
M.Sc. Engg. Thesis

SIMPLE AND LIGHT-WEIGHT FILTER
BASED ALGORITHMS FOR CIRCULAR

STRINGS AND SEQUENCES

by

Md. Aashikur Rahman Azim

Submitted to

Department of Computer Science and Engineering

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

December 2016

In the name of ALLAH

Author’s Contact

Md. Aashikur Rahman Azim

Lecturer

Department of Computer Science & Engineering

Bangladesh University of Engineering & Technology (BUET).

Email: aashik_azim@cse.buet.ac.bd

i

aashik_azim@cse.buet.ac.bd

The thesis titled 'SIMPLE A D LIGHT-WEIGHT FILTER BASED ALGORITHMS FOR
CIRCULAR STRI GS A D SEQUENCES", submitted by Md. Aashikur Rahman Azim,
Roll No. 1014052001 P, Session October 2014, to the Department of Computer Science
and Engineering, Bangladesh University of Engineering and Technology, has been accepted as
satisfactory in partial fulfillment of the requirements for the degree of Master of Science in
Computer Science and Engineering and approved as to its style and contents. Examination
held on December 12, 2016.

Board of Examiners

~1. _

Dr. M. Sohel Rahman
Professor
Department of Computer Science and Engineering, BUET, Dhaka.

~2. _

Dr. l\1. Sohel Rahman
Professor and Head
Department of Computer Science and Engineering, BUET, Dhaka.

br~
Professor
Department of Computer Science and Engineering, BUET, Dhaka.

4.~
Dr. Atif Hasan Rahman
Assistant Professor
Department of Computer Science and Engineering, BUET, Dhaka.

5. ~
Dr. Swakkhar Shatabda
As istant Professor
Depar ment of Computer Science and Engineering,

nited Int rnational niversity, Dhaka.

ii

Chairman
(Supervisor)

Member
(Ex-Officio)

Member

Member

Member
(External)

Candidate's Declaration

This is hereby declared that the work titled "SIMPLE AND LIGHT-WEIGHT FILTER BASED

ALGORITHMS FOR CIRCULAR STRINGS AND SEQUENCES" is the outcome of research

carried out by me under the supervision of Dr. M. Sohel Rahman, in the Department of Com-

puter Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka.

It is also declared that this thesis or any part of it has not been submitted elsewhere for the

award of any degree or diploma.

Md. Aashikur Rahman Azim

Candidate

iii

Acknowledgment

First of all I would like to thank my supervisor, Dr. M. Sohel Rahman, for assisting me

throughout the thesis. Without his continuous supervision, guidance and advice it would not

have been possible to complete this thesis. I am especially grateful to him for giving me his

time whenever I needed, and always providing continuous support and motivation in my effort.

I also want to thank the other members of my thesis committee: Dr. M. Kaykobad, Dr. Atif

Hasan Rahman and specially the external member Dr. Swakkhar Shatabda for their valuable

suggestions.

Part of this research has been supported by an INSPIRE Strategic Partnership Award,

administered by the British Council, Bangladesh for the project titled “Advances in Algorithms

for Next Generation Biological Sequences”. I am really grateful to British Council, Bangladesh

for their kind support.

Last but not the least, I am grateful to my guardians, family and friends for their patience,

cooperation and inspiration during this period.

iv

Abstract

String matching and sequence alignment problems are classical problems in Computer Science

with extensive applications in different branches of science and engineering. These problems are

interesting as fundamental computer science problems and are considered as basic requirements

in many practical applications. They in fact appear in almost every textbook of algorithms

and data structures. Circular strings or sequences appear in a number of biological contexts,

in all domains of life: bacteria, archaea, and eukaryotes; and in viruses.

This thesis deals with three pattern matching problems, namely, Classical Pattern Match-

ing problem, Circular Pattern Matching (CPM) problem and Circular Sequence Comparison

(CSC). Here, we present some filtering techniques to solve these problems. At first, we propose

a concept of a filtering pattern signature. Using this concept we develop an algorithm for

search space reduction of the text string. Then we develop algorithms for circular strings and

sequences. Our filters are simple and light-weight. Here light-weight means that executing

the filters will be computationally easy and memory efficient. These filters will ensure that

there are no false negatives; however, there could be false positives which will be handled in

a subsequent processing step. In the sequel, only correct solutions will be determined by the

combined algorithm. Our algorithms have been implemented and rigorously tested using real

genome datasets. We compare our algorithms with the state of the art algorithms and the

results are found to be excellent.

v

Contents

Board of Examiners ii

Candidate’s Declaration iii

Acknowledgment iv

Abstract v

1 Introduction 1

1.1 Introduction . 1

1.2 Applications and Motivations . 4

1.3 Literature Review . 8

1.4 Limitation of Recent Works . 10

1.5 Objectives with Specific Aims and Possible Outcome 11

1.6 Thesis Organization . 11

2 Preliminaries 13

2.1 Basic definitions in Stringology . 13

2.2 Classical Pattern Matching Problem . 15

2.3 Circular String . 18

2.4 Exact Circular Pattern Matching . 19

2.5 Approximate Circular Pattern Matching . 20

2.5.1 Algorithm ACSMF-Simple of [1] . 21

vi

2.6 Circular Sequence Comparison . 22

2.6.1 Algorithm saCSC of [2] . 25

2.7 Numerical Representations . 28

2.7.1 False Positives and Negatives . 29

2.7.2 Category of Filters and Relevant Observations 29

2.7.3 Algorithmic Framework . 30

2.8 Filters of Classical Pattern Matching . 30

2.8.1 Filter 1 . 31

2.8.2 Filters 2 and 3 . 31

2.8.3 Filter 4 . 33

2.8.4 Filter 5 . 34

2.8.5 Filter 6 . 35

2.9 Filters of Circular Pattern Matching and Circular Sequence Comparison 35

2.9.1 Filter 1 . 36

2.9.2 Filters 2 and 3 . 36

2.9.3 Filter 4 . 38

2.9.4 Filter 5 . 39

2.9.5 Filter 6 . 40

2.10 Filters of ACPM . 40

2.10.1 Filter 1 . 41

2.10.2 Filters 2 and 3 . 42

2.10.3 Filters 4 . 44

2.10.4 Filters 5 . 45

2.10.5 Filters 6 . 46

2.11 Summary . 48

3 Filter based Algorithmic Framework 49

3.1 Pattern Signature using the Filters . 49

3.2 Reduction of Search Space . 51

vii

3.2.1 An Illustrative Example for the ECPM Problem 53

3.3 The Combined Algorithm for Classical Pattern Matching Problem 55

3.4 The Combined Algorithm for ECPM and ACPM 57

3.5 The Algorithm for CSC Problem . 59

3.6 Summary . 60

4 Experimental Studies 62

4.1 Dataset . 62

4.2 Environment & Experimental Settings . 64

4.3 Effectiveness of Filters . 65

4.4 Search Space Reduction . 66

4.5 Experimental Results for Classical Pattern Matching 74

4.6 Comparison with Algorithms for ECPM . 75

4.7 Experimental Results for ACPM . 81

4.8 Experimental Results for CSC . 88

4.9 Summary . 98

5 Conclusion 99

5.1 Future Works . 101

viii

List of Figures

2.1 Graphical representation of Circular String P = AGCGGACTCT for first three

rotations. 19

4.1 Search Space Reduction of text string for n = 299MB and 5 ≤ m ≤ 35. 70

4.2 Search Space Reduction of text string for n = 299MB and 40 ≤ m ≤ 450. 72

4.3 A graph representing elapsed-time (in seconds) and speed-up comparisons among

FredNava [3], ACSMF-SimpleZerok [1] and Filtered-ECPM on a text of size 299MB 78

4.4 A graph representing elapsed-time (in seconds) and speed-up comparison among

FredNava [3], ACSMF-Simple [1] and Filtered-ACPM considering all the six

filters in a single pass for a text of size 1GB. 89

4.5 A graph representing elapsed-time (in seconds) and speed-up comparison be-

tween saCSC[2] and Filtered-CSC considering all the six filters for a text of size

700MB. Here, β =
√
m. 92

ix

List of Tables

2.1 Illustrates the arrays SA, iSA, and LCP for w = abbababba. 14

2.2 q-gram profiles of strings P and T and q-gram distance Dq(P , T) = 8 between

them. 23

2.3 q-gram profiles of strings P1, P2, T1 and T2; q-gram distance between P1 and T1;

and q-gram distance between P2 and T2, giving Dβ,q(P , T) = 8. 24

2.4 A brief summary of the 6 filters employed in the our algorithms. 32

3.1 An example simulation of Filtered-ECPM . 54

4.1 A brief overview of genome data GRCh37 . 63

4.2 An overview of genome datasets: 299MB, 700MB and 1GB. 64

4.3 Search Space Reduction of text string for n = 299MB and 5 ≤ m ≤ 20 67

4.4 Search Space Reduction of text string for n = 299MB and 21 ≤ m ≤ 35 67

4.5 Search Space Reduction of text string for n = 299MB and 40 ≤ m ≤ 200 68

4.6 Search Space Reduction of text string for n = 299MB and 220 ≤ m ≤ 450 . . . 69

4.7 Elapsed-time (in seconds) and comparisons among KMP, BM, Filtered-KMP,

Filtered-BM, Only Filters, KMP in reduced text and BM in reduced text for a

text of size 299MB. 73

4.8 Elapsed-time (in seconds) and speed-up comparisons among FredNava [3], ACSMF-

SimpleZerok [1] and Filtered-ECPM on a text of size 299MB 76

4.9 Elapsed-time (in seconds) and speed-up comparisons among ACSMF-SimpleZerok

and three variants of Filtered-ECPM (considering different combination of the

filters) for a text of size 299MB. 80

x

4.10 Elapsed-time (in seconds) and speed-up comparison among FredNava [3], ACSMF-

Simple [1] and Filtered-ACPM considering all the six filters in a single pass for

a text of size 1GB . 81

4.11 Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple and

Filtered-ACPM-[1..3] (considering first three combination of the filters) for a text

of size 1GB . 83

4.12 Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple and

Filtered-ACPM-[1..4] (considering first four combination of the filters) for a text

of size 1GB . 85

4.13 Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple and

Filtered-ACPM-[1..5] (considering first five combination of the filters) for a text

of size 1GB . 86

4.14 Elapsed-time (in seconds) and speed-up comparison between saCSC[2] and Filtered-

CSC considering all the six filters for a text of size 700MB. Here, β =
√
m. . . . 90

4.15 Elapsed-time (in seconds) and speed-up comparisons between saCSC and Filtered-

CSC-[1..3] (considering first three combination of the filters) for a text of size

700MB. Here, β =
√
m. 93

4.16 Elapsed-time (in seconds) and speed-up comparisons between saCSC and Filtered-

CSC-[1..4] (considering first four combination of the filters) for a text of size

700MB. Here, β =
√
m. 95

4.17 Elapsed-time (in seconds) and speed-up comparisons between saCSC and Filtered-

CSC-[1..5] (considering first five combination of the filters) for a text of size

700MB. Here, β =
√
m. 96

xi

List of Algorithms

2.1 Procedure KMP −MATCHER(T ,P): KMP Algorithm 16

2.2 Procedure COMPUTE − PREFIX − FUNCTION(P): KMP Prefix-Function 16

2.3 Procedure BOY ER−MOORE −MATCHER(T ,P): BM Algorithm 18

3.1 Procedure PSF FT (pattern type): Pattern Signature Algorithmic Framework

using Filters 1 : 6 in a single pass . 50

3.2 Procedure RSS FT : Reduction of Search Space in a Text String using procedure

PSF FT (pattern type) . 52

3.3 Algorithm Filtered-BM/Filtered-KMP using Procedure PSF FT(pattern type)

Algorithm 3.1 . 56

3.4 Algorithm Filtered-ECPM/Filtered-ACPM using Procedure PSF FT(pattern type)

Algorithm 3.1 . 58

3.5 Algorithm Filtered-CSC (T [1 : n], P [1 : m], β, q): using procedure PSF FT(pattern type)

Algorithm 3.1 . 61

xii

Chapter 1

Introduction

The string-matching/pattern-matching and sequence alignment problems are the most studied

problems in stringology, and there are many algorithms for solving these problems efficiently.

In this chapter, we discuss the term stringology, text string, pattern string, etc. Then, we

discuss some interesting problems in stringology, applications and/or motivations behind of

these problems, and the literature review of these problems. Consequently, we discuss about

the limitations of the present state of the art problem in the context of bioinformatics. Finally,

we discuss our thesis objectives and outcomes.

1.1 Introduction

String Algorithms is a subset of stringology. Usually text and string have the same meaning and

they are the basic types to carry information. Subfields of stringology include string matching,

pattern matching, periodicities, data structures, text compression, sequence alignment, etc.

Thus the improvement of string algorithms will benefit many other fields of stringology.

In computer science, pattern or string matching is the act of checking a perceived sequence of

tokens for the presence of the constituents of some pattern. In contrast to pattern recognition,

the match usually has to be exact. The patterns generally have the form of either sequences

or tree structures. Usage of pattern matching include outputting the locations (if any) of a

pattern within a token sequence, to output some component of the matched pattern, and to

1

CHAPTER 1. INTRODUCTION 2

substitute the matching pattern with some other token sequence (i.e., search and replace). In

the context of the scope of this research work, the pattern can be in two different formation:

linear and circular.

The classical pattern matching problem is to find all the occurrences of a given pattern P

(linear) of length m in a text T of length n, both being sequences of characters drawn from

a finite character set Σ. This problem is a basic requirement of many practical applications.

However in most practical applications it is some sort of approximate version of the classic

pattern matching problem that is of more interest.

Approximate pattern matching consists of finding all approximate occurrences of pattern P

in text T . Approximate occurrences of P are segments of T that are close to P according to a

specific distance: their distance to P must be not greater than a given integer k. Two common

distances are the Hamming distance and the Levenshtein distance. With the Hamming distance

related to the number of mismatches between the pattern and its approximate occurrences, the

problem is also called approximate string matching with k mismatches. With the Levenshtein

distance (or edit distance) the problem is known as the approximate string matching with

k differences. The circular pattern, denoted C(P), corresponding to a given pattern P =

P1 . . .Pm, is formed by connecting P1 with Pm and forming a sort of a cycle; this gives us

the notion where the same circular pattern can be seen as m different linear patterns, which

would all be considered equivalent. In the Circular Pattern Matching (CPM) problem, we are

interested in pattern matching between the text T and the circular pattern C(P) of a given

pattern P . We can view C(P) as a set of m patterns starting at positions j ∈ [1 : m] and

wrapping around the end. In other words, in CPM, we search for all ‘conjugates’1 of a given

pattern in a given text.

In practical pattern-matching applications, the exact matching is not always pertinent. It is

often more important to find string that matches a given pattern in a reasonably approximate

way. This approximation is measured mainly by the so-called edit distance: the minimal num-

ber of local edit operations needed to transform one object into another. This transformation

is called sequence alignment problem.

1Two words x, y are conjugate if there exist words u, v such that x = uv and y = vu.

CHAPTER 1. INTRODUCTION 3

Sequence alignment is a subfield of stringology. Sequence alignment is a standard technique

in bioinformatics for identifying the relationships between residues in a collection of evolution-

arily or structurally related elements/entities. A sequence alignment is a way of arranging

the sequences of DNA (deoxyribonucleic acid)2, RNA (ribonucleic acid)3 or protein4 to iden-

tify regions of similarity that may be a consequence of functional, structural, or evolutionary

relationships between the sequences. Aligned sequences of nucleotide or amino acid residues

are typically represented as rows within a matrix. Gaps are inserted between the residues so

that identical or similar characters are aligned in successive columns. In this thesis, one of the

problems we consider is the pairwise circular sequence comparison problem. Under the edit

distance model, it consists in finding an optimal linear alignment of two circular strings. This

problem for two strings P and T of length m and n ≥ m, respectively, can be solved under the

edit distance model. The objective of this research is to develop new filter-based algorithms

for different problems in strings and sequences. In this thesis, we are going to consider the

following interesting problems:

• Classical Pattern Matching Problem

• Exact Circular Pattern Matching (ECPM)

• Approximate Circular Pattern Matching (ACPM)

• Circular Sequence Alignment/Comparison (CSC)

We plan to develop algorithms that are based on some filtering techniques. We will invent

simple filters that can be specially used in the context of circular strings and sequences and

that are simple and light-weight. Here light-weight means that executing the filters will be

computationally easy and consume less memory. These filters will ensure that there are no

false negatives; however, there could be false positives which will be handled in a subsequent

2DNA in turn can be thought of as a string of four types of nucleotides adenine (A), cytosine (C), guanine
(G) and thymine (T).

3RNA is an important molecule with long chains of nucleotides. A nucleotide contains a nitrogenous base,
a ribose sugar, and a phosphate. Just like DNA, RNA is vital for living beings.

4Protein: any of a class of nitrogenous organic compounds which have large molecules composed of one
or more long chains of amino acids and are an essential part of all living organisms, especially as structural
components of body tissues such as muscle, hair, etc., and as enzymes and antibodies.

CHAPTER 1. INTRODUCTION 4

processing step. In the sequel, only correct solutions will be determined by the combined

algorithm.

Filters have been being used in the context of string matching algorithms since long. How-

ever, these filters do not work in the context of circular strings. Therefore we will have to

consider new filters that are useful in the context of circular strings and sequences. We will

employ the filters in a way to preprocess the given pattern and the text. After this prepro-

cessing, we will get a text of reduced length on which we can apply any existing state-of-art

algorithms to get the occurrences of the circular pattern. So in some sense our proposed al-

gorithm will be “pluggable”, i.e., any state-of-art algorithm can be plugged into it. Hence our

approach sort of promises that if a new algorithm can give good results, if you plug it into

ours, the results will be even better.

We will conduct extensive experiments to compare our algorithms with the state of the

art algorithms. We will use the datasets that have been used by the works [1, 2] to ensure

a level-playing ground for performance comparison. We will consider each filters individually

and in combinations. We will further consider different orders of the filters to apply in our

algorithm. In the sequel, we will analyze the results and suggest the best possible ordering of

the filters for our algorithms.

1.2 Applications and Motivations

The pattern matching problem is one of the most investigated problems in text algorithms.

Implementations of algorithms for this problem are used daily for accessing information: to use

Google search engine, to make a database query, to use the “search” or “replace” commands

in text editors, etc. Here is a simple example of a pattern matching problem: find occur-

rences of the word “advanced” in the text “Special course in Computer Science: advanced

text algorithms”. Pattern matching has to adapt itself to increasingly broader definitions of

matching. In computational biology, one may be interested in finding a close mutation5, in

5The changing of the structure of a gene, resulting in a variant form which may be transmitted to subsequent
generations, caused by the alteration of single base units in DNA, or the deletion, insertion, or rearrangement
of larger sections of genes or chromosomes.

CHAPTER 1. INTRODUCTION 5

communications one may want to adjust for transmission noise, in texts it may be desirable

to allow common typing errors. In multimedia one may want to adjust for loss compressions,

occlusions, scaling, affine transformations or dimension loss.

The notion of a longest common subsequence (LCS) of two strings is widely used to compare

files. The diff 6 command of UNIX implements an algorithm based on this notion where lines

of the files are considered as symbols. Informally, the result of a comparison gives the minimum

number of operations (insert a symbol or delete a symbol) to transform one string into the other.

The comparison of molecular sequences is basically done with a related concept, alignment of

strings, which consists of aligning their symbols on vertical lines.

Apart from being interesting from pure combinatorial point view, CPM has applications

in areas like, geometry, astronomy, computational biology etc. This type of circular patterns

occur in the DNA of viruses [4, 5], bacteria [6], eukaryotic cells [7], and archaea [8]. As a result,

as has been noted in [9], algorithms on circular strings seem to be important in the analysis of

organisms with such structures.

Double-stranded, circular chromosomes and plasmids are found in most bacteria and ar-

chaea. Whole-genome comparison is a very useful tool in classifying bacterial strains, as well

as inferring phylogenetic associations between them. This is due to the dense structure of

bacterial chromosomes, caused by the absence of introns7, and the organisation of genes into

operons8. The extended benefit of aligning plasmids is the ability to identify important genes,

such as antibiotic resistance genes, thereby enabling their study and exploitation by genetic

engineering techniques [10].

The related studies of sequence alignment include spelling correction, bitext word align-

ment, file comparison (difference), and amino acid sequences comparison. The early studies of

sequence alignment originated from designing spelling correction. In 1957, researchers started

to study engineering problems including spelling checkers for bitmap images of cursive writing

and finding records in databases in spite of incorrect entries. These problems are basically

6The UNIX diff command is used to compare (find the differences) between two files.
7A segment of a DNA or RNA molecule which does not code for proteins and interrupts the sequence of

genes.
8A unit made up of linked genes which is thought to regulate other genes responsible for protein synthesis.

CHAPTER 1. INTRODUCTION 6

consisting of two parts:

• Scanning strings and extracting words, and

• Comparing the extracted words against a known list of correctly spelled words (i.e., the

dictionary).

The first part is an essential part of compiler developments, and has been being studied for

years at that time, since the first compiler was written by Grace Hopper [11], in 1952, for the

A-0 System language. The second part can be modelled as string alignment or string matching

with respect to different constraints.

The first spell checker was developed by Les Earnest in 1961 that accessed a list of 10,000

acceptable words. In February 1971, Ralph Gorin created the first true spelling checker pro-

gram for general English text: Spell for the DEC PDP-10 at Stanford University’s Artificial

Intelligence Laboratory. The first spelling correction was made by Gorin that searches the

word list for plausible correct spellings heuristically. His idea is to search the words that differ

by a single letter or adjacent letter transpositions and presenting them to the user.

The problem to search for similarities in the amino acid sequence of two proteins was first

considered by Needleman et al. in 1970 [12]. They formulated the problem mathematically

and named their model as global alignment. They proposed an algorithm, a.k.a. Needleman-

Wunsch algorithm, of global alignment by using dynamic programming. The time complexity

of dynamic programming based approach is O(n2). Later the string comparison problem was

considered in more general way by Wagner et al. [13]. They unified all related problems by the

model of string-to-string correction. The possible applications of the string-to-string correction

problem are the problems of automatic spelling correction and determining the longest common

subsequence of two strings. Circular strings have also been studied in the context of sequence

alignment. In [14], basic algorithms for pair wise and multiple circular sequence alignment

have been presented. These results have later been improved in [15], where an additional

preprocessing stage is added to speed up the execution time of the algorithm. Lee et al.

[16] have considered Hamming distance and have presented efficient algorithms for finding the

optimal alignment and consensus sequence of circular sequences on this distance metric.

CHAPTER 1. INTRODUCTION 7

The most familiar examples of such structures in eukaryotes9 are mitochondrial (mtDNA)

and plastid DNA. MtDNA is, in most cases, inherited solely from the mother, and so is gen-

erally conserved. Human mtDNA is double-stranded, with a length of 16,569 base pairs (bp),

consisting of just 37 genes encoding 13 proteins and 24 RNA molecules [17]. The absence of

recombination in these sequences allows them to be used as simple indicators of phylogenetic

evolution, and their high mutation rate is a powerful discriminative feature [18, 19]. There also

exist smaller structures, called extrachromosomal circular DNA, which are similar to plasmids

in bacterial cells. They are described as one of the characteristics of genomic plasticity in eu-

karyotes [20] and may be derived from mtDNA [21]. It is common knowledge that many viral

genomes are circular. Viral genomes vary greatly in size and structure. They can be made up

of either RNA or DNA, and can be single- or double-stranded. Multiple sequence alignment

of viral genomes can be useful in the elucidation of novel sites of interest [22], as well as the

inference of evolutionary relationships [23]. This is particularly important in studying their

pathogenicity10, due to the rapid rate of mutation of viruses. Viroids are plant pathogens that

comprise very small, single-stranded, circular RNA. Their multiple sequence alignment could

prove useful in the analysis of their secondary structures and, therefore, the mechanisms by

which they infect host plant cells [24].

In genome science, the BLAST [25], which was developed in 1990, is the most well known

sequence alignment tool; it is elected as one of the milestones of DNA technology by editors of

the Nature Genetics. However, to catch up the throughput of sequencing technologies, many

alignment tools have been developed in the last few years. Each new sequencing technology

has its own features and advantages. The developers of new sequence alignment tools must

take them into consideration (e.g., the short sequence length of Illumina, SOLiD and Helicos

reads, the di-base encoding of SOLiD reads).

9An organism consisting of a cell or cells in which the genetic material is DNA in the form of chromosomes
contained within a distinct nucleus. Eukaryotes include all living organisms other than the eubacteria and
archaea.

10Pathogenicity refers to the ability of an organism to cause disease (i.e., harm the host). This ability
represents a genetic component of the pathogen and the overt damage done to the host is a property of the
host-pathogen interactions.

CHAPTER 1. INTRODUCTION 8

1.3 Literature Review

The first linear-time string-matching algorithm was discovered by Morris and Pratt in 1970.

It has been improved by Knuth in 1976 [26]. The search behaves like a recognition process

by automation, and a character of the text is compared to a character of the pattern no more

than logχ(m+ 1) (χ is the golden ratio (1 +
√

5)/2), where m is the length of pattern. Again,

Boyer and Moore‘s algorithm [27] is considered the most efficient string matching algorithm

in usual applications. A simplified version of it (or the entire algorithm) is often implemented

in text editors for the “search” and “substitute” commands. We will further discuss these

two algorithms in the next chapter (Chapter 2 in Section 2.2). Again, approximate or fuzzy

string searching is a lively domain of research. It includes, for instance, the notion of regular

expressions (a sequence of symbols and characters expressing a string or pattern to be searched

for within a longer piece of text) to represent sets of strings. The Shift-Or algorithm was

invented by Baeza-Yates and Gonnet in 1992 [28] to solve the fuzzy string matching. Perhaps,

it is the first algorithm to solve the approximate pattern searching problem. Based on this

work, later Wu and Manber in 1992 [29] invented bitap algorithm (also known as the shift-or,

shift-and algorithm) to solve the same problem. This bitap algorithm is very fast in practice

and very easy to implement.

Perhaps the first attempt to solve the problem of circular pattern matching has been doc-

umented in [30], where an O(n)-time algorithm is presented. A naive solution with quadratic

complexity would be to apply a classical algorithm for searching a finite set of strings on the

trie of rotations of P after constructing it. The approach presented in [30] preprocesses P

by constructing a suffix automaton (A suffix automaton (also known as directed acyclic word

graph (DAWG)) is a finite automaton that recognizes the set of suffixes11 of a given string.

For example, a suffix automaton for the string “suffix” can be queried for other strings; it will

report “true” for any of the strings “suffix”, “uffix”, “ffix”, “fix”, “ix” and “x”, and “false” for

any other string.) of the string PP , because, every rotation of P is a factor of PP . Then, by

feeding T into the automaton, the lengths of the longest factors of PP occurring in T can be

11A suffix of a string S is a substring that occurs at the end of S

CHAPTER 1. INTRODUCTION 9

found by the links followed in the automaton in time O(n). In [3], an optimal average-case

algorithm for CPM has been presented. In particular, here the authors have shown that the

average-case lower bound for the (linear) pattern matching of O(n logσm/m) also holds for

CPM, where σ = |Σ|. Recently, Chen et al. [31] have exploited word-level parallelism to

present two fast average-case algorithms. The approximate version of the problem has also

received attention in the literature very recently [1]. In [1], Barton et al. have first presented

an efficient algorithm for CPM that runs in O(n) time on average. Based on the above, they

have also devised fast average-case algorithms (ACSMF-Simple) for approximate circular string

matching with k-mismatches. They have built a library for ACSMF-Simple algorithm. The

library is freely available [32]. Notably, indexing circular patterns [33] has also been consid-

ered in the literature. In traditional pattern matching problem, indexing has always received

particular attention. This is because in many practical problems, we need to handle batch of

queries and, hence, it is computationally advantageous to preprocess the text in such a way

that allows efficient query processing afterwards. The indexing version of Problem CPM is

formally defined below:

Indexing for Circular Pattern Matching (ICPM): Given a text T of length n, preprocess

T to answer the following form of queries:

Query: Given a pattern P of length m, find the indices i ∈ [1..n − m + 1] at which C(P)

matches T .

Again, an other variations of approximate circular pattern matching under the edit distance

model [34] have also been considered in the literature. They have invented an algorithm to finds

all k-approximate occurrences of pattern P in text T . They then extend each algorithm to

solve the all-against-all variant of the CPM problem for both exact and k-approximate matches.

Although the CPM problem has been studied since the 1980s, this was the first attempt on the

all-against-all variant, without using a trivial application of standard CPM algorithms. Their

algorithms solve the all-against-all ACPM problem in O(kmn) time on average, where k is

number of mismatches, m is the length of pattern P and n is the length of text T .

On the other hand, the sequence alignment problem for two strings P and T of length m

and n ≥ m, respectively, can be solved under the edit distance model in time O(nm logm)

CHAPTER 1. INTRODUCTION 10

[35]. Several other super-quadratic [36] and approximate quadratic-time [37] algorithms exist.

Trivially, for molecular biology applications, the same problem can be solved in time O(nm2), if

extending the problem with scoring matrices and affine gap penalty scores. A direct application

of pairwise circular sequence comparison is progressive multiple circular sequence alignment

[24, 38, 39]: A multiple sequence alignment (MSA) is a sequence alignment of three or more

biological circular sequences, generally protein, DNA, or RNA.12 Multiple circular sequence

alignment has also been considered in [40] under the Hamming distance model.

In [2], the authors introduced a fast exact algorithm for circular sequence comparison under

some realistic model. They introduced the β-blockwise q-gram distance between two strings P

and T , that is, a more powerful generalization of the q-gram distance introduced as a string

distance measure in [41]. Intuitively, and similarly to [42, 43], this generalization comprises

partitioning P and T into β blocks each, as evenly as possible, computing the q-gram distance

between the corresponding block pairs, and then summing up the distances computed block-

wise. They presented an algorithm based on the suffix array [44] that finds the rotation of P

such that the β-blockwise q-gram distance between the rotated P and T is minimal, in time and

space O(βm + n), where m = |P| and n = |T |, thereby solving exactly the circular sequence

comparison problem under the β-blockwise q-gram distance measure. They also presented a

simple heuristic algorithm to solve an approximate version of the problem.

1.4 Limitation of Recent Works

The main context where these problems are useful, in is bioinformatics. Sadly, asymptotically

fast or faster algorithms are sometimes not enough in the context of bioinformatics. It still

requires huge time while running the state of art algorithms over the text of DNA (2-3 GB of

size). This happens due to the searching of the actual pattern all over the text string of DNA.

An alternate technique may be useful where we can think of reducing the search space of the

text string: we then can have a reduced text string in which the state of art algorithms could

12The most widely used approach to multiple sequence alignments uses a heuristic search known as progressive
technique (also known as the hierarchical or tree method).

CHAPTER 1. INTRODUCTION 11

be applied. Our main goal is to minimize the search space for these state of the art algorithms.

1.5 Objectives with Specific Aims and Possible Outcome

The main objectives of our thesis are as follows:

1. To study the state of the art of the classical string matching problem.

2. To study the state of the art of the circular string matching problem.

3. To study the state of the art of the circular sequence alignment problem.

4. To propose and study new biologically interesting and useful variants of the classical

version of these problems.

5. To develop new filter-based algorithms for the above-mentioned problems that are simple

and light-weight.

6. To conduct a detailed experimental study for performance comparison among the state

of the art solutions and the proposed algorithms.

The outcomes of our study are as follows:

1. Some simple and new filters that could be useful in reducing the problem search space.

2. A repertoire of simple and light-weight algorithms for solving the problems with perfor-

mance comparison results.

3. A software tool with all developed algorithms that can be used by bioinformaticians.

1.6 Thesis Organization

The remainder of this thesis is organized as follows.

CHAPTER 1. INTRODUCTION 12

In Chapter 2, we briefly discuss the concepts that are necessary to understand the idea of

this study. We discuss a preliminary description of some terminologies and concepts related

to stringology that will be used throughout this paper. We discuss the problems statement

formally which will be used in this thesis. We also describe the main working principals of

filtering techniques.

Chapter 3 presents the major contribution of this study. We formulate a framework based

on filtering techniques described in Chapter 2. We present the different algorithms to solve the

problems described in Chapter 2 using this framework.

In Chapter 4, the experimental analysis regarding the performance of the proposed method-

ology is presented. We first present a description of the various datasets that are used for our

experiments. We then discuss the performance comparison between our proposed methodolo-

gies and the state of arts.

Finally, in Chapter 5 we briefly conclude this study. We try to provide some directions

mention for future research.

Chapter 2

Preliminaries

This chapter presents the ideas necessary to comprehend the topics covered in this thesis. Re-

lated algorithms and methods employed in this work are also described in this chapter. We

also formally present the problems that we handle in this thesis including some classical pat-

tern matching problem, circular pattern matching problem and circular sequence comparison

problem. Previous works of different topics related to this thesis are also presented in this

chapter.

2.1 Basic definitions in Stringology

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a string w is

denoted by |w|. The empty string ε is a string of length 0, that is, |ε| = 0. Let Σ+ = Σ∗− {ε}.

For a string w = xyz, x, y and z are called a prefix, factor (or equivalently, substring), and

suffix of w, respectively. The i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|,

and the factor of a string w that begins at position i and ends at position j is denoted by

w[i : j] for 1 ≤ i ≤ j ≤ |w|. For convenience, we assume w[i : j] = ε if j < i. A k-factor is a

factor of length k.

Again, let Σq denote the set of all strings of length q over Σ for q = 1, 2, . . . ,∞. A q-gram

is any string v = a1a2 . . . aq in Σq.

The Parikh vector associated with a string w ∈ Σ∗ is denoted by P (w) and represents

13

CHAPTER 2. PRELIMINARIES 14

a vector of size |Σ|, where each component denotes the number of occurrences in w of the

corresponding letter from Σ. We denote by SA the suffix array of w of length n, that is, an

integer array of size n storing the starting positions of all lexicographically sorted suffixes of

w, i.e. for all 1 ≤ r < n, we have w[SA[r − 1]..n − 1] < w[SA[r]..n − 1]. Let lcp(r, s) denote

the length of the longest common prefix between w[SA[r]..n − 1] and w[SA[s]..n − 1], for all

positions r, s on w, and 0 if they do not have a common prefix. We denote by LCP the longest

common prefix array of w defined by LCP [r] = lcp(r−1, r), for all 1 ≤ r < n, and LCP [0] = 0.

The inverse iSA of the array SA is defined by iSA[SA[r]] = r, for all 0 ≤ r < n. SA, iSA,

and LCP of w can be computed in O(n) time and space [45]. Let the string w = abbababba.

The following table (Table 2.1) illustrates the arrays SA, iSA, and LCP for w.

Table 2.1: Illustrates the arrays SA, iSA, and LCP for w = abbababba.

i 0 1 2 3 4 5 6 7 8

w[i] a b b a b a b b a

SA[i] 8 3 5 0 7 2 4 6 1

iSA[i] 3 8 5 1 6 2 7 4 0

LCP [i] 0 1 2 4 0 2 3 1 3

Longest Common Extension (LCE): The longest common extension (LCE) problem takes

as input a string s and many pairs (i, j) and computes, for each pair (i, j), the longest substring

of s that occurs both starting at position i and at j in s. To compute LCE, we perform the

following linear-time and linear-space preprocessing:

• Compute arrays SA and iSA of P [46].

• Compute array LCP of P [45].

• Preprocess array LCP for range minimum queries1, we denote this by RMQLCP [47].

With the preprocessing complete, the LCE of two suffixes of P starting at positions p and q

1In computer science, a range minimum query (RMQ) solves the problem of finding the minimal value in
a sub-array of an array of comparable objects. Range minimum queries have several use cases in computer
science such as the lowest common ancestor problem or the longest common prefix problem (LCP).

CHAPTER 2. PRELIMINARIES 15

can be computed in constant time in the following way [48]:

LCE(P , p, q) = LCP [RMQLCP (iSA[p] + 1, iSA[q])]. (2.1)

We have LCE(P , 1, 2) = LCP [RMQLCP (iSA[2] + 1, iSA[1])] = LCP [RMQLCP (6, 8)] = 1,

implying that the LCE of bbababba and bababba is 1 using Table 2.1.

2.2 Classical Pattern Matching Problem

Informally, given a text and a pattern, the pattern matching problem compute the occurrences

of the pattern within the text. The formal definition of classical pattern matching problem is

given below.

Problem 1. (Classical Pattern Matching Problem). Given a pattern P of length m and a text

T of length n ≥ m, find all factors F of T such that F = P. Report all the starting positions

i of all such factors F in T where 0 ≤ i ≤ n−m.

Example 1. Suppose we have a pattern P = atcgatg and a text T = aaagatcgatgggg. It can

be easily verified that the pattern P matches T at position 4, i.e., T [4 . . . 10] = P.

We will discuss here two fundamental pattern matching algorithms briefly. These are Knuth-

Morris-Pratt [26] (KMP in short) algorithm and Boyer-Moore [27] (BM in short) algorithm.

The main properties of KMP [26] algorithm is given below:

• The Knuth-Morris-Pratt algorithm uses the information gained by previous symbol com-

parisons.

• It never compares again a text symbol that has already matched a pattern symbol.

• As a result, the complexity of the searching phase of the Knuth-Morris-Pratt algorithm

is in O(n), where n is the length of text string.

• However, a pre-processing of the pattern is necessary in order to analyze its structure.

CHAPTER 2. PRELIMINARIES 16

• The pre-processing phase has a complexity of O(m), where m is the length of the pattern

string.

• Since m ≤ n, the overall complexity of the Knuth-Morris-Pratt algorithm is in O(n).

The KMP matching algorithm is given in pseudocode blow (Algorithm 2.1) as the procedure

KMP−MATCHER. This procedure calls the auxiliary procedure COMPUTE−PREFIX−

FUNCTION (Algorithm 2.2).

Algorithm 2.1 Procedure KMP −MATCHER(T ,P): KMP Algorithm

n← |T |
m← |P|
π ← COMPUTE − PREFIX − FUNCTION(P)
q ← 0
for i← 1 to n do

do while q > 0 and P [q + 1] 6= T [i]
do q ← π[q]
if P [q + 1] = T [i] then
q ← q + 1

end if
if q = m then

print “ Pattern occurs with shift” i−m
q ← π[q]

end if
end for

Algorithm 2.2 Procedure COMPUTE − PREFIX − FUNCTION(P): KMP Prefix-
Function
m← |P|
π[1]← 0
k ← 0
for q ← 2 to m do

do while k > 0 and P [k + 1] 6= P [q]
do k ← π[k]
if P [k + 1] = P [q] then
k ← k + 1

end if
π[q]← k

end for
return π

CHAPTER 2. PRELIMINARIES 17

The main properties of BM [27] algorithm is given below:

• This algorithm tends to have the best performance in practice, as it often runs in sub

linear time.

• The worst case running time is as bad as that of the naive algorithm.

• At any moment, imagine that the pattern is aligned with a portion of the text of the

same length, though only a part of the aligned text may have been matched with the

pattern.

• Henceforth, alignment refers to the substring of text T that is aligned with pattern P

and l is the index of the left end of the alignment; i.e., P [0] is aligned with T [l] and, in

general, P [i], 0 ≤ i < m, with T [l + i], where m is length of P and n is the length of T .

• Whenever there is a mismatch, the pattern is shifted to the right, i.e., l is increased, as

explained in [27].

• The overall complexity of the BM algorithm is in O(mn).

We define a function last(c) that takes a character c from the alphabet and specifies how far

we may shift the pattern P if a character equal to c is found in the text T that does not match

the pattern.

last(c) =


index of the last occurrence of c in pattern P , if c is in P

−1, otherwise

The MB matching algorithm is given in pseudocode blow (Algorithm 2.3) as the procedure

BOY ER − MOORE − MATCHER. This procedure uses the auxiliary function last as

described before.

Again, approximate string matching is also another main problem in classical string algo-

rithms, with applications to text searching, computational biology, pattern recognition, etc.

Given a text T of length n, a pattern P of length m, and a maximal number of errors allowed,

CHAPTER 2. PRELIMINARIES 18

Algorithm 2.3 Procedure BOY ER−MOORE −MATCHER(T ,P): BM Algorithm

Compute function last
n← |T |
m← |P|
i← m− 1
j ← m− 1
repeat

if P [j] = T [i] then
if j = 0 then

return i /*We have a match*/

else
i← i− 1
j ← j − 1

end if
else
i← i+m−Min(j, 1 + last[T [i]])
j ← m− 1

end if
until i > n− 1

k, we want to compute all text positions where the pattern P matches the text T up to k

errors. Errors can be substituting, deleting or inserting a character. The formal definition of

approximate classical pattern matching problem is given below.

Approximate Classical Pattern Matching Problem with k-Errors: Given a pattern P

of length m and a text T of length n ≥ m, and an integer threshold k < m, find all factors F

of T such that F ≡k P. Report all the starting positions i of all such factors F in T where

0 ≤ i ≤ n−m.

Example 2. Suppose we have a pattern P = atcgatg, a text T = aatcgatttggg and k = 1. It

can be easily verified that the pattern P matches T at position 1 with k = 1, i.e., T [1 . . . 7] ≡1 P.

2.3 Circular String

A circular string of length m can be viewed as a traditional linear string which has the left-most

and right-most symbols wrapped around and stuck together in some way. Under this notion,

the same circular string can be seen as m different linear strings, which would all be considered

CHAPTER 2. PRELIMINARIES 19

equivalent. Given a string P of length m, we denote by P i = P [i : m]P [1 : i− 1], 0 < i < m,

the i-th rotation of P and P0 = P . An example 3 is shown illustrating all rotations of circular

string P = atcgatg.

Example 3. Suppose we have a pattern P = atcgatg. The pattern P has the following ro-

tations (i.e., conjugates): P1 = tcgatga,P2 = cgatgat,P3 = gatgatc,P4 = atgatcg,P5 =

tgatcga,P6 = gatcgat.

Consider another circular string P = AGCGGACTCT . The graphical representation of

first three rotations are shown in Figure 2.1.

(a) P0 = AGCGGACTCT . (b) P1 = GCGGACTCTA. (c) P2 = CGGACTCTAG.

Figure 2.1: Graphical representation of Circular String P = AGCGGACTCT for first three
rotations.

2.4 Exact Circular Pattern Matching

Here we consider the problem of finding occurrences of a pattern string P of length m with

circular structure in a text string T of length n with linear structure. For instance, the DNA

sequence of many viruses has a circular structure. So if a biologist wishes to find occurrences

of a particular virus in a carrier’s DNA sequence, which may not be circular, (s)he must locate

all positions in T where at least one rotation of P occurs. This is the problem of circular

pattern matching (CPM). The ECPM problem we handle in this thesis can be formally defined

as follows.

CHAPTER 2. PRELIMINARIES 20

Problem 2. (Exact Circular Pattern Matching (ECPM)). Given a pattern P of length m and

a text T of length n ≥ m, find all factors F of T such that F = P i, for some 0 ≤ i < m. And

if we have F = P i for some 0 ≤ i < m, then we say that the circular pattern C(P) matches T

at position i.

Example 4. Suppose we have a pattern P = atcgatg and a text T = aaggcgatgat. Based on

Example 3 (represents all rotations of pattern P) it can be easily verified that the pattern P2

matches T at position 4.

2.5 Approximate Circular Pattern Matching

The Hamming distance between strings P and T , both of length n, is the number of positions

i, 1 ≤ i ≤ n, such that P [i] 6= T [i]. Given a non-negative integer k, we write P ≡k T or

equivalently say that P k-matches T , if the Hamming distance between P and T is at most k.

In biology, the Hamming distance is popularly referred to as the Mutation distance. A little

mutation could be considered and in fact anticipated while finding the occurrences of a partic-

ular (circular) virus in a carrier’s DNA sequence. This scenario in fact refers to approximate

circular pattern matching (ACPM). If, k = 0, then we get the exact CPM, i.e., mutations

are not considered. Note carefully that in this setting, ACPM also returns all the occurrences

returned by CPM; it computes the occurrences allowing up to k mismatches/mutations. The

ACPM problem we handle in this thesis can be formally defined as follows.

Problem 3. (Approximate Circular Pattern Matching with k-mismatches under the Hamming

distance model (i.e., mutations) (ACPM)). Given a pattern P of length m, a text T of length

n > m, and an integer threshold k < m, find all factors F of T such that F ≡k P i for some

0 ≤ i < m. And when we have a factor F = T [j : j + |F| − 1] such that F ≡k P i we say that

the circular pattern C(P) k-matches T at position j. We also say that this k-match is due to

P i, i.e., the ith rotation of P.

Example 5. Suppose we have a pattern P = atcgatg, a text T = cgatgaaaatt and k = 1.

Based on Example 3 (represents all rotations of pattern P) it can be easily verified that the

CHAPTER 2. PRELIMINARIES 21

pattern P2 matches T at position 0 with k = 1 means T [0 . . . 6] ≡1 P2.

2.5.1 Algorithm ACSMF-Simple of [1]

In [1], the authors showed an algorithm to solve the problem ACPM. Here, we describe the

steps of the algorithm as follows:

1. Construct the string P ′ = P [0..m− 1]P [0..m− 2] of length 2m− 1. According to [1], any

rotation of P is a factor of P ′.

2. The pattern P ′ is partitioned in 2k + 4 fragments of length b (2m−1)
(2k+4)

c and d (2m−1)
(2k+4)

e. Ac-

cording to [1], at least k + 1 of the 2k + 4 fragments are factors of any rotation of P .

3. Match the 2k + 4 fragments against the text T using an Aho Corasick automaton [49].

Let L be a list of size Occ of tuples, where < pP ′ , l, pT ∈ L > is a 3-tuple such that

0 ≤ pP ′ < 2m− 1 is the position where the fragment occurs in P ′, l is the length of the

corresponding fragment, and 0 ≤ pT < n is the position where the fragment occurs in T .

4. For each tuple < pP ′ , l, pT ∈ L >, they try to extend k+1 times to the right via computing

E0r ← LCE(B, pP ′ + l, 2m− 1 + pT + l) + 1 (2.2)

E1r ← LCE(B, pP ′ + l + E0r , 2m− 1 + pT + l + E0r) + 1 (2.3)

. . .

Ek−1r ← LCE(B, pP ′ + l + Ek−2r , 2m− 1 + pT + l + Ek−2r) + 1 (2.4)

Ekr ← LCE(B, pP ′ + l + Ek−1r , 2m− 1 + pT + l + Ek−1r) + 1; (2.5)

in other words, they compute the length Ekr of the longest common prefix of P ′[pP ′ +

l..2m− 1] and T [pT + l..n− 1], both being suffixes of B, with k mismatches. Similarly,

CHAPTER 2. PRELIMINARIES 22

they try to extend to the left k + 1 times via computing Ekl using LCE queries on the

suffixes of Br.

5. For each tuple < pP ′ , l, pT ∈ L >, they try to extend, they also maintain an array M of

size m− 1 initialised with zeros, where they mark the position of the i-th left and right

mismatch, 1 ≤ i ≤ k, by setting:

M [pP ′ − E i−1l − 1]← 1 and M [pP ′ + E i−1r + l]← 1. (2.6)

6. For each Ekl , Ekr , M computed for tuple < pP ′ , l, pT ∈ L >, they report all the valid

starting positions in T by first checking if the total length Ekl + l + Ekr ≥ m; that is

the length of the full extension of the fragment is greater than or equal to m. If that is

the case, then they count the total number of mismatches of the occurrences at starting

positions max{pT −Ekl , pT +l−m}, . . . ,min{pT +l−m+Ekr , pT }, by first summing up the

mismatches for the leftmost starting position µj ←M [p′P−Ekl]+ · · ·+M [p′P−Ekl +m−1],

where j = max{pT − Ekl , pT + l −m}.

For each subsequent position j + 1, they subtract the value of the leftmost element of M

computed for µj and add the value of the next element to compute µj+1. In case µj ≤ k,

they report position j.

2.6 Circular Sequence Comparison

Circular Sequence Comparison (CSC) was introduced in [41, 2]. Based on the some terminology

introduced in [41, 2], we describe some definitions here. The q-gram profile of a string P is the

vector Gq(P), where q > 0 and Gq(P)[v] denotes the total number of occurrences of q-gram

v ∈
∑q in P . The q-gram distance between two strings P and T is defined as follows:

Dq(P , T) =
∑
v∈

∑q

|Gq(P)[v]−Gq(T)[v]| (2.7)

Note that Dq is a pseudo-metric as Dq(P , T) can be 0 even if P 6= T . And the β-blockwise

CHAPTER 2. PRELIMINARIES 23

q-gram distance two strings P and T of length m and n, respectively, is defined as follows:

Dβ,q(P , T) =

β−1∑
j=0

Dq(P [
jm

β
..

(j + 1)m

β
− 1], T [

jn

β
..

(j + 1)n

β
− 1]) (2.8)

Example 6. Let P = GGAGTCTA, T = TTCTAGCG, and q = 3. Table 2.2 shows the

q-gram profiles of strings P and T and the q-gram distance between them.

Table 2.2: q-gram profiles of strings P and T and q-gram distance Dq(P , T) = 8 between them.

Gq(P) Gq(T) Dq(P, T)

AAA 0 0 0

AGC 0 1 1

AGT 1 0 1

CCC 0 0 0

CTA 1 1 0

GAG 1 0 1

GCG 0 1 1

GGA 1 0 1

GGG 0 0 0

GTC 1 0 1

TAG 0 1 1

TCT 1 1 0

TTC 0 1 1

TTT 0 0 0

Example 7. Following Example 6, let P = GGAGTCTA and T = TTCTAGCG, q = 3, and

β = 2. Further let P1 = GGAG, P2 = TCTA and T1 = TTCT , T2 = AGCG be the two blocks

of P and T , respectively. Table 2.3 shows the q-gram profiles of strings P1, P2, T1, and T2;

and the q-gram distance between P1 and T1 and the q-gram distance between P2 and T2.

In this thesis, we consider the following CSC problem, where we search for the i-th rota-

tion of P that minimizes its blockwise distance from T as defined in ([50]). Ties are broken

CHAPTER 2. PRELIMINARIES 24

Table 2.3: q-gram profiles of strings P1, P2, T1 and T2; q-gram distance between P1 and T1;
and q-gram distance between P2 and T2, giving Dβ,q(P , T) = 8.

Gq(P1) Gq(T1) Dq(P1, T1) Gq(P2) Gq(T2) Dq(P2, T2)

AAA 0 0 0 0 0 0

AGC 0 0 0 0 1 1

AGT 0 0 0 0 0 0

CCC 0 0 0 0 0 0

CTA 0 0 0 1 0 1

GAG 1 0 1 0 0 0

GCG 0 0 0 0 1 1

GGA 1 0 1 0 0 0

GGG 0 0 0 0 0 0

GTC 0 0 0 0 0 0

TAG 0 0 0 0 0 0

TCT 0 1 1 1 0 1

TTC 0 1 1 0 0 0

TTT 0 0 0 0 0 0

CHAPTER 2. PRELIMINARIES 25

arbitrarily.

Problem 4. (Circular Sequence Comparison (CSC)). Given a pattern P of length m, a text

T of length n ≥ m, and integers β ≥ 1 and q < m, find i such that Dβ,q(P i, T) is minimal.

2.6.1 Algorithm saCSC of [2]

In [2], the authors showed an algorithm to solve the problem CSC in exact fashion. This

algorithm is based on suffix array. For this reason, they named this algorithm as saCSC.

They partially followed the idea from [51]. The work of [51] investigates the string matching

problem in the setting of k-abelian equivalences: two strings are considered k-abelian equivalent

for some positive integer k, if they have the same length and share the same factors of length

at most k, including multiplicities. Note that if k is greater than or equal to the string’s length,

then the strings must be equal. A version of this result, called extended k-abelian equivalence,

focuses only on the factors of length k. By setting k = q, it is quite straightforward to notice

the equivalence with q-grams. Therefore, in order to avoid confusion we refer to the former

notion from now on as q-abelian equivalence.

In [51], the authors propose a linear-time algorithm to solve the string matching problem

when looking at q-abelian equivalent strings: given a string P of length m, a string T of length

n ≥ m, and a positive integer q < m, all factors of T that are q-abelian equivalent to P can be

found in time and space O(m + n). The idea of the algorithm in [51] consists of constructing

the suffix array of the string PT and ranking sets of identical q-length prefixes in the suffix

array in the order of their appearance. Then it constructs new strings based on this ranking,

and solves the problem as in the jumbled matching case [52], i.e, identifying within T all factors

that have the same Parikh vector (see Section 2.1) as P .

They construct the suffix array of the string PPT and assign a rank to the prefix with

length q of each suffix with length at least q, based on its order in the suffix array. That is, the

first i0 suffixes in the suffix array, all sharing the same prefix of length at least q, will get rank

0; the next i1 suffixes sharing the same prefix of length at least q, different from the previous

one, will get rank 1, and so on. Next, based on this ranking, they construct two new strings P ′

CHAPTER 2. PRELIMINARIES 26

of length 2mq + 1 and T ′ of length nq + 1, such that P ′[i] = j, if j is the rank of the q-length

prefix of the (i+ 1)th suffix of PP in the suffix array of PPT (the same goes for T). It is not

difficult to see that the ranks go up at most to value m + nq + 1. However, they reduce this

value to m+ 2 by introducing two new ranks aP and aT : they can conceptually replace aP by

every letter of P ′ that does not occur in T ′, and by aT every letter of T ′ that does not occur

in P ′. Hence they consider that the new strings P ′ and T ′ are defined over an integer alphabet

of size at most min(nq+ 1,m) + 2 ≤ m+ 2. Based on these preliminaries, the authors showed

the following algorithmic steps to solve the problem CSC for β = 1.

Step1: Construct the SA, iSA, and LCP of PPT . Rank the q-length prefixes of suffixes

using LCP-array queries. Construct P ′ and T ′, as well as P (T ′), the Parikh vector

recording for each letter of T ′ the number of its occurrences in T ′ with the proper use of

aP and aT , the ranks that do not occur in either T ′ or P ′, respectively. Moreover, create

diff = P (T ′) and δ0 =
|P (T ′)|∑
i=0

P (T ′[i]).

Step2: Read the first mq+ 1 letters of P ′, which constitute our sliding window of length

m on the string PP . When reading letter P ′[i] , update diff by decreasing by 1 the

value of the newly read element, and update δ0, by either increasing the current value

of the difference when there were read too many of the current letters, or decreasing it,

when more of these letters still occur in T ′.

diff [P ′[i]] = diff [P ′[i]]− 1 (2.9)

and

δ0 =


δ0 − 1, if diff [P ′[i]] ≥ 0

δ0 + 1, if diff [P ′[i]] < 0

(2.10)

Step3: Let i be the current position in P ′ and repeat this step, one position at a time.

Shift the window to the right, update the information for diff as follows:

diff [P ′[i]] = diff [P ′[i]] + 1 (2.11)

CHAPTER 2. PRELIMINARIES 27

and

diff [P ′[i+m]] = diff [P ′[i+m]]− 1 (2.12)

and calculate δi+1, based on this information, sequentially applying the two following

rules.

δi+1 =


δi − 1, if diff [P ′[i]] ≤ 0

δi + 1, if diff [P ′[i]] > 0

(2.13)

and

δi+1 =


δi+1 − 1, if diff [P ′[i+m]] ≤ 0

δi+1 + 1, if diff [P ′[i+m]] > 0

(2.14)

General Algorithm for β ≥ 1: They generalized this algorithm to solve the CSC problem

for any β ≥ 1, which gives algorithm saCSC. they maintained a Parikh vector for each block,

and applied the above basic algorithm for each pair of blocks, computing their q-gram distance.

If they denote by Pj(T ′) and diffj, for all 0 ≤ j < β, the β Parikh vectors of T ′ and of the

q-gram distances, respectively, as well as by δi,j the q-gram distance between the jth block of T

and P i, then the updates will be given by the formulae below. Hence, at each position i < m,

they update all of the β Parikh vectors corresponding to the blocks, as previously described,

in time O(β). As an example, see here the modification of the previous Step 3, with the other

two steps being easily adapted in a similar fashion.

Step 3’: When shifting the window one position to the right from position i, update the

information for every diffj, where 0 ≤ j < β, as follows:

diffj[P ′[i+
jm

β
]] = diffj[P ′[i

jm

β
]] + 1 (2.15)

and

diffj[P ′[i+
(j + 1)m

β
]] = diffj[P ′[i

(j + 1)m

β
]]− 1, (2.16)

CHAPTER 2. PRELIMINARIES 28

and calculate δi+1,j based on this, sequentially applying the two following rules.

δi+1,j =


δi,j − 1, if diffj[P ′[i+ jm

β
]] ≤ 0

δi,j + 1, if diffj[P ′[i+ jm
β

]] > 0

(2.17)

and

δi+1,j =


δi+1,j − 1, if diffj[P ′[i+ (j+1)m

β
]] ≥ 0

δi+1,j + 1, if diffj[P ′[i+ (j+1)m
β

]] < 0

(2.18)

Algorithm saCSC solves the CSC problem in O(βm+ n) time and space [2].

2.7 Numerical Representations

We consider the DNA alphabet, i.e., Σ = {a, c, g, t}. In our approach, each character of the

alphabet is associated to a numeric value as follows. Each character is assigned a unique

numbers from the range [1...|Σ|]. Although this is not essential, we conveniently assign the

numbers from the range [1...|Σ|] to the characters of Σ following their inherent lexicographical

order. We use num(x), x ∈ Σ to denote the numeric value of the character x. So, we have

num(a) = 1, num(c) = 2, num(g) = 3 and num(t) = 4,. For a string S, we use the notation

SN to denote the numeric representation of the string S; and SN [i] denotes the numeric value

of the character S[i]. So, if S[i] = g then SN [i] = num(g) = 3. The concept of circular string

and their rotations also apply naturally on their numeric representations as is illustrated in

Example 3 below.

Example 8. Suppose we have a pattern P = atcgatg. The numeric representation of P is

PN = 1423143. And this numeric representation has the following rotations: P1
N = 4231431,

P2
N = 2314314, P3

N = 3143142, P4
N = 1431423, P5

N = 4314231, P6
N = 3142314.

CHAPTER 2. PRELIMINARIES 29

2.7.1 False Positives and Negatives

In the context of our filter based algorithm the concept of false positives and negatives is

important. So, we briefly discuss this concept here. Suppose we have an algorithm A to solve

a problem B. Now suppose that Strue represents the set of true solutions for the problem

B. Further suppose that A computes the set SA as the set of solutions for B. Now assume

that Strue 6= SA. Then, the set of false positives can be computed as follows: SA \ Strue. In

other words, the set computed by A contains some solutions that are not true solutions for

problem B. And these are the false positives, because, SA falsely marked these as solutions (i.e.,

positive). On the other hand, the set of false negatives can be computed as follows: Strue \ SA.

In other words, false negatives are those members in Strue that are absent in SA. These are

false negatives because SA falsely marked these as non-solutions (i.e., negative).

2.7.2 Category of Filters and Relevant Observations

As has been mentioned before, our algorithm is based on some filtering techniques. In this

subsection we discuss the filters and relevant observations which will be used throughout this

thesis. Our filters although essentially are based on the same concept, are used in slightly

different way for the different problems we handle.

• Observations for classical pattern (linear string) matching

• Observations for Exact Circular Pattern Matching (ECPM)/Circular Sequence Compar-

ison (CSC)

• Observations for Approximate Circular Pattern Matching (ACPM)

Now, suppose we are given a pattern P and a text T . We will frequently and conveniently

use the expression “P matches T at position i” to indicate P linearly matches T at position i in

the context of the classical pattern matching problem. And we will frequently and conveniently

use the expression “C(P) matches T at position i” (or equivalently, “P circularly matches T

at position i”) to indicate that one of the conjugates of P matches T at position i for CPM

problem. Again, we will also frequently and conveniently use the expression “C(P) k-matches

CHAPTER 2. PRELIMINARIES 30

T at position i” (or equivalently, “P circularly k-matches T at position i”) to indicate that

one of the conjugates of P k-matches T at position i (or equivalently, C(P) ≡k T) for ACPM

problem. We start with an brief overview of our approach in the subsections below.

2.7.3 Algorithmic Framework

In this framework, we first employ a number of filters to compute a set N of indexes of T

such that C(P) matches T at position i ∈ N . As will be clear shortly, our filters are unable

to compute the true set of indexes and hence N may have false positives. However, our filters

are designed in such a way that there are no false negatives. Hence, for all j /∈ N , we can be

sure that there is no match. On the other hand, for all i ∈ N , we may or may not have

a match, i.e., we may have false positives. So, after we have computed N , we compute T ′,

a reduced version of T concatenating all the factors F [i..i + m − 1], i ∈ N putting a special

character $ /∈ Σ in between the factors. One essential detail is as follows. There can be i, j ∈ N

such that 1 < j − i < p. In other words, there can exist overlapping factors matching with

C(P). However, this can be handled easily through simple book-keeping as will be evident

from our algorithm in later sections. Clearly, once we have computed the reduced text T ′ we

can employ any state of the art algorithm to solve problem (Problem 1 to Problem 4) on T ′

to get the actual occurrences. So the most essential and useful feature of this framework is the

application of filters to get a reduced text on which any existing algorithm can be applied to

solve these problems (Problem 1 to Problem 4).

2.8 Filters of Classical Pattern Matching

In our algorithms, we employ a total of 6 filters (Table 2.4). In this section we describe these

filters. We also discuss the related notions and notations needed to describe these filters. In

what follows we describe our filters in the context of two strings of equal length n, namely, P

and T , where the both are linear strings. We will devise and apply different functions on these

strings and present observations related to these functions which in the sequel will lead us to

our desired filter. The key to our observations and the resulting filters is the fact that each

CHAPTER 2. PRELIMINARIES 31

function we devise results in a unique output when applied to the linear string.

Note that, the idea of these filters and the associated algorithmic framework originated at

different research sessions arranged through the joint ongoing research collaborations2 between

King’s College, London & BUET.

2.8.1 Filter 1

We define the function sum on a string P of length m as follows: sum(P) =
∑m

i=1 PN [i]. Our

first filter, Filter 1, is based on this sum function. We have the following observation.

Observation 1. Consider a linear pattern P and a linear string T both having length n. If P

matches T , then we must have sum(P) = sum(T).

Example 9. Consider P = atcgatg and T = atcgatg. As can be easily verified, here P linearly

matches T . Now we have PN = 1423143 = TN and sum(T) = 18 = sum(T).

Now consider another string T ′ = atagctg, which is slightly different from T . It can be

easily verified that P does not match T ′. Now, T ′N = 1413243 and hence here as well we have

sum(T ′) = 18 = sum(P). This is an example of a false positive with respect to Filter 1 in

2.8.1.

Again, consider another string T ′′ = atcgatt, which is slightly different from T . It can be

easily verified that P also does not match T ′′. Now, T ′′N = 1423244 and hence here we have

sum(T ′′) = 20 and sum(P) = 18. This is an example of a false negative with respect to Filter

1 in 2.8.1.

2.8.2 Filters 2 and 3

Our second and third filters, i.e., Filters 2 and 3, depend on a notion of distance between

consecutive characters of a string. The distance between two consecutive characters of a string

P of length m is defined by distance(P [i],P [i+1]) = PN [i]−PN [i+1], where 1 ≤ i ≤ m−1. We

2Part of this research has been supported by an INSPIRE Strategic Partnership Award, administered by
the British Council, Bangladesh for the project titled “Advances in Algorithms for Next Generation Biological
Sequences.

CHAPTER 2. PRELIMINARIES 32

Table 2.4: A brief summary of the 6 filters employed in the our algorithms.

Filters Descriptions

Filter 1 It is based on the sum function on the string.

Filter 2 &
3

These two filters are based on the distance between consecutive characters
of the string. Filter 2 calculates only absolute distance whereas Filter 3
calculates actual distance.

Filter 4 It is based on the sum function like Filter 1 but in a slightly different
way: here the sum function is applied for each individual character.

Filter 5 It is based on the modulo function on the string.

Filter 6 It is based on the bitwise exclusive-OR (XOR) function on the string.

define total distance(P) =
∑m−1

i=1 distance(P [i],P [i+ 1]). We also define an absolute version

of it: abs total distance(P) =
∑m−1

i=1 abs(distance(P [i],P [i+ 1])), where abs(x) returns the

magnitude of x ignoring the sign.

Observation 2. Consider a linear pattern P and a linear string T both having length n. If P

matches T , then, we must have abs total distance(P) = abs total distance(T).

Example 10. Consider the same two strings of Example 9, i.e., P = atcgatg T = atcgatg.

Here P linear matches T . We have PN = 1423143 = TN . Hence, abs total distance(P) =

12 = abs total distance(T).

Now consider another string T ′ = atagctg of the same length, which is slightly different from

T . It can easily be checked that P doesn’t match T ′. However, we find that abs total distance(T ′)

is still 12. So, This is an example of a false positive with respect to Filter 2 in 2.8.2.

Again, consider another string T ′′ = atcgatt, which is slightly different from T . It can be

easily verified that P also does not match T ′′. Now, T ′′N = 1423244 and hence here we have

abs total distance(T ′′) = 11 and abs total distance(P) = 12. This is an example of a false

negative with respect to Filter 2 in 2.8.2.

Now we present the following related observation which is the basis of our Filter 3. Note

that Observation 2 differs with Observation 3 only through using the absolute version of the

CHAPTER 2. PRELIMINARIES 33

function used in the Section 2.8.2.

Observation 3. Consider a linear pattern P and a linear string T both having length n. If P

linearly matches T , then, we must have total distance(P) = total distance(T).

Example 11. Consider the same two strings of previous examples, Example 9, i.e., P =

atcgatg T = atcgatg. Here P linearly matches T . We have PN = 1423143 = TN . Hence,

total distance(P) = 1 = total distance(T).

Now consider another string T ′ = ctcgatg of the same length, which is slightly different from

T . It can easily be checked that P doesn’t match T ′. However, we find that total distance(T ′)

is still 1. So, This is an example of a false positive with respect to Filter 3 in 2.8.2.

Again, consider another string T ′′ = atcgatt, which is slightly different from T . It can be

easily verified that P also does not match T ′′. Now, T ′′N = 1423244 and hence here we have

total distance(T ′′) = −3 and total distance(P) = 1. This is an example of a false negative

with respect to Filter 3 in 2.8.2.

2.8.3 Filter 4

Filter 4 uses the sum() function used by Filter 1, albeit, in a slightly different way. In particular,

it applies the sum() function on individual characters. So, for x ∈ Σ we define sumx(P) =∑
1≤i≤|P|,P[i]=x PN [i]. Now we have the following observation.

Observation 4. Consider a linear pattern P and a linear string T both having length n. If P

linearly matches T , then, we must have sumx(P) = sumx(T) for all x ∈ Σ.

Example 12. Consider the same two strings of previous examples, Example 9, i.e., P =

atcgatg T = atcgatg. Recall that P linearly matches T . It is easy to calculate that suma(T) =

2, sumc(T) = 2, sumg(T) = 6 and sumt(T) = 8. Hence according to Observation 4, the

individual sum values for the P must also match this. It can be easily verified that this is

indeed the case.

Now consider the other string T ′ = atagctg of the same length, which is slightly different

from T . It can easily be checked that P doesn’t match T ′. However, as we can see, still we

CHAPTER 2. PRELIMINARIES 34

have suma(T ′) = 2, sumc(T ′) = 2, sumg(T ′) = 6 and sumt(T ′) = 8. This is an example of a

false positive with respect to Filter 4 in 2.8.3.

Again, consider another string T ′′ = atcgatt, which is slightly different from T . It can

easily be checked that P also doesn’t match T ′′. However, as we can see that suma(T ′′) = 2,

sumc(T ′) = 2, sumg(T ′′) = 3 and sumt(T ′′) = 12. This is an example of a false negative with

respect to Filter 4 in 2.8.3.

2.8.4 Filter 5

Filter 5 depends on modulo operation between two consecutive characters. A modulo op-

eration between two consecutive characters of a string P of length m is defined as follows:

modulo(P [i],P [i+ 1]) = PN [i]%PN [i+ 1], where 1 ≤ i ≤ m− 1. We define sum modulo(P) to

be the summation of the results of the modulo operations on the consecutive characters of P .

More formally, sum modulo(P) =
∑m−1

i=1 modulo(P [i],P [i+ 1]). Now we present the following

observation which is the basis of Filter 5.

Observation 5. Consider a linear pattern P and a linear string T both having length n. If P

linearly matches T , then, we must have sum modulo(P) = sum modulo(T).

Example 13. Consider the same two strings of previous examples, Example 9, i.e., P =

atcgatg T = atcgatg. Recall that P linearly matches T . We have PN = 1423143 = TN .

Hence, sum modulo(P) = 5 = sum modulo(T).

Now consider another string T ′ = ctagatg of the same length, which is different from T . It

can easily be checked that P doesn’t match T ′. However, we find that sum modulo(T ′) is still

5. So, This is an example of a false positive with respect to Filter 5 in 2.8.4.

Again, consider another string T ′′ = tgagatc, which is slightly different from T . It can be

easily verified that P also does not match T ′′. Now, T ′′N = 4313142 and hence here we have

sum modulo(T ′′) = 3 and sum modulo(P) = 5. This is an example of a false negative with

respect to Filter 5 in 2.8.4.

CHAPTER 2. PRELIMINARIES 35

2.8.5 Filter 6

In Filter 6 we employ the xor() operation. A bitwise exclusive-OR (xor()) operation between

two consecutive characters of a string P of length m is defined as follows: xor(P [i],P [i+ 1]) =

PN [i] ∧ PN [i + 1], where 1 ≤ i ≤ m − 1. We define sum xor(P) to be the summation of the

results of the xor operations on the consecutive characters of P . More formally, sum xor(P) =∑m−1
i=1 xor(P [i],P [i+ 1]). Now we present the following observation which is the basis of Filter

6.

Observation 6. Consider a linear pattern P and a linear string T both having length n. If P

linearly matches T , then, we must have sum xor(P) = sum xor(T).

Example 14. Consider two linear strings of same length, i.e., P = atcgatg T = atcgatg.

As can be easily verified, here P linearly matches T . We have PN = 1423143 = TN . Hence,

sum xor(P) = 26 = sum xor(T).

Now consider another string T ′ = gtagata of the same length, which is different from T .

It can easily be checked that P doesn’t match T ′. However, we find that sum xor(T ′) is still

26. So, This is an example of a false positive with respect to Filter 6 in 2.8.5.

Again, consider another string T ′′ = tgagatc, which is slightly different from T . It can be

easily verified that P also does not match T ′′. Now, T ′′N = 4313142 and hence here we have

sum xor(T ′′) = 24 and sum xor(P) = 26. This is an example of a false negative with respect

to Filter 6 in 2.8.5.

2.9 Filters of Circular Pattern Matching and Circular

Sequence Comparison

In this section we adopt the 6 filters described in Section 2.8 for circular string to solve the

problems ECPM and CSC problems. In particular we will be extending the filters used in

Section 2.8 to make it useful and effective in the context of Circular Pattern Matching Problem

and Circular Sequence Comparison. In what follows, we follow the notations described in

Section 2.8. Recall to Section 2.8, the key to our observations and the resulting filters is the

CHAPTER 2. PRELIMINARIES 36

fact that each function we devise results in a unique output when applied to the rotations of

a circular string. For example, consider a hypothetical function X . We will always have the

relation that X (P) = X (P i) for all 1 ≤ i < n. Recall that, P0 actually denotes P . For the

sake of conciseness, for such functions, we will abuse the notation a bit and use X (C(P)) to

represent X (P i) for all 0 ≤ i < |P|.

2.9.1 Filter 1

Following the notation described in Section 2.8.1, we have the following observations for circular

version of Filter 1.

Observation 7. Consider a circular string P and a linear string T both having length n. If

C(P) matches T , then we must have sum(C(P)) = sum(T).

Example 15. Consider P = atcgatg T = tgatcga. As can be easily verified, here P circularly

matches T . In fact the match is due to the conjugate P5. Now we have TN = 4314231 and

sum(T) = 18. Then, according to Observation 7, we must have sum(C(P)) = 18. This can

indeed be verified easily.

Now consider another string T ′ = atagctg, which is slightly different from T . It can be

easily verified that C(P) does not match T ′. Now, T ′N = 1413243 and hence here as well we

have sum(T ′) = 18 = sum(C(P)). This is an example of a false positive with respect to Filter

1 in 2.9.1.

Again, consider another string T ′′ = atcgatt, which is slightly different from T . It can be

easily verified that P also does not match T ′′. Now, T ′′N = 1423244 and hence here we have

sum(T ′′) = 20 and sum(P) = 18. This is an example of a false negative with respect to Filter

1 in 2.9.1.

2.9.2 Filters 2 and 3

Following the notation described in Section 2.8.2, we introduce observations for circular version

of Filter 2 and Filter 3. Before we apply these two functions on our strings to get our filters,

we need to do a simple pre-processing on the respective string, i.e., P in this case as follows.

CHAPTER 2. PRELIMINARIES 37

We extend the string P by concatenating the first character of P at its end. We use ext(P) to

denote the resultant string. So, we have ext(P) = PP [1]. Since, ext(P) can simply be treated

as another string, we can easily extend the notation and concept of C(P) over ext(P).

Now we have the following observation which is the basis of our Filter 2.

Observation 8. Consider a circular string P and a linear string T both having length n

and assume that A = ext(P) and B = ext(T). If C(P) matches T , then, we must have

abs total distance(C(A)) = abs total distance(B). Note carefully that the function abs total distance()

has been applied on the extended strings.

Example 16. Consider the same two strings of Example 15, i.e., P = atcgatg T = tgatcga.

Here P circularly matches T (due to the conjugate P5). Now consider the extended strings and

assume that A = ext(P) and B = ext(T). We have TN = 4314231. Hence BN = 43142314.

Hence, abs total distance(B) = 14. It can be easily verified that abs total distance(C(A)) is

also 14.

Now consider another string T ′ = atagctg of the same length, which is slightly different from

T . It can easily be checked that C(P) doesn’t match T ′. However, assuming that B′ = ext(T ′)

we find that abs total distance(B′) is still 14. So, This is an example of a false positive with

respect to Filter 2 in 2.9.2.

Again, consider another string T ′′ = atggatg, which is slightly different from T . It can be

easily checked that C(P) also does not match T ′′. However, assuming that B′′ = ext(T ′′) we

find that abs total distance(B′′) = 12. This is an example of a false negative with respect to

Filter 2 in 2.9.2.

Now we present the following related observation which is the basis of our Filter 3. Note

that Observations 8 differs with Observation 9 only through using the absolute version of the

function used in the latter.

Observation 9. Consider a circular string P and a linear string T both having length n

and assume that A = ext(P) and B = ext(T). If C(P) matches T , then, we must have

total distance(C(A)) = total distance(B). Note carefully that the function total distance()

has been applied on the extended strings.

CHAPTER 2. PRELIMINARIES 38

Example 17. Consider the same two strings of previous examples, Example 15, i.e., P =

atcgatg T = tgatcga. Here P circularly matches T (due to the conjugate P5). Now con-

sider the extended strings and assume that A = ext(P) and B = ext(T). We have TN =

4314231. Hence BN = 43142314. Hence, total distance(B) = 0. It can be easily verified that

total distance(C(A)) is also 0.

Now consider another string T ′ = atagctg of the same length, which is slightly different from

T . It can easily be checked that C(P) doesn’t match T ′. However, assuming that B′ = ext(T ′)

we find that total distance(B′) is still 0. So, This is an example of a false positive with respect

to Filter 3 in 2.9.2.

Again, consider another string T ′′ = ttatcga, which is slightly different from T . It can be

easily checked that C(P) also does not match T ′′. However, assuming that B′′ = ext(T ′′) we

find that total distance(B′′) = −4. This is an example of a false negative with respect to Filter

3 in 2.9.2.

2.9.3 Filter 4

Following the notation described in Section 2.8.3, we have the following observations for circular

version of Filter 4.

Observation 10. Consider a circular string P and a linear string T both having length n. If

C(P) matches T , then, we must have sumx(C(P)) = sumx(T) for all x ∈ Σ.

Example 18. Consider the same two strings of previous examples, Example 15, i.e., P =

atcgatg T = tgatcga. Recall that P circularly matches T (due to the conjugate P5). It is

easy to calculate that suma(T) = 2, sumc(T) = 2, sumg(T) = 6 and sumt(T) = 8. Hence

according to Observation 10, the individual sum values for all the conjugates of P must also

match this. It can be easily verified that this is indeed the case.

Now consider the other string T ′ = atagctg of the same length, which is slightly different

from T . It can easily be checked that C(P) doesn’t match T ′. However, as we can see, still we

have suma(T ′) = 2, sumc(T ′) = 2, sumg(T ′) = 6 and sumt(T ′) = 8. This is an example of a

false positive with respect to Filter 4 in 2.9.3.

CHAPTER 2. PRELIMINARIES 39

Again, consider another string T ′′ = atggatg, which is slightly different from T . It can

be easily checked that C(P) also does not match T ′′. Hence, as we can see, suma(T ′′) = 1,

sumc(T ′′) = 0, sumg(T ′′) = 9 and sumt(T ′′) = 8. This is an example of a false negative with

respect to Filter 4 in 2.9.3.

2.9.4 Filter 5

Following the notation described in Section 2.8.4, we have the following observations for linear

version of Filter 5. Note that this observation is applied on the extended versions of the

respective strings.

Observation 11. Consider a circular string P and a linear string T both having length n

and assume that A = ext(P) and B = ext(T). If C(P) matches T , then, we must have

sum modulo(C(A)) = sum modulo(B). Note carefully that the function sum modulo() has

been applied on the extended strings.

Example 19. Consider the same two strings of previous examples, Example 15, i.e., P =

atcgatg T = tgatcga. Recall that P circularly matches T (due to the conjugate P5). Now

consider the extended strings and assume that A = ext(P) and B = ext(T). We have

TN = 4314231. Hence BN = 43142314. Hence, sum modulo(B) = 5. Now according to

Observation 11, we must also have sum modulo(C(A)) = 5. This is indeed true.

Now consider another string T ′ = tgagatc of the same length, which is different from T .

It can easily be checked that C(P) doesn’t match T ′. However, assuming that B′ = ext(T ′) we

find that sum modulo(B′) is still 5. So, This is an example of a false positive with respect to

Filter 5 in 2.9.4.

Again, consider another string T ′′ = ttatcga, which is slightly different from T . It can be

easily checked that C(P) also does not match T ′′. However, assuming that B′′ = ext(T ′′) we

find that sum modulo(B′′) = 4. This is an example of a false negative with respect to Filter 5

in 2.9.4.

CHAPTER 2. PRELIMINARIES 40

2.9.5 Filter 6

Following the notation described in Section 2.8.5, we have the following observations for linear

version of Filter 6. Note that this observation is applied on the extended versions of the

respective strings.

Observation 12. Consider a circular string P and a linear string T both having length n

and assume that A = ext(P) and B = ext(T). If C(P) matches T , then, we must have

sum xor(C(A)) = sum xor(B). Note carefully that the function sum xor() has been applied

on the extended strings.

Example 20. Consider the same two strings of previous examples, i.e., P = atcgatg T =

tgatcga. Recall that P circularly matches T (due to the conjugate P5). Now consider the

extended strings and assume that A = ext(P) and B = ext(T). We have TN = 4314231.

Hence BN = 43142314. Hence, sum xor(B) = 28. Now according to Observation 12, we must

also have sumxor(C(A)) = 28. As can be verified easily, this is indeed the case.

Now consider another string T ′ = gtagatc of the same length, which is different from T .

It can easily be checked that C(P) doesn’t match T ′. However, assuming that B′ = ext(T ′)

we find that sum xor(B′) is still 28. So, This is an example of a false positive with respect to

Filter 6 in 2.9.5.

Again, consider another string T ′′ = ttatcga, which is slightly different from T . It can be

easily checked that C(P) also does not match T ′′. However, assuming that B′′ = ext(T ′′) we

find that sum xor(B′′) = 24. This is an example of a false negative with respect to Filter 6 in

2.9.5.

2.10 Filters of ACPM

In this section we adopt the 6 filters described in Section 2.8 for approximate version of circular

pattern matching. In particular we will be extending the filters used in Section 2.8 to make it

useful and effective in the context of approximate circular pattern matching. In what follows,

we follow the notations described in Section 2.8.

CHAPTER 2. PRELIMINARIES 41

2.10.1 Filter 1

Following the notation described in Section 2.8.1, we have the following observations for ap-

proximate version of Filter 1.

Observation 13. Consider a circular string P and a linear string T both having length n. If

C(P) ≡k T , where 0 ≤ k < n, then we must have

sum(T)− k × 4 + k × 1 ≤ sum(C(P)) ≤ sum(T) + k × 4− k × 1.

Reason behind the fixed values (1 and 4) used in the above filter (Observation

13: It has been seen that, for k-mismatches (i.e mutations), the k number of ‘A’ character

can be replaced by k number of ‘T’ character from the circular string, at most. In this way, we

can get the upper bound. Again, if the k number of ‘T’ character can be replaced by k number

of ‘A’ character from the circular string, at least, then we get the lower bound. This is due to

the minimum numeric number, num(a) = 1 corresponds to character ‘A’ and the maximum

numeric number, num(t) = 4 corresponds to character ‘T’.

Example 21. Consider P = atcgatg. We can easily calculate that sum(C(P)) = 18. Now,

consider T 1 = aacgatg, slightly different from P, i.e, P [2] = t 6= T 1[2] = a. As can be easily

verified, here P ≡1 T 1. According to Observation 13, in this case the lower (upper) bound is

15 (18). Indeed, we have T 1N = 1123143 and sum(T 1) = 15, which is within the bounds.

Now consider T 2 = ttcgatg, slightly different from P, i.e, P [1] = a 6= T 2[1] = t. As can

be easily verified, here P ≡1 T 2. Therefore, in this case as well, the lower and upper bound

mentioned above hold. And indeed we have T 2N = 4423143 and sum(T 2) = 21, which is

within the bounds. Finally, consider another string T ′ = atagctg. It can be easily verified that

C(P) 6≡1 T ′. Again, the previous bounds hold in this case and we find that T ′N = 1413243 and

sum(T ′) = 18. Clearly this is within the bounds of Observation 13 and in fact it is exactly

equal to sum(C(P)). This is an example of a false positive with respect to Filter 1 in 2.10.1.

Again, consider another string T ′′ = atcgatt, which is slightly different from T . It can be

easily verified that C(P) 6≡1 T ′′. Now, T ′′N = 1423244 and hence here we have sum(T ′′) = 20.

CHAPTER 2. PRELIMINARIES 42

Clearly this is not within the bounds of Observation 13. This is an example of a false negative

with respect to Filter 1 in 2.10.1.

2.10.2 Filters 2 and 3

Following the notation described in Section 2.8.2, we have the following observations for ap-

proximate version of Filter 2 and Filter 3. Note that these two observations are applied on the

extended versions of the respective strings.

Observation 14. Consider a circular string P and a linear string T both having length n and

assume that A = ext(P) and B = ext(T). If C(P) ≡k T , where 0 ≤ k < n, then we must have

abs total distance(B)− k × 4 + k × 1 ≤

abs total distance(C(A)) ≤

abs total distance(B) + k × 4− k × 1.

Reason behind the fixed values (1 and 4) used in the above filter (Observation

14): Same reason described for Filter 13.

Example 22. Consider the same strings of Example 21, i.e., P = atcgatg, T 1 = aacgatg

and T 2 = ttcgatg. As can be easily verified, here P ≡1 T 1 and P ≡1 T 2. Now consider

the extended strings and assume that A = ext(P), B1 = ext(T 1) and B2 = ext(T 2). It can

be easily verified that abs total distance(C(A)) is 14. Recall that T 1 is slightly different from

P, i.e, P [2] = t 6= T 1[2] = a. Now we have T 1N = 1123143. Hence B1N = 11231431.

Hence, abs total distance(B1) = 10 which is indeed within the bounds of Observation 14. Now

consider T 2, which is slightly different from P, i.e, P [1] = a 6= T 2[1] = t. Now we have

T 2N = 4423143. Hence B2N = 44231434. Hence, abs total distance(B2) = 10, which is also

within the bounds. Again, consider T ′ = atagctg, which is again slightly different from P. It

can be easily verified that C(P) 6≡1 T ′. However, assuming that B′ = ext(T ′) we find that

abs total distance(B′) is still 14, which is in the range of Observation 14. This is an example

of a false positive with respect to Filter 2 in 2.10.2.

CHAPTER 2. PRELIMINARIES 43

Finally, consider another string T ′′ = aaaaaaa, which is totally different from T . It can be

easily verified that C(P) 6≡1 T ′′. Now, T ′′N = 1111111 and hence assuming that B′′ = ext(T ′′)

we find that abs total distance(B′′) = 0. Clearly this is not within the bounds of Observation

14. This is an example of a false negative with respect to Filter 2 in 2.10.2.

Now we present the following related observation which is the basis of our Filter 3. Note

that Observation 14 differs with Observation 15 only through using the absolute version of

the function used in the Section 2.8.2. Note that this observation is applied on the extended

versions of the respective strings.

Observation 15. Consider a circular string P and a linear string T both having length n and

assume that A = ext(P) and B = ext(T). If C(P) ≡k T , where 0 ≤ k < n, then we must have

total distance(B)− k × 4 + k × 1 ≤ total distance(C(A))

≤ total distance(B) + k × 4− k × 1.

Reason behind the fixed values (1 and 4) used in the above filter (Observation

15): Same reason described for Filter 13.

Example 23. Consider the same strings of Example 21, i.e., P = atcgatg, T 1 = aacgatg

and T 2 = ttcgatg. As can be easily verified, here P ≡1 T 1 and P ≡1 T 2. Now consider the

extended strings and assume that A = ext(P), B1 = ext(T 1) and B2 = ext(T 2). It can be

easily verified that abs total distance(C(A)) is 14. Recall that T 1 is slightly different from P,

i.e, P [2] = t 6= T 1[2] = a. Now we have T 1N = 1123143. Hence B1N = 11231431. Hence,

total distance(B1) = 0 which is indeed within the bounds of Observation 14. Now consider T 2,

which is slightly different from P, i.e, P [1] = a 6= T 2[1] = t. Now we have T 2N = 4423143.

Hence B2N = 44231434. Hence, total distance(B2) = 10, which is also within the bounds.

Again, consider T ′ = atagctg, which is again slightly different from P. It can be easily verified

that C(P) 6≡1 T ′. However, assuming that B′ = ext(T ′) we find that total distance(B′) is still

0, which is in the range of Observation 15. This is an example of a false positive with respect

to Filter 3 in 2.10.2.

CHAPTER 2. PRELIMINARIES 44

Finally, consider another string T ′′ = aaaaaaa, which is totally different from T . It can be

easily verified that C(P) 6≡1 T ′′. Now, T ′′N = 1111111 and hence assuming that B′′ = ext(T ′′)

we find that abs total distance(B′′) = 0. Clearly this is not within the bounds of Observation

15. This is an example of a false negative with respect to Filter 3 in 2.10.2.

2.10.3 Filters 4

Following the notation described in Section 2.8.3, we have the following observations for ap-

proximate version of Filter 4.

Observation 16. Consider a circular string P and a linear string T both having length n. If

C(P) ≡k T , where 0 ≤ k < n, then we must have

sumx(T)− k × num(x) ≤ sumx(C(P))

≤ sumx(T) + k × num(x)

for all x ∈ Σ.

Reason behind the fixed values (1 and 4) used in the above filter (Observation

16): Same reason described for Filter 13.

Example 24. Consider the same strings of Example 22, i.e., P = atcgatg, T 1 = aacgatg

and T 2 = ttcgatg. Recall that here P ≡1 T 1 and P ≡1 T 2. Now, as has been described in

Example 22 that T 1 is slightly different from P, i.e, P [2] = t 6= T 1[2] = a. Now we have

T 1N = 1123143. Hence, suma(T 1) = 3, sumc(T 1) = 2, sumg(T 1) = 6 and sumt(T 1) = 4.

According to Observation 16, in this case the lower (upper) bound for character ‘A’ is 2 (3).

And the lower (upper) bound for character ‘T’ is 4 (8), which is in the bounds. Now consider

that T 2 which is slightly from P, i.e P [1] = a 6= T 2[1] = t. Now we have T 2N = 4423143.

Hence, suma(T 2) = 1, sumc(T 2) = 2, sumg(T 2) = 6 and sumt(T 1) = 12. Here, in this case

the lower (upper) bound for character ‘A’ is 1 (2). And the lower (upper) bound for character

‘T’ is 8 (12), which is also in the bounds. Therefore, we can summarize that we have got

CHAPTER 2. PRELIMINARIES 45

a lower bound and an upper bound according to Observation 16 for these two characters ‘A’

and ‘T’, others are unchanged. For this example the Observation 16 shows the overall lower

(upper) bound for character ‘A’ is 1 (3) and the lower (upper) bound for character ‘T’ is 4 (12).

Again, consider T ′ = atagctg, which is again slightly different from P. It can be easily verified

that C(P) 6≡1 T ′. Now, T ′N = 1413243. However, as we can still find that, suma(T ′) = 2,

sumc(T ′) = 2, sumg(T ′) = 6 and sumt(T ′) = 8, which is in the bounds of Observation 16.

This is an example of a false positive with respect to Filter 4 in 2.10.3. Finally, consider

another string T ′′ = aaaaaaa, which is totally different from T . It can be easily verified that

C(P) 6≡1 T ′′. Hence, as we can see, suma(T ′′) = 7, sumc(T ′′) = 0, sumg(T ′′) = 0 and

sumt(T ′′) = 0. Clearly this is not within the bounds of Observation 16. This is an example of

a false negative with respect to Filter 4 in 2.9.3.

2.10.4 Filters 5

Following the notation described in Section 2.8.4, we have the following observations for ap-

proximate version of Filter 5. Note that this observation is applied on the extended versions

of the respective strings.

Observation 17. Consider a circular string P and a linear string T both having length n and

assume that A = ext(P) and B = ext(T). If C(P) ≡k T , where 0 ≤ k < n, then, we must

have

sum modulo(B)− k × 4 + k × 0 ≤ sum modulo(C(A))

≤ sum modulo(B) + k × 4− k × 0.

Note carefully that the function sum modulo() has been applied on the extended strings.

Reason behind the fixed values (0 and 4) used in the above filter (Observation

17): As we are doing modulo operation for the Observation 5, the replacement of a single

character (any of
∑

) with another character (also taken from
∑

) may change the sum of

modulo operation in a way that we can have a upper bound. This upper bound for a single

character is 4. In this way, we can get the upper bound for k mismatches. Again, for the lower

CHAPTER 2. PRELIMINARIES 46

bound, it has been seen that, for a single character change the minimum change in the sum of

the modulo operation could be 0. By this way, we can get the lower bound for k mismatches.

Example 25. Consider the same four strings of Example 22, i.e., P = atcgatg, T 1 = aacgatg

and T 2 = ttcgatg. As can be easily verified, here P ≡1 T 1 and P ≡1 T 2. Now consider the

extended strings and assume that A = ext(P), B1 = ext(T 1) and B2 = ext(T 2). It can be

easily verified that sum modulo(C(A)) is 5. Recall that T 1 is slightly different from P, i.e,

P [2] = t 6= T 1[2] = a. Now we have T 1N = 1123143. Hence B1N = 11231431. Hence,

sum modulo(B1) = 5 which is indeed within the bounds of Observation 17. Now consider T 2,

which is slightly different from P, i.e, P [1] = a 6= T 2[1] = t. Now we have T 2N = 4423143.

Hence B2N = 44231434. Hence, sum modulo(B2) = 7, which is also within the bounds. Again,

consider T ′ = atagctg, which is again slightly different from P. It can be easily verified that

C(P) 6≡1 T ′. However, assuming that B′ = ext(T ′) we find that sum modulo(B′) is still 5,

which is in the range of Observation 17. This is an example of a false positive with respect to

Filter 5 in 2.10.4.

Finally, consider another string T ′′ = aaaaaaa, which is totally different from T . It can be

easily verified that C(P) 6≡1 T ′′. Now, T ′′N = 1111111 and hence assuming that B′′ = ext(T ′′)

we find that sum modulo(B′′) = 0. Clearly this is not within the bounds of Observation 17.

This is an example of a false negative with respect to Filter 5 in 2.10.4.

2.10.5 Filters 6

Following the notation described in Section 2.8.5, we have the following observations for ap-

proximate version of Filter 6. Note that this observation is applied on the extended versions

of the respective strings.

Observation 18. Consider a circular string P and a linear string T both having length n and

assume that A = ext(P) and B = ext(T). If C(P) ≡k T , then, we must have

sum xor(B)− k × 14 + k × 0 ≤ sum xor(C(A))

CHAPTER 2. PRELIMINARIES 47

≤ sum xor(B) + k × 14 + k × 0.

Note carefully that the function sum xor() has been applied on the extended strings.

Reason behind the fixed values (0 and 14) used in the above filter (Observation

18): As we are doing xor operation for the Observation 6, the replacement of a single character

(any of
∑

) with another character (also taken from
∑

) may change the sum of xor operation

in a way that we can have a upper bound. This upper bound for a single character is 14. In this

way, we can get the upper bound for k mismatches. Again, for the lower bound, it has been

seen that, for a single character change the minimum change in the sum of the xor operation

could be 0. By this way, we can get the lower bound for k mismatches.

Example 26. Consider the same four strings of Example 22, i.e., P = atcgatg, T 1 = aacgatg

and T 2 = ttcgatg. As can be easily verified, here P ≡1 T 1 and P ≡1 T 2. Now consider

the extended strings and assume that A = ext(P), B1 = ext(T 1) and B2 = ext(T 2). It can

be easily verified that sum xor(C(A)) is 28. Recall that T 1 is slightly different from P, i.e,

P [2] = t 6= T 1[2] = a. Now we have T 1N = 1123143. Hence B1N = 11231431. Hence,

sum xor(B1) = 20 which is indeed within the bounds of Observation 18. Now consider T 2,

which is slightly different from P, i.e, P [1] = a 6= T 2[1] = t. Now we have T 2N = 4423143.

Hence B2N = 44231434. Hence, sum xor(B2) = 28, which is also within the bounds. Again,

consider T ′ = atagctg, which is again slightly different from P. It can be easily verified that

C(P) 6≡1 T ′. However, assuming that B′ = ext(T ′) we find that sum xor(B′) is still 28, which

is in the range of Observation 18. This is an example of a false positive with respect to Filter

6 in 2.10.5. Finally, consider another string T ′′ = aaaaaaa, which is totally different from

T . It can be easily verified that C(P) 6≡1 T ′′. Now, T ′′N = 1111111 and hence assuming

that B′′ = ext(T ′′) we find that sum xor(B′′) = 0. Clearly this is not within the bounds of

Observation 18. This is an example of a false negative with respect to Filter 6 in 2.10.5.

CHAPTER 2. PRELIMINARIES 48

2.11 Summary

In this chapter, we presented a brief overview of notations related to stringology. We described

our problems (Problem 1 to Problem 4) based on their present state of the condition. Then we

discussed our filtering based observations. Our filter-based observations have been shown in 3

different ways. At first we described filtering observations for exact circular string. Secondly,

we described filtering observations for approximate circular string. Finally, in the end we

showed filtering observations for classical linear pattern. Furthermore, we showed examples

related to each observations. In the next chapter, we will represent our filter-based pattern

signature and a framework for search space reduction. Then, using this framework, we will

show our algorithms to solve all the problems (Problem 1 to Problem 4).

Chapter 3

Filter based Algorithmic Framework

As discussed in Chapters 1 and 2, our algorithms are based on some filters. In this chapter, we

formulate a framework to solve the problems, Problems 1 to 4 as described in Chapter 2. At

first, we introduce the concept of a pattern signature which will be useful for all the problems.

Subsequently, we propose a framework which will be used to minimize the search space of the

algorithms. Finally, we show different algorithms for different problems, Problem 1 to 4 as

described in Chapter 2.

3.1 Pattern Signature using the Filters

In this section, we discuss the concept of a pattern signature based on the filters that will

be used in our algorithms. This concept will be applicable to the circular pattern C(P) as

well as to the (linear) pattern P itself. This signature is used at a later stage to filter the

text. Here, we need five variables to save the output of the functions used for Filters 1, 2,

3, 5 and 6 for each problem (based on Observations 1 to 18). And we need a list of size

4 to save the values of the function used in Filter 4 (Observations 4, 10 and 16). We start

with the extended string ext(P) = P [1 : m]P [1] for circular string or P for linear string and

compute the values according to Observations 1 to 18. The algorithm will iterate m + 1 (for

circular string) or m (for linear string) times and hence the overall runtime of the algorithm

is O(m). The algorithm is presented in Procedure PSF FT (pattern type) (Algorithm 3.1).

49

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 50

Here, pattern type is a parameter which is being passed to the procedure. In case of, classical

pattern matching, we pass “linear” as pattern type and on the other side, we pass “circular”

as pattern type for circular pattern matching as well as circular sequence comparison.

Algorithm 3.1 Procedure PSF FT (pattern type): Pattern Signature Algorithmic Frame-
work using Filters 1 : 6 in a single pass

1: define five varibles for filters 1, 2, 3, 5, 6
2: define an array of size 4 for filters 4
3: define an array of size 4 to keep fixed value of A, C, G, T
4: if (pattern type = circular) then
5: s← P [1 : m]P [1] /*For circular pattern matching. Here, s = ext(P)*/

6: else
7: /*For classical pattern matching. (pattern type = linear)*/

8: s← P [1 : m] /*Here, s = P*/
9: end if

10: initialize all defined variables to zero
11: initialize fixed array to {1, 2, 3, 4}
12: for i← 1 to |s| do
13: if i 6= |s| then
14: calculate different filtering values via observations 1 & 4 and make a running sum
15: end if
16: calculate different filtering values via observations 2, 3, 5 & 6 and make a running sum
17: end for
18:

19: return all observations values

So, at this point, we can summarize, how the Procedure PSF FT (pattern type) works for

both circular and linear pattern as follows:

• Linear Pattern: In classical pattern matching, we need to consider only the linear

version of pattern string itself. That’s why we only copy the pattern string P in s in the

Procedure PSF FT (pattern type) in line 8. Except this, all are same for both linear and

circular string. This is being done when the passed parameter to the procedure is linear,

i.e., pattern type = linear.

• Circular Pattern: In circular pattern matching as well as circular sequence compar-

ison, we need to consider the circular version of pattern string. That’s why we need

to consider the extended pattern string that means s = ext(P). In the Procedure

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 51

PSF FT (pattern type) (in line 5), we append the first character at the last position

to make the linear string circular means we make extended pattern string (we have dis-

cussed this before in Chapter 2). This is being done when the passed parameter to the

procedure is circular, i.e., pattern type = circular.

Hence, the running time of Procedure PSF FT (pattern type) is O(m) for both the circular

and linear pattern string, where m is the length of the pattern string.

3.2 Reduction of Search Space

In this section, we present our main idea to reduce the search space of the text applying the

six filters presented in Chapter 2 for each problems. We develop a Procedure named RSS FT

(Algorithm 3.2) which will be used to reduce the search space for both the linear and circular

pattern strings. This procedure takes as input the pattern P [1 : m] of length m and the

text T [1 : n] of length n. Procedure RSS FT calls Procedure PSF FT (pattern type) with

P [1 : m] and pattern type (linear or circular) as parameter and uses the output that returned

by the Procedure PSF FT (pattern type). This Procedure (RSS FT) then applies the same

technique that is applied in Procedure PSF FT (pattern type) (Algorithm 3.1) to calculate

the values of relevant Observations to reduce the search space. This means, we apply a sliding

window approach with window length of m and calculate the values applying the functions

according to Filters 1 : 6 for each problem on the factor of T captured by the window. Note

that for Filters 2, 3, 5 and 6, we need to consider the extended string (in case of circular)

and hence the factor of T within the window need be extended accordingly for calculating the

values. After we calculate the values for a factor of T , we check it against the returned values

of Procedure PSF FT . If it matches, then we output the factor to a file. Note that in case of

overlapping factors (e.g., when the consecutive windows need to output the factors to a file),

Procedure RSS FT outputs only the non-overlapped characters. And Procedure RSS FT

uses a $ marker to mark the boundaries of non-consecutive factors, where $ /∈ Σ.

Now note that we can compute the values of consecutive factors of T using the sliding

window approach quite efficiently as follows. For the first factor, i.e., T [1..m] we exactly follow

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 52

Algorithm 3.2 Procedure RSS FT : Reduction of Search Space in a Text String using pro-
cedure PSF FT (pattern type)

1: call PSF FT (P [1 : m] and pattern type) /*Pass ‘‘circular’’ incase of circular pattern

matching or ‘‘linear’’ for classical pattern matching*/

2: save the return value of filters 1 : 6 for further use here
3: define an array of size 4 to keep fixed value of A, C, G, T
4: initialize fixed array to {1, 2, 3, 4}
5: for i← 1 to m do
6: calculate different filtering values in T [1 : m] via filters 1 : 6 and make a running sum
7: end for
8: if 1 : 6 filters values of P [1 : m] vs 1 : 6 filters values of T [1 : m] have a match then
9: /*Found a filtered match*/

10: Output to file T [1 : m]
11: end if
12: for i← 1 to n−m do
13: calculate different filtering values in T [1 : m] via filters 1 : 6 by subtracting i-th

value along with wrapped value (in case of circular) and adding i + m-th value
and new wrapped value to the running sum /*wrap the text string in case of

‘‘circular pattern matching’’ and ‘‘circular sequence comparison’’, otherwise go

straight without wrapping for ‘‘classical pattern matching’’*/

14: if 1 : 6 filtering values of P [1 : m] vs 1 : 6 filtering values of T [i+ 1 : i+m] have a match
then

15: /*Found a filtered match*/

16: check whether non-consecutive sequence or not. if non-consecutive put an end marker
$ to file

17: Output to file T [i+ 1 : i+m]
18: end if
19: end for

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 53

the strategy of Procedure PSF FT (pattern type). When it is done, we slide the window by

one character and we only need to remove the contribution of the left most character of the

previous window and add the contribution of the rightmost character of the new window. The

functions are such that this can be done very easily using simple constant time operations.

The only other issue that needs be taken care of is due to the use of the extended string in

four of the filters in case of circular string. On the other hand, we don’t need to consider

extended string for linear string, i.e., for classical pattern matching. But this too do not need

more than simple constant time operations. Therefore, overall runtime of the algorithm is

O(m) + O(n − m) = O(n). The algorithm is presented in the form of Procedure RSS FT

(Algorithm 3.2). Finally, we can summarize, how the Procedure RSS FT works for both

circular and linear pattern as follows:

• Linear Pattern: In classical pattern matching, we need to consider only the lin-

ear version of pattern string itself. When the Procedure RSS FT class Procedure

PSF FT (pattern type), it passes pattern type “linear” in line 1. Again, when this

procedure calculate sliding window for the Observations, it doesn’t consider extended

string in line 13. Except these, all are same for both liner and circular string. This is

being done for classical pattern matching.

• Circular Pattern: Again, in circular pattern matching as well as circular sequence

comparison, we need to consider the circular version of pattern string. That’s why When

the Procedure RSS FT class Procedure PSF FT (pattern type), it passes pattern type

“circular” in line 1. Further, when this procedure calculate sliding window for the Obser-

vations, it does consider extended string in line 13. Except these, all are same for both

liner and circular string.

3.2.1 An Illustrative Example for the ECPM Problem

Now that we have fully described the search space reduction algorithm (Algorithm 3.2), in

this section, we present the simulation of the algorithm RSS FT (actually we consider exact

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 54

Table 3.1: An example simulation of Filtered-ECPM

iteration
local
total
sum

abs

sum

actual

sum

local
indi-
vidual
sum[0:4]

modulas

sum

xor

sum

match
with
pattern?

Output File

1 18 14 0 {2, 2, 6, 8} 5 28 YES tgatcga

2 15 12 0 {3, 2, 6, 4} 4 18 NO $
3 13 8 0 {4, 2, 3, 4} 3 14 NO

4 15 8 0 {3, 2, 6, 4} 6 18 NO

5 15 8 0 {3, 2, 6, 4} 6 18 NO

6 14 10 0 {4, 0, 6, 4} 5 18 NO

7 12 6 0 {5, 0, 3, 4} 4 14 NO

8 15 12 0 {4, 0, 3, 8} 5 24 NO

9 16 12 0 {3, 2, 3, 8} 5 28 NO

10 18 10 0 {2, 2, 6, 8} 6 24 NO

11 16 14 0 {3, 2, 3, 8} 4 24 NO

12 16 14 0 {3, 2, 3, 8} 4 24 NO

13 18 14 0 {2, 2, 6, 8} 5 28 YES atcgatg

circular pattern here) on a particular example. We only show the simulation upto the output of

Procedure RSS FT , i.e., the output of the reduced text, because afterwards we can employ any

state of the art algorithm that can solve ECPM. Consider a pattern P = atcgatg. The values

computed by Procedure PSF FT according to the Observations 7 through 12 are as follows,

respectively (see examples 15 to 20): local total sum = 18, abs sum = 14, actual sum = 0,

local individual sum[0 : 4] = {2, 2, 6, 8}, modulas sum = 5 and xor sum = 28.

Again consider a text string T = tgatcgaaagtaatcgatg$. For the first sliding window we need

to calculate the observation values from T [1 : 7]. The observation values according to Procedure

RSS FT are as follows for T [1 : 7]: local total sum = 18, abs sum = 14, actual sum = 0,

local individual sum[0 : 4] = {2, 2, 6, 8}, modulas sum = 5 and xor sum = 28.

The length of T is 19. And the length of P is 7. So, the algorithm iterates exactly 19−7+1

= 13 times. Each iteration is illustrated in Table 3.1.

Finally, we apply state of the art algorithm into the filtered text to solve the ECPM. Here,

applying any state of art algorithm we find that the patten P matches text T at positions 1

and 13. This happens due P2 matches T at position 1 and P0 matches T at position 13. So,

this algorithm reports output: 1 and 13.

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 55

3.3 The Combined Algorithm for Classical Pattern Match-

ing Problem

In this section, we present an algorithm to solve the classical pattern matching problem applying

the six filters presented in Section 2.8, Chapter 2. In our algorithm we use two different state

of the art algorithms to solve the classic pattern matning problem in the reduced text. These

two state of the art algorithms are: KMP algorithm [26] and BM algorithm [27]. When we use

KMP algorithm to solve the classical pattern matching problem in our algorithm, then we call

our classical pattern matching algorithm as Filtered-KMP. Again, on the other hand, when

we use BM algorithm to solve the same problem, then we call our algorithm as Filtered-BM

algorithm. Hence, form this point of view, we will use these two names (Filtered-KMP and

Filtered-BM) to refer to our classical pattern matching algorithm. Bo the Filtered-KMP and

Filtered-BM take as input the pattern P [1 : m] of length m, the text T [1 : n] of length n.

Both the algorithms call Procedure PSF FT (pattern type) 3.1 with P [1 : m] and “linear” as

parameters and uses the output of it. We apply a sliding window approach with window length

of m and calculate the values applying the functions according to Observations 1 : 6 on the

factor of T captured by the window. After we calculate the values for a factor of T , we check

it against the returned values of Procedure PSF FT (pattern type). If it matches, then we

save the matched index and length as bookkeeping. Note that in case of overlapping factors

(e.g., when the consecutive windows need to save), Procedure PSF FT (pattern type) saves

only the non-overlapped indexes and lengths.

Now note that we can compute the values of consecutive factors of T using the sliding

window approach quite efficiently as follows. For the first factor, i.e., T [1..m] we exactly follow

the strategy of Procedure PSF FT (pattern type). When it is done, we slide the window by

one character and we only need to remove the contribution of the left most character of the

previous window and add the contribution of the rightmost character of the new window. The

functions are such that this can be done very easily using simple constant time operations.

Therefore, overall runtime of the algorithm is O(m) +O(n−m) = O(n) like as the previously

described algorithms for search space reduction. In our implementation we have used two

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 56

Algorithm 3.3 Algorithm Filtered-BM/Filtered-KMP using Procedure
PSF FT(pattern type) Algorithm 3.1

1: call PSF FT(linear) Algorithm 3.1 /*make pattern signature for classical pattern

mathcing using linear pattern itself.*/

2: save the return value of filters 1 : 6 for further use here
3: define an array of size 4 to keep fixed value of A, C, G, T
4: initialize fixed array to {1, 2, 3, 4}
5: lastIndex← 1
6: startIndex← −1
7: length← −1
8: define vector pair bookShelf to save startIndex and length
9: for i← 1 to m do

10: calculate different filtering values in T [1 : m] via observations 1 : 6 and make a running
sum

11: end for
12: if 1 : 6 observations values of P [1 : m] vs 1 : 6 observations values of T [1 : m] have a match

then
13: /*Found a filtered match*/

14: lastIndex← m
15: startIndex← 1
16: length← m
17: end if
18: for i← 1 to n−m do
19: calculate different filtering values in T [1 : m] via observations 1 : 6 by subtracting i-th

value and adding i+m-th value to the running sum
20: if 1 : 6 filtering values of P [1 : m] vs 1 : 6 filtering values of T [i+ 1 : i+m] have a match

then
21: /*Found a filtered match*/

22: if i > lastIndex then
23: if startIndex 6= −1 then
24: bookShelf.add(make pair(startIndex, length))
25: end if
26: startIndex← i+ 1
27: length← 0
28: end if
29: if i+m > lastIndex then
30: if i < lastIndex then
31: j ← lastIndex+ 1
32: else
33: j ← i+ 1
34: end if
35: length← length+ (i+ 1 +m)− j
36: lastIndex ← i+m
37: end if
38: end if
39: end for
40: bookShelf.add(make pair(startIndex, length))
41: for k ← 1 to bookShelf.size() do
42: call BM Algorithm [27] (for Filtered-BM) or KMP Algorithm [26] (for Filtered-KMP)

for each matched pair and report the occurrences.
43: end for

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 57

different efficient string matching algorithms. First one is KMP algorithm [26] and second one

is BM algorithm [27]. In particular, in [26, 27], the authors have presented two different efficient

algorithms for pattern matching. We only apply KMP or BM algorithm on the reduced string.

Finally, we can summarize our algorithms for classical pattern matching problem as follows:

• Filterd-BM Algorithm: This algorithm uses BM Algorithm [27] to solve the classical

pattern matching problem. In our algorithm (Algorithm 3.3), we call BM Algorithm [27]

in line 42 in case of Filtered-BM algorithm. Except this all others are same for both

Filterd-KMP and Filterd-BM algorithms.

• Filterd-BM Algorithm: Again, this algorithm uses KMP Algorithm [26] to solve the

classical pattern matching problem. In our algorithm (Algorithm 3.3), we call KMP

Algorithm [27] in line 42 in case of Filtered-KMP algorithm.

3.4 The Combined Algorithm for ECPM and ACPM

In this section we combine the Algorithms 3.1 and 3.2 presented so far and present the complete

view of ECPM and ACPM. We have already described our algorithm to solve ECPM and

ACPM problems, namely, Procedure PSF FT (pattern type) and Procedure RSS FT that in

fact calls the former. We develop two different algorithms using filters to solve these problems.

We name our algorithm Filtered-ECPM to solve the problem ECPM. Again, on the other

side, we name our algorithm Filtered-ACPM to solve the problem ACPM. Now Procedure

RSS FT provides a reduced text T ′ (say) after filtering. At this point Algorithms Filtered-

ECPM/Filtered-ACPM can use any algorithm that can solve CPM and apply it over T ′ and

output the occurrences. Now, suppose Filtered-ECPM/Filtered-ACPM uses Algorithm A at

this stage which runs in O(f(|T ′|)) time. Then, clearly, the overall running time of Filtered-

ECPM/Filtered-ACPM is O(n) +O(f(|T ′|)). For example, if Filtered-ECPM/Filtered-ACPM

uses the linear time algorithm of [30], then clearly the overall theoretical running time of

Filtered-ECPM/Filtered-ACPM will be O(n).

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 58

Algorithm 3.4 Algorithm Filtered-ECPM/Filtered-ACPM using Procedure
PSF FT(pattern type) Algorithm 3.1

1: call PSF FT 3.1 (P[1 : m], circular, exact/approximate)
2: save the return value of filters 1 : 6 for further use here
3: define an array of size 4 to keep fixed value of A, C, G, T
4: initialize fixed array to {1, 2, 3, 4}
5: lastIndex← 1
6: startIndex← −1
7: length← −1
8: define vector pair bookShelf to save startIndex and length
9: for i← 1 to m do

10: calculate different filtering values in T [1 : m] via observations 7 : 12 (exact) or 13 : 18 (approx-
imate) and make a running sum

11: end for
12: if 7 : 12 (exact) or 13 : 18 (approximate) observations values of P[1 : m] vs 7 : 12 (exact) or

13 : 18 (approximate) observations values of T [1 : m] have a match then
13: /*Found a filtered match*/

14: lastIndex← m
15: startIndex← 1
16: length← m
17: end if
18: for i← 1 to n−m do
19: calculate different filtering values in T [1 : m] via observations 7 : 12 (exact) or 13 : 18 (approx-

imate) by subtracting i-th value along with wrapped value and adding i+m-th value and new
wrapped value to the running sum

20: if 7 : 12 (exact) or 13 : 18 (approximate) observations values of P[1 : m] vs 7 : 12 (exact) or
13 : 18 (approximate) observations values of T [1 : m] have a match then

21: /*Found a filtered match*/

22: if i > lastIndex then
23: if startIndex 6= −1 then
24: bookShelf.add(make pair(startIndex, length))
25: end if
26: startIndex← i+ 1
27: length← 0
28: end if
29: if i+m > lastIndex then
30: if i < lastIndex then
31: j ← lastIndex+ 1
32: else
33: j ← i+ 1
34: end if
35: length← length+ (i+ 1 +m)− j
36: lastIndex ← i+m
37: end if
38: end if
39: end for
40: bookShelf.add(make pair(startIndex, length))
41: for k ← 1 to bookShelf.size() do
42: call ACSMF-SimpleZerok (exact) or ACSMF-Simple (approximate) [1] for each matched pair

and report the occurrences.
43: end for

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 59

In our implementation however, we have used the recent algorithm of [1], which is a linear

time algorithm on average and the fastest algorithm in practice to the best of our knowledge. In

particular, in [1], the authors have presented an approximate circular string matching algorithm

with k-mismatches (ACSMF-Simple) via filtering. They have built a library for ACSMF-Simple

algorithm. The library is freely available and can be found at: [32]. In this algorithm, if we

set k = 0, then ACSMF-Simple solves problem the exact matching case; otherwise it solves the

approximate circular pattern matching problem. In what follows, we will refer to this algorithm

with k = 0 as ACSMF-SimpleZerok. We have implemented Filtered-ECPM algorithm using

ACSMF-SimpleZerok, i.e., we have used ACSMF-Simple algorithm simply by putting k = 0.

Again, we have implemented Filtered-ACPM algorithm using ACSMF-Simple [1]. At this point,

finally, we can summarize our algorithms for CPM problems (both exact and approximate) as

follows:

• Filtered-ECPM Algorithm: This algorithm uses Observations 7 to Observations 12

to calculate pattern signature by calling PSF FT (pattern type) in line 1. Again, it uses

same Observations in lines 10, 12, 19 and 20. This algorithm also calls ACSMF-Simple

with k = 0 in line 42. Except these, all others are same for both Filtered-ECPM and

Filtered-ACPM.

• Filtered-ACPM Algorithm: This algorithm uses Observations 13 to Observations 18

to calculate pattern signature by calling PSF FT (pattern type) in line 1. Note that,

these all Observations are according to approximate version of circular string. Again, it

uses same Observations in lines 10, 12, 19 and 20. This algorithm also calls ACSMF-

Simple [1] for all values of k, i.e., 0 < k < m, where m is the length of circular pattern.

3.5 The Algorithm for CSC Problem

In this section, we present an algorithm to solve the CSC problem applying the six filters

presented in Section 2.9, Chapter 2. Here, we name our algorithm as Filtered-CSC to solve

the circular sequence comparison problem using filters. This algorithm takes as input the

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 60

pattern P [1 : m] of length m, the text T [1 : n] of length n, block-size β and q-gram size

q. Like as Algorithm Filtered-ECPM, this algorithm calls Procedure PSF FT (pattern type)

3.1 with P [1 : m] and “circular” type as parameters and uses the output of it. In our algo-

rithm (Algorithm Filtered-CSC 3.5), upto line 40 everything is same as before (like Algorithm

Filtered-ECPM); subsequently we use a state of the art algorithm to solve the CSC problem

in the reduced text T ′ (say). For rest of the Algorithm from line 43, using this reduced text T ′

after filtering where the start index and length of each reduced text are saved as bookkeeping

in the Algorithm 3.5. At this point we can use any algorithm that can solve the CSC problem

and apply it over T ′ and output the best comparison which minimizes the q-gram distance

based on the distance matrix described for Problem 4. Now, suppose we use Algorithm A

at this stage which runs in O(f(|T ′|)) time. Then, clearly, the overall running time of our

approach is O(n) +O(f(|T ′|)).

In our implementation of Filtered-CSC algorithm, we have used the Algorithm saCSC, the

recent algorithm of [2]. In particular, in [2], the authors have presented a circular sequence

comparison algorithm using suffix-array construction. They have built a library to solve CSC

problem. The library is freely available and can be found at: [53]. We only apply Algorithm

saCSC on the reduced string to solve the CSC problem.

3.6 Summary

In this chapter, we have described our proposed algorithmic framework based on filters. We

have presented our filter-based algorithms for circular strings and sequences based on this pro-

posed framework. We have also presented a filter-based classical pattern matching algorithm.

In the next chapter we present our experimental study based on these algorithms. We have

also shown comparisons among our proposed algorithms and the state of art algorithms.

CHAPTER 3. FILTER BASED ALGORITHMIC FRAMEWORK 61

Algorithm 3.5 Algorithm Filtered-CSC (T [1 : n], P [1 : m], β, q): using procedure
PSF FT(pattern type) Algorithm 3.1

1: call PSF FT (P[1 : m], circular, exact)
2: save the return value of filters 1 : 6 for further use here
3: define an array of size 4 to keep fixed value of A, C, G, T
4: initialize fixed array to {1, 2, 3, 4}
5: lastIndex← 1
6: startIndex← −1
7: length← −1
8: define vector pair bookShelf to save startIndex and length
9: for i← 1 to m do

10: calculate different filtering values in T [1 : m] via observations 7 : 12 and make a running sum
11: end for
12: if 7 : 12 observations values of P[1 : m] vs 7 : 12 observations values of T [1 : m] have a match

then
13: /*Found a filtered match*/

14: lastIndex← m
15: startIndex← 1
16: length← m
17: end if
18: for i← 1 to n−m do
19: calculate different filtering values in T [1 : m] via observations 7 : 12 by subtracting i-th value

along with wrapped value and adding i+m-th value and new wrapped vale to the running sum

20: if 7 : 12 filtering values of P[1 : m] vs 7 : 12 filtering values of T [i + 1 : i + m] have a match
then

21: /*Found a filtered match*/

22: if i > lastIndex then
23: if startIndex 6= −1 then
24: bookShelf.add(make pair(startIndex, length))
25: end if
26: startIndex← i+ 1
27: length← 0
28: end if
29: if i+m > lastIndex then
30: if i < lastIndex then
31: j ← lastIndex+ 1
32: else
33: j ← i+ 1
34: end if
35: length← length+ (i+ 1 +m)− j
36: lastIndex ← i+m
37: end if
38: end if
39: end for
40: bookShelf.add(make pair(startIndex, length))
41: index←∞
42: saveI ← −1
43: for k ← 1 to bookShelf.size() do
44: call saCSC [2] (bookShelf.get(pair(k)), β, q)
45: save the minimum distance in minDistance and corresponding index i in saveI
46: end for
47: Output saveI and minDistance

Chapter 4

Experimental Studies

This chapter evaluates the performance of our proposed algorithms using real genome data.

We first describe the datasets and implementation strategy. Then we show effectiveness of our

filters used for the reduction of the search space in the text. We also analyze the effect of

our algorithms comparing with the most recent state of art algorithms to solve the problems,

Problem 1 to Problem 4.

4.1 Dataset

We have used real genome data in our experiments as the text string, T . This data has been

collected from [54]. This genome dataset contains the Feb. 2009 assembly of the human genome

(hg19 1, GRCh37 Genome Reference Consortium Human Reference 37 (GCA 000001405.1)), as

well as repeat annotations and GenBank sequences. The Feb. 2009 human reference sequence

(GRCh37) was produced by the Genome Reference Consortium: [55]. A brief description of

our used genome data (GRCh37) has been shown in Table 4.1.

We have made three different text strings for our experiments based on the text length.

These are 299MB, 700MB and 1GB of data. Table 4.2 shows the techniques how we have

1Since the release of the UCSC hg19 assembly, the Homo sapiens mitochondrion sequence (represented
as “chrM” in the Genome Browser) has been replaced in GenBank with the record NC 012920. We have not
replaced the original sequence, NC 001807, in the hg19 Genome Browser. We plan to use the Revised Cambridge
Reference Sequence (rCRS, http://mitomap.org/bin/view.pl/MITOMAP/HumanMitoSeq) in the next human
assembly release.

62

http://mitomap.org/bin/view.pl/MITOMAP/HumanMitoSeq

CHAPTER 4. EXPERIMENTAL STUDIES 63

Table 4.1: A brief overview of genome data GRCh37

Category Description

Description Genome Reference Consortium Human Build
37

Organism name Homo sapiens

Submitter Genome Reference Consortium

Year 2009

Synonyms hg37

Assembly type haploid-with-alt-loci

Assembly level Chromosome

Genome representation full

RefSeq category representative genome

GenBank assembly accession GCA 000001405.15 (replaced)

RefSeq assembly accession GCF 000001405.26 (replaced)

RefSeq assembly and GenBank
assembly identical

yes

generated these three different sets of data. We have generated random patterns of different

lengths by a random indexing technique (see description below) in these 299MB, 700MB and

1GB of text string.

Random Indexing Technique: We have coded a program in Java programming

language to generate patterns of different sizes from these three (mentioned above) sets of

data. We have used Random2 class in Java to generate random indices (integer numbers)

between indices 0 and n − 1, where n is the length of the data. For our experiments,

the values of n are: 299MB, 700MB and 1GB. Suppose, we have determined a random

index, i.e., r (say), which is a integer number. Using this index (randomly generated),

we have generated patterns of different sizes starting from this index r. Assume that, we

want to generate a random pattern of size 1000, then we have to start at position r and

end at position r+ 1000− 1 to get the random pattern of size 1000. In our experiments,

this pattern size is: 5 ≤ m ≤ 1200000, where m is the length of pattern. The length of

2public class Random extends Object implements Serializable. An instance of this class is used to generate
a stream of pseudorandom numbers.

CHAPTER 4. EXPERIMENTAL STUDIES 64

Table 4.2: An overview of genome datasets: 299MB, 700MB and 1GB.

Dataset Description

299MB We have used real genome data (mentioned before) to generate this
text of size 299MB. The data, we have collected from [54] was in
text form. This text was sequence of ‘A’, ‘C’, ‘G’ & ‘T’ (the DNA
nucleotides). This text was in multi-line format. We have coded
a program in Java programming language to read this text data
and to convert this multi-line text data into a single line text data.
After converting this multi-line text into a single line text, we have
found that the size of the text data is exactly 299MB. Then, we
have kept this 299MB of text intact for our experiments as a one
set of data.

700MB To generate this text of size 700MB, we have used the single line
text of size 299MB which was generated earlier in our experiments.
Again, we have coded a program in same language (mentioned
above) to generate single line text of size 700MB. Then we have
appended 299MB of text with itself to generate 700MB of text.

1GB Using the same technique (the technique by which we generated
700MB of text), we have generated 1GB of single line text. This
time, we have started from 700MB of initial text (as input).

pattern varies as per experiment basis.

4.2 Environment & Experimental Settings

We have used three different environmental settings. These are as follows.

Setup 1: The experiments to solve classical pattern matching problem using Filtered-

KMP and Filtered-BM algorithms were conducted on an i3-core 330 CPU at 3.4 GHz

machine having 2GB of RAM running Linux operating system. We have implemented

Filtered-KMP amd Filtered-BM algorithms in the JAVA programming platform and de-

veloped under Java Development Kit 7 (jdk) in Linux.

Setup 2: We have conducted our experiments for the algorithms Filtered-ECPM and

Filtered-ACPM to solve ECPM and ACPM problems on a PowerEdge R820 rack serve

PC with 6-core of Intel Xeon processor E5-4600 product family and 64GB of RAM under

CHAPTER 4. EXPERIMENTAL STUDIES 65

GNU/Linux. We have coded the Filtered-ECPM and Filtered-ACPM algorithms in C++

using a GNU compiler with General Public License (GPL). As has been mentioned already

above, our implementation of the Filtered-ECPM and Filtered-ACPM algorithms use the

Algorithm ACSMF-Simple [1]. With the help of the library used in [1], we have compared

the running time of ACSMF-Simple of [1] with Filtered-ACPM algorithm and the running

time of Filterd-ECPM algorithm with ACSMF-SimpleZerok of [1].

Setup 3: We have conducted our experiments of Filtered-CSC algorithm to solve CSC

problem on a Samsung Laptop with Intel Core(TM) i5-2430M CPU @2.40GHz processor

product family and 4GB of RAM under GNU/Linux. We have coded the Filtered-CSC

algorithm in C++ using a GNU compiler with General Public License (GPL). As has

been mentioned already above, our implementation of the Filtered-CSC algorithm uses

the Algorithm saCSC [2]. With the help of the library used in [2], we have compared the

running time of saCSC of [2] and the Filtered-CSC algorithm.

4.3 Effectiveness of Filters

Because we have 6 different filters, the order of applying the filters may turn out to be important

in the final performance of the algorithm. We have done preliminary experiments to identify

the best order to apply the filters. We have run this experiment on three candidate patterns

of different length. As there could be 6!, i.e., 720 combinations, we have recorded the running

times of our algorithm for all these combinations considering the three candidate patterns.

Although it was not possible to identify one ordering that performs best in all instances, after

some analysis we were able to identify an ordering that is among the top performers in every

instance. The analysis is available online and can be easily accessed from: [56]. This order is

shown below:

Filter 4→ Filter 2→ Filter 5→ Filter 3→ Filter 1→ Filter 6 (4.1)

CHAPTER 4. EXPERIMENTAL STUDIES 66

Our main experiments have been conducted using this order listed above. Note that, this

analysis has been done only on circular pattern string. We have used this order to solve

the ECPM, ACPM and CSC problems. We have also used this order to solve the classical

pattern matching problem (in Algorithm Filtered-KMP and Algorithm Filtered-BM). Though,

we haven’t done same analysis for linear string (classical pattern matching problem), we have

used the same sequence to solve this problem also.

4.4 Search Space Reduction

In this section, we report the reduction of search space using Algorithm RSS FT 3.2. Actually,

we have done this experiments to show the effectiveness of our filters. This means, we will show

that using Algorithm RSS FT how much search space in the text is being reduced. By doing

this experiments, we are trying to study and analyze the reduction of space against the number

of filters applied. To do this study, we have used circular pattern as signature. And these

experiments are done using the environment and experimental settings: Setup 1 (mentioned

in 4.2).

To report the effectiveness of filters we have done three different types experiments using

Algorithm RSS FT . First one is, we have run Algorithm RSS FT using Filters 1 to 4 in a

single pass. Secondly, we have run Algorithm RSS FT using Filters 1 to 5 in a single pass.

Finally, we have Algorithm RSS FT using all filters in a single pass. These three experiments

have been done using different pattern sizes. So, in total we report the reduction for three

separate versions of our algorithm.

The results of the experiments are reported in the Table 4.3 to 4.6. In those tables, we

report the reduction of search space in the filtered text string. As has been described before

that, we have used real genome data as our experimental text string, T . We have collected that

data from [54]. Here, we have taken 299MB of data for our experiment. We have generated

random patterns of different length by a random indexing technique in this 299MB of text

string.

As can be seen from Table 4.3, the 299MB of text data is reduced to less than 30MB of text

CHAPTER 4. EXPERIMENTAL STUDIES 67

Table 4.3: Search Space Reduction of text string for n = 299MB and 5 ≤ m ≤ 20

m 1:4 Filters(MB) 1:5 Filters(MB) 1:6 Filters(MB)

5 11.6 7.6 7.45

6 27.5 19 8.4

7 9.6 7.2 3.7

8 6.8 3.9 2.55

9 4.3 2.8 1.5

10 4.8 3.35 1.75

11 4.2 2.8 1.7

12 2.1 0.73 0.5

13 3.4 2.1 0.86

14 6 1.2 0.52

15 4 1.8 1.2

16 1.6 1.3 0.61

17 1.7 0.07 0.03

18 1.5 0.87 0.2

19 6.76 2.1 0.233

20 1.13 0.24 0.12

Table 4.4: Search Space Reduction of text string for n = 299MB and 21 ≤ m ≤ 35

m 1:4 Filters(MB) 1:5 Filters(KB) 1:6 Filters(KB)

21 2.3 540.23 148.5

22 1.4 382.5 156.7

23 1.1 172.5 13.3

24 4.02 1171.9 450.6

25 2.7 408.55 16.4

26 2.3 1057.6 9.22

27 3.43 1681.7 567.3

28 0.4 187.2 11.2

29 3.5 933.5 267.3

30 2.4 843.7 196.6

31 1.7 309.1 13.3

32 3.1 1246.4 486.4

33 1.9 139.3 20.5

34 2.7 1347.8 52.22

35 2.1 644.9 183.3

CHAPTER 4. EXPERIMENTAL STUDIES 68

data applying first four filters (Filter 1 to 4) in a single pass in Algorithm RSS FT . Again,

referring to the same table, it can be seen that applying first five filter (Filter 1 to 5) in a single

pass in Algorithm RSS FT , the 299MB of text data is reduced to less than 8MB of text data.

Finally, we can see form the same table that, applying all filters (Filter 1 to 6) in a single pass

in our Algorithm RSS FT , the 299MB of text data is reduced to less than 7.5MB of text data.

For these three types of experiments, we have used different sizes of pattern, i.e., 5 ≤ m ≤ 20,

where m is the length of pattern. At this point, we can claim that the more filters we apply,

the more space reduction is done.

Table 4.5: Search Space Reduction of text string for n = 299MB and 40 ≤ m ≤ 200

m 1:4 Filters(KB) 1:5 Filters(KB) 1:6 Filters

40 307 133.1 5.1KB

50 665 218.3 44.03KB

60 215.12 80.73 2.33KB

70 606.8 99.7 20.5KB

80 603.8 38.8 1.9KB

90 246.7 56.9 4.5KB

100 456.8 39.9 4.9KB

110 273.1 20.3 333B

120 292.9 76.1 1.3KB

130 95.6 15.9 393B

140 212.5 27.9 1.1KB

150 162.7 37.6 453B

160 137.8 14.5 161B

170 12.5 3.7 171B

180 110.4 0.2 181B

190 49.1 0.6 191B

200 128.4 10.4 201B

Again, it also can be seen from Table 4.4, the 299MB of text data is reduced to less than

5MB of text data applying first four filters (Filter 1 to 4) in a single pass in Algorithm RSS FT .

Again, referring to the same table, it can be seen that applying first five filter (Filter 1 to 5)

in a single pass in Algorithm RSS FT , the 299MB of text data is reduced to less than 1.5MB

of text data. Finally, we can see form the same table that, applying all filters (Filter 1 to 6) in

a single pass in our Algorithm RSS FT , the 299MB of text data is reduced to less than 1MB

CHAPTER 4. EXPERIMENTAL STUDIES 69

Table 4.6: Search Space Reduction of text string for n = 299MB and 220 ≤ m ≤ 450

m 1:4 Filters 1:5 Filters 1:6 Filters

220 86.8KB 11.1KB 443B

240 11KB 2.3KB 483B

260 46.3KB 3.5KB 261B

280 56.12KB 3.2KB 281B

300 60.2KB 5.5KB 602B

320 35.2KB 1.4KB 642B

340 27.1KB 2.5KB 682B

360 8671B 1KB 361B

380 1908B 1KB 381B

400 6856B 802B 802B

410 4941B 411B 411B

420 6335B 844B 844B

430 8225B 431B 431B

440 1769B 882B 441B

450 18530B 451B 451B

of text data. For these three types of experiments, we have used different sizes of pattern, i.e.,

21 ≤ m ≤ 35, where m is the length of pattern. At this point, we can also claim that the more

filters we apply, the more space reduction is done.

We have plotted table data of Table 4.3 and Table 4.4 to show the reduction of space in the

text in a graphical manner. Figure 4.1 reports the reduction of space in text as well. Here, we

have kept values of m in X-axis and values of text size (in Mega-Bytes (MB)) in Y-axis. From

Figure 4.1 (a), we can see that, the reduction of space in the text is better when we apply all

the 6 filters in a single pass rather than others (4 filters in single pass and 5 filters in a single

pass). Again, referring to the same figure we can also see that, when the size of m increases,

the reduction of space increases. Figure 4.1 (a) reports the reduction space for 5 ≤ m ≤ 20.

Subsequently, from Figure 4.1 (b), we can also observe that, the reduction of space is better for

applying 6 filters in a single pass as well as for the incrementation of the pattern sizes. Figure

4.1 (b) reports the reduction space for 21 ≤ m ≤ 35. From these two sub-figures it has been

seen that, huge reduction has been done in the 299MB of text. In Figure 4.1 (a), we see that

the reduced text size is less than 1MB whereas in Figure 4.1 (b), we see that the reduced text

CHAPTER 4. EXPERIMENTAL STUDIES 70

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

5 7 9 11 13 15 17 19

T
ex

t
si

ze
 i

n
 M

B

m

1:4 Filters 1:5 Filters 1:6 Filters

(a) A graph representing the Search Space Reduction. Here, 5 ≤ m ≤ 20.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

21 23 25 27 29 31 33 35

T
ex

t
si

ze
 i

n
 M

B

m

1:4 Filters 1:5 Filters 1:6 Filters

(b) A graph representing the Search Space Reduction. Here, 21 ≤ m ≤ 35.

Figure 4.1: Search Space Reduction of text string for n = 299MB and 5 ≤ m ≤ 35.

CHAPTER 4. EXPERIMENTAL STUDIES 71

size is less than 0.5MB for applying 6 filters in a single pass for both cases.

Subsequently, we come to the Table 4.5. Here, the 299MB of text data is reduced to less

than 0.5MB of text data applying first four filters (Filter 1 to 4) in a single pass in Algorithm

RSS FT . Again, referring to the same table, it can be seen that applying first five filter (Filter

1 to 5) in a single pass in Algorithm RSS FT , the 299MB of text data is reduced to less than

0.3MB of text data. Finally, we can see form the same table that, applying all filters (Filter

1 to 6) in a single pass in our Algorithm RSS FT , the 299MB of text data is reduced to less

than 0.1MB of text data. For these three types of experiments, we have used different sizes of

pattern, i.e., 40 ≤ m ≤ 200, where m is the length of pattern. Again, we can also claim that

the more filters we apply, the more space reduction is done.

Finally, in Table 4.6, we can see that the 299MB of text is reduced to less than 0.1MB of

text data applying first four filters (Filter 1 to 4) in a single pass and less than 0.02MB of text

data applying first five filters (Filter 1 to 5) in a single pass in Algorithm RSS FT . It is worth

noting that the 299MB of text data has been reduced to only bytes of data applying all the

filters in a single pass. Here, we have used different pattern sizes, 200 ≤ m ≤ 450.

Again, we have plotted table data of Table 4.5 and Table 4.6 to show the reduction of

space in the text in a graphical manner. Figure 4.2 reports the reduction of space in text as

well. Here, we have kept values of m in X-axis and values of text size (in Kilo-Bytes (KB)) in

Y-axis. From Figure 4.2 (a), we can see that, the reduction of space in the text is better when

we apply all the 6 filters in a single pass rather than others (4 filters in single pass and 5 filters

in a single pass). Again, referring to the same figure we can also see that, when the size of m

increases, the reduction of space increases as well. Figure 4.2 (a) reports the reduction space

for 40 ≤ m ≤ 200. Subsequently, from Figure 4.2 (b), we can also observe that, the reduction

of space is better for applying 6 filters in a single pass as well as for the incrementation of

the pattern sizes. Figure 4.2 (b) reports the reduction space for 220 ≤ m ≤ 450. From these

two sub-figures it has been seen that, huge reduction has been done in the 299MB of text. In

Figure 4.2 (a), we see that the reduced text size is less than 500KB whereas in Figure 4.2 (b),

we see that the reduced text size is less than 1KB (almost in Bytes) for applying 6 filters in a

single pass for both cases.

CHAPTER 4. EXPERIMENTAL STUDIES 72

0

100

200

300

400

500

600

700

40 60 80 100 120 140 160 180 200

T
ex

t
si

ze
 i

n
 K

B

m

1:4 Filters 1:5 Filters 1:6 Filters

(a) A graph representing the Search Space Reduction. Here, 40 ≤ m ≤ 200.

0

15

30

45

60

75

90

220 260 300 340 380 410 430 450

T
ex

t
si

ze
 i

n
 K

B

m

1:4 Filters 1:5 Filters 1:6 Filters

(b) A graph representing the Search Space Reduction. Here, 220 ≤ m ≤ 450.

Figure 4.2: Search Space Reduction of text string for n = 299MB and 40 ≤ m ≤ 450.

CHAPTER 4. EXPERIMENTAL STUDIES 73

By analyzing above four tables (Table 4.3 to Table 4.6) and their respective figures (Figure

4.1 to Figure 4.2) , we can summarize that, the more filters we apply, the more space in text is

reduced. Again, it is also clear that as the pattern size increases, the reduction in search space

in the text increases as well.

Conjecture 1: The more filters we apply, the more space in text is reduced.

Conjecture 2: The more pattern size we increase, the more space in the text is reduced.

Table 4.7: Elapsed-time (in seconds) and comparisons among KMP, BM, Filtered-KMP,
Filtered-BM, Only Filters, KMP in reduced text and BM in reduced text for a text of size
299MB.

m
Elapsed

Time(s) of

Elapsed

Time(s) of

Elapsed

Time(s) of

Elapsed

Time(s) of

Elapsed

Time(s) of

Elapsed

Time(s) of

Elapsed

Time(s) of

KMP [26] BM [27] Filtered-

KMP

Filtered-BM Only Fil-

ters

KMP in re-

duced Text

BM in re-

duced Text

500 2.32 6.79 13.42 13.42038746 13.42 1× 10−9 1× 10−8

550 2.28 6.75 13.21 13.21033443 13.21 1× 10−9 1× 10−8

600 2.18 6.65 13.205 13.20539846 13.20 1× 10−9 1× 10−8

650 2.285 6.75 13.19 13.19034698 13.19 1× 10−9 1× 10−8

700 2.35 6.82 13.19 13.19034587 13.19 1× 10−9 1× 10−8

750 2.335 6.80 13.195 13.19533487 13.19 1× 10−9 1× 10−8

800 2.095 6.56 13.195 13.19539845 13.19 1× 10−9 1× 10−8

850 2.02 6.49 13.2 13.20039284 13.20 1× 10−9 1× 10−8

900 2.21 6.68 13.195 13.19539847 13.19 1× 10−9 1× 10−8

950 2.207 6.67 13.2 13.20036592 13.20 1× 10−9 1× 10−8

1000 2.335 6.80 13.2 13.20039844 13.20 1× 10−9 1× 10−8

1600 2.285 6.75 13.205 13.20539586 13.20 1× 10−9 1× 10−8

1650 2.325 6.79 13.235 13.23584645 13.23 1× 10−9 1× 10−8

1700 2.18 6.65 13.255 13.25530934 13.25 1× 10−9 1× 10−8

1750 2.305 6.77 13.255 13.25530955 13.25 1× 10−9 1× 10−8

1800 2.13 6.60 13.26 13.26038746 13.26 1× 10−9 1× 10−8

1850 2.11 6.58 13.26 13.26038444 13.26 1× 10−9 1× 10−8

CHAPTER 4. EXPERIMENTAL STUDIES 74

1900 2.315 6.78 13.265 13.26537445 13.26 1× 10−9 1× 10−8

1950 2.225 6.69 13.25 13.25038746 13.25 1× 10−9 1× 10−8

2000 2.185 6.65 13.245 13.24538755 13.24 1× 10−9 1× 10−8

2050 2.28 6.75 13.25 13.25035567 13.25 1× 10−9 1× 10−8

2100 2.15 6.62 13.25 13.25035656 13.25 1× 10−9 1× 10−8

2150 2.165 6.63 13.255 13.25535677 13.25 1× 10−9 1× 10−8

2200 2.095 6.56 13.25 13.25035667 13.25 1× 10−9 1× 10−8

2250 2.365 6.83 13.255 13.25538746 13.25 1× 10−9 1× 10−8

2300 2.165 6.63 13.36 13.36039978 13.36 1× 10−9 1× 10−8

2350 2.3 6.77 13.255 13.25533455 13.25 1× 10−9 1× 10−8

2400 2.355 6.82 13.25 13.2505677 13.25 1× 10−9 1× 10−8

2450 2.28 6.75 13.485 13.4853566 13.48 1× 10−9 1× 10−8

2500 2.31 6.78 13.26 13.26036789 13.26 1× 10−9 1× 10−8

2550 2.21 6.68 13.26 13.26038234 13.26 1× 10−9 1× 10−8

2600 2.145 6.61 13.25 13.25038667 13.25 1× 10−9 1× 10−8

2650 2.14 6.61 13.26 13.26030923 13.26 1× 10−9 1× 10−8

2700 2.345 6.81 13.257 13.25739823 13.26 1× 10−9 1× 10−8

2750 2.32 6.79 13.24 13.24031256 13.24 1× 10−9 1× 10−8

2800 2.15 6.62 13.24 13.24038112 13.24 1× 10−9 1× 10−8

2850 2.155 6.62 13.245 13.24530923 13.24 1× 10−9 1× 10−8

2900 2.21 6.68 13.285 13.28538012 13.28 1× 10−9 1× 10−8

2950 2.205 6.67 13.242 13.24238233 13.24 1× 10−9 1× 10−8

3000 2.18 6.65 13.245 13.24539922 13.24 1× 10−9 1× 10−8

4.5 Experimental Results for Classical Pattern Match-

ing

In this section we discuss the experimental result of our Filtered-KMP and Filtered-BM al-

gorithms. We compare the results of our algorithm with actual KMP and BM algorithms of

CHAPTER 4. EXPERIMENTAL STUDIES 75

[26, 27], respectively. For this experiment we have used environment & experimental settings:

Setup 1 (see description in Section 4.2).

We have implemented Filtered-KMP and Filtered-BM algorithms and conducted extensive

experiments to analyze their performance. We show the comparison based on the experimental

result among actual KMP and actual BM algorithms of [26, 27] and our algorithms, namely

Filtered-KMP and Filtered-BM, respectively. All the four algorithms have been implemented

in the JAVA programming platform and developed under Java Development Kit 7 (jdk) in

Linux. All four algorithms mentioned above take as input the pattern P of length m, the text

T of length n and returns the indexes all occurrences of P in T .

Again, as has been mentioned before, we have used real genome data in our classical pattern

matching experiments as the text string, T . Here, we have taken 299MB of data for our

experiments. Again, we have generated random patterns of different length by a random

indexing technique in this 299MB of text string.

Here we represent the experimental results and comparisons among KMP [26], BM [27] and

our algorithms Filtered-KMP and Filtered-BM. Table 4.4 reports the elapsed time and speed-

up comparisons for various pattern sizes (500 ≤ m ≤ 3000). It has been seen from Table 4.8,

original KMP [26], BM [27] runs faster than our algorithms, Filtered-KMP and Filtered-BM

in all cases. To get a better analysis, we also report the required time to run only the filters

in our algorithms, Filtered-KMP and Filtered-BM respectively. Then, we report the running

time of KMP and BM algorithms in only the reduced text after filtered have been done. It

can also be seen from Table 4.8, the running time of KMP and BM algorithms in the reduced

text are much smaller than that of the running time of KMP and BM algorithms in the actual

text. In fact, the running time is almost ZERO in each cases. It is actually 1× 10−9 seconds

for KMP algorithm and 1× 10−8 seconds for BM algorithm.

4.6 Comparison with Algorithms for ECPM

In this section, we discuss the experimental results our algorithm with the state of art algo-

rithms. Here, we comapre our algorithm, Filterd-ECPM with the most recent state of art

CHAPTER 4. EXPERIMENTAL STUDIES 76

algorithms of [1, 3]. For this experiment we have used the environmental & experimental

settings: Setup 2 (see description in Section 4.2).

Table 4.8: Elapsed-time (in seconds) and speed-up comparisons among FredNava [3], ACSMF-
SimpleZerok [1] and Filtered-ECPM on a text of size 299MB

m
Elapsed Time(s)

of FredNava

Elapsed Time(s)

of ACSMF-

simpleZerok

Elapsed Time(s)

of

Filtered-ECPM

Speed up:

FredNava vs.

Filtered-ECPM

Speed up:

ACSMF-

simpleZerok vs.

Filtered-ECPM

500 11.67 5.938 1.167 10 5

550 18.928 7.914 1.456 13 5

600 40.92 7.691 1.364 30 6

650 13.078 7.836 1.006 13 8

700 15.42 7.739 1.028 15 8

750 37.555 7.82 1.073 35 7

800 417.04 7.839 1.04 401 8

850 100.225 8.382 1.055 95 8

900 25.56 7.646 1.278 20 6

950 35.05 7.876 1.402 25 6

1000 54.72 7.731 1.216 45 6

1600 1186.728 7.334 1.182 1004 6

1650 100.776 8.239 0.969 104 9

1700 2365.9 7.572 1.18 2005 6

1750 805.376 5.968 1.144 704 5

1800 819.405 7.551 1.179 695 6

1850 105.342 7.407 1.086 97 7

1900 50.67 7.861 1.126 45 7

1950 97.66 7.339 1.028 95 7

2000 4584.918 7.814 1.118 4101 7

2050 399.588 5.969 1.988 201 3

2100 1071.861 5.173 1.187 903 4

2150 174.629 5.317 1.919 91 3

2200 158.014 6.032 1.927 82 3

2250 104.225 5.009 1.895 55 3

CHAPTER 4. EXPERIMENTAL STUDIES 77

2300 126.697 5.029 1.891 67 3

2350 118.881 5.041 1.887 63 3

2400 87.86 6.036 1.91 46 3

2450 50.922 6.04 1.886 27 3

2500 69.16 7.046 1.976 35 4

2550 1394.874 7.042 1.987 702 4

2600 1741.332 8.043 2.883 604 3

2650 106.708 8.049 2.884 37 3

2700 274.74 8.031 2.892 95 3

2750 95.106 8.039 2.882 33 3

2800 72.15 9.026 2.886 25 3

2850 46.416 9.154 2.901 16 3

2900 241.318 10.049 3.134 77 3

2950 244.188 11.044 3.876 63 3

3000 163.8 12.044 3.9 42 3

As has been mentioned already before, we have implemented Filtered-ECPM and conducted

extensive experiments to analyze its performance. We have coded Filtered-ECPM in C++ using

a GNU compiler with General Public License (GPL). Our code is available at [57]. Recall that,

our implementation of Filtered-ECPM uses the ACSMF-SimpleZerok [1] and FredNava [3].

ACSMF-Simple [1] has been implemented as library functions in the C programming language

under GNU/Linux operating system. The library implementation is distributed under the

GNU General Public License (GPL). It takes as input the pattern P of length m, the text T

of length n, and the integer threshold k < m and returns the list of starting positions of the

occurrences of the rotations of P in T with k-mismatches as output. In our case we use k = 0.

Again, the Algorithm FredNava of [3] has been implemented in C programming language for

our performance measurement.

Table 4.6 reports the elapsed time and speed-up comparisons for various pattern sizes

(500 ≤ m ≤ 3000). As can be seen from Table 4.6, Filtered-ECPM runs much faster than

FredNava in all cases. And in fact Filtered-ECPM achieves a minimum of ten-fold speed-up

over FredNava for all the pattern sizes. Again, referring to the same table, Filtered-ECPM runs

CHAPTER 4. EXPERIMENTAL STUDIES 78

even faster than ACSMF-SimpleZerok (most recent efficient algorithm of [1]) in all cases. And

in fact Filtered-ECPM achieves a minimum of three-fold speed-up over ACSMF-SimpleZerok

for all the pattern sizes.

We have plotted a graph for the values of Table 4.6 to show the comparisons among the

algorithms in a graphical manner. Figure 4.3 reports the elapsed-time (in seconds) and speed-up

comparisons among the algorithms. Here, we have kept values of m in X-axis and elapsed-

time (running time) values of each algorithms in Y-axis. Here, note that, for better & precise

representation of graph, we have converted the elapsed-time values into log (10-based log)

values. From Figure 4.3, we can see that, the elapsed time for ACSMF-SimpleZerok is less

than the elapsed time of FredNava for all values of m. Again, referring to the same figure

we can also see that, the elapsed time for Filtered-ECPM is less than the elapsed time for

ACSMF-SimpleZerok for all pattern sizes. Figure 4.3, reports elapsed time for 40 ≤ m ≤ 200.

0

0.5

1

1.5

2

2.5

3

3.5

4

500 750 1000 1800 2050 2300 2550 2800

lo
g

1
0

(E
la

p
se

d
 T

im
e(

s)
)

m

FredNava ACSMFsimpleZerok Filtered-ECPM

Figure 4.3: A graph representing elapsed-time (in seconds) and speed-up comparisons among
FredNava [3], ACSMF-SimpleZerok [1] and Filtered-ECPM on a text of size 299MB

In order to analyze and understand the effect of our filters we have run a second set of

CHAPTER 4. EXPERIMENTAL STUDIES 79

experiments for Filtered-ECPM algorithm as follows. We have run experiments on three vari-

ants of Filtered-ECPM where the first variant (Filtered-ECPM-[1..3]) only employs Filters

1 (in Chapter 2, Section 2.9.1) through 3 (in Chapter 2, Section 2.9.2), the second variant

(Filtered-ECPM-[1..4]) only employs Filters 1 (in Chapter 2, Section 2.9.1) through 4 (in

Chapter 2, Section 2.9.3), and finally the third variant (Filtered-ECPM-[1..5]) employs Filters

1 (in Chapter 2, Section 2.9.1) through 5 (in Chapter 2, Section 2.9.4). Table 4.9 reports the

elapsed time and speed-up comparisons considering various pattern sizes (500 ≤ m ≤ 2000) for

ACSMF-SimpleZerok and the above-mentioned three variants of Filtered-ECPM. As can be

seen from Table 4.9, ACSMF-SimpleZerok is able to beat Filtered-ECPM-[1..3] in a number of

cases. However, Filtered-ECPM-[1..4] and Filtered-ECPM-[1..5] run significantly faster than

ACSMF-SimpleZerok in all cases. This indicates that as more and more effective filters are

imposed, Filtered-ECPM algorithm performs better.

C
H
A
P
T
E
R

4.
E
X
P
E
R
IM

E
N
T
A
L
S
T
U
D
IE

S
80

Table 4.9: Elapsed-time (in seconds) and speed-up comparisons among ACSMF-SimpleZerok and three variants of Filtered-
ECPM (considering different combination of the filters) for a text of size 299MB.

Filters 1 to 3 Filters 1 to 4 Filters 1 to 5

m
Elapsed

Time(s) of
ACSMF-
simpleZerok

Elapsed

Time(s) of
Filtered-
ECPM-[1..3]

Speed up:

ACSMF-
simpleZerok
vs. Filtered-
ECPM-[1..3]

Elapsed

Time(s) of
ACSMF-
simpleZerok

Elapsed

Time(s) of
Filtered-
ECPM-[1..4]

Speed up:

ACSMF-
simpleZerok
vs. Filtered-
ECPM-[1..4]

Elapsed

Time(s) of
ACSMF-
simpleZerok

Elapsed

Time(s) of
Filtered-
ECPM-[1..5]

Speed up:

ACSMF-
simpleZerok vs.
Filtered-ECPM-
[1..5]

500 6.355 3.522 2 6.373 4.973 1 6.397 2.523 3

550 8.526 20.43 0 8.564 4.866 2 8.38 2.545 3

600 8.149 43.544 0 8.286 4.902 2 8.359 2.518 3

650 8.315 4.35 2 8.448 4.894 2 8.324 2.47 3

700 9.063 7.596 1 8.71 4.9 2 8.249 2.493 3

750 8.399 6.837 1 8.643 5.101 2 8.326 2.478 3

800 8.357 16.293 1 8.346 4.915 2 8.265 2.48 3

850 8.79 10.651 1 8.309 4.924 2 8.48 2.562 3

900 7.959 23.181 0 8.411 4.916 2 8.223 2.525 3

950 8.652 15.443 1 8.552 4.93 2 8.678 2.519 3

1000 8.285 12.399 1 8.371 4.916 2 8.375 2.616 3

1600 7.846 6.074 1 7.927 4.915 2 7.872 2.529 3

1650 8.918 2.691 3 8.878 4.904 2 8.854 2.523 4

1700 7.839 6.506 1 7.697 4.897 2 7.8 2.522 3

1750 6.252 30.173 0 6.523 5.09 1 6.399 2.526 3

1800 8.643 26.655 0 8.218 4.918 2 8.143 2.487 3

1850 8.072 2.901 3 8.026 4.901 2 8.095 2.532 3

1900 8.442 30.468 0 8.495 4.927 2 8.297 2.516 3

1950 8.123 2.542 3 8.367 4.927 2 7.951 2.495 3

2000 8.366 12.175 1 8.58 5.13 2 8.394 2.533 3

CHAPTER 4. EXPERIMENTAL STUDIES 81

4.7 Experimental Results for ACPM

In this section, we discuss the experimental result of our Filtered-ACPM algorithm. We com-

pare the results of our algorithm with the most recent state of art algorithm of [1, 3]. For

this experiment we have also used the environment and experimental settings: Setup 1 (see

description in Section 4.2).

Table 4.10: Elapsed-time (in seconds) and speed-up comparison among FredNava [3], ACSMF-
Simple [1] and Filtered-ACPM considering all the six filters in a single pass for a text of size
1GB

m k
Elapsed

Time(s) of

Elapsed

Time(s) of

Elapsed

Time(s) of

Speed up:

FredNava vs

Filtered-

ACPM

Speed up:

ACSMF-

Simple vs

Filtered-

FredNava ACSMF-

simple

Filtered-

ACPM

2000 2 144 33 16 9 2.1

3000 2 210 28 14 15 2

4000 2 75 32 15 5 2.1

5000 5 108 40 18 6 2.2

6000 5 180 36 15 12 2.4

2000 5 187 38 17 11 2.2

3000 5 266 40 19 14 2.1

4000 5 240 28 12 20 2.3

5000 5 500 40 20 25 2

6000 5 675 36 15 45 2.4

5000 7 1100 44 20 55 2.2

6000 7 924 64 28 33 2.3

7000 7 575 59 25 23 2.4

8000 7 768 63 32 24 2

9000 7 297 59 27 11 2.2

10000 10 360 46 20 18 2.3

50000 10 380 47 20 19 2.4

100000 10 598 100 46 13 2.2

CHAPTER 4. EXPERIMENTAL STUDIES 82

150000 10 672 105 56 12 1.9

200000 10 2046 122 62 33 2

250000 12 2835 126 63 45 2

300000 12 1704 138 71 24 1.9

350000 12 3525 145 75 47 1.9

400000 12 4104 155 72 57 2.2

450000 12 3952 170 76 52 2.2

500000 12 5184 200 81 64 2.5

550000 15 2200 251 100 22 2.5

650000 15 1440 270 120 12 2.3

700000 15 3384 292 141 24 2.1

750000 15 7740 330 172 45 1.9

800000 15 2316 401 193 12 2.1

850000 15 5522 498 251 22 2

900000 20 3133 561 241 13 2.3

950000 20 6622 706 301 22 2.3

1000000 20 4823 870 371 13 2.3

1100000 20 3608 901 451 8 2

1150000 20 8496 931 531 16 1.8

1200000 20 9384 955 552 17 1.7

As has been mentioned already before that, we have implemented Filtered-ACPM algorithm

and conducted extensive experiments to analyze its performance. We have coded Filtered-

ACPM in C++ using a GNU compiler with General Public License (GPL). Our code is available

at [57]. Again, our implementation of ACPM uses the Algorithm ACSMF-Simple [1] and

Algorithm FredNava [3]. We have already described the implementation procedure of ACSMF-

Simple and FredNava in Section 4.6. These algorithm take as input the pattern P of length

m, the text T of length n, and the integer threshold k < m and returns the list of starting

positions of the occurrences of the rotations of P in T with k-mismatches as output.

CHAPTER 4. EXPERIMENTAL STUDIES 83

Again, as has been mentioned before, we have used real genome data as the text string, T

in our experiments to conduct algorithm Filtered-ACPM. Here, we have taken 1GB of data for

our experiments. Again, we have generated random patterns of different length by a random

indexing technique in this 1GB of text string.

Here we report the experimental results and comparisons among Filtered-ACPM, ACSMF-

Simple of [1] and FredNava [3]. Table 4.7 reports the elapsed time and speed-up comparisons

for various pattern sizes (2000 ≤ m ≤ 1200000) and for various mismatch sizes (2 ≤ k ≤ 20).

As can be seen from Table 4.7, our algorithm runs much faster than FredNava in all cases.

And in fact Filtered-ACPM achieves a minimum of five-fold speed-up for all the pattern sizes.

Again, referring to the same table, Filtered-ACPM runs even faster than ACSMF-Simple (most

recent efficient algorithm of [1]) in all cases.

We have plotted a graph for the values of Table 4.7 to show the comparisons among the

algorithms in a graphical manner. Figure 4.4 reports the elapsed-time (in seconds) and speed-

up comparisons among the algorithms. Here, we have kept values of m (pattern size) in X-axis,

number of mismatches k in Y-axis and elapsed-time (running time) values of each algorithms

in Z-axis. Here, note that, for better & precise representation of graph, we have converted the

elapsed-time values into log (10-based log) values. From Figure 4.4, we can see that, the elapsed

time for ACSMF-Simple is less than the elapsed time of FredNava for all values of m and k.

Again, referring to the same figure we can also see that, the elapsed time for Filtered-ACPM is

less than the elapsed time for ACSMF-Simple for all pattern sizes and mutations. Figure 4.4,

reports elapsed time for 2000 ≤ m ≤ 1200000 and 2 ≤ k ≤ 20.

Table 4.11: Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple and
Filtered-ACPM-[1..3] (considering first three combination of the filters) for a text of size 1GB

m k
Elapsed Time(s) of Elapsed Time(s) of Speed up of

Filtered-ACPMACSMF-simple Filtered-

ACPM[1..3]

2000 2 33 26 1.3

3000 2 28 26 1.1

4000 2 32 26 1.2

CHAPTER 4. EXPERIMENTAL STUDIES 84

5000 5 40 24 1.7

6000 5 36 24 1.5

2000 5 38 24 1.6

3000 5 40 24 1.7

4000 5 28 24 1.2

5000 5 40 24 1.7

6000 5 36 24 1.5

5000 7 44 30 1.5

6000 7 64 27 2.4

7000 7 59 27 2.2

8000 7 63 27 2.3

9000 7 59 27 2.2

10000 10 46 26 1.8

50000 10 47 71 0.7

100000 10 100 58 1.7

150000 10 105 758 0.1

200000 10 122 537 0.2

250000 12 126 453 0.3

300000 12 138 101 1.4

350000 12 145 272 0.5

400000 12 155 335 0.5

450000 12 170 450 0.4

500000 12 200 311 0.6

550000 15 251 506 0.5

650000 15 270 647 0.4

700000 15 292 1126 0.3

750000 15 330 1214 0.3

800000 15 401 1350 0.3

850000 15 498 1580 0.3

900000 20 561 1289 0.4

950000 20 706 894 0.8

1000000 20 870 259 3.4

CHAPTER 4. EXPERIMENTAL STUDIES 85

1100000 20 901 1329 0.7

1150000 20 931 1636 0.6

1200000 20 955 1203 0.8

Table 4.12: Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple and
Filtered-ACPM-[1..4] (considering first four combination of the filters) for a text of size 1GB

m k
Elapsed Time(s) of Elapsed Time(s) of Speed up of

Filtered-ACPMACSMF-simple Filtered-

ACPM[1..4]

2000 2 33 17 1.9

3000 2 28 16 1.8

4000 2 32 13 2.5

5000 5 40 14 2.9

6000 5 36 14 2.6

2000 5 38 10 3.8

3000 5 40 14 2.9

4000 5 28 11 2.5

5000 5 40 12 3.3

6000 5 36 14 2.6

5000 7 44 22 2.0

6000 7 64 35 1.8

7000 7 59 28 2.1

8000 7 63 23 2.7

9000 7 59 26 2.3

10000 10 46 27 1.7

50000 10 47 44 1.1

100000 10 100 50 2.0

150000 10 105 70 1.5

CHAPTER 4. EXPERIMENTAL STUDIES 86

200000 10 122 100 1.2

250000 12 126 102 1.2

300000 12 138 90 1.5

350000 12 145 101 1.4

400000 12 155 100 1.6

450000 12 170 120 1.4

500000 12 200 99 2.0

550000 15 251 100 2.5

650000 15 270 130 2.1

700000 15 292 150 1.9

750000 15 330 220 1.5

800000 15 401 205 2.0

850000 15 498 350 1.4

900000 20 561 330 1.7

950000 20 706 450 1.6

1000000 20 870 430 2.0

1100000 20 901 501 1.8

1150000 20 931 600 1.6

1200000 20 955 700 1.4

Table 4.13: Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple and
Filtered-ACPM-[1..5] (considering first five combination of the filters) for a text of size 1GB

m k
Elapsed Time(s) of Elapsed Time(s) of Speed up of

Filtered-ACPMACSMF-simple Filtered-

ACPM[1..5]

2000 2 33 15 2.2

3000 2 28 17 1.6

4000 2 32 13 2.5

CHAPTER 4. EXPERIMENTAL STUDIES 87

5000 5 40 20 2.0

6000 5 36 17 2.1

2000 5 38 15 2.5

3000 5 40 19 2.1

4000 5 28 14 2.0

5000 5 40 17 2.4

6000 5 36 20 1.8

5000 7 44 20 2.2

6000 7 64 30 2.1

7000 7 59 25 2.4

8000 7 63 20 3.2

9000 7 59 30 2.0

10000 10 46 25 1.8

50000 10 47 45 1.0

100000 10 100 52 1.9

150000 10 105 69 1.5

200000 10 122 78 1.6

250000 12 126 90 1.4

300000 12 138 93 1.5

350000 12 145 140 1.0

400000 12 155 102 1.5

450000 12 170 72 2.4

500000 12 200 101 2.0

550000 15 251 120 2.1

650000 15 270 140 1.9

700000 15 292 145 2.0

750000 15 330 170 1.9

800000 15 401 207 1.9

850000 15 498 331 1.5

900000 20 561 341 1.6

950000 20 706 433 1.6

1000000 20 870 542 1.6

CHAPTER 4. EXPERIMENTAL STUDIES 88

1100000 20 901 600 1.5

1150000 20 931 605 1.5

1200000 20 955 650 1.5

In order to analyze and understand the effect of our filters we have run a second set of

experiments on Filtered-ACPM and ACSMF-simple as follows. We have run experiments on

three variants of Filtered-ACPM algorithm where the first variant (Filtered-ACPM-[1..3]) only

employs Filters 1 (in Chapter 2, Section 2.10.1) through 3 (in Chapter 2, Section 2.10.2), the

second variant (Filtered-ACPM-[1..4]) only employs Filters 1 (in Chapter 2, Section 2.10.1)

through 4 (in Chapter 2, Section 2.10.3), and finally the third variant (Filtered-ACPM-[1..5])

employs Filters 1 (in Chapter 2, Section 2.10.1) through 5 (in Chapter 2, Section 2.10.4). Tables

4.7, 4.7 and 4.7 report the elapsed time and speed-up comparisons considering various pattern

sizes (2000 ≤ m ≤ 1200000) for ACSMF-Simple and the above-mentioned three variants of

Filtered-ACPM algorithm. As can be checked from Tables 4.7, 4.7 and 4.7, ACSMF-Simple

is able to beat Filtered-ACPM-[1..3] in a number of cases. However, Filtered-ACPM-[1..4]

and Filtered-ACPM-[1..5] run significantly faster than ACSMF-Simple of [1] in all cases. This

also indicates that as more and more effective filters are imposed, Filtered-ACPM algorithm

performs better.

4.8 Experimental Results for CSC

In this section we discuss the experimental result of our Algorithm, Filtered-CSC. We compare

the results of our algorithm with most recent state of art algorithm of [2]. For this experiment

we have used environment & experimental settings: Setup 3 (see description in Section 4.2).

We have implemented Filtered-CSC and conducted extensive experiments to analyze its

performance. We show the comparison based on the experimental results between Algorithm

saCSC of [2] and our Algorithm Filtered-CSC. Algorithm saCSC [2] has been implemented as

library functions in the C programming language under GNU/Linux operating system. The

CHAPTER 4. EXPERIMENTAL STUDIES 89

m

200000
400000

600000
800000

1000000
1200000

k

2
4

6
8

10
12

14
16

18
20

lo
g 1

0
(T

im
e

(s
ec

on
ds

))

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FredNava
ACSMF-simple

Filtered-ACPM

Figure 4.4: A graph representing elapsed-time (in seconds) and speed-up comparison among
FredNava [3], ACSMF-Simple [1] and Filtered-ACPM considering all the six filters in a single
pass for a text of size 1GB.

CHAPTER 4. EXPERIMENTAL STUDIES 90

library implementation is distributed under the GNU General Public License (GPL). It takes

as input the pattern P of length m, the text T of length n, integers block-size β > 1, q-grams

q < m, and returns the rotation of P for which the blockwise q-gram distance is minimal with

T according to Problem 4.

Again, as has been mentioned before, we have used real genome data as the text string, T

in our experiments for the Algorithm Filtered-CSC. Here, we have taken 700MB of data for

our experiments. Again, we have generated random patterns of different length by a random

indexing technique in this 700MB of text string.

Table 4.14: Elapsed-time (in seconds) and speed-up comparison between saCSC[2] and Filtered-
CSC considering all the six filters for a text of size 700MB. Here, β =

√
m.

m q
Elapsed Time(s) of Elapsed Time(s) of Speed up of

Filtered-CSCsaCSC Filtered-CSC

2000 5 41 22 1.9

3000 5 42 21 2.0

4000 5 45 25 1.8

5000 5 44 23 1.9

6000 5 47 25 1.9

2000 10 39 18 2.2

3000 10 44 20 2.2

4000 10 47 26 1.8

5000 10 52 28 1.9

6000 10 57 26 2.2

5000 15 60 31 1.9

6000 15 63 32 2.0

7000 15 60 29 2.1

8000 15 66 32 2.1

9000 15 67 34 2.0

10000 20 56 27 2.1

50000 20 63 33 1.9

100000 20 111 52 2.1

150000 20 106 51 2.1

CHAPTER 4. EXPERIMENTAL STUDIES 91

200000 20 123 62 2.0

250000 25 129 66 2.0

300000 25 140 69 2.0

350000 25 147 74 2.0

400000 25 160 78 2.1

450000 25 172 81 2.1

500000 30 203 99 2.1

550000 30 255 105 2.4

650000 30 266 123 2.2

700000 30 301 143 2.1

750000 30 333 192 1.7

800000 35 402 195 2.1

850000 35 498 240 2.1

900000 35 578 256 2.3

950000 35 710 280 2.5

1000000 35 880 423 2.1

1100000 40 902 440 2.1

1150000 40 935 510 1.8

1200000 40 1020 550 1.9

1200000 40 1022 530 1.9

1200000 40 1045 501 2.1

Here we report the experimental results and comparisons between our algorithm Filtered-

CSC and saCSC of [2]. Table 4.8 reports the elapsed time and speed-up comparisons for various

pattern sizes (2000 ≤ m ≤ 1200000) and for various q-grams sizes (5 ≤ q ≤ 40) and block-size

β =
√
m. We set β =

√
m for better performance of saCSC as has been described in [2].

As can be seen from Table 4.8, our algorithm runs faster than saCSC in all cases. And in

fact Filtered-CSC achieves around a two-fold speed-up for all the pattern and q-gram sizes

described here.

We have plotted a graph for the values of Table 4.8 to show the comparisons between the

CHAPTER 4. EXPERIMENTAL STUDIES 92

m

200000
400000

600000
800000

1000000
1200000

q

5
10

15
20

25
30

35
40

Ti
m

e
(s

ec
on

ds
)

200

400

600

800

1000

saCSC
Filtered-CSC

Figure 4.5: A graph representing elapsed-time (in seconds) and speed-up comparison between
saCSC[2] and Filtered-CSC considering all the six filters for a text of size 700MB. Here, β =√
m.

CHAPTER 4. EXPERIMENTAL STUDIES 93

algorithms saCSC and Filtered-CSC in a graphical manner. Figure 4.5 reports the elapsed-

time (in seconds) and speed-up comparisons among the algorithms. Here, we have kept values

of m (pattern size) in X-axis, the size of q-gram q in Y-axis and elapsed-time (running time)

values of each algorithms in Z-axis. From Figure 4.5, we can see that, the elapsed time for

Filtered-CSC is less than the elapsed time of saCSC for all values of m and q. Figure 4.5,

reports elapsed time for 2000 ≤ m ≤ 1200000 and 5 ≤ q ≤ 40. Here, also note that, we have

used β =
√
m.

Same as our previous experiments like Filtered-ECPM and Filtered-ACPM, we like to

analyze and understand the effect of our filters. For this reason, we have run a second set of

experiments as follows. We have run experiments on three variants of Filtered-CSC algorithm

where the first variant (Filtered-CSC-[1..3]) only employs Filters 1 (in Chapter 2, Section 2.9.1)

through 3 (in Chapter 2, Section 2.9.2), the second variant (Filtered-CSC-[1..4]) only employs

Filters 1 (in Chapter 2, Section 2.9.1) through 4 (in Chapter 2, Section 2.9.3), and finally

the third variant (Filtered-CSC-[1..5]) employs Filters 1 (in Chapter 2, Section 2.9.1) through

5 (in Chapter 2, Section 2.9.4). Tables 4.8, 4.8 and 4.8 report the elapsed time and speed-

up comparisons considering various pattern sizes (2000 ≤ m ≤ 1200000) for saCSC and the

above-mentioned three variants of Filtered-CSC algorithm. As can be checked from Tables

4.8, 4.8 and 4.8, saCSC is able to beat Filtered-CSC-[1..3] in a number of cases. However,

Filtered-CSC-[1..4] and Filtered-CSC-[1..5] run significantly faster than saCSC of [2] in all

cases. Again, this indicates that as more and more effective filters are imposed, Filtered-CSC

algorithm performs better.

Table 4.15: Elapsed-time (in seconds) and speed-up comparisons between saCSC and Filtered-
CSC-[1..3] (considering first three combination of the filters) for a text of size 700MB. Here,
β =
√
m.

m q
Elapsed Time(s) of Elapsed Time(s) of Speed up of

Filtered-CSC-[1..3]saCSC Filtered-CSC-[1..3]

2000 5 41 32 1.3

3000 5 42 38 1.1

4000 5 45 38 1.2

CHAPTER 4. EXPERIMENTAL STUDIES 94

5000 5 44 26 1.7

6000 5 47 31 1.5

2000 10 39 24 1.6

3000 10 44 26 1.7

4000 10 47 39 1.2

5000 10 52 31 1.7

6000 10 57 38 1.5

5000 15 60 40 1.5

6000 15 63 26 2.4

7000 15 60 27 2.2

8000 15 66 29 2.3

9000 15 67 30 2.2

10000 20 56 31 1.8

50000 20 63 90 0.7

100000 20 111 65 1.7

150000 20 106 1060 0.1

200000 20 123 615 0.2

250000 25 129 430 0.3

300000 25 140 100 1.4

350000 25 147 294 0.5

400000 25 160 320 0.5

450000 25 172 430 0.4

500000 30 203 338 0.6

550000 30 255 510 0.5

650000 30 266 665 0.4

700000 30 301 1003 0.3

750000 30 333 1110 0.3

800000 35 402 1340 0.3

850000 35 498 1660 0.3

900000 35 578 1445 0.4

950000 35 710 888 0.8

1000000 35 880 259 3.4

CHAPTER 4. EXPERIMENTAL STUDIES 95

1100000 40 902 1289 0.7

1150000 40 935 1558 0.6

1200000 40 1020 1275 0.8

1200000 40 1022 530 1.9

1200000 40 1045 501 2.1

Table 4.16: Elapsed-time (in seconds) and speed-up comparisons between saCSC and Filtered-
CSC-[1..4] (considering first four combination of the filters) for a text of size 700MB. Here,
β =
√
m.

m q
Elapsed Time(s) of Elapsed Time(s) of Speed up of

Filtered-CSC-[1..4]saCSC Filtered-CSC-[1..4]

2000 5 41 22 1.9

3000 5 42 23 1.8

4000 5 45 18 2.5

5000 5 44 15 2.9

6000 10 47 18 2.6

2000 10 39 10 3.8

3000 10 44 15 2.9

4000 10 47 19 2.5

5000 10 52 16 3.3

6000 15 57 22 2.6

5000 15 60 30 2

6000 15 63 35 1.8

7000 15 60 29 2.1

8000 15 66 24 2.7

9000 20 67 29 2.3

10000 20 56 33 1.7

50000 20 63 57 1.1

100000 20 111 56 2

150000 20 106 71 1.5

200000 25 123 103 1.2

CHAPTER 4. EXPERIMENTAL STUDIES 96

250000 25 129 108 1.2

300000 25 140 93 1.5

350000 25 147 105 1.4

400000 25 160 100 1.6

450000 30 172 123 1.4

500000 30 203 102 2

550000 30 255 102 2.5

650000 30 266 127 2.1

700000 30 301 158 1.9

750000 35 333 222 1.5

800000 35 402 201 2

850000 35 498 356 1.4

900000 35 578 340 1.7

950000 35 710 444 1.6

1000000 40 880 440 2

1100000 40 902 501 1.8

1150000 40 935 584 1.6

1200000 40 1020 729 1.4

1200000 40 1022 530 1.9

1200000 40 1045 501 2.1

Table 4.17: Elapsed-time (in seconds) and speed-up comparisons between saCSC and Filtered-
CSC-[1..5] (considering first five combination of the filters) for a text of size 700MB. Here,
β =
√
m.

m q
Elapsed Time(s) of Elapsed Time(s) of Speed up of

Filtered-CSC-[1..5]saCSC Filtered-CSC-[1..5]

2000 5 41 19 2.2

3000 5 42 26 1.6

4000 5 45 18 2.5

5000 5 44 22 2

6000 10 47 22 2.1

CHAPTER 4. EXPERIMENTAL STUDIES 97

2000 10 39 16 2.5

3000 10 44 21 2.1

4000 10 47 24 2

5000 10 52 22 2.4

6000 15 57 32 1.8

5000 15 60 27 2.2

6000 15 63 30 2.1

7000 15 60 25 2.4

8000 15 66 21 3.2

9000 20 67 34 2

10000 20 56 31 1.8

50000 20 63 63 1

100000 20 111 58 1.9

150000 20 106 71 1.5

200000 25 123 77 1.6

250000 25 129 92 1.4

300000 25 140 93 1.5

350000 25 147 147 1

400000 25 160 107 1.5

450000 30 172 72 2.4

500000 30 203 102 2

550000 30 255 121 2.1

650000 30 266 140 1.9

700000 30 301 151 2

750000 35 333 175 1.9

800000 35 402 212 1.9

850000 35 498 332 1.5

900000 35 578 361 1.6

950000 35 710 444 1.6

1000000 40 880 550 1.6

1100000 40 902 601 1.5

1150000 40 935 623 1.5

CHAPTER 4. EXPERIMENTAL STUDIES 98

1200000 40 1020 680 1.5

1200000 40 1022 530 1.9

1200000 40 1045 501 2.1

4.9 Summary

In this chapter, we have presented the experimental study of all problems mentioned in this

thesis. We have shown our experimental setup, environment of the program and computer as

well as the comparisons among all state of art algorithms and our proposed algorithms. We

have seen that our proposed algorithms runs much faster than the state of art algorithm for

Problem 2 to 4. But, for Problem 1, it has been seen that the state of art algorithm runs better

than ours in all cases.

Chapter 5

Conclusion

Circular molecular structures are abundant in nature. They can be composed of both amino and

nucleic acids. Finding the circular molecular structures in genome sequences and/or alignment

of circular sequences with genome sequences are common and important task in Computational

Biology. Traditional algorithms are computationally too expensive in this regard. We have

presented a new algorithmic framework based on filtering techniques to solve these problems

efficiently and effectively. We have reported experimental results that demonstrate superior

efficiency of our algorithms relative to the state of art algorithms.

In this study, we have employed some effective lightweight filtering techniques to reduce the

search space of the following problems: Classical Pattern Matching problem, Exact Circular

Pattern Matching (ECPM) problem, Approximate Circular Pattern Matching (ACPM) prob-

lem and Circular Sequence Comparison (CSC) problem. We have used a concept of a pattern

signature for both linear and circular strings. Then we have proposed RSS FT algorithm for

search space reduction in the text. We have presented Filtered-ECPM and Filtered-ACPM

algorithms, both are extremely fast algorithm based on the above-mentioned filters. Subse-

quently, we have presented Filtered-CSC algorithm, also a fast algorithm than the state of art

algorithm. Initially, we have presented a filter based algorithm for classical pattern matching

problem. Though, the filter based classical algorithm is not that much fast than the state of

art algorithm, using a comparative analysis we have showed that our filtering technique works

effectively and efficiently. Hence, much of the speed of our algorithms comes from the fact that

99

CHAPTER 5. CONCLUSION 100

our filters are effective but extremely simple and lightweight. The most intriguing feature of

our algorithmic framework is perhaps its capability to plug in any algorithm to solve all the

actual problems (Problems 1 to Problem 4) and take advantage of it.

The contributions that have been made in this thesis can be enumerated as follows.

• We have presented the concept of a pattern signature for both linear and circular strings

using filtering techniques. This pattern signature has been used for the reduction of search

space in the text string. This pattern signature Algorithm PSF FT runs in O(m) time,

where m is the length of pattern.

• We have presented a framework for search space reduction. This framework uses the

concept of the pattern signature described above to reduce the search space of the text

string. The procedure RSS FT of this framework runs in O(n) time, where n is the

length of text string.

• We have presented a filter-based algorithm for classical pattern matching. Though, our

filter-based algorithm runs slower than the state of art, we showed a comparative analysis

behind this slowness and we have shown the effectiveness of our filters.

• We have presented Filtered-ECPM algorithm which runs faster than the state of the art

algorithm. In fact, our Filtered-ECPM achieves a minimum of three-fold speed-up than

the state of art [1].

• We have also presented Filtered-ACPM algorithm which also runs faster than the state

of the art algorithm. In fact, our Filtered-ACPM achieves almost two-fold speed-up than

the state of art [1].

• Furthermore, we have presented a filter-based algorithm for exact circular sequence com-

parison. Our Filtered-CSC also runs faster than the state of art [2]. In fact, our Filtered-

CSC achieves a two-fold speed-up than the state of art [2].

CHAPTER 5. CONCLUSION 101

5.1 Future Works

In this study, we have focused on developing effective and efficient approaches to solve ECPM,

ACPM and CSC problems. The effectiveness and the efficiency of our approaches are gained

by using extremely light-weight filtering techniques. We have implemented our solutions in

C programming language as a library. At this point, our primary future task is to develop a

web-based online tool which will be used throughout the world. Besides this, some other issues

need to be considered to enhance our current contribution. They are listed below.

• To develop a new filter-based algorithm of Heuristic (approximate) Circular Sequence

Comparison (HCSC).

• To improve our filtering techniques to solve multiple circular sequence alignment.

• We will explore the possibility of optimising our filters and the corresponding library

implementation for the both eaxt and approximate CPM case by using lossless filters for

eliminating a possibly large fraction of the input that is guaranteed not to contain any

exact/approximate occurrence.

Bibliography

[1] Barton, C., Iliopoulos, C., Pissis, S.: Fast algorithms for approximate circular string

matching. Algorithms for Molecular Biology 9 (2014) 9.

[2] Grossi, R., Iliopoulos, C.S., Mercas, R., Pisanti, N., Pissis, S.P., Retha, A., Vayani, F.:

Circular sequence comparison: algorithms and applications. Algorithms for Molecular

Biology 11 (2016) 1.

[3] Fredriksson, K., Grabowski, S.: Average-optimal string matching. J Discrete Algorithms

7 (2009) 579–594.

[4] Weil, R., Vinograd, J.: The cyclic helix and cyclic coil forms of polyoma viral DNA. Proc

Natl Acad Sci 50 (1963) 730–738.

[5] Dulbecco, R., Vogt, M.: Evidence for a ring structure of polyoma virus DNA. Proc Natl

Acad Sci 50 (1963) 236–243.

[6] Thanbichler, M., Wang, S., Shapiro, L.: The bacterial nucleoid: A highly organized and

dynamic structure. J Cell Biochem 96 (2005) 506–521.

[7] Lipps, G.: Plasmids: Current Research and Future Trends. Norfolk, UK: Caister Academic

Press (2008)

[8] Allers, T., Mevarech, M.: Archaeal genetics – the third way. Nat Rev Genet 6 (2005)

58–73.

[9] Gusfield, D.: Algorithms on Strings, Trees and Sequences. New York, NY, USA: Cam-

bridge University Press (1997)

102

BIBLIOGRAPHY 103

[10] Del Castillo, C.S., Hikima, J.i., Jang, H.B., Nho, S.W., Jung, T.S., Wongtavatchai,

J., Kondo, H., Hirono, I., Takeyama, H., Aoki, T.: Comparative sequence analysis

of a multidrug-resistant plasmid from aeromonas hydrophila. Antimicrobial agents and

chemotherapy 57 (2013) 120–129.

[11] Hopper, G.M.: The education of a computer. In: Proceedings of the 1952 ACM national

meeting (Pittsburgh), ACM (1952) 243–249.

[12] Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities

in the amino acid sequence of two proteins. Journal of molecular biology 48(3) (1970)

443–453.

[13] Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum,

S.R.: Analysis of nitrate, nitrite, and [15 n] nitrate in biological fluids. Analytical bio-

chemistry 126 (1982) 131–138.

[14] Mosig, A., Hofacker, I., Stadler, P., Zell, A.: Comparative analysis of cyclic sequences:

viroids and other small circular RNAs. German Conference on Bioinformatics, Volume 83

of LNI (2006) 93–102.

[15] Fernandes, F., Pereira, L., Freitas, A.: CSA: An efficient algorithm to improve circular

DNA multiple alignment. BMC Bioinformatics 10 (2009) 1–13.

[16] Lee, T., Na, J., Park, H., Park, K., Sim, J.: Finding optimal alignment and consensus

of circular strings. Proceedings of the 21st annual Conference on Combinatorial Pattern

Matching (2010) 310–322.

[17] Taanman, J.W.: The mitochondrial genome: structure, transcription, translation and

replication. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1410 (1999) 103–123.

[18] Goios, A., Pereira, L., Bogue, M., Macaulay, V., Amorim, A.: mtdna phylogeny and

evolution of laboratory mouse strains. Genome research 17 (2007) 293–298.

BIBLIOGRAPHY 104

[19] Wang, Z., Wu, M.: Phylogenomic reconstruction indicates mitochondrial ancestor was an

energy parasite. PloS one 9 (2014) e110685.

[20] Cohen, S., Houben, A., Segal, D.: Extrachromosomal circular dna derived from tandemly

repeated genomic sequences in plants. The Plant Journal 53 (2008) 1027–1034.

[21] Kuttler, F., Mai, S.: Formation of non-random extrachromosomal elements during de-

velopment, differentiation and oncogenesis. In: Seminars in cancer biology. Volume 17.,

Elsevier (2007) 56–64.

[22] Brodie, R., Smith, A.J., Roper, R.L., Tcherepanov, V., Upton, C.: Base-by-base: single

nucleotide-level analysis of whole viral genome alignments. BMC bioinformatics 5 (2004)

1.

[23] Bray, N., Pachter, L.: Mavid: constrained ancestral alignment of multiple sequences.

Genome research 14(4) (2004) 693–699.

[24] Mosig, A., Hofacker, I.L., Stadler, P.F., Zell, A.: Comparative analysis of cyclic se-

quences: Viroids and other small circular rnas. In: German Conference on Bioinformatics.

Volume 83. (2006) 93–102.

[25] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment

search tool. Journal of molecular biology 215 (1990) 403–410.

[26] Knuth, D.E., Morris, Jr, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM

journal on computing 6 (1977) 323–350.

[27] Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the ACM

20 (1977) 762–772.

[28] Baeza-Yates, R., Gonnet, G.H.: A new approach to text searching. Commun. ACM 35

(October 1992) 74–82.

[29] Wu, S., Manber, U.: Fast text searching: Allowing errors. Commun. ACM 35(10)

(October 1992) 83–91.

BIBLIOGRAPHY 105

[30] Lothaire, M.: Applied Combinatorics on Words. New York, NY, USA: Cambridge Uni-

versity Press (2005) .

[31] Chen, K., Huang, G., Lee, R.C.: Bit-parallel algorithms for exact circular string matching.

Comput. J. 57 (2014) 731–743.

[32] ACSMF-Simple-Algorithm. http://www.inf.kcl.ac.uk/research/projects/asmf/

[Online; Last accessed 30-November-2016].

[33] Iliopoulos, C., Rahman, M.: Indexing circular patterns. Proceedings of the 2nd Interna-

tional Conference on Algorithms and Computation (2008) 46–57.

[34] Lin, J., Adjeroh, D.: All-against-all circular pattern matching. Comput J 55(7) (2012)

897–906.

[35] Maes, M.: On a cyclic string-to-string correction problem. Inf. Process. Lett. 35 (June

1990) 73–78.

[36] Marzal, A., Barrachina, S.: Speeding up the computation of the edit distance for cyclic

strings. In: Pattern Recognition, 2000. Proceedings. 15th International Conference on.

Volume 2. (2000) 891–894 vol.2.

[37] Bunke, H., Bhler, U.: Applications of approximate string matching to 2d shape recogni-

tion. Pattern Recognition 26 (1993) 1797 – 1812.

[38] Barton, C., Iliopoulos, C., Kundu, R., Pissis, S., Retha, A., Vayani, F.: Proceedings of

lecture notes in computer science. In: Accurate and efficient methods to improve multiple

circular sequence alignment. In experimental algorithms14th international symposium,

SEA, Springer (2015) 247–258.

[39] Fernandes, F., Pereira, L., Freitas, A.T.: Csa: An efficient algorithm to improve circular

dna multiple alignment. BMC bioinformatics 10 (2009) 1.

[40] Lee, T., Na, J.C., Park, H., Park, K., Sim, J.S.: Finding consensus and optimal alignment

of circular strings. Theoretical Computer Science 468 (2013) 92–101.

http://www.inf.kcl.ac.uk/research/projects/asmf/

BIBLIOGRAPHY 106

[41] Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theo-

retical computer science 92 (1992) 191–211.

[42] Rasmussen, K.R., Stoye, J., Myers, E.W.: Efficient q-gram filters for finding all ε-matches

over a given length. Journal of Computational Biology 13 (2006) 296–308.

[43] Peterlongo, P., Sacomoto, G.A.T., do Lago, A.P., Pisanti, N., Sagot, M.F.: Lossless filter

for multiple repeats with bounded edit distance. Algorithms for Molecular Biology 4

(2009) 1.

[44] Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. siam

Journal on Computing 22 (1993) 935–948.

[45] Fischer, J.: Inducing the lcp-array. Algorithms and Data Structures, Volume 6844 of

Lecture Notes in Computer Science (2011) 374–385.

[46] Nong, G., Zhang, S., Chan, W.: Linear suffix array construction by almost pure induced-

sorting. Proceedings of the 2009 Data Compression Conference (2009) 193–202.

[47] Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries

on static arrays. SIAM J Comput 40 (2011) 465–492.

[48] Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited and

applications to approximate string searching. J Discrete Algorithms 8(4) (2010) 418–428.

[49] Dori, S., Landau, G.: Construction of aho corasick automaton in linear time for integer

alphabets. Inf Process Lett 98 (2006) 66–72.

[50] Helinski, D.R., Clewell, D.: Circular dna. Annual review of biochemistry 40 (1971)

899–942.

[51] Ehlers, T., Manea, F., Mercaş, R., Nowotka, D.: k-abelian pattern matching. Journal of

Discrete Algorithms 34 (2015) 37–48.

[52] Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in

strings. International Journal of Foundations of Computer Science 23(02) (2012) 357–374.

BIBLIOGRAPHY 107

[53] saCSC Algorithm. http://www.github.com/solonas13/csc/ [Online; Last accessed 30-

November-2016].

[54] Genome-Data. http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/bigZips/

[Online; Last accessed 30-November-2016].

[55] Genome-Reference-Consortium. http://www.ncbi.nlm.nih.gov/projects/genome/

assembly/grc/ [Online; Last accessed 30-November-2016].

[56] Filter-CSC. https://goo.gl/A3lY4w [Online; Last accessed 30-November-2016].

[57] Filter-ECPM, Filter-ACPM. http://goo.gl/qKgcaU/ [Online; Last accessed 30-

November-2016].

http://www.github.com/solonas13/csc/
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/bigZips/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
https://goo.gl/A3lY4w
http://goo.gl/qKgcaU/

	Board of Examiners
	Candidate's Declaration
	Acknowledgment
	Abstract
	Introduction
	Introduction
	Applications and Motivations
	Literature Review
	Limitation of Recent Works
	Objectives with Specific Aims and Possible Outcome
	Thesis Organization

	Preliminaries
	Basic definitions in Stringology
	Classical Pattern Matching Problem
	Circular String
	Exact Circular Pattern Matching
	Approximate Circular Pattern Matching
	Algorithm ACSMF-Simple of Solon

	Circular Sequence Comparison
	Algorithm saCSC of grossi2016circular

	Numerical Representations
	False Positives and Negatives
	Category of Filters and Relevant Observations
	Algorithmic Framework

	Filters of Classical Pattern Matching
	Filter 1
	Filters 2 and 3
	Filter 4
	Filter 5
	Filter 6

	Filters of Circular Pattern Matching and Circular Sequence Comparison
	Filter 1
	Filters 2 and 3
	Filter 4
	Filter 5
	Filter 6

	Filters of ACPM
	Filter 1
	Filters 2 and 3
	Filters 4
	Filters 5
	Filters 6

	Summary

	Filter based Algorithmic Framework
	Pattern Signature using the Filters
	Reduction of Search Space
	An Illustrative Example for the ECPM Problem

	The Combined Algorithm for Classical Pattern Matching Problem
	The Combined Algorithm for ECPM and ACPM
	The Algorithm for CSC Problem
	Summary

	Experimental Studies
	Dataset
	Environment & Experimental Settings
	Effectiveness of Filters
	Search Space Reduction
	Experimental Results for Classical Pattern Matching
	Comparison with Algorithms for ECPM
	Experimental Results for ACPM
	Experimental Results for CSC
	Summary

	Conclusion
	Future Works

