said to be biconvex or doubly convex bipartite

graph.  Figure 2.19 illustrate the structure of convex bipartite graph

u1 u2 u3 u4 u5

1 2 3 4 5

v1               v2               v3               v4

Figure 2.19: Example of a convex bipartite graph.

In this figure vertices of partite set U maintains a sequence, represented by

a sequence number(1,2,3,4)  Neighbors of any vertex from V  are always consec-

utive.  Figure 2.20 depicts one non convex bipartite graph.

Here in the figure vertex v1 has a neighbor set i.e. u1, u2, u4 which are not

consecutive.



u1                  u2             u3               u4             u5

1           2           3           4          5

v1               v2               v3               v4

Figure 2.20: Example of a non-convex bipartite graph.

2.5   Different  Graph Problems

In this section we will describe some graph problem and some of their existing 

solution which are relevant to our work.

2.5.1   Vertex  Cover

A vertex cover of a graph is a set of vertices such that each edge of the graph
′is incident to at least one vertex of the set.  Formally  a vertex cover V

′

of an
′undirected graph G = (V, E) is a subset of V  such that ∀uv  ∈ E : u ∈ V

′

∨v ∈ V  .

It is a set of vertices V
′

where every edges at least one endpoint in the vertex

cover V .  Such a set  is said to cover the edges of G.  The above figure shows

two examples of vertex cover. A minimum vertex cover is a vertex cover of the

smallest possible size.  The vertex cover number  τ  is the size of the minimum
′

vertex cover, i.e. τ = |V |.  Figure 2.21(a) and 2.21 (b) shows examples of vertex

cover and  the minimum  vertex cover of the same graph.   In this figure white

circles are selected in the vertex cover.  The  problem  of finding the minimum

vertex  cover is a  typical  example  of an  NP-hard  optimization  problem  that

has an approximation algorithm.The vertex cover problem,  was one of Karp’s

21 NP-complete  problems  and  is therefore  a  classical NP-complete  problem

as  well.   But the minimum  vertex cover problem  for bipartite graph  has  a

polynomial time solution using Konig’s theorem.  Konig’s theorem states that

if G  = (V, E)  is a bipartite graph  then size of the minimum  vertex  cover is



Figure 2.21: (a) A vertex Cover (b) the minimum Vertex Cover.

equal to the size of the maximum matching.  The theorem not only established

the similarity  between  the size of the minimum  vertex  cover with  the size

of  the maximum   matching but proof of this theorem gives an efficient

algorithm for finding the minimum  vertex cover of a bipartite graph  from the

maximum matching. Finding the maximum matching in a bipartite  graph G,

construct a forest F  of alternating trees and then the minimum vertex cover C

.

In the weighted vertex cover problem each node i ∈ V  has an associated weight

wi  ≥ 0 and we want to minimize the total weight of the set S. The objective is

to minimize the total weight of vertices those have all the edges connected but

not to minimize the number of vertics. The minimum vertex cover problem for

bipartite graph is solvable in polynomial time implies that the minimum weight

vertex cover problem for bipartite graph is also solvable in polynomial time.

2.5.2   Matching

A matching or independent edge set in a graph is a set of edges without common

vertices.  It may also be an entire graph  consisting of edges without common

vertices.   Given a graph   G = (V, E),   a matching  M   in G is a set  of

pairwise non-adjacent edges; that is, no two edges share a common vertex.  A

vertex is matched  or saturated   if it is an endpoint of one of the edges in the

matching. Otherwise the vertex is unmatched  .

A maximal matching  is a matching M of a graph G with the property that

if any edge not in M  is added  to M , it is no longer a matching, that is, M  is

maximal if it is not a proper subset of any other matching in graph G. In other

words, a matching M of a graph G is maximal if every edge in G has a non-

empty intersection with at least one edge in M . A maximum matching  (also

known as
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maximum-cardinality matching ) is a matching that contains the largest possible

number  of edges.   There  may  be many  maximum  matchings.   The  matching

number ν (G) of a graph G is the size of a maximum matching.  Every

maximum matching is maximal, but not every maximal matching is a maximum

matching. A perfect matching  is a matching which matches all vertices of the

graph  i.e.  every vertex of the graph is incident to exactly one edge of the

matching.  Every  perfect  matching  is maximum   and   hence   maximal.

Sometimes  it is termed as complete matching.  A perfect matching is also a

minimum-size edge cover.

Thus,  ν (G) ≤ ρ(G) i.e.  the size of a maximum  matching is no larger than the

size of a minimum edge cover. Figure 2.22(a) describes maximal matching and

Figure 2.22(b) describes maximum matching.

Figure 2.22: (a) A maximal matching and (b) A maximum and perfect match- 
ing.

In the figure broken lines are the lines selected for matching. A near-perfect

matching  is one in which exactly one vertex is unmatched. This can only occur

when the graph  has an odd number  of vertices, and such a matching must be

maximum.  If, for every vertex in a graph, there is a near-perfect matching that

omits only that vertex, the graph is also called factor-critical.

2.6   Complexity  of Algorithms

In this section we briefly introduce some terminologies related to complexity of

algorithms.  For interested readers, we refer the book of Garey and Johnson.

The most widely accepted complexity measure for an algorithm is the run-

ning time, which is expressed by the number  of operations it performs before

producing the final answer.  The number of operations required by an algorithm

is not the same for all problem instances.  Thus, we consider all inputs of a given
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size together, and we define the complexity of the algorithm for that input size

to be the worst  case behavior   of the algorithm  on any of these  inputs.

Then the running  time is a function of size n of the input.

2.6.1   The Notation  O(n)

In analyzing the complexity of an algorithm, we are often interested only in the

“asymptotic behavior”,  that is, the behavior of the algorithm when applied to

very large inputs.  To deal with such a property of functions we shall use the

following notations  for asymptotic  running  time.   Let  f (n)  and  g(n)  are the

functions from the positive integers to the positive reals, then we write f (n) =

O(g(n))  if there exists positive constants c1 and c2 such that f (n) ≤ c1g(n) + c2

for all n.  Thus  the running  time of an algorithm may be bounded  from above

by phrasing like “takes time O(n2 )”.

2.6.2   Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if  its

complexity is bounded  by a polynomial of the size of a problem instance.  Ex-

amples of such complexities are O(n),  O(nlogn),  O(n100 ), etc.  The remaining

algorithms  are usually referred as exponential or nonpolynomial.  Examples  of

such  complexity  are  O(2n ),  O(n!),  etc.   When  the running  time  of an  algo-

rithm is bounded by O(n),  we call it a linear-time  algorithm or simply a linear

algorithm.

2.6.3   NP-complete  Problems

There are a number of interesting computational problems for which it has not

been proved whether there is a polynomial time algorithm or not. Most of them

are “NP-complete”, which we will briefly explain in this section.

The   state of algorithms  consists  of the current  values of all the

variables  and   the location of the current instruction to be executed.    A

deterministic  algorithm is one for which each state, upon execution of the

instruction, uniquely  determines  at most  one of the following state (next

state).   All computers, which exist now, run deterministically.  A problem Q

is in the class P if there exists a deterministic polynomial-time algorithm which

solves Q. In contrast, a



nondeterministic algorithm is one for which a state may determine many next

states simultaneously.  We may regard a nondeterministic algorithm as having

the capability of branching  off into many copies of itself, one for the each next

state. Thus,  while a deterministic algorithm must explore a set of alternatives

one at a time,  a nondeterministic  algorithm  examines  all alternatives  at the

same time.  A problem Q is in the class NP if there exists a nondeterministic

polynomial-time algorithm which solves Q. Clearly, P ⊆ N P .

Among the problems in NP  are those that are hardest in the sense that if

one can be solved in polynomial-time then so can every problem in NP. These

are called NP-complete problems.  The class of NP -complete problems has the

following interesting properties.

(a)  No NP -complete problem can be solved by any known polynomial algo-

rithm.

(b)  If there  is a polynomial  algorithm  for any  NP -complete  problem,  then

there are polynomial algorithms for all NP -complete problems.

Sometimes we may be able to show that, if problem Q is solvable in polynomial

time, all problems in NP  are so, but we are unable to argue that Q ∈ N P . So

Q does not qualify to be called NP -complete.  Yet, undoubtedly Q is as hard as

any problem in NP. Such a problem Q is called NP-hard.



Chapter 3

Algorithms  for MLSC Problem

3.1   Introduction

Let P  be a simple orthogonal polygon.  Consider sliding cameras travels back

and  forth along  the orthogonal line segment of P  and  it can  see inside  the

polygon orthogonally.   Minimum  length  sliding camera  (MLSC) problem  asks

to cover the whole polygon by sliding cameras so that  sliding length becomes

minimum.  Durocher and Mehrabi [8] gave an O(n2 ) time algorithm to solve the

MLSC problem.  Throughout this chapter we call this algorithm as Algorithm

DM. We show that some steps of Algorithm DM takes O(n log2 n)  time for

monotone orthogonal polygons and  O(n)  time for some subclasses of grid n-

ogons. The rest of the chapter is organized as follows. Section 3.2 contains the

outline  of the Algorithm  DM and   few known properties  of some sub

classes  of grid n-ogon.   Section  3.3 describes how some steps  of the

Algorithm  DM  takes O(n log2 n)  time for monotone orthogonal polygons.

Section   3.4 shows how same steps of the Algorithm DM takes O(n)  time for

some subclasses of  grid n-ogon.   Finally, we summarize our contribution in

Section 3.5.

3.2   Preliminaries

In section 3.2.1 we present the outline of the Algorithm DM which solves the

MLSC problem . Related existing results on grid n-ogon are described Section

3.2.2
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3.2.1   Algorithm  DM On MLSC Problem

Algorithm DM first partitions the interior of the orthogonal polygon into some

rectangles, then it constructs a bipartite graph from that partition. At the end

it utilizes the the minimum  weight vertex cover algorithm to solve the MLSC

problem.  The detail description of each step is given below.

Step  1.  Partitioning:  The partition technique used in Algorithm DM was

first used by Katz and Morgenstern [12]. In this technique two incident edges of

all the reflex vertices of P  are extended inward until they hit the next bound-

ary.  The extended edges partitions the interior and boundary  of P  into a set of

rectangles and line segments respectively.  Each such rectangles is called r-cut.

Let T P , LP  and R(P ) be the set of all top facing segments, left facing segments

and r-cuts of P  respectively.  All the r-cuts covered by a single left facing and

right facing segment is called row of r-cut. Similarly all the r-cuts covered by a

single top facing and bottom facing segment is called column of r-cut. Figure 3.1

is the input orthogonal polygon. Figure 3.2 shows the partitioning of Figure 3.1.

Figure 3.1: An input orthogonal polygon P  for the MLSC problem.

In the Figure 3.2, dotted lines are the extension of edges incident to reflex

vertices  and  r1  is a single r-cut created  by some of those  extensions.   Again

tpn  ∈ T P  and  lpn  ∈ LP  indicates  single top and  left  facing segments  respec-

tively.  Number associated with each tpn and lpn is the length of those segments.

Durocher and Mehrabi showed that using sliding camera every orthogonal poly-

gon P  can be optimally covered by the segments of T P  and LP .  Partitioning

of input orthogonal polygons requires O(n)  time complexity.
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lp6(4)

lp3(4)
4

lp2
(1)

tp1(4)      tp2(6)     tp3(4)    tp4(5)

lp1(4)

Figure 3.2: Rectangulation of the orthogonal polygon P  in the Figure 3.1.

Step 2.  Reducing to a Bipartite Graph: After partitioning Algorithm

DM constructs an  undirected weighted graph  GP    where  each  segment in P

corresponds to a vertex of GP . Let T and L are the two sets of vertices in GP

corresponds  to T P  and  LP  of P  respectively.   Length  of each segment  is

the weight of the corresponding vertex.  Two vertices are adjacent in GP   if and

only if both the corresponding  segment in P  can see same single r-cut.  The

graph in Figure 3.3 bellow is constructed from Figure 3.2.

l1                   l2              l3                 l4              l5            l6

t1              t2              t3              t4          t5

Figure 3.3: The bipartite graph GP   corresponding to the rectangulated polygon 
in the Figure 3.2.

In Figure  3.3 tn  ∈ T and  ln  ∈ L indicates two single vertex of GP   which

corresponds to a top facing segment tpn ∈ T P  and lpn ∈ LP  in P  respectively.

Two vertices tn and ln are adjacent in GP   if and only if corresponding tpn  and

lpn  in P  can see same single r-cut Rn  ∈ R(P ).  Number  associated with each

vertex in Figure 3.3 is the weight of that vertex which is same as the length of

r1

lp5(2)
lp (1)tp5(6)



the corresponding segments in P . Durocher and Mehrabi showed that GP   is a

bipartite graph and there is a bijection between the r-cut in P  and the edges in

GP .  After partitioning P  number  of segments increases linearly depending  on

the number  of vertices.  Therefore Step 3 requires O(n2 ) time complexity

Step 3.  Executing Minimum Weight Vertex Cover Algorithm:  

Durocher and  Mehrabi  show that MLSC problem  on P  is equivalent  to the 

minimum weight vertex cover problem on GP . Minimum weight vertex cover 

algorithm is

O(n2 ) time complex.  Therefore overall time complexity of Algorithm DM is

O(n2 ).

3.2.2   Existing  Results  on Grid n-ogon

A grid n-ogon is a n vertex orthogonal polygon which is in general position.  An

orthogonal polygon is in general position if it can be defined in a  n × n square2         2

grid. A grid n-ogon Q is called FAT  grid n-ogon if and only if |Π(Q)| ≥ |Π(P )|,

for all grid n-ogons P . Similarly, a grid n-ogon Q is called THIN grid n-ogon if
and only if |Π(Q)|| ≤ |Π(P )|, for all grid n-ogons P . Here Π(P ) is the number
of r-cut inside the orthogonal polygon P .  The Area  A(P ) of a grid n-ogon P

is the number  of grid cells inside P .  If for a grid n-ogon A(P ) = 2r + 1, then

it is called MIN AREA  grid n-ogon.   In this section we state some results of

Bajuelos et al. [1] on FAT  and MIN AREA grid n-ogon.

Bajuelos  et al.   showed that there  is single FAT  grid  n-ogon  (except  for

symmetries of the grid) and its form is in Figure 3.4. They also show that each

r-cut of a FAT  grid n-ogon has area 1.

Figure  3.4:   The  unique  FAT  grid  n-ogons  (symmetries  excluded),  for n  =
4, 6, 8, 10, 12.

For MIN AREA grid n-ogon Bajuelos et al. give similar result like FAT grid

n-ogon.   They  found that there  is single MIN-AREA  grid n-ogon (except  for
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Figure  3.5:  The  unique  MIN AREA  grid n-ogons (symmetries  excluded)  for
r = 0, 1, 2, 3, 4.

symmetries of the grid) and its form is like in Figure 3.5. They also state that

all the MIN AREA grid n-ogon are THIN grid n-ogon but all the THIN grid

n-ogon are not MIN AREA grid n-ogon.

3.3   Algorithm  DM on Monotone  Orthogonal

Polygons

In this section we show that if the input is a monotone orthogonal polygon then

Algorithm DM always construct a weighted convex bipartite graph.  Minimum

weight vertex cover problem for weighted convex bipartite graph has O(nlog2 n)

time solution [16].

From the definition of monotone orthogonal polygons we can write the fol-

lowing observation:

Observation 3.3.1   Inside an orthogonal polygon P  if there exist at least one

pair of points which have same Y  coordinates  but require two separate  lp ∈ LP

to cover the points then the orthogonal polygon is Y  non monotone.  Similarly, if

there exist at least one pair of points which have same X coordinates   but

require  two separate   tp ∈ T P   to cover those points   then  the orthogonal

polygon is X non monotone.

We assign one label from a set of consecutive labels to each tp ∈ T P  of an

orthogonal  polygon P  .  First label assigned to the leftmost  and  bottommost

tp ∈ T P  of the polygon.  The progress of assignment follow a path from left to

right.  At the end of one row of segment we move from bottom to top and again

assignment  progresses from left  to right  along the polygon boundary  until it
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reaches the topmost and right most tp ∈ T P . We do similar kind of assignment

to each lp ∈ LP  on the same orthogonal polygon P  where another set of con-

secutive labels used.   This time the assignment starts from the  rightmost and
bottommost lp ∈ LP , and progress of assignment follows a path from bottom
to top.   At the end of one column of segment  we move from left  to right

and  again assignment  progresses from bottom  to top along the polygon

boundary

until it reaches topmost  and  leftmost  lp ∈ LP .  A set  of segments  is said to

be consecutive if they have consecutive labels otherwise the segment set is non

consecutive.  Vertices of graph GP   also receive same label to its corresponding

segment  of the polygon P .  Let[a1, a2 , a3 , a4 , a5 ] and  [b1 , b2 , b3 , b4 , b5 , b6 ] be

two sets of consecutive labels.  Figure  3.6 below describes the assignment of

these consecutive sets of labels to top and left facing segments of the orthogonal

poly- gon P

First top facing segment tp1 gets first label a1, similarly second top facing seg-

lp6(4)

tp1(4)     tp2(6)     tp3(4)     tp4(5)

lp3(4)

lp2(1)

lp1(4)

Figure 3.6: An illustration of assigning two sets of consecutive labels to top and
left facing segments of an orthogonal polygon P .

ment tp2 gets second label a2 . In this way topmost rightmost top facing segment

tp5  gets last label a5 . Second consecutive sets of labels are assigned to the left

facing segments.  Following the same assignment rules first left facing segment

lp1  gets b1  and finally leftmost topmost segment lp6  gets last label b6 .  Figure

3.7 bellow illustrates the assignment of labels to the vertices of bipartite graph

GP   from the polygon P . Label of tp1 is assigned to the corresponding vertex t1

of graph GP . Thus vertex t1 gets the label a1 . All other vertices receive labels

in the same way.

We can write the following observation on guarding a pair of points by consec-

utive and missing segments of an orthogonal polygon.

b6

lp5(2)
lp4(1)

b3a5 b5

tp5(6) b4
b2

a1 a2 a3

b1
a4
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l1                   l2               l3                 l4               l5            l6
b1                       b2                       b3                    b4                    b5                       b6

a1                     a2                   a3                 a4                    a5

t1              t2              t3              t4          t5

Figure 3.7: An illustration of receiving same labels in vertices of the graph GP

from the segments of the orthogonal polygon P  in the Figure 3.6.

Observation 3.3.2   Let LP1  ⊆ LP  be a set of non consecutive left facing seg-

ments  with respect  to a single tp1  ∈ T P  that  covers same  set of r-cut  of an

orthogonal polygon P . Then at least one segment from the set of segments those

are missing from the sequence of LP1   and one segment from LP1   always guard

one pair of points separately  whose Y  coordinate  are same.

We can write following lemma relating the consecutiveness of LP  with the 

monotonicity of the input orthogonal polygon.

Lemma 3.3.3   Let P  be a  n  vertices  orthogonal  polygon.  P  becomes Y   non

monotone  if and  only if there  exists  at  least  one  non  consecutive  set  of left

facing segments  LP1   with respect  to a single top facing segment  tp such that

both LP1   and tp cover same set of r-cut.

Proof.      Necessity:  Assume that the input orthogonal polygon P  is Y   non

monotone.   Then  there exists one pair  of points inside P  that have  same Y

coordinate but  require two separate lp ∈  LP  to cover those points by Obser-

vation 3.3.1.  Let (x1, y) and  (x2, y) be those points.  One point (x1, y) must

remain inside a single r-cut which is guarded by a single top facing segment.  Let

tp1  ∈ T P  be that top facing segment.  Beside that r-cut, tp1  also guards some

other  r-cuts.   Let  R1 (P ) ⊆ R(P ) be the set  of r-cuts  guarded  by tp1 .  R1 (P

) also guarded  by as set  of left  facing segments.   Let  LP1   ⊆ LP  be the set

of left facing segments.  Similarly other point (x2, y) will also guarded  by a set

of left  facing segments.  Let  LP2   ⊆ LP  be that set  of segment  for point  (x2,

y).  As (x1, y) and   (x2, y) have   same Y   coordinate  but guarded   by two

different
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lp ∈ LP  therefore,  either  LP1   or LP2   or both are non consecutive.   At least

one point of such a pair of point is always creating such set of non consecutive

segments in LP .

Sufficiency: Assume that an orthogonal polygon P has a non consecutive set of

left facing segments LP1 , with respect to a single top facing segment tp1 , such

that both LP1   and  tp1  covers same set  of r-cuts.   Since LP1   is non consecu-

tive, it misses a set of segments.  Let LP2  ⊆ LP  be the missing set of segments.

Therefore by Observation 3.3.2 LP1  and LP2  guard one pair of points separately

whose Y  coordinate are same.  It implies that inside P  we are getting at least

one pair of points which have same Y  coordinate but guarded  by two separate

lp ∈ LP  (one from LP1  and other from LP2 ). By Observation 3.3.1 the polygon

is Y  non monotone.                                                                                        Q.E .D.

We  Now can  write  the following lemma  relating  the monotonicity  of an

orthogonal polygon with the convexity of bipartite graph.

Lemma 3.3.4   Given a monotone orthogonal polygon P  with n vertices,  graph

GP    constructed   from P   will always be a convex bipartite
graph.

Proof.       For  an X  monotone  orthogonal  polygon P  we construct  a graph

GP   from P  using the algorithm described in Section 3.2.1.  Let graph  GP   is a

non convex bipartite graph.  Then  by the definition of a non convex bipartite

graph, there are two vertices (one from each partite set) in GP   whose neighbors

are not consecutive.   Let  l ∈ L be one such vertex  which has a neighbor  set

T1  ⊆ T , that are not consecutive.  Again let  t ∈ T be the other  vertex  which

has a neighbors set L1  ⊆ L, that are not also consecutive.  For such set T1  and

L1   there  are two  sets  of segments  in the orthogonal  polygon P .  Let  the

two sets of segments be T P1  ⊆ T P  and LP1   ⊆ LP  respectively.  As the vertex

set are not consecutive  therefore  the segment  sets  are also not consecutive  .

But by Lemma  3.3.3 if there  are two  such non consecutive  sets  of segments

(one  from LF B and one from T F B) remains inside an orthogonal polygon

then the polygon is X Y  non monotone which contradicts our initial assumption.

We can  get similarly contradiction for Y   and X Y   monotone orthogonal

polygons also.  Now it is evident that for a given a monotone orthogonal

polygon P , graph GP constructed from P  is will always be a convex bipartite

graph.                Q.E .D.

Construction of graph GP   from orthogonal polygon P  can be completed in
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O(n2 ) time.  From  Lemma  3.3.4 we can say that for a monotone orthogonal

polygon P , constructed  graph  GP    from P  will be a convex bipartite graph.

Minimum weight vertex cover problem for convex bipartite graph can be

solvable in nlog2 n time complexity [16]. Where n is the number of vertices.  If

the input orthogonal polygon is monotone then we can utilize the algorithm of

the the minimum weight vertex cover for convex bipartite graph instead of only

bipartite  graph.   It obviously reduce the execution time of solving MLSC

problem.   We  now can write the following theorem on the efficiency of

Algorithm DM.

Theorem 3.3.5   For monotone orthogonal polygons Step 3 of Algorithm DM

takes O(nlog2 n) time.

3.4   MLSC Problem  on Subclasses of  Grid n- 

ogon

In this section we show that Step 3 of Algorithm DM takes O(n) time for FAT

and MIN AREA grid n-ogon if they are drawn on an equidistant grid.  The bi-

partite graph constructed from a FAT or MIN AREA grid n-ogon drawn on an

equidistant grid becomes an unweighted convex bipartite graph.  That means an

MLSC problem can be reducible to a vertex cover problem for convex bipartite

graphs.  It is known that the vertex cover problem can be solved in O(n)  time

on convex bipartite graphs [19]. In the subsequent paragraph we show that

FAT  and MIN AREA grid n-ogons are monotone orthogonal polygons.

Moreover if a FAT or a MIN AREA grid n-ogon is drawn on an equidistant

grid, the lengths of the segments become equal.

We first show that each r-cut of a MIN AREA grid n-ogon has area 1 as in

Lemma 3.4.1.

Lemma 3.4.1   If P  is a MIN AREA grid n-ogon then each r-cut π(P ) has area

1.

Proof.    Since all MIN AREA grid n-ogons are THIN grid n-ogons, then MIN

AREA  grid n-ogons have |π(P )| = 2r + 1 r-cuts.   Again from the definition,

MIN AREA grid n-ogon has area A(P ) = 2r + 1.  Therefore,  for MIN AREA

grid n-ogon A(P ) = |π(P )|, which implies that each r-cut has area 1.   Q.E .D.
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Observation 3.4.2   In an equidistant grid height of all the cells are equal. Sim-

ilarly width of all the cells are also equal. Furthermore height of one cell is 

equal

to the width of that cell.

Figure 3.8: An example of 8x8 equidistant grid.

Figure 3.8 shows an example of 8 x 8 equidistant grid.  Here all the horizontal

and vertical lines are equidistant from each other.  Therefore all the grid cells

has equal height and length.

Lemma 3.4.3   If a FAT  grid n-ogon P  is drawn in an equidistant  grid, all the

segments of P  get equal length.

Proof.    Bajuelos et al. showed that each r-cut of a FAT grid n-ogon is equal

to one grid cell. Therefore, if we draw a FAT grid n-ogon on an equidistant grid,

by Observation 3.4.2 height of all the r-cuts become equal.  Similarly width of

all the r-cuts also become equal.  Furthermore  height  of one r-cut is equal to

the width of that r-cut.

For an orthogonal polygon length of a left facing segment depends on the height

of the row of r-cut covered by that segment. A row of r-cut  is the set of r-cuts

those  are covered by same left  facing segment.   Since all the r-cuts of a

FAT grid n-ogon, drawn  on an equidistant grid, have equal height then all

the left facing segments also have equal length.  Similarly length of a top facing

segment of a FAT  grid n-ogon depends on the width of the column of r-cut

covered by  that segment.  A column of r-cut   is the set of r-cuts those are
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covered by same top facing segment.   Since all the r-cuts of a FAT  grid n-

ogon,  drawn  on an
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equidistant  grid, have equal width  then all the top facing segments  also

have equal length. Furthermore for a FAT grid n-ogon drawn on an equidistant

grid height of a r-cut is equal to the width of that r-cut. Therefore length of all

the top and left facing segments are also equal.

It implies that if FAT  grid n-ogons are  drawn  in an  equidistant grid,  all its
segments get equal length.                                                                             Q.E .D.

Lemma 3.4.4   If a MIN AREA grid n-ogon P  is drawn in an equidistant  grid,

all the segments of P  get equal length.

Proof.

By Lemma 3.4.1 each r-cut of a MIN AREA grid n-ogon is equivalent to one

grid cell. Therefore if we draw a MIN AREA grid n-ogon in an equidistant grid,

by Observation 3.4.2 height of all the r-cuts become equal.  Similarly width of

all the r-cuts are also become equal.  Furthermore height one r-cut is equivalent

to the width of that r-cut.

For an orthogonal polygon length of a left facing segment depends  on the

height of the row of r-cut covered by that segment.  Since all the  r-cuts of a

MIN AREA  grid n-ogon, drawn  on an equidistant  grid, have equal height

then all  the left facing segments also have equal length. Similarly length of a

top facing segment of a MIN AREA grid n-ogon depends on the width of the

column of r-cut covered by that segment.  Since all the r-cuts of a MIN AREA

grid n-ogon,  drawn on an equidistant grid, have equal width then  all the top

facing segments also have equal length. Furthermore for a MIN AREA grid n-

ogon drawn on an equidistant grid height of a r-cut is equal to the width of

that r-cut. Therefore length of all the top and left facing segments are equal.

It implies that if FAT  grid n-ogons are  drawn  in an  equidistant grid,  all its
segments gets equal length.                                                                           Q.E .D.

We next show that FAT and MIN AREA grid n-ogons are monotone orthog-

onal polygons as in the following lemma

Lemma 3.4.5   FAT  and  MIN AREA  grid  n-ogons  are  monotone  orthogonal

polygon.

Proof.     Bajuelos et al.  showed that except symmetries of grid, construction

of a FAT  and MIN AREA grid n-ogon is always like in the Figure 3.4 and 3.5
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respectively.  If we draw vertical lines from x-axis and horizontal lines from y-

axis to a FAT and MIN AREA grid n-ogon, all the lines intersects that FAT

and MIN ARE grid n-ogon at most  twice.  It satisfies  the conditions  of a

polygon to become X Y -monotone.   Therefore,  FAT  and  MIN AREA  grid n-

ogons are

xy-monotone orthogonal polygon.

Q.E .D.

Lemmas 3.4.3, 3.4.4 and 3.4.5 immediately prove the following theorem.

Theorem 3.4.6   For  FAT  and MIN AREA grid n-ogon Step 3 of Algorithm

DM takes O(n)  time.

3.5   Conclusion

In this chapter, we have  shown that a monotone orthogonal polygon can be

represented by a convex bipartite graph.  Using this findings we have improve

some steps  of the existing  algorithm  of MLSC problem.   We also have

shown that this improvement is more for some subclasses of grid n-ogon like

FAT and MIN AREA grid n-ogons, if they are drawn on an equidistant grid.



Chapter 4

Guarding Semi-orthogonal

Polygons

4.1   Introduction

All the results found on art gallery problem with sliding camera so far considers

input polygons as orthogonal  polygons.  But geometric  shapes obtained  from

real art gallery may not always be orthogonal.  They  may contain some non

orthogonal edges. Based on this requirement we consider the MLSC problem for

a semi-orthogonal  polygon with some constraints.  The class of semi-orthogonal

polygon is a superclass to the class of orthogonal polygon .  Detail description

of semi-orthogonal  polygons is given in Chapter  2.   In  this  chapter  we also

show some relationship  among  different  components  of orthogonal  polygons

after being partitioned by one partitioning technique which use reflex vertices.

The rest of the chapter is organized as follows. We start with a brief review

of some preliminary concepts and some basic definition on semi-orthogonal poly-

gon in Section 4.2. In this section we also present some relations among different

components of an orthogonal polygon after it is being rectangulated by a rect-

angulation technique.  In Section 4.3 we give the result of MLSC problem  on

semi-orthogonal polygon.  Finally,  in Section 4.4 we summarize  our contribu-

tions.



4.2   Preliminaries

4.2.1   Covering Semi-orthogonal Polygons by Sliding Cam-

eras

Let P  be a semi-orthogonal polygon.   Sliding cameras  travel back  and  forth

along the boundary  of a semi-orthogonal polygon.  The cameras can see inside

the polygon orthogonally.  The  objective of this problem  is to find the mini-

mum boundary  length where sliding camera travels and all the sliding cameras

together  cover the whole P .   Figure  4.1 illustrates  the MLSC problem  for a

semi-orthogonal polygon as input. For an input polygon in Figure 4.1(a), Fig-

S2

S2                                                                                 S4

S3                                                                   S3

Figure 4.1: Covering a semi-orthogonal  polygon by sliding cameras.   (a) input
semi-orthogonal  polygon (b) minimum length  sliding camera locations  (C) not
provide the minimum length sliding cameras locations.

ure 4.1(b)  indicates  the minimum  travel  length  by sliding cameras  S1 , S2

and S3.  Cameras  S1, S2  and S3  also covers the whole polygon.  Figure 4.1(c)

is an example where all the cameras  cover the whole polygon but the total

length traveled by the cameras is not the minimum.

4.2.2    Semi-orthogonal  Polygons with
Constraints

Let P  be a semi-orthogonal polygon which do not have pair of edges such that

one of the edge is non orthogonal and they remain close to each other externally

maintaining a distance, lower than the higher length edge. Figure 4.2 describes

these  classes of semi-orthogonal  polygons.  Polygons in the Figure  4.2(a)  and

(b) are valid but Figure 4.2(c) is not a valid polygon. In Figure 4.2(c) external

distance between the two non-orthogonal edges is less than the length of  the

higher length edge.



Figure  4.2:  Constraints  on semi-orthogonal  Polygons  (a)  valid  (b)  valid  (c)
invalid.

4.2.3   Co-grid and Chord of a orthogonal  polygon

Let u and v be two reflex vertices of an orthogonal polygon P that do not share

the same edges of P .  u and v are co-grid if they lie on the same horizontal or

vertical line.  A chord  is a line segment fully contained in P  that connects two

cogrid reflex vertices.  In Figure 4.3 black circles are cogrid and the dotted line

is a chord

Figure 4.3: An illustration of a co-grid and chord.

4.2.4    Rectangulation  of Orthogonal
Polygons

We partition an orthogonal polygon using its reflex vertices.  If we extend two

incident edges of each reflex vertex inward of an orthogonal polygon until it hits

the next boundary  then the extended edges partition both the interior of the

orthogonal polygon as well as the boundary.   Generally there are two types of

vertices in an orthogonal polygon. If the interior angle of the vertex is 90◦  then



the vertex is a convex vertex and if it is 270◦  then the vertex is a reflex

vertex.  The lines that connects two vertices are called edges. Beside vertices

and edges  this partitioning technique creates several new components in the

orthogonal polygon described as follows.

1 Extension  of the edges incident  to reflex vertices  partition the original

edges of the orthogonal polygon in to some small edges. Each such small

edges is called segment.

2 Extended portion of the edges incident to reflex vertices are called

extended edges.

3 Extended edges also partition itself into some small segments, those are

called extended segment.

4 Extended edges create some new vertices at the intersection point with

other extended edges.   Those  intersection points are  called intersection

vertices.

5 Extended  edges also create  some new vertices  at the intersection

point  with the edges of  the orthogonal polygon.   Those intersection

points are called boundary intersection vertices.

6 Extended edges create some rectangles to the interior of orthogonal poly-

gons. Those rectangles are called r-cut.

In the Figure   4.4 bellow c, r, x and bx represents  convex vertex,  reflex

vertex, intersection vertex and  boundary  intersection vertex respectively.   s

and   es  represent segment and extended segment respectively.  Interior

rectangle inside P  denoted by rc, is an example of r-cut.

Figure 4.4: Different components of an orthogonal polygon after rectangulation
by reflex vertices.



We now show the relations among the above components of an orthogonal

polygon.

Lemma 4.2.1   Let P  be a simple orthogonal polygon which is rectangulated  by

extending the incident  edges of all the reflex vertices inward of P  until they hit

the next boundary.   If c, r, x, bx, s, es and rc be the total number of convex

ver-  tex, reflex vertex,   intersection vertex , boundary   intersection vertex,

segment,  extended segment and r-cut in P  respectively then the components

always main- tains  the following relation  c + r + x + bx − s − es + rc = 1

Proof.      Let P  be a simple orthogonal polygon which is rectangulated by a

technique  described in Section  3.2.1.   We now reduce P  into  a graph   G

using the following rules.

1 Each convex and reflex vertex in P  corresponds to a vertex in G.

2 Each intersection of any edge and any extended edge in P  corresponds to 

a vertex in G.

3 Each intersection of any two extended edges in P  corresponds to a vertex

in G.

4 Two vertices  in G are connected  if there  is a connectivity  in the 

corre- sponding vertices and intersection points in P .

Figure 4.5 illustrates the construction of graph G from the orthogonal polygon

P  in Figure 4.4.  We consider all the intersection points in P  as vertices of G.

Figure 4.5: An illustration of the reduction of the orthogonal polygon in Figure
4.4 to a graph.



Again in G we connect the vertices based  on the connectivity of intersection

points in P .  It implies that there is no edge crossing in G.  So, G is a planer

graph.   Let  n, m and f be the number   of vertices,  number   of edges and

num- ber  of faces in G respectively.   Then  by Eular’s  formula  for G we can

write

n − m + f = 2.

Vertices V   of G corresponds  to four types of components in P  i.e convex,

reflex, intersection and boundary  intersection vertices. Again edges of G corre-

sponds to two types of components in P  i.e. segments and extended segments.

Similarly faces of G corresponds  to the r-cuts and exterior  portion  of P .  Let

c, r, x, bx, s, es and rc be the total number of convex vertex, reflex  vertex,

inter-  section vertex , boundary   intersection vertex, segment, extended

segment and r-cut in P  respectively.  We now reconstruct the polygon P  from

graph G.  We also reconstruct the Eular’s formula in G by the corresponding

components of P .  Then  for P  Eular’s formula becomes c + r + x + bx − s −

es + rc + 1 = 2,  i.e. c + r + x + bx − s − es + rc = 1

Q.E .D.

Lemma 4.2.2   Let P  be a simple orthogonal polygon which is rectangulated  by

extending the incident  edges of all the reflex vertices inward of P  until they hit

the next boundary.   If P  is chord free and  has R number  reflex vertices,  then

P  has total 4r + 4 number of segments.  But if P  has ch number of chord then

total number of segments in P  is 4r + 4 − 2ch.

Proof.        By properties of polygons described  in Chapter 2 any  n  vertex

orthogonal polygon P  have n number  of edges.  O’Rourke [14] showed that an

orthogonal  polygon has  total number  of vertices,  n  = 2r + 4 where r is the

number  of reflex vertices.  Therefore  total number  of edges in an  orthogonal

polygon, E  = 2r + 4.  In the rectangulation technique we extend two incident

edges of reflex vertices inward until they hit the next boundary.  If the polygon

is chord free then the extended edges always bisect another edge of the polygon

and  creates two additional edges.   r number   of reflex vertices creates 2r

additional edges. Therefore total number  of edges becomes E = 2r + 2r + 4 =

4r + 4. In fact here the edges are the segments created by reflex vertices.

By definition a chord is a line segment fully contained in P that connect two

cogrid vertices or reflex vertice.  Therefore a chord is an extended segment.  But



this  extended  segment  do not bisect  the opposite  boundary  as two  ends of

a  chord are two reflex vertices.  Therefore, after rectangulation for each chord

two  additional segments are not added  in the orthogonal polygon.   If we

introduce  a chord   in a rectangulated  chord   free orthogonal  polygon,   the

chord  reduces two segments from the total number  of segments in that chord

free orthogonal  polygon.   Following example gives explanation of  this

statement.   Let P  be a  chord free orthogonal polygon. After rectangulaion, P

has total 4r +4 segments. Adjust  the reflex vertices  of P  in such a way that

total number  of edges in P  remains same but it introduces total ch number

of chord in P .  Then  after

rectangulation, the new orthogonal polygon has 4r+4−2ch number of segments.

Q.E .D.

Theorem 4.2.3   Let P be a simple orthogonal polygon which is rectangulated

by extending the incident  edges of all the reflex vertices inward of P  until they

hit  the next boundary.   Let x, es and rc be the total number of intersection

vertex, extended segment and r-cut in P respectively.  Then the components of P

always maintains the following relation,  x − es + rc = 1.

Proof.         Let  P  be  a  simple  orthogonal  polygon  which  is rectangulated

by a technique  described  in Section  3.2.1.   Let  c, r, x, bx, s, es  and  rc be

the  total number   of convex vertex, reflex vertex, intersection vertex ,

boundary intersection  vertex,  segment,  extended  segment  and   r-cut in   P

respectively. By Lemma  4.2.1 we get  the following relation  among  the above

components c + r + x + bx − s − es + rc =  1.   If P  is chord  free then by

Lemma  4.2.2

S = 4r + 4 .   Again each reflex vertex  creates  two  boundary  intersection

ver- tices.   Therefore  we can write  bx = 2r.  We now replace  the value  of s

and  bx in the equation  of Lemma 4.2.1 by the new value.   The   equation

becomes

c + r + x + 2r − 4r − 4 − es + rc = 1, i.e. c − r + x − es + rc = 5. If P  has n

number of vertices then n = 2r + 4, i.e. c + r = 2r + 4, i.e. c − r = 4. If we

put

the value of C − R in the earlier equation, the equation becomes x − es + rc =

1.

But if P  has ch no of chord then by Lemma 4.2.2 s = 4r + 4 − 2ch.  If we



introduce a chord in a rectangulated chord free orthogonal polygon, the chord

reduces two boundary  intersection vertices from the total number  of boundary

intersection  vertices  in that chord free orthogonal  polygon.   Therefore   for

or-

thogonal polygon with chord bx = 2r − 2ch. We now replace the value of s and



bx in the equation  of Lemma 4.2.1 by the new value.  The  equation  becomes
c + r + x + 2r − 2ch − 4r − 4 + 2ch − es + rc = 1, i.e. c − r + x − es + rc =
5. Replacing the value of c − r we get x − es + rc = 1                                  Q.E
.D.

4.3   MLSC Problem  on Semi-orthogonal  Poly-

gons

Let P  be a semi-orthogonal polygon where non orthogonal edges do not have

external proximity edges. In our algorithm we first reduces P  to an orthogonal

polygon.  Then  we execute a new algorithm on reduced orthogonal polygon to

solve the MLSC problem.  At the end we reconstruct the semi-orthogonal poly-

gon from the reduced  orthogonal polygon and  we show that results achieved

from the reduced orthogonal polygon is also hold for the semi-orthogonal poly-

gon.  Details of the procedure above is described in the subsequent paragraph.

We first show the reduction technique.

4.3.1   Reduction to Orthogonal
Polygons

In the reduction technique first we partition the P  based the non-orthogonal

edges then we reduce it to an orthogonal polygon. At the end we assign length

to the boundaries  of P . The detail description of each step is given below.

Step 1.   Partitioning by  non   orthogonal edges:  We partition P  by

drawing a horizontal or a vertical or both (whichever possible) lines interior to

P  from both vertices of all the non orthogonal edges. If the vertical or horizon-

tal line intersects other non orthogonal edge then again draw a horizontal or a

vertical or both (whichever possible) lines interior to P  from that intersection

point.   Orthogonal edges in semi-orthogonal polygons have two types of visi-

bility.  Horizontal edges has vertical visibility on the other hand  vertical edges

has horizontal visibility.   But  non orthogonal edges can have any one type of

visibility from these two types. After drawing horizontal and vertical lines from

two vertices of a non-orthogonal edge, it gets two corresponding segments from

the opposite horizontal and vertical boundary.  If length of the vertical segment

is smaller than the length of horizontal segment then the non orthogonal edge



gets horizontal visibility.  Otherwise it gets vertical visibility.  Figure 4.6(b) il-

lustrates the partitioning of the input semi-orthogonal polygon in 4.6(a) based

on the vertices of non orthogonal edge.

Figure 4.6: Rectangulating a semi-orthogonal polygon based on non orthogonal
edges.  (a) the input Semi-orthogonal polygon (b) a semi- orthogonal polygon
after rectangulation.

Step 2.  Omitting non  orthogonal edges: After partitioning we replace

all the non orthogonal edges of P  by drawing right angle triangles exterior to

P , taking each non-orthogonal edges as hypotenuse.  Figure 4.7 illustrates the

the omitting procedure of non orthogonal edges from a semi-orthogonal polygon

and reducing it to another polygon.

Step  3.   Assigning weights:  Segments of the reduced orthogonal polygon

Figure 4.7: Omitting non orthogonal edges from a semi-orthogonal polygon. (a)
a semi-orthogonal polygon after rectangulation (b) drawing right angle triangle
(c) the reduced polygon.

are assigned with a weight based  on the length of the segments of the semi-

orthogonal polygon.   If the non-orthogonal edges have vertical visibility then

bases of right  angle triangles  gets  the length  of the respective  hypotenuses

as
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their weight where perpendiculars  receives an  infinite weight.   On  the other

hand if the non-orthogonal edges have horizontal visibility then perpendiculars

of  right angle triangles gets the length of  the respective hypotenuses as their

weight where bases receives an infinite weight.  All other edges in the reduced

polygon get their weights from the length of respective segments of the semi-

orthogonal polygon.  Figure  4.8(b)  illustrates the assignment of weight to the

reduced orthogonal polygon from the input semi-orthogonal polygon in Figure

4.8(a).

Figure 4.8: Assignment of weight to the boundaries  of a reduced polygon.  (a)
an input semi-orthogonal polygon with boundary lengths (b) different boundary
weights  of the reduced  polygon from the semi-orthogonal  polygon in Figure
4.8(a).

′
We can write the following lemma on the reduced polygon P

Lemma 4.3.1    The reduction technique mentioned above always reduces a
semi-

′
orthogonal polygon P  to an orthogonal polygon P .

Proof.      In this proof we first show that the reduction technique described

above is always possible for all semi-orthogonal polygons that do not have ex-

ternal proximity edges with non orthogonal edges, and then we show that the

reduced polygon is an orthogonal polygon. At the end we show the correctness

of the reduction.

Non-orthogonal edges of a semi-orthogonal polygon has always orthogonal

neighbors.   Again vertices  of non-orthogonal  edges always has an interior
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an-  gle less than 270◦.  Furthermore we only consider a subclass of semi-

orthogonal



polygons which do not have external proximity edges with non-orthogonal edges.

All the  above three conditions always ensures sufficient space outside a semi-

orthogonal  polygon to draw right  angle triangles  taking  non-orthogonal

edges as hypotenuse.

Except the non-orthogonal edges, all other edges of P are orthogonal.  In the

reduction technique we replace each such non-orthogonal edges by two edges i.e.

the bases and  perpendiculars  of the right angle triangles.  Interior angles be-

tween these two edges are always 90◦.  Which implies that all the non-

orthogonal  edges are replaced by two orthogonal edges. Therefore the  reduced

polygon be- come orthogonal.

In the reduction technique the right angle triangles are always drawn outside

P  therefore no interior portion of the semi-orthogonal polygon are excluded in

the reduced  polygon.  Rather reduced  polygon includes some exterior portion

along with the whole interior portion of P . Since visibility of the sliding camera

are orthogonal  and  its  direction  is towards  interior  to the polygon,  therefore

each base of the right angle triangle can cover both the newly included exterior

portion  and   the earlier interior  portion  covered by each hypotenuse  (i.e.

the  non-orthogonal edges). The perpendiculars   of right angle triangles are the

extra  edges which does not exist in the input semi-orthogonal polygon. But

they gets  an ∞ weight which always excluded them from consideration in the

subsequent  part of algorithm.

Q.E .D.
′

Let P
′

be the reduced orthogonal polygon. After reduction we rectangulate
P   using the rectangulation technique described in Section 3.2.1 of Chapter 3.

If the rectangulation intersects an non orthogonal edge then draw a horizontal

or a vertical or both (whichever possible) lines interior to P  from that intersec-

tion point as described in Section 4.3.1.Figure 4.9 describes the rectangulation

by reflex vertices and  boundary  segment’s weight calculation of the reduced

orthogonal polygon.
′

This rectangulation technique partition the interior and boundary  of P into

a set of r-cut and segments respectively like before. Let R(P ) be the set of r-cut.

The weight of the segments in the bases are calculated according to the ratio of

the weight of the entire bases. Each segments in the perpendicular  edges again
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Figure  4.9:  Illustration  of rectangulation  of the reduced  orthogonal  polygon
by reflex vertices.  (a) a reduced orthogonal polygon with boundary  weights (b)
rectangulaiton by reflex vertices (c) after rectangulation weight of the boundary
segments.

get the ∞ value as weight.  All other segments get their respective values as
weight.

′
We can write the following observation on the r-cut and segments of P .

′
Observation 4.3.2   In  P weight of a lp ∈ LP  and  a rp ∈ RP  that  covers

same row of r-cut are  not always equal.  Similarly weight of a tp ∈ T P  and a

bp ∈ BP  that covers same column of r-cut are not always equal.

In the Figure  4.9(C) top facing segment  tp and  bottom  facing segment  bp

covers the same column of r-cut but their weight are not equal.

We now can write the following lemma on the reduced orthogonal polygon
′

P .
′                 ′

Lemma 4.3.3   Let C  be a cover of P .  Let C be the line segments obtained
′from C by executing the following operations  on P

1 Replace each lp (Resp.   rp) by rp (Resp.   lp) if both the segments

cover  same row of r-cut and weight of rp (Resp.   lp) is smaller than

weight of lp (Resp.  rp).

2 Replace each tp (Resp.   bp) by bp (Resp.   tp) if both the segments

cover  same column of r-cut and weight of bp (Resp.tp) is smaller than

weight of tp (Resp.  bp)

′
Then  C

′
is also a cover of P

′
and the sum of weight of the segments in C   is

always less than or equal to the sum of the weight of the segments in C .



Proof.       By Observation  4.3.2 weight  of a left  and   a right  facing

segment that covers same row of r-cut are not always equal.  Similarly weight

of a top and a bottom facing segment that covers same column of r-cut are not

always equal.   In the above replacement operation, for each row of r-cut we

choose smaller weight segment from the left and  right facing segment that

cover the  same row r-cut. Similarly for each column of  r-cut we choose a

smaller weight  segment  from top and   bottom  facing segment  that guards

the same column of r-cut.  Thus  all the row of r-cuts and  column of r-cuts

are guarded   by at  least one segment. Guarding   all the row of  r- cuts and

column of  r-cuts means  guarding the whole polygon. Again for each row and

column of r-cut we  choose  the segment whose weight is smaller than other.

Therefore it  makes the sum of  weight of segments smaller than before.   If all

the smaller segments are chosen

at the beginning then no replacement operation takes place.                   Q.E .D.

′                                                 ′                     ′We consider C
′

those are in C .

as a regular cover of P .  Let S(P  ) be the set of segments

Durocher  and  Mehrabi  in  [8]  showed that a  single r-cut can  be  entirely

covered by only horizontal  or only vertical  line segments.  From  that 

findings
′

we can write the following lemma for the reduced orthogonal polygon P .
′                                                                 ′Lemma 4.3.4   Let R ∈ R(P  ) be a r-cut and C be a cover P then, there exist

′
a set C ′⊆ C such that  all line segments in C have the same orientation and

(i.e.,  they all are horizontal or they all are vertical)  and they collectively guard

R entirely.

The following Lemma follows from Lemma 4.3.3 and 4.3.4
′

Lemma 4.3.5   Reduced  orthogonal  polygon P
′

S(P  ).
has  an  optimal  cover  C  from

′
Observation 4.3.6   Let P ′

be a reduced orthogonal  polygon and R(P  ) be the

r-cuts created  using the partition  technique  described above.  Then  each r-cut
′

in R(P  ) is seen by exactly one vertical  and one horizontal  line segment from
′                                           ′                                  ′                                                   ′

S(P  ).  Again if C ⊆ S(P  ) is a cover of P then every r-cut in R(P  ) must be

seen by at lest one horizontal or one vertical line segment in C .

′In Figure 4.10(a) let S(P  ) = tp1 , tp2 , tp3 , lp1 , lp2 , lp3 , rp4 be the segment 
set.

Here r-cut rc1 covered by one horizontal segment tp3  and one vertical segment



′                           ′                                                     ′rp4. Segments tp3, rp4  ∈ S(P  . If C ⊆ S(P  ) is an optimal cover of P then at

least one segment from C covers the r-cut rc1. We now construct an undirected
′                                   ′weighted graph GP 

′  = (V, E) by the segments S(P  ) and r-cuts of P following
the same rules described in Section 3.2.1 of chapter 3. The graph in Figure 4.10

(b) is constructed from the reduced orthogonal polygon in Figure 4.10(a).  We

rp4
bp4

bp2       bp3

lp4

lp3

lp2

lp1

lp1/rp1                 lp2/rp2               lp3/rp3                rp4

tp1        tp2        tp3 tp1/bp1 tp2/bp2 tp3 tp4/bp4

Figure 4.10: An illustration of constructing a bipartite graph from the reduced
orthogonal polygon.

next  show that MLSC problem  on the semi-orthogonal  polygon P  reduces to

the minimum  weight  vertex  cover problem on GP ′ .  For this  we first  need

the following lemma

′
Lemma 4.3.7   Let T (P  ) be the set of all the perpendiculars  of the right  an-

′gle triangle  drawn  in  P taking  non  orthogonal  edges as  hypotenuse.    Then
′                ′

S(P  ) ∩ T (P  ) = ∅.

′
Proof.     By Lemma 4.3.3, S(P  ) comprises with the segments each of whose

weight is smaller than the corresponding segment that cover same row or column

of r-cuts.   Each  time the perpendiculars  are  compared  with other segment,

perpendiculars  are always excluded as the weight of perpendiculars  considered
′as ∞.  At the end no perpendicular  edges is included in the set S(P  ).  Which

′                ′implies that S(P  ) ∩ T (P  ) = ∅.                                                                    Q.E .D.

Durocher and Mehrabi in [8] showed that MLSC problem on an orthogonal

polygon reduces to the minimum weight vertex cover problem on a graph which

is constructed from that orthogonal polygon using the algorithm described ear-
′lier.  Since the reduced polygon P is an orthogonal polygon and graph  GP ′  is

rc1

rp3

tp4        rp2

rp1

bp1



′
constructed  from P using the said algorithm  then directly  we can write  the

following Lemma using the above result
′

Lemma 4.3.8   MLSC problem on reduced orthogonal polygon P

minimum weight vertex cover problem on GP 
′ .

reduces to the

We now show the equivalencey of the MLSC problem on a semi-orthogonal

polygon and the corresponding reduced orthogonal polygon.

Lemma 4.3.9   MLSC problem on semi-orthogonal polygon P  reduces to MLSC
′problem on reduced orthogonal polygon P

Proof.      Let C be the minimum  length camera positions in the reduced or-
′

thogonal polygon P . We now reconstruct the semi-orthogonal polygon P  from
′the reduced orthogonal polygon P by replacing the perpendiculars  and bases

with  the hypotenuses.  Then  we set  the minimum  length  camera  positions  C
,

′
which is obtained from P , to P .  By Lemma 4.3.7 additionally drawn perpen-

′dicular  edges of P are never included in C .  Weight of the bases are equal to

the length of the corresponding hypotenuses.  Again all other segment’s weight
′in P is equal to the length of the segments in P . Therefore, we directly can set

′the the minimum length camera positions from P to P .                         Q.E .D.

To find out the computational complexity, next we show that graph GP 
′  is

a bipartite graph.

′Lemma 4.3.10 Graph GP 
′ constructed  from the reduced orthogonal polygon P

is a bipartite  graph.

Proof.     In GP 
′  there are two types of vertices.  One type corresponds to the

′                    ′vertical segments and other type is the horizontal segments of S(P  ). In S(P  )

for each row and column of r-cut there is one vertical and one horizontal segment

respectively to cover. Therefore no two vertical or horizontal segments can see

the same r-cut simultaneously.  It implies that no two vertices of the same type

are neighbor.  Vertices are connected only among the two types. Its satisfies the

both the conditions (two types of vertices and No connectivity among the same

type of vertices) for a graph to become a bipartite graph.                        Q.E .D.

Regarding the computational complexity of the algorithm we can write the 

following lemma



Lemma 4.3.11 Algorithm for the MLSC problem on semi-orthogonal polygons

takes O(n2 ) time.

Proof.     Following operations are required for an optimal solution of MLSC

problem on semi orthogonal polygons

Algorithm MLSC

Input  : n vertex semi-orthogonal polygon.

Output : The minimum length boundaries  that cover the whole polygon.

1 Partition the polygon by the vertices of non orthogonal edges.

2 Draw right  angle triangle  taking  each non orthogonal  edges as hy- 

potenuse assigning weight to each edges i.e reducing the semi-

orthogonal
′

polygon P  into an orthogonal polygon P .

3 Partition the reduced orthogonal polygon by extending two edges of

reflex vertices.

4 Compare  each tp ∈ T P  with  corresponding  bp  ∈ BP  that covers
′                  ′same set  of r-cut R1 (P  ) ⊆ R(P  ).  Similarly comparing  each lp ∈

LP  with corresponding  rp ∈ RP  that covers the same set of r-cut.

Select the segments which have smaller length from each comparison.
′

Create a set S(P  ) with those segments.

5 Construct a bipartite graph GP 
′ from the reduced orthogonal polygon

′                                                                     ′
P   considering the segments setS(P  ) as vertices.

6 Execute  the minimum  weight  vertex  cover algorithm  on bipartite

graph GP 
′ .

7 Reconstruct the semi-orthogonal polygon P from the reduced orthog-
′onal polygon P

to P .

and also set the minimum  length camera positions

Figure 4.11 and 4.12 illustrates all the complete algorithm.  Steps 1, 2, 3, 4 and

7 require linear time complexity, steps 5 and 6 require O(n2 ) time complexity. 

Overall we can say that the algorithm requires O(n2 ) time complexity.    Q.E .D.

Now from Lemmas 4.3.9 and 4.3.11 we can write the following theorem.

Theorem 4.3.12 Given  a  semi-orthogonal  polygon P  with n  vertices,  there

exist an algorithm that solves MLSC problem on P  in O(n2 ) time.



Figure  4.11:   An  illustration  of the algorithm  of MLSC  problem  for  semi-
orthogonal polygons.   (a)  an  input semi-orthogonal polygon  with boundary
lengths (b) partitioning by non-orthogonal edge, reducing to orthogonal poly-

′
gon P

′
and  assigning weights  to the segments  of P (c) partitioning  by reflex

′vertices  (d)  assigning labels to all the segments  and  constructing  S(P  ) (the
bold line segments).



Figure  4.12:   An  illustration  of the algorithm  of MLSC  problem  for  semi-
′orthogonal polygons(continued).  (e) construction of bipartite graph G(P  ) from

′P  (f ) the minimum weight vertex cover of bipartite graph G(P ′)(white vertices).
′(g) locating  the vertices  of minimum  weight  cover in P

(h) reconstructing the semi-orthogonal polygon P  from P
length camera positions.

(bold  line segments)
′

with the minimum



4.4   Conclusion

In this chapter we have developed an algorithm that finds the minimum length

cover using sliding cameras for a semi-orthogonal polygon. We also have estab-

lished some relations among the number  of different components of an orthog-

onal polygon after it is being rectangulated by a rectangulation technique.
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Chapter 5

MLSC Problem with

k-transmitters

5.1   Introduction

Advancement  in the wireless technology  introduces  another  new variation

in  the art   gallery problem.   Placing wireless devices or modems inside a

building in such a way that receiving strong enough signal by any computer

or similar  kind of device from that modem is a common problem nowadays.

For this the  main limitation is not the distance but the number of walls that

separate them. Modems has infinite broadcast range and can penetrate up to k

number of walls  to reach a client.  Here k is some fixed integer and k > 0.

Such kind of modem is called k-transmitter. In computational geometry walls

are represented by line  segments in polygons. For this thesis we only consider

orthogonal polygons. If k-  transmitters can slide back and forth then they are

called sliding k-transmitters.  In   this  chapter  for orthogonal  polygons   we

develop   an   algorithm  that finds  the  minimum-length sliding k-transmitters

with one directional transmission capability and cover the whole polygon also.

The  rest of the chapter is organized  as  follows.   We  start with problem

definition  with  some relevant  terminologies  in Section  5.2.  In Section  5.3

we  give the result of  MLSC problem on orthogonal polygons with one

directional  sliding k-transmitter.  Finally, in Section 5.4 we summarize our

contributions.



5.2   Preliminaries

5.2.1   Guarding by Sliding k-transmitters

Let P  be an orthogonal polygon.  Sliding k-transmitters travel back and forth

along  axis-aligned  line segment s  inside  P  and  cover omni-directionally.   A

point  p is covered by this  guard  if there  exist  a point  q ∈ s such that pq is

a line segment  normal   to s and  is completely  inside P .   Again pq has at

most k intersections with the polygon’s boundary  walls.   The  objective is to

find minimum-length sliding k-transmitters that cover the entire P . In other

words the goal is to find the minimum total length of trajectories on which the

sliding  k-transmitters travel to cover the entire polygon.   The  problem  is

denoted as  MLSCk problem.   In this chapter we consider some variations of

this problem.  We consider   that sliding k-transmitters  travel  along the

boundary  of P  and it cover one directionally  inside P .  We call this  problem

as modified MLSCk  problem.    For the orthogonal  polygon in Figure

5.1(a),Figure  5.1(b)  indicates

s1                
s6                                                   s1

s2            s3 s4        s5 s2            s3          s4            s5

Figure 5.1: MLSCk problem with variation for k = 2. (a) an input orthogonal
polygon (b) provide the minimum-lenngth sliding k-transmitters (c) not provide
the minimum-length sliding k-transmitters.

the minimum travel length by sliding k-transmitters s1 , s2 , s3 , s4  and s5 . They

also cover the whole polygon. Figure 5.1(c) is an example where all the sliding

k-transmitter cover the whole polygon but the total length traveled by sliding

k-transmitters is not the minimum.

5.2.2   Classification  of Convex and Reflex Vertices

Interior angles of convex vertices of an orthogonal polygon is always 90◦  but it

is 270◦  for reflex vertices.  We classify convex and reflex vertices based on
their



monotonicity.   Let P  be an  orthogonal polygon.   Draw  the smallest possible

rectangle exterior to P so that entire P remains inside the rectangle.  Extend the

two incident edges of each convex vertex externally to the orthogonal polygon

until they  hit the outer  rectangle.  Similarly extend  the two  incident  edges

of each reflex  vertex internally to the orthogonal polygon until they hit the

outer rectangle.  For a convex vertex if both the extended edges intersects at

most one boundary  of P  or no boundary  of P  then the convex vertex is called

monotone  convex vertex.   But if any of the extended  edge of a convex

vertex  intersects  more than one boundary   of P   then the convex vertex is

called non monotone

convex vertex.  Again for a reflex vertex if both the extended edges intersects

Figure 5.2: Classification of convex and reflex vertices.

at most one boundary  of P  then the reflex vertex is called monotone  reflex

vertex.  But if any of the extended edge of a reflex vertex intersects more than

one boundary  of P  then the reflex vertex is called non monotone reflex vertex.

Figure 5.2 illustrates different classes of convex and reflex vertices.

5.3   Algorithm  for Modified MLSCk Problem

In this section we give an algorithm for the modified MLSCk problem.  In this

algorithm we first rectangulate the input orthogonal polygon by a new rectan-

gulation technique. After rectangulation we create groups among segments by

plane sweep algorithm. Then for a fixed k we construct a graph from the rect-

angulated orthogonal polygon. After that we eliminate redundant vertices and

edges from the graph using the group of segments and construct a new graph.

Finally  we execute minimum  weight vertex cover algorithm on the new graph



to get the minimum-length sliding k-transmitter.  Detail of this algorithm is in

the subsequent paragraph.

5.3.1    Rectangulation  of the Orthogonal
Polygons

Let P  be the input orthogonal polygon.  We first rectanglulate P  using a new

rectangulation  technique.   In  this  technique  a rectangle  is drawn  exterior  to

the orthogonal  polygon which is described  in section  5.2.2.  Then  extend  the

Figure 5.3: Rectangulation of an orthogonal polygon.

two incident edges of all the non monotone convex vertices and  all the reflex

vertices in both direction until they hit the exterior rectangles.   During  this

extension some of the extended edges may pass along the edges of the

orthogonal  polygon or extended edges of  some other veritces.   Beside

rectangulating the  interior of  the orthogonal polygon, this rectangulation

technique partitions the  boundaries of the orthogonal polygon and the

boundaries of the outer rectangle also.  Figure  5.3 illustrates the rectangulation

technique.  We call each of the interior rectangle of the orthogonal polygon as

rc-cut.  We observe that in order to guard  the entire orthogonal polygon,  it

suffices to guard  all rc-cut.   The following observation is straight forward

Observation 5.3.1   Let P  be an  orthogonal  polygon and  C  be a cover of P
.

′Moreover, let C be the set of line segments obtained from C by translating every



vertical line segment in C horizontally penetrating  at most k boundaries  to its

right  and  every horizontal  line segment in C  vertically penetrating  at  most k

boundaries below it until they reach the nearest  boundary of P  from the exterior
′rectangle.  Then  C is also a cover of P  and the respective sums of the lengths

′of line segments in C and C are equal.

s3

s1                                                                                                                              s1

s2                           s4        s5 s2            s3          s4            s5

Figure  5.4:  (a)  Before translating  right  and  bottom  facing segments  (b)  
after translating right and bottom facing segments.

Figure 5.4 illustrates the Observation 5.3.1. Figure 5.4(a) uses bottom and

right facing boundary for k-transmitters.  On the other hand Figure 5.4(b) found

after translating Figure 5.4(a).  Both 5.4(a) and 5.4(b) provide the same result.

For  MLSC problem  Durocher  and  Mehrabi  [8]  gave a lemma  where they

showed that each r-cut is entirely covered by either horizontal or vertical line

segments.   Using that lemma  we can  directly write the following lemma  for

modified MLSCk problem

Lemma 5.3.2   Let R  be a rc-cut and  let C  be a cover of P  then  there  exist
′

a set C ′⊆ C such that  all the line segments in C have the same orientation

(i.e.  they are all vertical or they are all horizontal)  and they collectively guard

R entirely.

Let  B(P ) be the set  of all top and  left  facing segments  in P  created

by  the rectangulation technique described in Section 5.3.1. Then following

lemma follows from Observation 5.3.1 and Lemma 5.3.2

Lemma 5.3.3   Using sliding k-transmitters every orthogonal polygon P  has an 

optimal cover C ⊆ B(P ).



5.3.2    Assigning Labels and Weights  to
Segments

By Lemma 5.3.3, only top and  left facing segments are required  to optimally

cover an orthogonal polygon.  This is why we assign labels to only top and left

facing segments.  Length of each segment is assigned as its weight.

b9(6)

b8(2) b5(2)
b7(3) b4(3)

a5(3)a6(6) b6(2) b3(2)
b2(2)

b1(7)

a1(6)   a2(7)  a3(6)    a4(6)

Figure 5.5: An illustration of assigning labels and weights to left and top facing
segments.

In the Figure 5.5, labels a1 , a2 , ......, a6  are assigned to each top facing seg-

ments  and   labels b1 , b2 , ......, b9   are assigned to left  facing segments.

Numbers associated with each label is the length of that segment.

As we are using k-transmitters as guard,  each rc-cut may be covered by more

than one left facing or top facing segments.   We next group  the left and

top facing segments those may cover same rc-cut.

5.3.3   Creating  Groups among Segments

The rectangulation technique described in Section 5.3 partitions the boundary

of the exterior rectangle into some segments.  In the Figure 5.6, the notations

s1, s2 , · · · , s11   indicates  those  segments  in the exterior  rectangle.   Run  plane

sweep algorithm once for each top facing and for each left facing segment of the

exterior rectangle.  It starts from the top and left facing segments of the exterior

rectangle and ends at the opposite boundary  of the exterior rectangle.  In each

run  from a top facing segment of the exterior rectangle, group  all top facing

segments  of the orthogonal  polygon.  Similarly in each run  from a left  facing



s1       s2         s3            s4             s5

s11

s10 
s9 s8 s7

s6

s1  : a5

s2  : a1, a6

s3   :  a2

s4   :  a3

s5  : a4

s6  : b1

s7  : b2

s8  : b3, b6

s9  : b4, b7

s10  : b5, b8

s11  : b9

Figure 5.6: An illustration of grouping among segments of an orthogonal poly-
gon.

segment of the exterior rectangle, group all left facing segments of the orthogo-

nal polygon. Each such group is called a segment group. Due to rectangulation

technique segments in the same group have equal length. In the Figure 5.6 the

plane sweep algorithm starts from segments s2, s8 , s9  and s10  found more than

one top or left facing segments.

We next reduce the orthogonal polygon to a graph for a fixed value of k.

5.3.4  Reduction to Graph for a Fixed k

We construct  an  undirected  weighted  graph  GP    = (V, E)  from P  using the

following rules:

1 Each segment s ∈ B(P ) corresponds to a vertex vs  ∈ V  such that weight
of the vs  is the length of s.

2 Two vertices vs, vs′   ∈ V  are adjacent in GP , if s and s′  do not have same

orientation(i.e.  if one of the segment is vertical then other segment must

be horizontal or vice versa) and s & s′  cover a common rc-cut.

Figure 5.8 is the reduced graph from the rectangulated orthogonal polygon

in Figure  5.7 for k = 2.  Here in the Figure  5.7 segments b3  and  b6  cover one

common rc-cut.  But vertices b3  and b6  in Figure 5.8 are not connected as they

have same orientation (i.e. both of them are left facing segments).

b9

b8 b5
b7 b4

a5 a6 b6 b3
b2

b1

a1 a2 a3 a4



a5(3)a6(6)

b9(6)

b8(2)
b7(3)
b6(2)

b5(2)
b4(3)
b3(2)
b2(2)

b1(7)

a1(6)  a2(7)   a3(6)   a4(6)

Figure 5.7: A rectangulated orthogonal polygon for reducing to a graph.

b1(7)  b2(2)  b3(2)  b4(3)  b5(2)  b6(2)  b7(3)  b8(2)  b9(6)

a1(6)    a2(7)    a3(6)    a4(6)    a5(3)      a6(6)

GP

Figure 5.8: An illustration of constructing a graph from a rectangulated orthog- 
onal polygon in Figure 5.7 for k = 2.



We next show that graph GP   constructed from P  is a bipartite graph.

Lemma 5.3.4   Graph  GP    constructed  from the orthogonal  polygon P  is a bi-

partite  graph.

Proof.       In GP    there  are two  types  of vertices.   One type  corresponds

to the top facing segments and other type is the left facing segments.  Due to

the use of k-transmitters two top facing segments or two left facing segments

can cover a common rc-cut.   Though  two  segments  of same orientation  can

cover  a common rc-cut, but during construction of graph GP   corresponding

vertices of such  segments are  kept disjoint.   It ensures  that no two vertices

of same orientation are neighbors  in GP .  Vertices are connected only among

the two  types.  Its satisfies the both conditions (two types of vertices and no

connectivity  among the same type of vertices) for a graph to become a

bipartite graph.

Q.E .D.

5.3.5   Redundant Edges and Vertices  in Graph
GP

k-transmitters cover penetrating walls which may causes one rc-cut covered by

more than one left facing or more than one top facing segments or both. There-

fore GP   can have more than one edge for an rc-cut. Due to the rectangulation

technique  length  of all the left  facing segments  that cover same  rc-cuts  are

equal.  Similarly length of all the top facing segments that cover same rc-cuts

are also equal.  As length of the segments in P  are equal, weight of the vertices

in GP   are also equal.  Therefore,  only one edge is sufficient in GP   to represent

an  rc-cut.   Keeping one edge for an  rc-cut  if we eliminate  all other  edges it

will not create any impact on minimum-length cover.  Therefore,  for an rc-cut

except one edge all other edges are redundant.   For an rc-cut rc1 in Figure 5.9

there are four edges in GP   (in Figure 5.10)i.e. a1 b4 , a1 b7 , a6 b4 , a6 b7 (dotted

lines in Figure 5.10). Except a1 b4  all the remaining edges are redundant in GP .

Furthermore  for the same characteristics  of k-transmitters  there  are some

segments in P  whose covering area is fully covered by another segment of same

orientation and equal length.  Eliminating corresponding  vertices of those seg-

ments form GP   does not create any impact on minimum length cover. Therefore

such vertices are redundant in GP . In Figure 5.9, rc-cut covered by the segment

b6  is also covered by the segment b3 . Both b3  and b6  are of equal length.  b6  also



rc1
a5(3)a6(6)

b9(6)

b8(2)
b7(3)
b6(2)

b5(2)
b4(3)
b3(2)
b2(2)

b1(7)

a1(6)  a2(7)   a3(6)   a4(6)

Figure  5.9:  A rectangulated  orthogonal  polygon  for redundant vertices  and
edges.

b1(7)  b2(2)  b3(2)  b4(3)  b5(2)  b6(2)  b7(3)  b8(2)  b9(6)

a1(6)    a2(7)    a3(6)    a4(6)     a5(3)     a6(6)

GP

Figure 5.10: An illustration of redundant vertices and edges in graph GP .
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cover one additional rc-cut.  Therefore the corresponding  vertex of segment b3

in graph GP   is redundant.

There  is a  vertex  in GP    for each  segment  in P .   Furthermore  weight

of a vertex  in GP    is the length  of the corresponding   segment  in P .

Therefore grouping  of segments  in P  can be considered  in GP    also.  We call

each such  group in GP    as vertex group. We need to eliminate all such

redundant vertices  and edges from graph GP . For this we first need the

following observation.

Observation 5.3.5   Redundant  vertices and edges are created  only from 

vertex groups which have more than one member in the group.

′We  next  construct  a  graph  GP    form GP    after  eliminating  all redundant

vertices  and   edges from GP .   This   elimination  work is done by executing

two  set operations in all the vertex groups which have more than one

members.

5.3.6   Eliminating  Redundant Vertices  and Edges from

GP

By Lemma 5.3.4 graph  GP   is a bipartite graph.   Therefore  each vertex has a

neighbor set from the opposite partite set.  If a vertex group have more than one

member, construct neighbor sets of all the vertices in that group.  Let N Sam  
and

N San   
be two neighbor sets of two vertices of same group am   and an

respectively. Then  we follow the bellow mention rules to eliminate redundant

vertices and edges from GP

1 If N San    
(Resp.   N Sam 

) is subset  of N Sam   
(Resp.   N San 

) then we 

can eliminate vertex an (Resp.  am ) and its associated edges from GP .

2 If N San   
and N Sam  

are not subset of each other but have common element

bx  then we can eliminate either edge ambx  or an bx  from GP .

In the Figure  5.11 neighbor  set  of vertex  a1   is b1 , b4 , b7 .   Again neighbor

set of same  group  vertex  a6   is b4 , b7 .   As neighbor  set  of vertex  a6   is

subset  of same  group  vertex  a1 ,  we eliminate  vertex  a6   and  its  associated

edges from GP . Similarly vertices b6 , b7   & b8   and their associated edges are

also eliminated
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from graph  GP .  Figure  5.13 shows the graph  G′
which is constructed  after

eliminating redundant vertices and edges from GP   (shows in Figure 5.12).   We
P



b1(7)  b2(2)  b3(2)  b4(3)  b5(2)  b6(2)  b7(3)  b8(2)  b9(6) V ertexGroups
⊕   ⊗        ⊕
⊗ s2  : a1, a6

s9  : b4, b7

a1(6)    a2(7)    a3(6)    a4(6)     a5(3)     a6(6)

s8  : b3, b6

N eighbourSets

a1  : b1, b4, b7
a6  : b4, b7

b4  : a1, a2, a4, a5, a6
b7  : a1, a2, a5, a6

s10  : b5, b8

b3  : a2, a4

b6  : a2

b5  : a2, a4
b8  : a2

Figure 5.11: An illustration of neighbor sets of group vertices for k = 2.

b1(7)  b2(2)  b3(2)  b4(3)  b5(2)  b6(2)  b7(3)  b8(2)  b9(6)
⊕   ⊗        ⊕   ⊗

a1(6)    a2(7)    a3(6)    a4(6)     a5(3)     a6(6)

GP

Figure 5.12: Graph  before eliminating redundant vertices and edges.

b1(7)  b2(2)  b3(2)  b4(3)  b5(2)  b9(6)
⊕
⊗

a1(6)    a2(7)    a3(6)    a4(6)     a5(3)
′
P

Figure 5.13: Graph  after eliminating redundant vertices and edges.

G



next show that set operations described in this section eliminate all redundant

vertices and edges from graph GP .

′Lemma 5.3.6   GP    is constructed  after  eliminating  all the redundant  vertices

and edges from GP .

Proof.     Let N Sam   
⊆ N San 

.  It implies that N San    
contains all the elements

of N Sam  
and also some additional vertices.  It indicates that the corresponding

segment of the vertex an in P covers all the rc-cuts, covered by the

corresponding  segment of the vertex am   in P . Beside those rc-cuts, the

corresponding segment of an  in P  covers some additional rc-cuts also.  As am

and an  are in the same group, their corresponding  segments in P  have equal

length and both of them are either top facing or left facing segment.  For these

two reasons if we eliminate the vertex am   and its associated edges from GP   it

does not effect the minimum  length covering. Therefore vertex am    and its

associated edges are redundant in GP   and we can eliminate them.

Let N Sam  
and N San   

are not complete of each other but they have a common

vertex.  Let bx  be the common vertex.  Edges ambx  and an bx  represents common

rc cut in P . As am   and an vertices are in the same group, their corresponding

segments in P  have equal length and both of them are either top facing or left

facing segments.  If we eliminate either ambx  or an bx  from GP , it does not create

any  impact  on the minimum  length  cover.   Therefore  either  ambx   or an bx   is

redundant in GP   and we can eliminate any one of them.

By Observation 5.3.5, all the redundant vertices and  edges are among the

group which have multiple members.  Elimination operations are also executed

among  the group  which have  more than one member.   Each  elimination op-

erations among each group ensure that  in that  group there are no redundant

vertices and  edges.   Therefore  executing elimination operations in all groups

with multiple members in graph  GP   ensures that there are no redundant ver-

tices and edges in graph G′  .                                                                         Q.E .D.

Following lemma follows from Lemma 5.3.6

Lemma 5.3.7   There  is a bijection between rc-cut in P  and edges in G′  .

We next show the equivalence between modified mlsck problem  in P  and

minimum weight vertex cover problem on G′

P

P

P



Lemma 5.3.8   The modified MLSCk problem on P  reduces to minimum weight

vertex cover problem on G′

Proof.       Let  graph  G′
is constructed  from an orthogonal  polygon P  with

k-transmitters  having  penetration  capacity  k.   Let  CG1   be a vertex  cover of

P   and  let  CP 1  be a cover of P  defined in terms  of CG1 (mapping  illustrated

later). For each vertex v in G′
let w(v) denote the weight of v and for each line

segment l ∈ CP 1  let len(l)  denote the length of l.  We need to prove that CG1

is a minimum weight vertex cover for G′
if and only if CP 1  is an optimal cover

of P  for any value of k. For any value of k we show the following necessity 

and sufficiency statements respectively:

1 For  any  vertex  cover CG   of G′  , there  exist  a cover CP   of P  such that
P

l∈CP

len(l) =  
P

v∈CG

w(v).

2 For  any  cover CP   of P , there  exist  a vertex  cover CG   of G
′

such that

P

v∈CG

w(v) = 
P

l∈CP

len(l).

Necessity: Consider any vertex cover CG  of G′  . We next find a cover CP   for P .

For each edge (van 
, vbn 

) ∈ E, if van   
∈ CG  we locate a guarding  line segment on

the boundary  of P  that is aligned with a line segment an ∈ B(P ).  Otherwise,

we locate  a guarding  line segment  on the boundary  of P  that is aligned with

line segment bn  ∈ B(P ).  Since either van    
or vbn    

is in CG , by Lemma 5.3.7 we

can say that every rc-cut is guarded by at least one line segment located on the

boundary  of P .  Therefore CP   is a cover of P .  Furthermore for each vertex in

CG   we locate  exactly  one guarding  line segment  on the boundary  of P  whose

length is same as the weight of the vertex.  Therefore , 
P

l∈CP

len(l) =  
P

v∈CG

w(v).

Sufficiency: Consider any cover CP   of P . We next construct a vertex cover CG

for G′

′

From  the cover CP   of P  for any value of k.  By Observation  5.3.1, let
′C  be a regular cover obtained from C . Moreover let M be the partition of C

into line segments induced by the rectangulation technique describe in Section
5.3.1.  By Lemma 5.3.2 for any rc-cut  there  exist  a set  C
′

⊆ C such that all

P

P

G′

P

P

P

P

P

P

R



line segment in C ′R



have same orientation 
and collectively guard 
that RC -cut.

Therefore M is also a cover of P . Let CG  be the subset of vertices of GP   such 

that van   
∈ CG  if and only if an ∈ M . Since M is a cover of GP , by Lemma 5.3.7



we can write that CG  is a vertex cover of GP .  Furthermore it is observed that
P 

w(v) = 
P 

len(l) = 
P

len(l)                                                               Q.E .D.
v∈CG l∈M l∈CP

Regarding the computational complexity of the algorithm we can write the 

following lemma

Lemma 5.3.9   Algorithm for the modified MLSCk problem on orthogonal poly-

gon P  takes O(n2 ) time.

Proof.        Following operations  are  required  for an  optimal  solution  of the

modified MLSCk problem on orthogonal polygons

Algorithm MLSC

Input  : An n vertex orthogonal polygon.

Output : Minimum length boundaries  that cover the whole polygon.

1 Rectangulate the orthogonal polygon P  using non monotone convex

and reflex vertices.

2 Assign labels and weights to segments of P .

3 Create groups among segments by plane sweep algorithm.

4 Reduce P  to a bipartite graph GP   for a fixed value of k.

5 Construct neighbor  set of all vertices those are  member  of vertex

group with multiple vertices.

6 Find out the all the neighbor sets those are complete subset to other

neighbor set of the same group.  Then  eliminate the corresponding

vertices and edges of those neighbor sets from graph GP .

7 Find out the common members among neighbor sets of same groups

by set intersection operation.  Then eliminate one of the correspond-

ing edge from GP .  After executing steps 6 and 7 graph  G′
is con-

structed from graph GP .

8 Execute minimum weight vertex cover algorithm on G′  .

Steps 1, 2, 3 and 5 require linear time complexity, Steps 6,7 and 8 require O(n2 )

time complexity.  Step 4 require O(n2 ) + q, where q depends on the value of k

and number of rc-cut covered by the segments those are in the segment groups

P

P



that have multiple members.  q is always less than O(n2 ). Therefore, Step 4 also

require O(n2 ) time complexity.  Overall we can say that the algorithm requires

O(n2 ) time complexity.                                                                                   Q.E .D.

Now from Lemmas 5.3.8 and 5.3.9 we can write the following theorem.

Theorem 5.3.10 Given an orthogonal polygon P  with n vertices,  there exists

an algorithm that solves the modified MLSCk problem on P  in O(n2 ) time.

5.4   Conclusion

In this chapter we have developed an algorithm for modified MLSCk problem.

The algorithm finds the minimum length cover using sliding k-transmitters.



Chapter 6

Conclusion

In this thesis, we have considered the art gallery problem with sliding camera

variant.   Here the cameras   travel  back and   forth  along the polygon

boundary  and can see  orthogonally inside the polygon. This problem asks to

find out the  minimum length of polygon’s boundary   where sliding cameras

travel, such that those cameras can guard the whole polygon. In literature this

problem is termed as minimum  length sliding camera (MLSC) problem.  There

exist a O(n2 ) time algorithm which finds the minimum  length boundary  for

orthogonal polygons.  We have shown that one major step of existing

algorithm has O(nlog2 n) time complexity for monotone orthogonal polygons

and has O(n) time complexity for FAT  and MIN AREA grid n-ogons.  In the

existing algorithm that step takes O(n2 ) time.  For the same problem we also

have given an algorithm for semi-  orthogonal polygon with O(n2 ) time

complexity.  The class of semi-orthogonal polygon is a superclass to the class of

orthogonal polygon. While solving differ-  ent  art gallery problems with

orthogonal polygons, input polygons are usually  rectangulated by extending

the incident edges of reflex vertices.  In this thesis  as a byproduct, we have

established few relations among different components  of orthogonal polygons

after it is rectangulated by extending the incident edges of reflex vertices.

In Chapter 1, we have presented the historical background of the art gallery

problem.  Then we have described few art gallery problems with sliding camera

along with some previous results.  At the end of this chapter we have focused

on the scopes of this thesis.

In  Chapter  2,  we have  described  some  basic  terminologies  of polygons,



polygon partitioning,  graph  theory,  graph  related problems and complexity 

of algrithms.

In  Chapter  3,  we have  shown  that one major  step  of existing  algorithm

of MLSC problem  has  O(nlog2 n)  time  complexity  for monotone  orthogonal

polygons and has O(n)  time complexity for FAT  & MIN AREA grid n-ogons.

But in the existing algorithm that major step takes O(n2 ) time complexity for

orthogonal polygons.

In Chapter 4, we have presented an algorithm on MLSC problem for semi-

orthogonal  polygons.   The  class of semi-orthogonal  polygon  is superclass  to

the class of orthogonal polygon.   In  this chapter we have  also shown  some

relations among  different components of orthogonal polygons  after they are

being rectangulated by a rectangulation technique.

Finally in Chapter 5 we have introduced a new problem based on the MLSCk

problem.  We have presented an algorithm for the new problem which has O(n2 )

time complexity.

Now we discuss some of the related open problems in this field.

• Scopes are open for working on modified MLSCk problem  with  omnidi- 
rectional k-transmitters.

• Scopes are open to work on modified MLSCk problem for semi-orthogonal 
polygons.

• Scopes are open to find out some other relations among the components 
of a rectangulated orthogonal polygon.
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