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Abstract 

There are several emerging areas in which highly resource constrained devices are 

interconnected, typically communicating wirelessly with one another, and working in concert to 

accomplish some task. Examples of these areas include: sensor networks, healthcare, distributed 

control systems, the Internet of Things, cyber physical systems, and the smart grid. Security and 

privacy can be very important in all of these areas. Because the majority of current cryptographic 

algorithms were designed for desktop/server environments, many of these algorithms do not fit 

into the constrained resources. If current algorithms can be made to fit into the limited resources 

of constrained environments, their performance is typically not acceptable. Here comes in the 

Lightweight Cryptography. Many research works have been going on this topic. Among them, 

Hummingbird is a new ultra-lightweight cryptographic algorithm targeted for resource-

constrained devices like RFID tags, smart cards, and wireless sensor nodes. The efficiency of the 

algorithm has been verified in software solution for a wide range of embedded applications. In 

this paper, we describe FPGA implementation with both software simulation as well as HW 

implementation of Hummingbird algorithm on Altera Platform. 

  Again testability of a complex chip is of prime concern now a days. It consists of IC 

design techniques that add the features to test the designed hardware and ensure the chip is free 

from defects and will function correctly. Because of its convenience and less expensiveness over 

ATE, Built-In-Self-Test (BIST) is a widely used technique for this purpose. In this project design 

of a Hummingbird Crypto ASIC implementing BIST technique is proposed. In this design LFSR 

is used to generate pseudorandom test pattern and Signature Analysis is used as a Data 

Compression Technique to implement BIST for multiple test counts. The proposed Crypto ASIC 

is simulated in Quartus II simulation software in the Altera Cyclone II family device as well as 

hardware implementation done in Altera DE2 board and performance is analyzed and compared 

with the other research works on Hummingbird implementation. 
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Chapter 1 

1.1 Introduction 

This is an age of Information and Communication Technology (ICT). The rapid growth 

in computer systems and their interconnections via networks has increased the dependence of 

both organizations and individuals on the information stored and its communication using these 

systems. Information security is now a burning issue in this era of Information and 

Communication Technology (ICT) [1]. The security has involves in many applications such as 

mobile networks, internet of things, automated teller machines (ATMs), copy protection 

(especially protection against reverse engineering and software piracy), internet  e-commerce, 

internet banking, military and government to facilitate secret communication and many more. 

Cryptography plays an important role in security system. In cryptography the secret data is 

encrypted by a secret key and the encrypted data can only be deciphered if one has the key. The 

encryption algorithm is asset of well-defined steps to transform data from a readable format to an 

encoded format using the key. This set of well-defined steps is called cipher. A number of 

algorithms on cryptography have been presented in the literatures [2-5]. At present AES has been 

proved as the strongest encryption algorithm declared by USA Govt. [5]. 

However, every application has different requirements such as the speed at which the 

security operations must be performed, the physical area for embedded hardware, or its power 

budget. Now a days there are lot of applications coming in the market where an increasing 

number of battery powered embedded systems like PDAs, cell phones, networked sensors, smart 

cards, RFID are used to store, access, manipulate or communicate sensitive data. It makes 

security an important issue. Since those devices are resource constrained and battery powered, 

low power and small area are the mandatory requirements. It has been found AES is not suitable 

for low cost embedded devices such as RFID tags, smart cards, wireless sensor nodes etc. due to 

their resource constraints [6]. To overcome this problem Hummingbird has been proposed as 

ultra-lightweight cryptographic algorithm suitable for embedded system and shown that it is 

resistant to a number of attacks such as algebraic attacks, cube attacks, differential power attacks 

etc. The efficiency of the algorithm has been verified in software solution for a wide range of 

embedded applications [7-8]. To verify its effectiveness in hardware platform, its FPGA 

implementation on Xilinx devices has been presented [6]. However its implementation on Altera 
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platform has not been reported yet although there are a major group of researchers who use this 

platform.  

Again testability of a complex chip is of prime concern in today’s IC design. Testing a 

VLSI chip to guarantee its functionality is extremely complex, time consuming as well as 

expensive [9]. To deal with the testing problem at the chip level incorporating built-in self-test 

(BIST) capability inside a chip is a widely accepted approach [10-14]. When chip is complex 

then Built-In-Self-Test (BIST) is a norms of this day because external testing using ATE is not 

cost effective and less convenient in this case. BIST in Hummingbird Crypto ASIC is not 

reported yet. This project focuses on implementing BIST in Hummingbird Crypto ASIC in 

Altera platform. In this design LFSR is used to generate pseudorandom test pattern and Signature 

Analysis is used as a Data Compression Technique to implement BIST for multiple test counts. 

The proposed Crypto ASIC is simulated in Quartus II simulation software in the Altera Cyclone 

II family device and performance is analyzed in terms of power consumption and compared with 

the other similar research works. 

1.2 Motivation 

For many years, the cryptographic engineering communities had worked on the problem 

of implementing various cryptographic primitives as fast as possible. Typical examples were 

high-speed RSA and Advanced Encryption Standard (AES) engines. However, the upcoming 

pervasive computing era that features myriads of small, inexpensive, robust networked 

processing devices has put forward the new challenge to the implementation of security 

mechanisms for embedded applications. Ultra low-cost smart devices such as RFID tags, smart 

cards, and wireless sensor nodes usually have extremely constrained resources in terms of 

computational capabilities, memory, and power supply. Consequently, classical cryptographic 

primitives designed for full-fledged computers might not be suited for resource-constrained 

pervasive devices and it is often desirable to have cryptographic primitives as small as possible. 

As a response to the aforementioned issue, lightweight cryptography, which focuses on 

designing new cryptographic primitives with small footprint in hardware and low average and 

peak power consumption, has received a lot of attention from both academia and industry in 

recent years. 
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The key issue of designing lightweight cryptographic algorithms is to deal with the trade-

off among security, cost, and performance and find an optimal cost-performance ratio [15]. Quite 

a few lightweight symmetric ciphers that particularly target resource-constrained smart devices 

have been published in the past few years and those ciphers can be utilized as basic building 

blocks to design security mechanisms for embedded applications. All the previous proposals can 

be roughly divided into the following three categories. The first category consists of highly 

optimized and compact hardware implementations for standardized block ciphers such as AES 

[16-18], IDEA [19] and XTEA [20], whereas the proposals in the second category involve slight 

modifications of a classical block cipher like DES [21] for lightweight applications. Finally, the 

third category features new low-cost designs, including lightweight block ciphers HIGHT [22], 

mCrypton [23], SEA [24], PRESENT [25] and KATAN and KTANTAN [26], as well as 

lightweight stream ciphers Grain [27], Trivium [28] and MICKEY [29]. A good survey covering 

recently published lightweight cryptographic implementations can be found in [30]. 

Hummingbird is a recently proposed ultra-lightweight cryptographic algorithm targeted for low-

cost smart devices [7, 31]. It has a hybrid structure of block cipher and stream cipher and was 

developed with both lightweight software and lightweight hardware implementations for 

constrained devices in mind. The hybrid model can provide the designed security with small 

block size and is therefore expected to meet the stringent response time and power consumption 

requirements for a large variety of embedded applications. Moreover, Hummingbird has been 

shown to be resistant to the most common attacks to block ciphers and stream ciphers including 

birthday attack, differential and linear cryptanalysis, structure attacks, algebraic attacks, cube 

attacks, etc. [7].  

Implementation on FPGA is a good choice to verify effectiveness of a cryptographic 

algorithm in hardware platform. Field Programmable Gate Arrays (FPGAs) are programmable 

logic devices which have proven to be highly feasible implementation platforms for 

cryptographic algorithms because they provide both speed and programmability. FPGAs consist 

of reconfigurable functional units, reconfigurable interconnections, and flexible interface. 

Reconfigurable functional units are used for implementing the logic needed in a design and they 

are connected with the reconfigurable interconnections. Interfacing is used for communication 
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with the rest of a system. FPGA implementation of Hummingbird cryptographic algorithm on 

Xilinx devices has been presented [6]. There is another platform of FPGA i.e. Altera which is 

used by a major group of researchers. Altera FPGAs are ideal for a wide variety of applications, 

from high-volume applications to state-of-the-art products. Each series of FPGA includes 

different features, such as embedded memory, digital signal processing (DSP) blocks, high-speed 

transceivers, or high-speed I/O pins, to cover a broad range of end products. Altera FPGAs offer 

a wide variety of configurable embedded SRAM, high-speed transceivers, high-speed I/Os, logic 

blocks, and routing. Built in intellectual property (IP) combined with outstanding software tools 

lower FPGA development time, power and cost. In this project Hummingbird Cryptographic 

algorithm implemented on Altera platform. Altera FPGAs have a number of family/series of 

products Stratix, Arria, Cyclone, MAX. In this work, we used Device of Cyclone II family for 

Low Cost.   

The testability of the cryptographic cores brings in an extra dimension to the process of 

digital circuits testing – security. When chip is complex then Built-In-Self-Test (BIST) is a norm 

of this day because external testing using ATE is not cost effective in this case. BIST in 

Hummingbird crypto core is not reported yet. In this project we proposes and implements BIST 

in Hummingbird Crypto core. Here to detect circuit faults, a set of pseudorandom test vectors is 

applied to a CUT and then the output responses of the CUT are compared with that of a fault-free 

CUT. Fault-free output data is stored in the memory of the tester. If they are identical then the 

CUT is certified as fault-free otherwise as faulty. With the increase of complexities in ICs, bit-

by-bit comparison is being more difficult and time consuming. Moreover, if the circuit size is 

large and complex, it takes much memory to store the output response data of a fault-free circuit 

and thereby increases the cost of IC testing. In order to overcome the problem, data compression 

techniques are usually used for test response evaluation. The choice of a compression scheme is 

influenced by two factors such as (a) the amount of circuitry required to implement the scheme 

and (b) the loss of data due to aliasing errors. Some of the important compression schemes such 

as (a) one’s counting, (b) transition counting, (c) parity checking and (d) signature analysis. In 

this work, we used Signature analysis as the compression schemes for its simplicity in hardware 

implementation and good test coverage. 
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1.3 Contributions of this Project 

The aim of this project is to develop a prototype ASIC to implement Hummingbird 

Cryptographic Algorithm with BIST.  

To meet this goal, the following objectives have been identified: 

 To design the modules of the Hummingbird Crypto ASIC using Verilog HDL 

 To simulate the design on Altera FPGA platform 

 To perform the performance analysis in terms power, speed and hardware resources  

 To compare the results with that of other researchers 

 

1.4 Project Outline  

The rest of the project is organized as follows: Chapter 2 provides the background 

information on basic mathematics of Hummingbird algorithm which is required for 

understanding the fundamental operations of different states of Hummingbird algorithm. This 

chapter also presents brief overview of the algorithm including its cipher and deciphers parts. 

Chapter 3 discusses about the FPGA implementation of the proposed design. The design 

components are also provided in this chapter. Chapter 4 discusses about the experimental results 

and discussion on power analysis and measurement of the proposed design. 

Finally, Chapter 5 offers suggestions for future work along with concluding remarks. 

 



Chapter 2 

Fundamentals of Hummingbird Cryptographic Algorithm 

2.1 Introduction 
A cryptographic algorithm is the mathematical function used for encrypting and 

decrypting messages. A modern cryptographic algorithm always includes a key. A cryptographic 

algorithm, plain texts, cipher texts, and keys are referred to as cryptosystem. The message, which 

is to be kept in secret, is referred to as plain text. The process of hiding its content is called 

encryption and the encrypted message is referred to as cipher text. The process of receiving the 

content of plain text back from cipher text is decryption. 

 

The techniques used were Secret-Key Cryptography, Public-Key Cryptography and 

Elliptic Curve cryptography which were based on ASIC and used General purpose processors for 

the task. Then came FPGA which worked by combining them. 

 

2.2 Basic Mathematics for Hummingbird 
All the operations performed in Hummingbird Cryptographic algorithm are based on 

modulo-2 operations. These operations are not the same operations used in general number 

system. The basic operations based on which the entire math of the Hummingbird developed are 

Addition and Subtraction of modulo operation. These operations are explained in the subsequent 

sections. 
 

2.3 Addition 
In modulo-2 additions, two elements are added by adding the coefficients of the 

corresponding powers in the polynomial [5]. The addition operation here is the XOR operation 

denoted by the symbol „̂ ‟. Subtraction of the polynomial is exactly the same as addition. Like 

other cryptographic algorithm, in the Hummingbird also the finite field algorithm of Galois 

Field, GF (2n) is used for addition/subtraction. 
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The following are equivalent representations of the same value in a characteristic 2 finite 

field: 

Polynomial: x6 + x4 + x + 1 

Binary: {01010011} 

Hexadecimal: {53} 
 

Addition and subtraction are performed by adding or subtracting two of these 

polynomials together, and reducing the result modulo the characteristic. In a finite field with 

characteristic 2, addition modulo 2, subtraction modulo 2, and XOR are identical. Thus, 

Polynomial: (x6 + x4 + x + 1) + (x7 + x6 + x3 + x) = x7 + x4 + x3 + 1 

Binary: {01010011} + {11001010} = {10011001} 

Hexadecimal: {53} + {CA} = {99} 

Notice that under regular addition of polynomials, the sum would contain a term 2x6, but 

that this term becomes 0x6 and is dropped when the answer is reduced modulo 2. 

Here is a table with both the normal algebraic sum and the characteristic 2 finite field 

sum of a few polynomials: 
TABLE 2.1: COMPARISON OF NORMAL AND FINITE FIELD ALGEBRA 

p1 p2 p1 + p2 (normal algebra) p1 + p2 in GF(2n) 

x3 + x + 1 x3 + x2 2x3 + x2 + x + 1 x2 + x + 1 

x4 + x2 x6 + x2 x6 + x4 + 2x2 x6 + x4 

x + 1 x2 + 1 x2 + x + 2 x2 + x 

x3 + x x2 + 1 x3 + x2 + x + 1 x3 + x2 + x + 1 

x2 + x x2 + x 2x2 + 2x 0 

 

 

2.4 Modular arithmetic 
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers 

"wrap around" upon reaching a certain value—the modulus. The modern approach to modular 

arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, 

published in 1801. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae
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The foundations of modular arithmetic were introduced in the third century BCE, by 

Euclid, in the 7th book of his Elements. 

 

2.4.1 Congruence relation 
Modular arithmetic can be handled mathematically by introducing a congruence relation 

on the integers that is compatible with the operations on integers: addition, subtraction, and 

multiplication. For a positive integer n, two integers a and b are said to be congruent modulo n, 

written: 

a ≡ b (mod n) 

if their difference a−b is an integer multiple of n (or n divides a−b). The number n is 

called the modulus of the congruence. 

For example, 

38 ≡ 14 (mod 12) 

because 38−14=24, which is a multiple of 12. 

The same rule holds for negative values: 

 -8 ≡ 7 (mod 5) 

 2 ≡ -3 (mod 5) 

 -3 ≡ -8 (mod 5) 

Equivalently, a ≡ b (mod n) can also be thought of as asserting that the remainders of the 

division of both a and b by n are the same. For instance: 

38 ≡ 14 (mod 12) 

Because both 38 and 14 have the same remainder 2 when divided by 12, it is also the case 

that 38-14=24 is an integer multiple of 12, which agrees with the prior definition of the 

congruence relation. 

 

2.4.2 Remainders 
The notion of modular arithmetic is related to that of the remainder in Euclidean division. 

The operation of finding the remainder is sometimes referred to as the modulo operation, and 

denoted with "mod" used as an infix operator. For example, the remainder of the division of 14 

by 12 is denoted by 14 mod 12; as this remainder is 2, we have 14 mod 12 = 2. 
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The congruence, indicated by "≡" followed by "mod" between parentheses, means that 

the operator "mod", applied to both members, gives the same result. That is 

A ≡ B (mod n) 

is equivalent to 

 A mod n ≡ B mod n 

The fundamental property of multiplication in modular arithmetic may thus be written 

 (a mod n) (b mod n) ≡ ab (mod n) 

or, equivalently, 

 ((a mod n) (b mod n)) mod n ≡ (ab) mod n 

In computer science, it is the remainder operator that is usually indicated by either "%" 

(e.g., in C, C++, Java, JavaScript, Perl and Python) or "mod" (e.g., in Pascal, BASIC, SQL, 

Haskell, ABAP), with exceptions (e.g., Excel). These operators are commonly pronounced as 

"mod", but it is specifically a remainder that is computed. The function modulo instead of mod, 

like 38 ≡ 14 (modulo 12) is sometimes used to indicate the common residue rather than a 

remainder. 

 

2.5 Overview of Hummingbird Cryptographic Algorithm 
The design of Hummingbird is based on an elegant combination of a block cipher and 

stream cipher      with 16-bit block size, 256-bit key size, and 80-bit internal state. Figure 1(a) 

and Figure 1(b) illustrate the initialization and encryption processes of the Hummingbird 

cryptographic algorithm, respectively. 

Both initialization and encryption consist of four 16-bit block ciphers Eki (i = 1, 2, 3, 4), 

four 16-bit internal state registers RSi (i = 1, 2, 3, 4), and a 16-stage Linear Shift Feedback 

Register (LFSR). Moreover, the 256-bit secret key K is divided into four 64-bit subkeys k1, k2, 

k3 and k4 which are used in the four block ciphers, respectively.  
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TABLE 2.2: NOTATION 

PTi the i-th 16-bit plaintext block, i = 1; 2; : : : ; n 
CTi the i-th 16-bit ciphertext block, i = 1; 2; : : : ; n 
K the 256-bit secret key 
EK(・) the encryption function of Hummingbird with 256-bit secret key K 
DK(・) the decryption function of Hummingbird with 256-bit secret key K 
ki the 64-bit subkey used in the i-th block cipher, i = 1; 2; 3; 4, such that K = 

k1∥k2∥k3∥k4 
Eki (・) a block cipher encryption algorithm with 16-bit input, 64-bit key ki, and 16-

bit output, i.e.,  
Eki : {0; 1}16 × {0; 1}64 → {0; 1}16; i = 1; 2; 3; 4 

Dki (・) a block cipher decryption algorithm with 16-bit input, 64-bit key ki, and 16-
bit output, i.e., Dki : {0; 1}16 × {0; 1}64 → {0; 1}16; i = 1; 2; 3; 4 

RSi the i-th 16-bit internal state register, i = 1; 2; 3; 4 
LFSR a 16-stage Linear Feedback Shift Register with the characteristic 

polynomial  
f(x) = x16 + x15 + x12 + x10 + x7 + x3 + 1 

⊞ modulo 216 addition operator 
⊟ modulo 216 subtraction operator 
⊕ exclusive-OR (XOR) operator 
m ≪ l left circular shift operator, which rotates all bits of m to the left by l bits, as 

if the left and the right ends of m were joined. 
Ki

(i) the j-th 16-bit key used in the i-th block cipher, j = 1; 2; 3; 4, such that ki = 
K1

(i) || K2
(i) || K3

(i) || K4
(i) || 

Si(x) the i-th 4-bit to 4-bit S-box used in the block cipher, Si(x) : F2
4 → F2

4 
NONCEi the i-th nonce which is a 16-bit random number, i = 1, 2, 3, 4 
IV the 64-bit initial vector, such that IV = 

NONCE1∥NONCE2∥NONCE3∥NONCE4 
 

2.5.1 16-Bit Block Cipher: 

Four identical 16-bit block ciphers are employed in a consecutive manner in the 

Hummingbird encryption scheme. The 16-bit block cipher is a typical substitution-permutation 

(SP) network with 16-bit block size and 64-bit key as shown in Figure 2. It consists of four 

regular rounds and a final round that only includes the key mixing and the S-box substitution 

steps. The 64-bit subkey ki is split into four 16-bit round keys K1
(i), K2

(i), K3
(i), K4

(i), which are 

used in the four regular rounds, respectively. Moreover, the final round utilizes two keys K5
(i), 

K6
(i), directly derived from the four round keys (see Figure 2). Like any other SP network, one 

regular round comprises of three stages: a key mixing step, a substitution layer, and a 
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permutation layer. For the key mixing, a simple exclusive-OR operation is used in this 16-bit 

block cipher for efficient implementation in both software and hardware. The final round only 

includes the key mixing and the S-box substitution steps. The key mixing step is implemented 

using a simple exclusive-OR operation, whereas the substitution layer is composed of four S-

boxes with 4-bit inputs and 4-bit outputs as shown in Table 2.3. 

TABLE 2.3 
FOUR S-BOXES IN HEXADECIMAL NOTATION 

 
x 0 1 2 3 4 5 6 7 8 9 A B C D E F 

S1(x) 8 6 5 F 1 C A 9 E B 2 4 7 0 D 3 

S2(x) 0 7 E 1 5 B 8 2 3 A D 6 F C 4 9 

S3(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D 

S4(x) 0 7 3 4 C 1 A F D E 6 B 2 8 9 5 

    
  The permutation layer in this 16-bit block cipher is given by the linear transform L: {0; 
1}16 → {0; 1}16 defined as follows: 

L(m) = m ⊕ (m ≪ 6) ⊕ (m ≪ 10);  

where m = (m0;m1; · · · ;m15) is a 16-bit data block. 

Algorithm 4 16-bit Block Cipher Encryption Eki (・) 

Input: A 16-bit data block m = (m0, m1, . . ., m15) and a 64-bit subkey ki such that 

subkey ki = K1
(i) ||  K2

(i) || K3
(i) || K4

(i) ||     

Output: A 16-bit date block m′ = (m0′,m1′,…,m15′) 

1: for j = 1 to 4 do 

2: m ← m ⊕ Kj
(i)   [key mixing step] 

3: A = m0 || m1 || m2 || m3; B = m4∥ m5∥ m6∥ m7 

C = m8∥ m9∥ m10∥ m11; D = m12∥ m13∥ m14∥ m15 

4: m ← S1(A) ∥ S2(B) ∥ S3(C) ∥ S4(D)  [substitution layer] 

5: m ← m ⊕ (m ≪ 6) ⊕ (m ≪ 10)  permutation layer] 

6: end for 

7: m ← m ⊕ K1
(i) ⊕ K3

(i) 

8: A = m0 || m1 || m2 || m3; B = m4∥ m5∥ m6∥ m7 
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C = m8∥ m9∥ m10∥ m11; D = m12∥ m13∥ m14∥ m15 

9: m ← S1(A)∥ S2(B)∥ S3(C)∥ S4(D)  

10: m′ ← m ⊕ K2
(i) ⊕ K4

(i) 

11: return m′ = (m0′,m1′….m15′) 
 

m = (m0, m1, . . ., m15) 

   16 

⊕ 16 K1
(i) , K2

(i) , K3
(i) , K4

(i)  

     16 

 4   4 4 4 

 

 16 

 4 4 4 4 

  

  16 

   Linear Transform L 

 16 

  

⊕  K5
(i) = K1

(i) ⊕ K3
(i) 

     16 

 4   4 4 4 

 

 

 4 4 4 4 

  

    16 

⊕ 16 K6
(i) = K2

(i) ⊕ K4
(i) 

m′ = (m0′, m1′….m15′) 

Fig. 2.1 Structure of Block Cipher in the Hummingbird Cryptographic Algorithm 

S1 S2 S3 S4 

S1 S2 S3 S4 
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c) Decryption Process 

Fig. 2.2 A Top-Level Description of the Hummingbird Cryptographic Algorithm 
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2.5.2 Initialization Process 
 

The overall structure of the Hummingbird initialization algorithm is shown in Figure 

1(a).When using Hummingbird in practice, four 16-bit random nonces NONCEi are first chosen 

to initialize the four internal state registers RSi (i = 1; 2; 3; 4), respectively, followed by four 

consecutive encryptions on the message RS1 ⊞ RS3 by Hummingbird running in initialization 

mode (see Figure 1(a)). The final 16-bit ciphertext TV is used to initialize the LFSR. Moreover, 

the 13th bit of the LFSR is always set to prevent a zero register. The LFSR is also stepped once 

before it is used to update the internal state register RS3.We can summarize the Hummingbird 

initialization process in the following Algorithm 1. 

 

Algorithm 1 Hummingbird Initialization 
 
Input: Four 16-bit random nonce NONCEi (i = 1; 2; 3; 4) 
Output: Initialized four rotors RSi4 (i = 1; 2; 3; 4) and LFSR 
1: RS10 = NONCE1   [Nonce Initialization] 
2: RS20 = NONCE2 
3: RS30 = NONCE3 
4: RS40 = NONCE4 
5: for t = 0 to 3 do 
6: V12t = Ek1 ((RS1t ⊞RS3t) ⊞ RS1t) 
7: V23t = Ek2 (V12t ⊞ RS2t) 
8: V34t = Ek3 (V23t ⊞ RS3t) 
9: TVt = Ek4 (V34t⊞ RS4t) 
10: RS1t+1 = RS1t ⊞ TVt 
11: RS2t+1 = RS2t ⊞V12t 
12: RS3t+1 = RS3t ⊞ V23t 
13: RS4t+1 = RS4t ⊞ V34t 
14: end for 
15: LFSR = TV3 | 0x1000   [LFSR Initialization] 
16: return RSi4 (i = 1; 2; 3; 4) and LFSR 

2.5.3 Encryption Process 

The overall structure of the Hummingbird encryption algorithm is depicted in Figure 

1(b).After a system initialization process, a 16-bit plaintext block PTi is encrypted by first 

executing a modulo 216 addition of PTi and the content of the first internal state register RS1. 

The result of the addition is then encrypted by the first block cipher Ek1. This procedure is 
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repeated in a similar manner for another three times and the output of Ek4 is the corresponding 

ciphertext CTi . Furthermore, the states of the four internal state registers will also be updated in 

an unpredictable way based on their current states, the outputs of the first three block ciphers, 

and the state of the LFSR. Algorithm 2 describes the detailed procedure of Hummingbird 

encryption.      

 
Algorithm 2 Hummingbird Encryption 
 
Input: A 16-bit plaintext PTi and four rotors RSit (i = 1; 2; 3; 4) 
Output: A 16-bit ciphertext CTi 
1: V 12t = Ek1 (PTi ⊞ RS1t)   [Block Encryption] 
2: V 23t = Ek2 (V12t ⊞ RS2t) 
3: V 34t = Ek3 (V23t ⊞ RS3t) 
4: CTi = Ek4 (V34t ⊞ RS4t) 
5: LFSRt+1 ← LFSRt    [Internal State Updating] 
6: RS1t+1  = RS1t ⊞ V 34t 
7: RS3t+1  = RS3t ⊞V 23t ⊞ LFSRt+1 
8: RS4t+1  = RS4t ⊞V 12t ⊞ RS1t+1 
9: RS2t+1 = RS2t ⊞V 12t⊞ RS4t+1 
10: return CTi 

2.5.4 Decryption Process 
 

The overall structure of the Hummingbird decryption algorithm is illustrated in Figure 

1(c). The decryption process follows the similar pattern as the encryption and a detailed 

description is shown in the following Algorithm 3. 

 
Algorithm 3 Hummingbird Decryption 
 
Input: A 16-bit ciphertext CTi and four rotors RSit (i = 1; 2; 3; 4) 
Output: A 16-bit plaintext PTi 
1: V34t = Dk4 (CTi) ⊟ RS4t   [Block Decryption] 
2: V23t = Dk3 (V34t) ⊟ RS3t 
3: V12t = Dk2 (V23t) ⊟RS2t 
4: PTi = Dk1 (V12t) ⊟ RS1t 
5: LFSRt+1 ← LFSRt    [Internal State Updating] 
6: RS1t+1 = RS1t ⊟ V34t 
7: RS3t+1 = RS3t ⊟ V23t ⊟ LFSRt+1 
8: RS4t+1 = RS4t ⊟ V12t ⊟ RS1t+1 
9: RS2t+1 = RS2t ⊟ V12t ⊟ RS4t+1 
10: return PTi 
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2.6  Linear Feedback Shift Register (LFSR) 

 LFSR is widely used for test pattern generation. It is considered as the simple and most 

efficient pseudo-random test pattern generator (Dufaza 1998). Figure 2.3 shows the basic 

structure of a standard LFSR. It consists of a set of storage elements (D-Flip-Flops) and modulo-

2 adder (X-OR gate). The connection is in such a way that the state of each element is shifted to 

the next element with the application of clock signal.    

 

 

    

 

 

 

In Figure 2.3, all the operations are in Galois Field GF (2).  S= ( 0S , 1S , ………., 1nS ), the 

binary n-tuples, represents the state of the LFSR. It can be represented in the polynomial form as 

follows: 

 
1

1
2

210 .......................)( 





  n
n

n
n xSxSxSSxS      (2.1) 

 
where ix  denotes the ith  stage of the LFSR. For example, 0x  represents stage 0, 1x  

represents stage 1 and so on. Feedback function of the LFSR is called the feedback polynomial 

or the generator polynomial and can be represented as follows: 

 
nn

n xxhxhhxh  



1
1

1
10 ................)(       (2.2) 

 
where ih {1,0} denotes the feedback tap in the ith  stage of the LFSR. 0ih  means 

there exists no feedback link in the ith stage whereas 1ih  means there exists feedback link in 

that stage. 

 

Fig. 2.3: General structure of an n-bit LFSR 
   

h0h1hn-1 hn-2
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With the application of clock signal, the LFSR goes into autonomous mode. The past 

state of the LFSR (S(x)) changes to a new state and generates pseudo-random patterns (Chen 

1988; Lin and Costello 1983). If the period of the LFSR is u then the LFSR returns to the initial 

state after u number of shifts. The period (u) of the LFSR depends on the feedback polynomial 

and initial state. If the initial state is all zero then u will be 1 meaning that the state remains 

unchanged. Again if the initial state of the LFSR is non-zero and the feedback polynomial is 

primitive then u becomes near exhaustive (Bardell et al. 1987). 

 

The states of an LFSR can be represented in matrix form. It is helpful in computation and 

analysis of the pseudo-random sequences generated from it. Matrix representation of the states of 

the LFSR is illustrated as follows: 

Matrix Representation of LFSR: 
Let‟s assume the present state of an n-stage LFSR (at time t) is 

)(...,),........(),(),( 1210 tXtXtXtX n  then the next state of the LFSR (at time t+1) 

)1(...,),........1(),1(),1( 1210   tXtXtXtX n can be written as follows (Wang and McCluskey 

1988): 
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i.e. )()1( tCXtX       (2.4) 
 
 

where X(t), X(t+1) are n-by-1 state matrix representing the present state and the next 

state of the LFSR respectively and C is n-by-n companion matrix of the LFSR. In the companion 

matrix, )10(  nihi  is either 1 or 0, depending on the existence or absence of the feedback 

path in the LFSR. If companion matrix of the LFSR is known then the states traveled by the 

LFSR starting from a non-zero initial state X(t) can be calculated as follows: 

,......,,, 32 XCXCCXX .. If the period of the LFSR is u then XXC u  , where u is the smallest 

integer for which IC u   (I is an n-by-n identity matrix). However, if the initial state of the 
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LFSR is zero then u is always 1 and the state of the LFSR remains unchanged and independent 

of C. 

The companion matrix can be derived from the generator polynomial of the LFSR. It can 

be proven in the following way: 

 The characteristic polynomial of the companion matrix (C), say f(x), can be determined 

from the determinant of C-IX which is given by: 

 

IXCxf )(      (2.5) 
 

Since in modulo-2 arithmetic, addition and subtraction are equivalent, determinant of C-

IX is same as the determinant of C+IX. Hence the Equation 2.7 can be rewritten as:  
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Equation 2.6 and Equation 2.2 prove that companion matrix can be obtained from the 

generator polynomial of an LFSR. 

Again the same characteristic polynomial, f(x), as in Equation 2.6, can be obtained by 

substituting the transpose of C ( tC ) in Equation 2.5 where 
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Hence Equation 2.4 can be rewritten as: 

)()()1( tXCtCXtX t          (2.8) 
 

Hence the states of a LFSR can be written in the matrix form by obtaining the companion 

matrix or its transpose from the generator polynomial of the LFSR. 
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2.7 Theory of Data Compression Technique 

To detect circuit faults, a set of test vectors is applied to a CUT and then the output 

responses of the CUT are compared with that of a fault-free CUT. Fault-free output data is stored 

in the memory of the tester. If they are identical then the CUT is certified as fault-free otherwise 

as faulty. With the increase of complexities in ICs, bit-by-bit comparison is being more difficult 

and time consuming. Moreover, if the circuit size is large and complex, it takes much memory to 

store the output response data of a fault-free circuit and thereby increases the cost of IC testing. 

In order to overcome the problem, data compression techniques are usually used for test response 

evaluation. Figure 2.4 shows a generalized block diagram of data compression scheme.  

 
 
 
 

 

 

 
 

The choice of a compression scheme is influenced by two factors such as (a) the amount 

of circuitry required to implement the scheme and (b) the loss of data due to aliasing errors. 

Some of the important compression schemes are (a) one‟s counting, (b) transition counting, (c) 

parity checking and (d) signature analysis. 

 
In our project, we have used signature analysis which is described in below: 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
CUT 

 
Compressor 

Input 

Test 
Sequence 

Output Response 
Compressed Data 

Fig. 2.4: Generalized data compression scheme 
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2.7.1 Signature Analysis 

Signature analysis is a widely used data compression technique. It is popular because of 

its simplicity in hardware implementation and good test coverage (David 1986; Bardel et al. 

1987; Ivanov and Agrawal 1989). Signature Analyzer (SA) consists of an LFSR and a modulo-2 

adder, M-2, as shown in Figure 2.5. 

 

 
 

 

 

 

 

The „start‟ and the „stop‟ signal establish the time window within which the SA performs 

data compression. The start signal initializes all the memory elements to zero and after that, the 

SA starts shifting the input data stream to be compressed bit by bit with the edge of every clock 

cycle. On each clock cycle, the 1st memory position of the SA is loaded by the incoming data and 

shifted towards right.  

 
Let‟s assume an input data stream of length l is applied at the input of the SA. When l 

clock cycles elapse, the binary data left in the memory of the SA is the signature of the input data 

sequence. In the signature analysis approach, cyclic redundancy checking (CRC) technique is 

used for data compression (Bardell et al. 1987). In this technique, the input data sequences are 

divided by the feedback polynomial of the SA and the remainder from the division is considered 

the signature of the input data sequences. Let‟s the polynomial representation of an m-bit input 

data stream ( 1,.......,1,0},1,0{  mjd j ) and the feedback connection of a r-stage SA (

1...,,.........1,0},1,0{  rihi ) are as follows respectively: 
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where m > r. 

LFSR M-2 

clock start stop 

Fig. 2.5: Block diagram of a signature analyzer 

Input data 

stream (d(k)) 
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Polynomial division of d(x) by h(x) is as follows: 

)(
)()(

)(
)(

xh
xRxQ

xh
xd

                  (2.11) 

i.e. )().()()( xhxQxdxR         (2.12) 
 
 

In the Equation (2.12), Q(x) and R(x) indicate quotient and remainder respectively. 

Figure 2.6 shows an example of a 5-stage single input SA with feedback polynomial
531 xxx  . Binary representation of the feedback polynomial of the SA is 101011.  

 

 

 

 

 

Let the data stream to be compressed is 10010101. The division of 10010101 by 101011 

is as follows: 

 

 

 

 

In the above division, the remainder i.e. signature is 10010. Table 2.4 shows the timing 

chart of the states of SA‟s memory element. The SA is initially set to zero. The data to be 

compressed is serially fed to the SA‟s input with the edge of every clock cycle, high order bit 

first, the content of the SA after the last input data bit is the remainder (signature) of the input 

data.   

 

 

 

 

  

  

 

Fig. 2.6: Block diagram of a 5-stage single input signature analyzer  

Input  

data-stream 
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101011  10010101 
              101011  
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Initial state 

Remainder 

 

clock input 0s  1s  2s  3s  4s  
0  0 0 0 0 0 
1 1 1 0 0 0 0 
2 0 0 1 0 0 0 
3 0 0 0 1 0 0 
4 1 1 0 0 1 0 
5 0 0 1 0 0 1 
6 1 0 1 1 1 0 
7 0 0 0 1 1 1 
8 1 0 1 0 0 1 

 
 

When multiple parallel data stream needs to be compressed, multiple input signature 

register (MISR) is preferred rather than using single input SA for each input data stream. Figure 

2.7 shows 5-stage MISR with feedback polynomial 531 xxx   where the modulo-2 adders 

are placed between two stages of MISR and inputs are inserted with the modulo-2 adder. 

 

  

 

 

 

 

 
Signature analysis is not a fault-free process. In the SA, an erroneous sequence from a 

faulty circuit in some cases is compressed into the same signature as that of the fault-free circuit 

of the same type. This phenomenon is known as „aliasing‟ or „masking‟ since the effect of fault 

is masked by the compression process in the SA (Bardell et al. 1987; Abramavoci et al. 1990). 

Masking is a loss of information caused by the compression of the output sequence of the CUT. 

Let‟s assume an n-bit output data and r-bit signature SA. For an n-bit output, the possible 

combination of the output sequence is n2 . Since only one output sequence is correct out of these 

sequences, total numbers of possible erroneous sequence are 12 n . Again for r-bit signature 

TABLE 2.4: STATES OF THE SIGNATURE ANALYZER DURING DIVISION OF INPUT 
DATA=10010101 

  

  

 

Figure 2.7: Block diagram of a 5-stage multiple input signature analyzer  

Input 0 Input 1 Input 2 Input 3 Input 4 
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register, possible number of signature is r2 . If it is assumed that all signatures are equally likely, 

the number of bit sequences that generates a particular signature is given by (Abramavoci et al. 

1990): 

 
rn

r

n
 2

2
2       (2.13)  

 
For the signature of a particular fault-free response, there are 12 rn  erroneous bit 

sequences that produce the same signature. Since total number of the possible error sequences is 

12 n , the probability of aliasing or masking is given by: 
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2
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where alP  indicates the probability that incorrect response will go undetected, hence the 

probability of no masking: 

 

1- alP = r
r

 21
2
11       (2.16)  

 
Hence aliasing error is possible to be made negligible by sufficiently increasing the value of r. 

2.8 Overview of FPGA 

Field Programmable Gate Array (FPGA) is a semiconductor device containing 

programmable logic components and interconnects. It contains up to thousands of gates. The 

programmable logic components can be programmed to duplicate the functionality of basic logic 

gates such as AND, OR, XOR, NOT or more complex combinational functions such as decoders 

or simple math functions. In most FPGA, these programmable logic components (or logic 

blocks, in FPGA parlance) also include memory elements, which may be simple flip-flops or 

more complete blocks of memories. These logic blocks and interconnects can be programmed 

after the manufacturing process by the customer/designer (hence the “field programmable” i.e. 

programmable in the field) so that the FPGA can perform whatever logical function is needed. 

There are various vendor manufacturers for different types of FPGA chip such as Altera, Xilinx, 
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Lattice Semiconductor, Actel, Quick Logic, Cypress Semiconductor, Atmel, Achromix 

Semiconductor etc. Among them Altera and Xilinx are the most famous FPGA companies since 

both of the companies have lot of varieties of FPGA device from small number of gate counts to 

higher number of gate counts. However Altera devices offer the general benefits of PLDs as 

innovative architectures, advanced process technologies, state-of- the-art development tools and 

a wide selection of mega function. The common advantages of Altera devices include: High 

performance, High density logic integration, Cost effectiveness, Short development cycles with 

the Quartus II software, Mega core functions, Benefits of in-system programming. In this project 

the used FPGA device is Altera provided EP2C5F256C7 from Cyclone II family. 

 

2.8.1 FPGA Cyclone II Device 

This subsection presents some basic information about this device which will help for 

development of the proposed ASIC with this Cyclone II device [32-33].  

Cyclone II FPGAs are manufactured on 300-mm wafers using TSMC's 90-nm low-k 

dielectric process to ensure rapid availability and low cost. By minimizing silicon area, Cyclone 

II devices can support complex digital systems on a single chip at a cost that rivals that of 

ASICs. Unlike other FPGA vendors who compromise power consumption and performance for 

low-cost, Altera‟s latest generation of low-cost FPGAs—Cyclone II FPGAs, offer 60% higher 

performance and half the power consumption of competing 90-nm FPGAs. The low cost and 

optimized feature set of Cyclone II FPGAs make them ideal solutions for a wide array of 

automotive, consumer, communications, video processing, test and measurement, and other 

end-market solutions. 

 

The Cyclone II device family offers the following features: 

■ High-density architecture with 4,608 to 68,416 LEs 

● M4K embedded memory blocks 

● Up to 1.1 Mbits of RAM available without reducing available 

logic 
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● 4,096 memory bits per block (4,608 bits per block including 512 

parity bits) 

● Variable port configurations of ×1, ×2, ×4, ×8, ×9, ×16, ×18, ×32, 

and ×36 

● True dual-port (one read and one write, two reads, or two 

writes) operation for ×1, ×2, ×4, ×8, ×9, ×16, and ×18 modes 

● Byte enables for data input masking during writes 

● Up to 260-MHz operation 

■ Embedded multipliers 

● Up to 150 18- × 18-bit multipliers are each configurable as two 

independent 9- × 9-bit multipliers with up to 250-MHz 

performance 

● Optional input and output registers 

■ Advanced I/O support 

● High-speed differential I/O standard support, including LVDS, RSDS, mini-LVDS, LVPECL, 

differential HSTL, and differential SSTL 

● Single-ended I/O standard support, including 2.5-V and 1.8-V, SSTL class I and II, 1.8-V and 

1.5-V HSTL class I and II, 3.3-V PCI and PCI-X 1.0, 3.3-, 2.5-, 1.8-, and 1.5-V LVCMOS, and 

3.3-, 2.5-, and 1.8-V LVTTL 

● Peripheral Component Interconnect Special Interest Group (PCI SIG) PCI Local Bus 

Specification, Revision 3.0 compliance for 3.3-V operation at 33 or 66 MHz for 32- or 64-bit 

interfaces 

● PCI Express with an external TI PHY and an Altera PCI Express ×1 Megacore® function 

● 133-MHz PCI-X 1.0 specification compatibility 

● High-speed external memory support, including DDR, DDR2, and SDR SDRAM, and QDRII 

SRAM supported by drop in Altera IP MegaCore functions for ease of use  

● Three dedicated registers per I/O element (IOE): one input register, one output register, and 

one output-enable register 

● Programmable bus-hold feature 
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● Programmable output drive strength feature 

● Programmable delays from the pin to the IOE or logic array 

● I/O bank grouping for unique VCCIO and/or VREF bank settings 

● MultiVolt™ I/O standard support for 1.5-, 1.8-, 2.5-, and 3.3-interfaces 

● Hot-socketing operation support 

● Tri-state with weak pull-up on I/O pins before and during configuration 

● Programmable open-drain outputs 

● Series on-chip termination support 

■ Flexible clock management circuitry 

● Hierarchical clock network for up to 402.5-MHz performance 

● Up to four PLLs per device provide clock multiplication and division, phase shifting, 

programmable duty cycle, and external clock outputs, allowing system-level clock management 

and skew control 

● Up to 16 global clock lines in the global clock network that drive throughout the entire device 

■ Device configuration 

● Fast serial configuration allows configuration times less than 100 ms 

● Decompression feature allows for smaller programming file storage and faster configuration 

times 

● Supports multiple configuration modes: active serial, passive serial, and JTAG-based 

configuration 

● Supports configuration through low-cost serial configuration devices 

● Device configuration supports multiple voltages (either 3.3, 2.5, or 1.8 V) 

■ Intellectual property 

● Altera megafunction and Altera MegaCore function support, and Altera Megafunctions 

Partners Program (AMPPSM) megafunction support, for a wide range of embedded processors, 

on-chip and off-chip interfaces, peripheral functions, DSP functions, and communications 

functions and protocols. 

● Nios II Embedded Processor support 
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2.9 Development Tool Quartus II 

The proposed Hummingbird Crypto ASIC implementing BIST technique is designed 

using Quartus II EDA tool (provided by Altera Company). Quartus II enables analysis and 

synthesis of HDL designs, which enables the developer to compile their designs, perform timing 

analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure 

the target device with the programmer. Quartus includes an implementation of VHDL and 

Verilog for hardware description, visual editing of logic circuits, and vector waveform 

simulation. Quartus II software provides a simple, automated mechanism to allow designers to 

obtain the best performance for their designs. This software provides the way to design the 

solution through Verilog HDL and compile the design to ensure the workability and efficiency 

logically.     

Compiling mode: The Quartus II compiler consists of a set of independent modules that 

check the design for errors, synthesize the logic, fit the design into an Altera Device, and 

generate output files for simulation, timing analysis, software building and device programming. 

The basic compiler consists of the Analysis & Synthesis, Partition Merge, Fitter, Assembler and 

Classic Timing Analyzer modules. Each of the compiler modules can be run individually or 

together from the Quartus II user Interface. Alternatively, these modules can be run 

independently with the appropriate command line executable. 

Compile the Design: The compiler automatically locate and uses all non- design files 

associated with the design, such as include files (.inc) containing AHDL, Function Prototype 

statements; Memory initialization files (.mif) or Hexadecimal intel format files (.hex) containing 

the initial content of the memories; as well as Quartus II Project Files (.qpf) and Quartus II 

Settings Files (.qsf) containing project and setting information. During compilation the Compiler 

generates information, warning and error messages that appear automatically in the Message 

window. 

Simulation mode: Simulation allows testing a design thoroughly to ensure that it responds 

correctly in every possible situation before configuring a device. Depending on the type of 

information need, functional or timing simulation can be performed with the simulator. 

Functional simulation tests only the logical operation of a design by simulating the behavior of 



30 
 

flattened netlist extracted from the design files, while timing simulation uses a fully compiled 

netlist containing information to test both the logical operation and the worst case timing for the 

design in the target device. Before running a simulation input vectors need to specify as the 

stimuli for the Quartus II simulator. The simulator uses these input vectors to simulate the output 

signals that a programmed device would produce under the same condition. The simulator 

supports input vector stimuli in the form a Vector Waveform File (.vwf),  Vector Table File 

(.tbf), Power Input File (.pwf), or a Quartus II generated vector File (.vec) or Simulator Channel 

File (.scf). 

Program an Altera Device: When the design is ready to program a device, it needs to open 

the Programmer and create a Chain Description File (.cdf) that stores the device name, device 

order, programming and hardware setup information. CDFscan can be used to program or 

configure one or more devices in a JTAG chain or a Passive Serial chain.  



Chapter 3 

Implementation of Hummingbird Crypto ASIC with BIST 

 

3.1 Introduction 

This chapter will discuss about the FPGA implementation of the proposed design and 

also intend procedure of the proposed ASIC using Verilog HDL and FPGA implementation will 

be described. 

 

3.2 Architecture of the Design 

Fig 3.1 shows the main module of the design and its internal connections and relations. 

 

Memory

Initialization

Encryption Decryption

Control Module

Input Selector
Test Pattern 
Generator

Signature 
Analyzertext

 

Fig. 3.1: Functional Blocks of Hummingbird Crypto ASIC with BIST 
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It is a standard practice to partition a complex design into different modules based on 

their specific functionality and features. 

In our design, we have used the following blocks/modules: 

1. Memory module  

2. Initialization module 

3. Input Selector 

4. Test Pattern generator 

5. Encryption 

6. Decryption 

7. Signal Analyzer 

8. Control Module   

Brief description of each module is given below: 

Memory module: 

We have used a memory (32X16 RAM) to store data which are used in different phases 

of the design. Initially the memory is loaded (write enable, when we signal is High) through 

data_in port with 4 NONCE values which are used in initialization module, 5 golden signatures 

to test encryption module and 5 golden signatures to test decryption module, 256 bit key 

subdivided into 16 16-bit and one 16 bit seed which is used to initialize LFSR and MISR. The 

stored values are read out from Memory when write enable, we signal is low. 

 

     clk  

   data_in        16 

                                32X16 RAM 16 data_out 

                           addr  5 

                             we 

      

Fig. 3.2: Block diagram of Memory Module 
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Initialization Module: 

When ‘init’ signal is high, initialization started. After getting ‘init’ signal is high, control 

module generates high ‘en_initialization’ which is wired with ‘en’ port of initialization module. 

    

   en 

  clk    16 RS1 

reset  16 RS2 

            init Initialization 16 RS3 

            we  Module 16 RS4 

  NONCE       16 16 LFSR 

  key         16  READY 

    5 addr 

    en_init_addr 

Fig.3.3: Block diagram of Initialization Module 

 

256 bit key subdivided into 16 16-bit subkey (K11, K12, K13, K14, K21 ….K44) and 

RS1, RS2, RS3 & RS4 are first initialized by 4 16-bit NONCE values stored in RAM.  After 

loading data from memory for key and initial value of Registers ciphering started using four 

block ciphers. After 16 cycles, READY signal goes high and we get 4 initialized registers (RS1, 

RS2, RS3, RS4) and LFSR which are used in encryption and decryption modules. 
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Input Selector: 

After initialization completed, Input Selector Module choses input to be used for 

encryption and decryption modules based on the modes determined by user through ‘tst’ signal. 

 

   clk 

                      reset  Input  

                      tst 2 Selector 

           PTi 16 16 PTx 

   CTi 16       16 CTx  

   LFSRt  16 

   CTy 16 

   READY 

  testPatternReady 

Fig. 3.4: Block Diagram of Input Selector Module 

 

In the below table, depending on the mode of operation value of ‘tst’ and selected inputs 

are shown. For the test cases, output (LFSRt) of pseudo random test pattern generator is used as 

input to encryption/decryption modules 

Table 3.1: Mode of Operation 

Mode of Operation Value of tst Selected Input 
Normal encryption/decryption 00 PTi, CTi 
Test mode (Encryption Module) 01 LFSRt 
Test mode (Decryption Module) 10 LFSRt 
Decryption followed by encryption of the 
same input 

11 PTi, CTy 
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Test Pattern Generator: 

   An LFSR is used as test pattern generator which generates pseudorandom test pattern to 

be used as input of encryption and decryption modules based on ‘testCount’ signal. In this 

project, we have used 100/200/300/400/500 as test count number. 

 

en 

clk 

            reset  Test Pattern  16 LFSRt 

            READY Generator 5 addr 

            tst  2 testPatternReady 

testCount 10 en_tpg_addr 

seed 16 

 

 

Fig. 3.5: Block Diagram of Test Pattern Generator 

 

 

 

 

 

 

 

 

 

 



36 
 

Encryption Module: 

Encryption module operates in two modes based on the ‘tst’ signal. When the value of 

‘tst’ is ‘00’ it operates as normal mode and takes external plain text PT as its input and when the 

value of ‘tst’ is ‘01’ it enters in test mode and takes test generator produced output LFSRt as its 

input. 

 

 clk 

   init 

   reset 

   tst 2 

  PT 16 Encryption 

  RS1i 16 Module 16 

   RS2i 16 CT 

   RS3i 16 

   RS4i 16 

   LFSRi 16 VO 

   READY 

 testPatternReady  

   key 16 

 

Fig. 3.6: Block Diagram of Encryption Module 

 

When the ‘init’ signal is high 256 bit key is subdivided into 16 16-bit subkey are loaded 
into   16 registers K11,K12,K13,K14,K21, …. K44 of the module.   After completion of the 
initialization ‘READY’ signal goes high and outputs of initialization module are used to 
initialize 4 registers (RS1, RS2, RS3, RS4) and LFSR of the encryption module. After each 4 
cycles it provides ciphered text (CT) of the signal PT and updates status of its internal 4 registers 
RS1, RS2, RS3, RS4 and LFSR. 
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Decryption Module: 

Decryption module also operates in two modes based on the ‘tst’ signal. When the value 

of ‘tst’ is ‘00’ it operates as normal mode and takes external cipher text CT as its input and when 

the value of ‘tst’ is ‘10’ it enters in test mode and takes test generator produced output LFSRt as 

its input. 

 

 clk 

   init 

   reset 

   tst 2 

  CT 16 Encryption 

  RS1i 16 Module 16 

   RS2i 16 PT 

   RS3i 16 

   RS4i 16 

   LFSRi 16 VO 

   READY 

 testPatternReady  

   key 16 

   

Fig. 3.7: Block Diagram of Decryption Module 

 

Its keys are also loaded from memory module and internal registers are initialized same 

as encryption module. It provides plain text output after every 4 clock cycles and updates status 

of its internal registers and LFSR. 
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Signature Analyzer: 

This module tests functionalities of encryption and decryption modules separately. When 

‘tst’ signal is ‘01’ functionality of encryption module is tested. Depending on the value of 

‘testCount’ 100/200/300/400/500, number of test count varied. Pseudorandom pattern generated 

by the test pattern generator is input to the encryption module. Cipher text output from 

encryption module is fed to the ‘CTy’ of Signature Analyzer in which MISR generates sign 

output, after the desired test count final sign is compared with the stored golden signature. ‘OK’ 

signal goes high if final sign matches with golden signature, otherwise it remains low. In this 

way module is tested for other test counts. For decryption module test, pseudorandom test pattern 

is input to the decryption module and plain text output of decryption module is fed to the ‘PTy’ 

of Signature Analyzer. 

 

        en 

 clk 

 reset 

 tst  2 Signature  OK 

 testcount  10 Analyzer 16 sign 

 seed  16 

 PTy  16 

 CTy  16 

 golden_sign 16 

 READY   5 addr 

 testPatternReady  en_sa_addr 

      VO 

 VOd 

 

Fig. 3.8: Block Diagram of Signature Analyzer Module 



39 
 

 

Control Module: 

One control module is used to control the sequence which module will be in action in 
which time. 

 

  

 clk 
 reset en_initialization 
 init en_testPatternGen 
 we Control en_signAnlzr 
 READY                         Module 
 tst 2 
 

 

Fig. 3.9: Block Diagram of Control Module 
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3.3 Flow Chart of the Design 

Fig 3.10 shows the Flowchart of the Hummingbird Crypto ASIC with BIST 

              
Start/

Power on

Initialization Memory             User Data: Key,
            Nonce values etc

Mode:
   Normal/Test?

Encryption/
Decryption

Test pattern 
generator

Normal

Test

Plain Text/
Cipher Text

Signature 
Analyzer

Cipher Text/
Plain Text

Matched  with 
Golden Signature?

No. of test 
counts

Module tetsted OK

Encryption/
Decryption

Yes

No
Module Tested 

Not OK

text

After each 4 
clock cycles

After 20 clock 
cycles

 

Fig. 3.10: Flowchart of the Hummingbird Crypto ASIC with BIST 

The Hummingbird Algorithm operates on a block of 16 bits of input data and generates 

16 bits of output. The length of the key used to encrypt/decrypt is 256 bits and there are 80 bits 

of internal states. 

At the start, our desired Crypto ASIC is initialized. In this phase, internal registers and 

LFSR are initialized using NONCE and key values stored in the Memory which are preloaded. 

These initialized internal registers and LFSR are used in later phases in encryption/decryption 
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modules. Depending on the mode of operation, the proposed ASIC can operate in Normal/Test 

mode. In Normal mode, both encryption and decryption modules works in parallel and provide 

output cipher text or plain text respectively for input of plain text or cipher text.  In Test mode 

the proposed ASIC performs test for either encryption/decryption module, i.e. one at a time. In 

test mode, pseudorandom pattern generated by the test pattern generator is input to the desired 

test module (encryption/decryption) and then output is fed to the Signature Analyzer which 

produces a signature. This process is continued for the desired number of test count and the final 

signature is matched with the golden signature stored in the Memory. If it matches it indicates 

the functionality of the module under test is OK. 

 

3.4 Device Used 

The proposed Hummingbird crypto ASIC is implemented in FPGA device of family 

Altera, Cyclone II, EP2C5F256C7 device. This device is chosen considering below: 

- Has required numbers of Logic Elements, Pins for the design 

- Small device hence low power consumption 

- Low cost 

 The device specifications are given below: 

Total Logic Elements   : 4608 

 Total Combinational Functions  : 4608 

 Dedicated Logic Registers   : 1615 

 Total Registers   : 1615 

Total Pins   : 158 

Total Virtual Pins   : 0 

Total Memory Bits   : 119,808 

Embedded Multiplier 9-bits Elements : 26 

Total PLLs   : 2 
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3.6 Tools Used 

The proposed Hummingbird Crypto ASIC implementing BIST technique is designed 
using Quartus II EDA tool (provided by Altera Company).  Full compilation of the design using 
the Quartus II simulation software includes the following modules: 

- Analysis & Synthesis 

- Partition Merge 

- I/O Assignment Analysis 

- Fitter 

- Assembler 

- Classic Timing Analyzer 

- EDA Netlist Writer 

Then symbol files are created for the design files. 

Then vector waveform simulation is performed using Simulator tool. Signal Activity File 

is also generated during simulation which is used later for power analysis. 

PowerPlay Power Analyzer Tool is used for power analysis.  



 
 

Chapter 4 

Experimental Results and Discussions 

4.1 Introduction 

The proposed Hummingbird crypto ASIC is implemented in FPGA device of family 

Altera, Cyclone II, EP2C5F256C7 device. The simulation is performed in Quartus II simulation 

software. The device specifications are given below: 

Total Logic Elements   : 4608 

 Total Combinational Functions  : 4608 

 Dedicated Logic Registers   : 1615 

 Total Registers   : 1615 

Total Pins   : 158 

Total Virtual Pins   : 0 

Total Memory Bits   : 119,808 

Embedded Multiplier 9-bits Elements : 26 

Total PLLs   : 2 

4.2 Resources Used 

The compilation result of the design shows the resources used: 

 Total Logic Elements   : 4122 

 Total Combinational Functions  : 3988 

 Dedicated Logic Registers   : 1615 

 Total Registers   : 1615 
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Total Pins   : 121 

Total Virtual Pins   : 0 

Total Memory Bits   : 512 

Embedded Multiplier 9-bits Elements : 0 

Total PLLs   : 0 

 

Below is the snapshot of the Compilation Report – Flow Summary 
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Fig. 4.1: Snapshot of the Compilation Report – Flow Summary 

 

4.3 Simulation Results 

This project only considers the implementation with BIST to get Hummingbird Crypto 

ASIC. During the simulation, the top module is the core module which is simulated using 

Quartus II simulator. And also each block (Memory, Initialization, input selector, test pattern 

generator, encryption, decryption, and signature analyzer) is simulated independently. The 

simulation results of each block are provided in the following subsections. 

4.3.1 Core Module:  

In simulation, we used 4 16-bit NONCE 39F1, 268A, 19A4, 59AE; 256 bit key 

11223810AB52EC9F11223810AB52EC9F11223810AB52EC9F11223810AB52EC9F, and 

100F as seed. Besides these 5 golden signatures 4F58,737D,92CC,4C88,04BE are used for 

testing of encryption module for 5 different test counts (100,200,300,400,500) and 5 golden 

signatures 460E,6262,8F9D,E15D,1E52 for testing of decryption module. All these values are 

first loaded into RAM when ‘we’ signal is high. Later during initialization 4 NONCE values are 

used to initialize 4 registers RS1, RS2, RS3 and RS4 of initialization module. In this phase 256 

bit key also loaded as 16 16-bit subkeys in Initialization, Encryption and Decryption modules. 
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Fig. 4.2: Schematic Diagram for Core Module 

 

clk

reset

init

we

tst[1..0]

testCount[9..0]

PTi[15..0]

CTi[15..0]

data_in[15..0]

addr_in[4..0]

CTo[15..0]

PTo[15..0]

sign[15..0]

VO

VOd

OK

READY

encr_decr_core

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
init INPUT

VCC
we INPUT

VCC
tst[1..0] INPUT

VCC
testCount[9..0] INPUT

VCC
PTi[15..0] INPUT

VCC
CTi[15..0] INPUT

VCC
data_in[15..0] INPUT

VCC
addr_in[4..0] INPUT

CTo[15..0]OUTPUT

PTo[15..0]OUTPUT

sign[15..0]OUTPUT

VOOUTPUT

VOdOUTPUT

OKOUTPUT

READYOUTPUT
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Fig. 4.3: RTL Viewer of Hummingbird Crypto ASIC with BIST 
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Normal Mode: 

 

Fig. 4.4: Simulation result of Core module in normal operation mode (‘tst’=’00’) 

After completion of the initialization ‘READY’ signal goes high and after each 4 cycle 

encryption module generates cipher text output (CTo) of the input plain text (PTi) whereas 

decryption module generates plain text  output (PTo) of the input cipher text (CTi). 
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Test mode: 

 

Fig. 4.5: Simulation result of Core module in test mode (test of encryption block with 100 test 

count) 

For this mode, ‘tst’ is set as ‘01’ and test pattern generator produces 100 (‘testCount’) 

pseudorandom test pattern (LFSRt) which are input to encryption module. For each test input, 

output of encryption module fed to signature analyzer which generates corresponding sign. After 

100 run of encryption module, final sign 4F58 matches with golden signature and ‘OK’ signal 

goes high meaning encryption module is functioning as expected. In this way, the module can be 

tested for test count 200,300,400 and 500. 
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Fig. 4.6: Simulation result of Core module in test mode (test of encryption block with 500 test 

count) 

In the same way, decryption block can be tested. For this, ‘tst’ is set to ‘10’.

 

Fig. 4.7: Simulation result of Core module in test mode (test of decryption block with 100 test 

count) 
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Fig. 4.8: Simulation result of Core module in test mode (test of decryption block with 500 test 

count) 

4.3.2 Memory Module: 

In our design, we used a bit memory module to store 256 bit Key, 4 NONCE values, 10 

golden signatures for 5 different test counts of encryption/decryption block. 

 

Fig.4.9: Schematic Diagram for RAM 

When ‘we’ signal is high, the required values are written into different addresses of RAM 

through ‘data_in’ ports. These values are read by other blocks on demand basis through 

‘data_out’ port by passing appropriate address. 

clk

we

addr[4..0]

data_in[15..0]

data_out[15..0]

ram_v 5

inst

VCC
clk INPUT

VCC
we INPUT

VCC
addr[4..0] INPUT

VCC
data_in[15..0] INPUT

data_out[15..0]OUTPUT



52 
 

 

Fig. 4.10: Simulation Result of Memory Module 

4.3.3 Initialization Module 

4 NONCE values are read from Memory and loaded into 4 Registers in 4 clock cycles 

after getting high ‘init’ signal. Then after another 16 cycles we got initialized 4 internal Registers 

RS1, RS2, RS3, RS4 and LFSR which are used in encryption and decryption blocks. At the end 

of the initialization ‘READY’ signal goes high marking that it’s ready for encryption and 

decryption. 

 

Fig. 4.11: Schematic Diagram of Initialization Module 

clk

reset

init

en

NONCE[15..0]

key [15..0]

RS1[15..0]

RS2[15..0]

RS3[15..0]

RS4[15..0]

LFSR[15..0]

addr[4..0]

READY

en_init_addr

initialization_v 7

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
init INPUT

VCC
en INPUT

VCC
NONCE[15..0] INPUT

VCC
key [15..0] INPUT

RS1[15..0]OUTPUT

RS2[15..0]OUTPUT

RS3[15..0]OUTPUT

RS4[15..0]OUTPUT

LFSR[15..0]OUTPUT

addr[4..0]OUTPUT

READYOUTPUT

en_init_addrOUTPUT
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Fig. 4.12: Simulation Result of Initialization Module 
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4.3.4 Input Selector 

This module decides whether external data or test pattern generated by the test pattern 

generator will be used as input for encryption or decryption blocks depending on the mode of 

operation. 

 

Fig. 4.13: Schematic Diagram of Input_Sel Module 

 

 

Fig.4.14: Simulation Result of Input Selector Module 

 

 

VCC
clk INPUT

VCC
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VCC
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VCC
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VCC
READY INPUT

VCC
testPatternReady INPUT
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clk
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input_sel

inst
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4.3.5 Test Pattern Generator 

This module generates required number of test patterns depending on the number of test 

counts. ‘testPatternReady’ signal goes high when a test pattern is ready. 

 

Fig.4.15: Schematic Diagram of Test Pattern Generator Module 

 

 

 

     

Fig.4.16: Simulation Result of Test Pattern Generator Module 
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inst

VCC
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VCC
reset INPUT

VCC
en INPUT

VCC
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VCC
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VCC
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VCC
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4.3.6 Encryption 

This module provides encrypted output for the plain text input of its ‘PT’ port in 4 clock 

cycles. It started with 4 initialized internal registers RS1, RS2, RS3, RS4 and LFSR. These 

represent 80 bits internal states which change their state in each cycle of encryption/decryption. 

 

Fig. 4.17: Schematic Diagram for Encryption Module 
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reset
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VCC
RS4i[15..0] INPUT

VCC
LFSRi[15..0] INPUT
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CT[15..0]OUTPUT

VOOUTPUT
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Fig.4.18: Simulation Result of Encryption Module 
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4.3.7 Decryption 

This module provides deciphered output for the cipher text input of its ‘CT’ port in 4 

clock Cycles. Like encryption block it also started with 4 initialized internal registers RS1, RS2, 

RS3, RS4 and LFSR which change their state in each cycle of decryption. 

 

Fig. 4.19: Schematic Diagram for Decryption Module 
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4.3.8 Signature Analyzer 

Below figure shows the block diagram of Signature Analyzer module. Output of the 

module, encryption/decryption to be tested is fed to the CTy/PTy ports. The input drives a 

Multiple Input Shift Register (MISR). This is continued upto the  number determined by the 

‘testCount’ signal. Final output of the MISR is the signature which is compared with the golden 

signature. 

 

Fig. 4.20: Schematic Diagram for Signature Analyzer Module 
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4.3.9 Control Module 

This module determines the sequence of initialization, test pattern generator and signature 

analyzer module operations as these modules use RAM, we need to maintain a proper sequence. 

 

Fig. 4.21: Schematic Diagram for Control Module 

 

 

Fig.4.22: Simulation Result of Control Module 

 

 

 

clk

reset

init

we

READY

tst[1..0]

en_initialization

en_testPatternGen

en_signAnlzr

controlModule

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
init INPUT

VCC
we INPUT

VCC
READY INPUT

VCC
tst[1..0] INPUT

en_initializationOUTPUT

en_testPatternGenOUTPUT

en_signAnlzrOUTPUT



61 
 

 

4.4 Test Result 

Encryption/Decryption Functionality of the proposed ASIC is tested by using the output 

of the encryption block as the input to the decryption block. In this case we should get back the 

original plain text. In our design we have this arrangement to test the encryption followed by 

decryption.  

 

Fig.4.23: Simulation Result of Core  Module (tst=’11’) 

In this case, test mode value tst =’11’ is used.  

Table 4.1 Input and Output in Test Result 

Encryption Block 

input (PTi) 

Encryption Block 

output (CTo) 

Decryption Block input 

(CTx) 

Decryption Block 

output (PTo) 

A19C 6E5F 6E5F A19C 

49D1 7582 7582 49D1 

3B79 05B0 05B0 3B79 

6921 E054 E054 6921 
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In the simulation result show above we have used plain text (PTi) input stream as A19C, 

49D1, 3B79, 6921 for Encryption module. After 4 clock cycles we got the encrypted output 

(CTo) stream as 6E5F, 7582, 05B0, E054. In the next clock these cipher text used as input (CTx) 

to the Decryption module. After another 4 clock cycles, we got the plain text (PTo) output stream 

as A19C, 49D1, 3B79, 6921 which is found same as Plain Text (PTi) input to the encryption 

module. 

 

4.5 HW Implementation 

We have used Altera DE2 board for HW implementation. Below are the snapshots of 

HW implementation with different test mode. 

 

 

 

Fig.4.24: Snapshot of HW Implementation 
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Table 4.2 Pin Assignment 

Signal Name 

Description in DE2 No. Pin 

Signal Name 

in Design 

CLOCK_50   PIN_N2 clk 

HEX0 6 PIN_V13 Cto 

HEX0 5 PIN_V14 Cto 

HEX0 4 PIN_AE11 Cto 

HEX0 3 PIN_AD11 Cto 

HEX0 2 PIN_AC12 Cto 

HEX0 1 PIN_AB12 Cto 

HEX0 0 PIN_AF10 Cto 

HEX1 6 PIN_AB24 Cto 

HEX1 5 PIN_AA23 Cto 

HEX1 4 PIN_AA24 Cto 

HEX1 3 PIN_Y22 Cto 

HEX1 2 PIN_W21 Cto 

HEX1 1 PIN_V21 Cto 

HEX1 0 PIN_V20 Cto 

HEX2 6 PIN_Y24 Cto 

HEX2 5 PIN_AB25 Cto 

HEX2 4 PIN_AB26 Cto 

HEX2 3 PIN_AC26 Cto 

HEX2 2 PIN_AC25 Cto 

HEX2 1 PIN_V22 Cto 

HEX2 0 PIN_AB23 Cto 

HEX3 6 PIN_W24 Cto 

HEX3 5 PIN_U22 Cto 

HEX3 4 PIN_Y25 Cto 

HEX3 3 PIN_Y26 Cto 

HEX3 2 PIN_AA26 Cto 
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Signal Name 

Description in DE2 No. Pin 

Signal Name 

in Design 

HEX3 1 PIN_AA25 Cto 

HEX3 0 PIN_Y23 Cto 

HEX4 6 PIN_T3 Pto 

HEX4 5 PIN_R6 Pto 

HEX4 4 PIN_R7 Pto 

HEX4 3 PIN_T4 Pto 

HEX4 2 PIN_U2 Pto 

HEX4 1 PIN_U1 Pto 

HEX4 0 PIN_U9 Pto 

HEX5 6 PIN_R3 Pto 

HEX5 5 PIN_R4 Pto 

HEX5 4 PIN_R5 Pto 

HEX5 3 PIN_T9 Pto 

HEX5 2 PIN_P7 Pto 

HEX5 1 PIN_P6 Pto 

HEX5 0 PIN_T2 Pto 

HEX6 6 PIN_M4 Pto 

HEX6 5 PIN_M5 Pto 

HEX6 4 PIN_M3 Pto 

HEX6 3 PIN_M2 Pto 

HEX6 2 PIN_P3 Pto 

HEX6 1 PIN_P4 Pto 

HEX6 0 PIN_R2 Pto 

HEX7 6 PIN_N9 Pto 

HEX7 5 PIN_P9 Pto 

HEX7 4 PIN_L7 Pto 

HEX7 3 PIN_L6 Pto 

HEX7 2 PIN_L9 Pto 
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Signal Name 

Description in DE2 No. Pin 

Signal Name 

in Design 

HEX7 1 PIN_L2 Pto 

HEX7 0 PIN_L3 Pto 

SW[17]   PIN_V2 tst 

SW[16]   PIN_V1 tst 

SW[15]   PIN_U4 Pti 

SW[14]   PIN_U3 Pti 

SW[13]   PIN_T7 Pti 

SW[12]   PIN_P2 Pti 

SW[11]   PIN_P1 Pti 

SW[10]   PIN_N1 Pti 

SW[9]   PIN_A13 Pti 

SW[8]   PIN_B13 Pti 

SW[7]   PIN_C13 Pti 

SW[6]   PIN_AC13 Pti 

SW[5]   PIN_AD13 Pti 

SW[4]   PIN_AF14 Pti 

SW[3]   PIN_AE14 Pti 

SW[2]   PIN_P25 Pti 

SW[1]   PIN_N26 Pti 

SW[0]   PIN_N25 Pti 

KEY[3]   PIN_W26   

KEY[2]   PIN_P23   

KEY[1]   PIN_N23 init 

KEY[0]   PIN_G26 reset 

LEDG[8]   PIN_Y12   

LEDG[7]   PIN_Y18   

LEDG[6]   PIN_AA20   

LEDG[5]   PIN_U17   
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Signal Name 

Description in DE2 No. Pin 

Signal Name 

in Design 

LEDG[4]   PIN_U18   

LEDG[3]   PIN_V18 VO 

LEDG[2]   PIN_W19 VOd 

LEDG[1]   PIN_AF22 READY 

LEDG[0]   PIN_AE22 OK 

LEDR[17]   PIN_AD12   

LEDR[16]   PIN_AE12   

LEDR[15]   PIN_AE13 Sign 

LEDR[14]   PIN_AF13 Sign 

LEDR[13]   PIN_AE15 Sign 

LEDR[12]   PIN_AD15 Sign 

LEDR[11]   PIN_AC14 Sign 

LEDR[10]   PIN_AA13 Sign 

LEDR[9]   PIN_Y13 Sign 

LEDR[8]   PIN_AA14 Sign 

LEDR[7]   PIN_AC21 Sign 

LEDR[6]   PIN_AD21 Sign 

LEDR[5]   PIN_AD23 Sign 

LEDR[4]   PIN_AD22 Sign 

LEDR[3]   PIN_AC22 Sign 

LEDR[2]   PIN_AB21 Sign 

LEDR[1]   PIN_AF23 Sign 

LEDR[0]   PIN_AE23 Sign 
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Fig.4.25: Snapshot of HW Implementation (tst=’11’) 

In the above setup, tst is set to 11 which indicate the module is in self-test. Here SW0 to 

SW15 is used as input PTi and HEX4 to HEX7 is used as output. Here PTo showed the same 

value as PTi and thus proved the proper functionality in this mode. 
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Fig.4.26: Snapshot of HW Implementation (tst=’10’) 

In the above setup, test mode is set at 10 by SW17 and SW16, LEDR0 to LEDR15 

showed the final sign and LEDG0 assigned as OK sign. High ‘OK’ sign showed final sign 

matched with the golden signature. 

 

4.6 Power Analysis and Measurement of Power Consumption 

In this section the total power consumption of the proposed ASIC is determined. We used 

PowerPlay Power Analyzer Tool of Quartus II for this analysis. 

The total power consumed by a device, output loading, and external termination networks 

(if present) is generally comprised of the following major power components: 

 Standby (Static) 

 Dynamic 

 I/O 
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It can be shown as below: 

Total thermal power dissipation= Core Static Thermal Power Dissipation + Core Dynamic 

Thermal Power Dissipation + I/O Thermal Power Dissipation 

Static Power is consumed regardless of the activity in a chip; it depends on the processor 

temperature. Static power does not depend on the switching activity and toggle count. So in this 

project we don’t focus on the static power. Dynamic power is consumed from internal switching 

within the device (charging and discharging capacitance on internal nodes). It requires 

knowledge of switching activity of a node (toggle count of a node). I/O power is from external 

switching (charging and discharging external load capacitance connected to device pins), I/O 

drivers, and external termination network.  Below snapshot of PowerPlay Power Analyzer report 

shows the component of power consumption 

 

Fig.4.27: Power Consumption of the Proposed ASIC 
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4.7 Comparison with other Research Works 

In this project we have implemented Hummingbird Crypto Core with BIST. Here we 

have used Cyclone II device of Altera family and simulation is performed in Quartus II 

simulation software. From simulation result we found it took 282 LAB and FMax is 59.3 MHz. 

Maximum Throughput is calculated as 238.4 Mbps and Efficiency (Mbps/# of Slices) is 

calculated as 0.85. Comparing this with other Hummingbird implementations as shown in below 

Table 4.3 we found the performance is quite satisfactory over other works of the table in terms of 

Throughput  and Efficiency. Above all the proposed design has the unique feature of BIST which 

we didn’t find in other Hummingbird implementations.  

Table 4.3 Comparison with other research works 

Design/Cipher Device Total Occupied 
Slices/LAB 

FMax 
(MHz) 

Throughput 
(Mbps) 

Efficiency (Mbps/# 
of Slices) 

Hummingbird[31] Spartan-3 XC3S200-5 273 40.1 160.4 0.59 

Hummingbird[34] Spartan-3 XC3S200-5 40 260.8 55.64 1.38 

Hummingbird-
2[35] 

Spartan-3 XC 35200 273 40.1 160.4 0.59 

Hummingbird[36] Virtex-5 
XC5V1X20T-2-FF- 

323 

4242 152.90
5 

NA NA 

This work Cyclone II 282 59.3 238.4 0.85 
 



Chapter 5 

Conclusion 

5.1 Conclusion 

The widespread deployment of various wireless networks such as mobile ad-hoc 

networks, sensor networks, mesh networks, personal area networks and RFID systems is making 

possible a world of pervasive computing a reality. While the wireless communication technology 

and devices under development are enabling our march toward the era of pervasive computing, 

the security and privacy concerns in pervasive computing remains a serious impediment to 

widespread adoption of emerging technologies. Employing cryptographic primitives to perform 

strong authentication and encryption and provide other security functionalities is a promising 

solution to overcome those concerns. Classical cryptographic primitives designed for full-

fledged computers might not be suited for resource-constrained pervasive devices and it is often 

desirable to have cryptographic primitives as small as possible. As a response to the 

aforementioned issue, lightweight cryptography, which focuses on designing new cryptographic 

primitives with small footprint in hardware and low average and peak power consumption, has 

received a lot of attention from both academia and industry in recent years. Hummingbird is a 

recently proposed ultra-lightweight cryptographic algorithm targeted for low-cost smart devices. 

Again testability of an IC is of prime concern now a days. Built-In-Self-Test (BIST) is a norms 

of this day because external testing using ATE is not cost effective in this case.  This project 

presented design of Hummingbird Crypto ASIC implementing BIST. The design is implemented 

in FPGA device of Family Altera, Cyclone II. Simulation result of the design ensures that the 

design is functioning properly. The ciphered output from the design is verified by using it as 

input to the decryption and revert back the original plain text. 

5.2 Future Works 

The work performed in this project also exposes several new areas that can be explored. 

In future, rigorous performance analysis and optimization in terms of power, speed and hardware 

resources can be performed and also to improve fault coverage different approaches of BIST like 

recursive pseudo exhaustive two pattern generator can be explored. 
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