
M.SC. ENGG. THESIS

Analysing Developers’ Sentiments of Code
Reviews: An Empirical Study

by
Toufique Ahmed

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

December 2016

The thesis titled "Analysing Developers' Sentiments of Code Reviews: An Empirical Study",
submitted by Toufique Ahmed, Roll No. 1014052015 P, Session October 2014, to the Depart-
ment of Computer Science and Engineering, Bangladesh University of Engineering and Tech-
nology, has been accepted as satisfactory in partial fulfillment of the requirements for the degree
of Master of Science in Computer Science and Engineering and approved as to its style and con-
tents. Examination held on December 12,2016.

Board of Examiners

L~~ __
Dr. Anindya Iqbal
Assistant Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

Chairman
(Supervisor)

2.~
Dr. M. Sohel Rahman
Head and Pro fessor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

Member
(Ex-Officio)

Dr. Mohammed Eunus Ali
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

Member

4. tri.
Dr. Rifat Shahriyar
Assistant Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

Member

5. ~A.Jw-.--
7

Dr. Swakkhar Shatabda
Assistant Professor
Department of Computer Science and Engineering
United International University, Dhaka.

Member

Candidate's Declaration

This is hereby declared that the work titled "Analysing Developers' Sentiments of Code Reviews:

An Empirical Study" is the outcome of research carried out by me under the supervision of Dr.

Anindya Iqbal, in the Department of Computer Science and Engineering, Bangladesh University

of Engineering and Technology, Dhaka 1000. It is also declared that this thesis or any part of it

has not been submitted elsewhere for the award of any degree or diploma.

Toufique Ahmed

Candidate

2

Acknowledgment

Foremost, I am thankful to Almighty Allah for his blessings for the successful completion of my

thesis. I would like to express my heartiest gratitude, profound indebtedness and deep respect to

my supervisor, Dr.Anindya Iqbal, Assistant Professor, Dept. of CSE, BUET, Dhaka, Bangladesh,

for his constant supervision, affectionate guidance and great encouragement and motivation.

His keen interest on the topic and valuable advices throughout the study was of great help in

completing thesis.

I would also want to thank the members of my thesis committee for their valuable sugges-

tions. I thank Dr. M. Sohel Rahman, Dr. Mohammed Eunus Ali, Dr. Rifat Shahriyar and

specially the external member Dr. Swakkhar Shatabda. I express my gratitude towards Dr.

Amiangshu S. Bosu, Assistant Professor, Department of Computer Science at Southern Illinois

University, USA, for the support and guidance he has extended throughout the whole period of

this thesis.

I am especially grateful to Department of Computer Science and Engineering (CSE) of

Bangladesh University of Engineering and Technology (BUET) for providing their support dur-

ing the thesis work. My sincere thanks goes to CSE Office staffs for providing logistic support

to me to successfully complete the thesis work.

Finally, I would like to thank my family: my parents and all of those who supported me for

their appreciable assistance, patience and suggestions during the course of my thesis.

3

Abstract

The sentiment (i.e., general positive or negative attitude) towards another person, entity or event

significantly influences a person’s decision-making process. It is one of the most important fac-

tors that influences interactions among the stakeholders for different application areas in many

domains. Hence, various types of approaches have been proposed in order to detect sentiment

accurately. However, it is not formally analyzed whether sentiments can impact the outcomes

of that activity, expressed during software development activities, like peer code review. The

objective of this study is to identify the factors influencing review comments and the impact of

sentiments on the outcomes of associated review requests. On this goal, we manually rated 1000

review comments to build a training dataset and used that dataset to evaluate eight sentiment

analysis techniques. We found a model based on Gradient Tree Boosting (GTB), a supervised

learning algorithm, providing the best accuracy to distinguish among positive, negative, and neu-

tral review comments. To the best of our knowledge, this is the first approach that implemented

supervised learning methods in the context of code review. We achieved as high as 74% accuracy

in sentiment detection which is significantly higher than existing lexicon based analyzers (50%

accuracy). We have also validated it with human raters.

Using our GTB based model, we classified 10.7 million review comments from 10 popular

open source projects. The results suggest that larger code reviews (e.g., measured in terms of

number of files or code churn) are more likely to receive negative review comments and those

negative review comments not only may increase review interval (i.e., time to complete a code

review) but also may decrease code acceptance rate. Based on these findings, we recommend

developers to avoid submitting large code review requests and to avoid authoring negative review

comments. The results also suggest that the reviewers authoring higher number of negative

4

review comments are likely to suffer from higher review intervals and lower acceptance rate.

We also found that core developers are likely to author more negative review comments than

peripheral developers. However, in case of receiving negative review comments, we did not find

any discrepancy between the core developers and the peripheral developers.

5

Contents

Board of Examiners 1

Candidate’s Declaration 2

Acknowledgment 3

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Research Hypotheses . 3

1.3.1 Code Churn . 4

1.3.2 Number of Files . 4

1.3.3 Number of Patchsets . 5

1.3.4 Review Interval . 5

1.3.5 Code Acceptance Rate . 6

1.4 Contribution . 6

1.5 Thesis Organization . 7

2 Background Study 8

2.1 Vectorization Techniques . 8

2.1.1 Count Vectorization . 8

2.1.2 TF-IDF Transformation . 9

2.1.3 TF-IDF Vectorization . 10

6

2.2 Supervised Learning Techniques . 10

2.2.1 Primary Supervised Machine Learning Algorithms 10

2.2.2 Ensemble Learning Algorithms . 12

2.3 Measuring Inter Rater Agreement . 14

2.4 Statistical Significance Test . 15

2.4.1 Shapiro-Wilk test . 16

2.4.2 Mann-Whitney U test . 16

2.4.3 Chi-Squared test . 17

2.4.4 Effect Size . 18

2.5 Summary . 19

3 Literature Review 20

3.1 Code Review . 20

3.2 Sentiment Analysis . 23

3.3 Summary . 28

4 Automatic Sentiment Detection with Supervised Learning Methods 29

4.1 Training Dataset Generation . 29

4.2 Data Pre-Processing . 33

4.3 Classifier Selection . 34

4.3.1 Design of the Classifiers . 35

4.3.2 Performance Evaluation of the Supervised Learning Methods 35

4.3.3 Comparison with Lexicon Based Classifiers 37

4.4 Summary . 39

5 Empirical Studies 40

5.1 Design of the Experimental Framework . 40

5.2 Factors Influencing Negative Review Comments 43

7

5.2.1 The code churn is more likely to be higher for a review request receiving

at least one negative comment than for a review request receiving no

negative comment (H1). 45

5.2.2 The number of files under review is more likely to be higher for a review

request receiving at least one negative comment than for a review request

receiving no negative comment (H2). 45

5.2.3 The number of patchsets is more likely to be higher for a review request

receiving at least one negative comment than for a review request receiv-

ing no negative comment (H3). 49

5.3 Impact of Negative Review Comments on Code Review Outcomes 50

5.3.1 The review interval is more likely to be longer for review requests re-

ceiving at least one negative comment than for review requests receiving

no negative comment (H4). 50

5.3.2 A review request receiving at least one negative comment is less likely

to get accepted than a review request receiving no negative comment (H5). 52

5.4 Investigating Individual’s Sentiment Pattern . 54

5.5 Authoring and Receiving Negative Comments by the Core (Experienced) and

the Peripheral (Novice) Developers . 59

5.6 Extended Analysis . 60

5.6.1 Code Churn vs. Review Interval . 60

5.6.2 Code Churn vs. Code Acceptance Rate 63

5.6.3 Number of Files vs. Review Interval . 64

5.6.4 Number of Files vs. Code Acceptance Rate 65

5.6.5 Number of Patchsets vs. Review Interval 66

5.6.6 Number of Patchsets vs. Code Acceptance Rate 69

5.6.7 Number of Negative Comments vs. Review Interval 70

5.7 Implications of the Study . 71

5.7.1 Managing Changesets . 71

5.7.2 Impacts on Future Collaborations . 72

8

5.7.3 Impact on Project Outcomes . 73

5.7.4 Avoiding Negative Comments . 73

5.8 Threats to validity . 73

5.8.1 Internal Validity . 74

5.8.2 Construct validity . 74

5.8.3 External validity . 76

5.8.4 Conclusion validity . 76

5.9 Summary . 77

6 Conclusion 78

Appendices 80

A Examples Misclassified by SentiStrength 81

B Examples Misclassified by Our Proposed Method 85

C Contractions 87

D Emoticons 89

9

List of Figures

1.1 Research Hypotheses . 4

2.1 Consideration for Selecting Statistical Significance Test 15

3.1 Traditional Inspection Process in Code Review 21

3.2 An Example Snapshot of Code Review in Gerrit 24

4.1 An overview of our three-stage research method 30

4.2 Web app to we developed manually label the review comments 31

4.3 Data Pre-Processing Stages . 33

4.4 Sentiment Detection Accuracy Comparison of the Supervised Learning Algorithms 36

4.5 Comparing our method with SentiStrength and NLTK on Our Dataset 38

5.1 ER Diagram of the Code Review Storage . 41

5.2 Code churn vs. Negative review comments . 43

5.3 Code churn vs. Negative review ratio (OpenStack) 47

5.4 Number of files vs. Negative review comments 47

5.5 Number of files vs. Negative review ratio (OVirt) 49

5.6 Number of patchsets vs. Negative review comments 50

5.7 Number of patchsets vs. Negative review ratio (Android) 52

5.8 Negative review comments vs. Review intervals 54

5.9 Review Interval Required for Different Percentile of Reviewers in Terms of Neg-

ative Comments . 56

10

5.10 Code Acceptance Rate for Different Percentile of Reviewers in Terms of Nega-

tive Comments . 57

5.11 Distribution of Developers According to their Authored Percentage of Negative

Comments . 58

5.12 Core Developers likely to Author more Negative Comments than the Peripheral

Developers . 59

5.13 Core Developers and Peripheral Developers likely to Receive Equal Percentage

of Negative Review Comments . 60

5.14 Code Churn vs. Review Interval . 61

5.15 Code Churn vs. Code Acceptance Rate . 62

5.16 Code Churn vs. Code Acceptance Rate . 63

5.17 Number of Files vs. Review Interval . 65

5.18 Number of Files vs. Code Acceptance Rate . 67

5.19 Number of Patchsets vs. Review Interval . 68

5.20 Number of Patchsets vs. Code Acceptance Rate 70

5.21 Number of Negative Comments vs. Review Interval 72

11

List of Tables

2.1 Interpretation of κ value . 14

3.1 An Application based Taxonomy of Existing Research on Sentiment Analysis . . 25

4.1 Overview of the projects . 32

4.2 List of stopwords . 34

5.1 Number of Review Requests for Each Number of Negative comments 44

5.2 Hypothesis tests: Code churn (H1) . 46

5.3 Hypothesis tests: Number of Files(H2) . 48

5.4 Hypothesis tests: Number of patchsets (H3) . 51

5.5 Hypothesis tests: Review interval (H4) . 53

5.6 Hypothesis tests: Acceptance rate (H5) . 55

5.7 Pearson Correlation Coefficient for Code Churn vs. Review Interval 62

5.8 Pearson Correlation Coefficient for Code Churn vs. Code Acceptance Rate . . . 64

5.9 Pearson Correlation Coefficient for Number of Files vs. Review Interval 66

5.10 Pearson Correlation Coefficient for Number of Files vs. Code Acceptance Rate . 67

5.11 Pearson Correlation Coefficient for Number of Patchsets vs. Review Interval . . . 69

5.12 Pearson Correlation Coefficient for Number of Patchsets vs. Code Acceptance

Rate . 71

5.13 Percentage of neutral comments consisting more than 50 characters 75

12

Chapter 1

Introduction

1.1 Motivation

A person’s sentiment (i.e., positive or negative attitude) towards another person, entity, or event

significantly influences his / her decision-making process such as forming relationships, choosing

candidates in a local election, selecting commercial products, reviewing movies, or predicting fi-

nancial condition of a stock market [1]. Sentiments not only influence the quality of relationship

between two persons [2] but also have high impacts on productivity, task quality, task synchro-

nization, and job satisfaction of collaborative activities [3] such as software development [4].

Irrespective of application scenarios, positive sentiment is expected to foster team-work whereas

negative sentiment in the exchange of mutual comments is likely to create problem.

We are interested in analyzing the sentiments expressed in some large Open-Source Software

(OSS) to find out how sentiments can impact outcomes of the projects. OSS (i.e., Android, GO,

Wikimedia etc.) is the type of computer software where the source code made available with

a license in which the copyright holder provides the rights to study, change, and distribute the

software to anyone and for any purpose. OSS may be developed in a collaborative public man-

ner. The open-source model, or collaborative development from multiple independent sources,

generates an increasingly more diverse scope of design perspective than any one company is

capable of developing and sustaining in long term. Due to the limited availability of face-to-

face communications, OSS developers primarily use various text-based tools such as mailing

1

CHAPTER 1. INTRODUCTION 2

lists, forums, source code repositories, code reviews, and issue tracking tools to manage their

collaborations [5]. Previous Software Engineering (SE) research found developers expressing

sentiments in commit messages [4], issue tracking systems [6], and mailing-lists [7]. However,

it is not formally investigated whether sentiments expressed during a SE activity can impact the

outcome of that activity.

Among the various SE activities, this study focuses specifically on peer code review. Peer

code review is the practice where a developer submits his/her code changes to a peer to judge

its eligibility to be included into the main project code-base [8]. Recently many mature OSS

projects as well as commercial organizations have adopted peer code review as a mandatory

quality assurance gateway [9]. Developers participating in these projects spend around 10-15%

of their time preparing code for reviews or reviewing others code [10]. However, negative sen-

timents expressed in code review comments may often have adversarial effects whereas positive

review may strengthen cooperation. For example, carelessness in wording a review comment

can lead to negative feelings from the code author and hinder future collaborations [10]. In this

research, we plan to formally study the impact of the code review comments on the participants

and present our findings to help the process to improve.

1.2 Objectives

It is worth investigating whether review comments correlate with observable code review out-

comes. Also, the factors that influence review comments are not studied so far to the best of

our knowledge. The impact of sentiment can be identified either by studying negative impact by

negative style of comment or by analyzing positive influence of positive wordings. We consider

it sufficient to study one of these. Hence, formally we state the objective of this research as

follows:

The objective of this study is to identify the factors influencing negative review comments

and the impact of negative review comments on the outcomes of associated review requests. We

would also like to find out whether the the reviewers authoring higher number of negative review

comments are likely to cause higher review intervals and lower acceptance rate. We are also

CHAPTER 1. INTRODUCTION 3

interested in the fact that whether the core (experienced) developers and the peripheral (novice)

developers author and receive negative review comments in similar rates.

Since the size of code review comments in a large project is huge (e.g., Chrominus has

almost 1330 K comments), it is not feasible to detect the sentiment of the code review manually.

To address this issue, we aim to introduce an automated sentiment detection technique which can

determine the sentiments of code reviews in software development projects accurately in large

scale.

There are many techniques for detecting sentiment of any statement. In the context of code

review, it is difficult for the previously used lexical based techniques to determine the senti-

ments with sufficient precision, as the vocabulary used in these methods are not fully compatible

with software engineering domain. Existing works [4, 11] failed to achieve acceptable accuracy

(50%) using lexical approaches. Therefore, we aim to develop a supervised machine learning

based technique with smart pre-processing and insightful feature selection steps. Since there is

no dataset for sentiment analysis of code review and this technique requires a labeled training

dataset, we need to build a standard dataset which involves collecting, labeling and validating

code reviews. Standard techniques has to be followed to build this dataset with good inter rater

reliability.

1.3 Research Hypotheses

We investigate the primary objective (Section 1.2) based on five detailed hypotheses (Figure 1.1).

The first three hypotheses (i.e., H1, H2 and H3) investigate the influence of three factors (i.e.,

code churn, the number of files, and the number of patchsets) on negative review comments. The

remaining two hypotheses (i.e., H4 and H5) investigate the impact of negative review comments

on the outcomes of associated code reviews in terms of review intervals and code acceptance.

These are empirically studied in the research and outcomes are analyzed in Chapter 5.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Research Hypotheses

1.3.1 Code Churn

Code Churn indicates the total number of lines added, modified or deleted [12] in a review

request. Reviewing larger code changes are time-consuming and are often less effective [13].

Reviewers may get annoyed by larger changes and submit negative comments. Moreover, since

code churn is also a predictor of defect density [14], larger code changes may have higher number

of bugs or improvement scopes increasing the likelihood of negative reviews. Therefore, we

hypothesize:

H1: The code churn is more likely to be higher for a review request receiving at least one

negative comment than for a review request receiving no negative comment.

1.3.2 Number of Files

If there are more files to review, then a thorough review requires more time and effort [13]. A

reviewer has to understand the contents and contexts of all files and figure out how the changes

CHAPTER 1. INTRODUCTION 5

work. The extra time and effort required to review higher number of files may displease a re-

viewer and result in negative comments. Therefore, we pose the following hypothesis:

H2: The number of files under review is more likely to be higher for a review request receiving

at least one negative comment than for a review request receiving no negative comment.

1.3.3 Number of Patchsets

If a reviewer identifies a problem during code review, s/he suggests changes to resolve the prob-

lem. To get the code accepted, the author must upload a new patchset (i.e., all files added or

modified in a single revision) fixing that problem. The reviewer reviews the new patchset and

either accepts it or requests further changes. This process repeats until the reviewer is satisfied

with the changes and agrees to accept the change. A negative review comment may indicate the

reviewer’s objection to a patchset and his/her suggestions for modifications (i.e., a new patch-

set fixing the issue). Again, since reviewing a patchset is time-consuming, both the author and

the reviewer may become annoyed and express a negative sentiment if a code review requires

multiple patchsets. Therefore, we hypothesize:

H3: The number of patchsets is more likely to be higher for a review request receiving at least

one negative comment than for a review request receiving no negative comment.

1.3.4 Review Interval

Review Interval is the time from the beginning to the end of the review process [15]. In this study,

we consider a review process to be complete when the patchset status is changed to ‘Merged’ or

‘Abandoned’. An author may take negative review comments personally and may try to defend

his / her code. For example, if a reviewer provides constructive criticisms and requests the author

to make changes, the author is more likely to oblige. On the other hand, if a reviewer tries to

force changes through harsh critique, the author may resist and ask for explanations. Eventually,

negative review comments may increase the number of review iterations and therefore increase

review intervals. Moreover, negative review comments may degrade the relationship between

CHAPTER 1. INTRODUCTION 6

the author and a reviewer, resulting in delayed responses [16]. Therefore, we pose the following

hypothesis:

H4: The review interval is more likely to be longer for review requests receiving at least one

negative comment than for review requests receiving no negative comment.

1.3.5 Code Acceptance Rate

Code Acceptance Rate is the ratio between the number of review requests submitted and the

number ‘Merged’. A negative review comment may frustrate the author and dissuade him from

completing the suggested changes. Again, a poor quality code, which inherently has higher

chance of getting rejected, is more likely to receive negative critiques from the reviewers than a

good quality code. Therefore, we hypothesize:

H5: A review request receiving at least one negative comment is less likely to get accepted than

a review request receiving no negative comment.

1.4 Contribution

We have conducted a three-stage empirical study of code review comments. In the first stage,

we mined code review comments from 10 popular OSS projects and manually classified the

expressed sentiments in 1000 randomly selected comments to build a training dataset. In the

second stage, we evaluated eight sentiment analysis techniques using our dataset and selected

a supervised learning technique (i.e., Gradient Tree Boosting) as the best performing model.

To the best of our knowledge, this is the first approach that implemented supervised learning

methods in the context of code review and we achieve as high as 74% accuracy in sentiment

detection on validation of dataset. Finally, we used the best performing model to automatically

classify 10.7 million review comments from 10 popular OSS projects into positive, neutral, and

negative categories. Using this large-scale dataset, we quantitatively investigate the objective of

this study.

The primary contributions of this study are:

CHAPTER 1. INTRODUCTION 7

• An empirically validated automatic model for classifying sentiments expressed in code

review comments.

• Empirical evidence on code review outcomes regarding the impact of negative sentiments.

• An empirical study of factors influencing negative review comments.

• Empirical evidence regarding the persons with higher negative review comments influenc-

ing the review interval and code acceptance rate.

• An empirical study to see whether the core (experienced) developers and the peripheral

(novice) developers author and receive negative review comments in similar rates.

• An empirically built dataset with human validation to train sentiment classification models

for SE communications.

1.5 Thesis Organization

The organization of the rest of the thesis is as follows.

In Chapter 2, we have also presented relevant background studies on basic vectorization

techniques, supervised machine learning algorithms, inter rater agreement and statistical signifi-

cance tests.

In Chapter 3, we have presented literature review on code review and sentiment analysis

related to our study.

Chapter 4 briefly explains proposed framework overall technical detail of our methodology.

Chapter 5 focuses on the experimental setups and results. It also illustrates the implications

of the results and threats to validity.

Finally, Chapter 6 concludes our thesis. This chapter also includes the outlines of some

future works related to this dissertation.

Chapter 2

Background Study

In this chapter, we have presented background studies related to our research. In Section 2.1,

some basic text vectorization techniques are briefly presented. Sections 2.2 and 2.3 discuss

about supervised machine learning algorithms and measuring inter rater agreement respectively.

Finally, in Section 2.4 statistical significance tests are briefly discussed that will be used in this

research for empirical analysis.

2.1 Vectorization Techniques

Vectorization in an important part of pre-processing text data. It is the general process of turning

a collection of text documents into numerical feature vectors. It basically determines how text

data should be presented to a supervised machine learning algorithm. There are several existing

vectorization techniques. Among them TF-IDF vectorization is the most commonly used vector-

ization technique [17–20]. This section briefly explains TF-IDF vectorization technique which

is a combination of count vectorization and TF-IDF transformation.

2.1.1 Count Vectorization

Count vectorization converts a collection of text documents to a matrix of token counts. It counts

the occurrences of tokens in each document and presented data in a matrix form. If an a-priori

8

CHAPTER 2. BACKGROUND STUDY 9

dictionary is not provided and an analyzer is used that does not do some kind of feature selection

then the number of features will be equal to the vocabulary size found by analyzing the data.

2.1.2 TF-IDF Transformation

In information retrieval, Term Frequency - Inverse Document Frequency (TF-IDF) is a numerical

statistic that is intended to reflect how important a word is to a document in a collection or corpus.

It is often used as a weighting factor in information retrieval and text mining. The TF-IDF value

increases proportionally to the number of times a word appears in the document, but is offset by

the frequency of the word in the corpus. It helps to adjust for the fact that some words appear

more frequently in general.

In a large text corpus, some words occur very frequently (e.g., “the”, “a”, “is” in English).

However, they carry very little meaningful information about the actual contents of the document.

If we feed the data count directly to the classifier without using TF-IDF, the low appearance of

significant terms (e.g., terms except “a”, “an”, and “The”) will be overshadowed.

TF: Term Frequency, which measures how frequently a term occurs in a document. Since

every document is different in length, it is possible that a term would appear much more times

in long documents than shorter ones. Thus, the term frequency is often divided by the document

length (aka. the total number of terms in the document) as a way of normalization:

TF (t) =
(Number of times term t appears in a document)

(Total number of terms in the document)
(2.1)

IDF: Inverse Document Frequency, which measures how important a term is. While com-

puting TF, all terms are considered equally important. However it is known that certain terms,

such as “is”, “of”, and “that”, may appear a lot of times but have little importance. Thus we need

to weigh down the frequent terms while scale up the rare ones, by computing the following:

IDF (t) = exp
(Total number of documents)

(Number of documents with term t in it)
(2.2)

TF − IDF (t) = TF (t) ∗ IDF (t) (2.3)

CHAPTER 2. BACKGROUND STUDY 10

2.1.3 TF-IDF Vectorization

TF-IDF vectorizer combines all the options of count vectorizer and TF-IDF Transformer in a

single model. Hence, it generates a matrix whose dimensions are equal to the matrix generated

by using count vectorization and then it simply replaces the token counts with TF-IDF transfor-

mation value.

2.2 Supervised Learning Techniques

The aim of supervised machine learning is to build a model that makes predictions based on evi-

dence in the presence of uncertainty. As adaptive algorithms identify patterns in data, a computer

“learns” from the observations. When exposed to more observations, the computer improves its

predictive performance. Supervised learning algorithms are very promising for classification and

regression problems. Since sentiment detection is a classification problem, we applied different

supervised learning algorithms on our dataset (e.g., Naive Bayesian, SVM, SGD, etc.). This sec-

tion briefly describes some primary supervised machine learning algorithms with ensemble ones

(e.g., random forest, adaboosting, and gradient tree boosting algorithms) applied on our dataset.

2.2.1 Primary Supervised Machine Learning Algorithms

Primary machine learning approaches try to learn one hypothesis from training data. In this

sub-section, we briefly discuss some primary supervised machine learning algorithms.

Naive Bayes

In machine learning, Naive Bayes classifiers are a family of simple probabilistic classifiers based

on applying Bayes’ theorem with strong (naive) independence assumptions between the features.

Naive Bayes is a simple technique for constructing classifiers: models that assign class labels to

problem instances, represented as vectors of feature values, where the class labels are drawn

from some finite set. Naive Bayes classifier assumes that the value of a particular feature is

independent of the value of any other feature, given the class variable.

CHAPTER 2. BACKGROUND STUDY 11

Naive Bayes is a conditional probability model. Given a problem instance to be classified,

represented by a vector x = (x1, x2, x3, ..., xn) representing some n features (independent vari-

ables), it assigns to this instance probabilities p(Ck|x1, x2, x3, ..., xn) for each of k possible out-

comes or classes Ck.

The problem with the above formulation is that if the number of features n is large or if a

feature can take on a large number of values, then developing such a model on probability tables

is infeasible. Therefor, reformulate the model to make it more tractable. Using Bayes’ theorem,

the conditional probability can be decomposed as:

p(Ck|x) =
p(Ck)P (x|Ck)

p(x)
(2.4)

In simplified form, using Bayesian probability terminology, the above equation can be written

as:

posterior =
Prior ∗ likelihood

evidence
(2.5)

Support Vector Machine (SVM)

In machine learning, support vector machines (SVMs, also support vector networks) are super-

vised learning models with associated learning algorithms that analyze data used for classifi-

cation and regression analysis. Given a set of training examples, each marked as belonging to

one or the other of two categories, an SVM training algorithm builds a model that assigns new

examples to one category or the other, making it a non-probabilistic binary linear classifier. An

SVM model is a representation of the examples as points in space, mapped so that the examples

of the separate categories are divided by a clear gap that is as wide as possible. New examples

are then mapped into that same space and predicted to belong to a category based on which side

of the gap they fall on.

In addition to performing linear classification, SVMs can efficiently perform a non-linear

classification using what is called the kernel trick, implicitly mapping their inputs into high-

dimensional feature spaces.

In linear support vector machines (SVM-L), kernel is considered as a “linear” equation.

CHAPTER 2. BACKGROUND STUDY 12

Hence, the categories are divided using straight lines. It scales better with large numbers of

samples. This class supports both dense and sparse input and the multi-class support is handled

according to a one-vs-the-rest scheme. It uses the full data and solves a convex optimization

problem with respect to these data points.

Stochastic Gradient Descent (SGD)

SGD is a very efficient approach to discriminative learning of linear classifiers under convex

loss functions. Even though SGD has been around in the machine learning community for a

long time, it has received a considerable amount of attention just recently in the context of large-

scale learning. This class supports both dense and sparse input and the multi-class support is

handled according to a one-vs-the-rest scheme. SGD requires a number of hyper-parameters

such as the regularization parameter and the number of iterations. It can treat the data in batches

and performs a gradient descent aiming to minimize expected loss with respect to the sample

distribution.

2.2.2 Ensemble Learning Algorithms

Ensemble learning is a machine learning paradigm where multiple learners are trained to solve

the same problem. In contrast to ordinary machine learning approaches which try to learn one

hypothesis from training data, ensemble methods try to construct a set of hypotheses and com-

bine them to use. In many case ensemble learning algorithms improve accuracy. Besides, it also

prevents over-fitting. In this sub-section, we briefly discuss some ensemble machine learning

algorithms.

Random Forest

In random forests [21], each tree in the ensemble is built from a sample drawn with replacement

(i.e., a bootstrap sample) from the training set. while splitting a node during the construction of

the tree, the split that is chosen is not the best split among all features. Instead, the split that is

picked is the best split among a random subset of the features. As a result of this randomness,

CHAPTER 2. BACKGROUND STUDY 13

the bias of the forest usually slightly increases (with respect to the bias of a single non-random

tree) but, due to averaging, its variance decreases. Decrease in variance usually compensates for

the increase in bias, hence yielding an overall better model.

AdaBoosting

The core principle of AdaBoost [22] is to fit a sequence of weak learners (i.e., models that are

only slightly better than random guessing, such as small decision trees) on repeatedly modified

versions of the data. The predictions from all of them are then combined through a weighted

majority vote (or sum) to produce the final prediction. The data modifications at each so-called

boosting iteration consist of applying weights w1, w2, ..., wN to each of the training samples.

Initially, those weights are all set to wi = 1/N, where N denotes number of weak learners, so

that the first step simply trains a weak learner on the original data. For each successive itera-

tion, the sample weights are individually modified and the learning algorithm is reapplied to the

reweighted data. At a given step, those training examples that were incorrectly predicted by the

boosted model induced at the previous step have their weights increased; whereas the weights

are decreased for those that were predicted correctly. As iterations proceed, examples that are

difficult to predict receive ever-increasing influence. Each subsequent weak learner is thereby

forced to concentrate on the examples that are missed by the previous ones in the sequence

Gradient Tree Boosting

Gradient Tree Boosting or Gradient Boosted Regression Trees (GBRT) [23] is a generalization

of boosting to arbitrary differentiable loss functions. GBRT is an accurate and effective off-the-

shelf procedure that can be used for both regression and classification problems. Gradient Tree

Boosting models are used in a variety of areas including Web search ranking and ecology.

Though GBRT-due to the sequential nature of boosting it can hardly be parallelized, it is

robust to outliers in output space (via robust loss functions).

CHAPTER 2. BACKGROUND STUDY 14

Table 2.1: Interpretation of κ value

κ Interpretation

< 0 Poor agreement

0.01 - 0.20 Slight agreement

0.21 - 0.40 Fair agreement

0.41 -0.60 Moderate agreement

0.61 - 0.80 Substantial agreement

0.81 -1.00 Almost perfect agreement

2.3 Measuring Inter Rater Agreement

When a dataset is manually labeled applying for supervised machine learning, it is necessary

to measure the agreement among the raters. Fleiss’ kappa (named after Joseph L. Fleiss) [24]

is a statistical measure for assessing the reliability of agreement between a fixed number of

raters when assigning categorical ratings to a number of items or classifying items. This is used

when three individuals label the dataset individually. This contrasts with other kappas such as

Cohen’s kappa, which only work when assessing the agreement between two raters. The measure

calculates the degree of agreement in classifications.

If a fixed number of people assign numerical ratings to a number of items, then the kappa

will give a measure for how consistent the ratings are. The kappa, κ can be defined as,

κ =
P̄ − P̄e

1− P̄e

(2.6)

The factor 1− P̄e gives the degree of agreement that is attainable above chance and P̄ − P̄e

gives the degree of agreement actually achieved above chance. If the raters are in complete

agreement, then κ = 1. If there is no agreement among the raters (other than what would be

expected by chance), then κ ≤ 0.

Landis and Koch (1977) [25] gave Table 2.1 for interpreting κ. This s is however by no

means universally accepted. Still this is often considered suggestive interpretation.

CHAPTER 2. BACKGROUND STUDY 15

Figure 2.1: Consideration for Selecting Statistical Significance Test

2.4 Statistical Significance Test

In statistical significant test, generally two statistical data sets are compared. Alternatively, a data

set obtained by sampling is compared against a synthetic data set from an idealized model. It is

done to identify whether the two groups originate from same population. To select the proper test

method, it is important to identify whether the data follow normal distribution. In Figure 2.1, we

have presented different steps of statistical significant test. Depending on the result of normality

test (Shapiro-Wilk test), a test is selected to identify whether two groups significantly differ

from each other. Finally, determine the magnitude of difference between the two groups, effect

size is calculated. The selection of test not only depends on the normality test, but also on the

type of variables. For ordinal (continuous) dependent variable (e.g., review interval, code churn

etc.), Mann-Whitney U test is applied, whereas for dichotomous (categorical) variable (e.g., code

acceptance) chi-square test is applied. In the next sub-section, we present brief discussions on

statistical tests relevant to our research.

CHAPTER 2. BACKGROUND STUDY 16

2.4.1 Shapiro-Wilk test

To make a choice between t-test and Mann-Whitney U test, we need to know whether the dataset

follows normal distribution. The Shapiro-Wilk test, proposed in 1965, calculates a W statistic

that tests whether a random sample, x1, x2, , xn comes from (specifically) a normal distribution .

Small values of W are evidence of departure from normality.

The W statistic is calculated as follows:

W =
(
∑n

i=1 aix(1))
2∑n

i=1(xi − x̄)2
(2.7)

where x(i) are the ordered sample values (x(1) is the smallest) and ai are constants generated

from the means, variances and covariances of these order statistics of a sample of size n from a

normal distribution.

2.4.2 Mann-Whitney U test

Mann-Whitney U test is a non-parametric test that is used to compare two population means that

come from the same population. It is also used to test whether two population means are equal or

not. It is used for equal sample sizes, and is used to test the median of two populations. Usually

the Mann-Whitney U test is used when the data is ordinal. Rank of the sample size is used to

estimate the U value. Wilcoxon rank sum, Kendalls, and Mann-Whitney U test are similar tests

and in the case of categorical data, it is equivalent to the chi-square test.

Mann-Whitney U, being a non-parametric test, does not make any assumptions related to the

distribution. There are, however, some assumptions as stated below.

• The sample drawn from the population is random.

• There exits independence within the samples.

• Ordinal measurement scale is applied.

It is estimated as:

CHAPTER 2. BACKGROUND STUDY 17

U = n1n2 +
n2(n2 + 1)

2
−

n2∑
i=n1+1

Ri (2.8)

where U=Mann-Whitney U test,

n1= sample size one,

n2= Sample size two,

Ri = Rank of the sample size.

Mann-Whitney U test is frequently used in psychology, medical/nursing, and business. For

example, in psychology, it is used to compare attitude or behavior. In medicine, it is used to

analyze the effect of two medicines and whether they are equal or not. It is also used to analyze

whether or not a particular medicine cures an ailment. In business, it can be used to know the

preferences of different people and also to see if that changes depending on location. Different

confidence levels can be considered for Mann-Whitney U test and that is indicated by variable p

(e.g., p=.05 means 95% confidence level).

2.4.3 Chi-Squared test

Mann-Whitney and independent t-test can be used when the outcome is a ordinal variable. If

there is a binary outcome (yes or no), then a Pearson’ chi-square test (or Likelihood Ratio) is

required to test if the difference between the two groups is significant.

A chi-squared test, also written as χ2 test, is a statistical hypothesis test wherein the sampling

distribution of the test statistic is a chi-squared distribution when the null hypothesis is true.

Without other qualification, ’chi-squared test’ often is used as short for Pearson’s chi-squared

test.

The chi-squared test is used to determine whether there is a significant difference between

the expected frequencies and the observed frequencies in one or more categories. Chi-squared

tests are often constructed from a sum of squared errors, or through the sample variance. Test

statistics that follow a chi-squared distribution arise from an assumption of independent normally

distributed data, which is valid in many cases due to the central limit theorem. A chi-squared test

CHAPTER 2. BACKGROUND STUDY 18

can be used to attempt rejection of the null hypothesis that the data are independent.

A chi-squared test is asymptotically true, meaning that the sampling distribution (if the null

hypothesis is true) can be made to approximate a chi-squared distribution as closely as desired

by making the sample size large enough. Different confidence levels can be considered for chi-

square test and that is indicated by variable p.

2.4.4 Effect Size

To determine the magnitude of difference between the two groups, effect size is calculated. As

mentioned earlier, we want to determine whether two groups are different. If two groups are

significantly different, effect size can inform the magnitude of difference.

In statistics, an effect size is a quantitative measure of the strength of a phenomenon. Effect

sizes generally indicate the correlation between two variables, the regression coefficient in a

regression, the mean difference, or even the risk with which something happens. For example,

such as how many people survive after a heart attack for every one person that does not survive

may be estimated. For each type of effect size, a larger absolute value always indicates a stronger

effect. Effect sizes complement statistical hypothesis testing and play an important role in power

analyses, sample size planning, and in meta-analyses. They are the first item (magnitude) for

evaluating the strength of a statistical claim.

We have presented two ways to determine the effect size. We use rank-biserial correlation

coefficient (rrb) to estimate the effect size (magnitude of difference between the two groups)

between a dichotomous vs. an ordinal variable. For a dichotomous vs. another dichotomous

variable, we use point-biseral correlation coefficient (rpb) to estimate the effect size.

Point-Biserial Coefficient

The point-biserial correlation coefficient, referred to as rpb is a special case of Pearson in which

one variable is quantitative and the other variable is dichotomous and nominal. The calculations

simplify since typically the values 1 (presence) and 0 (absence) are used for the dichotomous

variable. This simplification is sometimes expressed as follows:

CHAPTER 2. BACKGROUND STUDY 19

rpb = (Y1 − Y0) ∗
√

(pq)/σY (2.9)

where Y0 and Y1 are the Y score means for data pairs with an x score of 0 and 1, respectively.

q = 1 − p and p are the proportions of data pairs with x scores of 0 and 1, respectively, and σY

is the population standard deviation for the y data. An example usage might be to determine if

one gender accomplished some task significantly better than the other gender. In this example,

gender variable is dichotomous.

Rank-Biserial Coefficient

The rank-biserial correlation coefficient, rrb is used for dichotomous nominal data vs rankings

(ordinal). The formula is usually expressed as

rrb = 2 ∗ (Y1 − Y0)/n (2.10)

where n is the number of data pairs, and Y0 and Y1, again, are the Y score means for data pairs

with an x score of 0 and 1, respectively. These Y scores are ranks. This formula assumes no

tied ranks are present. An example usage might be to determine if one group take more time to

accomplished some task significantly than the other group.

2.5 Summary

In this chapter, we have discussed about vectorization techniques, supervised machine learning

algorithms, inter rater agreement and statistical significant tests. The next chapter will briefly

discuss on contemporary research works on code review and sentiment analysis.

Chapter 3

Literature Review

Sentiment is one of the most important factors that influences interactions for different appli-

cation areas among stakeholders in many domains. Hence, various types of approaches have

been proposed in order to detect sentiment accurately. Peer code review is the practice where a

developer submit his code changes to a peer to judge its eligibility to be included into the main

project code-base [8]. This research aims to analyze impact of sentiment on code review. In

this chapter, the contemporary researches on the code review and sentiment analysis have been

briefly explained in Sections, 5.6.1 and 3.2, respectively.

3.1 Code Review

Compared with the traditional heavy-weight inspection process [26], peer code review is more

informal, tool-based, and used regularly in practice [9]. There are basically two levels of in-

spection process (e.g., I1 and I2) in traditional inspection process (Figure 3.1). Each level of

inspection process consists of five steps.

1. Overview (whole team): The designer first describes the overall area being addressed an

then the specific area he has designed in detail- logic, paths, dependencies, etc. Documen-

tation of design is distributed to all inspection participants on conclusion of the overview.

(For an I2 inspection, no overview is necessary, but the participants should remain the

20

CHAPTER 3. LITERATURE REVIEW 21

Figure 3.1: Traditional Inspection Process in Code Review

same. Preparation, inspection, and follow-up proceed as for I1 but, of course, using code

listing and design specifications as inspection material. Also, at I2 the moderator should

flag for special scrutiny those area that were reworked since I1 errors were found and other

design changes made.)

2. Preparation (individual): Participants, using the design, its intent and logic. (Sometimes

flagrant errors are found during this operation, but in general, the number of errors found

is not nearly as high as in the inspection operation.) To increase their error detection in

the inspection, the inspection team should first study the ranked distribution of error types

found by recent inspections. This study will prompt them to concentrate on the most

fruitful areas.

3. Inspection (whole team): A “reader” chosen by moderator (usually the coder) describes

how he will implement the design as expressed by the designer. Every piece of logic is

converted at least once, and every branch is taken at least once. All high-level documen-

tation, high-level design specifications, logic specifications,etc., and macro and control

block listing at I2 must be available and present during the inspection. Now the design in

understood, the objective is to find the errors. (Note that an error is defines as any con-

CHAPTER 3. LITERATURE REVIEW 22

dition that causes malfunction or that precludes the attainment of expected or previously

specified results. Thus, deviations from specifications are clearly tempered errors.) The

finding of errors is actually done during the implementation/ coder’s discourse. Questions

raised are pursued only to the point at which an error is recognized. It is noted by the

moderator: its type is classified, and the inspection is continued. Often the solution of

a problem is obvious. If so, it is noted, but no specific solution hunting is to take place

during inspection. A team is most effective if it operates with only one problem at a time.

Within one day of conclusion of the inspection, the moderator should produce a written

report of the inspection and its findings to ensure that all the issues raised in the inspection

will be addressed in the rework and follow-up operations.

4. Rework: All errors or problems noted in the inspection are resolved by the designer or

coder/ implementor.

5. Follow-UP: It is imperative that every issue, concern, and error be entirely resolved at this

level, or errors that result can be 10 to 100 times more expensive to fix if found later in

the process (programmer time only, machine time not included). It is the responsibility

of the moderator to see that issues, problems, and concerns discovered in the inspection

operation have been resolved by the designer in the case of I1, or the coder/implementor

for I2 inspections. If more than five percent of the material has been reworked, the team

should reconvene and carry out a 100 percent inspection. Where less than five percent of

the material has been reworked, the moderator at his discretion may verify the quality of

the rework himself or reconvene the team to reinspect either the complete work or just the

rework.

The steps mentioned above is certainly time consuming and require several iterations to come

into a conclusion. Therefore, many OSS projects have adopted peer code review into their devel-

opment process since it has been established to be effective [27] and more easy going than the

traditional inspection process. Known benefits of peer code reviews include:

1. Detecting defects [28],

CHAPTER 3. LITERATURE REVIEW 23

2. Maintaining the integrity of a project codebase [27],

3. Improving relationships among the review participants [8],

4. Spreading knowledge, expertise, and development techniques [29],

5. Facilitating the identification and removal of security vulnerabilities [30].

To make peer code reviews more efficient, teams use automated support tools such as Gerrit1,

Phabricator2, and ReviewBoard3. A tool-based code review process starts when an author creates

a patchset (i.e. all files added or modified in a single revision) along with a description of the

changes and submits that information to a code review tool. To facilitate reviews, code review

tools highlight the changes between revisions in a side-by-side display (Figure 3.2).

Both the reviewers and the author can insert comments pointing out issues, suggesting im-

provements, or clarifying the code. After the review, the author may upload a new patch-set

addressing the review comments and initiate a new review iteration. This review cycle repeats

until either the reviewers approve the changes or the author abandons it. Code review tools cap-

ture the interactions (a.k.a. review comments) between the author and a reviewer to facilitate

post-hoc analyses.

3.2 Sentiment Analysis

Sentiment Analysis is a natural language processing technique that analyzes the attitude of a

speaker or an author of a body of text towards entities such as products, services, organizations,

individuals, issues or events [31]. Sentiment analysis techniques aim to identify polarity (i.e.,

positive, negative, or neutral) in a sentence or a paragraph. It also aims to find the factors influ-

encing sentiments and its impact on respective fields.

Researchers have primarily used two types of sentiment analysis techniques.

1. Lexicon-based analyzers.
1 https://code.google.com/p/gerrit/
2 http://phabricator.org/
3 https://www.reviewboard.org/

https://code.google.com/p/ gerrit/
http://phabricator.org/
https://www.reviewboard.org/

CHAPTER 3. LITERATURE REVIEW 24

Figure 3.2: An Example Snapshot of Code Review in Gerrit

2. Supervised machine learning based techniques.

Supervised machine learning based techniques that are able to adapt and create trained mod-

els for specific purposes and contexts can be used in conjunction with any of the exiting super-

vised learning methods (e.g., Naı̈ve Bayes, and SVM) [32,33]. Instead of using a standard super-

vised technique, researchers have also proposed several custom techniques specifically for senti-

ment classification that take into account the contexts of words expressing sentiments [1]. How-

ever, supervised learning techniques require a labeled training dataset, which might be costly or

even prohibitive.

On the other hand, lexicon-based analyzers that do not require a training dataset identify the

sentiment for a document from the semantic orientation of words or phrases in the document [34].

In a lexicon-based analyzer the sentiment polarity of each lexicon is taken from a predefined

dictionary and sentiment is determined from those values. Although lexical methods do not rely

on labeled data, it is hard to create a unique lexical-based dictionary to be used for different

contexts and often require customization of the dictionary for each domain [35]. Creation of

CHAPTER 3. LITERATURE REVIEW 25

Table 3.1: An Application based Taxonomy of Existing Research on Sentiment Analysis

Application References

Social Media [32, 36–42]

Product and Movie Reviews [34, 43, 44]

Financial Activities [1, 45]

Question Anwering [46–49]

Software Engineering [4, 6, 11, 50]

context dependent dictionary is critical and time consuming. Besides, same lexicons may convey

different sentiments on different contexts in the same domain. An application based taxonomy

of existing research on sentiment analysis is presented in Table 3.1.

Most of the prior research focused on sentiment analysis on social media posts. In [36], the

authors used lexicon based analyzer to process twitter data. They introduced POS-specific prior

polarity features.Twitter is a social networking and micro-blogging service that allows users to

post real time messages, called tweets. Tweets are short messages, restricted to 140 characters

in length. Due to the nature of this micro-blogging service (quick and short messages), people

use acronyms, make spelling mistakes, use emoticons and other characters that express special

meanings. Therefore, the author gave importance on emoticons, target and hashtags. In [37], the

authors introduced a novel approach of adding semantics as additional features into the training

set for sentiment analysis of twitter data to achieve greater accuracy.

AdaBoost ensemble learning algorithm has been applied to detect sentiments of twitter data

in [38]. They used lexicons and feature hashing as the features of the classifier. According to their

opinion, sentiment analysis of social media data is challenging because of noisy text, irregular

grammar and orthography, highly specific lingo, and others. Moreover, temporal dependencies

can affect the performance if the training and test data have been gathered at different times.

In [39], another ensemble learning algorithm Gradient Tree Boosting is applied to dataset and

depending on the sentiments, a user classification technique in twitter has been developed. The

authors applied profile features and tweeting behavior as features of the classifier.

CHAPTER 3. LITERATURE REVIEW 26

In [32, 40], the authors applied Naive Bayes as classifiers. Sentiment detection is also done

using subjectivity analysis [40]. In the community of sentiment analysis, supervised learning

techniques have been shown to perform very well. When transferred to another domain, however,

a supervised sentiment classifier often performs extremely bad. This is so-called domain-transfer

problem. In [32], the authors attempt to attack this problem by making the maximum use of

both the old-domain data and the unlabeled new-domain data. To leverage knowledge from

the old-domain data, they proposed an effective measure, i.e., Frequently Co-occurring Entropy

(FCE), to pick out generalizable features that occur frequently in both domains and have similar

occurring probability. To gain knowledge from the new-domain data, they proposed Adapted

Nave Bayes (ANB), a weighted transfer version of Naive Bayes Classifier.

In [41, 42], sentiment analysis is done on twitter data using several supervised learning al-

gorithms (i.e. SVM, SGD etc.). A comparative study has been done using supervised learning

algorithms in [51]. From this study, it has been established that lexicon based analyzers are not

efficient enough to detect the sentiment of software engineering domain and more research is

required to achieve better accuracy.

The application of sentiment analysis is not restricted to only social media data, it has been

also applied in applications like product review, movie review etc. [34] presents a simple un-

supervised learning algorithm for classifying reviews as recommended (thumbs up) or not rec-

ommended (thumbs down). The classification of a review is predicted by the average semantic

orientation of the phrases in the review that contain adjectives or adverbs. A phrase has a pos-

itive semantic orientation when it has good associations (e.g., “subtle nuances”) and a negative

semantic orientation when it has bad associations (e.g., “very cavalier”). The semantic orienta-

tion of a phrase is calculated as the mutual information between the given phrase and the word

”excellent” minus the mutual information between the given phrase and the word ”poor”. A

review is classified as recommended if the average semantic orientation of its phrases is positive.

The algorithm achieves an average accuracy of 74% when evaluated on 410 reviews from Epin-

ions, sampled from four different domains (reviews of automobiles, banks, movies, and travel

destinations). The accuracy ranges from 84% for automobile reviews to 66% for movie reviews.

[43] presents a new method for sentiment classification based on extracting and analyzing

CHAPTER 3. LITERATURE REVIEW 27

appraisal groups such as “very good” or “not terribly funny”. An appraisal group is represented

as a set of attribute values in several task-independent semantic taxonomies, based on Appraisal

Theory. Semi-automated methods were used to build a lexicon of appraising adjectives and

their modifiers. Movie reviews have been classified using features based upon these taxonomies

combined with standard “bag-of-words” features, and report state-of-the-art accuracy of 90.2%.

The authors applied machine learning techniques to detect the sentiment of movie review in [44].

In [45], the authors detect the sentiment of financial news. They introduced a semantically

enhanced methodology for the annotation of sentiment polarity in financial news. The proposed

methodology is based on an algorithm that combines several gazetteer lists and leverages an

existing financial ontology. The financial related news are obtained from RSS feeds and then

automatically annotated with positive or negative markers. The outcome of the process is a set

of news organized by their degree of positivity and negativity. Sentiment analysis is also used in

predicting stock market [1].

Question answering is another area where sentiment analysis was proved useful [46–48]. For

example, opinion-oriented questions may require different treatment. Alternatively, Lita et. al.

[48] suggest that for definitional questions, providing an answer that includes more information

about how an entity is viewed may better inform the user.

In [49], by sentiment analysis, the authors refer to the problem of assigning a quantitative

positive/negative mood to a short bit of text. They used a sentiment extraction tool to investigate

the influence of factors such as gender, age, education level, the topic at hand, or even the time of

the day on sentiments in the context of a large online question answering site. They extended this

basic analysis by investigating how properties of the (asker, answerer) pair affect the sentiment

present in the answer and showed that the best answers differ in their sentiments from other

answers.

SE researchers have recently applied sentiment analysis to analyze security discussions [11].

In this research, the authors applied NLTK [52] as sentiment analyzer. In [4], the author applied

SentiStrength for sentiment analysis. Both NLTK and SentiStrength are lexicon based analyzers

and they are not fully compatible with software engineering domain. Sentiment analysis is also

applied to project artifacts [6], and activity of contributors in the Gentoo community [50].

CHAPTER 3. LITERATURE REVIEW 28

3.3 Summary

In this chapter, we have discussed contemporary research works on code review and sentiment

analysis. The next chapter will briefly discuss on the automatic sentiment detection scheme, that

we developed with supervised learning methods.

Chapter 4

Automatic Sentiment Detection with

Supervised Learning Methods

SentiStrength1 [4, 7, 11] and NLTK2 [52] are lexicon based analyzers [50]. However, a recent

study [53] observed not only poor accuracies but also significant disagreements among these

tools, which could potentially lead to contradictory conclusions. Since those tools are not trained

using a SE dataset, their inaccuracies are not surprising. A reliable sentiment analyzer for the SE

domain requires either a supervised model trained on a SE dataset or a customized lexicon-based

dictionary or both. In this chapter, we present an automatic sentiment detection approach using

supervised learning. The whole project comprises three components as depicted in Figure 4.1,

i.e., training dataset generation, classifier selection and empirical study. We discuss training

dataset generation in Section 4.1. Section 4.2 describes pre-processing of this dataset. Different

classifier development and their performance comparison is presented in Section 4.3.

4.1 Training Dataset Generation

In absence of any training dataset, we had to develop one. For any supervised machine learning

algorithm, labeled dataset is one of the fundamental elements. To train and validate a sentiment

1 http://sentistrength.wlv.ac.uk/
2 http://www.nltk.org/

29

http://sentistrength.wlv.ac.uk/
http://www.nltk.org/

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 30

Figure 4.1: An overview of our three-stage research method

classifier, we manually labeled a dataset using the following process.

1. In April 2016, we used the Gerrit-Miner [30] tool to mine the code review repositories of

18 popular OSS projects. This tool provides detail information about the review requests

and the associated software developers.

2. To ensure that we had sufficient data for our analysis, we chose the ten projects (Table 4.1)

that each contained more than 10,000 code review requests each.

3. A manual inspection of the comments posted by some accounts (e.g., ‘Qt Sanity Bot’ or

‘BuildBot) suggested that those accounts were automated bots rather than humans. These

accounts typically contain one of the following keywords: ‘bot’, ‘auto’, ‘CI’, ‘Jenkins’,

‘integration’, ‘build’, ‘travis’, or ‘verifier’. Because we wanted only code review com-

ments from actual reviewers, we excluded these bot accounts after a manual inspection

had confirmed that the comments were automatically generated.

4. We randomly selected total 1000 review comments each having at least 50 characters from

the selected ten projects (100 comments from each project).

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 31

Figure 4.2: Web app to we developed manually label the review comments

5. We developed a web-app (Figure 4.2) to manually label the selected review comments.

The app shows one review comment at a time and a link to view the comment in the

code context. In case of a confusion, a rater could follow the link to better understand the

sentiment of a review comment based on the associated context.

6. Two experienced computer science academics and a student independently labeled each of

the review comment as ‘positive’, ‘negative’ or ‘neutral’.

7. We used majority voting to determine the final rating of a review comment. When a dataset

is manually labeled applying for supervised machine learning, it is necessary to measure

the agreement among the raters. We used Fleiss’ Kappa [24] (useful for more than two

raters) to measure the level of agreement among the three raters. Because κ = 0.408 (p <

0.001), indicates a “moderate agreement” [25] (see Table 2.1), we could use this manual

categorization as a ‘gold set’ for the subsequent analysis. The distributions of the labeled

comments were: 8.3% (‘positive’), 17.1% (‘negative’), and 74.6% (‘neutral’).

In the next section, we describe the pre-processing of the dataset.

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 32

Table 4.1: Overview of the projects

Project Domain Technol-
ogy

Using
Gerrit
since

Re-
quests
mined*

Total
Com-
ments

+ve
com-
ments

-ve
com-
ments

Android Mobile OS C, C++,
Java

October,
2008

80,460 566,863 4.16% 6.66%

Chromium OS Desktop OS C, C++ February,
2011

153,484 1,392,877 3.73% 6.51%

Go Programming Go, Assem-
bly

November,
2014

10,569 94,736 4.49% 8.23%

ITK / VTK Visualization
Toolkit

C++ August,
2010

20,104 87,120 6.49% 8.52%

LibreOffice Office Suite C++ March,
2012

20,627 83,457 5.25% 5.48%

OpenStack Cloud Com-
puting

Python,
JavaScript

July, 2011 281,197 5,627,585 8.35% 5.72%

OVirt Virtualization Java October,
2011

50,824 734,949 2.36% 7.27%

Qt Project UI framework C, C++ May, 2011 133,494 868,126 3.50% 6.50%

Typo3 CMS PHP,
JavaScript

August,
2010

37,609 259,771 4.30% 6.43%

WikiMedia Wiki System PHP,
JavaScript

September,
2011

270,033 1,082,430 4.07% 6.25%

*Mined during April, 2016 Total: 1,058,401 10,797,914

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 33

Figure 4.3: Data Pre-Processing Stages

4.2 Data Pre-Processing

Once the dataset is developed, we need to perform some pre-processing to improve the quality

of the dataset with an objective to gain good performance in sentiment detection. The text of

a review comment differs from articles, books, or even spoken language. For example, review

comments often contain word contractions, emoticons, URLs, and code snippets. Therefore, we

performed data cleansing steps before training our models. We used a three-step approach (as

follows) to clean a document before vectorization (Figure 4.3).

i. Contractions, which are shortened form of one or two words, are widely used in informal

written communications. Some commonly used contractions and their expanded forms in-

clude: I’m → I am, doesn’t → does not, and don’t → do not. By creating two different

lexicons of the same term, contractions increase the number of unique lexicons and misrep-

resent the real characteristics of a dataset. We replaced the commonly used 124 contractions,

each with its expanded version. Appendix C presents the list of some contractions we have

considered to expand in our dataset.

ii. Many stopwords (usually non-semantic words such as articles, prepositions, conjunctions,

and pronouns) do not play significant roles to express sentiments. Popular natural language

processing tools, such as NLTK [52] and Stanford CoreNLP [54] provide lists of stopwords.

However, some of the words (e.g., ‘no’, ‘not’, ‘why’, and ‘what’) in those lists are influential

in expressing sentiments. We used a customized stopword list (Table 4.2) and removed

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 34

Table 4.2: List of stopwords

i, me, my, myself, we, our, ours, ourselves, you, your, yours, yourself, yourselves, he, him, his,
himself, she, her, hers, herself, it, its, itself, they, them, their, theirs, themselves, this, that, these,
those, am, is, are, was, were, be, been, being, have, has, had, having, do, does, did, doing, a,
an, the, and, if, or, as, until, while, of, at, by, for, between, into, through, during, to, from, in,
out, on, off, then, once, here, there, all, any, both, each, few, more, other, some, such, than, too,
very, s, t, can, will, don, should, now

words belonging to that list from the review comments.

iii. Emoticons are widely used in informal written communication and are very influential in

expressing sentiments. Similar to a prior study [36], we replaced each of the emoticons

with its sentiment polarity by looking up a emoticon dictionary (prepared by Agarwal et

al. [36]). For example, both the happy face emoticon - ‘:)’ and laughing emoticon - ‘:D’

were replaced with ‘PositiveEmoticon’. (Appendix D presents the list of some emoticons

we have considered to replace in our dataset.

Next, we applied different classifiers using this as training dataset and identify the one that

performs best in this context.

4.3 Classifier Selection

The poor performance of the lexicon-based analyzers in [4, 7, 11] motivated us to build a senti-

ment classification model based on supervised learning techniques. We evaluated six commonly

used supervised learning algorithms mentioned below.

1. Adaptive Boosting (AdaBoost) [38],

2. Gradient Tree Boosting (GTB) [39],

3. Naı̈ve Bayes [32, 40],

4. Random Forest [51],

5. Linear Support Vector Machine (SVM-L) [32, 41], and

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 35

6. Stochastic Gradient Descent (SGD) [42].

Short descriptions of these algorithms are given in Section 2.2.

4.3.1 Design of the Classifiers

Similar to prior studies [17–20], we computed TF-IDF of words (Term Frequency - Inverse

Document Frequency) to extract the features for classification. We used sublinear tf scaling, i.e.

replace tf with 1 + log(tf). It seems unlikely that higher occurrences of a term in a document

truly carry higher times the significance of a single occurrence. Accordingly, there has been

considerable research into variants of term frequency that go beyond counting the number of

occurrences of a term. We used the logarithm of the term frequency. A detail description on

vectorization techniques has already presented in Section 2.1.

We used the Scikit-learn [55] implementations of the six commonly used supervised machine

learning algorithms. Since our training dataset was imbalanced (i.e., almost 75% comments were

‘neutral’), we observed high classification error for the non-neutral comments. Prior studies

have used undersampling (i.e., randomly excluding a subset of the majority class) to combat

imbalanced training dataset [56,57]. We used undersampling to exclude 250 ‘neutral’ comments

from our ‘gold set’. The training dataset substantially reduced the classification errors for the

non-neutral comments. We validated each of the algorithms using a 10-fold cross-validation [58]

and repeated the process 100 times.

4.3.2 Performance Evaluation of the Supervised Learning Methods

Figure 4.4 shows boxplots and means (‘X’ denotes the mean) based on the accuracies of one

hundred 10-fold cross-validations for each of the six supervised learning techniques. We applied

these supervised machine learning techniques for detecting positive, neutral and negative senti-

ments of review comments. Hence, the classifiers worked as multiclass classifiers. The results

suggest the traditional methods (i.e., Naı̈ve Bayes and L-SVM) did not perform well. Ensemble

technique GTB performed the best (74% accuracy for multiclass classification) among the super-

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 36

69.34 %

74.32 %

53.57 %

68.37 %

55.33 %

73.17 %

40%

50%

60%

70%

80%

AdaBoost GTB Naïve Bayes Random Forest SVM−L SVM−SGD

A
cc

ur
ac

y

9 a 9

Figure 4.4: Sentiment Detection Accuracy Comparison of the Supervised Learning Algorithms

vised ensemble learning3 methods (i.e., AdaBoost, GTB, and RandomForest). The performance

of SGD was very close to GTB.

We recruited two participants from software industry who had published their email address

to externally validate our sentiment detection approach. We randomly selected email addresses

in batches of 5. It took 10 emails to recruit these two participants (response rate 20%). The study

was conducted using Google Forms and there were no time constraints. To minimize bias, we did

not explain the research goal to participants. Each participant was given 100 review comments

and they manually rated the sentiments of those comments. Our approach showed 70% and 76%

match respectively in detecting sentiments rated by our participants which is very consistent with

our cross-validation accuracy (74%).

After the selection of best performing algorithm (GTB), we measured the precision and recall

for negative review comments.

Precision (also called positive predictive value) is the fraction of retrieved instances that are

relevant. It indicates the proportion of correct positive classifications over all positive classifi-

3 methods using multiple learning algorithms to obtain better predictive performance than could be obtained
from any of the constituent learning algorithms alone.

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 37

cations. Since our hypotheses are based on negative review comments, we consider negative

review comments as relevant instances and classification of negative review comments as posi-

tive classification. The precision can be measured as:

Precisioni =
Mii∑
jMji

(4.1)

That is, precision is the fraction of events where we correctly declared i out of all instances

where the algorithm declared i.

Recall (also known as sensitivity) is the fraction of relevant instances that are retrieved. It

suggests the proportion of positive examples that were classified correctly.

The recall can be measured as:

Recalli =
Mii∑
jMij

(4.2)

Hence, recall is the fraction of events where we correctly declared i out of all of the cases

where the true of state of the world is i.

The precision and recall are 72.94% and 72.18% respectively. The values are very close to

our accuracy. They are acceptable enough to use this classifier for further analysis.

4.3.3 Comparison with Lexicon Based Classifiers

We compared GTB, the best performing method with two lexicon-based analyzers i.e., Sen-

tiStrength and a lexicon based analyzer provided by the NLTK [52] which were previously used

in software development domain [4, 7, 11]. Both the SentiStrength (accuracy: 52.5%) and the

NLTK (accuracy: 50.1%) performed poorly on our dataset because the dictionary used in lexicon

based classifiers are not fully compatible with software development domain.

To compare the techniques, we performed each technique 100 times on random set of data

and each time our method performs better than SentiStrength and NLTK (Figure 4.5).

To develop an insight on the reason of our better performance, we manually investigated

200 review comments and identified why our proposed supervised learning method works bet-

ter than SentiStrength in most cases. We also report the cases where StentiStrength performed

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 38

Figure 4.5: Comparing our method with SentiStrength and NLTK on Our Dataset

better than our proposed method. Among the 200 review comments, both our method and Sen-

tiStrength classified 99 comments correctly. 58 of the remaining review comments were correctly

classified by ours and SentiStrength failed. On the other hand, StentiStrength correctly classified

15 examples that we could not. Neither our method nor SentiStrength could correctly detect the

sentiments of 28 comments. Thus we achieved 37% better result compared to SentiStrength.

In appendix A, we present some examples of review comments classified correctly by our

method but incorrectly by SentiStrength with proper reasonings. In these cases, we have seen that

SentiStrength can not get the context of software engineering properly. For example, the word

“like” has two common uses in different contexts. One is to indicate preference and the other

one is to indicate similarity. In most of the cases in review comments, the word “like” is used

to indicate similarity. In all these cases, StrentiStrength wrongly considers it as preference. We

found similar problem with words like “understand”, “sorry”, etc. This is an inherent limitation

of lexicon based classifiers that multiple emotions of a single word in different contexts cannot

be assigned. Though we are not using contexts directly in our method, it has performed better

CHAPTER 4. AUTOMATIC SENTIMENT DETECTION WITH SUPERVISED LEARNING
METHODS 39

in these cases since the classifier has learned the examples of both contexts. Moreover, the other

features helped our method to perform better than SentiStrength. Hence, we prefer supervised

learner for sentiment detection.

In appendix B, we also present some examples of review comments classified incorrectly by

our method but correctly by SentiStrength. In these cases, the reason of failure of our method

is basically 5W1H tokens (who, what, when, where, which, how). Most of the examples in our

labeled dataset with 5W1H are labeled as negative comments. However, in test dataset, some

5W1H carried neutral meaning. Our method also failed to detect sentiment of review comments

having “weird” because the examples having “weird” did not fell into training dataset due to

random sampling. Such cases may rarely happen as the training dataset is not very large.

4.4 Summary

In this chapter, we have discussed about training dataset generation, data pre-processing and clas-

sifier selection. The next chapter will briefly discuss final step of this research, i.e. experimental

results, implications of the study, and threats to validity.

Chapter 5

Empirical Studies

In the previous chapter, we have selected a supervised automatic sentiment detection method

that performed best in our context. Now, we use it for empirical analysis of code review com-

ments (10.7 million) collected from 10 OSS projects. Design of experimental setup is presented

in Section 5.1. We present analyses of factors influencing negative review comments and im-

pact of negative review comments on code review outcomes in Sections 5.2 and 5.3. Sections

5.4 and 5.5 show the impact of individual’s sentiment on project outcomes and investigate the

relation between the sentiment and the experience of the developers respectively. Section 5.6

presents some extended analysis and Section 5.7 discusses about the implication. Finally, threats

to validity of our results are discussed in Section 5.8.

5.1 Design of the Experimental Framework

We designed a database (Figure 5.1) which is used to store data collected from Gerrit. This

database stores information about the patch details, request details, author information, in-line

comments, and review comments which indicates that a tool-based code review process can

store every single detail of code review process. The attribute named “message” both in “in-

line comments” and “review comments” helps to capture the interactions. We analyzed these

comments to work on the hypotheses mentioned in Section 1.3.

We identified and merged multiple Gerrit accounts belonging to the same developer using an

40

CHAPTER 5. EMPIRICAL STUDIES 41

Figure 5.1: ER Diagram of the Code Review Storage

CHAPTER 5. EMPIRICAL STUDIES 42

existing approach [59]. Since GTB had the highest mean accuracy among the eight evaluated

techniques presented in Chapter 4, we selected a GTB based model trained using the 750 com-

ments for our large-scale analysis. To enable a large-scale empirical study, we applied the GTB

model on 10.7 million review comments belonging to around one million code review requests

mined from 10 OSS projects. The projects (Table 4.1) present a wide-range of product domains

and technologies. We found more than 85% review comments in each of the ten projects clas-

sified as neutrals. Among the remaining comments, 2-8% comments were positives and 5-8%

comments were classified as negatives. Nine (except OpenStack) out of the ten projects had

more negative comments than positives, suggesting negative comments may be more prevalent

than positive ones during code reviews in OSS projects. We used Scikit-learn for our experi-

mental setup1. It is an open source Python library that implements a range of machine learning,

preprocessing, cross-validation and visualization algorithms.

We performed Shapiro-Wilks normality tests [60] on all the metrics and found all the dis-

tributions significantly differing from a normal distribution. Therefore, we used non-parametric

hypothesis tests (Mann-Whitney U and Chi-Square) for each of the hypotheses introduced in Sec-

tion 1.3 and use median to report the central tendencies. We use rank-biserial correlation coeffi-

cient (rrb) [61] to estimate the effect size (magnitude of difference between the two groups) [62]

between a dichotomous vs. an ordinal variable. For a dichotomous vs. another dichotomous vari-

able (Receiving at least one negative comments or not vs. code acceptance), we use point-biseral

correlation coefficient (rpb) to estimate the effect size. McGrath and Meyer [63] recommends

biserial coefficients to be interpreted as follows: |rb| ≥ 0.10 → small effect, |rb| ≥ 0.24 →

moderate effect, and |rb| ≥ 0.37→ large effect.

We use Beanplots [64] to visualize and compare the distribution density for multiple samples

along the y-axis. Beanplots are best for a large range of non-normal data as they show the

entire distribution (they essentially show the full distribution drawn vertically, and show whether

there are peaks and valleys in a distribution). We also used it to visualize the highly skewed

distributions of review intervals and code churns. The horizontal line in the middle indicates

median of the distribution. We use boxplots to visualize highly concentrated data (i.e., number

1 http://scikit-learn.org/

http://scikit-learn.org/

CHAPTER 5. EMPIRICAL STUDIES 43

Android ChromiumOS Go ITK/VTK LibreOffice OpenStack Ovirt Qt Typo3 WikiMedia

C
o

d
e

 c
h

u
rn

 (
lo

g
)

1
1

0
1

0
0

1
0

0
0

Has negative comments?
No Yes

Figure 5.2: Code churn vs. Negative review comments

of files and number of patchsets). For statistical analysis, we used R2. It is a free software

environment for statistical computing and graphics.

Table 5.1 shows the number of negative comments with associated number of review re-

quests. The number of review requests having negative comments is too low and most of the

review requests (more than 12%) with negative comment(s) have only one negative comment.

Hence, we divided the review requests into two groups on the basis of having at least one negative

review comment for our hypotheses.

5.2 Factors Influencing Negative Review Comments

As mentioned earlier in Chapter 1, three factors (i.e. code churn, number of files under review

and number of patchsets) are expected influence negative review comments. In the following

subsections, we will briefly discuss about those factors.

We define ‘negative review ratio’, as the percentage of review requests that include at least

one negative review comment. Using this definition, the following subsections present the results

2 https://www.r-project.org/

https://www.r-project.org/

CHAPTER 5. EMPIRICAL STUDIES 44

Table 5.1: Number of Review Requests for Each Number of Negative comments

Number of
Negative

Comments per
Review

Requests

Number of
Review

Requests

Proportion of
Review

Requests(%)

0 722577 75.69493113

1 115649 12.11503146

2 46776 4.9001090523

3 23718 2.484624305

4 13318 1.395152479

5 8370 0.87681530623

6 5515 0.5777343386

7 3955 0.4143135647

8 2880 0.3016998903

9 2106 0.2206180448

10 1544 0.1617446634

CHAPTER 5. EMPIRICAL STUDIES 45

of the three hypotheses (H1, H2 and H3) regarding the factors influencing negative review

comments.

5.2.1 The code churn is more likely to be higher for a review request re-

ceiving at least one negative comment than for a review request re-

ceiving no negative comment (H1).

Code Churn indicates the total number of lines added, modified or deleted in a review request.

Table 5.2 and Figure 5.2 show the median code churn for the review requests with and without

negative review comments on all projects. The code churn is significantly higher (Mann-Whitney

U, p < 0.001 on all the projects) for the review requests with negative comments on all the

projects, supporting H1. The beanplots (Figure 5.2) show lower peaks but longer tails for the

review requests with negative comments suggesting code reviews with larger code churn were

highly likely to receive negative reviews. The effect sizes, estimated using the rank-biserial

coefficient (rrb), suggest moderate-sized effect on two projects and small-sized effect on the

remaining eight projects.

Figure 5.3 shows a representative example line-chart (for the OpenStack project) comparing

code churn against negative review ratio. The chart indicates negative review ratio increases

with code churns and majority of the code reviews with more than 140 line code churns in the

OpenStack project encountered negative comments.

5.2.2 The number of files under review is more likely to be higher for a

review request receiving at least one negative comment than for a

review request receiving no negative comment (H2).

Table 5.3 and Figure 5.4 show the median number of associated files for the review requests

with and without negative review comments on each project. The number of associated files is

significantly higher (Mann-Whitney U, p < 0.001 for all the projects) for the review requests

with negative comments on all the projects, supporting H2. The effect sizes, estimated using the

CHAPTER 5. EMPIRICAL STUDIES 46

Table 5.2: Hypothesis tests: Code churn (H1)

Project Mann-
Whitney U

Code churn
(median) Effect size

(rrb)
-ve com-

ments
(no)

-ve com-
ments
(yes)

Android 3.84× 108∗ 15 50 0.18∗

Chromium OS 1.52× 109∗ 15 44 0.20∗

Go 7.57× 106∗ 16 60 0.28∗

ITK/VTK 2.25× 107∗ 18 56 0.18∗

LibreOffice 1.80× 107∗ 18 40 0.13∗

OpenStack 5.48× 109∗ 12 50 0.28∗

OVirt 2.02× 108∗ 13 34 0.21∗

Qt 1.18× 109∗ 13 31 0.16∗

Typo3 2.03× 107∗ 12 42 0.21∗

WikiMedia 1.52× 109∗ 8 36 0.23∗

∗Statistically significant at p < 0.001 level

CHAPTER 5. EMPIRICAL STUDIES 47

Figure 5.3: Code churn vs. Negative review ratio (OpenStack)

rank-biserial coefficient (rrb) suggest small-sized effect on all the ten projects.

Figure 5.5 shows a representative example line-chart (for the Ovirt project) comparing num-

ber of files in a changeset against negative review ratio. The chart indicates negative review ratio

increases with the number of files in a changeset and more than one-third of the code reviews

with more than two files in the Ovirt project encountered negative comments.

2

4

6

8

Android ChromiumOS Go ITK/VTK LibreOffice OpenStack Ovirt Qt Typo3 WikiMedia

N
um

be
r

of
 fi

le
s

Has negative comment? No Yes

Figure 5.4: Number of files vs. Negative review comments

CHAPTER 5. EMPIRICAL STUDIES 48

Table 5.3: Hypothesis tests: Number of Files(H2)

Project Mann-
Whitney U

of files (median) Effect size
(rrb)-ve com-

ments
(no)

-ve com-
ments
(yes)

Android 4.17× 108∗ 1 2 0.14∗

Chromium OS 1.67× 109∗ 1 2 0.15∗

Go 8.66× 106∗ 1 2 0.21∗

ITK/VTK 2.33× 107∗ 2 3 0.15∗

LibreOffice 1.93× 107∗ 2 3 0.10∗

OpenStack 6.32× 108∗ 1 2 0.20∗

OVirt 2.20× 108∗ 1 2 0.17∗

Qt 1.28× 109∗ 2 2 0.11∗

Typo3 2.36× 107∗ 1 2 0.13∗

WikiMedia 1.73× 109∗ 1 2 0.19∗

∗Statistically significant at p < 0.001 level

CHAPTER 5. EMPIRICAL STUDIES 49

Figure 5.5: Number of files vs. Negative review ratio (OVirt)

5.2.3 The number of patchsets is more likely to be higher for a review

request receiving at least one negative comment than for a review

request receiving no negative comment (H3).

If a reviewer identifies a problem during code review, s/he suggests changes to resolve the prob-

lem. To get the code accepted, the author must upload a new patchset (i.e., all files added or

modified in a single revision) fixing that problem. The reviewer reviews the new patchset and

either accepts it or requests further changes. This process repeats until the reviewer is satisfied

with the changes and agrees to accept the change. Table 5.4 and Figure 5.6 show the median

number of patchsets for the review requests with and without negative review comments on each

project. The number of patchsets is significantly higher (Mann-Whitney U, p < 0.001 for all the

projects) for the review requests with negative review comments on all projects, supporting H3.

The effect sizes, estimated using the rank-biserial coefficient (rrb), suggest large-sized effect on

five projects, moderate-sized effect on four projects, and small-sized effect on the remaining one

project.

Figure 5.7 shows a representative example line-chart (for the Android project) comparing

number of patchsets against negative review ratio. The chart indicates negative review ratio

CHAPTER 5. EMPIRICAL STUDIES 50

2

4

6

8

Android ChromiumOS Go ITK/VTK LibreOffice OpenStack Ovirt Qt Typo3 WikiMedia

N
um

be
r

of
 p

at
ch

se
ts

Has negative comment? No Yes

Figure 5.6: Number of patchsets vs. Negative review comments

increases with the number of patchsets and majority of the code reviews with more than four

patchsets in the Android project encountered negative comments.

5.3 Impact of Negative Review Comments on Code Review

Outcomes

In chapter 1, we mentioned two impacts (i.e. review interval and code acceptance rate) of nega-

tive review comments. The following subsections present the results of the two hypotheses (H4

and H5) regarding the impact of negative comments on code review outcomes.

5.3.1 The review interval is more likely to be longer for review requests

receiving at least one negative comment than for review requests re-

ceiving no negative comment (H4).

Review Interval is the time from the beginning to the end of the review process. In this study,

we consider a review process to be complete when the patchset status is changed to ‘Merged’

or ‘Abandoned’. Table 5.5 shows the median review intervals for the review requests with and

without negative review comments on each project. The median review interval is significantly

higher (Mann-Whitney U, p < 0.001 for all the projects) for the review requests with negative

CHAPTER 5. EMPIRICAL STUDIES 51

Table 5.4: Hypothesis tests: Number of patchsets (H3)

Project Mann-
Whitney U

of
patchsets(median) Effect size

(rrb)
-ve com-

ments
(no)

-ve com-
ments
(yes)

Android 2.83× 108∗ 1 2 0.37∗

Chromium OS 1.26× 109∗ 2 3 0.30∗

Go 6.94× 106∗ 2 4 0.34∗

ITK/VTK 2.05× 107∗ 1 2 0.25∗

LibreOffice 1.80× 107∗ 2 3 0.15∗

OpenStack 3.78× 109∗ 1 4 0.47∗

OVirt 1.52× 108∗ 2 4 0.37∗

Qt 1.05× 109∗ 2 2 0.24∗

Typo3 1.27× 107∗ 2 4 0.40∗

WikiMedia 1.06× 109∗ 1 3 0.39∗

∗Statistically significant at p < 0.001 level

CHAPTER 5. EMPIRICAL STUDIES 52

Figure 5.7: Number of patchsets vs. Negative review ratio (Android)

comments on all the projects, supporting H4. The ‘Ratio’ column in the Table 5.5 shows that

in general code reviews with negative comments required between 4 to 232 times more (or 50

to 290 hours longer) to complete the review process. The beanplots (Figure 5.8) of review

intervals show long tails for the review requests with negative comment, indicating many review

requests with negative sentiments require substantially longer time to complete. The effect sizes,

estimated using the rank-biserial coefficient (rrb), suggest moderate-sized effect on two projects

and small-sized effect on the remaining eight projects.

5.3.2 A review request receiving at least one negative comment is less likely

to get accepted than a review request receiving no negative comment

(H5).

Code Acceptance Rate is the ratio between the number of review requests submitted and the

number ‘Merged’. Table 5.6 shows the acceptance rate for the review requests with and without

negative review comments on each project. The acceptance rate is significantly lower (Chi-

CHAPTER 5. EMPIRICAL STUDIES 53

Table 5.5: Hypothesis tests: Review interval (H4)

Project Mann-
Whitney U

Median Review
Interval (hrs) Ratio Effect size

(rrb)
-ve com-

ments
(no)

-ve com-
ments
(yes)

Android 3.84× 108∗ 2.9 92.8 32.0 0.18∗

Chromium OS 1.52× 109∗ 20.8 87.4 4.2 0.20∗

Go 7.57× 106∗ 5.8 57.5 9.9 0.29∗

ITK/VTK 2.26× 107∗ 24.4 103.7 4.3 0.18∗

LibreOffice 1.80× 107∗ 15.7 80.6 5.1 0.13∗

OpenStack 5.49× 109∗ 30.7 246.0 8.0 0.28∗

OVirt 2.03× 108∗ 23.9 175.3 7.3 0.21∗

Qt 1.19× 109∗ 20.6 113.8 5.5 0.16∗

Typo3 2.03× 107∗ 0.4 293.2 732.5 0.21∗

WikiMedia 1.52× 109∗ 1.2 114.8 95.7 0.23∗

∗Statistically significant at p < 0.001 level

CHAPTER 5. EMPIRICAL STUDIES 54

Android ChromiumOS Go ITK/VTK LibreOffice OpenStack Ovirt Qt Typo3 WikiMedia

R
ev

ie
w

 in
te

rv
al

 (
lo

g)

10
 m

in
1

hr
1

da
y

1
w

k
10

 w
k

Has negative comments?

No Yes

Figure 5.8: Negative review comments vs. Review intervals

Square, p < 0.001 on all the projects) for the code reviews with negative comments on all

projects, supporting H5. The effect sizes, estimated using the point-biserial coefficient (rpb),

suggest moderate-sized effect on one project, small-sized effect on eight projects, and negligible

effect on the remaining one project.

5.4 Investigating Individual’s Sentiment Pattern

The corporate software companies monitor individual developer’s review pattern and make ar-

rangement to help them improving sentiment or if necessary transfer them to another depart-

ment/role. OSS community also may be benefited if individual reviewer knows his/her rela-

tive position in terms of frequency of making harsh comments and develops self-awareness.

From this motivation, we study the sentiment pattern of individual reviewer’s comments. For 10

projects we are studying, we do not try to identify same person in multiple projects. Rather we

consider a reviewer’s all comments of a single project for this analysis.

CHAPTER 5. EMPIRICAL STUDIES 55

Table 5.6: Hypothesis tests: Acceptance rate (H5)

Project
Chi

Square
(χ2)

Acceptance rate Effect size
(rpb)-ve com-

ments
(no)

-ve com-
ments
(yes)

Android 1188.2∗ 84.9% 73.4% -0.12∗

Chromium OS 421.8∗ 86.2% 81.8% -0.05∗

Go 206.7∗ 92.2% 82.8% -0.14∗

ITK/VTK 801.8∗ 83.4% 62.9% -0.20∗

LibreOffice 1141.9∗ 91.4% 68.7% -0.24∗

OpenStack 3627.1∗ 84.5% 75.0% -0.11∗

OVirt 833.02∗ 89.5% 80.0% -0.13∗

Qt 5762.4∗ 88.4% 70.2% -0.21∗

Typo3 915.3∗ 94.7% 79.4% -0.22∗

WikiMedia 4192.7∗ 92.6% 80.7% -0.15∗

∗Statistically significant at p < 0.001 level

CHAPTER 5. EMPIRICAL STUDIES 56

Figure 5.9: Review Interval Required for Different Percentile of Reviewers in Terms of Negative
Comments

Figure 5.9 shows the impact of individual’s negative sentiment on review interval. For this

experiment, we selected the developers who authored more than 5% negative review comments

and worked on more than 100 review requests. We sort them in descending order according to

their percentage of authored negative review comments and divided them into 20 groups each

consists of equal number of developers. In Figure 5.9, we found that the people in first 15 per-

centile author review requests having more review intervals than others. The review interval

gradually decreases for the developers with lower percentage of authored negative review com-

ments. Therefore, developers authoring more negative review comments are likely to increase

the development time. We reported median value of review interval for each percentile group.

Figure 5.10 shows the impact of individual’s sentiment on code acceptance rate. We selected

the developers on the basis of similar restrictions we applied while selecting developers for an-

alyzing review interval. In Figure 5.10, we found that the people in first 5 percentile involve in

review requests having lower code acceptance rate than others. The code acceptance rate grad-

ually increases for the developers with lower percentage of authored negative review comments.

CHAPTER 5. EMPIRICAL STUDIES 57

Figure 5.10: Code Acceptance Rate for Different Percentile of Reviewers in Terms of Negative
Comments

Therefore, developers authoring more negative review comments are likely to involve in review

requests with lower code acceptance code.

In Figure 5.11, we present the distribution of developers according to their authored percent-

age of negative comments. We found that most of the developers (authoring more than 5 %

negative comments) authored negative review comments around 5%-10% of the total comments

made by them. Another observation is that the developers who have worked in more than 100

review comments have authored maximum 36% negative comments. We presented how many

reviewers may fall into five percentile, ten percentile, and fifteen percentile. The reviewers au-

thoring more than 16.56%, 13.76%, and 12.26% of negative comments likely to fall into five

percentile, ten percentile, and fifteen percentile respectively. Moreover, they author on average

20.43%, 15.17%, and 12.94% of negative review comments. Reviewers up to first fifteen per-

centile likely to increase the review interval of review request. Therefore, proper initiative can

greatly reduce the review interval.

CHAPTER 5. EMPIRICAL STUDIES 58

Figure 5.11: Distribution of Developers According to their Authored Percentage of Negative
Comments

CHAPTER 5. EMPIRICAL STUDIES 59

Figure 5.12: Core Developers likely to Author more Negative Comments than the Peripheral
Developers

5.5 Authoring and Receiving Negative Comments by the Core

(Experienced) and the Peripheral (Novice) Developers

The small set of core developers are those who have been involved with the OSS project for a

relatively long time and make significant contributions to guide the development and evolution of

the project. The larger set of peripheral developers occasionally contribute to the project, mostly

interact with the core developers, and rarely interact with other peripheral developers. Figure

5.12 shows that in 9 project the core developers authored more percentage of negative review

comments than the peripheral developers. Only in Qt project, the peripheral developers authored

more percentage of negative comments than the core developers. Therefore, we can suggest that

the core developers are likely to author more negative comments than the peripheral developers.

From Figure 5.13, we found that in 5 projects the core developers received more percentage

of negative comments than the peripheral developers and in other 5 projects the peripheral de-

velopers received more percentage of negative comments than the core developers. Therefore,

we can not develop any conclusive observation on this issue.

CHAPTER 5. EMPIRICAL STUDIES 60

Figure 5.13: Core Developers and Peripheral Developers likely to Receive Equal Percentage of
Negative Review Comments

5.6 Extended Analysis

In this research, we have discussed about three factors (i.e., code churn, number of files under

review and number of patchsets) that are expected to influence negative review comments and

two impacts (i.e. review interval and code acceptance rate) of negative review comments. In the

following subsections, we investigate the relations among the factors influencing negative review

comments and the impacts.

5.6.1 Code Churn vs. Review Interval

In Figure 5.14, we present the relation between code churn and review interval. We divided the

review requests into six groups. The review requests of the first group do not contain any negative

comment and those of the other groups contain different number of negative review comment(s)

(i.e., 1, 2, 3 etc.). We worked with code churn up to 500 lines. For our analysis, we divided the

review requests on the basis of code churn into 20 bins (i.e., 1-25, 25-50,..., 476-500 etc.) and

estimated the median review interval of each bin for all six groups. From Figure 5.14, we can

suggest that the review intervals for the review requests without any negative comment increase

negligibly with code churn compared to the requests with negative review comment(s). The

review interval increases consistently with number of negative comments. Therefore, it may be

CHAPTER 5. EMPIRICAL STUDIES 61

Figure 5.14: Code Churn vs. Review Interval

concluded that negative review comment(s) play(s) a significant role in deciding the relationship

between code churns and review intervals.

Table 5.7 presents the correlation coefficients (Pearson coefficients) for the curves showing

the relations between code churn and median review intervals. We observe that the review in-

tervals for the review requests without any negative comment and review intervals for review

requests with one negative review comment are highly correlated with each other. The correla-

tion coefficients decrease with increase number of negative comments.

Code Churn vs. Review Interval Using SGD

We applied Stochastic Gradient Descent (SGD) classifier instead of GTB to detect the sentiment

of code review comments. In Figure 5.15, we present the relation between code churn and code

acceptance rate and we observe similar results we deduced using GTB. The accuracy of SGD

is very close to GTB. Therefore, The hypotheses do not depend much on the accuracy of the

algorithms. We can consider that hypotheses with any algorithms with sufficient accuracy.

CHAPTER 5. EMPIRICAL STUDIES 62

Table 5.7: Pearson Correlation Coefficient for Code Churn vs. Review Interval

Number of
Negative

Comments per
Review Request

in 1st Curve

Number of
Negative

Comments per
Review Request

in 2nd Curve

Correlation
Coefficient

0 1 0.82

1 2 0.75

2 3 0.25

3 4 0.11

4 > 5 0.48

Figure 5.15: Code Churn vs. Code Acceptance Rate

CHAPTER 5. EMPIRICAL STUDIES 63

Figure 5.16: Code Churn vs. Code Acceptance Rate

5.6.2 Code Churn vs. Code Acceptance Rate

In Figure 5.16, we present the relation between code churn and code acceptance rate. We fol-

lowed a similar experimental setup mentioned in Section 5.6.1 for this analysis. We observe that

the code acceptance rate decreases with increase in code churn for review requests without any

negative comment. However, the acceptance rate hardly varies and no trend is found for review

requests with negative review comments. Hence, negative review comments offset the impact of

increase in code churn and code churn by itself does not have considerable impact on acceptance

rate. From Figure 5.16, we observe that the code acceptance rate without any negative comment

remains higher than review requests with negative comment(s) up to code churn with 250 lines.

In our dataset, 89% review requests have code churn less than 250. Hence, the whimsical pat-

tern after this demarcation line is due to insufficient sample. Therefore, it can be concluded that

negative review comments decrease the code acceptance rate irrespective of churn size.

Table 5.8 presents the correlation coefficients (Pearson coefficients) for the curves showing

the relations between code churn and code acceptance rate. We observe that there is hardly any

correlation between the code acceptance rate of review requests without any negative comment

CHAPTER 5. EMPIRICAL STUDIES 64

Table 5.8: Pearson Correlation Coefficient for Code Churn vs. Code Acceptance Rate

Number of
Negative

Comments per
Review Request

in 1st Curve

Number of
Negative

Comments per
Review Request

in 2nd Curve

Correlation
Coefficient

0 1 0.07

1 2 0.12

2 3 0.60

3 4 0.47

4 > 5 0.64

and review intervals for review requests with one negative review comment. However, the coeffi-

cients increase with increase number of negative review comments. Therefore, it can be deduced

that there is a correlation between the code acceptance rates for review requests with negative

review comments.

5.6.3 Number of Files vs. Review Interval

In Figure 5.17, we present the relation between the number of files under review at a time and

review interval. We divided the review requests into six groups. The review requests of the first

group do not contain any negative comment and that of the other groups contain different number

of negative review comment(s) (i.e., 1, 2, 3 etc.). We analyzed number of files up to 25 in one

request. For our analysis, we divided the review requests on the basis of number of files into

25 bins (i.e., 1, 2,..., 25 etc.) and estimated the median review interval of each bin for all six

groups. From Figure 5.17, we observe that the review intervals for the review requests without

any negative comment does not increase much with number of files compared to the rate in case

of review requests with negative review comment(s). The review interval increases consistently

with number of negative comments. Therefore, negative review comment(s) play(s) a significant

CHAPTER 5. EMPIRICAL STUDIES 65

Figure 5.17: Number of Files vs. Review Interval

role in deciding the relationship between the number of files and review intervals.

Table 5.9 presents the correlation coefficients (Pearson coefficients) for the curves showing

the relations between the number of files and median review intervals. We observe that the

review intervals for the review requests without any negative comment and review intervals for

review requests with one negative review comment are highly correlated with each other. The

correlation coefficients decrease with increase number of negative comments.

5.6.4 Number of Files vs. Code Acceptance Rate

In Figure 5.18, we present the relation between the number of files under review at a time and

code acceptance rate. We followed a similar experimental setup mentioned in Section 5.6.3 for

this analysis. From Figure 5.18, we see that the code acceptance rate decreases with number of

files for review requests without any negative comment and increases for review requests with

negative review comments. However, the acceptance rate hardly varies and no trend is found for

review requests with negative review comments. Hence, negative review comments offset the

impact of increase in number of files and number of files by itself does not have considerable

CHAPTER 5. EMPIRICAL STUDIES 66

Table 5.9: Pearson Correlation Coefficient for Number of Files vs. Review Interval

Number of
Negative

Comments per
Review Request

in 1st Curve

Number of
Negative

Comments per
Review Request

in 2nd Curve

Correlation
Coefficient

0 1 0.52

1 2 0.24

2 3 −0.12

3 4 −0.13

4 > 5 −0.43

impact on acceptance rate. From Figure 5.18, we observe that the code acceptance rate without

any negative comment remains higher than review requests with negative comment(s) up to 13

files. In our dataset, 94% review requests have less than 13 files. Hence, the whimsical pat-

tern after this demarcation line can be considered due to insufficient sample. Therefore, it can

be concluded that negative review comments decrease the code acceptance rate irrespective of

number of files. However, there is no impact of difference in number of negative comments on

acceptance rate.

Table 5.10 presents the correlation coefficients (Pearson coefficients) for the curves showing

the relations between the number of files and code acceptance rate. We observe that there is

hardly any correlation between the code acceptance rate of review requests without any negative

comment and review intervals for review requests with one negative review comment. However,

the coefficients are positive and low for negative review comments.

5.6.5 Number of Patchsets vs. Review Interval

In Figure 5.19, we present the relation between the number of patchsets and review interval. We

divided the review requests into six groups. The review requests of the first group do not contain

CHAPTER 5. EMPIRICAL STUDIES 67

Figure 5.18: Number of Files vs. Code Acceptance Rate

Table 5.10: Pearson Correlation Coefficient for Number of Files vs. Code Acceptance Rate

Number of
Negative

Comments per
Review Request

in 1st Curve

Number of
Negative

Comments per
Review Request

in 2nd Curve

Correlation
Coefficient

0 1 −0.19

1 2 0.29

2 3 0.38

3 4 0.12

4 > 5 0.50

CHAPTER 5. EMPIRICAL STUDIES 68

Figure 5.19: Number of Patchsets vs. Review Interval

any negative comment and that of the other groups contain negative review comment(s) (i.e.,

1, 2, 3 etc.). We analyzed number of patchsets up to 25 in one request. For our analysis, we

divided the review requests on the basis of number of patchsets into 25 bins (i.e., 1, 2,..., 25 etc.)

and found out the median review interval of each bin for all six groups. From Figure 5.19, we

observe that the review intervals for the review requests without any negative comment increase

with number of patchsets like the review requests with negative review comment(s). However,

the review intervals of review requests with negative review comments always maintain higher

review interval than review requests without any negative review comment.

Table 5.11 presents the correlation coefficients (Pearson coefficients) for the curves showing

the relations between the number of patchsets and median review intervals. We observe that the

review intervals for the review requests without any negative comment and review intervals for

review requests with one negative review comment are highly correlated with each other. The

correlation coefficients increase with increase number of negative comments. Therefore, it can

be deduced that there is a correlation between the review intervals.

CHAPTER 5. EMPIRICAL STUDIES 69

Table 5.11: Pearson Correlation Coefficient for Number of Patchsets vs. Review Interval

Number of
Negative

Comments per
Review Request

in 1st Curve

Number of
Negative

Comments per
Review Request

in 2nd Curve

Correlation
Coefficient

0 1 0.87

1 2 0.84

2 3 0.93

3 4 0.93

4 > 5 0.91

5.6.6 Number of Patchsets vs. Code Acceptance Rate

In Figure 5.20, we present the relation between the number of patchset and code acceptance rate.

We followed a similar experimental setup mentioned in Section 5.6.5 for this analysis. From

Figure 5.20, we estimated that the code acceptance rate decreases with number of patchsets

for review requests without any negative and increases for review requests with negative review

comment(s). However, the acceptance rate hardly varies and no trend is found for review requests

with negative review comments. Hence, negative review comments offset the impact of increase

in number of patchsets and number of patchsets by itself does not have considerable impact

on acceptance rate. From Figure 5.20, we also observe that the code acceptance rate without

any negative comment remains higher than review requests with negative comment(s) up to 8

patchsets. In our dataset, 94% review requests have less than 8 patchsets. Therefore, it can

be deduced that negative review comments decreases the code acceptance rate irrespective of

patchsets. Acceptance rate is clearly lower for requests with more than five negative comments.

However, for 1-4 negative comments, this impact is not clearly distinguishable.

Table 5.12 presents the correlation coefficients (Pearson coefficients) for the curves showing

the relations between the number of patchsets and code acceptance rate. We observe that there

CHAPTER 5. EMPIRICAL STUDIES 70

Figure 5.20: Number of Patchsets vs. Code Acceptance Rate

is a low correlation between the code acceptance rate of review requests without any negative

comment and review intervals for review requests with one negative review comments. However,

the coefficients increase with increase negative review comments. Therefore, it can be deduced

that there is a correlation between the code acceptance rates.

In final analysis, we may deduce that unlike code churn or number of files, patchset has

considerable impact on both review interval and code acceptance rate.

5.6.7 Number of Negative Comments vs. Review Interval

In Section 5.3.1, we have already found that negative comments significantly impact review

interval. Here we would observe how this impact varies with the number of negative comments.

In Figure 5.21, we present the relation between the number of negative review comments

and review interval. We analyzed number of negative comments up to 25. For our analysis, we

divided the review requests on the basis of number of negative comments into 25 bins (i.e., 1,

2,..., 25 etc.) and estimated the median review interval of each bin for both groups of review

requests. From Figure 5.21, we may deduce that the review intervals increase almost linearly

CHAPTER 5. EMPIRICAL STUDIES 71

Table 5.12: Pearson Correlation Coefficient for Number of Patchsets vs. Code Acceptance Rate

Number of
Negative

Comments per
Review Request

in 1st Curve

Number of
Negative

Comments per
Review Request

in 2nd Curve

Correlation
Coefficient

0 1 0.33

1 2 0.90

2 3 0.91

3 4 0.92

4 > 5 0.93

with the number of negative comments which imply a strong relation between these two.

5.7 Implications of the Study

The results of this study have several implications for both code review participants and re-

searchers.

1. Managing changesets.

2. Impacts on future collaborations.

3. Impact on project outcomes.

4. Avoiding negative comments.

The following subsections describe these implications.

5.7.1 Managing Changesets

Results of this study suggest that the likelihood of a code review including negative comments

increase with associated code churns or number of files in the changeset. Since reviewing large

CHAPTER 5. EMPIRICAL STUDIES 72

Figure 5.21: Number of Negative Comments vs. Review Interval

code changes are time-consuming and annoying for the reviewers, this result may not be sur-

prising. Prior research has also found large code reviews less effective [13]. Since the ability to

find defects diminish beyond 400 lines of code, best practices recommend reviewing less than

200-400 lines of code at a time [27]. Our results add to the arguments against large code reviews.

Based on these results, we recommend that developers submit smaller and incremental changes

for reviews whenever possible, in contrast to waiting for a large feature to be completed.

5.7.2 Impacts on Future Collaborations

A negative review comment may lead to negative feelings from the recipient. Though a construc-

tive criticism helps an author to make the required changes quickly, an opposite picture can be

found if the review comments are viewed as an attack. Reaching a consensus may become very

difficult, if an author and a reviewer start arguing with each other. Since code reviews have sig-

nificant impacts on building relationships among developers [8], the relationship between a pair

of arguing review participants may deteriorate. Moreover, relationship with the other developer

is one of the most important considerations for an OSS developer during collaborations [10,65].

CHAPTER 5. EMPIRICAL STUDIES 73

Therefore, negative review comments may have longer lasting effects as both review participants

may want to avoid future collaborations.

5.7.3 Impact on Project Outcomes

Our results suggest that negative review comments indeed impact code review outcomes by

increasing review intervals and by decreasing acceptance rates. Therefore, negative review com-

ments may increase project duration and may eventually increase project cost.

Moreover, integration of prospective newcomers is crucial for the success of an OSS project.

OSS projects that cannot attract and more importantly retain newcomers cannot survive [66].

Since prospective newcomers may turn away if treated poorly [67], negative review comments

to newcomers will inversely impact their continuation in the project and ultimately hurt project

success.

5.7.4 Avoiding Negative Comments

A developer may be very busy and unintentionally express a negative sentiment. However, there

has not be much research on how to prevent negative review comments. For example, using

a sentiment classification model similar to ours, it is possible to provide feedback to an author

regarding the possible perceived sentiment of a review comment before submission. Implemen-

tation of such a tool warrants further research.

5.8 Threats to validity

There are several threats which can challenge the validity of the research work. There are four

common threats to validity.

1. Internal validity.

2. Construct validity.

3. External validity.

CHAPTER 5. EMPIRICAL STUDIES 74

4. Conclusion validity.

The following subsections describe these four common threats to validity in this study.

5.8.1 Internal Validity

The primary threat to internal validity in this study is project selection. We included 10 publicly

accessible OSS projects that practice tool-based code reviews supported by the same tool (i.e.,

Gerrit). Though, it is possible that projects supported by other code review tools (e.g., Review-

Board, Github pull-based reviews, and Phabricator) could have behaved differently, sentiments

expressed in review comments may not depend on any feature that is exclusive to Gerrit only.

We think this threat is minimal for three reasons: 1) all code review tools support the same ba-

sic purpose, i.e. detecting defects and improving the code, 2) the basic workflow (i.e. authors

posting code, reviewers commenting about code snippets, and code requiring approval from re-

viewer before integration) of most of the code review tools are similar, and 3) we did not use any

Gerrit-specific feature/attribute in this study. Therefore, we believe the project selection threat is

minimal.

5.8.2 Construct validity

We attempted to validate the model training data and the results of the model’s classification in

multiple ways, checking consistency with inter-rater reliability, manually cross-checking clas-

sified comments, and using 10-fold cross validations. While the selected model achieves high

levels of accuracy, the classification error is around 25%. It is possible that those incorrect clas-

sifications may have altered our results, however this can only lead to incorrect findings and

conclusions if there is a systematic relationship between the comments that the model incor-

rectly classifies and the factors examined during our large-scale empirical study (if, for example,

our model incorrectly predicts sentiments of comments in large reviews far more than those with

fewer files). We have no reason to believe that such a relationship exists, however there is no

empirical evidence against this possibility.

CHAPTER 5. EMPIRICAL STUDIES 75

Table 5.13: Percentage of neutral comments consisting more than 50 characters

Project % Neutral

Android 73.48%

Chromium OS 74.25%

Go 64.48%

ITK / VTK 73.78%

LibreOffice 76.37%

OpenStack 79.42%

OVirt 81.36%

Qt Project 78.32%

Typo3 79.89%

WikiMedia 76.12%

Second, while our manually labeled dataset had around 75% neutral comments, our model

labeled 85-90% comments as neutrals for the ten projects, suggesting potential bias in favor of

the neutral class. An investigation found a large number of one word comments. For example,

in the Chromium OS project, 5% of the review comments say, ‘done’. Majority of the one

word comments were classified as neutrals. To build our training dataset, we selected only the

review comments with more than 50 characters (to ensure enough features). We found that the

percentages of ‘neutral’ classified comments consisting more than 50 characters (Table 5.13)

were similar to the training sample. Therefore, we believe this threat is minimal.

Third, overfitting is a potential threat for any supervised learning based models. To combat

overfitting, we employed 10-fold cross validations of our models. We randomly selected 100

review comments that the model had not seen before and manually classified them. Against

our manual classification, the model had 77% accuracy, suggesting no performance degradation.

Therefore, we do not think our model was overfitted.

Finally, the results show that code review metrics measured in this study (i.e. review interval,

acceptance rate, number of patchsets, code churn and number of files) are influenced by the pres-

CHAPTER 5. EMPIRICAL STUDIES 76

ence of negative comments. However, there may be number of unmeasured confounding factors

(e.g., availability of developers, code complexity, reputation of the author, and relationship be-

tween an author and the reviewer) that could influence those review metrics. There is no evidence

that our classification model or our measurements would be systematically biased based on any

of these confounding factors. Furthermore, the fact that the results were similar across all ten

projects provides additional confidence that any confounding factors did not significantly impact

the study results.

5.8.3 External validity

The OSS projects in this study vary across domains, languages, age, and governance. In addition,

we analyzed a large number of code review requests for each project. Therefore, we believe these

results can be generalized to many other OSS projects. However, because of the wide variety of

OSS project characteristics, we do not claim that these results are universal for all OSS projects.

All the projects in this study belong to successful and matured OSS projects. Nine out of the ten

included projects are practicing Gerrit-based reviews for more than five years. The results may

differ in a small-scale or less-matured project. Drawing a more general conclusion would require

a family of experiments [68] that included OSS projects of all types. To encourage replications,

we publish our scripts and training dataset in a supplementary website3.

5.8.4 Conclusion validity

The use of large dataset drawn from ten projects, which produced similar results across those

ten different projects, boosts confidence about the validity of the results. We tested all data for

normality prior to conducting statistical analyses and performed appropriate tests based upon

the results of the normality test. We used widely used implementations of the commonly used

machine learning techniques for this study. Finally, the effect size, estimated with biserial cor-

relation coefficients showed small to moderate, yet, significant effects in almost all of the cases.

Therefore, our study does not have any serious conclusion validity threat.

3 http://amiangshu.com/sentiment/index.html

http://amiangshu.com/sentiment/index.html

CHAPTER 5. EMPIRICAL STUDIES 77

5.9 Summary

In this chapter, we have discussed about the experimental results, implications of the study and

threats to validity. . The next chapter will conclude the thesis with some future plans.

Chapter 6

Conclusion

In this study, we have built a standard code review training dataset with good inter rater agree-

ment based on 1000 randomly selected comments. We have developed a scheme for automatic

sentiment detection using supervised learning technique with a smart pre-processing steps and

achieved around 74% accuracy. Using this detection model, we found sentiments of 10.7 mil-

lion comments from 10 OSS projects and analyzed our research hypotheses. We have developed

five hypotheses to investigate factors that influence sentiment of code reviews and to formally

analyze the impact of sentiment on the stakeholders.

This study identified three factors (i.e., code churn, number of files, and number of patchsets)

influencing negative review comments in OSS projects and also investigated the impact of those

comments on the outcomes of associated review requests. The findings indicate that larger code

reviews are more likely to encounter negative comments. According to our study, it is very

difficult and time consuming to review large code segment. Therefore, it may influence the tone

of the reviewer and result in negative comment. Majority of the code reviews with more than

140 line code churns receive at least one negative review comments and more than one-third of

the code reviews with more than two files encounter negative comments. Moreover, negative

review comments not only increase review intervals 4 to 32 times (i.e., time to complete a code

review) but also are likely to decrease code acceptance rate. Since code reviews influence the

relationship between an author and a reviewer, negative review comments may degrade their

relationship. An author may be hurt by the harsh tone of a reviewer and be tempted to leave the

78

CHAPTER 6. CONCLUSION 79

project. On the other hand, if a developer receives constructive and persuasive reviews, he will

be further motivated to contribute to the project.

In the future, we plan to extend our work achieving the followings:

• Extending our training dataset by adding more review comments.

• Including texts from different types of other SE communications (e.g., bug, mailing list,

and IRC) to build a generalized sentiment classifier.

• Studying the differences between the level of sentiments expressed on various SE commu-

nication channels.

• Identifying the impacts of sentiments on the outcomes of other project activities (e.g., bug

resolution).

Based on our findings, we recommend developers to avoid submitting large code review

requests and to avoid authoring negative review comments. We believe that the findings of this

study would provide valuable guidance to the OSS code review participants to improve their

code review process. Also this study expected to improve team-effort or collaboration in the

open source community and benefit this noble movement to reduce digital divide.

Appendices

80

Appendix A

Examples Misclassified by SentiStrength

Review Comments
Human

Raters

Our

Classi-

fier

Senti-

Strength
Comments

if so there will be some problems here

- i mean, to authorise we need pass-

word/token - token is really not sup-

ported in that version of nova client.

dunno what password to use here -

where we are using ctx from trust. us-

ing service user creds here is not really

a good idea.

−1 −1 0

Though “problem” and

“not supported” are

negative tokens, “trust”

and “good’ are consid-

ered positive. “trust”

is wrongly classified in

this context. Here, “not”

did not qualify “good”

because of “really”.

per our discussion, make this a class

that is just the combobox? maybe like

androidapicombo?

0 0 1

“like” is wrongly consid-

ered as positive token is

this context.

81

APPENDIX A. EXAMPLES MISCLASSIFIED BY SENTISTRENGTH 82

i think you also need to add -.7em to

this 24px. that number comes from the

.fulltext-search left and right margins.

otherwise there is a horizontal scroll

on the page.

0 0 −1

The word “number” is

considered as negative in

SentiStrength. We did not

understand the reason.

this seems a bit error prone and hacky

to me. what if $contentcontext-

¿getinaccessiblecontentshown() was

true before. it would be false after-

wards (probably not relevant here,

but maybe elsewhere). what about a

second argument in ”getnode()” that

allows to even fetch hidden/protected

nodes?

−1 −1 0

The dictionary does not

contain “hacky” and gives

over emphasis on “true”

which is not applicable in

this context.

if we have got this, do we still need the

flag?

this field should probably be

called something more like “allo-

cated stack size”.

0 0 1

“like” is wrongly consid-

ered as positive token is

this context.

also explain in this file why the com-

piler was failing, and dx’s smart/dumb

behavior.
−1 −1 0

Gives over-emphasis on

“smart”.

APPENDIX A. EXAMPLES MISCLASSIFIED BY SENTISTRENGTH 83

no hsc in exceptions please. the excep-

tion handler does take care of proper

encoding
0 0 1

Gives over-emphasis on

“care”.

tdf... is unnecessary. rather document

why this is done, if necessary. −1 −1 0

Gives equal emphasis on

“unnecessary” and “neces-

sary”. In this context, “un-

necessary” is more impor-

tant than necessary.

i am sorry :d

order these 1 1 −1

Gives over-emphasis on

“sorry” and considered it

as negative token.

:(so we need to either port this file over

to kernel style or not use goto’s. since

we started it before everyone decided

kernel style was ok, we have been us-

ing a hacked-down google c++ style

which forbids goto

−1 −1 0

“hacked-down”, “forbids”

are not included in dictio-

nary.

APPENDIX A. EXAMPLES MISCLASSIFIED BY SENTISTRENGTH 84

the variable you should probably use

here is u boot fdt use, defined in

make.conf.

i agree the name is not great - we can

change it if you like. but the intention

is that this variable tells you which fdt

to use, so there should be no need for

this sort of logic in ebuilds.

1 1 −1
Gives over-emphasis on

“not great”.

i do not understand why you

need the boolean. this should be

new rti.settop(); new rti.setinexact().
−1 −1 0

“not understand” is con-

sidered as neutral. If we

include “understand” as

positive token, then it will

work but “understand” is

not a positive token.

Appendix B

Examples Misclassified by Our Proposed

Method

Review Comments
Human

Raters

Our

Classi-

fier

Senti-

Strength
Comments

reconsider why is that these variables

should be ”protected” instead of ”pri-

vate”

0 −1 0 Use of “why”.

gsm is not in the original list which is

why it is not in the enum. 0 −1 0
Use of “which” and

“why”.

if there is only one developer path, do

not append ’0’ to the xcode name. it

looks weird.

−1 0 −1

Training set missed the

examples with “weird”.

Therefore, proposed

method failed in this case.

85

APPENDIX B. EXAMPLES MISCLASSIFIED BY OUR PROPOSED METHOD 86

”when i was suggesting flipping the

boolean, i did also wonder whether we

would not be better off just passing in

the length. if it is ¡= 0, interpret that

as ””do not know””? that would then

move 8192 down out of the callers too.

or... i really like the way you went

for readfully rather than implementing

the missing read()s, which is what i

would actually imagined. how about

we go one further and just have a

static fromfile or similar? then it could

do the stat, and have everything it

needs. you could even use libcore.os

open/fstat/read/close to avoid the ran-

domaccessfile without increasing the

overall amount of code.”

1 −1 1

Though there is a neg-

ative lexicon “missing”,

over emphasized “like”

has made it possible for

SentiStrength to detect the

sentiment correctly. Our

method failed because of

“W” s.

Appendix C

Contractions

Contractions Expansions Contractions Expansions Contractions Expansions

ain’t am not aren’t are not ain’t am not

can’t cannot can’t’ve cannot have aren’t are not

cause because could’ve could have can’t cannot

couldn’t could not couldn’t’ve could not have can’t’ve cannot have

didn’t did not doesn’t does not cause because

don’t do not hadn’t had not could’ve could have

hadn’t’ve had not have hasn’t has not couldn’t could not

couldn’t’ve could not have didn’t did not doesn’t does not

don’t do not hadn’t had not hadn’t’ve had not have

hasn’t has not haven’t have not he’d he would

he’d’ve he would have he’ll he will he’ll’ve he will have

87

APPENDIX C. CONTRACTIONS 88

he’s he is how’d how did how’d’y how do you

how’ll how will how’s how is i’d i would

i’d’ve i would have i’ll i will i’ll’ve i will have

i’m i am i’ve i have isn’t is not

it’d it would it’d’ve it would have it’ll it will

it’ll’ve it will have it’s it is let’s let us

ma’am madam mayn’t may not might’ve might have

mightn’t might not mightn’t’ve might not have must’ve must have

mustn’t must not mustn’t’ve must not have needn’t need not

Appendix D

Emoticons

Emoticons Sentiments Emoticons Sentiments

%-(Negative %-) Positive

(-: Positive (: Positive

(ˆ ˆ) Positive (ˆ-ˆ) Positive

(ˆ . ˆ) Positive (ˆ ˆ) Positive

%-(Negative %-) Positive

(-: Positive (: Positive

(o: Positive (o; Neutral

)-: Negative): Negative

)o: Negative *) Neutral

:-/ Negative :-/ Neutral

:-D Positive :-O Neutral

89

APPENDIX D. EMOTICONS 90

:-P Positive :-S Negative

:-* Positive :-* Positive

:-/ Negative :-/ Neutral

:-D Positive :-O Neutral

:-P Positive :-S Negative

Bibliography

[1] B. Liu and L. Zhang, “A survey of opinion mining and sentiment analysis,” in Mining text

data. Springer, 2012, pp. 415–463.

[2] J. A. Davis and S. Leinhardt, “The structure of positive interpersonal relations in small

groups.” 1967.

[3] M. De Choudhury and S. Counts, “Understanding affect in the workplace via social media,”

in Proceedings of the 2013 conference on Computer supported cooperative work. ACM,

2013, pp. 303–316.

[4] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit comments in github:

an empirical study,” in Proceedings of the 11th Working Conference on Mining Software

Repositories. ACM, 2014, pp. 352–355.

[5] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The impact of social media

on software engineering practices and tools,” in Proceedings of the FSE/SDP workshop on

Future of software engineering research. ACM, 2010, pp. 359–364.

[6] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel emotions? an ex-

ploratory analysis of emotions in software artifacts,” in Proceedings of the 11th Working

Conference on Mining Software Repositories. ACM, 2014, pp. 262–271.

[7] E. Guzman and B. Bruegge, “Towards emotional awareness in software development

teams,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-

neering, ser. ESEC/FSE 2013, 2013, pp. 671–674.

91

BIBLIOGRAPHY 92

[8] A. Bosu and J. C. Carver, “Impact of peer code review on peer impression formation: A

survey,” in 2013 ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement. IEEE, 2013, pp. 133–142.

[9] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code review,”

in Proceedings of the 2013 International Conference on Software Engineering. San Fran-

cisco, CA, USA: IEEE Press, 2013, pp. 712–721.

[10] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process Aspects and Social

Dynamics of Contemporary Code Review: Insights from Open Source Development and

Industrial Practice at Microsoft, year=2016, volume=PP, number=99, pages=1-1,,” IEEE

Transactions on Software Engineering.

[11] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion: sentiment analysis of

security discussions on github,” in Proceedings of the 11th Working Conference on Mining

Software Repositories. ACM, 2014, pp. 348–351.

[12] J. C. Munson and S. G. Elbaum, “Code churn: A measure for estimating the impact of code

change,” in Proceedings of the 1998 International Conference on Software Maintenance.

IEEE, 1998, pp. 24–31.

[13] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code reviews: An empirical

study at Microsoft,” in Proceedings of the 12th Working Conference on Mining Software

Repositories. IEEE Press, 2015, pp. 146–156.

[14] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect

density,” in Proceedings. 27th International Conference on Software Engineering. IEEE,

2005, pp. 284–292.

[15] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software peer review practices:

a case study of the Apache server,” in Proceedings of the 30th International Conference on

Software Engineering, 2008, pp. 541–550.

BIBLIOGRAPHY 93

[16] A. Bosu and J. C. Carver, “Impact of Developer Reputation on Code Review Outcomes

in OSS Projects: An Empirical Investigation,” in Proceedings of the 2014 ACM / IEEE

International Symposium on Empirical Software Engineering and Measurement, 2014, pp.

33:1–33:10.

[17] D. Isa, L. H. Lee, V. Kallimani, and R. Rajkumar, “Text document preprocessing with the

bayes formula for classification using the support vector machine,” IEEE Transactions on

Knowledge and Data engineering, vol. 20, no. 9, pp. 1264–1272, 2008.

[18] D. Isa, L. L. Hong, V. Kallimani, and R. Rajkumar, “Text document pre-processing us-

ing the bayes formula for classification based on the vector space model,” Computer and

Information Science, vol. 1, no. 4, p. 79, 2008.

[19] L. H. Lee, C. H. Wan, R. Rajkumar, and D. Isa, “An enhanced support vector machine

classification framework by using euclidean distance function for text document catego-

rization,” Applied Intelligence, vol. 37, no. 1, pp. 80–99, 2012.

[20] T. W. Chow, H. Zhang, and M. Rahman, “A new document representation using term fre-

quency and vectorized graph connectionists with application to document retrieval,” Expert

Systems with Applications, vol. 36, no. 10, pp. 12 023–12 035, 2009.

[21] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[22] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning and

an application to boosting,” in European conference on computational learning theory.

Springer, 1995, pp. 23–37.

[23] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of

statistics, pp. 1189–1232, 2001.

[24] J. L. Fleiss, “Measuring nominal scale agreement among many raters.” Psychological bul-

letin, vol. 76, no. 5, p. 378, 1971.

BIBLIOGRAPHY 94

[25] J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical

data,” biometrics, pp. 159–174, 1977.

[26] M. E. Fagan, “Design and code inspections to reduce errors in program development,” IBM

Syst. J., vol. 15, no. 3, pp. 182–211, Sept. 1976.

[27] J. Cohen, E. Brown, B. DuRette, and S. Teleki, Best kept secrets of peer code review. Smart

Bear, 2006.

[28] K. E. Wiegers, Peer reviews in Soft.: A practical guide. Addison-Wesley Boston, 2002.

[29] P. C. Rigby and C. Bird, “Convergent contemporary software peer review practices,” in

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM,

2013, pp. 202–212.

[30] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying the characteristics of

vulnerable code changes: An empirical study,” in Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering. ACM, 2014, pp. 257–

268.

[31] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations and trends in

information retrieval, vol. 2, no. 1-2, pp. 1–135, 2008.

[32] ——, “A sentimental education: Sentiment analysis using subjectivity summarization

based on minimum cuts,” in Proceedings of the 42nd annual meeting on Association for

Computational Linguistics. Association for Computational Linguistics, 2004, p. 271.

[33] E. Boiy and M.-F. Moens, “A machine learning approach to sentiment analysis in multilin-

gual web texts,” Information retrieval, vol. 12, no. 5, pp. 526–558, 2009.

[34] P. D. Turney, “Thumbs up or thumbs down?: semantic orientation applied to unsupervised

classification of reviews,” in Proceedings of the 40th annual meeting on association for

computational linguistics. Association for Computational Linguistics, 2002, pp. 417–424.

BIBLIOGRAPHY 95

[35] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-based methods for

sentiment analysis,” Computational linguistics, vol. 37, no. 2, pp. 267–307, 2011.

[36] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, “Sentiment analysis of

twitter data,” in Proceedings of the workshop on languages in social media. Association

for Computational Linguistics, 2011, pp. 30–38.

[37] H. Saif, Y. He, and H. Alani, “Semantic sentiment analysis of twitter,” in International

Semantic Web Conference. Springer, 2012, pp. 508–524.

[38] N. F. F. d. Silva, E. R. Hruschka, E. R. Hruschka Junior, et al., “Biocom usp: tweet sen-

timent analysis with adaptive boosting ensemble,” in International Workshop on Semantic

Evaluation, 8th. ACL Special Interest Group on the Lexicon-SIGLEX, 2014.

[39] M. Pennacchiotti and A.-M. Popescu, “Democrats, republicans and starbucks afficionados:

user classification in twitter,” in Proceedings of the 17th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. ACM, 2011, pp. 430–438.

[40] S. Tan, X. Cheng, Y. Wang, and H. Xu, “Adapting naive bayes to domain adaptation for

sentiment analysis,” in European Conference on Information Retrieval. Springer, 2009,

pp. 337–349.

[41] A. Pak and P. Paroubek, “Twitter as a Corpus for Sentiment Analysis and Opinion Mining.”

in LREc, vol. 10, 2010, pp. 1320–1326.

[42] A. Bifet and E. Frank, “Sentiment knowledge discovery in twitter streaming data,” in Inter-

national Conference on Discovery Science. Springer, 2010, pp. 1–15.

[43] C. Whitelaw, N. Garg, and S. Argamon, “Using appraisal groups for sentiment analysis,”

in Proceedings of the 14th ACM international conference on Information and knowledge

management. ACM, 2005, pp. 625–631.

[44] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification using ma-

chine learning techniques,” in Proceedings of the ACL-02 conference on Empirical methods

BIBLIOGRAPHY 96

in natural language processing-Volume 10. Association for Computational Linguistics,

2002, pp. 79–86.

[45] J. M. Ruiz-Martı́nez, R. Valencia-Garcı́a, and F. Garcı́a-Sánchez, “Semantic-based sen-

timent analysis in financial news,” in Proceedings of the 1st International Workshop on

Finance and Economics on the Semantic Web, 2012, pp. 38–51.

[46] S. Somasundaran, T. Wilson, J. Wiebe, and V. Stoyanov, “Qa with attitude: Exploiting opin-

ion type analysis for improving question answering in on-line discussions and the news.”

in ICWSM, 2007.

[47] V. Stoyanov, C. Cardie, and J. Wiebe, “Multi-perspective question answering using the opqa

corpus,” in Proceedings of the conference on Human Language Technology and Empirical

Methods in Natural Language Processing. Association for Computational Linguistics,

2005, pp. 923–930.

[48] L. V. Lita, A. H. Schlaikjer, W. Hong, and E. Nyberg, “Qualitative dimensions in question

answering: Extending the definitional qa task,” in PROCEEDINGS OF THE NATIONAL

CONFERENCE ON ARTIFICIAL INTELLIGENCE, vol. 20, no. 4. Menlo Park, CA;

Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005, p. 1616.

[49] O. Kucuktunc, B. B. Cambazoglu, I. Weber, and H. Ferhatosmanoglu, “A large-scale sen-

timent analysis for yahoo! answers,” in Proceedings of the fifth ACM international confer-

ence on Web search and data mining. ACM, 2012, pp. 633–642.

[50] D. Garcia, M. S. Zanetti, and F. Schweitzer, “The role of emotions in contributors activity:

A case study on the Gentoo community,” in Cloud and Green Computing (CGC), 2013

Third International Conference on. IEEE, 2013, pp. 410–417.

[51] A. Gupte, S. Joshi, P. Gadgul, A. Kadam, and A. Gupte, “Comparative study of classifi-

cation algorithms used in sentiment analysis,” International Journal of Computer Science

and Information Technologies, vol. 5, no. 5, pp. 6261–6264, 2014.

BIBLIOGRAPHY 97

[52] S. Bird, “NLTK: The Natural Language Toolkit,” in Proceedings of the COLING/ACL on

Interactive presentation sessions. Association for Computational Linguistics, 2006, pp.

69–72.

[53] R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons: On sentiment analysis

tools for software engineering research,” in Software Maintenance and Evolution (ICSME),

2015 IEEE International Conference on. IEEE, 2015, pp. 531–535.

[54] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky, “The

Stanford CoreNLP Natural Language Processing Toolkit.” in ACL (System Demonstra-

tions), 2014, pp. 55–60.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,”

Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[56] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-imbalance learn-

ing,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39,

no. 2, pp. 539–550, 2009.

[57] C. Drummond, R. C. Holte, et al., “C4. 5, class imbalance, and cost sensitivity: why

under-sampling beats over-sampling,” in Workshop on learning from imbalanced datasets

II, vol. 11. Citeseer, 2003.

[58] L. Breiman and P. Spector, “Submodel selection and evaluation in regression. The X-

random case,” International statistical review/revue internationale de Statistique, pp. 291–

319, 1992.

[59] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email social

networks,” in Proceedings of the 2006 international workshop on Mining software reposi-

tories. ACM, 2006, pp. 137–143.

BIBLIOGRAPHY 98

[60] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete sam-

ples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[61] E. E. Cureton, “Rank-biserial correlation,” Psychometrika, vol. 21, no. 3, pp. 287–290,

1956.

[62] C. O. Fritz, P. E. Morris, and J. J. Richler, “Effect size estimates: current use, calculations,

and interpretation.” Journal of Experimental Psychology: General, vol. 141, no. 1, p. 2,

2012.

[63] R. E. McGrath and G. J. Meyer, “When effect sizes disagree: the case of r and d.” Psycho-

logical methods, vol. 11, no. 4, p. 386, 2006.

[64] P. Kampstra et al., “Beanplot: A boxplot alternative for visual comparison of distributions,”

Journal of statistical software, vol. 28, no. 1, pp. 1–9, 2008.

[65] A. Bosu, J. Carver, R. Guadagno, B. Bassett, D. McCallum, and L. Hochstein, “Peer

impressions in open source organizations: A survey,” Journal of Systems and Software,

vol. 94, pp. 4–15, 2014.

[66] K. Crowston, H. Annabi, and J. Howison, “Defining open source software project success,”

Proceedings of the 24th International Conference on Information Systems, pp. 327–340,

2003.

[67] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social barriers faced by new-

comers placing their first contribution in open source software projects,” in Proceedings of

the 18th ACM conference on Computer supported cooperative work & social computing.

ACM, 2015, pp. 1379–1392.

[68] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge through families of experi-

ments,” IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 456–473, 1999.

	Board of Examiners
	Candidate's Declaration
	Acknowledgment
	Introduction
	Motivation
	Objectives
	Research Hypotheses
	Code Churn
	Number of Files
	Number of Patchsets
	Review Interval
	Code Acceptance Rate

	Contribution
	Thesis Organization

	Background Study
	Vectorization Techniques
	Count Vectorization
	TF-IDF Transformation
	TF-IDF Vectorization

	Supervised Learning Techniques
	Primary Supervised Machine Learning Algorithms
	Ensemble Learning Algorithms

	Measuring Inter Rater Agreement
	Statistical Significance Test
	Shapiro-Wilk test
	Mann-Whitney U test
	Chi-Squared test
	Effect Size

	Summary

	Literature Review
	Code Review
	Sentiment Analysis
	Summary

	Automatic Sentiment Detection with Supervised Learning Methods
	Training Dataset Generation
	Data Pre-Processing
	Classifier Selection
	Design of the Classifiers
	Performance Evaluation of the Supervised Learning Methods
	Comparison with Lexicon Based Classifiers

	Summary

	Empirical Studies
	Design of the Experimental Framework
	Factors Influencing Negative Review Comments
	The code churn is more likely to be higher for a review request receiving at least one negative comment than for a review request receiving no negative comment (H1).
	The number of files under review is more likely to be higher for a review request receiving at least one negative comment than for a review request receiving no negative comment (H2).
	The number of patchsets is more likely to be higher for a review request receiving at least one negative comment than for a review request receiving no negative comment (H3).

	Impact of Negative Review Comments on Code Review Outcomes
	The review interval is more likely to be longer for review requests receiving at least one negative comment than for review requests receiving no negative comment (H4).
	A review request receiving at least one negative comment is less likely to get accepted than a review request receiving no negative comment (H5).

	Investigating Individual's Sentiment Pattern
	Authoring and Receiving Negative Comments by the Core (Experienced) and the Peripheral (Novice) Developers
	Extended Analysis
	Code Churn vs. Review Interval
	Code Churn vs. Code Acceptance Rate
	Number of Files vs. Review Interval
	Number of Files vs. Code Acceptance Rate
	Number of Patchsets vs. Review Interval
	Number of Patchsets vs. Code Acceptance Rate
	Number of Negative Comments vs. Review Interval

	Implications of the Study
	Managing Changesets
	Impacts on Future Collaborations
	Impact on Project Outcomes
	Avoiding Negative Comments

	Threats to validity
	Internal Validity
	Construct validity
	External validity
	Conclusion validity

	Summary

	Conclusion
	Appendices
	Examples Misclassified by SentiStrength
	Examples Misclassified by Our Proposed Method
	Contractions
	Emoticons

