
M.Sc. Engg. Thesis

Scheduling Multiple Trips for a Group in Spatial
Databases

by

Roksana Jahan

Submitted to

Department of Computer Science and Engineering

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka - 1000

January 2017

Dedicated to my loving parents

Author’s Contact

Roksana Jahan

Senior Software Engineer

Email: munia0505064@gmail.com

i

mailto:munia0505064@gmail.com

The thesis titled “Scheduling Multiple Trips for a Group in Spatial Databases”, submitted by Roksana

Jahan, Roll No. 0412052076P, Session April 2012, to the Department of Computer Science and

Engineering, Bangladesh University of Engineering and Technology, has been accepted as satisfactory

in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and

Engineering and approved as to its style and contents. Examination held on January 24, 2017.

Board of Examiners

1.

Dr. Tanzima Hashem Chairman

Associate Professor (Supervisor)

Department of CSE, BUET, Dhaka - 1000.

2.

Dr. Mohammad Mahfuzul Islam Member

Head and Professor (Ex-Officio)

Department of CSE, BUET, Dhaka - 1000.

3.

Dr. Md. Abul Kashem Mia Member

Professor

Department of CSE, BUET, Dhaka - 1000.

4.

Dr. Abu Sayed Md. Latiful Hoque Member

Professor

Department of CSE, BUET, Dhaka - 1000.

5.

Dr. Nova Ahmed Member

Associate Professor (External)

Department of ECE

North South University, Dhaka - 1229.

ii

Candidate’s Declaration

This is hereby declared that the work titled “Scheduling Multiple Trips for a Group in Spatial

Databases” is the outcome of research carried out by me under the supervision of Dr. Tanzima

Hashem, in the Department of Computer Science and Engineering, Bangladesh University of Engi-

neering and Technology, Dhaka - 1000. It is also declared that this thesis or any part of it has not

been submitted elsewhere for the award of any degree or diploma.

Roksana Jahan

Candidate

iii

Acknowledgment

First and foremost I offer my sincerest gratitude to my supervisor, Dr. Tanzima Hashem, who

has supported me throughout my thesis with her patience, motivation, enthusiasm, and immense

knowledge. She helped me a lot in every aspect of this work and guided me with proper directions

whenever I sought one. I could not have imagined having a better supervisor and mentor for my

M.Sc. study and research. Her patient hearing of my ideas, critical analysis of my observations and

detecting flaws (and amending thereby) in my thinking and writing have made this thesis a success.

I would also want to thank the members of my thesis committee for their valuable suggestions. I

thank Dr. Md. Abul Kashem Mia, Dr. Abu Sayed Md. Latiful Hoque and specially the external

member Dr. Nova Ahmed.

My sincere thanks also goes to Sukarna Barua for helping me in my thesis work, specially in

implementation. His insightful comments and suggestions regarding performance improvement of my

thesis implementation helped me to overcome flaws and to improve my thesis work a lot.

In this regard, I remain ever grateful to my beloved parents, who always exists as sources of

inspiration behind every success of mine I have ever made.

iv

Abstract

Planning user trips in an effective and efficient manner has become an important topic in recent

years. In this thesis, we introduce Group Trip Scheduling (GTS) queries, a novel query type in spatial

databases. Family members normally have many outdoor tasks to perform within a short time for

the proper management of home. For example, the members of a family may need to go to a bank

to withdraw or deposit money, a pharmacy to buy medicine, or a supermarket to buy groceries.

Similarly, organizers of an event may need to visit different types of points of interests (POIs) such as

restaurants and shopping centers to perform many tasks. A GTS query distributes the tasks among

group members in an optimized manner. Given source and destination locations of n group members,

a GTS query schedules n individual trips such that each POI type is included in a scheduled trip

and the aggregate trip overhead distance for visiting required POI types is minimized. The aggregate

trip overhead distance can be either the summation or the maximum of the trip overhead distances

of group members. Each trip starts at a member’s source location, goes through any number of POI

types, and ends at the member’s destination location. The trip distance of a group member is measured

as the distance between her source to destination via the POIs that the group member visits. The

trip overhead distance of a group member is measured by deducting the distance between the source

and destination locations of a group member from the trip distance. We develop an efficient approach

to process GTS queries and variants for both Euclidean space and road networks. The number of

possible combinations of trips among group members increases with the increase of the number of

POIs that in turn increases the query processing overhead. We exploit geometric properties to refine

the POI search space and prune POIs to reduce the number of possible combinations of trips among

group members. We propose a dynamic programming technique to eliminate the trip combinations

that cannot be part of the query answer. We perform experiments using real and synthetic datasets

and show that our approach outperforms a straightforward approach with a large margin.

v

Table of Contents

Board of Examiners ii

Candidate’s Declaration iii

Acknowledgment iv

Abstract v

1 Introduction 1

1.1 GTS Queries . 3

1.2 Research Challenges and Solution Overview . 7

1.3 Contributions . 9

1.4 Outline . 10

2 Problem Formulation 11

2.1 Group Trip Scheduling (GTS) Queries . 11

2.2 System Overview . 14

3 Related Work 15

3.1 Single User Trip and Route Planning Algorithms . 15

3.2 Group Trip Planning Algorithms . 16

3.3 Traveling Salesman Problem (TSP) and Variants . 17

3.4 Elliptical Search Space Refinement Techniques . 18

4 Our Solution 19

4.1 Preliminaries . 19

vi

4.1.1 Known Region . 20

4.1.2 Search Region . 21

4.2 Overview of Our Approach . 21

4.3 Steps of GTS Query Process . 22

4.3.1 Computing the Known Region . 23

4.3.2 Refinement of the Search Region . 24

4.3.2.1 First Refinement Technique for Aggregate Functions(sum and max) . 26

4.3.2.2 Second Refinement Technique for Aggregate Function sum 27

4.3.2.3 Second Refinement Technique for Aggregate Function max 29

4.3.2.4 Extensions for Uniform GTS (UGTS) Queries 31

4.3.2.5 Extensions for GTS and UGTS Queries with Constraints 32

4.3.2.6 Example Scenario of the Search Region Refinement 32

4.3.3 Terminating Condition for POI Retrieval . 36

4.3.4 Dynamic Programming Technique for Scheduling Trips 37

4.3.4.1 Trip Scheduling for GTS Queries . 37

4.3.4.2 Trip Scheduling for UGTS Queries . 54

4.3.4.3 Extensions of Trip Scheduling for Dependencies Among POIs 62

4.3.4.4 Extensions of Trip Scheduling for Dependencies Among Users and POIs 68

5 Algorithms 75

5.1 GTS Approach . 75

5.2 UGTS Approach . 83

5.3 Extensions . 88

6 A Straightforward Approach 90

6.1 Algorithm for S-GTS Approach . 91

6.2 Algorithm for S-UGTS Approach . 92

6.3 Extension of Straightforward Approach for GTS and UGTS Queries with Constraints 94

7 Experiments 95

7.1 GTS Queries . 96

7.1.1 Euclidean Space . 97

vii

7.1.1.1 Effect of Group Size (n) . 97

7.1.1.2 Effect of Number of POI Types (m) 98

7.1.1.3 Effect of Query Area (A) . 100

7.1.1.4 Effect of Dataset Size (ds) . 101

7.1.2 Road Networks . 102

7.1.2.1 Effect of Group Size (n) . 102

7.1.2.2 Effect of Number of POI Types (m) 103

7.1.2.3 Effect of Query Area (A) . 105

7.2 UGTS Queries . 106

7.2.1 Euclidean Space . 107

7.2.1.1 Effect of Group Size (n) . 107

7.2.1.2 Effect of Number of POI Types (m) 108

7.2.1.3 Effect of Query Area (A) . 109

7.2.1.4 Effect of Dataset Size (ds) . 110

7.2.2 Road Networks . 112

7.2.2.1 Effect of Group Size (n) . 112

7.2.2.2 Effect of Number of POI Types (m) 113

7.2.2.3 Effect of Query Area (A) . 114

8 Conclusions 115

References 117

viii

List of Figures

1.1 Different types of tasks in real life . 2

1.2 An example GTS query for aggregate function sum and max 3

1.2a Scheduled trips with the minimum total trip overhead distance of the group . . 3

1.2b Scheduled trips with the minimum maximum trip overhead distance of the group 3

1.3 An example UGTS query for aggregate function sum and max 4

1.3a Uniform scheduled trips with the minimum total trip overhead distance of the

group . 4

1.3b Uniform scheduled trips with the minimum maximum trip overhead distance of

the group . 4

1.4 An example GTS query with dependencies among POIs for aggregate function sum

and max . 5

1.4a Scheduled trips with dependency between POIs bank and supermarket for the

minimum total trip overhead distance of the group 5

1.4b Scheduled trips with dependency between POIs bank and supermarket for the

minimum maximum trip overhead distance of the group 5

1.5 An example GTS query with dependencies among members and POIs for aggregate

function sum and max . 7

1.5a Scheduled trips with dependency between group member u2 and POI bank for

the minimum total trip overhead distance of the group 7

1.5b Scheduled trips with dependency between group member u2 and POI bank for

the minimum maximum trip overhead distance of the group 7

1.6 An example of a GTP query . 8

ix

2.1 System architecture . 14

4.1 Known region and search region . 20

4.2 Overview of our approach for GTS queries . 21

4.3 Computing the known region (known region expanding with the incremental POI re-

trieval) . 23

4.4 Proof of Theorem 4.3.1 . 26

4.5 Proof of Theorem 4.3.2 . 27

4.6 Proof of Theorem 4.3.3 . 29

4.7 Initial known region (the circle with center G) and scheduled trips calculated using

initial POIs . 33

4.8 Refined search region . 34

4.9 Known region expands (outer circle) and search region shrinks (inner ellipses) 35

4.10 Terminating condition: the known region includes the search region 36

7.1 Effect of group size (n) in Euclidean space (California dataset) 97

7.2 Effect of number of POI types (m) in Euclidean space (California dataset) 99

7.3 Effect of query area (A) in Euclidean space (California dataset) 100

7.4 Effect of dataset size (ds) in Euclidean space (Synthetic dataset) 101

7.5 Effect of group size (n) in road networks (California dataset) 103

7.6 Effect of number of POI types (m) in road networks (California dataset) 104

7.7 Effect of query area (A) in road networks (California dataset) 105

7.8 Effect of group size (n) in Euclidean space (California dataset) 107

7.9 Effect of number of POI types (m) in Euclidean space (California dataset) 109

7.10 Effect of query area (A) in Euclidean space (California dataset) 110

7.11 Effect of dataset size(ds) in Euclidean space (Synthetic dataset) 111

7.12 Effect of group size (n) in road networks (California dataset) 112

7.13 Effect of number of POI types (m) in road networks (California dataset) 113

7.14 Effect of query area (A) in road networks (California dataset) 114

x

List of Tables

1.1 Scheduled trips for sum . 4

1.2 Scheduled trips for max . 4

1.3 Uniform scheduled trips for sum . 5

1.4 Uniform scheduled trips for max . 5

1.5 Scheduled trips with dependency between POIs bank and supermarket for sum 6

1.6 Scheduled trips with dependency between POIs bank and supermarket for max 6

1.7 Scheduled trips with dependency between group member u2 and POI bank for sum . . 6

1.8 Scheduled trips with dependency between group member u2 and POI bank for max . 6

2.1 Notations and their meanings . 13

4.1 Structure of dynamic table νy, where 0 ≤ y ≤ (m− 1) . 39

4.2 Structure of dynamic table νm . 39

4.3 Possible number of POI type distributions between u1 and u2 40

4.4 Dynamic tables for an example scenario for aggregate function sum 42

4.5 Candidate trips with trip overhead distances for cell ν2[{c1, c2}][{u1}] 43

4.6 Candidate combined combinations with trip overhead distances for cell ν0[∅][{u1u2}]. 44

4.7 Candidate combined combinations with trip overhead distances for cell ν1[{c1}][{u1u2}]. 44

4.8 Candidate combined combinations with trip overhead distances for cell

ν2[{c1, c2}][{u1u2}]. 45

4.9 Candidate combined combinations with trip overhead distances for cell

ν3[{c1, c2, c3}][{u1u2}] . 45

4.10 Candidate combined combinations with trip overhead distances for cell

ν4[{c1, c2, c3, c4}][{u1u2}] . 46

xi

4.11 Candidate combined combinations with trip overhead distances for cell

ν2[{c1, c2}][{u1u2u3}]. 47

4.12 Dynamic tables for an example scenario for aggregate function max 49

4.13 Candidate combined combinations with trip overhead distances for cell ν0[∅][{u1u2}]. 50

4.14 Candidate combined combinations with trip overhead distances for cell ν1[{c1}][{u1u2}]. 50

4.15 Candidate combined combinations with trip overhead distances for cell

ν2[{c1, c2}][{u1u2}]. 51

4.16 Candidate combined combinations with trip overhead distances for cell

ν3[{c1, c2, c3}][{u1u2}] . 52

4.17 Candidate combined combinations with trip overhead distances for cell

ν4[{c1, c2, c3, c4}][{u1u2}] . 52

4.18 Candidate combined combinations with trip overhead distances for cell

ν2[{c1, c2}][{u1u2u3}]. 53

4.19 Structure of dynamic table νe . 57

4.20 Structure of dynamic table νy, where y ∈ {2× e, . . . , (n− 1)× e, n× e} 57

4.21 Dynamic tables for UGTS queries with aggregate function sum 59

4.22 Tmini values for three group members of the example scenario 60

4.23 Candidate combined combinations with trip overhead distances for cell

ν4[{c2, c3, c4, c5}][{u1u2}]. 61

4.24 Candidate combined combinations with trip overhead distances for cell

ν6[{c1, c2, c3, c4, c5, c6}][{u1u2u3}] . 62

4.25 Dynamic tables for GTS queries with dependency between POI types c1 and c2 for

aggregate function sum . 64

4.26 Candidate trips with trip overhead distances for cell ν2[{c1, c2}][{u1}] 65

4.27 Candidate combined combinations with trip overhead distances for cell ν0[∅][{u1u2}]. 66

4.28 Candidate combined combinations with trip overhead distances for cell ν1[{c1}][{u1u2}]. 66

4.29 Candidate combined combinations with trip overhead distances for cell

ν2[{c1, c2}][{u1u2}]. 66

4.30 Candidate combined combinations with trip overhead distances for cell

ν3[{c1, c2, c3}][{u1u2}] . 67

xii

4.31 Candidate combined combinations with trip overhead distances for cell

ν4[{c1, c2, c3, c4}][{u1u2}] . 67

4.32 Dynamic tables for GTS queries with dependency between user u1 and POI type c1 for

aggregate function sum . 70

4.33 Candidate trips with trip overhead distances for cell ν2[{c1, c2}][{u1}] 71

4.34 Candidate combined combinations with trip overhead distances for cell ν0[∅][{u1u2}]. 72

4.35 Candidate combined combinations with trip overhead distances for cell ν1[{c1}][{u1u2}]. 72

4.36 Candidate combined combinations with trip overhead distances for cell

ν2[{c1, c2}][{u1u2}]. 72

4.37 Candidate combined combinations with trip overhead distances for cell

ν3[{c1, c2, c3}][{u1u2}] . 73

4.38 Candidate combined combinations with trip overhead distances for cell

ν4[{c1, c2, c3, c4}][{u1u2}] . 73

7.1 Parameter settings for GTS queries . 96

7.2 Parameter settings for UGTS queries . 106

xiii

List of Algorithms

1 GTS Approach(S,D,C, f) . 76

2 UpDynTables(n,C,V, f) . 80

3 UpEllipticRegions(T,Mx,Mi, f) . 82

4 UGTS Approach(S,D,C, e, f) . 83

5 UpDynTablesUniform(e, n,C,V, f) . 87

6 S-GTS Approach(S,D,C, f) . 91

7 S-UGTS Approach(S,D,C, e, f) . 93

xiv

Chapter 1

Introduction

Family members normally have many outdoor tasks to perform within a short time for the proper

management of their home. The members of a family may need to go to a bank to withdraw or

deposit money, a pharmacy to buy medicine, or a supermarket to buy groceries. Beside families,

people are also part of many social, religious, cultural, educational, economical, and professional

groups and organizations. They may need to organize different types of group events like annual

team outing, annual cultural programs, science fair, and inter-educational institution competitions.

Similar to the members of a family, organizers of an event may need to visit different points of

interests (POIs) like supermarkets, banks, and restaurants to perform many tasks. For example, to

organize an annual cultural program in an educational institution, organizers may need to go to a

supermarket for groceries, a catering house to order food, a bank to withdraw or deposit money, and

a shopping mall to buy gift items.

In reality, all family or organizing members do not need to visit every POI and they can distribute the

tasks among themselves. For example, any member of a family can buy groceries from a supermarket.

Furthermore, users have some routine work like traveling from home to office or office to home, and

they would prefer to visit other POIs on the way to office or returning home. This scenario motivates

us to introduce a group trip scheduling (GTS) query that enables a group (e.g., a family) to schedule

multiple trips among group members with the minimum aggregate trip overhead distance. Given

source and destination locations of n group members, a GTS query returns n individual trips such

that n trips together visit required types of POIs, each POI type is visited by a single member of the

1

CHAPTER 1. INTRODUCTION 2

Buying groceries at supershop

Event management group Family members

Buying medicine at

pharmacy

Withdrawing / depositing

money at bank

Ordering food at catering house

Figure 1.1: Different types of tasks in real life

group, and the aggregate trip overhead distance of n group members is minimized. The aggregate

trip overhead distance can be either the summation or the maximum of the trip overhead distances

of group members. The trip distance of a group member is measured as the distance between her

source to destination via the POIs that the group member visits. The trip overhead distance of the

group member is the additional distance required to visit any number of POI types. Specifically, the

trip overhead distance of a group member is measured by deducting the distance between the source

and destination locations of a group member from the trip distance. If the aggregate trip overhead

distance is reduced, it will obviously cut down the cost for arranging an event or managing a set of

tasks, which is very much desired.

In a GTS query, a group member is flexible to visit any number of POI types, if it minimizes the

aggregate trip overhead distance for the group. Sometimes, it may happen that group members want

to visit equal number of POI types. To address such scenario, we introduce a new variant of GTS

query, a Uniform GTS (UGTS) query, where group members visit equal number of POI types. In

this thesis, we propose an efficient approach to process GTS and UGTS queries for both Euclidean

space and road networks.

CHAPTER 1. INTRODUCTION 3

1.1 GTS Queries

Formally, in a Group Trip Scheduling (GTS) query, we have a group of n members with specific n

source-destination pairs and m required POI types that need to be visited by a member of the group.

A GTS query schedules n trips such that

X Each trip starts and ends at a group member’s source and destination locations, respectively.

X Each of the m POI types is visited by a group member, and each trip visits one or more POI

types from m required POI types.

X The aggregate trip overhead distance is minimized.

The aggregated trip overhead distance can be either the total or the maximum of the trip overhead

distances of group members that are measured using aggregate functions sum and max, respectively.

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34
p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11

p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52
p42

p32

p53

p62

p22

p33

a) Scheduled trips with the minimum total trip

overhead distance of the group

p32

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34
p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11

p33

p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52

p53

p62

p22

p42

b) Scheduled trips with the minimum maximum

trip overhead distance of the group

Figure 1.2: An example GTS query for aggregate function sum and max

In Figures 1.2(a-b), we consider a group or a family of four members. Every member has preplanned

source and destination locations which may be home, office or any other place. Group members u1,

u2, u3, and u4 have source destination pairs, < s1, d1 >, < s2, d2 >, < s3, d3 >, and < s4, d4 >,

respectively. Here, pkj denotes a POI of type cj with ID k. For example, POI p21 in the figure is of

type c1, which represents a bank. The group has to visit four POI types: a bank (c1), a supermarket

CHAPTER 1. INTRODUCTION 4

Table 1.1: Scheduled trips for sum

s1 → p12 → p14 → d1

s2 → d2

s3 → p13 → p31 → d3

s4 → d4

Table 1.2: Scheduled trips for max

s1 → p12 → p14 → d1

s2 → d2

s3 → p31 → d3

s4 → p33 → d4

(c2), a hospital (c3), and a restaurant (c4). For each POI type, there are many options. For example,

in real life, banks have many branches in different locations. A GTS query considers all options for

each type of POIs, and returns four trips for four group members with the minimum aggregate trip

overhead distance, where each POI type is included in a single trip. Figures 1.2(a) and 1.2(b) show

four scheduled trips listed in Tables 1.1 and 1.2 for aggregate functions sum and max, respectively, for

a GTS query. Each trip starts and ends at a member’s source and destination locations, and four trips

together visit all required types of places, i.e., a bank, a supermarket, a restaurant, and a hospital.

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34
p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11

p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52
p42

p32

p53

p62

p22

p33

a) Uniform scheduled trips with the minimum

total trip overhead distance of the group

p32

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34
p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11

p33

p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52

p53

p62

p22

p42

b) Uniform scheduled trips with the minimum

maximum trip overhead distance of the group

Figure 1.3: An example UGTS query for aggregate function sum and max

A group may impose constraints while scheduling the trips. A trip returned by a GTS query may

include any number of POI types ranging from 0 to m, whereas sometimes group members may want

the uniform distribution of the tasks among themselves, i.e., they require to visit equal number of

POI types. To address such a scenario, we introduce a new variant of a GTS query, a uniform GTS

CHAPTER 1. INTRODUCTION 5

(UGTS) query, that schedules trips in a uniform manner. Let e be the number of POI types that

each group member visits for uniform distributions of POI visits among group members. If m is a

multiple of n, then e = bmn c. If m is not a multiple of n, then m mod n number of group members

visit e = bmn c+ 1 number of POI types, and the remaining group members visit e = bmn c number of

POI types.

Table 1.3: Uniform scheduled trips for sum

s1 → p14 → d1

s2 → p51 → d2

s3 → p32 → d3

s4 → p33 → d4

Table 1.4: Uniform scheduled trips for max

s1 → p12 → d1

s2 → p51 → d2

s3 → p24 → d3

s4 → p33 → d4

Considering the same example scenario shown in Figures 1.2(a-b), for a UGTS query, each group

member needs to visit one POI type as there are four members in the group and the total number

of required POI types to visit is four. Figures 1.3(a) and 1.3(b) show four scheduled trips listed in

Tables 1.3 and 1.4 for aggregate functions sum and max, respectively, for a UGTS query.

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34
p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11

p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52

p53

p62

p22

p32
p33

p42

a) Scheduled trips with dependency between

POIs bank and supermarket for the minimum to-

tal trip overhead distance of the group

p32

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34
p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11

p33

p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52

p53

p62

p22

p42

b) Scheduled trips with dependency between

POIs bank and supermarket for the minimum

maximum trip overhead distance of the group

Figure 1.4: An example GTS query with dependencies among POIs for aggregate function sum and

max

CHAPTER 1. INTRODUCTION 6

Similar to the equal distribution of tasks, the group members may also need to fix the maxi-

mum/minimum/fixed number of tasks that a group member can perform. For such constraints, the

answer for GTS and UGTS queries may change. In addition to fixing the number of POI types, group

members can also impose constraints considering the dependencies between POIs, and/or dependen-

cies between POIs and group members for both GTS and UGTS queries.

Table 1.5: Scheduled trips with dependency be-

tween POIs bank and supermarket for sum

s1 → p14 → d1

s2 → d2

s3 → p31 → p32 → d3

s4 → p33 → d4

Table 1.6: Scheduled trips with dependency be-

tween POIs bank and supermarket for max

s1 → p14 → d1

s2 → p51 → p42 → d2

s3 → d3

s4 → p33 → d4

For example, a group may need to first visit a bank to withdraw money before visiting a supermarket.

Thus, the sequence of visiting POI types may be fixed in some cases. Furthermore, the group member

who visits the bank needs to visit the supermarket. Considering the same example scenario shown

in Figures 1.2(a-b), Figures 1.4(a) and 1.4(b) show four scheduled trips listed in Tables 1.5 and 1.6

for aggregate functions sum and max, respectively, for a GTS query by considering the dependency

between the bank and the supermarket.

Table 1.7: Scheduled trips with dependency be-

tween group member u2 and POI bank for sum

s1 → p12 → p14 → d1

s2 → p51 → d2

s3 → d3

s4 → p33 → d4

Table 1.8: Scheduled trips with dependency be-

tween group member u2 and POI bank for max

s1 → p12 → d1

s2 → p51 → d2

s3 → p24 → d3

s4 → p33 → d4

There can be also a dependency between a POI and a group member. For example, in the same

example scenario shown in Figures 1.2(a-b), assume that group member u2 needs to visit the bank.

Figures 1.5(a) and 1.5(b) show four scheduled trips listed in Tables 1.7 and 1.8 for aggregate functions

CHAPTER 1. INTRODUCTION 7

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34
p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11

p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52
p42

p32

p53

p62

p22

p33

a) Scheduled trips with dependency between

group member u2 and POI bank for the mini-

mum total trip overhead distance of the group

p32

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34
p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11

p33

p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52

p53

p62

p22

p42

b) Scheduled trips with dependency between

group member u2 and POI bank for the minimum

maximum trip overhead distance of the group

Figure 1.5: An example GTS query with dependencies among members and POIs for aggregate func-

tion sum and max

sum and max, respectively, for a GTS query by considering the dependency between the bank and

group member u2.

1.2 Research Challenges and Solution Overview

A major challenge of our problem is to find the set of POIs from a huge amount of candidate POI

sets that provide the optimal answer in real time. For example, California City has about 87635

POIs with 63 different POI types [1]. For each POI type, there are on average 1300 POIs. If the

required number of POI types is 4 then the number of candidate POI sets for a GTS query is

(1300) × (1300) × (1300) × (1300) = (1300)4 = 2.86e+12, a huge amount of candidate POI sets. We

exploit elliptical properties to bound the POI search space, i.e., to prune POIs that cannot be part of

the optimal answer. Though elliptical properties have been explored in the literature for processing

other types of spatial queries [2–6] those pruning techniques are not directly applicable for GTS

queries.

CHAPTER 1. INTRODUCTION 8

Furthermore, a GTS query needs to distribute the POIs of required types in a candidate set among

group members. The candidate set contains exactly one POI from each of the m required POI types.

The number of possible ways to distribute a candidate POI set of m POIs among n group members is

nm. Thus, the efficiency of a GTS query depends on the refinement of the POI search space and the

technique to schedule trips among group members. A POI outside the search region cannot be a part

of the optimal scheduled trips. The smaller the search region, the efficient the technique to evaluate

GTS queries in spatial databases. On the other hand, the smaller the number of POI distributions

that a technique considers while scheduling trips, the efficient the GTS query processing approach is.

We develop a dynamic programming technique to reduce the number of possible combinations while

scheduling trips among group members. The technique eliminates the trip combinations that cannot

be part of the optimal query answer.

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals

p34

p12

s3

s2

s1

s4

d4d1

d3

d2

p14

p21

p11p13

p23

p63

p31

p41

p51

p61

p43

p44

p24

p52

p53

p62

p22

p32
p33

p42

Figure 1.6: An example of a GTP query

Planning trips for a single user or a group in an effective and efficient manner has become an

important topic in recent years. A trip planning (TP) query [4] for a single user finds the set of POIs

of required types that minimize the trip distance with respect to the user’s source and destination

locations. To evaluate a GTS query, applying a trip planning algorithm for every user independently

for all possible combinations of required POI types requires multiple traversal of the database and

would be prohibitively expensive. A group trip planning (GTP) query [7] identifies the set of POIs

of required types that minimize the total trip distance with respect to the source and destination

locations of group members. In a GTP query, each required POI type is visited by all group members.

CHAPTER 1. INTRODUCTION 9

On the other hand, in a GTS query, separate trips are planned for every group member and each

required POI type is visited by only a single group member. For the example scenario mentioned in

Figures 1.2(a-b), in Figure 1.6 we show the resultant trips for a GTP query, where the group members

visit all required POI types together with minimum total trip distance. A GTS query is also different

from traveling salesman problem (TSP) [8] and its variants [9–12]. The TSP and its variants assume a

limited set of POIs and cannot handle a large dataset like a huge amount of POIs stored in a database.

Thus there are no existing work to schedule trips for a group of members in spatial databases and we

propose the first approach to evaluate GTS query in spatial databases.

1.3 Contributions

To the best of our knowledge, we propose the first approach for GTS queries. In summary, the

contributions of this thesis are as follows:

• We introduce a new type of query, the group trip scheduling (GTS) query in spatial databases.

• We present an efficient GTS query processing algorithm. Specifically, we refine the POI search

space for processing GTS queries efficiently using elliptical properties and develop an efficient

dynamic programming technique to schedule trips among group members.

• We propose a variant of GTS queries, a uniform GTS (UGTS) query and provide solution for

processing UGTS queries.

• We extend our approach for processing GTS and UGTS queries with constraints like dependen-

cies between POIs and group members.

• We perform extensive experimental evaluation of the proposed techniques and provide an com-

parative analysis of experimental results using both real and synthetic datasets.

CHAPTER 1. INTRODUCTION 10

1.4 Outline

The remaining part of the thesis is organized as follows:

In Chapter 2, we formulate Group Trip Scheduling GTS queries and its variant in spatial databases

and give and overview of our system.

In Chapter 3, we outline the research work related to this problem.

In Chapter 4, we propose and explain our GTS query processing approach and extend the proposed

approach for the GTS query variant.

In Chapter 5, we present our algorithm to evaluate (GTS) queries and its variant in spatial databases.

In Chapter 6, we discuss a straightforward approach for processing GTS queries and its variant.

In Chapter 7, we show experimental results using both real and synthetic datasets.

In Chapter 8, we conclude the thesis with possible directions for future work.

Chapter 2

Problem Formulation

In this chapter, we first formulate Group Trip Scheduling (GTS) queries and variant, and describe

the notions that we use throughout the thesis. Then we give an overview of our system.

2.1 Group Trip Scheduling (GTS) Queries

In a Group Trip Scheduling (GTS) query, a group of members specify their independent source and

destination locations and specific POI types that they want to visit. A GTS query schedules trips

for every member of the group with the minimum aggregate trip overhead distance, where each

trip starts from a member’s source location, goes through any number of POI types, and ends at

corresponding member’s destination location. A GTS query for a group is formally defined as follows.

Definition 1.[Group Trip Scheduling(GTS) Queries.] Given a set P of POIs of different types

in a 2-dimensional space, a set of n group members U = {u1, u2, . . . , un} with independent n source

locations S = {s1, s2, . . . , sn} and corresponding n destination locations D = {d1, d2, . . . , dn}, a set of

m POI types C = {c1, c2, . . . , cm} and an aggregate function f , a GTS query returns a set of n trips,

T = {T1, T2, . . . , Tn} that minimizes the aggregate trip overhead distance, AggTripOvDist of group

members, where Ti corresponds to a trip of group member ui, and each POI type in C is visited by a

single member of the group.

For any two point locations x1 and x2 in a 2-dimensional space, let Function Dist(x1, x2) return

11

CHAPTER 2. PROBLEM FORMULATION 12

the distance between x1 and x2, where the distance can be measured either in the Euclidean space

or road networks. The Euclidean distance is measured as the length of the direct line connecting

x1 and x2. On the other hand, the road network distance is measured as the length of the shortest

path between x1 and x2 on a given road network graph G = (V,E,W), where each vertex v ∈ V

represents a road junction, each edge (v, v′) ∈ E represents a direct path connecting vertices v and v′

in V, and each weight wv,v′ ∈W represents the length of the direct path represented by the edge (v, v′).

A trip Ti of group member ui starts at si, ends at di, goes through POIs in Ai, where Ai includes at

most m POIs of types specified in C and m = |C| =
∑n

i=1 |Ai|. Let pj denote a POI of type cj ∈ C.

Without loss of generality, for Ai = {p1, p2, p3} and {c1, c2, c3} ∈ C, the trip distance TripDisti of Ti

is computed as Dist(si, p1) +Dist(p1, p2) +Dist(p2, p3) +Dist(p3, di), if the POI order p1 → p2 → p3

gives the minimum value for TripDisti.

On the other hand, the trip overhead distance of a group member is the additional distance

required to visit any number of POI types. The trip overhead distance of group member ui is

measured by deducting the distance between the source (si) and destination (di) locations from

the trip distance TripDisti. Thus, the trip overhead distance of group member ui is computed as

(TripDisti −Dist(si, di)).

An aggregate function f could be sum and max. If f represents sum, the total trip overhead

distance of group members is measured as AggTripOvDist =
∑n

i=1 (TripDisti −Dist(si, di)).

If f represents max, the maximum trip overhead distance of group members is measured as

AggTripOvDist = maxn
i=1 (TripDisti −Dist(si, di))

Group members may have constraints while scheduling the trips for a GTS query. It is a common

scenario that group members may want the uniform distribution of POI visits among group members.

To address such a scenario, we propose a uniform GTS (UGTS) query. In a UGTS query, we assume

that each group member visits an equal number of POI types. If m is a multiple of n, then e = bmn c.

If m is not a multiple of n, then m mod n number of group members visit e = bmn c + 1 number of

POI types, and the remaining group members visit e = bmn c number of POI types. To explain our

approach for processing UGTS queries later in this thesis, for the sake of simplicity, we assume that

CHAPTER 2. PROBLEM FORMULATION 13

m is a multiple of n and each group member visits e = bmn c number of POI types.

Sometimes, the group members may also need to fix the maximum/minimum/fixed number of tasks

that a group member can perform. Furthermore, there can be dependencies among POIs, and/or

dependencies among POIs and group members for both GTS and UGTS queries. For example, it may

be required that the bank and supermarket need to be visited by a same member and the bank may

need to be visited before the supermarket. The group member, who visits the bank, withdraws money

from the bank, and then buy groceries from the supermarket using the money. In some cases, it may

also require that a specific member needs to visit the bank to withdraw the money. In this thesis, we

develop an approach that can process both GTS and UGTS queries by considering the dependencies

between POIs and/or between a POI and a group member.

Table 2.1 summarizes the notations that we use in the rest of the thesis.

Table 2.1: Notations and their meanings

U = {u1, u2, u3, . . . , un} A set of n users

S = {s1, s2, s3, . . . , sn} A set of source locations of n users in the group

D = {d1, d2, d3, . . . , dn} A set of destination locations of n users in the group

C = {c1, c2, c3, . . . , cm} A set of m POI types

P The set of POIs of different types in a 2-dimensional space

Dist(x, y) The distance between two point locations x and y

Ti Trip for a user ui

Ai A set of POIs visited by Ti

TripDisti The trip distance of Ti

f Aggregate function(sum or max)

CHAPTER 2. PROBLEM FORMULATION 14

2.2 System Overview

Scheduled Trips

GTS QueriesLocation Based

Service Provider

Retrieve POIs

Data Storage
(R∗-tree)

Coordinator of
a user group

Figure 2.1: System architecture

Figure 2.1 shows an overview of the system architecture. The coordinator of a group sends a GTS or

UGTS query request to a location based service provider (LSP). The coordinator provides the source

and destination locations of group members and the required POI types that the group need to visit.

If the group members want to impose any type of constraints, the group coordinator also provides

that information to the LSP as input. POI information is indexed using an R∗-tree in the data storage

of the LSP. The LSP incrementally retrieves POIs from the database based on the input information,

processes GTS or UGTS queries, and returns the scheduled trips to the coordinator of the group that

minimizes the aggregate trip overhead distance of the group members.

Chapter 3

Related Work

In this chapter, we discuss the work related to our research problem. We categorize existing related

research into two parts: trip and route planning, and traveling salesman problems. Trip planning

techniques exist for both single user and group in the literature. In Section 3.1, we discuss existing

approaches for planning trip and routes for a single user. In Section 3.2, we discuss existing group trip

planning algorithms. In Section 3.3, we discuss the the solutions for the traveling salesman problem

and variants. Finally, in Section 3.4, we show how are elliptical search space refinement techniques

differ from existing ones in the literature.

3.1 Single User Trip and Route Planning Algorithms

Trip planning (TP) queries have been introduced in [4] for a single user. TP queries allow a user to

find an optimal route to visit POIs of different types while traveling from her source to destination lo-

cation. In parallel to the work of TP queries, in [6], Sharifzadeh et al. addressed the optimal sequenced

route (OSR) query that also focuses on planning a trip with the minimum travel distance for a single

user for a fixed sequence of POI types (e.g., a user first visits a restaurant then a shopping center and

a movie theater at the end). In [2], a generalization of the trip planning query, called the multi-rule

partial sequenced route (MRPSR) query has been proposed that supports multiple constraints and

a partial sequence ordering to visit POI types, and provides a uniform framework to evaluate both

of the above mentioned variants [4, 6] of trip planning queries. In [13], the authors proposed an

15

CHAPTER 3. RELATED WORK 16

incremental algorithm to find the optimal sequenced route in the Euclidean space and then determine

the optimal sequence route in road networks based on the incremental Euclidean restriction. A

GTS query is different from TP and OSR queries as GTS queries schedule trips among group members.

Besides trip planning algorithms, there exist a number of approaches [14–17] for planning routes

between the source and destination locations of users. For answering continuous route planning queries

over a road network, in [14], the authors have proposed two new classes of approximate techniques:

a proximity-based algorithm and K candidate paths algorithms. The proximity-based algorithm re-

computes the optimal route when more than some fraction of road delays change within a bounding

ellipse, whereas the K candidate-path algorithm computes a set of K possible routes and periodically

re-evaluates the best route as the road delays change. In [15], the authors have developed an approach

that the shortest path for a group of queries sharing a common travel path. The focus of this approach

is to reduce cost for the evaluation of a large number of simultaneous path queries. In [16], the authors

have developed algorithms for processing path queries with constraints like finding the shortest path

in a road network that avoids toll roads and low overpasses. In [17], the authors have focused on both

travel time and energy cost while computing the routes on a scale road network.

3.2 Group Trip Planning Algorithms

A group trip planning query that plans a trip with the minimum aggregate trip distance to visit POIs

of different types with respect to source and destination locations of group members has been first

proposed in [7]. In [18, 19], the authors proposed efficient algorithms to process GTP queries for a fixed

sequence of visiting POI types. In [3], the authors developed an efficient algorithm to process GTP

queries in both Euclidean space and road networks. In a GTP query, all group members visit all POI

types in their trips, whereas in a GTS query, each POI type is visited by a single member in the group.

Besides GTP queries, group nearest neighbor (GNN) queries have been proposed in the literature,

where a group of members visit a POI such that the aggregate distance is minimum. In [20], the

authors have proposed efficient algorithms for finding the group nearest neighbors with the minimum

total distance in the Euclidean space. In [21], the authors have developed GNN algorithms for

minimizing the minimum and the maximum distance in addition to the total distance of group

CHAPTER 3. RELATED WORK 17

members. In [22], the authors have proposed an approach for processing GNN queries in road

networks. In [23], the authors have proposed an efficient bound using vector space property and using

that bound they have developed an indexed and a non-index aggregate nearest neighbors (ANN)

algorithms.

3.3 Traveling Salesman Problem (TSP) and Variants

A traveling salesman problem (TSP) and variants that focus on planning routes with a limited set

of locations are well studied problems in the literature. A generalized traveling salesman problem

(GTSP) [10] and multiple traveling salesman problem (MTSP) [9] are well known variations of TSP.

A GTSP assumes that from groups of given locations, a salesman visits a location from every group

such that the travel distance for the route becomes the minimum. The MTSP allows more than one

salesman to be involved in the solution. In MTSP, if the salesmen are initially based at different depots

then this variation is known as the multiple depot multiple traveling salesman problem (MDMTSP).

However, the limitation of the proposed solutions for TSP and its variants is that they cannot han-

dle a large dataset (e.g., POI data) stored in the database, a scenario that is addressed by a GTS query.

In [24], the authors presented a local-global approach for GTSP. In [12], the authors present an

improved genetic algorithm to provide an alternative and effective solution to the problem. The

initial population was generated by a greedy strategy, and this enabled selected sub-route to be

included in the initial population. The authors showed that the convergent speed is increased and at

the same time complexity is significantly reduced in their approach.

In MTSP, if the salesmen are initially based at different depots then this variation is known as the

multiple depot multiple traveling salesman problem (MDMTSP). In [25], the authors provided an

3/2- approximation algorithm, which runs in polynomial time when the number of depots is constant.

CHAPTER 3. RELATED WORK 18

3.4 Elliptical Search Space Refinement Techniques

Elliptical properties have been used in the literature to refine the search region for queries like group

nearest neighbor queries [26], trip planning queries [4], group trip planning queries [3] and privacy

preserving trip planning queries [27]. Though all of these refinement techniques present the refined

search region with an ellipse, they differ on the way to set the foci and the length of the major

axis of the ellipse. In [26], the foci are set at the locations of two group members who are at the at

the maximum distance from each other, and the length of the major axis is equal to the smallest

aggregate distance computed based on retrieved POIs from the database. Any POI outside the ellipse

cannot further minimize the aggregate distance for the group members. In [3], the foci are set at

the centroids of source and destination locations of the group members, and the length of the major

axis is equal to the smallest average aggregate trip distance computed based on retrieved POIs from

the database. Any POI outside the ellipse cannot further minimize the aggregate trip distance for

the group members. In [27], the foci of the ellipse are set at the source and destination locations

of the user, and the length of the major axis is equal to the smallest trip distance computed based

on retrieved POIs from the database. Any POI outside the ellipse cannot further minimize the trip

distance for the user. In this thesis, we develop two novel techniques to refine the search region using

multiple ellipses for GTS queries.

In this thesis, we present a new type of queries, group trip scheduling (GTS) query for a group in

spatial databases and provide the first efficient solution for it. The query returns a set of optimal trips

for the group members which ensure that each resultant trip starts from and ends at corresponding

member’s source and destination point, respectively and jointly all trips visit each specified POI types

exactly once with the minimum aggregate trip overhead distance.

Chapter 4

Our Solution

In this chapter, we present our approach to process GTS queries and its variant in the Euclidean

space and road networks. In a GTS query and a variant of GTS queries, the coordinator of a group

sends the query request to the LSP and provides required information like group members’ source and

destination locations, and the required POI types. POI information is indexed using an R∗-tree [28]

in the database. The LSP incrementally retrieves POIs from the database until it identifies the trips

that minimize the aggregate trip overhead distance of the group members. The underlying idea of the

efficiency of our approach is the POI search region refinement techniques using elliptical properties

and the dynamic programming technique to schedule multiple trips among the group members.

The chapter is organized as follows. In Section 4.1, we discuss the preliminaries that we use to

develop our approach. In Section 4.2, we show an overview of our developed approach for processing

GTS queries. Every steps of our proposed approach has been discussed elaborately in Section 4.3.

4.1 Preliminaries

We use the concept of known region and search region [3, 4] for the retrieval of POIs from the

database and to keep track of the POI search region, which has been explored and which is required

to be explored.

19

CHAPTER 4. OUR SOLUTION 20

4.1.1 Known Region

The known region represents the area which has already been explored, that means all POIs inside the

known region have been retrieved from the database. We incrementally retrieve the nearest neighbors

with respect to a query point. In Figure 4.1, suppose in a state of query processing the LSP retrieves

the first nearest POIs p12 and the second nearest POI p11 with respect to the geometric centroid G of

source and destination locations of a group of three members. Here p11 is the farthest POI from G

among POIs p12 and p11 that have been already retrieved. The circular region centered at G with radius

equal to the distance between G and p11 is the known region. Initially the known region is empty as

no POI has been retrieved from the data storage. As POIs are retrieved by best-first search (BFS)

then our known region will gradually expand with respect to G.

p15

p12
p11

p13

p14

p16

p25

G

p26

p23

p21

p22

p24

Total Region

Known Region

Search Region

p35

p34

p32

p33

p31

p36

p42

p43 p46

p44

p45

p43

r = Dist(G, p11)

(combining all

users’ elliptic

search regions)

Figure 4.1: Known region and search region

CHAPTER 4. OUR SOLUTION 21

4.1.2 Search Region

The search region represents the refined space that we need to explore for the optimal solution. We

refine the POI search region with respect to the retrieved POIs in the known region using multiple

ellipses, and call it simply a search region. In Figure 4.1, based on current retrieved POIs, p12 and p11,

the search region is the union of three ellipses.

4.2 Overview of Our Approach

Find an initial POI set with respect to geometric centroid G, which includes at least one

POI from each required POI type

Compute n trips from initial POI set that provide the minimum aggregate trip

overhead distance

Update n scheduled trips

Find the next nearest POI with respect to G

within search region

Compute search region

Stop

No

Yes

Is search region

is included by

known region?

Figure 4.2: Overview of our approach for GTS queries

CHAPTER 4. OUR SOLUTION 22

Figure 4.2 shows an overview of our developed approach for processing GTS queries. In a GTS query,

to compute the upper bound of the aggregate trip overhead distance, our approach uses a heuristic to

find at least one POI from each required POI types. Our developed approach initially incrementally

retrieves the nearest POIs with respect to the geometric centroid of all group members’ sources and

destination locations, G. The retrieval of POIs continues until it found at least one POI from each

required POI type. Using the initial retrieved POI set, our approach schedules n trips that provide

the minimum aggregate trip overhead distance for the group members. For scheduling n trips, our

approach uses an efficient dynamic programming technique. After that using our developed search

region refinement techniques, our approach refines the search region to prune POIs that cannot be the

part of the query answer. Then our proposed approach checks whether the known region includes the

search region where the known region is computed based on the already retrieved POIs. If yes, then

our approach has retrieved all POIs that are required to find the optimal answer and the approach

terminates the search. Otherwise, our approach continues to incrementally retrieve the next nearest

POIs within the search region, updates scheduled n trips, refines the search region, and checks the

termination condition of the search until the condition becomes true.

4.3 Steps of GTS Query Process

In this section, we will present all the steps of our proposed approach for processing GTS queries.

For efficient query processing, our target is to find minimum bound for search region from the whole

universal region. We will retrieve all candidate POIs of required POI types incrementally and will

approach to find optimal solution for GTS queries. Our proposed GTS query processing approach has

following steps:

• Computing the known region

• Refinement of the search region

• Terminating condition for POI retrieval

• Dynamic programming technique for scheduling trips

In the following sections, we elaborate the steps of our approach for processing GTS queries and

variant in spatial databases.

CHAPTER 4. OUR SOLUTION 23

4.3.1 Computing the Known Region

For both Euclidean and road network spaces, our approach incrementally retrieves the Euclidean

nearest POIs with respect to the geometric centroid G of n source-destination pairs of a group of n

members. For the group of members rather than using multiple points (e.g., source points of each

members) as query points to retrieve POIs from the database, we are interested of using single query

point. It ensures that same POIs will not retrieve through queries accessing same nodes. We use the

geometric centroid of the locations of n users’ sources and destinations as the single query point to

retrieve POIs from the database. It uses the best-first search (BFS) to find the POIs of required POI

types that are assumed to be indexed using an R∗-tree [28] in the database. The BFS search also

p32

p34

p12

s3
G

s2

s1

s4

d4
d1

d3

d2

p14

p21

p11
p13

p23

p63

p31

p41

p51

p71

p61

p43

p44

p64p54

p24

p74
p52

p42

p53

p62

p22

p72

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals Centroid

p33

Figure 4.3: Computing the known region (known region expanding with the incremental POI retrieval)

CHAPTER 4. OUR SOLUTION 24

prunes the POIs whose types do not match with the required POI types and returns the remaining

POIs.

Let the BFS discover pj as the first nearest POI with respect to G. The circular region centered at

G with radius r equal to the Euclidean distance between G and pj is the known region. The current

known region have only one POI of any required POI types retrieved by the BFS search. With

the retrieval of the next nearest POI, r is updated with the Euclidean distance from G to the last

retrieved nearest POI from the database.

In Figure 4.3, G be the centroid of four source-destination pairs, < s1, d1 >, < s2, d2 >, < s3, d3 >,

and < s4, d4 > of a group of four members for the example scenario that we have described before in

Figure 1.2(a). With respect to G, the BFS search retrieves the nearest POI p11 of POI type c1(Bank).

The circular region centered at G with radius, r = Euclidean distance, Dist(G, p11), is the current

known region which have only one POI of a required POI type c1(Bank). The BFS search retrieves

the next nearest POI p12 of POI type c2(Supermarkets) and with the retrieval of this POI, r is

updated with the Euclidean distance from G to the farthest POI among already retrieved POIs, p11

and p12. Thus our know region expands incrementally.

4.3.2 Refinement of the Search Region

The key idea of our search region refinement techniques is based on elliptical properties. A smaller

search region decreases the number of POIs retrieved from the database, avoids unnecessary trip

computations, and reduces I/O access and computational overhead significantly. We present two

novel techniques to refine search region using multiple ellipses for different aggregate functions

(sum and max) and for having different user defined constraints. Using Theorem 4.3.1, we present

the first search region refinement technique for both aggregate functions sum and max and using

Theorems 4.3.2 and 4.3.3, we present the second search region refinement technique for aggre-

gation functions sum and max, respectively. For each individual user’s elliptic search region, we

choose the one which gives smaller bound between two ellipses computed by two different novel

refinement techniques. Finally our refined search region consists of union of the smaller multiple

CHAPTER 4. OUR SOLUTION 25

ellipses where each ellipse corresponds to each group member. Based on these refinement tech-

niques, we develop our algorithm to process GTS queries in Chapter 5. Note that existing elliptical

property based pruning techniques [2–6] for spatial queries are not directly applicable for GTS queries.

Our proposed two different techniques are :

• First refinement technique:

– Uses each group member’s maximum trip distance (e.g. the trip distance of any trip covering

m required POI types).

– Can be used for both aggregate (sum/max) functions.

• Second refinement technique:

– Uses each group member’s minimum trip distance (e.g. the trip distance of any trip that

visits no POI types) and the aggregate trip overhead distance of all members.

– For aggregate function sum, it uses the total trip overhead distance of the group where for

aggregate function max, it uses maximum trip overhead distance of the group.

The notations that we use in our theorems are summarized below:

• Tmini : the minimum trip distance for a group member ui, i.e., the distance between si and di

without visiting any POI type.

• Tmaxi : the maximum trip distance for a group member ui, i.e., the trip distance from si to di

via required m POI types.

• TripDisti: the current trip distance of a group member ui among the scheduled trips.

• AggTripOvDist: the current minimum aggregate trip overhead distance of the group, for ag-

gregate function sum, it will be
∑n

i=1(TripDisti − Tmini) and for aggregate function max, it

will be maxn
i=1(TripDisti − Tmini).

Above notations are measured in terms of Euclidean distances if a GTS query is evaluated in the

Euclidean space, and in terms of road network distances if a GTS query is evaluated in the road

networks. Theorems 4.3.1, 4.3.2 and 4.3.1 shows some ways to refine the search region for a GTS

CHAPTER 4. OUR SOLUTION 26

query in the Euclidean space and road networks.

4.3.2.1 First Refinement Technique for Aggregate Functions(sum and max)

Theorem 4.3.1 The search region can be refined as E1 ∪ E2 ∪ . . . ∪ En, where the foci of ellipse Ei

are at si and di, and the major axis of the ellipse Ei is equal to Tmaxi.

Tm
ax

i

s i

d i

p

TripDistpi
En

E2

E1

Ei

Figure 4.4: Proof of Theorem 4.3.1

Proof

Let a POI p lie outside the search region, E1 ∪ E2 ∪ . . . ∪ En, and AggTripOvDistp be the

aggregate trip overhead distance of the group, where a group member ui’s trip includes POI p as

shown in Figure 4.4. We have to prove that POI p can not be a part of the optimal solution, i.e.,

AggTripOvDistp > AggTripOvDist.

Let TripDistpi be the trip distance for the group member ui whose trip includes POI p. An elliptical

property states that the Euclidean distance between two foci via a point outside the ellipse is greater

than the length of the major axis. Since the road network distance is greater than or equal to the

Euclidean distance, the road network distance between two foci via a point outside the ellipse is also

CHAPTER 4. OUR SOLUTION 27

greater than the length of the major axis. As POI p lies outside the ellipse Ei, for both Euclidean and

road network spaces we have,

TripDistpi > Tmaxi (4.1)

which follows that,

(TripDistpi − Tmini) > (Tmaxi − Tmini) (4.2)

(Tmaxi − Tmini) represents the trip overhead distance of user ui for visiting m POI types. Any trip

passing through the POI p outside the ellipse Ei can not give better trip overhead distance for user

ui. Thus, any POI outside the union of ellipses E1, E2, . . . , En can not improve the aggregate trip

overhead distance AggTripOvDist for the group and can not be a part of an optimally scheduled

group of trips. Thus, AggTripOvDistp > AggTripOvDist.

�

4.3.2.2 Second Refinement Technique for Aggregate Function sum

Theorem 4.3.2 The search region can be refined as the union of n ellipses E1∪E2∪. . .∪En, where the

foci of ellipse Ei are at si and di, and the major axis of the ellipse is equal to AggTripOvDist+Tmini.

Ag
gT
ri
pO
vD
is
t+
Tm

in
i

s i

d i

p

TripDistpiEn

E2

E1

Ei

Figure 4.5: Proof of Theorem 4.3.2

CHAPTER 4. OUR SOLUTION 28

Proof

Let a POI p lie outside the search region, E1 ∪ E2 ∪ . . . ∪ En, and AggTripOvDistp be the total

trip overhead distance of the group, where a group member ui’s trip includes POI p as shown

in Figure 4.5. We have to prove that POI p can not be a part of the optimal solution, i.e.,

AggTripOvDistp > AggTripOvDist.

Let TripDistpi be the trip distance for the group member ui whose trip includes POI p. An elliptical

property states that the Euclidean distance between two foci via a point outside the ellipse is greater

than the length of the major axis. Since the road network distance is greater than or equal to the

Euclidean distance, the road network distance between two foci via a point outside the ellipse is also

greater than the length of the major axis. As the POI p lies outside the ellipse Ei, for both Euclidean

and road network spaces we have,

TripDistpi > AggTripOvDist+ Tmini

Rearranging the equation we get,

TripDistpi − Tmini > AggTripOvDist (4.3)

For aggregate function sum, by definition we know,

AggTripOvDistp = (TripDistpi − Tmini) +
n∑

l=1,l 6=i

(TripDistpl − Tminl
) (4.4)

and
n∑

l=1,l 6=i

TripDistpl ≥
n∑

l=1,l 6=i

Tminl
(4.5)

From Equations 4.4 and 4.5, we get,

AggTripOvDistp ≥ (TripDistpi − Tmini) (4.6)

Combining inequalities of 4.3 and 4.6,

AggTripOvDistp > AggTripOvDist

Thus, any POI outside the search region E1 ∪ E2 ∪ . . . ∪ En can not improve the total trip distance

for the group and can not be a part of an optimally scheduled group of trips.

CHAPTER 4. OUR SOLUTION 29

�

For aggregate function sum, our approach refines the ellipses of every group member independently

using both bounds proposed in Theorems 4.3.1 and 4.3.2, and selects the bound that provides the

minimum length for the major axis of the ellipse. For the same foci, the smaller major axis represents

a smaller ellipse. It may happen that for an ellipse of a member, Theorem 4.3.1 provides the minimum

length of the major axis and for another member’s ellipse, Theorem 4.3.2 provides the minimum

length of the major axis. The refined search region is computed as the union of the smaller ellipses

of all group members.

4.3.2.3 Second Refinement Technique for Aggregate Function max

Theorem 4.3.3 The search region can be refined as the union of n ellipses E1∪E2∪. . .∪En, where the

foci of ellipse Ei are at si and di, and the major axis of the ellipse is equal to AggTripOvDist+Tmini.

Ag
gT
ri
pO
vD
is
t+
Tm

in
i

s i

d i

p

TripDistpiEn

E2

E1

Ei

Figure 4.6: Proof of Theorem 4.3.3

Proof

Let a POI p lie outside the search region, E1 ∪ E2 ∪ . . . ∪ En, and AggTripOvDistp be the

maximum trip overhead distance of the group, where a group member ui’s trip includes POI p as

CHAPTER 4. OUR SOLUTION 30

shown in Figure 4.6. We have to prove that POI p can not be a part of the optimal solution, i.e.,

AggTripOvDistp > AggTripOvDist.

Let TripDistpi be the trip distance for the group member ui whose trip includes POI p. An elliptical

property states that the Euclidean distance between two foci via a point outside the ellipse is greater

than the length of the major axis. Since the road network distance is greater than or equal to the

Euclidean distance, the road network distance between two foci via a point outside the ellipse is also

greater than the length of the major axis. As the POI p lies outside the ellipse Ei, for both Euclidean

and road network spaces we have,

TripDistpi > AggTripOvDist+ Tmini

Rearranging the equation we get,

TripDistpi − Tmini > AggTripOvDist (4.7)

For aggregate function max, by definition we know,

AggTripOvDistp = max(
n

max
l=1,l 6=i

(TripDistpl − Tminl
), (TripDistpi − Tmini)) (4.8)

and

AggTripOvDistp ≥ (TripDistpi − Tmini) (4.9)

Combining inequalities of 4.7 and 4.9, we get,

AggTripOvDistp > AggTripOvDist (4.10)

Thus, any POI outside the search region E1 ∪ E2 ∪ . . . ∪ En can not improve the total trip distance

for the group and can not be a part of an optimally scheduled group of trips.

�

Similar to aggregate function sum, for aggregate function max, our approach also uses Theorem 4.3.1

to refine search region. Using both bounds proposed in Theorems 4.3.1 and 4.3.3, our approach refines

the ellipses of every group member independently and selects the bound that provides the minimum

length for the major axis of the ellipse. For the same foci, the smaller major axis represents a smaller

ellipse. It may happen that for an ellipse of a member, Theorem 4.3.1 provides the minimum length

CHAPTER 4. OUR SOLUTION 31

of the major axis and for another member’s ellipse, Theorem 4.3.3 provides the minimum length of

the major axis. The refined search region is computed as the union of the smaller ellipses of all group

members.

4.3.2.4 Extensions for Uniform GTS (UGTS) Queries

Refinement techniques that has been described in Section 4.3.2.1, 4.3.2.2 and 4.3.2.3 for aggregate

functions sum and max applicable for uniform GTS queries where each group member visits equal

number of POI types for both aggregate functions sum and max with slight modifications. It is

possible to refine the search region more optimally for having the uniform POI type constraint. For

achieving that, we update the definition of Tmini and Tmaxi according to the constraints for the

Theorem 4.3.1, Theorem 4.3.2 and Theorem 4.3.3 for UGTS queries.

In a UGTS query, it should not happen that a group member visits no POI types or visits all required

POI types. Here every group member visits uniform or equal number of POI types and each required

POI type is included in a single trip. So we consider a subset of uniform number of POI types instead

of considering all required POI types for Tmaxi and no POI type for Tmini . It is possible that we may

find better bound for each user’s elliptic search region which will help us to refine search region more

efficiently.

Suppose in a UGTS query, a group of n members want to visit m required POI types combinedly

where each group member should visit equal or fixed (e = m/n) number of POI types. For having

the constraint, Tmini represents the minimum trip distance of any trip covering any subset of e POI

types from all required m POI types for a group member ui instead of the distance between si and

di without visiting any POI type. Similarly, Tmaxi represents the maximum trip distance of any trip

covering any subset of e POI types from all required m POI types for a group member ui instead of

the trip distance from si to di via required m POI types.

CHAPTER 4. OUR SOLUTION 32

4.3.2.5 Extensions for GTS and UGTS Queries with Constraints

In a GTS or a UGTS query with “Dependencies among POIs” constraint, a group may need to visit a

subset POI types in a user defined fixed order. Because of having defined fixed POI type order, some

combinations or subset of POI types should be invalid for all group members. For computing the

values of Tmini and Tmaxi for a group member ui, we should discard those invalid combinations as well.

Similarly, for having constraint “Dependencies among users and POIs” in a GTS or UGTS query, a

group member may need to visit any fixed POI type among the required POI types that the group

should visit combinedly. Some combinations or subset of POI types and group members should be

invalid because of having dependencies among users and POIs. For computing the values of Tmini and

Tmaxi for a group member ui, we must discard those invalid user and POI types combinations.

4.3.2.6 Example Scenario of the Search Region Refinement

In a GTS query, our approach retrieves an initial set of nearest POIs that includes at least one POI

of each required type. From the initial set of POIs, our approach schedules trips with the minimum

aggregate trip overhead distance for the group using the dynamic programming technique shown

in Section 4.3.4, and refines the search region using Theorems 4.3.1, 4.3.2 and 4.3.3 for aggregate

functions sum and max. With the incremental retrieval of the nearest POIs from G within the

refined search region, our approach checks and updates the scheduled trips, if the newly discovered

POIs improve the current scheduled trips. The newly updated trips may improve the bound Tmaxi

for a group member or the aggregate trip overhead distance of the group AggTripOvDist, which can

further refine the search region.

CHAPTER 4. OUR SOLUTION 33

p34

p12

s3
G

s2

s1

s4

d4
d1

d3

d2

p14

p21

p11

p33

p13

p23

p63

p31

p41

p51

p71

p61

p43

p44

p64p54

p24

p74
p52

p42

p32

p53

p62

p22

p72

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals Centroid

Figure 4.7: Initial known region (the circle with center G) and scheduled trips calculated using initial

POIs

For our current example scenario that we have already described in Figure 1.2(a), Figure 4.7 shows

the initial set of retrieved POIs p11, p
2
1, p

1
2, p

1
3, p

1
4, the known region, and four scheduled trips using

the initial POI set for a group of four members with minimum total trip overhead distance of the

group. Each scheduled trip starts from and ends at corresponding user’s source and destination

location, respectively, and each required POI type is included in a single trip. Note that the initial

set may include more than one POI of same POI type (e.g., p11 and p21) because the incremental near-

est POI retrieval continues until the initial set includes at least one POI from every required POI type.

CHAPTER 4. OUR SOLUTION 34

p34

p12

s3
G

s2

s1

s4

d4
d1

d3

d2

p14

p21

p11

p33

p13

p23

p63

p31

p41

p51

p71

p61

p43

p44

p64p54

p24

p74
p52

p42

p32

p53

p62

p22

p72

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals Centroid

Figure 4.8: Refined search region

Using bounds from Theorem 4.3.1 and 4.3.2 for aggregate function sum, we compute and refine the

search region. Figure 4.8 shows the refined search region as the union of four ellipses.

For aggregate function max, our approach refines the search region using Theorems 4.3.1 and 4.3.3.

For uniform GTS (UGTS) queries and GTS or UGTS queries having different types of constraints,

the search region will use the refinement techniques that has been described in Section 4.3.2.4 and in

Section 4.3.2.5, respectively.

CHAPTER 4. OUR SOLUTION 35

p34

p12

s3
G

s2

s1

s4

d4
d1

d3

d2

p14

p21

p11

p33

p13

p23

p63

p31

p41

p51

p71

p61

p43

p44

p64p54

p24

p74
p52

p42

p32

p53

p62

p22

p72

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals Centroid

Figure 4.9: Known region expands (outer circle) and search region shrinks (inner ellipses)

In our example scenario, in Figure 4.9, after retrieving the next nearest POI p31 within search region,

the known region expands, which has the radius equal to Dist(G, p31). Our approach checks whether

this new POI can improve the current solution. In this example, the new POI p31 decreases the trip

distance for group member u3 and thus, the updated trip for u3 is s3 → p13 → p31 → d3. It also

improves the aggregate trip overhead distance and shrinks the search region for all group members.

In Figure 4.9, the dotted lines show the scenario before retrieving POI p31 and the shaded areas with

solid lines show the updated scenario after retrieving the POI p31. With the retrieval of the nearest

POIs from the database, the known region expands and the search region shrinks or remains same.

CHAPTER 4. OUR SOLUTION 36

4.3.3 Terminating Condition for POI Retrieval

When the known region covers the search region, no more minimization in the aggregate trip overhead

distance is further possible. At this point, we can terminate traversing R∗-tree and retrieving POIs.

Figure 4.10 shows that the known region covers the search region which is the union of all users’ elliptic

search regions. This is the termination condition of our algorithm and our algorithm terminates here.

p34

p12

s3
G

s2

s1

s4

d4
d1

d3

d2

p14

p21

p11

p33

p23

p63

p31

p41

p51

p71

p61

p43

p44

p64p54

p24

p74
p52

p42

p32

p53

p62

p22

p72

Sources Destinations
SupermarketsBanks

Restaurants
Hospitals Centroid

Known Region
Search Region

(combining all members’ elliptic search regions)

p13

Figure 4.10: Terminating condition: the known region includes the search region

CHAPTER 4. OUR SOLUTION 37

4.3.4 Dynamic Programming Technique for Scheduling Trips

Scheduling the trips among the group members is an essential component of GTS query processing

approach. After retrieving the initial POI set, our approach schedules the trips among the group

members such that the aggregate trip overhead distance of the group is minimized. Each time our

approach retrieves new POIs, it again schedules the trips using new POIs, if the new trips improve the

aggregate trip overhead distance of the group. Thus, the efficiency of our approach largely depends

on the computational cost of scheduling trips among the group members. We propose a dynamic

programming technique to schedule the trips among the group members. The technique reduces the

number of trip combinations that we need to consider to find the set of trips with the minimum

aggregate trip overhead distance. The distances computed in our dynamic programming technique

are Euclidean distances, if a GTS query is processed in the Euclidean space, and the distances are

road network distances, otherwise.

In Sections 4.3.4.1 and 4.3.4.2, we elaborately discuss our proposed dynamic programming approach

for GTS and UGTS queries, respectively, for both aggregate functions sum and max. We extend

our dynamic programming approach to schedule trips for GTS or UGTS queries with “dependencies

among POIs” and “dependencies among users and POIs” constraints in Sections 4.3.4.3 and 4.3.4.4,

respectively.

4.3.4.1 Trip Scheduling for GTS Queries

For aggregate function sum, our dynamic programming technique minimizes the following objective

function:
n∑

i=1

(TripDisti − Tmini)

On other hand, for aggregate function max, the objective function that our dynamic programming

technique minimizes is as follows:

n
max
i=1

(TripDisti − Tmini)

satisfying constraints that a group of n members together visit m different POI types and each POI

type is visited by a single group member. Let CTi be the set of POI types visited by trip Ti of

CHAPTER 4. OUR SOLUTION 38

user ui, where 0 ≤ |CTi | ≤ m. Formal representation of the constraints are as follows. The dynamic

programming technique satisfies,

n∑
i=1

|CTi | = m,

n⋃
i=1

CTi = C and ∀i,j(CTi ∩ CTj) = ∅

Constraints
∑n

i=1 |CTi | = m and
⋃n

i=1CTi = C ensure that each required POI type should be visited

by any group member. Another constraint ∀i,j(CTi ∩ CTj) = ∅ ensures each POI type should be

included in a single trip exactly once.

For the GTS query, we have a set of m POI types C={c1, c2, . . . , cm}, where a group member visits

any number of POI types from 0 to m. Thus, there are
∑m

y=0(
mCy) ways to choose any y POI types

from m(= |C|) different POI types, where 0 ≤ y ≤ m. Suppose CCy denotes the set of all possible y

chooses from the set of POI types C. Let (CCy)j represent the jth member of the set CCy. Suppose

we have a set of m = |C| = 4 POI types, C = {c1, c2, c3, c4}. For y = 2, the number of ways to choose

y POI types from m(= |C|) POI types is |C|Cy = 4C2 = 6 and the set all possible y chooses from

the set C is CCy = {{c1, c2}, {c1, c3}, {c1, c4}, {c2, c3}, {c2, c4}, {c3, c4}}, where (CCy)1 = {c1, c2},

(CCy)2 = {c1, c3}, . . . , (CCy)6 = {c3, c4}.

For each member of the set CCy, we calculate optimal trips for each group member in

U = {u1, u2, u3, . . . , un} and store trip overhead distances for future computations. This is the

initial step for our dynamic programming technique. We define m+1 dynamic tables, ν0, ν1, ν2, . . . νm

to store the trip overhead distances of every single member of the group and the aggregate trip over-

head distances of the combined group members. Table νy has mCy rows, where jth row corresponds

to jth member of the set CCy, i.e., (CCy)j .

Each table has two types of columns : single member columns and combined member columns.

Each table has n single member columns, where each column corresponds to a member of the group

U = {u1, u2, u3, . . . , un}. Except the dynamic table ν0, the cells of these columns of all other dynamic

tables ν1, ν2, . . . νm store the minimum trip overhead distances for the corresponding column’s

member to visit the POI types of the corresponding rows of that table. The single member columns

of the dynamic table ν0 store the trip distance which is actually the distance between si and di via

no POI types, instead of storing the trip overhead distances of the group members. The motivation

CHAPTER 4. OUR SOLUTION 39

of this exceptional case is, whenever we need trip distance (e.g., to compute Tmaxi value which

represents the maximum trip distance of a group member ui) instead of trip overhead distance of any

trip, we can easily use the stored value of table ν0 and compute the actual trip distance from the

stored trip overhead distance.

Each dynamic table except νm has (n−2) combined member columns u1u2, u1u2u3, . . . , u1u2 . . . un−1,

where the cells of the corresponding columns store the minimum aggregate trip overhead distances of

the corresponding column’s multiple members passing through the POI types of the corresponding

rows of that table. For example, each cell of the column u1u2 stores the minimum aggregate trip

overhead distance of users u1 and u2 to visit the POI types of the corresponding row, where a POI

type is visited either by u1 or u2. Table 4.1 shows the structure of νy where 0 ≤ y ≤ (m−1). Table 4.2

shows the structure of νm that has an extra column u1u2 . . . un to store the minimum aggregate trip

overhead distance for n scheduled trips, where n trips together visit m required POI types and every

POI type is visited by a single trip. The table has only one row which contains all m POI types.

Table 4.1: Structure of dynamic table νy, where 0 ≤ y ≤ (m− 1)

{u1} {u2} . . . {un} {u1u2} {u1u2u3} . . . {u1u2 . . . un−1}

{c1, c2, . . . , cy}

{c1, c3, . . . , cy}
...

Table 4.2: Structure of dynamic table νm

{u1} {u2} . . . {un} {u1u2} {u1u2u3} . . . {u1u2 . . . un}

{c1, c2, . . . , cm}

In addition to storing the minimum trip overhead distances, each cell of the dynamic tables

ν1, ν2, . . . νm stores the set of POIs for which the minimum trip overhead distance for single member

columns or the minimum aggregate trip overhead distance for combined member columns is obtained.

For example, cell ν3[{c1, c3, c4}][{u1}] stores the minimum trip overhead distance and the POI set

CHAPTER 4. OUR SOLUTION 40

< p3, p1, p4 >, for which u1 obtains the minimum trip overhead distance to visit POI types {c1, c3, c4}.

The size of a dynamic table νy is : mCy × (n + (n − 2)), where 0 ≤ y ≤ (m − 1), and the size

of table νm is mCm × (n + (n − 2) + 1). Thus, the total space required for dynamic tables is∑(m−1)
y=0 (mCy × (n + (n − 2))) + (mCm × (n + (n − 2) + 1)) = (2m+1 × (n − 1) + 1) units. Simi-

larly, the processing time of the dynamic programming technique is proportional to the number of

the dynamic tables and the number of cells in a dynamic table, which vary with the values of m and n.

Contents of cells of the single member columns of a dynamic table are computed using already

retrieved POIs from the database. To compute the contents of cells of the combined member columns

of a dynamic table νy, we use only the single member columns (e.g., to compute combined member

column u1u2) or both single and combined member columns (e.g., to compute combined member

columns u1u2u3 to u1u2 . . . un) of dynamic tables ν0, ν1, . . . , νy. For example, for computing each cell

of combined member column u1u2 of table ν3, we use the already calculated single member columns

of dynamic tables ν0, ν1, ν2 and ν3 based on possible number of POI type distributions between

members u1 and u2 of that corresponding column. For the example scenario, to visit 3 POI types,

possible ways to distribute the number of POI types between u1 and u2 are listed in Table 4.3.

Table 4.3: Possible number of POI type distributions between u1 and u2

u1 u2

3 0

2 1

1 2

0 3

Formally, for aggregate function sum, the minimum total trip overhead distance stored in a cell (e.g.,

νy[{c1, c2, . . . , cy}][{u1u2}] of table νy) is computed as

miny
g=0{min

mCg

j=1 {min
mCy−g

k=1 {(νg[(CCg)j][{u1}] + ν(y−g)[(
CC(y−g))

k][{u2}])}}},

where (CCg)j ∩ (CC(y−g))
k = ∅.

For aggregate function max, the minimum value of maximum trip overhead stored in a cell (e.g.,

CHAPTER 4. OUR SOLUTION 41

νy[{c1, c2, . . . , cy}][{u1u2}] of table νy) is computed as

miny
g=0{min

mCg

j=1 {min
mCy−g

k=1 {max(νg[(CCg)j][{u1}], ν(y−g)[(CC(y−g))
k][{u2}])}}},

where (CCg)j ∩ (CC(y−g))
k = ∅.

The constraints guarantee that no POI type is considered twice while computing the minimum

aggregate trip overhead distance.

Similar to the combined member column u1u2, for computing each cell of combined member column

u1u2u3 of ν4, we use the same dynamic tables, and similar distributions listed in Table 4.3 between

combined members u1u2 (instead of u1) and single member u3 (instead of u2). Thus, we incrementally

compute dynamic tables ν0, ν1, ν2, . . . , νm, one by one and finally we get our desired GTS query result.

We elaborate our dynamic programming technique with an example for aggregate

function sum. In our current example scenario, a group of 4 members, {u1, u2, u3, u4}, together

want to visit 4 POI types {c1, c2, c3, c4} with the minimum total trip overhead distance, and each

POI type is visited by a single member. Here, n = 4, m = 4, and a group member can visit any

number of POI types between 0 to m.

Figure 4.7 shows the initial set of retrieved POIs: p11, p
2
1, p

1
2, p

1
3, p

1
4 and the known region. The initial

set includes at least a POI from every POI type. Using these POIs, we first compute all possible

trips for the group members and then schedule the trips using our proposed dynamic programming

technique.

We define (m + 1), i.e., 5 tables, ν0, ν1, ν2, ν3 and ν4 to store the computed trip distances (single

member columns of dynamic table ν0) and trip overhead distances (combined member columns of

dynamic table ν0 and both single and combined member columns of dynamic tables ν1, ν2, ν3 and

ν4) of the group members. Each dynamic table νy has m=4Cy rows, where each row corresponds to a

member of the set CCy. Each table has n = 4 single member columns, where a column corresponds

to a group member in {u1, u2, u3, u4}, and n − 2 = 2 combined member columns, u1u2 and u1u2u3.

Table ν4 contains an extra column u1u2u3u4 to store the minimum total trip overhead distance of

the 4 scheduled trips for 4 users that together visit 4 POI types, where each POI type is visited by a

single user. Tables 4.4 (a-e) show ν0, ν1, ν2, ν3 and ν4 for the considered example.

CHAPTER 4. OUR SOLUTION 42

Table 4.4: Dynamic tables for an example scenario for aggregate function sum

(a) Dynamic table ν0

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}

∅ 28.75 25.00 47.55 77.48 0.0 0.0

(b) Dynamic table ν1

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}

{c1} 105.36 76.55 57.61 7.32 76.55 57.61

{c2} 49.05 23.99 7.03 4.72 23.99 7.03

{c3} 105.32 67.80 41.85 5.42 67.80 41.85

{c4} 102.51 70.29 42.02 5.65 70.29 42.02

(c) Dynamic table ν2

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}

{c1, c2} 105.37 76.58 57.61 7.36 76.58 57.61

{c1, c3} 105.41 78.54 57.98 7.32 78.54 57.98

{c1, c4} 106.98 81.84 58.61 7.34 81.84 58.61

{c2, c3} 105.34 69.92 41.86 5.46 69.92 41.86

{c2, c4} 106.19 72.64 43.19 5.67 72.64 43.19

{c3, c4} 107.01 73.28 43.62 5.83 73.28 43.62

(d) Dynamic table ν3

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}

{c1, c2, c3} 105.41 78.54 57.98 7.36 78.54 57.98

{c1, c2, c4} 107.06 81.84 58.62 7.36 81.84 58.62

{c1, c3, c4} 107.03 81.84 58.61 7.34 81.84 58.61

{c2, c3, c4} 107.14 73.52 43.93 5.86 73.52 43.93

(e) Dynamic table ν4

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3} {u1u2u3u4}

{c1, c2, c3, c4} 107.15 81.84 58.62 7.36 81.84 58.62 7.36

CHAPTER 4. OUR SOLUTION 43

Computing single member columns: In the dynamic tables, columns u1, u2, u3 and u4 are the

single member columns. Each cell of these columns of a table stores the minimum trip overhead

distance for the corresponding column’s user passing through POI types of the corresponding row of

that table. For example, in Table 4.4(c), cell ν2[{c1, c2}][{u1}] contains the minimum trip overhead

distance for user u1 passing through POI types c1 and c2. For computing this trip overhead distance,

we consider user u1’s source (s1) and destination (d1) locations along with candidate POIs in the

initial set: {p11, p21} and {p12} with POI types c1 and c2, respectively. All candidate trips for cell

ν2[{c1, c2}][{u1}] using these POIs with the corresponding trip overhead distances are listed in

Table 4.5.

Table 4.5: Candidate trips with trip overhead distances for cell ν2[{c1, c2}][{u1}]

Candidate trips Trip overhead distances

s1 → p12 → p11 → d1 105.37

s1 → p12 → p21 → d1 109.89

s1 → p11 → p12 → d1 106.62

s1 → p21 → p12 → d1 126.58

Among the candidate trips listed in this table, the minimum trip overhead distance 105.37 for trip

s1 → p12 → p11 → d1 is stored in cell ν2[{c1, c2}][{u1}]. Similarly, our dynamic programming technique

populates all cells of the single member columns of ν1, ν2, ν3 and ν4. Table ν0 is a trivial one that

stores trip distances instead of trip overhead distance for particular user’s trip from her source to

destination location and trip overhead distances for the combined members.

Computing combined member columns: Using the single member columns and already calcu-

lated combined member columns, we dynamically calculate the combined member columns of ν0, ν1,

ν2, ν3 and ν4 one by one.

In ν0, cell ν0[∅][{u1u2}] contains the minimum total trip overhead distance of trips T1 and T2, where

the trips correspond to users u1 and u2, respectively, and visit no POI types. Table 4.6 shows the

candidate combinations that are used to compute the cell value, where trip distances are for users’

CHAPTER 4. OUR SOLUTION 44

trips from their source to destination locations (single member columns) and trip overhead distances

(combined member columns).

Table 4.6: Candidate combined combinations with trip overhead distances for cell ν0[∅][{u1u2}].

Combined combinations Distances Trip overhead

(ν0[∅][{u1}]− ν0[∅][{u1}]) +

(ν0[∅][{u2}]− ν0[∅][{u2}])

(28.75− 28.75) + (25.00− 25.00) 0.00

Table 4.7: Candidate combined combinations with trip overhead distances for cell ν1[{c1}][{u1u2}].

Combined combinations Distances Trip overhead

ν1[{c1}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 105.36 + (25.00− 25.00) 105.36

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν1[{c1}][{u2}] (28.75− 28.75) + 76.55 76.55

To compute the values for the cells of the combined member columns for any table νy, we need

to consider all dynamic tables from ν0 to νy. For example, in ν2, cell ν2[{c1, c2}][{u1u2}] stores the

minimum total trip overhead distance of trips T1 and T2, where the trips correspond to users u1

and u2, respectively. Here a user (u1 or u2) can visit any number (0 or 1 or 2) of POI types, but u1

and u2 together visit the POI types {c1, c2}, and each POI type is either visited by u1 or u2. For

computing the cell value, we use stored single member trip overhead distances and multiple member

trip overhead distances in ν0, ν1 and ν2. Using ν0, ν1 and ν2 (Tables 4.4(a-c)), Table 4.8 shows

the candidate combinations of POI types for u1 and u2 along with the trip overhead distances for

computing the value for cell ν2[{c1, c2}][{u1u2}] in ν2 (Table 4.4(c)). Among candidate combinations

listed in Table 4.8, the minimum total trip overhead distance 76.58 is stored in cell ν2[{c1, c2}][{u1u2}].

CHAPTER 4. OUR SOLUTION 45

Table 4.8: Candidate combined combinations with trip overhead distances for cell ν2[{c1, c2}][{u1u2}].

Combined Combinations Distances Trip overhead

ν2[{c1, c2}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 105.37 + (25.00− 25.00) 105.37

ν1[{c1}][{u1}] + ν1[{c2}][{u2}] 105.36 + 23.99 129.35

ν1[{c2}][{u1}] + ν1[{c1}][{u2}] 49.05 + 76.55 125.60

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν2[{c1, c2}][{u2}] (28.75− 28.75) + 76.58 76.58

Similarly, our dynamic programming technique populates all cells of the combined member columns

of ν0, ν1, ν2, ν3 and ν4. Candidate combinations with trip overhead distances for cell ν1[{c1}][{u1u2}] ,

ν3[{c1, c2, c3}][{u1u2}] and ν4[{c1, c2, c3, c4}][{u1u2}] are listed in Table 4.7, Table 4.9 and Table 4.10,

respectively.

Table 4.9: Candidate combined combinations with trip overhead distances for cell

ν3[{c1, c2, c3}][{u1u2}]

Combined combinations Distances Trip overhead

ν3[{c1, c2, c3}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 105.41 + (25.00− 25.00) 105.41

ν2[{c1, c2}][{u1}] + ν1[{c3}][{u2}] 105.37 + 67.80 173.17

ν2[{c1, c3}][{u1}] + ν1[{c2}][{u2}] 105.41 + 23.99 129.40

ν2[{c2, c3}][{u1}] + ν1[{c1}][{u2}] 105.34 + 76.55 181.89

ν1[{c1}][{u1}] + ν2[{c2, c3}][{u2}] 105.36 + 69.92 175.28

ν1[{c2}][{u1}] + ν2[{c1, c3}][{u2}] 49.05 + 78.54 127.59

ν1[{c3}][{u1}] + ν2[{c1, c2}][{u2}] 105.32 + 76.58 181.90

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν3[{c1, c2, c3}][{u2}] (28.75− 28.75) + 78.54 78.54

CHAPTER 4. OUR SOLUTION 46

Table 4.10: Candidate combined combinations with trip overhead distances for cell

ν4[{c1, c2, c3, c4}][{u1u2}]

Combined Combinations Distances Trip overhead

ν4[{c1, c2, c3, c4}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 107.15 + (25.00− 25.00) 107.15

ν3[{c1, c2, c3}][{u1}] + ν1[{c4}][{u2}] 105.41 + 70.29 175.70

ν3[{c1, c2, c4}][{u1}] + ν1[{c3}][{u2}] 107.06 + 67.80 174.86

ν3[{c1, c3, c4}][{u1}] + ν1[{c2}][{u2}] 107.03 + 23.99 131.02

ν3[{c2, c3, c4}][{u1}] + ν1[{c1}][{u2}] 107.14 + 76.55 183.69

ν2[{c1, c2}][{u1}] + ν2[{c3, c4}][{u2}] 105.37 + 73.28 178.65

ν2[{c1, c3}][{u1}] + ν2[{c2, c4}][{u2}] 105.41 + 72.64 178.05

ν2[{c1, c4}][{u1}] + ν2[{c2, c3}][{u2}] 106.98 + 69.92 176.90

ν2[{c2, c3}][{u1}] + ν2[{c1, c3}][{u2}] 105.34 + 81.84 187.18

ν2[{c2, c4}][{u1}] + ν2[{c1, c3}][{u2}] 106.19 + 78.54 184.73

ν2[{c3, c4}][{u1}] + ν2[{c1, c2}][{u2}] 107.01 + 76.58 183.59

ν1[{c1}][{u1}] + ν3[{c2, c3, c4}][{u2}] 105.36 + 73.52 178.88

ν1[{c2}][{u1}] + ν3[{c1, c3, c4}][{u2}] 49.05 + 81.84 130.89

ν1[{c3}][{u1}] + ν3[{c1, c2, c4}][{u2}] 105.32 + 81.84 187.16

ν1[{c4}][{u1}] + ν3[{c1, c2, c3}][{u2}] 102.51 + 78.54 181.05

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν4[{c1, c2, c3, c4}][{u2}] (28.75− 28.75) + 81.84 81.84

We gradually combine trips of other users, u3 and u4, and update the other combined member

columns one by one. For example, in ν2, cell ν2[{c1, c2}][{u1u2u3}] contains the minimum total

trip overhead distance of trips T1, T2 and T3, where the trips correspond to users u1, u2 and u3,

respectively, and together visit the POI types {c1, c2}. Using ν0, ν1 and ν2 (Tables 4.4(a-c)), Table 4.11

shows the candidate combinations of POI types for combined members u1u2 and single member u3

along with the trip overhead distances for computing the value for cell ν2[{c1, c2}][{u1u2u3}] in ν2

(Table 4.4(c)).

CHAPTER 4. OUR SOLUTION 47

Table 4.11: Candidate combined combinations with trip overhead distances for cell

ν2[{c1, c2}][{u1u2u3}].

Combined Combinations Distances Trip overhead

ν2[{c1, c2}][{u1u2}] + (ν0[∅][{u3}]− ν0[∅][{u3}]) 76.58 + (47.55− 47.55) 76.58

ν1[{c1}][{u1u2}] + ν1[{c2}][{u3}] 76.55 + 7.03 83.58

ν1[{c2}][{u1u2}] + ν1[{c1}][{u3}] 23.99 + 57.61 81.60

ν0[∅][{u1u2}] + ν2[{c1, c2}][{u3}] 0.0 + 57.61 57.61

Similarly we compute all combined member columns of ν0 to ν4. The rightmost cell of the final table

νm, which is ν4[{c1, c2, c3, c4}][{u1u2u3u4}] in our example scenario, contains the minimum total trip

overhead distance of four trips T1, T2, T3 and T4, where the trips correspond to users u1, u2, u3 and

u4, respectively. These trips together visit all required POI types {c1, c2, c3, c4} and each POI type is

visited by a single user. This is actually the minimum total trip overhead distance of the group for

the dynamic scheduling based on the retrieved initial POIs: p11, p
2
1, p

1
2, p

1
3, p

1
4. The minimum total trip

overhead distance is 7.36 and is stored in cell ν4[{c1, c2, c3, c4}][{u1u2u3u4}].

Note that the rightmost cell of the final table ν4[{c1, c2, c3, c4}][{u1u2u3u4}] contains the min-

imum total trip distance of the group which is AggTripOvDist that we have mentioned

in Section 4.3.2. To get the values of Tmini for each user ui, we simply take the minimum

values from Table 4.4(a). On the other hand, to get the values of Tmaxi which is the max-

imum trip distance for each user ui for visiting all required POI types, we take the maxi-

mum values from Table 4.4(e) and then add the distance from si to di without visiting any

POI types. Tmini and Tmaxi values for users {u1, u2, u3, u4} are {28.75, 25.00, 47.55, 77.48} and

{(107.15 + 28.75), (81.84 + 25.00), (58.62 + 47.55), (7.36 + 77.48)} ≡ {135.90, 106.84, 106.17, 84.84},

respectively. Using these values we refine the search region based on Theorems 4.3.1 and 4.3.2. For

user u1, based on Theorem 4.3.1, the major axis for the elliptic region E1 is 135.90. On the other

hand, based on Theorem 4.3.2, the major axis is 7.36 + 28.75 = 36.11. We take the best bound among

them which is 36.11, the second one.

Each cell of ν0, ν1, ν2, ν3 and ν4 also stores the set of POIs for which the minimum trip overhead

CHAPTER 4. OUR SOLUTION 48

distance is obtained. For the sake of clarity we do not show them in the tables.

Now we elaborate our dynamic programming technique for aggregate function max.

To elaborate the dynamic programming technique for aggregate function max, we consider similar

example scenario that we have used for aggregate function sum. For aggregate function max, a group

of 4 members, {u1, u2, u3, u4}, together want to visit 4 POI types {c1, c2, c3, c4} with the minimum

value of maximum trip overhead of the group members and each POI type is visited by a single

member. Here, n = 4, m = 4, and a group member can visit any number of POI types between 0 to m.

After initiating the GTS query for aggregate function max by the coordinator of the group of four

members, the LSP retrieves initial set of POIs which includes at least a POI from every required POI

type. Using the initial set of POIs, we first compute all possible trips for the group members and then

schedule the trips using our proposed dynamic programming technique for aggregate function max.

Tables 4.12(a-e) show (m + 1), i.e., 5 tables, ν0, ν1, ν2, ν3 and ν4 for the considered example.

The tables store the computed minimum trip overhead distances and combined minimum value

of maximum trip overhead of the group members. Each dynamic table νy has m=4Cy rows, where

each row corresponds to a member of the set CCy. Each table has n = 4 single member columns,

where a column corresponds to a group member in {u1, u2, u3, u4}, and n− 2 = 2 combined member

columns, u1u2 and u1u2u3. Table ν4 contains an extra column u1u2u3u4 to store the minimum value

of maximum trip overhead of the 4 scheduled trips for 4 users that together visit 4 POI types, where

each POI type is visited by a single user.

Computing single member columns: In the dynamic tables, columns u1, u2, u3 and u4 are the

single member columns. Similar to GTS queries for aggregate function sum, except table ν0, each

cell of these columns of a table from ν1 to ν4, stores the minimum trip overhead distance for the

corresponding column’s user passing through POI types of the corresponding row of that table. For

example, in Table 4.12(c), cell ν2[{c1, c2}][{u1}] contains the minimum trip overhead distance for user

u1 passing through POI types c1 and c2. For computing this trip overhead distance, we consider user

u1’s source (s1) and destination (d1) locations along with all candidate POIs of POI types c1 and c2

in the initial set of POIs that has been retrieved by the LSP. Among the candidate trips including all

CHAPTER 4. OUR SOLUTION 49

Table 4.12: Dynamic tables for an example scenario for aggregate function max

(a) Dynamic table ν0

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}

∅ 28.75 25.00 47.55 77.48 0.0 0.0

(b) Dynamic table ν1

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}

{c1} 105.36 76.55 57.61 7.32 76.55 57.61

{c2} 49.05 23.99 7.03 4.72 23.99 7.03

{c3} 105.32 67.80 41.85 5.42 67.80 41.85

{c4} 102.51 70.29 42.02 5.65 70.29 42.02

(c) Dynamic table ν2

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}

{c1, c2} 105.37 76.58 57.61 7.36 76.55 57.61

{c1, c3} 105.41 78.54 57.98 7.32 78.54 57.98

{c1, c4} 106.98 81.84 58.61 7.34 81.84 58.61

{c2, c3} 105.34 69.92 41.86 5.46 67.80 41.85

{c2, c4} 106.19 72.64 43.19 5.67 70.29 42.02

{c3, c4} 107.01 73.28 43.62 5.83 73.28 43.62

(d) Dynamic table ν3

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}

{c1, c2, c3} 105.41 78.54 57.98 7.36 78.54 57.98

{c1, c2, c4} 107.06 81.84 58.62 7.36 81.84 58.61

{c1, c3, c4} 107.03 81.84 58.61 7.34 81.84 58.61

{c2, c3, c4} 107.14 73.52 43.93 5.86 73.28 43.62

(e) Dynamic table ν4

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3} {u1u2u3u4}

{c1, c2, c3, c4} 107.15 81.84 58.62 7.36 81.84 58.61 7.34

CHAPTER 4. OUR SOLUTION 50

combinations of POIs of both POI types with any POI order, the minimum trip overhead distance is

stored in cell ν2[{c1, c2}][{u1}]. Similarly, our dynamic programming technique populates all cells of

the single member columns of ν1, ν2, ν3 and ν4. Table ν0 is a trivial one that stores trip distances for

particular user’s trip from her source to destination location only (single member columns) and trip

overhead distances (combined member columns).

Computing combined member columns: For aggregate function max, the combined member

columns store the minimum value of maximum trip overhead of the corresponding column’s group

members instead of storing the minimum total trip distance of the group members. This is the main

difference between the dynamic programming approach for aggregate function sum and max. Using

the single member columns and already calculated combined member columns, we dynamically

calculate the combined member columns of tables ν0, ν1, ν2, ν3 and ν4 one by one. Now we elaborately

explain the way to compute the cell values of the dynamic tables.

In ν0, cell ν0[∅][{u1u2}] contains the minimum value of maximum trip overhead of trips T1 and T2,

where the trips correspond to users u1 and u2, respectively, and visit no POI types. Table 4.13 shows

the candidate combinations that are used to compute the cell value, where trip distances are for

users’ trips from their source to destination locations. As the trips visit no POI types, the minimum

value of maximum trip overhead is zero here.

Table 4.13: Candidate combined combinations with trip overhead distances for cell ν0[∅][{u1u2}].

Combined Combinations Distances Trip overhead

max((ν0[∅][{u1}]− ν0[∅][{u1}]),

(ν0[∅][{u2}]− ν0[∅][{u2}]))

max((28.75− 28.75), (25.00− 25.00)) 0.0

Table 4.14: Candidate combined combinations with trip overhead distances for cell ν1[{c1}][{u1u2}].

Combined Combinations Distances Trip overhead

max(ν1[{c1}][{u1}], (ν0[∅][{u2}]− ν0[∅][{u2}])) max(105.36, (25.00− 25.00)) 105.36

max((ν0[∅][{u1}]− ν0[∅][{u1}]), ν1[{c1}][{u2}]) max((28.75− 28.75), 76.55) 76.55

CHAPTER 4. OUR SOLUTION 51

To compute the values for the cells of the combined member columns for any table νy, we need

to consider all dynamic tables from ν0 to νy. For example, in ν2, cell ν2[{c1, c2}][{u1u2}] stores the

minimum value of maximum trip overhead of trips T1 and T2, where the trips correspond to users

u1 and u2, respectively. Here a user (u1 or u2) can visit any number (0 or 1 or 2) of POI types, but

u1 and u2 together visit the POI types {c1, c2}, and each POI type is either visited by u1 or u2. For

computing the cell value, we use already computed and stored single member trip overhead distances

and combined member trip overhead distances in ν0, ν1 and ν2. Using ν0, ν1 and ν2 (Tables 4.12(a-c)),

Table 4.15 shows the candidate combinations of POI types for u1 and u2 along with the trip overhead

distances for computing the value for cell ν2[{c1, c2}][{u1u2}] in ν2 (Table 4.12(c)). Among candidate

combinations listed in Table 4.15, the minimum value of maximum trip distance 76.55 is stored in

cell ν2[{c1, c2}][{u1u2}].

Similarly, our dynamic programming technique populates all cells of the combined member columns

of ν0, ν1, ν2, ν3 and ν4. Candidate combinations with trip overhead distances for cell ν1[{c1}][{u1u2}],

ν3[{c1, c2, c3}][{u1u2}] and ν4[{c1, c2, c3, c4}][{u1u2}] are listed in Table 4.14, Table 4.16 and Ta-

ble 4.17, respectively.

Table 4.15: Candidate combined combinations with trip overhead distances for cell ν2[{c1, c2}][{u1u2}].

Combined Combinations Distances Trip overhead

max(ν2[{c1, c2}][{u1}], (ν0[∅][{u2}]− ν0[∅][{u2}])) max(105.37, (25.00− 25.00)) 105.37

max(ν1[{c1}][{u1}], ν1[{c2}][{u2}]) max(105.36, 23.99) 105.36

max(ν1[{c2}][{u1}], ν1[{c1}][{u2}]) max(49.05, 76.55) 76.55

max((ν0[∅][{u1}]− ν0[∅][{u1}]), ν2[{c1, c2}][{u2}]) max((28.75− 28.75), 76.58) 76.58

CHAPTER 4. OUR SOLUTION 52

Table 4.16: Candidate combined combinations with trip overhead distances for cell

ν3[{c1, c2, c3}][{u1u2}]

Combined Combinations Distances Trip overhead

max(ν3[{c1, c2, c3}][{u1}], (ν0[∅][{u2}]− ν0[∅][{u2}])) max(105.41, (25.00− 25.00)) 105.41

max(ν2[{c1, c2}][{u1}], ν1[{c3}][{u2}]) max(105.37, 67.80) 105.37

max(ν2[{c1, c3}][{u1}], ν1[{c2}][{u2}]) max(105.41, 23.99) 105.41

max(ν2[{c2, c3}][{u1}], ν1[{c1}][{u2}]) max(105.34, 76.55) 105.34

max(ν1[{c1}][{u1}], ν2[{c2, c3}][{u2}]) max(105.36, 69.92) 105.36

max(ν1[{c2}][{u1}], ν2[{c1, c3}][{u2}]) max(49.05, 78.54) 78.54

max(ν1[{c3}][{u1}], ν2[{c1, c2}][{u2}]) max(105.32, 76.58) 105.32

max((ν0[∅][{u1}]− ν0[∅][{u1}]), ν3[{c1, c2, c3}][{u2}]) max((28.75− 28.75), 78.54) 78.54

Table 4.17: Candidate combined combinations with trip overhead distances for cell

ν4[{c1, c2, c3, c4}][{u1u2}]

Combined Combinations Distances Trip overhead

max(ν4[{c1, c2, c3, c4}][{u1}], (ν0[∅][{u2}]− ν0[∅][{u2}])) max(107.15, (25.00− 25.00)) 107.15

max(ν3[{c1, c2, c3}][{u1}], ν1[{c4}][{u2}]) max(105.41, 70.29) 105.41

max(ν3[{c1, c2, c4}][{u1}], ν1[{c3}][{u2}]) max(107.06, 67.80) 107.06

max(ν3[{c1, c3, c4}][{u1}], ν1[{c2}][{u2}]) max(107.03, 23.99) 107.03

max(ν3[{c2, c3, c4}][{u1}], ν1[{c1}][{u2}]) max(107.14, 76.55) 107.14

max(ν2[{c1, c2}][{u1}], ν2[{c3, c4}][{u2}]) max(105.37, 73.28) 105.37

max(ν2[{c1, c3}][{u1}], ν2[{c2, c4}][{u2}]) max(105.41, 72.64) 105.41

max(ν2[{c1, c4}][{u1}], ν2[{c2, c3}][{u2}]) max(106.98, 69.92) 106.98

max(ν2[{c2, c3}][{u1}], ν2[{c1, c3}][{u2}]) max(105.34, 81.84) 105.34

max(ν2[{c2, c4}][{u1}], ν2[{c1, c3}][{u2}]) max(106.19, 78.54) 106.19

max(ν2[{c3, c4}][{u1}], ν2[{c1, c2}][{u2}]) max(107.01, 76.58) 107.01

max(ν1[{c1}][{u1}], ν3[{c2, c3, c4}][{u2}]) max(105.36, 73.52) 105.36

max(ν1[{c2}][{u1}], ν3[{c1, c3, c4}][{u2}]) max(49.05, 81.84) 81.84

max(ν1[{c3}][{u1}], ν3[{c1, c2, c4}][{u2}]) max(105.32, 81.84) 105.32

max(ν1[{c4}][{u1}], ν3[{c1, c2, c3}][{u2}]) max(102.51, 78.54) 102.51

max((ν0[∅][{u1}]− ν0[∅][{u1}]), ν4[{c1, c2, c3, c4}][{u2}]) max((28.75− 28.75), 81.84) 81.84

CHAPTER 4. OUR SOLUTION 53

We gradually combine trips of other users, u3 and u4, and update the other combined member

columns one by one. For example, in ν2, cell ν2[{c1, c2}][{u1u2u3}] contains the minimum value

of maximum trip overhead distance of trips T1, T2 and T3, where the trips correspond to users

u1, u2 and u3, respectively, and together visit the POI types {c1, c2}. Using ν0, ν1 and ν2 (Ta-

bles 4.12(a-c)), Table 4.18 shows the candidate combinations of POI types for combined members

u1u2 and single member u3 along with the trip overhead distances for computing the value for cell

ν2[{c1, c2}][{u1u2u3}] in ν2 (Table 4.12(c)).

Table 4.18: Candidate combined combinations with trip overhead distances for cell

ν2[{c1, c2}][{u1u2u3}].

Combined Combinations Distances Trip overhead

max(ν2[{c1, c2}][{u1u2}], (ν0[∅][{u3}]− ν0[∅][{u3}])) max(76.55, (47.55− 47.55)) 76.55

max(ν1[{c1}][{u1u2}], ν1[{c2}][{u3}]) max(76.55, 7.03) 76.55

max(ν1[{c2}][{u1u2}], ν1[{c1}][{u3}]) max(23.99, 57.61) 57.61

max(ν0[∅][{u1u2}], ν2[{c1, c2}][{u3}]) max(0.0, 57.61) 57.61

Similarly we compute all combined member columns of ν0 to ν4. The rightmost cell of the final

table νm, which is ν4[{c1, c2, c3, c4}][{u1u2u3u4}] in our example scenario, contains the minimum

value of maximum trip overhead distance of four trips T1, T2, T3 and T4, where the trips corre-

spond to users u1, u2, u3 and u4, respectively. These trips together visit all required POI types

{c1, c2, c3, c4} and each POI type is visited by a single user. This is actually the minimum value

of maximum trip overhead distance of the group of four members in our example scenario. The

minimum value of maximum trip overhead distance 7.34 is stored in cell ν4[{c1, c2, c3, c4}][{u1u2u3u4}].

Note that the rightmost cell of the final table ν4[{c1, c2, c3, c4}][{u1u2u3u4}] contains the min-

imum value of maximum trip overhead distance of the group which is AggTripOvDist that

we have mentioned in Section 4.3.2. To get the values of Tmini for each user ui, we sim-

ply take the minimum values from Table 4.4(a). On the other hand, to get the values of

Tmaxi which is the maximum trip distance for each user ui for visiting all required POI

types, we take the maximum trip overhead distance values from Table 4.4(e) and then add

the distance from si to di without visiting any POI types to get the actual maximum trip

CHAPTER 4. OUR SOLUTION 54

distance. Tmini and Tmaxi values for users {u1, u2, u3, u4} are {28.75, 25.00, 47.55, 77.48} and

{(107.15 + 28.75), (81.84 + 25.00), (58.62 + 47.55), (7.36 + 77.48)} ≡ {135.90, 106.84, 106.17, 84.84},

respectively. Using these values we refine the search region based on Theorems 4.3.1 and 4.3.3. For

user u1, based on Theorem 4.3.1, the major axis for the elliptic region E1 is 135.90. On the other

hand, based on Theorem 4.3.3, the major axis is 7.34 + 28.75 = 36.09. We take the best bound among

them which is 36.09, the second one.

Each cell of ν1, ν2, ν3 and ν4 also stores the set of POIs for which the minimum value of maximum

trip overhead distance is obtained which we do not show in the tables for the sake of clarity.

4.3.4.2 Trip Scheduling for UGTS Queries

In a Uniform GTS (UGTS) query where group members visit uniform number of POI types is an

variation of our proposed GTS queries in spatial databases. In UGTS queries, a group of n members

{u1, u2, . . . , un} with independent source and destination pairs {(s1, d1), (s2, d2), . . . , (sn, dn)} want

to visit a set of specific m POI types C = {c1, c2, c3, . . . , cm} where each group member visits equal

e number of POI types. For uniform distributions of POI types among group members, we assume

that each group member visits an equal number of POI types. If m is a multiple of n, then e = bmn c.

If m is not a multiple of n, then m mod n number of group members visit e = bmn c + 1 number of

POI types, and the remaining group members visit e = bmn c number of POI types. For simplicity, we

assume that, m is exact multiples of n and each user visits e number of POI types, where m = n× e.

We have to find multiple n trips for each user so that each user visits exact e number of POI types,

each POI type is visited by exactly one user with minimum aggregate trip overhead distance of the

group.

In a UGTS query, the definition of Tmini and Tmaxi slightly changes because of having the equal

number of POI types visiting constraints. In this query any member should not visit no POI

type or all required POI types. Thus, in a UGTS query, Tmini and Tmaxi represents the minimum

and maximum trip distance of any trip covering any subset of e POI types from all required

m POI types for a group member ui, respectively. For computing the trip overhead distance

of any trip, in a UGTS query, (TripDisti − Tmini) still represents the trip overhead distance of

CHAPTER 4. OUR SOLUTION 55

any group member ui, where Tmini represents the minimum value of trip distance for group member ui.

For the UGTS queries, our dynamic programming approach that schedules trips, minimizes the

following objective function:∑n
i=1(TripDisti − Tmini), for aggregation function sum,

maxn
i=1(TripDisti − Tmini), for aggregation function max.

satisfying constrains that a group of n members need to visit m different POI types, where each group

member visits e number of POI types, and each POI type is visited by a single group member. Let

CTi be the set of POI types visited by trip Ti. Formal representation of the constraints are as follows.

The dynamic programming approach has to satisfy,

e ≤| CTi |≤ e+ 1,

n∑
i=1

|CTi | = m,

n⋃
i=1

CTi = C and ∀i,j(CTi ∩ CTj) = ∅

For the UGTS queries, we have a set of m POI types C={c1, c2, . . . , cm} where each member

should visit e POI types. So there are mCe or |C|Ce different ways to choose e POI types from

m(= |C|) different POI types. CCe denotes the set of all possible e choices from the set of POI

types C. Here (CCe)
i represents the ith member of the set CCe. For example, suppose we have

a set of 6 POI types, C = {c1, c2, c3, c4, c5, c6}, where each group member visits 2 POI types.

Here, m = |C| = 6 and e = 2. So, the number of different ways to choose e POI types from

m(= |C|) different POI types is |C|Ce = 6C2 = 15 and the set all possible e choices from the

set C is CCe = {{c1, c2}, {c1, c3}, {c1, c4}, . . . , {c5, c6}}. Also we can say that, (CCe)
1 = {c1, c2},

(CCe)
2 = {c1, c3}, . . . , (CCe)

15 = {c5, c6}.

As each group member visits e number of POI types, any two group members should visit any

2 × e = 2e number of POI types among m required POI types, any three group members visit

any 3 × e = 3e number of POI types among m required POI types and so on. Thus, we define n

dynamic tables, νe, ν2e, . . . , ν(n−1)e, ν(ne=m) to store the trip distances of each single group member

and the aggregate trip overhead distances of the combined group members. A dynamic table νy

where 0 ≤ y ≤ m, has mCy rows, where jth row corresponds to jth member of the set CCy, i.e., (CCy)j .

CHAPTER 4. OUR SOLUTION 56

For each member of the set CCe, we calculate optimal trips for each group member in

U = {u1, u2, u3, . . . , un} and the resultant values are stored in dynamic table νe for future

calculations. This is the initial step for our dynamic programming approach. Unlike to GTS queries,

in UGTS queries, we store the trip distances instead of storing trip overhead distances for each group

member to visit any subset of e POI types from m required POI types in table νe. In the UGTS

queries, to compute trip overhead distance of any trip, we need to reduce Tmini from the trip distance

where the value of Tmini can be computed after computing all possible trip distances that visit any

e number of POI types. Because of having this type of circular dependency, we prefer to store the

actual trip distance instead of storing the trip overhead distance in dynamic table νe for the UGTS

queries.

Unlike to GTS queries, in a UGTS query, where each group member visits uniform number of POI

types, each dynamic table has only types of column, either single member columns or combined

member columns. For having the uniform POI types visiting constraint, the group members should

visit e number of POI types instead of visiting any number of POI types from 0 to m. So it is not

necessary to compute all possible minimum trips or trip overhead distances that visit any number of

POI types for all group members. We only need to compute minimum trips for visiting e number of

POI types for every member of the group. Thus, table νe has n single member columns, where each

column corresponds to a member of the group U = {u1, u2, u3, . . . , un}. The cells of these columns

store the minimum trip distances for the corresponding column’s member to visit the POI types of

the corresponding rows. The table does not have any combined member columns as well, because

unlike to GTS queries, for UGTS queries, it will not happen that any number of group members

together visit any subset of e number of POI types from m required POI types.

On the other hand, for similar reason, other dynamic tables ν2e, . . . , ν(n−1)e, νne=m do not need to

have single member columns. They also don’t need to have all possible combined member columns

u1u2, . . . , u1u2..un−1. Instead of having all combined member columns, each of them has only one

combined member column where the columns are u1u2, . . . , u1u2..un−1, u1u2..un, for the dynamic

tables ν2e, . . . , ν(n−1)e, νne=m, respectively. The cells of the corresponding columns of each table

store the aggregate trip overhead distances of the corresponding column’s multiple members passing

through the set of POI types of corresponding rows. For example, each cell of the column u1u2 stores

CHAPTER 4. OUR SOLUTION 57

the minimum total trip overhead distance or the minimum value of maximum trip overhead distance

of user u1 and u2 to visit the POI types of the corresponding row, where a POI type is visited either

by u1 or u2.

Table 4.19: Structure of dynamic table νe

{u1} {u2} . . . {u(n−1)} {un}
{c1, c2, . . . , ce}
{c1, c3, . . . , ce}

...

Table 4.20: Structure of dynamic table νy, where y ∈ {2× e, . . . , (n− 1)× e, n× e}

{u1u2 . . . uy/e}
{c1, c2, . . . , cy}
{c1, c3, . . . , cy}

...

Table 4.19 shows the structure of νe and Table 4.20 shows the structure of other dynamic tables,

ν2×e, . . . , ν(n−1)×e, νn×e=m, that has only one combined member column. νn×e=m that has only one

column u1u2 . . . un which stores the minimum total trip overhead distance or the minimum value of

maximum trip overhead distance for n scheduled trips, where n trips together visit m required POI

types and every POI type is visited by a single trip. The final table νne or νm, has only one row

which contains all m POI types.

In addition to storing the minimum trip distances (single member columns of table νe) and

the minimum aggregate trip overhead distances (combined member columns), each cell of the

dynamic tables stores the set of POIs for which the minimum trip distance or minimum aggre-

gate trip overhead distance is obtained. For example, cell ν2[{c1, c3}][{u1}] stores the minimum trip

distance and the POI set < p3, p1 >, for which u1 obtains the minimum trip or trip overhead distance.

Contents of the cells of the single member columns of dynamic table νe are computed using already

CHAPTER 4. OUR SOLUTION 58

retrieved POIs from the database. To compute the contents of the cells of the combined member

columns of a dynamic table νye, we use the single member columns of the table νe, and combined

member columns of table ν(y − 1)e.

For aggregate function sum, any cell (e.g., νye[
CCye][{u1u2}]) of this table is calculated using the

equation : ν2e[
CC2e][{u1u2}] = min

mCe

i,j=1{(νe[(
CCe)

i][{u1}] − Tmin1) + (νe[(
CCe)

j][{u2}] − Tmin2)},

where (CCe)
i ∩ (CCe)

j = ∅.

For aggregate function max, the equation is : ν2e[
CC2e][{u1u2}] = min

mCe

i,j=1{max((νe[(
CCe)

i][{u1}] −

Tmin1), (νe[(
CCe)

j][{u2}]− Tmin2))}, where (CCe)
i ∩ (CCe)

j = ∅.

The size of table νe is mCe × n and the size of a dynamic table νy is : mCy × 1, where

y ∈ {2 × e, . . . , (n − 1) × e, n × e}. Thus, the total space required for dynamic tables is

mCe × n + mC2×e + . . . + mC(n−2)×e + mCn×e=m units. Similarly, the processing time of the

dynamic programming technique is proportional to the number of the dynamic tables and the

number of cells in a dynamic table, which vary with the values of m and n.

Now we will give an elaborate example for the dynamic programming approach of

UGTS queries. To explain the dynamic programming approach and to understand the intermediate

steps of the trip scheduling for the UGTS queries where each group member visits uniform number

of POI types, we consider an example scenario where have a group of 3 members, {u1, u2, u3}

with source-destination pairs < s1, d1 >, < s2, d3 > and s3, d3, respectively. The group members

need to visit 6 different POI types {c1, c2, c3, c4, c5, c6} with minimum total trip overhead distance.

Here we have In this scenario, each group member visits 2 POI types. We have, n = 3, m = 6 and e = 2.

After finding at least one POI from every required POI types, our approach computes all possible sub

trips for the group members and then we compute the scheduled trips using our proposed dynamic

programming approach. Now we will simulate the approach for our example scenario.

For our example scenario, Tables 4.21(a-c) represents the complete structure of the dynamic tables

ν2, ν4 and ν6 to store the computed trip distances of the single members and combined trip overhead

CHAPTER 4. OUR SOLUTION 59

distances of the multiple group members.

Computing single member columns: In the dynamic table ν2, columns u1, u2 and u3 are the

single member columns. Each cell of these columns of table νe stores the minimum trip distance for

the corresponding column’s user passing through POI types of the corresponding row of that table.

For example, in Table 4.21(a), cell ν2[{c1, c2}][{u1}] contains the minimum trip distance for user

u1 passing through POI types c1 and c2. For computing this trip distance, we consider user u1’s

source (s1) and destination (d1) locations along with candidate POIs that has been retrieved from

the database with POI types c1 and c2, respectively.

Table 4.21: Dynamic tables for UGTS queries with aggregate function sum

(a) Dynamic table ν2

{u1} {u2} {u3}
{c1, c2} 50.46 30.75 66.36

{c1, c3} 50.05 24.16 66.35

{c1, c4} 45.95 24.74 66.34

{c1, c5} 50.09 23.90 66.38

{c1, c6} 60.64 32.61 66.34

{c2, c3} 50.55 29.14 66.34

{c2, c4} 50.46 29.31 66.34

{c2, c5} 50.53 29.10 66.35

{c2, c6} 60.64 32.62 66.35

{c3, c4} 50.19 24.34 66.34

{c3, c5} 50.27 21.55 66.37

{c3, c6} 60.63 32.61 66.34

{c4, c5} 50.56 24.25 66.34

{c4, c6} 60.71 32.61 64.34

{c5, c6} 60.63 32.61 66.38

(b) Dynamic table ν4

{u1u2}
{c2, c3, c4, c5} 4.51

{c2, c3, c4, c6} 15.31

{c2, c3, c5, c6} 14.69

{c2, c4, c5, c6} 15.57

{c3, c4, c5, c6} 14.76

{c1, c3, c4, c5} 0.00

{c1, c3, c4, c6} 11.06

{c1, c3, c5, c6} 14.69

{c1, c4, c5, c6} 11.06

{c1, c2, c4, c5} 6.86

{c1, c2, c4, c6} 11.07

{c1, c2, c5, c6} 15.21

{c1, c2, c3, c5} 4.51

{c1, c2, c3, c6} 15.17

{c1, c2, c3, c4} 7.12

(c) Dynamic table ν6

{u1u2u3}
{c1, c2, c3, c4, c5, c6} 2.01

CHAPTER 4. OUR SOLUTION 60

Using the computed values in Table 4.21(a), we compute the Tmini value for group member ui by

taking the minimum value of the cells of single member column ui of the dynamic table νe. Table 4.22

shows the Tmini values of the group member ui.

Table 4.22: Tmini values for three group members of the example scenario

Distances

Tmin1 45.95

Tmin2 21.55

Tmin3 64.34

Computing combined member columns: Using the single member columns of dynamic table

ν2, we dynamically calculate the combined member column of table ν4. Gradually using the single

member columns of dynamic table ν2 and already computed combined user column of dynamic table

ν4, we dynamically calculate the combined member column of dynamic table ν6.

In Table 4.21(b), cell ν4[{c2, c3, c4, c5}][{u1u2}] contains the minimum total trip overhead distance

of trips T1 and T2 where the trips corresponds to user u1 and u2, respectively and together the

trips visit the POI types {c2, c3, c4, c5} where each POI type is visited by either user u1 or user

u2. To compute the cell value, we use precomputed trip distances which have been stored in

Table 4.21(a). All candidate combined combinations for both user along with trip overhead distances

using Table 4.21(a) are listed in Table 4.23, to compute value of cell ν4[{c2, c3, c4, c5}][{u1u2}].

Among all candidate combined combinations listed in Table 4.23, the best combined trip overhead

distance is stored in cell ν4[{c2, c3, c4, c5}][{u1u2}] which is 4.51. Similarly, our dynamic programming

approach populates all cells of Table 4.21(b).

Using precomputed Tables 4.21(a) and 4.21(b), the dynamic programming approach computes the

next table which is Table 4.21(c). The table has only one cell which is ν6[{c1, c2, c3, c4, c5, c6}][{u1u2u3}]

that contains the minimum total trip overhead distance of trips T1, T2 and T3 where the trips cor-

respond to users u1, u2 and u3, respectively and each required POI types {c1, c2, c3, c4, c5, c6} is

included in a single trip. This is actually our minimum total trip overhead distance of the group

CHAPTER 4. OUR SOLUTION 61

Table 4.23: Candidate combined combinations with trip overhead distances for cell

ν4[{c2, c3, c4, c5}][{u1u2}].

Combined Combinations Distances Trip

over-

head

(ν2[{c2, c3}][{u1}]− Tmin1) + (ν2[{c4, c5}][{u2}]− Tmin2) (50.55− 45.95) + (24.25− 21.55) 7.30

(ν2[{c2, c4}][{u1}]− Tmin1) + (ν2[{c3, c5}][{u2}]− Tmin2) (50.46− 45.95) + (21.55− 21.55) 4.51

(ν2[{c2, c5}][{u1}]− Tmin1) + (ν2[{c3, c4}][{u2}]− Tmin2) (50.53− 45.95) + (24.34− 21.55) 7.37

(ν2[{c3, c4}][{u1}]− Tmin1) + (ν2[{c2, c5}][{u2}]− Tmin2) (50.19− 45.95) + (29.10− 21.55) 11.79

(ν2[{c3, c5}][{u1}]− Tmin1) + (ν2[{c2, c4}][{u2}]− Tmin2) (50.27− 45.95) + (29.31− 21.55) 12.08

(ν2[{c4, c5}][{u1}]− Tmin1) + (ν2[{c2, c3}][{u2}]− Tmin2) (50.56− 45.95) + (29.14− 21.55) 12.20

for the dynamic trip scheduling. For computing the cell value, we use precomputed values which

have been stored in Tables 4.21(a) and 4.21(b). To compute the cell value, all candidate combined

combinations along with trip overhead distances are listed in Table 4.24.

Among all candidate combinations listed in Table 4.24, the best combined trip overhead distance is

stored in cell ν6[{c1, c2, c3, c4, c5, c6}][{u1u2u3}] which is 2.01.

Note that the only cell of Table 4.21(c) contains the minimum total trip overhead distance of the

group which is AggTripOvDist that we have mentioned in Section 4.3.2. To get the values of Tmini

and Tmaxi for each user ui, we simply take the minimum and maximum value, respectively, from

Table 4.21(a) for all the rows of respective user’s column. The Tmini and Tmaxi values for users

{u1, u2, u3} are {45.95, 21.55, 64.34} and {60.71, 32.62, 66.38}, respectively. Using these values we

refined search region based on Theorems 4.3.1 and 4.3.2. For user u1, based on Theorem 4.3.1,

the major axis for the elliptic region E1 is 60.71. On the other hand, based on Theorem 4.3.2, the

major axis is 2.01+45.95 = 47.96. We take the best bound among them which is 47.96, the second one.

CHAPTER 4. OUR SOLUTION 62

Table 4.24: Candidate combined combinations with trip overhead distances for cell

ν6[{c1, c2, c3, c4, c5, c6}][{u1u2u3}]

Combined Combinations Distances Trip overhead

ν4[{c2, c3, c4, c5}][{u1u2}] + (ν2[{c1, c6}][{u3}]− Tmin3) 4.51 + (66.34− 64.34) 6.51

ν4[{c2, c3, c4, c6}][{u1u2}] + (ν2[{c1, c5}][{u3}]− Tmin3) 15.31 + (66.38− 64.34) 17.35

ν4[{c2, c3, c5, c6}][{u1u2}] + (ν2[{c1, c4}][{u3}]− Tmin3) 14.69 + (66.34− 64.34) 16.69

ν4[{c2, c4, c5, c6}][{u1u2}] + (ν2[{c1, c3}][{u3}]− Tmin3) 15.57 + (66.35− 64.34) 17.58

ν4[{c3, c4, c5, c6}][{u1u2}] + (ν2[{c1, c2}][{u3}]− Tmin3) 14.76 + (66.36− 64.34) 16.78

ν4[{c1, c3, c4, c5}][{u1u2}] + (ν2[{c2, c6}][{u3}]− Tmin3) 0.00 + (66.35− 64.34) 2.01

ν4[{c1, c3, c4, c6}][{u1u2}] + (ν2[{c2, c5}][{u3}]− Tmin3) 11.06 + (66.35− 64.34) 13.07

ν4[{c1, c3, c5, c6}][{u1u2}] + (ν2[{c2, c4}][{u3}]− Tmin3) 14.69 + (66.34− 64.34) 16.69

ν4[{c1, c4, c5, c6}][{u1u2}] + (ν2[{c2, c3}][{u3}]− Tmin3) 11.06 + (66.34− 64.34) 13.06

ν4[{c1, c2, c4, c5}][{u1u2}] + (ν2[{c3, c6}][{u3}]− Tmin3) 6.86 + (66.34− 64.34) 8.86

ν4[{c1, c2, c4, c6}][{u1u2}] + (ν2[{c3, c5}][{u3}]− Tmin3) 11.07 + (66.37− 64.34) 13.10

ν4[{c1, c2, c5, c6}][{u1u2}] + (ν2[{c3, c4}][{u3}]− Tmin3) 15.21 + (66.34− 64.34) 17.21

ν4[{c1, c2, c3, c5}][{u1u2}] + (ν2[{c4, c6}][{u3}]− Tmin3) 4.51 + (64.34− 64.34) 4.51

ν4[{c1, c2, c3, c6}][{u1u2}] + (ν2[{c4, c5}][{u3}]− Tmin3) 15.17 + (66.34− 64.34) 17.17

ν4[{c1, c2, c3, c4}][{u1u2}] + (ν2[{c5, c6}][{u3}]− Tmin3) 7.12 + (66.38− 64.34) 9.16

For aggregation function max, the dynamic programming approach will be similar that we have

already described for aggregate function sum. Instead of taking the summation of the trip overhead

distances of different combinations, we have to take the maximum values of them. Thus, we skipped

to give elaborate example for the UGTS queries with aggregate function max.

4.3.4.3 Extensions of Trip Scheduling for Dependencies Among POIs

For processing the GTS and the UGTS query with dependencies among POIs constraint, we have to

satisfy user provided POI dependencies along with satisfying other constraints for the GTS and the

UGTS query as well. For this variation of the GTS or the UGTS query, the dynamic programming

approach for trip scheduling is almost similar with the dynamic programming approach that has

been described in Section 4.3.4.1 for the GTS query and in Section 4.3.4.2 for the UGTS query

without having user defined constraints.

CHAPTER 4. OUR SOLUTION 63

For having dependencies among POIs, some combinations of POI type will become invalid which we

should not consider while scheduling trips using our proposed dynamic programming approach for

each member in the group. For example, suppose, a group of n members {u1, u2, . . . , un} need to

visit m POI types {c1, c2, . . . , cm} with minimum aggregate trip overhead distance where each POI

type is visited exactly once by any group member. The group impose a constraint that, any member

of the group need to visit POI type c1 first and then POI type c2. The constraint follows that, POI

types c1 and c2 should be visited one by one by any member of the group and who will visit these

POI types should visit POI type c1 before visiting POI type c2. The dependency among POI types c1

and c2 also assures that POI types c1 and c2 should not be visited by any group members separately.

So some POI type combinations and also some user and POI type combinations become invalid for

the variation of the GTS or the UGTS query.

Now we will give an elaborate example for dynamic programming approach with this

variation of GTS queries “dependencies among POIs” for aggregate function sum. To

explain the dynamic programming approach elaborately, we use the example scenario that we have

used in Section 4.3.4.1 for the aggregate function sum. The purpose of using similar scenario is to

easily find out the changes for having the constraint dependencies among POIs. In this example

scenario, a group of 4 members, {u1, u2, u3, u4}, together want to visit 4 POI types {c1, c2, c3, c4}

with the minimum total trip overhead distance, and each POI type is visited by a single member.

The group impose a constraint that, any member of the group need to visit POI type c1 first and

then POI type c2. Here, n = 4, m = 4, and a group member can visit any number of POI types

between 0 to m.

Following the similar process described in Section 4.3.4.1, we define (m+ 1), i.e., 5 tables, ν0, ν1, ν2,

ν3 and ν4 to store the computed trip overhead distances and combined trip overhead distances of the

group members. As the user group have imposed some constraints among POIs, all combinations

of dynamic tables will not valid. Some combinations will become invalid for this variation of GTS

queries. The constraint of visiting POI type c1 first and then POI type c2 follows that, both POI

types c1 and c2 should be visited one by one by any member of the group and who will visit these

POI types should visit POI type c1 before visiting POI type c2. Tables 4.25(a-e) show ν0, ν1, ν2,

CHAPTER 4. OUR SOLUTION 64

Table 4.25: Dynamic tables for GTS queries with dependency between POI types c1 and c2 for aggre-

gate function sum

(a) Dynamic table ν0

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
∅ 28.75 25.00 47.55 77.48 0.0 0.0

(b) Dynamic table ν1

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1} 105.36 76.55 57.61 7.32 76.55 57.61

{c2} 49.05 23.99 7.03 4.72 23.99 7.03

{c3} 105.32 67.80 41.85 5.42 67.80 41.85

{c4} 102.51 70.29 42.02 5.65 70.29 42.02

(c) Dynamic table ν2

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1, c2} 106.62 76.58 57.61 7.36 76.58 57.61

{c1, c3} 105.41 78.54 57.98 7.32 78.54 57.98

{c1, c4} 106.98 81.84 58.61 7.34 81.84 58.61

{c2, c3} 105.34 69.92 41.86 5.46 69.92 41.86

{c2, c4} 106.19 72.64 43.19 5.67 72.64 43.19

{c3, c4} 107.01 73.28 43.62 5.83 73.28 43.62

(d) Dynamic table ν3

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1, c2, c3} 105.41 78.54 57.98 7.36 78.54 57.98

{c1, c2, c4} 107.06 81.84 58.62 7.36 81.84 58.62

{c1, c3, c4} 107.03 81.84 58.61 7.34 81.84 58.61

{c2, c3, c4} 107.14 73.52 43.93 5.86 73.52 43.93

(e) Dynamic table ν4

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3} {u1u2u3u4}
{c1, c2, c3, c4} 107.15 81.84 58.62 7.36 81.84 58.62 7.36

CHAPTER 4. OUR SOLUTION 65

ν3 and ν4 for the considered example. For having constraint, the cells of invalid combinations are

crossed out in these dynamic tables.

Computing single member columns: In the dynamic tables, each cell of the single member

columns u1, u2, u3 and u4 of a table stores the minimum trip overhead distance for the corresponding

column’s user passing through POI types of the corresponding row of that table. While calculating

the trip overhead distances, we also consider the imposed constraint by the group members too. For

example, in Table 4.25(c), cell ν2[{c1, c2}][{u1}] contains the minimum trip overhead distance for user

u1 passing through POI types c1 and c2 with having POI type order, c1 → c2. For computing this

trip distance, we consider user u1’s source (s1) and destination (d1) locations along with candidate

POIs in the initial set: {p11, p21} and {p12} with POI types c1 and c2, respectively. All candidate trips

for cell ν2[{c1, c2}][{u1}] using these POIs with the corresponding trip overhead distances are listed

in Table 4.26.

Table 4.26: Candidate trips with trip overhead distances for cell ν2[{c1, c2}][{u1}]

Candidate trips Trip distances

s1 → p12 → p11 → d1 105.37

s1 → p12 → p21 → d1 109.89

s1 → p11 → p12 → d1 106.62

s1 → p21 → p12 → d1 126.58

Among the candidate trips listed in this table, the minimum trip overhead distance is 105.37 for trip

s1 → p12 → p11 → d1, but the POI type order is c2 → c1 doesn’t match with the given constraint

which is c1 → c2. Thus, we choose the trip overhead distance 106.62 for trip s1 → p11 → p12 → d1

which satisfies the constraint and the value is stored in cell ν2[{c1, c2}][{u1}]. Similarly, our dynamic

programming technique populates all cells of the single member columns of ν1, ν2, ν3 and ν4. Table

ν0 is a trivial one that stores trip distances for particular user’s trip from her source to destination

location only (single member columns) and trip overhead distance (combined member columns).

Computing combined member columns: Using the valid single member columns and already

calculated valid combined member columns, we dynamically calculate the combined member

CHAPTER 4. OUR SOLUTION 66

columns of ν0, ν1, ν2, ν3 and ν4 one by one. Candidate combinations with trip overhead dis-

tances for cell ν0[∅][{u1u2}], ν1[{c1}][{u1u2}], ν2[{c1, c2}][{u1u2}], ν3[{c1, c2, c3}][{u1u2}] and

ν4[{c1, c2, c3, c4}][{u1u2}] are listed in Table 4.27, Table 4.28, Table 4.29, Table 4.30 and Table 4.31,

respectively. We have used the similar example that we have used in Section 4.3.4.1 and have crossed

out the invalid combinations for each table so that we can understand the main differences for having

the constraint. Note that for having constraint of fixed POI type sequence, the cell ν1[{c1}][{u1u2}] in

table ν1 become invalid and we do not need to calculate this cell anymore. Thus all the combinations

of Table 4.28 has been crossed out because all those combinations are invalid.

Table 4.27: Candidate combined combinations with trip overhead distances for cell ν0[∅][{u1u2}].

Combined combinations Distances Trip

overhead

(ν0[∅][{u1}]− ν0[∅][{u1}]) + (ν0[∅][{u2}]− ν0[∅][{u2}])(28.75− 28.75) + (25.00− 25.00) 0.00

Table 4.28: Candidate combined combinations with trip overhead distances for cell ν1[{c1}][{u1u2}].

Combined combinations Distances Trip overhead

ν1[{c1}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 105.36 + (25.00− 25.00) 105.36

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν1[{c1}][{u2}] (28.75− 28.75) + 76.55 76.55

Table 4.29: Candidate combined combinations with trip overhead distances for cell ν2[{c1, c2}][{u1u2}].

Combined Combinations Distances Trip overhead

ν2[{c1, c2}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 106.62 + (25.00− 25.00) 106.62

ν1[{c1}][{u1}] + ν1[{c2}][{u2}] 105.36 + 23.99 129.35

ν1[{c2}][{u1}] + ν1[{c1}][{u2}] 49.05 + 76.55 125.60

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν2[{c1, c2}][{u2}] (28.75− 28.75) + 76.58 76.58

Note that rightmost cell of the final table νm, which is ν4[{c1, c2, c3, c4}][{u1u2u3u4}] in our example

scenario, contains the minimum total trip overhead distance of four trips T1, T2, T3 and T4, where the

trips correspond to users u1, u2, u3 and u4, respectively. These trips also satisfies user provided depen-

CHAPTER 4. OUR SOLUTION 67

Table 4.30: Candidate combined combinations with trip overhead distances for cell

ν3[{c1, c2, c3}][{u1u2}]

Combined combinations Distances Trip overhead

ν3[{c1, c2, c3}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 105.41 + (25.00− 25.00) 105.41

ν2[{c1, c2}][{u1}] + ν1[{c3}][{u2}] 106.62 + 67.80 174.42

ν2[{c1, c3}][{u1}] + ν1[{c2}][{u2}] 105.41 + 23.99 129.40

ν2[{c2, c3}][{u1}] + ν1[{c1}][{u2}] 105.34 + 76.55 181.89

ν1[{c1}][{u1}] + ν2[{c2, c3}][{u2}] 105.36 + 69.92 175.28

ν1[{c2}][{u1}] + ν2[{c1, c3}][{u2}] 49.05 + 78.54 127.59

ν1[{c3}][{u1}] + ν2[{c1, c2}][{u2}] 105.32 + 76.58 181.90

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν3[{c1, c2, c3}][{u2}] (28.75− 28.75) + 78.54 78.54

Table 4.31: Candidate combined combinations with trip overhead distances for cell

ν4[{c1, c2, c3, c4}][{u1u2}]

Combined Combinations Distances Trip overhead

ν4[{c1, c2, c3, c4}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 107.15 + (25.00− 25.00) 107.15

ν3[{c1, c2, c3}][{u1}] + ν1[{c4}][{u2}] 105.41 + 70.29 175.70

ν3[{c1, c2, c4}][{u1}] + ν1[{c3}][{u2}] 107.06 + 67.80 174.86

ν3[{c1, c3, c4}][{u1}] + ν1[{c2}][{u2}] 107.03 + 23.99 131.02

ν3[{c2, c3, c4}][{u1}] + ν1[{c1}][{u2}] 107.14 + 76.55 183.69

ν2[{c1, c2}][{u1}] + ν2[{c3, c4}][{u2}] 106.62 + 73.28 179.90

ν2[{c1, c3}][{u1}] + ν2[{c2, c4}][{u2}] 105.41 + 72.64 178.05

ν2[{c1, c4}][{u1}] + ν2[{c2, c3}][{u2}] 106.98 + 69.92 176.90

ν2[{c2, c3}][{u1}] + ν2[{c1, c3}][{u2}] 105.34 + 81.84 187.18

ν2[{c2, c4}][{u1}] + ν2[{c1, c3}][{u2}] 106.19 + 78.54 184.73

ν2[{c3, c4}][{u1}] + ν2[{c1, c2}][{u2}] 107.01 + 76.58 183.59

ν1[{c1}][{u1}] + ν3[{c2, c3, c4}][{u2}] 105.36 + 73.52 178.88

ν1[{c2}][{u1}] + ν3[{c1, c3, c4}][{u2}] 49.05 + 81.84 130.89

ν1[{c3}][{u1}] + ν3[{c1, c2, c4}][{u2}] 105.32 + 81.84 187.16

ν1[{c4}][{u1}] + ν3[{c1, c2, c3}][{u2}] 102.51 + 78.54 181.05

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν4[{c1, c2, c3, c4}][{u2}] (28.75− 28.75) + 81.84 81.84

CHAPTER 4. OUR SOLUTION 68

dencies among POI types c1 and c2. The cell contains the minimum total trip overhead distance of the

group which is AggTripOvDist that we have mentioned in Section 4.3.2. To get the values of Tmini and

Tmaxi for each user ui, we simply take the minimum trip distance (from table ν0) and the minimum

trip overhead distance (from table νm) from Table 4.32(a) and Table 4.32(e), respectively and add the

distance from source (si) to destination (di) with the minimum trip overhead distance to get the actual

trip distance for user ui. Tmini and Tmaxi values for users {u1, u2, u3, u4} are {28.75, 25.00, 47.55, 77.48}

and {(107.15+28.75), (81.84+25.00), (58.62+47.55), (7.36+77.48)} ≡ {135.90, 106.84, 106.17, 84.84},

respectively. Using these values we refine the search region based on Theorems 4.3.1 and 4.3.2. For

user u1, based on Theorem 4.3.1, the major axis for the elliptic region E1 is 135.90. On the other

hand, based on Theorem 4.3.2, the major axis is 7.36 + 28.75 = 36.11. We take the best bound among

them which is 36.11, the second one.

Each cell of ν0, ν1, ν2, ν3 and ν4 also stores the set of POIs for which the minimum trip overhead

distance is obtained with satisfying the constraint. For the sake of clarity we do not show them in

the tables.

4.3.4.4 Extensions of Trip Scheduling for Dependencies Among Users and POIs

In a GTS or a UGTS query with the constraint of dependencies among users and POIs, we have

to satisfy user provided POI dependencies with users along with satisfying all other constraints for

the GTS and the UGTS query that we have to satisfy without having the user provided constraints

as well. The dynamic programming approach to schedule trip among the group members for this

variation of the GTS or the UGTS query is almost similar with the dynamic programming approach

that has been described in Section 4.3.4.1 for the GTS query and in Section 4.3.4.2 for the UGTS

query.

Some combinations of POI types and users or group members will become invalid for having user

defined dependencies among users and POIs which we should not consider while scheduling trips

using our proposed dynamic programming approach for every members of the group. For example,

suppose, a group of n members {u1, u2, . . . , un} need to visit m POI types {c1, c2, . . . , cm} with

minimum aggregate trip overhead distance where each POI type is visited exactly once by any

CHAPTER 4. OUR SOLUTION 69

group member. The group impose a constraint that group member u1 should visit POI type c1.

This constraint follows that, POI type c1 should not be visited by other members of the group.

So the combinations of POI type c1 and group members except member u1 will be invalid and we

have to ignore these combinations from our computation while scheduling trips for the group members.

Now we will give an elaborate example for dynamic programming approach with the

variation of GTS queries “dependencies among users and POIs” for aggregate function

sum. To explain our proposed dynamic programming technique elaborately, we use the example

scenario that we have used to explain the dynamic programming technique for GTS queries in

Section 4.3.4.1 for aggregate function sum. This will help us to find out the changes that we have

to make for scheduling trips with the constraint more specifically. In this example scenario, a group

of 4 members, {u1, u2, u3, u4}, together want to visit 4 POI types {c1, c2, c3, c4} with the minimum

total trip overhead distance, and each POI type is visited by a single member. The group impose

a constraint that, group member u1 need to visit POI type c1. Here, n = 4, m = 4, and a group

member can visit any number of POI types between 0 to m.

For trip scheduling, we follow the similar steps that has been described in Section 4.3.4.1 for GTS

queries without any type of user imposed constraints. We define (m+ 1), i.e., 5 tables, ν0, ν1, ν2, ν3

and ν4 to store the computed trip overhead distances and combined trip overhead distances of the

group members. The single member columns of dynamic table ν0 stores the distance from source to

destination via no POI instead of storing the overhead distance for the corresponding columns’s group

member. As the user group have impose some constraints among users and POIs, all combinations

among users and POI types of dynamic tables will not valid. Tables 4.32(a-e) show ν0, ν1, ν2, ν3 and

ν4 for the considered example. For having constraint, the invalid cells are crossed out in the dynamic

tables.

Computing single member columns: In the dynamic tables, each cell of the single member

columns u1, u2, u3 and u4 of a table stores the minimum trip overhead distance for the corresponding

column’s user passing through the POI types of the corresponding row of that table. For example, in

Table 4.32(c), cell ν2[{c1, c2}][{u1}] contains the minimum trip overhead distance for user u1 passing

through POI types c1 and c2. For computing this trip overhead distance, we consider user, u1’s source

CHAPTER 4. OUR SOLUTION 70

Table 4.32: Dynamic tables for GTS queries with dependency between user u1 and POI type c1 for

aggregate function sum

(a) Dynamic table ν0

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
∅ 28.75 25.00 47.55 77.48 0.0 0.0

(b) Dynamic table ν1

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1} 105.36 76.55 57.61 7.32 105.36 105.36

{c2} 49.05 23.99 7.03 4.72 23.99 7.03

{c3} 105.32 67.80 41.85 5.42 67.80 41.85

{c4} 102.51 70.29 42.02 5.65 70.29 42.02

(c) Dynamic table ν2

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1, c2} 105.37 76.58 57.61 7.36 105.37 105.37

{c1, c3} 105.41 78.54 57.98 7.32 105.41 105.41

{c1, c4} 106.98 81.84 58.61 7.34 106.98 106.98

{c2, c3} 105.34 69.92 41.86 5.46 69.92 41.86

{c2, c4} 106.19 72.64 43.19 5.67 72.64 43.19

{c3, c4} 107.01 73.28 43.62 5.83 73.28 43.62

(d) Dynamic table ν3

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1, c2, c3} 105.41 78.54 57.98 7.36 105.41 105.41

{c1, c2, c4} 107.06 81.84 58.62 7.36 107.06 107.06

{c1, c3, c4} 107.03 81.84 58.61 7.34 107.03 107.03

{c2, c3, c4} 107.14 73.52 43.93 5.86 73.52 43.93

(e) Dynamic table ν4

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3} {u1u2u3u4}
{c1, c2, c3, c4} 107.15 81.84 58.62 7.36 107.15 107.15 107.15

CHAPTER 4. OUR SOLUTION 71

(s1) and destination (d1) locations along with candidate POIs in the initial set: {p11, p21} and {p12}

with POI types c1 and c2, respectively. All candidate trips for cell ν2[{c1, c2}][{u1}] using these POIs

with the corresponding trip overhead distances are listed in Table 4.33. Among the candidate trips

listed in this table, the minimum trip overhead distance is 105.37 for the trip s1 → p12 → p11 → d1

and this value is stored in the cell ν2[{c1, c2}][{u1}]. Similarly, our dynamic programming technique

populates all the cells of the single member columns of dynamic tables ν1, ν2, ν3 and ν4. As we have

already mentioned that, table ν0 is a trivial one that stores trip distances for particular user’s trip

from her source to destination location only (single member columns) and trip overhead distances

(combined member columns).

Table 4.33: Candidate trips with trip overhead distances for cell ν2[{c1, c2}][{u1}]

Candidate trips Trip distances

s1 → p12 → p11 → d1 105.37

s1 → p12 → p21 → d1 109.89

s1 → p11 → p12 → d1 106.62

s1 → p21 → p12 → d1 126.58

Computing combined member columns: Using the valid single member columns and already

calculated valid combined member columns, we dynamically calculate the combined member

columns of ν0, ν1, ν2, ν3 and ν4 one by one. Candidate combinations with trip overhead dis-

tances for cell ν0[∅][{u1u2}], ν1[{c1}][{u1u2}], ν2[{c1, c2}][{u1u2}], ν3[{c1, c2, c3}][{u1u2}] and

ν4[{c1, c2, c3, c4}][{u1u2}] are listed in Table 4.34, Table 4.35, Table 4.36, Table 4.37 and Table 4.38,

respectively. We have used the similar example that we have used in Section 4.3.4.1 and have crossed

out the invalid combinations for each table so that we can understand the main differences for having

the constraint. Note that for having user and POI type dependency, the cell ν0[∅][{u1u2}] in table ν0

become invalid because group member u1 have to visit POI at least one POI type which is POI type

c1. It is not possible that both group member u1 and u2 will combinedly visit no POI types. Thus

we do not need to calculate this cell anymore. That’s why all the combination of Table 4.34 has been

crossed out because those combinations are invalid as well.

As we have already mentioned that, to compute the actual trip distance for any trip from it’s trip

CHAPTER 4. OUR SOLUTION 72

overhead distances, we use the trip distances that are stored in table ν0 which are actually the

distance between source si and destination di via no POIs. As the cell for u1 has been crossed out in

table ν0, we have to calculate the distance between s1 and d1 while needed.

Table 4.34: Candidate combined combinations with trip overhead distances for cell ν0[∅][{u1u2}].

Combined combinations Distances Trip

overhead
(ν0[∅][{u1}]− ν0[∅][{u1}]) + (ν0[∅][{u2}]− ν0[∅][{u2}]) (28.75− 28.75) + (25.00− 25.00) 0.00

Table 4.35: Candidate combined combinations with trip overhead distances for cell ν1[{c1}][{u1u2}].

Combined combinations Distances Trip overhead

ν1[{c1}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 105.36 + (25.00− 25.00) 105.36

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν1[{c1}][{u2}] (28.75− 28.75) + 76.55 76.55

Table 4.36: Candidate combined combinations with trip overhead distances for cell ν2[{c1, c2}][{u1u2}].

Combined Combinations Distances Trip overhead

ν2[{c1, c2}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 105.37 + (25.00− 25.00) 105.37

ν1[{c1}][{u1}] + ν1[{c2}][{u2}] 105.36 + 23.99 129.35

ν1[{c2}][{u1}] + ν1[{c1}][{u2}] 49.05 + 76.55 125.60

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν2[{c1, c2}][{u2}] (28.75− 28.75) + 76.58 76.58

Note that the rightmost cell of the final table ν4[{c1, c2, c3, c4}][{u1u2u3u4}] contains the minimum

total trip overhead distance of four trips T1, T2, T3 and T4, where the trips correspond to users

u1, u2, u3 and u4, respectively. Along with satisfying all constraints of GTS queries, these trips

also satisfies user provided dependencies among user u1 and POI type c1. The cell contains the

minimum total trip overhead distance 107.15 of the group which is AggTripOvDist that we have

mentioned in Section 4.3.2. To get the values of Tmini and Tmaxi for each user ui, for GTS queries,

we simply take the minimum trip distance (from table ν0) and trip overhead values (from table

νm) from Table 4.32(a) and Table 4.32(e), respectively and add the distance from source si to

destination di with the trip overhead distances to get the actual trip distance for user ui. Note that,

CHAPTER 4. OUR SOLUTION 73

Table 4.37: Candidate combined combinations with trip overhead distances for cell

ν3[{c1, c2, c3}][{u1u2}]

Combined combinations Distances Trip overhead

ν3[{c1, c2, c3}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 105.41 + (25.00− 25.00) 105.41

ν2[{c1, c2}][{u1}] + ν1[{c3}][{u2}] 105.37 + 67.80 173.17

ν2[{c1, c3}][{u1}] + ν1[{c2}][{u2}] 105.41 + 23.99 129.40

ν2[{c2, c3}][{u1}] + ν1[{c1}][{u2}] 105.34 + 76.55 181.89

ν1[{c1}][{u1}] + ν2[{c2, c3}][{u2}] 105.36 + 69.92 175.28

ν1[{c2}][{u1}] + ν2[{c1, c3}][{u2}] 49.05 + 78.54 127.59

ν1[{c3}][{u1}] + ν2[{c1, c2}][{u2}] 105.32 + 76.58 181.90

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν3[{c1, c2, c3}][{u2}] (28.75− 28.75) + 78.54 78.54

Table 4.38: Candidate combined combinations with trip overhead distances for cell

ν4[{c1, c2, c3, c4}][{u1u2}]

Combined Combinations Distances Trip overhead

ν4[{c1, c2, c3, c4}][{u1}] + (ν0[∅][{u2}]− ν0[∅][{u2}]) 107.15 + (25.00− 25.00) 107.15

ν3[{c1, c2, c3}][{u1}] + ν1[{c4}][{u2}] 105.41 + 70.29 175.70

ν3[{c1, c2, c4}][{u1}] + ν1[{c3}][{u2}] 107.06 + 67.80 174.86

ν3[{c1, c3, c4}][{u1}] + ν1[{c2}][{u2}] 107.03 + 23.99 131.02

ν3[{c2, c3, c4}][{u1}] + ν1[{c1}][{u2}] 107.14 + 76.55 183.69

ν2[{c1, c2}][{u1}] + ν2[{c3, c4}][{u2}] 105.37 + 73.28 178.65

ν2[{c1, c3}][{u1}] + ν2[{c2, c4}][{u2}] 105.41 + 72.64 178.05

ν2[{c1, c4}][{u1}] + ν2[{c2, c3}][{u2}] 106.98 + 69.92 176.90

ν2[{c2, c3}][{u1}] + ν2[{c1, c3}][{u2}] 105.34 + 81.84) 187.18

ν2[{c2, c4}][{u1}] + ν2[{c1, c3}][{u2}] 106.19 + 78.54 184.73

ν2[{c3, c4}][{u1}] + ν2[{c1, c2}][{u2}] 107.01 + 76.58 183.59

ν1[{c1}][{u1}] + ν3[{c2, c3, c4}][{u2}] 105.36 + 73.52 178.88

ν1[{c2}][{u1}] + ν3[{c1, c3, c4}][{u2}] 49.05 + 81.84 130.89

ν1[{c3}][{u1}] + ν3[{c1, c2, c4}][{u2}] 105.32 + 81.84 187.16

ν1[{c4}][{u1}] + ν3[{c1, c2, c3}][{u2}] 102.51 + 78.54 181.05

(ν0[∅][{u1}]− ν0[∅][{u1}]) + ν4[{c1, c2, c3, c4}][{u2}] (28.75− 28.75) + 81.84 81.84

CHAPTER 4. OUR SOLUTION 74

for having constraint, user u1 have to visit at least POI type c1, cell of table Table 4.32(b) contains

the Tmini value for user u1. Similarly, it is not valid that other users u2, u3 and u4 should visit all

required POI types including c1. So for other users instead of user u1, we can take the maximum

overhead value of the valid combinations from Table 4.32(d) and add the distance from source to

destination location for corresponding user for Tmaxi values. Thus, the Tmini and Tmaxi values for

users {u1, u2, u3, u4} are {(105.36 + 28.75), 25.00, 47.55, 77.48} ≡ {134.11, 25.00, 47.55, 77.48} and

{(107.15 + 28.75), (73.52 + 25.00), (43.93 + 47.55), (5.86 + 77.48)} ≡ {135.90, 98.52, 91.48, 83.34},

respectively. Using these values we refine the search region based on Theorems 4.3.1 and 4.3.2. For

user u1, based on Theorem 4.3.1, the major axis for the elliptic region E1 is 135.90. On the other

hand, based on Theorem 4.3.2, the major axis is 107.15 + 134.11 = 241.26. We take the best bound

among them which is 135.90, the first one.

Similar to all other variations of GTS queries, each cell of ν0, ν1, ν2, ν3 and ν4 also stores the set of

POIs for which the minimum trip overhead distance is obtained with satisfying the constraint. For

the sake of clarity we do not show them in the tables.

Chapter 5

Algorithms

In this chapter we present algorithms for GTS and UGTS queries based on our solution described at

Chapter 4 and discuss, how we can extend the algorithms for GTS and UGTS queries with different

types of constraints.

The organization of this chapter is as follows. We present and elaborate the algorithms for GTS and

UGTS queries in Sections 5.1 and 5.2, respectively. In Section 5.3, we discuss ways to extend our

proposed algorithms for processing GTS and UGTS queries for having different types of constraints

(e.g. dependencies among POIs, dependencies among a user and POIs).

5.1 GTS Approach

The key idea of our algorithm is to incrementally retrieve nearest POIs with respect to the geometric

centroid G of all users’ source and destination locations. Our algorithm uses best first search (BFS)

to incrementally retrieve POIs from the data storage. We assume that, POIs are indexed using

an R∗-tree in the database. Our algorithm retrieves POIs until they minimize the aggregate trip

overhead distance from the user’s source to destination via the required POI types.

Algorithm 1 shows the pseudocode of our approach to evaluate GTS queries for both Euclidean

space and road networks. It takes the set of source and destination locations, S and D, respectively

75

CHAPTER 5. ALGORITHMS 76

Algorithm 1: GTS Approach(S,D,C, f)

input : S,D,C, f

output: A set of trips, T

1 Initialize();

2 InitDynTables(|S|, |C|,V);

3 ComputeTable(ν0, f);

4 Enqueue(Qp, root,MinD(G, root));

5 while Qp is not empty do

6 if end = 1 then

7 break;

8 {p, dmin(p)} ← Dequeue(Qp);

9 r ← dmin(p);

10 if p is not a POI then

11 foreach child node pc of p do

12 Enqueue(Qp, pc,MinD(G, pc));

13 else if τ(p) ∈ C and p ∈
⋃n

i=1Ei then

14 P ← InsertPOI(p);

15 if init = 0 and CheckInclude(P,C) then

16 ComputeTrip(S,D,C, P,V);

17 init← 1;

18 isup← true;

19 else if init = 1 then

20 isup← UpdateTrip(τ(p), S,D,C, p,V);

21 if isup = true and init = 1 then

22 {T,Mx,Mi} ← UpDynTables(|S|,C,V, f);

23 ellipregions← UpEllipticRegions(T,Mx,Mi, f);

24 if IsInCircle(G, r, ellipregions) then

25 end← 1;

26 return T

CHAPTER 5. ALGORITHMS 77

for a group of n members and the set of required m POI types C and aggregation function f which

may be either sum or max as input. The output is the set of n scheduled trips T = {T1, T2, . . . , Tn},

where n trips together visit all POI types in C and no POI type is visited by more than one trip.

As the first step, using function Initialize(), Algorithm 1 initializes G to the geometric centroid of

source and destination locations, a priority queue Qp to ∅, and other variables as follows: r = 0,

end = 0, isup = false, and init = 0. The variable r represents the radius of current known

region. Flags end and isup indicate whether the terminating condition is true and a user’s trip has

been updated, respectively. Variable init is used to keep track between compute and update trip

operations. Initialize() also declares n elliptic regions for n users as ellipregions = {E1, E2, . . . , En},

where the foci of each ellipse Ei is initialized to the source and destination locations of a user and

the length of the major axis is set to ∞.

Function InitDynTables(|S|, |C|,V) initializes the set of dynamic tables V = {ν0, ν1, . . . , νm}. After

that ComputeTable(ν0, f) computes the values for single member columns and combined member

columns of the first dynamic table ν0. The calculation of combined member columns differs based

on the aggregate function f . If f = sum, the combined member columns store the total value of

the corresponding column’s multiple users’ trip overhead distances. Otherwise, if f = max, the

combined member columns store the minimum value of maximum trip overhead distances of the

corresponding column’s multiple users’ trips. The stored trip distances and trip overhead distances

in ν0 are Euclidean distances if the GTS query is processed in the Euclidean space, and they are

road network distances, otherwise.

The algorithm starts searching from the root of the R∗-tree and inserts the root with MinD(G, root)

into a priority queue Qp. Qp stores its elements in order of their minimum distances from G,

dmin(p) that are determined by Function MinD(G, p). For both Euclidean space and road networks,

MinD(G, p) returns the minimum Euclidean distance between G and p, where p represents a POI

or a minimum bounding rectangle of a R∗-tree node. After that the algorithm removes an element

p along with dmin(p) from Qp. At this step, the algorithm updates r, the radius of current known

region. If p represents a R∗-tree node, then algorithm retrieves its child nodes and enqueues them

into Qp. On the other hand, if p is a POI then it is added to candidate POI set P , if the POI type

CHAPTER 5. ALGORITHMS 78

is specified in C and falls inside any user’s ellipse Ei. The algorithm uses function τ(p) to determine

the POI type of a POI p.

Function CheckInclude(P,C) checks whether the POI set P contains at least one POI from each

POI type in C. When the initial POI set has been found, Function ComputeTrip(S,D,C, P,V)

computes possible trips for all users and populates the single member columns of tables ν1 to νm

with trip overhead distances that our dynamic programming technique uses. The algorithm sets init

to 1 and isup to true. As mentioned before, the stored trip distances or overhead distances in the

dynamic tables are Euclidean distances if the GTS is query is processed in the Euclidean space, and

they are road network distances, otherwise.

After computing the trips from the initial POI set, if the algorithm retrieves any new POI p, it uses

Function UpdateTrip(τ(p), S,D,C, p,V) to compute new trips using p and update the single member

columns of ν1 to νm, if new trips can improve the stored trip overhead distances in the tables. The

function also updates isup accordingly.

If isup is true and the initial set is already found (i.e., init = 1), Function UpDynTables(|S|,C,V, f)

updates combined member columns of tables from ν1 to νm based on the logic described in

Section 4.3.4. The function takes n, m, the set of all dynamic tables V and the aggregate function

f as input, updates the combined member columns of the dynamic tables and returns T , Mx and

Mi, where T represents the scheduled trips, Mx and Mi represent the sets {Tmax1 , . . . , Tmaxn} and

{Tmin1 , . . . , Tminn}, respectively. Tmaxi and Tmini for 1 ≤ i ≤ n are defined in Section 4.3.2 for both

aggregate function sum and max. As we already mentioned, based on the aggregate function f , the

calculation of combined member columns of the dynamic table differs. If f = sum, the combined

member columns of the dynamic tables store the total value of the corresponding column’s multiple

users’ trip overhead distances. Otherwise the combined member columns stores the minimum value

of maximum trip overhead distances of the corresponding column’s multiple users’ trips, if f = max.

Algorithm 2 shows the pseudocode of the function UpDynTables(|S|,C,V, f) which we will explain

shortly.

Then using function UpEllipticRegions(T,Mx,Mi, f), the algorithm updates the elliptic bound for

CHAPTER 5. ALGORITHMS 79

all n users, where ellipregions represents the elliptic search regions {Ei, E2, . . . , En} of the users.

The bounds for the elliptic search regions are determined using both Theorem 4.3.1 and 4.3.2 for

aggregate function f = sum. For aggregate function f = max, to determine the bounds for the

elliptic search regions our algorithm uses both Theorem 4.3.1 and 4.3.3. In Algorithm 3, we show

the pseudocode of the function UpEllipticRegions(T,Mx,Mi, f) which we will explain shortly.

The algorithm checks the terminating condition of our GTS queries using Function

IsInCircle(G, r, ellipregions). This function checks whether all n elliptic search regions is in-

cluded by the current circular known region or not. If the terminating condition is true, the algorithm

updates the terminating flag end to 1. At the end of the algorithm, it returns scheduled trips T for n

users that provide the minimum aggregate trip overhead distance.

Now we will elaborately explain pseudocode of two important functions UpDynTables(n,C,V, f)

and UpEllipticRegions(T,Mx,Mi, f) that we have used in Algorithm 1.

Algorithm 2 shows the pseudocode of the function UpDynTables(n,C,V, f) which updates combined

member columns of the dynamic tables from ν1 to νm based on the logic described in Section 4.3.4.

The function takes number of group members n, the set of required POI types C, the set of all

dynamic tables V and the aggregate function f as input, updates the combined member columns of

the dynamic tables and returns T , Mx and Mi, where T represents the scheduled trips, Mx and

Mi represent the sets {Tmax1 , . . . , Tmaxn} and {Tmin1 , . . . , Tminn}, respectively. Tmaxi and Tmini for

1 ≤ i ≤ n are defined in Section 4.3.2 for both aggregate function sum and max. The function uses

y variable to keep track of the current dynamic table to update the combined member columns.

Variable maxcol stores the number of maximum combined member columns of the current dynamic

table νy. As we already mentioned that the final dynamic table νm has one more extra column than

the other dynamic tables and using maxcol variable we keep track of the column count.

For each row of current dynamic table νy, the function update all the cells of combined member

columns of that row one by one. The algorithm uses variable i to keep track of the current combined

member column which is going to be updated. To compute the cell of current combined member

column {u1 . . . ui}, the algorithm uses single member column {ui} and already computed sin-

CHAPTER 5. ALGORITHMS 80

Algorithm 2: UpDynTables(n,C,V, f)

input : n,C,V, f

output: T ,Mx,Mi

1 for y ← 1 to |C| do

2 if y = |C| then

3 maxcol = n;

4 else

5 maxcol = n− 1;

6 foreach member pc of CCy do

7 for i← 2 to maxcol do

8 fcol = {u1 . . . u(i−1)}; scol = {ui}; distmin ← 0;

9 for g ← 0 to y do

10 foreach member qc of CCg do

11 dt ← 0;

12 if qc ⊆ pc then

13 pdf ← pc − qc;

14 if f = sum then

15 if g = 0 then

16 dt ← ((νg[qc][fcol]− ν0[∅][fcol]) + ν|pdf |[pdf][scol]);

17 else if g = y then

18 dt ← (νg[qc][fcol] + (ν|pdf |[pdf][scol]− ν0[∅][scol]));

19 else

20 dt ← (νg[qc][fcol] + ν|pdf |[pdf][scol]);

21 else if f = max then

22 if g = 0 then

23 dt ← max((νg[qc][fcol]− ν0[∅][fcol]), ν|pdf |[pdf][scol]);

24 else if g = y then

25 dt ← max(νg[qc][fcol], (ν|pdf |[pdf][scol]− ν0[∅][scol]));

26 else

27 dt ← max(νg[qc][fcol], ν|pdf |[pdf][scol]);

28 if dt < distmin then

29 distmin ← dt;

30 νy[pc][{u1 . . . ui}]← distmin;

31 return T ,Mx,Mi

CHAPTER 5. ALGORITHMS 81

gle/combined member column {u1 . . . u(i−1)}, upto the previous group member ui−1. The algorithm

uses fcol and scol variables to keep track of the columns that are required to compute the cell of

current combined member column {u1 . . . ui}. Note that, fcol can be both single (e.g. {u1}) and

combined member columns where scol can be only single member column. Using variable distmin

the algorithm computes the minimum aggregate trip overhead distances among all candidate trip

overhead distances of the possible combinations of any cell.

To compute the combined member columns of current dynamic table νy, the algorithm uses all

the dynamic tables from ν0 to νy and to keep track of that the algorithm uses variable g. Each

time we compare the POI type combinations of different dynamic tables to find out the candidate

combinations and pick the minimum one which gives the minimum trip overhead distance of that

user and POI type combination.

Note that, based on the aggregate function f , the calculation of combined member columns of the

dynamic table differs. If f = sum, the combined member columns of the dynamic tables store the

total value of the corresponding column’s multiple users’ trip overhead distances. Otherwise the

combined member columns stores the minimum value of maximum trip overhead distances of the

corresponding column’s multiple users’ trips, if f = max. Note that, the cells of single member

columns of table ν0 store the trip distances instead of trip overhead distances where the combined

member columns of table ν0 and the single and combined member columns of all other tables stores

the trip overhead distances of the combined group member. So for the single member columns of

table ν0, we deduct the distance between the source and destination locations of a group member

from the trip distance to get the trip overhead distance while updating the cells of combined member

columns.

Algorithm 3 represents the pseudocode of function UpEllipticRegions(T,Mx,Mi, f) which is uses

to update the elliptic bounds for all n users elliptic search regions {E1, E2, . . . , En} using the search

region refinement techniques that has been described in Section 4.3.2. It takes T , Mx, Mi and f as

input and updates the updates the elliptic bound of each group members elliptic search regions. We

have already mentioned that, T represents the set of n scheduled trips {T1, T2, . . . , Tn}, Mx and Mi

represents the minimum and maximum trip distances, {Tmax1 , . . . , Tmaxn} and {Tmin1 , . . . , Tminn},

CHAPTER 5. ALGORITHMS 82

respectively. In Section 4.3.2 for both aggregate function sum and max, Tmaxi and Tmini for

1 ≤ i ≤ n are defined. At first step, the function computes the aggregate trip overhead distance of

the group members using T and Mi. Here AggOverheadDist stores the aggregate trip overhead

distance for a group member. At first step of the algorithm, AggOverheadDist initializes to 0.0.

After that, the algorithm computes the aggregate trip overhead distance for all n group members

and stores the value to AggOverheadDist. TripDisti represents the trip distance of trip Ti When

f = sum, it stores the total trip overhead distances of the n trips. For both aggregate function sum

and max, Tmaxi be one bound Bound1 using Theorem 4.3.1. Using Theorem 4.3.2 for aggregate

function f = sum and Theorem 4.3.3 for aggregate function f = max another bound Bound2

is AggOverheadDist + Tmini . Finally the algorithm chooses and updates the major axis of the

elliptic search region with the best bound which gives the smaller bound between Bound1 and Bound2.

Algorithm 3: UpEllipticRegions(T,Mx,Mi, f)

input : T,Mx,Mi, f

1 AggOverheadDist← 0.0;

2 for i← 1 to n do

3 if f = sum then

4 AggOverheadDist← AggOverheadDist+ (TripDisti − Tmini);

5 else if f = max then

6 AggOverheadDist← max(AggOverheadDist, (TripDisti − Tmini));

7 for i← 1 to n do

8 Bound1 ← Tmaxi ;

9 Bound2 ← AggOverheadDist+ Tmini ;

10 if Bound1 < Bound2 then

11 Ei.MajorAxis← Bound1;

12 else

13 Ei.MajorAxis← Bound2;

CHAPTER 5. ALGORITHMS 83

5.2 UGTS Approach

Algorithm 4: UGTS Approach(S,D,C, e, f)

input : S,D,C, e, f

output: A set of trips, T

1 Initialize();

2 InitDynTablesUniform(e, |S|, |C|,V);

3 Enqueue(Qp, root,MinD(G, root));

4 while Qp is not empty do

5 if end = 1 then

6 break;

7 {p, dmin(p)} ← Dequeue(Qp);

8 r ← dmin(p);

9 if p is not a POI then

10 foreach child node pc of p do

11 Enqueue(Qp, pc,MinD(G, pc));

12 else if τ(p) ∈ C and p ∈
⋃n

i=1Ei then

13 P ← InsertPOI(p);

14 if init = 0 and CheckInclude(P,C) then

15 ComputeTrip(S,D,C, e, P,V);

16 init← 1;

17 isup← true;

18 else if init = 1 then

19 isup← UpdateTrip(τ(p), S,D,C, e, p,V);

20 if isup = true and init = 1 then

21 {T,Mx,Mi} ← UpDynTablesUniform(e, |S|,C,V, f);

22 ellipregions← UpEllipticRegions(T,Mx,Mi, f);

23 if IsInCircle(G, r, ellipregions) then

24 end← 1;

25 return T

CHAPTER 5. ALGORITHMS 84

Algorithm 4 shows the pseudocode of the proposed approach to evaluate Uniform GTS (UGTS)

queries in spatial databases. It takes the set of source and destination locations, S and D, respectively

for a group of n members, the set of required m POI types C, the number of POI types e that each

member visits and aggregation function f which may be either sum or max as input. The output is

the set of n scheduled trips T = {T1, T2, . . . , Tn} where the n trips combinedly visit all POI types in C.

As first step, Algorithm 4 initializes all required variables that are needed throughout the UGTS

query processing. It does this initialization using function Initialize() where the function declares

and initializes geometric centroid G of all n source-destination pairs, data structure for traversing

R∗-tree, priority queue Qp, ellipregions = {E1, E2, . . . , En} for n users where each ellipse Ei has

foci at user’s source and destination location and major axis is equal to ∞ and initializes the

required variables end = 0, init = 0, r = 0, isup = false. The variable end represents the algorithm

termination indicator and init represents a variable flag that is used to keep track between compute

and update trips operations. The variables r and isup represent the radius of current known region

and a flag that indicates any user trips is updated or not respectively.

Function InitDynTablesUniform(e, |S|, |C|,V) initializes the dynamic tables V = {νe, ν2e, . . . νm}

which we have mentioned in Section 4.3.4. For the dynamic table νe, the function also initializes

Mx and Mi, where Mx and Mi represent the set of n maximum {Tmax1 , . . . , Tmaxn} and minimum

{Tmin1 , . . . , Tminn} bounds, which has been mentioned in Section 4.3.2. The function initializes Mx

by ∞ and Mi by Dist(si, di) for any group member ui.

The algorithm starts searching from the root of the R∗-tree and inserts the root with MinD(G, root)

into a priority queue Qp. The priority queue Qp stores elements in order of their distance from G which

determined by function MinD(G, p). The function MinD(G, p) calculates and returns the minimum

Euclidean distance between geometric centroid, G and p, where p represents a POI or a minimum

bounding rectangle of a R∗-tree node for both Euclidean space and road networks. After that the

algorithm removes an element p from the priority queue Qp along with dmin(p) which represents the

minimum distance of p computed from the query point G. At this step, the algorithm updates r,

the radius of current known region. If p represents a R∗-tree node, then algorithm retrieves its child

nodes and enqueues them into Qp if they might contain any candidate answer set. On the other hand,

CHAPTER 5. ALGORITHMS 85

if p is a POI then it is added to candidate POI set P with tracking of the POI type of this POI. The

algorithm uses function τ(p) to determine the POI type of a POI p. Before adding POI p to candidate

POI set P , the algorithm also checks if the POI p lies inside any user’s elliptic search region or not too.

Function CheckInclude(P,C) checks if the POI set P contains at least one POI from each POI types

in C. When initial POI set has been found, the algorithm initially compute trips for all possible

cases for each users using function ComputeTrip(S,D,C, e, P,V). In short, this function computes

required trips and populates the single member columns of the dynamic table νe. The algorithm

updates isup by true and init by 1. After computing trips, if the algorithm retrieves any new POI p,

it uses function UpdateTrip(τ(p), S,D,C, e, p,V) to update the trips in table νe which only can be

updated with the newly retrieved POI p and updates isup accordingly.

Function UpDynTablesUniform(e, n,C,V, f) updates all other tables from ν2e to νm which we

have been mentioned in Section 4.3.4. Algorithm 5 shows the pseudocode for updating the dynamic

tables based on the logic we have described in Section 4.3.4. The function takes e, n, C, V and f as

input and returns T , Mx and Mi, where T represents the scheduled trips, Mx and Mi represent

the set of n maximum {Tmax1 , . . . , Tmaxn} and minimum {Tmin1 , . . . , Tminn} bounds, which has been

mentioned in Section 4.3.2. Function UpdateMinMaxDist(νe) updates Mx and Mi for all n users.

Then using function UpEllipticRegions(T,Mx,Mi, f) the algorithm updates the elliptic bound for

all n users where ellipregions represents the elliptic search region of the users. The bound for the

elliptic search regions are determined using both Theorem 4.3.1 and 4.3.2 for aggregate function

sum and using both Theorem 4.3.1 and 4.3.3 for aggregate function max. The algorithm checks the

terminating condition of our GTS queries using function IsInCircle(G, r, ellipregions). This function

checks if all n elliptic search regions is included by the current circular known region or not. If the

terminating condition becomes true, the algorithm updates the terminating flag end to 1and returns

the uniformly scheduled trips T for n users that provide the minimum aggregate trip overhead distance.

Now we will elaborately explain pseudocode of one of the important functions

UpDynTableUniform(e, n,C,V, f). We skip to explain the another important function

UpEllipticRegions(T,Mx,Mi, f) which is exactly similar which we already explained in pre-

CHAPTER 5. ALGORITHMS 86

vious Section 5.1.

Algorithm 5 shows the pseudocode of the function UpDynTableUniform(e, n,C,V, f) which updates

combined member columns of the dynamic tables from ν2e, ν3e to νm based on the logic described

in Section 4.3.4. The function takes number of POI types that each group member visits e, the

number of group members n, the set of required POI types C, the set of all dynamic tables V and

the aggregate function f as input, updates the combined member columns of the dynamic tables

and returns T , Mx and Mi, where T represents the scheduled trips, Mx and Mi represent the sets

{Tmax1 , . . . , Tmaxn} and {Tmin1 , . . . , Tminn}, respectively. Tmaxi and Tmini for 1 ≤ i ≤ n are defined

in Section 4.3.2 for both aggregate function sum and max.

Initially the function updates Mx and Mi using the function UpdateMinMaxDist(νe) which take

the dynamic table νe as input and updates Mx and Mi for the group members. After that function

uses i variable to keep track of the current dynamic table (e.g. νie) to update the only combined

member column. For each row of current dynamic table νie, we update all the cells of the combined

member column. To compute the cells of current combined member column {u1 . . . ui} of dynamic

table νie, the algorithm uses single member column {ui} of table νe and already computed combined

member column {u1 . . . u(i−1)} of dynamic table ν(i−1)e. The algorithm uses fcol and scol variables

to keep track of the columns that are required to compute the cell of current combined member

column {u1 . . . ui}. Note that, fcol can be both single (e.g. {u1}) and combined member column

where scol can be only single member column. Using variable distmin the algorithm computes the

minimum aggregate trip overhead distances among all candidate trip overhead distances of the

possible combinations of any cell.

Each time we compare the POI type combinations of different dynamic tables to find out the

candidate combinations and pick the minimum one which gives the minimum trip overhead distance

of that user and POI type combination. Note that, based on the aggregate function f , the calculation

of combined member columns of the dynamic table differs. If f = sum, the combined member

columns of the dynamic tables store the total value of the corresponding column’s multiple users’ trip

overhead distances. Otherwise the combined member columns stores the minimum value of maximum

trip overhead distances of the corresponding column’s multiple users’ trips, if f = max. Note that,

CHAPTER 5. ALGORITHMS 87

Algorithm 5: UpDynTablesUniform(e, n,C,V, f)

input : e, n,C,V, f

output: T ,Mx,Mi

1 UpdateMinMaxDist(νe);

2 for i← 2 to n do

3 fcol = {u1 . . . u(i−1)};

4 scol = {ui};

5 foreach member pc of {CCie} do

6 distmin ← 0;

7 foreach member qc of {CC(i−1)e} do

8 dt ← 0;

9 if qc ⊂ pc then

10 pdf ← pc − qc;

11 if f = sum then

12 if fcol = {u1} then

13 dt ← (νe[qc][fcol]− Tmin1) + (νe[pdf][scol]− Tmini);

14 else

15 dt ← (ν(i−1)e[qc][fcol] + (νe[pdf][scol]− Tmini));

16 else if f = max then

17 if fcol = {u1} then

18 dt ← max((νe[qc][fcol]− Tmin1), (νe[pdf][scol]− Tmini));

19 else

20 dt ← max(ν(i−1)e[qc][fcol], (νe[pdf][scol]− Tmini));

21 if dt ≤ distmin then

22 distmin ← dt;

23 νie[{pc}][{u1 . . . ui}]← distmin;

24 return T ,Mx,Mi

CHAPTER 5. ALGORITHMS 88

the cells of single member columns store the trip distances instead of trip overhead distances where

the combined member columns stores the trip overhead distances of the combined group members. So

for the single member columns, we deduct the distance between the source and destination locations

of a group member from the trip distance to get the trip overhead distance while updating the cells

of combined member columns.

5.3 Extensions

A group may impose different types of constraints like dependencies among POIs, dependencies

among members and POIs in both GTS and UGTS queries. We can extend our proposed algorithms

that we have described in Section 5.1 for GTS queries and in Section 5.2 for UGTS queries for

GTS/UGTS queries having different types of constraints as well.

For having different types of constraints, some combinations of POI types or some combinations

of members and POI types become invalid which we have mentioned in Chapter 4. These invalid

POIs combinations or members and POIs combinations should be ignored if we need to schedule

trips with constrains using our proposed approach. In our approach when we are initializing

dynamic tables in both Algorithm 1 and Algorithm 4 using function InitDynTables(|S|, |C|,V) and

InitDynTablesUniform(e, |S|, |C|,V), respectively, we can check the validity of the combination

based on imposed constraints. In both algorithms, while we are computing and updating trips we

have to check the validity of the POI types combinations or user and POI types combinations. For

the invalid combinations, we do not need to perform compute or update trip operations. We also

have to check validity while we are updating combined user columns of the dynamic tables. The

invalid combinations have to deduce while we are computing aggregate trip overhead distances for

each cells of the dynamic tables.

For the GTS queries with different types of constraints, we need to choose Mx and Mi bounds

for different user’s considering the validity of the POI type combinations or user and POI types

combinations. For example, in GTS queries, we take ν0[∅][{ui}] value which is the trip distance for

user ui without visiting any POI types as minimum bound for user ui. Suppose in GTS queries with

CHAPTER 5. ALGORITHMS 89

dependencies among user and POIs, user imposes constraint that user ui should visit POI type cj . In

that case the cell ν0[{ui}] of table ν0 will be invalid. It will not happen that user ui will not visit any

POI types. So we should take the value of the trip Ti of user ui where the trip visits only POI type

cj as minimum bound of that user. In summary, we should take the value of the cell ν1[{cj}][{ui}] of

dynamic table ν1 as the minimum bound for user ui.

Chapter 6

A Straightforward Approach

To the best of our knowledge, we introduce GTS queries and its variant Uniform GTS (UGTS)

in spatial databases and thus, there exists no approach to process GTS or UGTS queries in the

literature. To validate the efficiency of our proposed approach in experiments, using existing trip

planning algorithms, we develop straightforward approaches for processing GTS queries and UGTS

queries, S-GTS and S-UGTS, respectively.

A straightforward way to process a GTS query or a UGTS query would be independently evaluating

optimal trips for every group member and for all possible candidate combinations of POI types, and

then selecting n trips that together satisfies the conditions of GTS or UGTS queries and provides

the minimum aggregate trip overhead distance for the group. These approaches require multiple

independent searches into the database and accesses same POIs multiple times.

We organize this chapter as follows. The algorithms for processing S-GTS and S-UGTS queries have

been presented and elaborately discussed in Sections 6.1 and 6.2, respectively. In Section 6.3, we

discuss ways to extend our proposed algorithms for processing S-GTS and S-UGTS queries for having

different types of constraints.

90

CHAPTER 6. A STRAIGHTFORWARD APPROACH 91

6.1 Algorithm for S-GTS Approach

Algorithm 6: S-GTS Approach(S,D,C, f)

input : S,D,C, f

output: A set of trips, T

1 m← |C|;

2 n← |S|;

3 InitDynTables(|S|, |C|,V);

4 ComputeTable(ν0, f);

5 for group member ui do

6 for g ← 1 to m do

7 foreach member tc of CCg do

8 νg[tc][{ui}]← GTP (si, di, tc)−Dist(si, di);

9 {T,Mx,Mi} ← UpDynTables(n,m,V, f);

10 return T

Algorithm 6 shows the pseudocode of the S-GTS approach to evaluate GTS queries in the Euclidean

and road network spaces. It takes the following parameters as input: the set of source and destination

locations, S and D, respectively, for a group of n members and the set of required m POI types C.

The output is the set of n scheduled trips T = {T1, T2, . . . , Tn}, where n trips together visit all POI

types in C and no POI type is visited by more than one trip.

In the first step, Algorithm 6 initializes the dynamic tables ν0 to νm using the function

InitDynTables(|S|, |C|,V), which we mentioned in Section 4.3.4. After that ComputeTable(ν0, f)

computes single member columns and combined member columns of the first dynamic table ν0

according to the aggregate function f . After updating table ν0, for each member ui of the group and

for each dynamic table νg, the algorithm calculates trips for mCg possible sets of POI types using

function GTP (si, di, tc), and populates the dynamic tables ν1 to νm with computed trip overhead

distances which are computed by reducing the distance from source (si) to destination (di) for a

group member ui from the trip distances. The function takes the source and destination locations

CHAPTER 6. A STRAIGHTFORWARD APPROACH 92

of ui, and a set of POI types tc from C as input and returns the optimal trip with the trip distance

in the Euclidean space or road networks, where the trip starts from si, passes through POI types in

tc and ends at di. The GTP (si, di, tc) function considers all possible orders of POI types in tc while

computing trip distances and returns the minimum one. For the function GTP (si, di, tc), any existing

trip planning algorithm or group trip planning algorithm (by assuming one group member) can be

used. In our experiment, we use the most recent and efficient group trip planning algorithm [3] for this

purpose. However, in the S-GTS approach, the function GTP (si, di, tc) is called multiple times, and a

same POI may be accessed in the database more than once. On the other hand, our GTS approach re-

quires a single traversal on the database and ensures that a single POI is accessed once in the database.

Finally, the algorithm uses the same function UpDynTables(n,m,V, f) as Algorithm 1 to select the

final n scheduled trips for the group. The function updates the combined member columns of the

dynamic tables from ν1 to νm according to aggregate function f , and returns T , and Mx and Mi,

where T represents the scheduled trips, Mx and Mi are not used for the S-GTS approach.

Although for the S-GTS approach, we apply the similar dynamic programming that we use for our

GTS approach in Section 4, two approaches are different. In the S-GTS approach, we use the dynamic

programming technique once to find the final scheduled n trips from the already calculated optimal

trips of users. On the other hand, the GTS approach incrementally retrieves POIs from the database,

calculates the trips of users based on the retrieved POIs, and applies the dynamic programming

technique every time with the retrieval of a new POI to check whether the new POI can improve the

scheduled trips.

6.2 Algorithm for S-UGTS Approach

Algorithm 7 shows the pseudocode of the S-UGTS approach to evaluate UGTS queries in spatial

databases. As input it takes the following parameters : the set of source and destination locations, S

and D, respectively, for a group of n members, the set of required m POI types C, and the number of

POI types e that each member visits. The output is the set of n scheduled trips T = {T1, T2, . . . , Tn},

where n trips together visit all POI types in C.

CHAPTER 6. A STRAIGHTFORWARD APPROACH 93

Algorithm 7: S-UGTS Approach(S,D,C, e, f)

input : S,D,C, e, f

output: A set of trips, T

1 m← |C|;

2 n← |S|;

3 InitDynTablesUniform(e, |S|, |C|,V);

4 for group member ui do

5 foreach member tc of {CCe} do

6 νe[{tc}, {ui}]← GTP (si, di, tc);

7 {T,Mx,Mi} ← UpDynTablesUniform(e, n,C,V, f);

8 return T

In the first step, Algorithm 7 initializes the dynamic tables νe, ν2e, . . . , νm using the function

InitDynTablesUniform(e, |S|, |C|,V), which we mentioned in Section 4.3.4. For the dynamic table

νe, the function also initializes Mx by ∞ and Mi by Dist(si, di) for any group member ui, where

Mx and Mi represent the set of n maximum trip distances of visiting any e number of POI types.

After that for each member of the group, the algorithm calculates trips for CCe possible set of e

POI types using function GTP (si, di, tc), and populates the dynamic table νe. The function takes

the source and destination locations of ui, and a set of e POI types from C as input and returns

the optimal trip distance where the trip starts from si, passes through POI types in tc and ends at

di. The GTP (si, di, tc) function considers all possible orders of POI types in tc while computing trip

distances and returns the minimum one.

Finally, the algorithm uses function UpDynTablesUniform(e, n,C,V, f) to select the final n

scheduled trips for the group. The function updates tables from ν2e to νm, which we discussed in

Section 4.3.4, and returns T , Mx and Mi, where T is the n scheduled trips. Mx and Mi represent

the set of n maximum {Tmax1 , . . . , Tmaxn} and minimum {Tmin1 , . . . , Tminn} bounds, respectively,

which has no use for the S-UGTS approach.

CHAPTER 6. A STRAIGHTFORWARD APPROACH 94

Similar to S-GTS approach, in S-UGTS approach, any existing trip planning algorithm or group trip

planning algorithm (by assuming one group member) can be used for the function GTP (si, di, tc). In

our experiment, we use the most recent and efficient group trip planning algorithm [3] for this purpose.

Although for the S-UGTS approach, we also apply the similar dynamic programming that we use

for our UGTS approach in Chapter 4, the two approaches are different. In the S-UGTS approach,

we use the dynamic programming technique once to find the final scheduled n trips from the already

calculated optimal sub trips of users. Based on n scheduled trips, we do not perform any optimization,

whereas in the UGTS approach, we apply the dynamic programming technique multiple times. The

UGTS approach incrementally retrieves POIs from the database, calculates the sub trips of users, and

the dynamic programming technique is applied to compute n scheduled trips. Based on the computed

n scheduled trips, the UGTS approach refines the search region, retrieves POIs, updates sub trips

until we find the optimal n scheduled trips for UGTS queries.

6.3 Extension of Straightforward Approach for GTS and

UGTS Queries with Constraints

In a GTS query or a Uniform GTS (UGTS) query, group may impose different types of constraints

like dependencies among POIs, dependencies among members and POIs. For having different types

of constraints, some combinations of POI types or some combinations of members and POI types

become invalid which we have mentioned in Chapter 4. In straightforward approach, the invalid POIs

combinations or members and POIs combinations should be ignored as well while we are computing

single trips using function GTP (si, di, tc). After computing single trips for all valid combinations, we

use similar dynamic programming approach for constraints which schedules multiples trips considering

only valid combinations only once.

Chapter 7

Experiments

In this chapter, we evaluate the performance of our approach for processing GTS and UGTS queries

through extensive experiments. Since there is no existing work for GTS or UGTS queries in the

literature, we compare our proposed GTS and UGTS approaches with the straightforward approaches

S-GTS and S-UGTS, respectively, that have been discussed in Chapter 6 by varying a wide range of

parameters.

We evaluate our approaches in both Euclidean and road network dataspaces using synthetic and real

world datasets for both aggregate functions sum and max. For the real dataset, we used California [1]

dataset that contains 87635 POIs of 63 different types. The road network of California has 21048

nodes and 21693 edges. We generated the synthetic datasets of POIs of different types using the

uniform random distribution. The whole data space is normalized to 1000x1000 sq. units for both

real and synthetic datasets. An R∗-tree is used to store all the POIs of a dataset and a in-memory

graph data structure is used to store the road network.

We use an Intel Core i5 machine with 2.30 GHz CPU and 4GB RAM to run the experiments. For

each set of experiments, we measure two performance metrics: the average processing time and

average I/O overhead (I/O access in R∗-tree). The metrics are measured by running 100 independent

GTS and UGTS queries having random source and destination locations, and then taking the average

of processing time and I/O access. Since both GTS and S-GTS approaches and UGTS and S-UGTS

approaches require the same amount of storage for storing dynamic tables, we do not show them in

95

CHAPTER 7. EXPERIMENTS 96

our experiments.

To present the experimental results, we organize this chapter as follows. In Section 7.1, we show the

experimental results of GTS queries for aggregate functions sum and max in both Euclidean space

and road networks. The experimental results of UGTS queries for aggregate functions sum and max

in both Euclidean space and road networks have been shown and discussed in Section 7.2.

7.1 GTS Queries

GTS queries for both aggregate function sum and max, we performed several set of experiments by

varying the following parameters:

(i) the group size n

(ii) the number of specified POI types m

(iii) the query area A, i.e., the minimum bounding rectangle covering the source and destination

locations, and

(iv) the dataset size ds (only in the Euclidean space)

Table 7.1: Parameter settings for GTS queries

Parameter Values Default

Group size(n) 2, 3, 4, 5, 6, 7 3

Number of POI types (m) 2, 3, 4 , 5 , 6 4

Query area(A) (in sq. units)
50x50, 100x100, 150x150, 200x200,

250x250, 300x300
100x100

Dataset size(ds) (number of POIs

in thousands)
5, 10, 20, 40, 80, 160 -

Dataset distribution Uniform -

Table 7.1 shows the range and default values used for each parameter. To observe the effect of

a parameter in an experiment, the value of the parameter is varied within its range, and other

parameters are set to their default values.

CHAPTER 7. EXPERIMENTS 97

7.1.1 Euclidean Space

7.1.1.1 Effect of Group Size (n)

10
0

10
1

10
2

10
3

10
4

 2 3 4 5 6 7

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

n

GTS

S-GTS

10
0

10
1

10
2

10
3

10
4

 2 3 4 5 6 7

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

n

GTS

S-GTS

4.0*10
0

8.0*10
0

1.2*10
1

1.6*10
1

2.0*10
1

2 3 4 5 6 7

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

n

GTS(Sum)

GTS(Max)

(a) sum (b) max (c) sum and max

10
2

10
3

10
4

10
5

 2 3 4 5 6 7

I/
O

 O
v
e
rh

e
a
d

n

GTS

S-GTS

10
2

10
3

10
4

10
5

 2 3 4 5 6 7

I/
O

 O
v
e
rh

e
a
d

n

GTS

S-GTS

5.0*10
1

1.0*10
2

1.5*10
2

2.0*10
2

2 3 4 5 6 7

I/
O

 O
v
e

rh
e

a
d

n

GTS(Sum)

GTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.1: Effect of group size (n) in Euclidean space (California dataset)

We study the impact of group size on the performance of GTS query by varying the group size using

2, 3, 4, 5, 6 and 7 and measuring the required processing time and number of I/O access from the POI

R∗-tree for both aggregate functions sum and max. Figures 7.1(a) and 7.1(b) show the processing

time and for aggregate functions sum and max, respectively, for our GTS and S-GTS approaches.

For both approaches Figures 7.1(d) and 7.1(e) show the I/O access for aggregate functions sum and

max. We observe that both processing time and I/O access slightly increase with the increase of the

group size. Our GTS approach requires significantly less processing time and I/O access than the

CHAPTER 7. EXPERIMENTS 98

S-GTS approach, which is expected. The S-GTS approach computes the optimal trips for each group

member and for every possible combination of POI types independently, and thus, accesses the same

POIs multiple times in the database. On the other hand, our GTS approach accesses a POI in the

database only once and gradually refines the search regions based on the scheduled trips using the

dynamic programming technique.

In Figures 7.1(c) and 7.1(f), we show a comparative view of the aggregate functions sum and max for

both metrics the processing time and I/O access, respectively. For both metrics, aggregate functions

sum and max show almost similar changes with the increase of group size. The reason behind this is,

for GTS queries with different aggregate functions, the bound of each group member’s elliptic region

changes which impacts both metrics, processing time and I/O access. In a GTS query for aggregate

function max, with minimizing the maximum trip overhead of a group member, it may reduce the

bound for that group member which may increase the bound for other group members who may

have smaller bound GTS queries for aggregate function sum. Thus on average for both cases we have

almost similar trends for the metrics.

7.1.1.2 Effect of Number of POI Types (m)

In our experiments, we study the impact of number of POI types on the performance of GTS

query by varying the number of POI types using 2, 3, 4, 5 and 6 and measuring the required

processing time and number of I/O access from the POI R∗-tree for both aggregate functions

sum and max. Figures 7.2(a-b) and 7.2(d-e) show that the processing time and I/O access,

respectively, for both aggregate function sum and max, increase with the increase of m. The results

show that our GTS approach outperforms the S-GTS approach by a large margin in terms of

both I/O access and processing time. Specifically, the improvement for the I/O access is more

pronounced for the larger values of m. We observe in Figures 7.2(d-e) that the I/Os required

by the GTS approach remains almost constant, and the number of I/O access for the S-GTS

approach sharply increases with the increase of m. The reason is as follows. For the change of

m to m + 1, the number of independent trip computations in the S-GTS approach for each

group member increases by
∑m+1

y=0 (m+1Cy) −
∑m

y=0(
mCy), whereas the I/O access of the GTS

approach depends on the size of its search region. For an additional POI type, the search region only

CHAPTER 7. EXPERIMENTS 99

slightly increases since the AggTripOvDist and Tmaxi for any user ui increase by only a small amount.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 2 3 4 5 6

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

m

GTS

S-GTS

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

 2 3 4 5 6

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

m

GTS

S-GTS

1.0*10
0

1.0*10
1

1.0*10
2

2 3 4 5 6

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

m

GTS(Sum)

GTS(Max)

(a) sum (b) max (c) sum and max

10
2

10
3

10
4

10
5

10
6

10
7

 2 3 4 5 6

I/
O

 O
v
e
rh

e
a
d

m

GTS

S-GTS

10
2

10
3

10
4

10
5

10
6

10
7

 2 3 4 5 6

I/
O

 O
v
e
rh

e
a
d

m

GTS

S-GTS

1.7*10
2

2.0*10
2

2.3*10
2

2.6*10
2

2.9*10
2

2 3 4 5 6

I/
O

 O
v
e

rh
e

a
d

m

GTS(Sum)

GTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.2: Effect of number of POI types (m) in Euclidean space (California dataset)

For both metrics, the processing time and I/O access, Figures 7.2(c) and 7.2(f) show a comparative

view of the aggregate functions sum and max, respectively. We observe that for both metrics, aggregate

functions sum and max show almost similar changes with the increase of number of POI types. For

having different aggregate functions, in a GTS query, bound for each group members elliptic search

region changes but on average search region remains same. Thus both aggregate functions show similar

trends for the processing time and I/O access.

CHAPTER 7. EXPERIMENTS 100

7.1.1.3 Effect of Query Area (A)

We vary the query area by 50 × 50, 100 × 100, 150 × 150, 200 × 200, 250 × 250 and 300 × 300 sq.

units in our experiments to observe the impact on the performance of GTS query and measure the

required processing time and the number of I/O access from the POI R∗-tree for both aggregate

functions sum and max. Figures 7.3(a-b) and 7.3(d-e) show experimental results for different values

of the query area A for both aggregate functions. We see that for both approaches, the processing

time and I/O access increase with the increase of A. This is because the POI search region becomes

large if the source and destination locations are distributed in a large area of the total space. For

both metrics, our GTS approach outperforms the S-GTS approach, which is for the similar reasons

mentioned for the experiments of varying n.

10
0

10
1

10
2

10
3

10
4

 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

A

GTS

S-GTS

10
0

10
1

10
2

10
3

10
4

 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

A

GTS

S-GTS 4.0*10
0

1.4*10
1

2.4*10
1

3.4*10
1

50 100 150 200 250 300

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

A

GTS(Sum)

GTS(Max)

(a) sum (b) max (c) sum and max

10
1

10
2

10
3

10
4

10
5

 50 100 150 200 250 300

I/
O

 O
v
e
rh

e
a
d

A

GTS

S-GTS

10
1

10
2

10
3

10
4

10
5

 50 100 150 200 250 300

I/
O

 O
v
e
rh

e
a
d

A

GTS

S-GTS 1.0*10
2

2.0*10
2

3.0*10
2

4.0*10
2

5.0*10
2

6.0*10
2

50 100 150 200 250 300

I/
O

 O
v
e

rh
e

a
d

A

GTS(Sum)

GTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.3: Effect of query area (A) in Euclidean space (California dataset)

CHAPTER 7. EXPERIMENTS 101

Figures 7.3(c) and 7.3(f) show a comparative chart of the aggregate functions sum and max for metrics

the processing time and I/O access, respectively. Both aggregate functions show similar trends for the

processing time and I/O access for the similar reason that we have described in Section 7.1.1.1 and

7.1.1.2.

7.1.1.4 Effect of Dataset Size (ds)

10
-1

10
0

10
1

10
2

10
3

5k 10k 20k 40k 80k 160k

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

d
s

GTS

S-GTS

10
-1

10
0

10
1

10
2

10
3

5k 10k 20k 40k 80k 160k

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

d
s

GTS

S-GTS

2.0*10
-1

4.0*10
-1

8.0*10
-1

1.6*10
0

3.2*10
0

5.2*10
0

5k 10k 20k 40k 80k 160k
P

ro
c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

d
s

GTS(Sum)

GTS(Max)

(a) sum (b) max (c) sum and max

10
0

10
1

10
2

10
3

10
4

10
5

5k 10k 20k 40k 80k 160k

I/
O

 O
v
e
rh

e
a
d

d
s

GTS

S-GTS

10
0

10
1

10
2

10
3

10
4

10
5

5k 10k 20k 40k 80k 160k

I/
O

 O
v
e
rh

e
a
d

d
s

GTS

S-GTS

1.0*10
1

2.0*10
1

4.0*10
1

6.0*10
1

8.0*10
1

5k 10k 20k 40k 80k 160k

I/
O

 O
v
e

rh
e

a
d

d
s

GTS(Sum)

GTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.4: Effect of dataset size (ds) in Euclidean space (Synthetic dataset)

In this experiment, we varied the size of synthetic dataset from 5k to 160k

(5k, 10k, 20k, 40k, 80k, 160k). To show the effect of dataset size(ds), we run experiments using

synthetic datasets generated using uniform distributions. The corresponding experimental results

are shown in Figures 7.4(a-b) and 7.4(d-e) for both aggregate functions sum and max. In this

experiment, we examine the performance difference of the two approaches with respect to data set

CHAPTER 7. EXPERIMENTS 102

size (ds). Figures 7.4(a-b) and 7.4(d-e) show that as the size increases, processing time and I/O

access increases for both approaches, which is expected. Like other experiments, the GTS approach

takes much less processing time (approx. 192 times) and I/O access (approx. 570 times) than the

S-GTS approach for any dataset size.

Both aggregate functions sum and max show similar trends for the processing time and I/O access

which we can observe deeply in Figures 7.4(c) and 7.4(f) for the processing time and I/O access, respec-

tively. The reason behind this is similar that we have described in Section 7.1.1.1, 7.1.1.2 and 7.1.1.3.

7.1.2 Road Networks

Experimental results for processing GTS queries in road networks using our proposed approach, GTS,

show similar performance and trends like the Euclidean space except that the GTS approach requires

on average 6.6 times more query processing time compared to the required processing time in the

Euclidean space for both aggregate functions sum and max.

7.1.2.1 Effect of Group Size (n)

To analysis the impact of group size on the performance of GTS query, we vary the group size from

2 to 7 (2, 3, 4, 5, 6, 7). For both aggregate functions sum and max, Figures 7.5(a-b) and 7.5(d-e)

show that the query processing time increases with the increase of group size n for both approaches,

GTS and S-GTS. This is because the number of road network distance computations increase with

the increase of n. On the other hand, with the increase of group size n, for our GTS approach, the

number of I/O access slightly changes, whereas for the S-GTS approach, the I/O access increases

significantly due to the access of same POIs multiple times. For both metrics, the GTS approach

outperforms the S-GTS approach.

In Figures 7.5(c) and 7.5(f), we show a comparative chart of the aggregate functions sum and max for

both metrics, the processing time and I/O access, respectively. For both metrics, aggregate functions

sum and max shows almost similar changes with the increase of group size. The reason behind this

is, for GTS queries with different aggregate functions, the bound of each group member’s elliptic

CHAPTER 7. EXPERIMENTS 103

region changes which impacts both processing time and I/O access. In a GTS query for aggregate

function max, with minimizing the maximum trip overhead of a group member, it may reduce the

bound for that group member which may increase the bound for other group members who may

have smaller bound GTS queries for aggregate function sum. Thus on average for both cases we have

almost similar trend for the metrics.

10
1

10
2

10
3

10
4

 2 3 4 5 6 7

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

n

GTS

S-GTS

10
1

10
2

10
3

10
4

 2 3 4 5 6 7

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

n

GTS

S-GTS

1.0*10
1

2.0*10
1

3.0*10
1

4.0*10
1

5.0*10
1

6.0*10
1

2 3 4 5 6 7
P

ro
c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

n

GTS(Sum)

GTS(Max)

(a) sum (b) max (c) sum and max

10
1

10
2

10
3

10
4

10
5

 2 3 4 5 6 7

I/
O

 O
v
e
rh

e
a
d

n

GTS

S-GTS

10
1

10
2

10
3

10
4

10
5

 2 3 4 5 6 7

I/
O

 O
v
e
rh

e
a
d

n

GTS

S-GTS

5.0*10
1

1.0*10
2

1.5*10
2

2.0*10
2

2.5*10
2

2 3 4 5 6 7

I/
O

 O
v
e

rh
e

a
d

n

GTS(Sum)

GTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.5: Effect of group size (n) in road networks (California dataset)

7.1.2.2 Effect of Number of POI Types (m)

Figures 7.6(a-b) and 7.6(d-e) show the performance of the GTS approach and the S-GTS approach

for varying the total number of POI types m for both aggregate functions sum and max. In this

experiment, we varied the number of POI types from 2 to 6 (2, 3, 4, 5, 6). We observe that the

CHAPTER 7. EXPERIMENTS 104

performance trends are similar to those for the Euclidean space. For any number of POI types, the

GTS approach outperforms the S-GTS approach in terms of both I/O access and processing time.

For metrics the processing time and I/O access, Figures 7.6(c) and 7.6(f) show a comparative chart

of the aggregate functions sum and max, respectively. We observe that for both metrics, aggregate

functions sum and max show almost similar changes with the increase of number of POI types. For

having different aggregate functions, in a GTS query, bound for each group member’s elliptic search

region changes but on average search region remains same. Thus both aggregate functions shows

similar trends for the processing time and I/O access.

10
0

10
1

10
2

10
3

10
4

10
5

 2 3 4 5 6

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

m

GTS

S-GTS

10
0

10
1

10
2

10
3

10
4

10
5

 2 3 4 5 6

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

m

GTS

S-GTS

1.0*10
0

1.0*10
1

1.0*10
2

2.0*10
2

4.0*10
2

8.0*10
2

2 3 4 5 6

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

m

GTS(Sum)

GTS(Max)

(a) sum (b) max (c) sum and max

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 2 3 4 5 6

I/
O

 O
v
e
rh

e
a
d

m

GTS

S-GTS

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 2 3 4 5 6

I/
O

 O
v
e
rh

e
a
d

m

GTS

S-GTS

5.0*10
1

7.0*10
1

9.0*10
1

1.1*10
2

1.3*10
2

1.5*10
2

2 3 4 5 6

I/
O

 O
v
e

rh
e

a
d

m

GTS(Sum)

GTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.6: Effect of number of POI types (m) in road networks (California dataset)

CHAPTER 7. EXPERIMENTS 105

7.1.2.3 Effect of Query Area (A)

We vary the query area by 50 × 50, 100 × 100, 150 × 150, 200 × 200, 250 × 250 and 300 × 300 sq.

units in our experiments to observe the impact on the performance of GTS query and measure

the required processing time and number of I/O access from the POI R∗-tree for both aggregate

functions sum and max. Figures 7.7(a-b) and 7.7(d-e) show that both query processing time and

I/O access increase with the increase of A for both approaches, and the GTS approach performs

significantly better than the S-GTS approach for both metrics. Figures 7.7(c) and 7.7(f) show a

comparative chart of the aggregate functions sum and max, respectively. We observe that for both

metrics, aggregate functions sum and max shows almost similar changes with the increase of number

of POI types for the similar reason that we already described in Section 7.1.2.1 and in Section 7.1.2.2.

10
0

10
1

10
2

10
3

10
4

 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

A

GTS

S-GTS

10
0

10
1

10
2

10
3

10
4

 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

A

GTS

S-GTS
1.0*10

1

1.0*10
2

2.0*10
2

4.0*10
2

6.0*10
2

50 100 150 200 250 300

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

A

GTS(Sum)

GTS(Max)

(a) sum (b) max (c) sum and max

10
1

10
2

10
3

10
4

10
5

 50 100 150 200 250 300

I/
O

 O
v
e
rh

e
a
d

A

GTS

S-GTS

10
1

10
2

10
3

10
4

10
5

 50 100 150 200 250 300

I/
O

 O
v
e
rh

e
a
d

A

GTS

S-GTS

3.0*10
1

1.0*10
2

2.0*10
2

4.0*10
2

6.0*10
2

50 100 150 200 250 300

I/
O

 O
v
e

rh
e

a
d

A

GTS(Sum)

GTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.7: Effect of query area (A) in road networks (California dataset)

CHAPTER 7. EXPERIMENTS 106

7.2 UGTS Queries

For UGTS queries where every group member visit uniform number of POIs, we performed similar

set of experiments that we performed for GTS queries by varying the following parameters for both

aggregate functions sum and max:

(i) the group size n

(ii) the number of specified POI types m

(iii) the query area A, i.e., the minimum bounding rectangle covering the source and destination

locations, and

(iv) the dataset size ds (only in the Euclidean space)

Table 7.2: Parameter settings for UGTS queries

Parameter Values Default

Group size(n) 2, 3, 4, 5 3

Number of POI types (m) 3, 6, 9 6

Query area(A) (in sq. units)
50x50, 100x100, 150x150, 200x200,

250x250, 300x300
100x100

Dataset size(ds) (number of POIs

in thousands)
5, 10, 20, 40, 80, 160 -

Dataset distribution Uniform -

Table 7.2 shows the range of values of different parameters used and the default value of each param-

eter. A parameter was set to the default value in experiments where any other parameter was being

varied.

CHAPTER 7. EXPERIMENTS 107

7.2.1 Euclidean Space

7.2.1.1 Effect of Group Size (n)

10
0

10
1

10
2

10
3

 2 3 4 5

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

n

UGTS

S-UGTS

10
0

10
1

10
2

10
3

 2 3 4 5

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

n

UGTS

S-UGTS

1.0*10
0

1.0*10
2

2.0*10
23.0*10
2

2 3 4 5

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

n

UGTS(Sum)

UGTS(Max)

(a) sum (b) max (c) sum and max

10
2

10
3

10
4

10
5

 2 3 4 5

I/
O

 O
v
e
rh

e
a
d

n

UGTS

S-UGTS

10
2

10
3

10
4

10
5

 2 3 4 5

I/
O

 O
v
e
rh

e
a
d

n

UGTS

S-UGTS

5.0*10
1

1.5*10
2

2.5*10
2

3.5*10
2

4.5*10
2

2 3 4 5

I/
O

 O
v
e

rh
e

a
d

n

UGTS(Sum)

UGTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.8: Effect of group size (n) in Euclidean space (California dataset)

To study the impact of group size on the performance of UGTS query we vary the group size from 2

to 5 (2, 3, 4, 5). With the increase of group size in UGTS queries, the number of POI types increases

thus our default POI types is 6 which follows that the number of uniform POI type is 2. So with the

increase of group size, 2, 3, 4 and 5, the number of POI types become 4, 6, 8 and 10. For different

values of group sizes we measure the required processing time and number of I/O access from the

POI R∗-tree for both aggregate functions sum and max. Figures 7.8(a-b) and 7.8(d-e) show the

processing time and I/O access for aggregate functions sum and max, respectively, for our UGTS and

S-UGTS approaches. We observe that both processing time and I/O access slightly increase with the

CHAPTER 7. EXPERIMENTS 108

increase of the group size. Our UGTS approach requires significantly less processing time and I/O

access than the S-UGTS approach, which is expected. The S-UGTS approach computes the optimal

trips for each group member and for every possible combination of POI types independently having

uniform number of POI types, and thus, accesses the same POIs multiple times in the database. On

the other hand, our UGTS approach accesses a POI in the database only once and gradually refines

the search regions based on the scheduled trips using the dynamic programming technique.

In Figures 7.8(c) and 7.8(f), we show a comparative chart of the aggregate functions sum and max for

both metrics the processing time and I/O access, respectively. For both metrics, aggregate functions

sum and max shows almost similar changes with the increase of group size. The reason behind this

is, for UGTS queries with different aggregate functions, the bound of each group member’s elliptic

region changes which impacts both processing time and I/O access. In a UGTS query for aggregate

function max, with minimizing the maximum trip overhead of a group member, it may reduce the

bound for that group member which may increase the bound for other group members who may have

smaller bound UGTS queries for aggregate function sum. Thus on average for both cases we have

almost similar trend for the metrics.

7.2.1.2 Effect of Number of POI Types (m)

In Figures 7.9(a-b) and 7.9(d-e), we show the performance of our proposed UGTS and straightforward

S-UGTS approach when total number of POI types m is varied from 3 to 9 for both aggregate

functions sum and max. The results show that for any number of POI types our proposed approach

outperform S-UGTS by a large margin in terms of I/O access and processing time. We estimated that

our efficient incremental GTS approach takes on the average approximately 33 times less processing

time and 299 times less I/O access than the S-GTS approach.

In Figures 7.9(c) and 7.9(f) we observe a chart of the aggregate functions sum and max for metrics

the processing time and I/O access, respectively. Both aggregate functions show similar trends for

the processing time and I/O access for the similar reason that we mentioned for the experiments of

varying n in Section 7.2.1.1.

CHAPTER 7. EXPERIMENTS 109

10
0

10
1

10
2

10
3

10
4

 3 6 9

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

m

UGTS

S-UGTS

10
-1

10
0

10
1

10
2

10
3

10
4

 3 6 9

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

m

UGTS

S-UGTS

1.0*10
0

1.0*10
1

1.0*10
2

3 6 9

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

m

UGTS(Sum)

UGTS(Max)

(a) sum (b) max (c) sum and max

10
2

10
3

10
4

10
5

10
6

 3 6 9

I/
O

 O
v
e
rh

e
a
d

m

UGTS

S-UGTS

10
2

10
3

10
4

10
5

10
6

 3 6 9

I/
O

 O
v
e
rh

e
a
d

m

UGTS

S-UGTS

1.0*10
2

2.0*10
2

3.0*10
2

4.0*10
2

5.0*10
2

3 6 9

I/
O

 O
v
e

rh
e

a
d

m

UGTS(Sum)

UGTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.9: Effect of number of POI types (m) in Euclidean space (California dataset)

7.2.1.3 Effect of Query Area (A)

In this experiment to observe the impact on the performance of UGTS queries, we vary the query

area by 50 × 50, 100 × 100, 150 × 150, 200 × 200, 250 × 250 and 300 × 300 sq. units and measure

the required processing time and number of I/O access from the POI R∗-tree for both aggregate

functions sum and max. Figures 7.10(a-b) and 7.10(d-e) shows experimental results for different

values of query area A for both aggregate functions sum and max. We see that for both approaches,

the processing time and I/O access increases with the increase of A, although the rate of increase is

less than that of Figures 7.8 and 7.9. For both metrics, our UGTS approach outperforms the S-UGTS

approach significantly.

CHAPTER 7. EXPERIMENTS 110

10
0

10
1

10
2

 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

A

UGTS

S-UGTS

10
0

10
1

10
2

 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

A

UGTS

S-UGTS

5.0*10
0

1.0*10
1

1.5*10
1

2.0*10
12.5*10
1

50 100 150 200 250 300

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

A

UGTS(Sum)

UGTS(Max)

(a) sum (b) max (c) sum and max

10
2

10
3

10
4

10
5

 50 100 150 200 250 300

I/
O

 O
v
e
rh

e
a
d

A

UGTS

S-UGTS

10
2

10
3

10
4

10
5

 50 100 150 200 250 300

I/
O

 O
v
e
rh

e
a
d

A

UGTS

S-UGTS

1.0*10
2

3.0*10
2

5.0*10
2

7.0*10
2

9.0*10
2

50 100 150 200 250 300

I/
O

 O
v
e

rh
e

a
d

A

UGTS(Sum)

UGTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.10: Effect of query area (A) in Euclidean space (California dataset)

Figures 7.10(c) and 7.10(f) show a comparative chart of the aggregate functions sum and max for

metrics the processing time and I/O access, respectively. Both aggregate functions show similar

trends for the processing time and I/O access for the similar reason that we mentioned for the

experiments of varying n in Section 7.2.1.1.

7.2.1.4 Effect of Dataset Size (ds)

In this experiment, we examine the performance difference of the two approaches with respect to data

set size (ds). We varied the size of synthetic dataset from 5k to 160k (5k, 10k, 20k, 40k, 80k160k).

To show the effect of dataset size(ds), we run experiments using synthetic datasets generated

using uniform distributions. The corresponding experimental results are shown in Figures 7.11(a-b)

CHAPTER 7. EXPERIMENTS 111

and 7.11(d-e) which shows that as size increases, processing time and I/O access increases for both

approaches. But incremental approach takes much less processing time and I/O access than the

straightforward approach.

Both aggregate functions sum and max show similar trends for the processing time and I/O access

that we deeply observe in Figures 7.11(c) and 7.11(f) for the processing time and I/O access,

respectively. The reason behind this is similar that we have described in Section 7.2.1.1.

10
-1

10
0

10
1

10
2

5k 10k 20k 40k 80k 160k

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

d
s

UGTS

S-UGTS

10
-1

10
0

10
1

10
2

5k 10k 20k 40k 80k 160k

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

d
s

UGTS

S-UGTS

2.0*10
-1

4.0*10
-1

8.0*10
-1

1.6*10
0

3.2*10
0

5.2*10
0

5k 10k 20k 40k 80k 160k

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

d
s

UGTS(Sum)

UGTS(Max)

(a)sum (b)max (c)sum and max

10
1

10
2

10
3

10
4

10
5

5k 10k 20k 40k 80k 160k

I/
O

 O
v
e
rh

e
a
d

d
s

UGTS

S-UGTS

10
0

10
1

10
2

10
3

10
4

10
5

5k 10k 20k 40k 80k 160k

I/
O

 O
v
e
rh

e
a
d

d
s

UGTS

S-UGTS

1.0*10
1

2.0*10
1

4.0*10
1

6.0*10
1

8.0*10
1

5k 10k 20k 40k 80k 160k

I/
O

 O
v
e

rh
e

a
d

d
s

UGTS(Sum)

UGTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.11: Effect of dataset size(ds) in Euclidean space (Synthetic dataset)

CHAPTER 7. EXPERIMENTS 112

7.2.2 Road Networks

7.2.2.1 Effect of Group Size (n)

Figures 7.12(a-b) and 7.12(d-e) show the processing time and I/O access, respectively, for our

proposed UGTS approach and the S-UGTS approach. We observe that, with the increase of group

size n, for our UGTS approach I/O access slightly changes where for the S-UGTS approach I/O

access increases with significant amount. For both approaches, query processing time increases with

the increase of group size n. In Figures 7.12(c) and 7.12(f) we observe that for both aggregate

functions sum and max, both processing time and I/O access metrics show almost similar trends

which is expected.

10
0

10
1

10
2

10
3

10
4

 2 3 4 5

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

n

UGTS

S-UGTS

10
0

10
1

10
2

10
3

10
4

 2 3 4 5

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

n

UGTS

S-UGTS

1.0*10
1

1.0*10
2

2.0*10
2

4.0*10
2

2 3 4 5

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

n

UGTS(Sum)

UGTS(Max)

(a) sum (b) max (c) sum and max

10
2

10
3

10
4

10
5

 2 3 4 5

I/
O

 O
v
e
rh

e
a
d

n

UGTS

S-UGTS

10
2

10
3

10
4

10
5

 2 3 4 5

I/
O

 O
v
e
rh

e
a
d

n

UGTS

S-UGTS

1.0*10
2

1.5*10
2

2.0*10
2

2.5*10
2

3.0*10
2

2 3 4 5

I/
O

 O
v
e

rh
e

a
d

n

UGTS(Sum)

UGTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.12: Effect of group size (n) in road networks (California dataset)

CHAPTER 7. EXPERIMENTS 113

7.2.2.2 Effect of Number of POI Types (m)

In Figures 7.13(a-b) and 7.13(d-e), we show the performance of our proposed UGTS approach and

the S-UGTS approach by varying the total number of POI types m. The results show that for any

number of POI types our proposed approach, outperform S-GTS by in terms of I/O access and

processing time. We observe that the performance trends are similar to those for the Euclidean space.

For any number of POI types, the UGTS approach outperforms the S-UGTS approach in terms of

both I/O access and processing time. For metrics the processing time and I/O access both aggregate

functions sum and max shows almost similar changes with the increase of number of POI types in

Figures 7.13(c) and 7.13(f), respectively, similar to other experiments.

10
0

10
1

10
2

10
3

10
4

 3 6 9

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

m

UGTS

S-UGTS

10
0

10
1

10
2

10
3

10
4

 3 6 9

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

m

UGTS

S-UGTS

1.0*10
0

1.0*10
1

1.0*10
2

2.0*10
2

4.0*10
2

8.0*10
2

3 6 9

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

m

UGTS(Sum)

UGTS(Max)

(a) sum (b) max (c) sum and max

10
2

10
3

10
4

10
5

10
6

 3 6 9

I/
O

 O
v
e
rh

e
a
d

m

UGTS

S-UGTS

10
2

10
3

10
4

10
5

10
6

 3 6 9

I/
O

 O
v
e
rh

e
a
d

m

UGTS

S-UGTS

1.0*10
2

1.5*10
2

2.0*10
2

2.5*10
2

3 6 9

I/
O

 O
v
e

rh
e

a
d

m

UGTS(Sum)

UGTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.13: Effect of number of POI types (m) in road networks (California dataset)

CHAPTER 7. EXPERIMENTS 114

7.2.2.3 Effect of Query Area (A)

Figures 7.14(d-e) and 7.14(a-b) show the comparison of required I/O access and query processing

time between our proposed UGTS approach and the S-UGTS approach by varying the query

area (A). We vary the query area by 50 × 50, 100 × 100, 150 × 150, 200 × 200, 250 × 250 and

300 × 300 sq. units in our experiments to observe the impact on the performance of UGTS query.

We estimated that, for the GTS approach, both query processing time and required I/O access

increases slightly with the increase of query area (A). For the S-UGTS approach, I/O access

increases slightly with the change of query area but changes in query processing time is not visible

so much. In Figures 7.14(c) and 7.14(f), we observe that for both metrics the processing time and

I/O access aggregate functions sum and max show almost similar changes with the change of area size.

10
0

10
1

10
2

10
3

10
4

 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

A

UGTS

S-UGTS

10
0

10
1

10
2

10
3

10
4

 50 100 150 200 250 300

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
)

A

UGTS

S-UGTS

1.0*10
0

1.0*10
1

1.0*10
2

2.0*10
2

4.0*10
2

50 100 150 200 250 300

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
e

c
)

A

UGTS(Sum)

UGTS(Max)

(a) sum (b) max (c) sum and max

10
2

10
3

10
4

10
5

 50 100 150 200 250 300

I/
O

 O
v
e
rh

e
a
d

A

UGTS

S-UGTS

10
1

10
2

10
3

10
4

10
5

 50 100 150 200 250 300

I/
O

 O
v
e
rh

e
a
d

A

UGTS

S-UGTS

5.0*10
1

1.0*10
2

2.0*10
2

4.0*10
2

1.0*10
3

50 100 150 200 250 300

I/
O

 O
v
e

rh
e

a
d

A

UGTS(Sum)

UGTS(Max)

(d) sum (e) max (f) sum and max

Figure 7.14: Effect of query area (A) in road networks (California dataset)

Chapter 8

Conclusions

In this thesis, we have introduced a new type of query, a group trip scheduling (GTS) query in

spatial databases that enables a group of users to schedule multiple trips among themselves with the

minimum aggregate trip overhead distance of the group members. We propose the first solution to

evaluate GTS queries in both Euclidean space and road networks. To schedule trips among group

members, in GTS queries, we consider two different aggregate trip overhead distances. The aggregate

trip overhead distance can be either the total or the maximum of the trip overhead distances of

group members that we measured using aggregate functions sum and max, respectively.

Specifically, we have proposed refinement techniques for the POI search space and a dynamic

approach to schedule trips among group members, which are the key ideas behind the efficiency

of our approach. We have exploited geometric properties to refine the POI search space and prune

POIs to reduce the number of possible combinations of trips among group members. To schedule

trips among group members, we have developed an efficient dynamic programming technique that

eliminates the trip combinations that can not be a part of the optimal query answer.

We have proposed a variant of GTS queries, a uniform GTS (UGTS) query that schedules trips

by uniformly distributing the required POI types among group members, i.e., each trip visits equal

number of POI types and the aggregate trip overhead distance is minimum. In this thesis, we have

provided an efficient solution for processing UGTS queries in both Euclidean and road networks. In

addition to fixing the number of POI types, we have extended our approach for processing GTS and

115

CHAPTER 8. CONCLUSIONS 116

UGTS queries with constraints like the dependencies among POIs, and/or dependencies among POIs

and group members.

Since there exists no approach to process GTS or UGTS queries in the literature, to validate the

efficiency of our proposed approach in experiments, we have developed straightforward approaches

for processing GTS queries (S-GTS) and UGTS (S-UGTS) queries using existing trip planning

algorithms. We have performed extensive experimental evaluation of the proposed techniques and

provided an comparative analysis of experimental results using both real and synthetic datasets.

Our experimental results show the performance analysis of our proposed approach for different

parameters. Experiments show that our GTS approach is on average 107 and 113 times faster and

requires on average 635 and 668 times less I/Os for aggregate function sum and max, respectively,

than the straightforward approach for the Euclidean space. For road networks, we observed that our

GTS approach requires on average 30 and 29 times less processing time and 1021 and 1033 times less

I/O access for aggregate function sum and max, respectively, than the straightforward approach.

In the future, we aim to protect location privacy [29–31] of users for GTS queries and variants. To

protect location privacy, a user may reveal encrypted [32], false [33] or cloaked [34] locations to the

LSP. The challenge is to find the query answer for the actual location of the user in real time based

on encrypted, false or cloaked locations. In the literature, there exist a number of privacy preserving

algorithms for processing variant spatial queries like nearest neighbor queries [35, 36], group nearest

neighbor queries [37, 38], and trip planning queries [27]. However, these algorithms are not directly

applicable for GTS queries.

In this thesis, we have only considered distance for finding GTS query answers. In reality, all POIs of

a single POI type may not have the same rating. The ratings of POIs of a POI type like restaurant

may vary based on the quality of service, and price. In the future we will focus on considering on

rating of POIs in addition to the distance for evaluating GTS queries and variants.

References

[1] California road network data. https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm.

[2] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. The multi-rule partial

sequenced route query. In SIGSPATIAL, pages 10:1–10, 2008.

[3] Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Lars Kulik, and Egemen Tanin. Effi-

cient computation of trips with friends and families. In CIKM, pages 931–940, 2015.

[4] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua Teng. On trip

planning queries in spatial databases. In SSTD, pages 273–290, 2005.

[5] Hongga Li, Hua Lu, Bo Huang, and Zhiyong Huang. Two ellipse-based pruning methods for

group nearest neighbor queries. In GIS, pages 192–199, 2005.

[6] Mehdi Sharifzadeh, Mohammad R. Kolahdouzan, and Cyrus Shahabi. The optimal sequenced

route query. VLDB J., 17(4):765–787, 2008.

[7] Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, and Lars Kulik. Group trip planning

queries in spatial databases. In SSTD, pages 259–276, 2013.

[8] Gilbert Laporte. A concise guide to the traveling salesman problem. JORS, 61(1):35–40, 2010.

[9] Tolga Bektas. The multiple traveling salesman problem: an overview of formulations and solution

procedures. Omega, 34(3):209 – 219, 2006.

[10] Gregory Gutin and Daniel Karapetyan. A memetic algorithm for the generalized traveling sales-

man problem. Natural Computing, 9(1):47–60, 2010.

117

https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

REFERENCES 118

[11] Jun Li, Qirui Sun, MengChu Zhou, and Xianzhong Dai. A new multiple traveling salesman

problem and its genetic algorithm-based solution. In SMC, pages 627–632, 2013.

[12] Wei Zhou and Yuanzong Li. An improved genetic algorithm for multiple traveling salesman

problem. In Informatics in Control, Automation and Robotics (CAR), volume 1, pages 493–495,

2010.

[13] Yutaka Ohsawa, Htoo Htoo, Noboru Sonehara, and Masao Sakauchi. Sequenced route query

in road network distance based on incremental euclidean restriction. In DEXA, pages 484–491,

2012.

[14] Nirmesh Malviya, Samuel Madden, and Arnab Bhattacharya. A continuous query system for

dynamic route planning. In ICDE, pages 792–803, 2011.

[15] Hossain Mahmud, Ashfaq Mahmood Amin, Mohammed Eunus Ali, Tanzima Hashem, and Sarana

Nutanong. A group based approach for path queries in road networks. In SSTD, pages 367–385,

2013.

[16] Robert Geisberger, Michael N. Rice, Peter Sanders, and Vassilis J. Tsotras. Route planning with

flexible edge restrictions. ACM Journal of Experimental Algorithmics, 17(1), 2012.

[17] Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route planning with flexible objective

functions. In ALENEX, pages 124–137, 2010.

[18] Elham Ahmadi and Mario A. Nascimento. A mixed breadth-depth first search strategy for

sequenced group trip planning queries. In MDM, pages 24–33, 2015.

[19] Samiha Samrose, Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Mohammad Hafiz

Uddin, and Md. Iftekhar Mahmud. Efficient computation of group optimal sequenced routes in

road networks. In MDM, pages 122–127, 2015.

[20] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. Group nearest neighbor

queries. In ICDE, pages 301–312, Washington, DC, USA, 2004. IEEE Computer Society.

[21] Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun Kit Hui. Aggregate nearest neigh-

bor queries in spatial databases. ACM Trans. Database Syst., 30(2):529–576, 2005.

REFERENCES 119

[22] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. Aggregate nearest neighbor queries in

road networks. IEEE Trans. Knowl. Data Eng., 17(6):820–833, 2005.

[23] Sansarkhuu Namnandorj, Hanxiong Chen, Kazutaka Furuse, and Nobuo Ohbo. Efficient bounds

in finding aggregate nearest neighbors. In Sourav S. Bhowmick, Josef Kng, and Roland Wagner,

editors, DEXA, volume 5181 of Lecture Notes in Computer Science, pages 693–700. Springer,

2008.

[24] Petrica C. Pop, Oliviu Matei, and C. Sabo. A new approach for solving the generalized traveling

salesman problem. In Hybrid Metaheuristics, pages 62–72, 2010.

[25] Zhou Xu and Brian Rodrigues. A 3/2-approximation algorithm for multiple depot multiple

traveling salesman problem. In SWAT, pages 127–138, 2010.

[26] Hongga Li, Hua Lu, Bo Huang, and Zhiyong Huang. Two ellipse-based pruning methods for

group nearest neighbor queries. In International Workshop on GIS, pages 192–199, 2005.

[27] Subarna Chowdhury Soma, Tanzima Hashem, Muhammad Aamir Cheema, and Samiha Samrose.

Trip planning queries with location privacy in spatial databases. World Wide Web, 2016.

[28] http://rtreeportal.org/.

[29] Chi-Yin Chow, Mohamed F. Mokbel, and Walid G. Aref. Casper*: Query processing for location

services without compromising privacy. ACM Trans. Database Syst., 34(4):24:1–24:48.

[30] B. Gedik and L. Liu. Protecting location privacy with personalized k-anonymity: Architecture

and algorithms. IEEE TMC, 7(1):1–18, 2008.

[31] Tanzima Hashem and Lars Kulik. Safeguarding location privacy in wireless ad-hoc networks. In

Ubicomp, pages 372–390, 2007.

[32] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi, and Kian-Lee Tan. Private

queries in location based services: anonymizers are not necessary. In SIGMOD, pages 121–132,

2008.

[33] Man L. Yiu, Christian S. Jensen, Jesper Møller, and Hua Lu. Design and analysis of a ranking

approach to private location-based services. ACM TODS, 36(2):10, 2011.

http://rtreeportal.org/

REFERENCES 120

[34] Tanzima Hashem and Lars Kulik. “Don’t trust anyone”: Privacy protection for location-based

services. PMC, 7:44–59, 2011.

[35] Ali Khoshgozaran and Cyrus Shahabi. Blind evaluation of nearest neighbor queries using space

transformation to preserve location privacy. In SSTD, pages 239–257, 2007.

[36] Man L. Yiu, Christian S. Jensen, Xuegang Huang, and Hua Lu. Spacetwist: Managing the trade-

offs among location privacy, query performance, and query accuracy in mobile services. In ICDE,

pages 366–375, 2008.

[37] Tanzima Hashem, Mohammed Eunus Ali, Lars Kulik, Egemen Tanin, and Anthony Quattrone.

Protecting privacy for group nearest neighbor queries with crowdsourced data and computing.

In UbiComp, pages 559–562, 2013.

[38] Tanzima Hashem, Lars Kulik, and Rui Zhang. Privacy preserving group nearest neighbor queries.

In EDBT, pages 489–500, 2010.

	Board of Examiners
	Candidate's Declaration
	Acknowledgment
	Abstract
	Introduction
	GTS Queries
	Research Challenges and Solution Overview
	Contributions
	Outline

	Problem Formulation
	Group Trip Scheduling (GTS) Queries
	System Overview

	Related Work
	Single User Trip and Route Planning Algorithms
	Group Trip Planning Algorithms
	Traveling Salesman Problem (TSP) and Variants
	Elliptical Search Space Refinement Techniques

	Our Solution
	Preliminaries
	Known Region
	Search Region

	Overview of Our Approach
	Steps of GTS Query Process
	Computing the Known Region
	Refinement of the Search Region
	First Refinement Technique for Aggregate Functions(sum and max)
	Second Refinement Technique for Aggregate Function sum
	Second Refinement Technique for Aggregate Function max
	Extensions for Uniform GTS (UGTS) Queries
	Extensions for GTS and UGTS Queries with Constraints
	Example Scenario of the Search Region Refinement

	Terminating Condition for POI Retrieval
	Dynamic Programming Technique for Scheduling Trips
	Trip Scheduling for GTS Queries
	Trip Scheduling for UGTS Queries
	Extensions of Trip Scheduling for Dependencies Among POIs
	Extensions of Trip Scheduling for Dependencies Among Users and POIs

	Algorithms
	GTS Approach
	UGTS Approach
	Extensions

	A Straightforward Approach
	Algorithm for S-GTS Approach
	Algorithm for S-UGTS Approach
	Extension of Straightforward Approach for GTS and UGTS Queries with Constraints

	Experiments
	GTS Queries
	Euclidean Space
	Effect of Group Size (n)
	Effect of Number of POI Types (m)
	Effect of Query Area (A)
	Effect of Dataset Size (ds)

	Road Networks
	Effect of Group Size (n)
	Effect of Number of POI Types (m)
	Effect of Query Area (A)

	UGTS Queries
	Euclidean Space
	Effect of Group Size (n)
	Effect of Number of POI Types (m)
	Effect of Query Area (A)
	Effect of Dataset Size (ds)

	Road Networks
	Effect of Group Size (n)
	Effect of Number of POI Types (m)
	Effect of Query Area (A)

	Conclusions
	References

