
DESIGN OF A HUMMINGBIRD CRYPTO ASIC IMPLEMENTING BIST
TECHNIQUE

By

Md Azizul Haque

MASTER OF ENGINEERING

IN

INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology

Bangladesh University of Engineering and Technology (BUET)

2016

ii

This project titled, “Design of a HUMMINGBIRD Crypto ASIC Implementing BIST
Technique” submitted by Md. Azizul Haque, Roll No. M1009312003, Session: 2009-2010 has
been accepted as satisfactory in partial fulfillment of the requirement for the degree of Master of
Engineering in Information and Communication Technology on 19-03-2016.

BOARD OF EXAMINERS

1. Chairman

Dr. Md. Liakot Ali
Professor and Director
IICT, BUET, Dhaka.
(Supervisor)

 2. Member

Dr. A. B. M. Harun-Ur-Rashid
Professor
Department of EEE, BUET, Dhaka.

3. Member

Dr. Mohammad Shah Alam
 Associate Professor
 IICT, BUET, Dhaka.

iii

AUTHOR’S DELARATION

This is hereby declared that this project or any part of it has not been submitted elsewhere
for the award of any degree or diploma.

Md Azizul Haque

iv

TABLE OF CONTENTS

Board of Examiners ii

Author’s Declaration iii

Table of Contents iv

List of Figures vii

List of Tables ix

List of Abbreviations and Technical Symbols and Terms x

Abstract xi

Acknowledgements xii

Chapter 1: Introduction 1

 1.1 Introduction 1

1.2 Motivation 2

1.3 Contribution of this Project 5

1.4 Project Outline 5

Chapter 2: Fundamentals of Hummingbird Cryptographic Algorithm 6

 2.1 Introduction 6

 2.2 Basic Mathematics for Hummingbird 6

2.3 Addition 6

 2.4 Modular Arithmetic 7

 2.4.1 Congruence Relation 8

 2.4.2 Remainders 8

 2.5 Overview of Hummingbird Cryptographic Algorithm 9

 2.5.1 16 bit Block Cipher 10

 2.5.2 Initialization Process 16

 2.5.3 Encryption Process 16

 2.5.4 Decryption Process 17

 2.6 Linear Feedback Shift Register (LFSR) 18

 2.7 Theory of Data Compression Technique 21

 2.7.1 Signature Analysis 22

v

 2.8 Overview of FPGA 25

 2.8.1 FPGA Cyclone II Device 26

 2.9 Development Tool Quartus II 29

Chapter 3: Implementation of the HUMMINGBIRD Crypto ASIC with BIST 31

3.1 Introduction 31

3.2 Architecture of the Design 31

3.3 Flow chart of the Design 40

3.4 Device used 41

3.5 Tools used 42

Chapter 4: Experimental Results and Discussions 43

 4.1 Introduction 43

 4.2 Resources Used 43

 4.3 Simulation Results 45

 4.3.1 Core Module 45

 4.3.2 Memory Module 51

 4.3.3 Initialization Module 52

 4.3.4 Input Selector 54

 4.3.5 Test Pattern Generator 55

 4.3.6 Encryption 56

 4.3.7 Decryption 58

 4.3.8 Signature Analyzer 59

 4.3.9 Control Module 60

 4.4 Test Result 61

 4.5 HW Implementation 62

 4.6 Power Analysis and Measurement of Power Consumption 68

 4.6 Comparison with other Research Works 70

vi

Chapter 5: Conclusion 71

 5.1 Conclusion 71

 5.2 Future Works 71

References 72

vii

LIST OF FIGURES

Title Page No.

Figure 2.1: Structure of Block Cipher in the Hummingbird Cryptographic

Algorithm 12

Figure 2.2: A Top-Level Description of the Hummingbird Cryptographic

Algorithm

a) Initialization Process 13

b) Encryption Process 14

c) Decryption Process 15

Figure 2.3: General structure of an n-bit LFSR 18

Figure 2.4: Generalized data compression scheme 21

Figure 2.5: Block diagram of a signature analyzer 22

Figure 2.6: Block diagram of a 5-stage single input signature analyzer 23

Figure 2.7: Block diagram of a 5-stage multiple input signature analyzer 24

Figure 3.1: Functional Blocks of Hummingbird Crypto ASIC with BIST 31

Figure 3.2: Block diagram of Memory Module 32

Figure 3.3: Block diagram of Initialization Module 33

Figure 3.4: Block Diagram of Input Selector Module 34

Figure 3.5: Block Diagram of Test Pattern Generator 35

Figure 3.6: Block Diagram of Encryption Module 36

Figure 3.7: Block Diagram of Decryption Module 37

Figure 3.8: Block Diagram of Signature Analyzer Module 38

Figure 3.9: Block Diagram of Control Module 39

Figure 3.10: Flowchart of the Hummingbird Crypto ASIC with BIST 40

Figure 4.1: Snapshot of the Compilation Report – Flow Summary 45

Figure 4.2: Schematic Diagram for Core Module 46

Figure 4.3: RTL Viewer of Hummingbird Crypto ASIC with BIST 47

Figure 4.4: Simulation result of Core module in normal operation

 mode (‘tst’=’00’) 48

Figure 4.5: Simulation result of Core module in test mode

viii

 (test of encryption block with 100 test count) 49

Figure 4.6: Simulation result of Core module in test mode

 (test of encryption block with 500 test count) 50

Figure 4.7: Simulation result of Core module in test mode

 (test of decryption block with 100 test count) 50

Figure 4.8: Simulation result of Core module in test mode

 (test of decryption block with 500 test count) 51

Figure 4.9: Schematic Diagram for RAM 51

Figure 4.10: Simulation Result of Memory Module 52

Figure 4.11: Schematic Diagram of Initialization Module 52

Figure 4.12: Simulation Result of Initialization Module 53

Figure 4.13: Schematic Diagram of Input_Sel Module 54

Figure 4.14: Simulation Result of Input Selector Module 54

Figure 4.15: Schematic Diagram of Test Pattern Generator Module 55

Figure 4.16: Simulation Result of Test Pattern Generator Module 55

Figure 4.17: Schematic Diagram for Encryption Module 56

Figure 4.18: Simulation Result of Encryption Module 57

Figure 4.19: Schematic Diagram for Decryption Module 58

Figure 4.20: Schematic Diagram for Signature Analyzer Module 59

Figure 4.21: Schematic Diagram for Control Module 60

Figure 4.22: Simulation Result of Control Module 60

Figure 4.23: Simulation Result of Core Module (tst=’11’) 61

Figure 4.24: Snapshot of HW Implementation 62

Figure 4.25: Snapshot of HW Implementation (tst=’11’) 67

Figure 4.26: Snapshot of HW Implementation (tst=’10’) 68

Figure 4.27: Power Consumption of the Proposed ASIC 69

ix

LIST OF TABLES

Title Page No.

Table 2.1: Comparison of Normal and Finite Field Algebra 7

Table 2.2: Notation 10

Table 2.3: FOUR S-BOXES IN HEXADECIMAL NOTATION 11

Table 2.4: States of the signature analyzer during division of input data=10010101 24

Table 3.1: Mode of Operation 34

Table 4.1: Input and Output in Test Result 61

Table 4.2: Pin Assignment 63

Table 4.3: Comparison with other research works 70

x

LIST OF ABBREVIATIONS OF TECHNICAL SYMBOLS AND TERMS

3DES Triple-DES (Data Encryption Standard)
AES Advanced Encryption Standard
ASIC Application Specific Integrated Circuit
CLB Configurable Logic Block
DES Data Encryption Standard
DSA Digital Signature Algorithm
DSP Digital Signal Processor
FPGA Field Programmable Gate Array
GF Galois Field
LUT Look-Up Table
M512 Memory Block of 512 bits
M-RAM Mega RAM
PLD Programmable Logic Device
RAM Random Access Memory
ROM Read Only Memory
S-Box A lookup table that holds non-linear substitute byte values
VHDL Very High Speed Integrated Circuit Hardware Description Language
XOR Exclusive-OR
⊕ Exclusive-OR Operator
⊞ Modulo 216 addition Operator
⊟ Modulo 216 Subtraction Operators

xi

Abstract

There are several emerging areas in which highly resource constrained devices are

interconnected, typically communicating wirelessly with one another, and working in concert to

accomplish some task. Examples of these areas include: sensor networks, healthcare, distributed

control systems, the Internet of Things, cyber physical systems, and the smart grid. Security and

privacy can be very important in all of these areas. Because the majority of current cryptographic

algorithms were designed for desktop/server environments, many of these algorithms do not fit

into the constrained resources. If current algorithms can be made to fit into the limited resources

of constrained environments, their performance is typically not acceptable. Here comes in the

Lightweight Cryptography. Many research works have been going on this topic. Among them,

Hummingbird is a new ultra-lightweight cryptographic algorithm targeted for resource-

constrained devices like RFID tags, smart cards, and wireless sensor nodes. The efficiency of the

algorithm has been verified in software solution for a wide range of embedded applications. In

this paper, we describe FPGA implementation with both software simulation as well as HW

implementation of Hummingbird algorithm on Altera Platform.

 Again testability of a complex chip is of prime concern now a days. It consists of IC

design techniques that add the features to test the designed hardware and ensure the chip is free

from defects and will function correctly. Because of its convenience and less expensiveness over

ATE, Built-In-Self-Test (BIST) is a widely used technique for this purpose. In this project design

of a Hummingbird Crypto ASIC implementing BIST technique is proposed. In this design LFSR

is used to generate pseudorandom test pattern and Signature Analysis is used as a Data

Compression Technique to implement BIST for multiple test counts. The proposed Crypto ASIC

is simulated in Quartus II simulation software in the Altera Cyclone II family device as well as

hardware implementation done in Altera DE2 board and performance is analyzed and compared

with the other research works on Hummingbird implementation.

xii

Acknowledgments

At first I would like to thanks Almighty Allah (SWT) for providing His divine blessing,
unlimited mercy to me. During the time, I was performing my Master’s Project, I came across
many people who have supported and assisted me. First, I want to express my heartiest thanks to
my supervisor, Professor Dr. Md. Liakot Ali for giving me the opportunity to do my Master’s
Project under his supervision. I would like to express many thanks for his invaluable advice and
ideas on the project and also for his devotion of time during this program. His support and
expertise resolved many hurdles that I encountered throughout the research. Without his
continuous support, this project could not have been completed.

I also gratefully acknowledge the valued advice and support from Associate Professor Dr.
Rubaiyat Hossain Mondol and Assistant Professor Mohammad Imam Hasan Bin Asad. My
special thanks go to all the teachers and staffs of IICT, BUET.

Finally I would like to thank my beloved wife Kulsum Jamila for her endless support in all
respects which helped me to devote to the work.

Chapter 1

1.1 Introduction

This is an age of Information and Communication Technology (ICT). The rapid growth

in computer systems and their interconnections via networks has increased the dependence of

both organizations and individuals on the information stored and its communication using these

systems. Information security is now a burning issue in this era of Information and

Communication Technology (ICT) [1]. The security has involves in many applications such as

mobile networks, internet of things, automated teller machines (ATMs), copy protection

(especially protection against reverse engineering and software piracy), internet e-commerce,

internet banking, military and government to facilitate secret communication and many more.

Cryptography plays an important role in security system. In cryptography the secret data is

encrypted by a secret key and the encrypted data can only be deciphered if one has the key. The

encryption algorithm is asset of well-defined steps to transform data from a readable format to an

encoded format using the key. This set of well-defined steps is called cipher. A number of

algorithms on cryptography have been presented in the literatures [2-5]. At present AES has been

proved as the strongest encryption algorithm declared by USA Govt. [5].

However, every application has different requirements such as the speed at which the

security operations must be performed, the physical area for embedded hardware, or its power

budget. Now a days there are lot of applications coming in the market where an increasing

number of battery powered embedded systems like PDAs, cell phones, networked sensors, smart

cards, RFID are used to store, access, manipulate or communicate sensitive data. It makes

security an important issue. Since those devices are resource constrained and battery powered,

low power and small area are the mandatory requirements. It has been found AES is not suitable

for low cost embedded devices such as RFID tags, smart cards, wireless sensor nodes etc. due to

their resource constraints [6]. To overcome this problem Hummingbird has been proposed as

ultra-lightweight cryptographic algorithm suitable for embedded system and shown that it is

resistant to a number of attacks such as algebraic attacks, cube attacks, differential power attacks

etc. The efficiency of the algorithm has been verified in software solution for a wide range of

embedded applications [7-8]. To verify its effectiveness in hardware platform, its FPGA

implementation on Xilinx devices has been presented [6]. However its implementation on Altera

2

platform has not been reported yet although there are a major group of researchers who use this

platform.

Again testability of a complex chip is of prime concern in today’s IC design. Testing a

VLSI chip to guarantee its functionality is extremely complex, time consuming as well as

expensive [9]. To deal with the testing problem at the chip level incorporating built-in self-test

(BIST) capability inside a chip is a widely accepted approach [10-14]. When chip is complex

then Built-In-Self-Test (BIST) is a norms of this day because external testing using ATE is not

cost effective and less convenient in this case. BIST in Hummingbird Crypto ASIC is not

reported yet. This project focuses on implementing BIST in Hummingbird Crypto ASIC in

Altera platform. In this design LFSR is used to generate pseudorandom test pattern and Signature

Analysis is used as a Data Compression Technique to implement BIST for multiple test counts.

The proposed Crypto ASIC is simulated in Quartus II simulation software in the Altera Cyclone

II family device and performance is analyzed in terms of power consumption and compared with

the other similar research works.

1.2 Motivation

For many years, the cryptographic engineering communities had worked on the problem

of implementing various cryptographic primitives as fast as possible. Typical examples were

high-speed RSA and Advanced Encryption Standard (AES) engines. However, the upcoming

pervasive computing era that features myriads of small, inexpensive, robust networked

processing devices has put forward the new challenge to the implementation of security

mechanisms for embedded applications. Ultra low-cost smart devices such as RFID tags, smart

cards, and wireless sensor nodes usually have extremely constrained resources in terms of

computational capabilities, memory, and power supply. Consequently, classical cryptographic

primitives designed for full-fledged computers might not be suited for resource-constrained

pervasive devices and it is often desirable to have cryptographic primitives as small as possible.

As a response to the aforementioned issue, lightweight cryptography, which focuses on

designing new cryptographic primitives with small footprint in hardware and low average and

peak power consumption, has received a lot of attention from both academia and industry in

recent years.

3

The key issue of designing lightweight cryptographic algorithms is to deal with the trade-

off among security, cost, and performance and find an optimal cost-performance ratio [15]. Quite

a few lightweight symmetric ciphers that particularly target resource-constrained smart devices

have been published in the past few years and those ciphers can be utilized as basic building

blocks to design security mechanisms for embedded applications. All the previous proposals can

be roughly divided into the following three categories. The first category consists of highly

optimized and compact hardware implementations for standardized block ciphers such as AES

[16-18], IDEA [19] and XTEA [20], whereas the proposals in the second category involve slight

modifications of a classical block cipher like DES [21] for lightweight applications. Finally, the

third category features new low-cost designs, including lightweight block ciphers HIGHT [22],

mCrypton [23], SEA [24], PRESENT [25] and KATAN and KTANTAN [26], as well as

lightweight stream ciphers Grain [27], Trivium [28] and MICKEY [29]. A good survey covering

recently published lightweight cryptographic implementations can be found in [30].

Hummingbird is a recently proposed ultra-lightweight cryptographic algorithm targeted for low-

cost smart devices [7, 31]. It has a hybrid structure of block cipher and stream cipher and was

developed with both lightweight software and lightweight hardware implementations for

constrained devices in mind. The hybrid model can provide the designed security with small

block size and is therefore expected to meet the stringent response time and power consumption

requirements for a large variety of embedded applications. Moreover, Hummingbird has been

shown to be resistant to the most common attacks to block ciphers and stream ciphers including

birthday attack, differential and linear cryptanalysis, structure attacks, algebraic attacks, cube

attacks, etc. [7].

Implementation on FPGA is a good choice to verify effectiveness of a cryptographic

algorithm in hardware platform. Field Programmable Gate Arrays (FPGAs) are programmable

logic devices which have proven to be highly feasible implementation platforms for

cryptographic algorithms because they provide both speed and programmability. FPGAs consist

of reconfigurable functional units, reconfigurable interconnections, and flexible interface.

Reconfigurable functional units are used for implementing the logic needed in a design and they

are connected with the reconfigurable interconnections. Interfacing is used for communication

4

with the rest of a system. FPGA implementation of Hummingbird cryptographic algorithm on

Xilinx devices has been presented [6]. There is another platform of FPGA i.e. Altera which is

used by a major group of researchers. Altera FPGAs are ideal for a wide variety of applications,

from high-volume applications to state-of-the-art products. Each series of FPGA includes

different features, such as embedded memory, digital signal processing (DSP) blocks, high-speed

transceivers, or high-speed I/O pins, to cover a broad range of end products. Altera FPGAs offer

a wide variety of configurable embedded SRAM, high-speed transceivers, high-speed I/Os, logic

blocks, and routing. Built in intellectual property (IP) combined with outstanding software tools

lower FPGA development time, power and cost. In this project Hummingbird Cryptographic

algorithm implemented on Altera platform. Altera FPGAs have a number of family/series of

products Stratix, Arria, Cyclone, MAX. In this work, we used Device of Cyclone II family for

Low Cost.

The testability of the cryptographic cores brings in an extra dimension to the process of

digital circuits testing – security. When chip is complex then Built-In-Self-Test (BIST) is a norm

of this day because external testing using ATE is not cost effective in this case. BIST in

Hummingbird crypto core is not reported yet. In this project we proposes and implements BIST

in Hummingbird Crypto core. Here to detect circuit faults, a set of pseudorandom test vectors is

applied to a CUT and then the output responses of the CUT are compared with that of a fault-free

CUT. Fault-free output data is stored in the memory of the tester. If they are identical then the

CUT is certified as fault-free otherwise as faulty. With the increase of complexities in ICs, bit-

by-bit comparison is being more difficult and time consuming. Moreover, if the circuit size is

large and complex, it takes much memory to store the output response data of a fault-free circuit

and thereby increases the cost of IC testing. In order to overcome the problem, data compression

techniques are usually used for test response evaluation. The choice of a compression scheme is

influenced by two factors such as (a) the amount of circuitry required to implement the scheme

and (b) the loss of data due to aliasing errors. Some of the important compression schemes such

as (a) one’s counting, (b) transition counting, (c) parity checking and (d) signature analysis. In

this work, we used Signature analysis as the compression schemes for its simplicity in hardware

implementation and good test coverage.

5

1.3 Contributions of this Project

The aim of this project is to develop a prototype ASIC to implement Hummingbird

Cryptographic Algorithm with BIST.

To meet this goal, the following objectives have been identified:

 To design the modules of the Hummingbird Crypto ASIC using Verilog HDL

 To simulate the design on Altera FPGA platform

 To perform the performance analysis in terms power, speed and hardware resources

 To compare the results with that of other researchers

1.4 Project Outline

The rest of the project is organized as follows: Chapter 2 provides the background

information on basic mathematics of Hummingbird algorithm which is required for

understanding the fundamental operations of different states of Hummingbird algorithm. This

chapter also presents brief overview of the algorithm including its cipher and deciphers parts.

Chapter 3 discusses about the FPGA implementation of the proposed design. The design

components are also provided in this chapter. Chapter 4 discusses about the experimental results

and discussion on power analysis and measurement of the proposed design.

Finally, Chapter 5 offers suggestions for future work along with concluding remarks.

Chapter 2

Fundamentals of Hummingbird Cryptographic Algorithm

2.1 Introduction
A cryptographic algorithm is the mathematical function used for encrypting and

decrypting messages. A modern cryptographic algorithm always includes a key. A cryptographic

algorithm, plain texts, cipher texts, and keys are referred to as cryptosystem. The message, which

is to be kept in secret, is referred to as plain text. The process of hiding its content is called

encryption and the encrypted message is referred to as cipher text. The process of receiving the

content of plain text back from cipher text is decryption.

The techniques used were Secret-Key Cryptography, Public-Key Cryptography and

Elliptic Curve cryptography which were based on ASIC and used General purpose processors for

the task. Then came FPGA which worked by combining them.

2.2 Basic Mathematics for Hummingbird
All the operations performed in Hummingbird Cryptographic algorithm are based on

modulo-2 operations. These operations are not the same operations used in general number

system. The basic operations based on which the entire math of the Hummingbird developed are

Addition and Subtraction of modulo operation. These operations are explained in the subsequent

sections.

2.3 Addition
In modulo-2 additions, two elements are added by adding the coefficients of the

corresponding powers in the polynomial [5]. The addition operation here is the XOR operation

denoted by the symbol „̂ ‟. Subtraction of the polynomial is exactly the same as addition. Like

other cryptographic algorithm, in the Hummingbird also the finite field algorithm of Galois

Field, GF (2n) is used for addition/subtraction.

7

The following are equivalent representations of the same value in a characteristic 2 finite

field:

Polynomial: x6 + x4 + x + 1

Binary: {01010011}

Hexadecimal: {53}

Addition and subtraction are performed by adding or subtracting two of these

polynomials together, and reducing the result modulo the characteristic. In a finite field with

characteristic 2, addition modulo 2, subtraction modulo 2, and XOR are identical. Thus,

Polynomial: (x6 + x4 + x + 1) + (x7 + x6 + x3 + x) = x7 + x4 + x3 + 1

Binary: {01010011} + {11001010} = {10011001}

Hexadecimal: {53} + {CA} = {99}

Notice that under regular addition of polynomials, the sum would contain a term 2x6, but

that this term becomes 0x6 and is dropped when the answer is reduced modulo 2.

Here is a table with both the normal algebraic sum and the characteristic 2 finite field

sum of a few polynomials:
TABLE 2.1: COMPARISON OF NORMAL AND FINITE FIELD ALGEBRA

p1 p2 p1 + p2 (normal algebra) p1 + p2 in GF(2n)

x3 + x + 1 x3 + x2 2x3 + x2 + x + 1 x2 + x + 1

x4 + x2 x6 + x2 x6 + x4 + 2x2 x6 + x4

x + 1 x2 + 1 x2 + x + 2 x2 + x

x3 + x x2 + 1 x3 + x2 + x + 1 x3 + x2 + x + 1

x2 + x x2 + x 2x2 + 2x 0

2.4 Modular arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers

"wrap around" upon reaching a certain value—the modulus. The modern approach to modular

arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae,

published in 1801.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae

8

The foundations of modular arithmetic were introduced in the third century BCE, by

Euclid, in the 7th book of his Elements.

2.4.1 Congruence relation
Modular arithmetic can be handled mathematically by introducing a congruence relation

on the integers that is compatible with the operations on integers: addition, subtraction, and

multiplication. For a positive integer n, two integers a and b are said to be congruent modulo n,

written:

a ≡ b (mod n)

if their difference a−b is an integer multiple of n (or n divides a−b). The number n is

called the modulus of the congruence.

For example,

38 ≡ 14 (mod 12)

because 38−14=24, which is a multiple of 12.

The same rule holds for negative values:

 -8 ≡ 7 (mod 5)

 2 ≡ -3 (mod 5)

 -3 ≡ -8 (mod 5)

Equivalently, a ≡ b (mod n) can also be thought of as asserting that the remainders of the

division of both a and b by n are the same. For instance:

38 ≡ 14 (mod 12)

Because both 38 and 14 have the same remainder 2 when divided by 12, it is also the case

that 38-14=24 is an integer multiple of 12, which agrees with the prior definition of the

congruence relation.

2.4.2 Remainders
The notion of modular arithmetic is related to that of the remainder in Euclidean division.

The operation of finding the remainder is sometimes referred to as the modulo operation, and

denoted with "mod" used as an infix operator. For example, the remainder of the division of 14

by 12 is denoted by 14 mod 12; as this remainder is 2, we have 14 mod 12 = 2.

9

The congruence, indicated by "≡" followed by "mod" between parentheses, means that

the operator "mod", applied to both members, gives the same result. That is

A ≡ B (mod n)

is equivalent to

 A mod n ≡ B mod n

The fundamental property of multiplication in modular arithmetic may thus be written

 (a mod n) (b mod n) ≡ ab (mod n)

or, equivalently,

 ((a mod n) (b mod n)) mod n ≡ (ab) mod n

In computer science, it is the remainder operator that is usually indicated by either "%"

(e.g., in C, C++, Java, JavaScript, Perl and Python) or "mod" (e.g., in Pascal, BASIC, SQL,

Haskell, ABAP), with exceptions (e.g., Excel). These operators are commonly pronounced as

"mod", but it is specifically a remainder that is computed. The function modulo instead of mod,

like 38 ≡ 14 (modulo 12) is sometimes used to indicate the common residue rather than a

remainder.

2.5 Overview of Hummingbird Cryptographic Algorithm
The design of Hummingbird is based on an elegant combination of a block cipher and

stream cipher with 16-bit block size, 256-bit key size, and 80-bit internal state. Figure 1(a)

and Figure 1(b) illustrate the initialization and encryption processes of the Hummingbird

cryptographic algorithm, respectively.

Both initialization and encryption consist of four 16-bit block ciphers Eki (i = 1, 2, 3, 4),

four 16-bit internal state registers RSi (i = 1, 2, 3, 4), and a 16-stage Linear Shift Feedback

Register (LFSR). Moreover, the 256-bit secret key K is divided into four 64-bit subkeys k1, k2,

k3 and k4 which are used in the four block ciphers, respectively.

10

TABLE 2.2: NOTATION

PTi the i-th 16-bit plaintext block, i = 1; 2; : : : ; n
CTi the i-th 16-bit ciphertext block, i = 1; 2; : : : ; n
K the 256-bit secret key
EK(・) the encryption function of Hummingbird with 256-bit secret key K
DK(・) the decryption function of Hummingbird with 256-bit secret key K
ki the 64-bit subkey used in the i-th block cipher, i = 1; 2; 3; 4, such that K =

k1∥k2∥k3∥k4
Eki (・) a block cipher encryption algorithm with 16-bit input, 64-bit key ki, and 16-

bit output, i.e.,
Eki : {0; 1}16 × {0; 1}64 → {0; 1}16; i = 1; 2; 3; 4

Dki (・) a block cipher decryption algorithm with 16-bit input, 64-bit key ki, and 16-
bit output, i.e., Dki : {0; 1}16 × {0; 1}64 → {0; 1}16; i = 1; 2; 3; 4

RSi the i-th 16-bit internal state register, i = 1; 2; 3; 4
LFSR a 16-stage Linear Feedback Shift Register with the characteristic

polynomial
f(x) = x16 + x15 + x12 + x10 + x7 + x3 + 1

⊞ modulo 216 addition operator
⊟ modulo 216 subtraction operator
⊕ exclusive-OR (XOR) operator
m ≪ l left circular shift operator, which rotates all bits of m to the left by l bits, as

if the left and the right ends of m were joined.
Ki

(i) the j-th 16-bit key used in the i-th block cipher, j = 1; 2; 3; 4, such that ki =
K1

(i) || K2
(i) || K3

(i) || K4
(i) ||

Si(x) the i-th 4-bit to 4-bit S-box used in the block cipher, Si(x) : F2
4 → F2

4
NONCEi the i-th nonce which is a 16-bit random number, i = 1, 2, 3, 4
IV the 64-bit initial vector, such that IV =

NONCE1∥NONCE2∥NONCE3∥NONCE4

2.5.1 16-Bit Block Cipher:

Four identical 16-bit block ciphers are employed in a consecutive manner in the

Hummingbird encryption scheme. The 16-bit block cipher is a typical substitution-permutation

(SP) network with 16-bit block size and 64-bit key as shown in Figure 2. It consists of four

regular rounds and a final round that only includes the key mixing and the S-box substitution

steps. The 64-bit subkey ki is split into four 16-bit round keys K1
(i), K2

(i), K3
(i), K4

(i), which are

used in the four regular rounds, respectively. Moreover, the final round utilizes two keys K5
(i),

K6
(i), directly derived from the four round keys (see Figure 2). Like any other SP network, one

regular round comprises of three stages: a key mixing step, a substitution layer, and a

11

permutation layer. For the key mixing, a simple exclusive-OR operation is used in this 16-bit

block cipher for efficient implementation in both software and hardware. The final round only

includes the key mixing and the S-box substitution steps. The key mixing step is implemented

using a simple exclusive-OR operation, whereas the substitution layer is composed of four S-

boxes with 4-bit inputs and 4-bit outputs as shown in Table 2.3.

TABLE 2.3
FOUR S-BOXES IN HEXADECIMAL NOTATION

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S1(x) 8 6 5 F 1 C A 9 E B 2 4 7 0 D 3

S2(x) 0 7 E 1 5 B 8 2 3 A D 6 F C 4 9

S3(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D

S4(x) 0 7 3 4 C 1 A F D E 6 B 2 8 9 5

 The permutation layer in this 16-bit block cipher is given by the linear transform L: {0;
1}16 → {0; 1}16 defined as follows:

L(m) = m ⊕ (m ≪ 6) ⊕ (m ≪ 10);

where m = (m0;m1; · · · ;m15) is a 16-bit data block.

Algorithm 4 16-bit Block Cipher Encryption Eki (・)

Input: A 16-bit data block m = (m0, m1, . . ., m15) and a 64-bit subkey ki such that

subkey ki = K1
(i) || K2

(i) || K3
(i) || K4

(i) ||

Output: A 16-bit date block m′ = (m0′,m1′,…,m15′)

1: for j = 1 to 4 do

2: m ← m ⊕ Kj
(i) [key mixing step]

3: A = m0 || m1 || m2 || m3; B = m4∥ m5∥ m6∥ m7

C = m8∥ m9∥ m10∥ m11; D = m12∥ m13∥ m14∥ m15

4: m ← S1(A) ∥ S2(B) ∥ S3(C) ∥ S4(D) [substitution layer]

5: m ← m ⊕ (m ≪ 6) ⊕ (m ≪ 10) permutation layer]

6: end for

7: m ← m ⊕ K1
(i) ⊕ K3

(i)

8: A = m0 || m1 || m2 || m3; B = m4∥ m5∥ m6∥ m7

12

C = m8∥ m9∥ m10∥ m11; D = m12∥ m13∥ m14∥ m15

9: m ← S1(A)∥ S2(B)∥ S3(C)∥ S4(D)

10: m′ ← m ⊕ K2
(i) ⊕ K4

(i)

11: return m′ = (m0′,m1′….m15′)

m = (m0, m1, . . ., m15)

 16

⊕ 16 K1
(i) , K2

(i) , K3
(i) , K4

(i)

 16

 4 4 4 4

 16

 4 4 4 4

 16

 Linear Transform L

 16

⊕ K5
(i) = K1

(i) ⊕ K3
(i)

 16

 4 4 4 4

 4 4 4 4

 16

⊕ 16 K6
(i) = K2

(i) ⊕ K4
(i)

m′ = (m0′, m1′….m15′)

Fig. 2.1 Structure of Block Cipher in the Hummingbird Cryptographic Algorithm

S1 S2 S3 S4

S1 S2 S3 S4

13

 NONCE1 RS1 RS3

 RS1 +

 + Ek1

 NONCE2

 RS2 +

 Ek2

 NONCE3

 RS3 +

 Ek3

 NONCE4

 RS4 +

 Ek4

 TV

a) Initialization Process

14

 PTi

 RS1 +

 + Ek1

 RS2 +

 +
 Ek2

 LFSR

 RS3 +

 Ek3

 RS4 +

 + Ek4

 CTi

b) Encryption Process

15

 CTi

 Dk4

 + RS4 -

 Dk3

 RS3 -

 LFSR Dk2

 +

 RS2 -

 +

 Dk1

 + RS1 -

 PTi

c) Decryption Process

Fig. 2.2 A Top-Level Description of the Hummingbird Cryptographic Algorithm

16

2.5.2 Initialization Process

The overall structure of the Hummingbird initialization algorithm is shown in Figure

1(a).When using Hummingbird in practice, four 16-bit random nonces NONCEi are first chosen

to initialize the four internal state registers RSi (i = 1; 2; 3; 4), respectively, followed by four

consecutive encryptions on the message RS1 ⊞ RS3 by Hummingbird running in initialization

mode (see Figure 1(a)). The final 16-bit ciphertext TV is used to initialize the LFSR. Moreover,

the 13th bit of the LFSR is always set to prevent a zero register. The LFSR is also stepped once

before it is used to update the internal state register RS3.We can summarize the Hummingbird

initialization process in the following Algorithm 1.

Algorithm 1 Hummingbird Initialization

Input: Four 16-bit random nonce NONCEi (i = 1; 2; 3; 4)
Output: Initialized four rotors RSi4 (i = 1; 2; 3; 4) and LFSR
1: RS10 = NONCE1 [Nonce Initialization]
2: RS20 = NONCE2
3: RS30 = NONCE3
4: RS40 = NONCE4
5: for t = 0 to 3 do
6: V12t = Ek1 ((RS1t ⊞RS3t) ⊞ RS1t)
7: V23t = Ek2 (V12t ⊞ RS2t)
8: V34t = Ek3 (V23t ⊞ RS3t)
9: TVt = Ek4 (V34t⊞ RS4t)
10: RS1t+1 = RS1t ⊞ TVt
11: RS2t+1 = RS2t ⊞V12t
12: RS3t+1 = RS3t ⊞ V23t
13: RS4t+1 = RS4t ⊞ V34t
14: end for
15: LFSR = TV3 | 0x1000 [LFSR Initialization]
16: return RSi4 (i = 1; 2; 3; 4) and LFSR

2.5.3 Encryption Process

The overall structure of the Hummingbird encryption algorithm is depicted in Figure

1(b).After a system initialization process, a 16-bit plaintext block PTi is encrypted by first

executing a modulo 216 addition of PTi and the content of the first internal state register RS1.

The result of the addition is then encrypted by the first block cipher Ek1. This procedure is

17

repeated in a similar manner for another three times and the output of Ek4 is the corresponding

ciphertext CTi . Furthermore, the states of the four internal state registers will also be updated in

an unpredictable way based on their current states, the outputs of the first three block ciphers,

and the state of the LFSR. Algorithm 2 describes the detailed procedure of Hummingbird

encryption.

Algorithm 2 Hummingbird Encryption

Input: A 16-bit plaintext PTi and four rotors RSit (i = 1; 2; 3; 4)
Output: A 16-bit ciphertext CTi
1: V 12t = Ek1 (PTi ⊞ RS1t) [Block Encryption]
2: V 23t = Ek2 (V12t ⊞ RS2t)
3: V 34t = Ek3 (V23t ⊞ RS3t)
4: CTi = Ek4 (V34t ⊞ RS4t)
5: LFSRt+1 ← LFSRt [Internal State Updating]
6: RS1t+1 = RS1t ⊞ V 34t
7: RS3t+1 = RS3t ⊞V 23t ⊞ LFSRt+1
8: RS4t+1 = RS4t ⊞V 12t ⊞ RS1t+1
9: RS2t+1 = RS2t ⊞V 12t⊞ RS4t+1
10: return CTi

2.5.4 Decryption Process

The overall structure of the Hummingbird decryption algorithm is illustrated in Figure

1(c). The decryption process follows the similar pattern as the encryption and a detailed

description is shown in the following Algorithm 3.

Algorithm 3 Hummingbird Decryption

Input: A 16-bit ciphertext CTi and four rotors RSit (i = 1; 2; 3; 4)
Output: A 16-bit plaintext PTi
1: V34t = Dk4 (CTi) ⊟ RS4t [Block Decryption]
2: V23t = Dk3 (V34t) ⊟ RS3t
3: V12t = Dk2 (V23t) ⊟RS2t
4: PTi = Dk1 (V12t) ⊟ RS1t
5: LFSRt+1 ← LFSRt [Internal State Updating]
6: RS1t+1 = RS1t ⊟ V34t
7: RS3t+1 = RS3t ⊟ V23t ⊟ LFSRt+1
8: RS4t+1 = RS4t ⊟ V12t ⊟ RS1t+1
9: RS2t+1 = RS2t ⊟ V12t ⊟ RS4t+1
10: return PTi

18

2.6 Linear Feedback Shift Register (LFSR)

 LFSR is widely used for test pattern generation. It is considered as the simple and most

efficient pseudo-random test pattern generator (Dufaza 1998). Figure 2.3 shows the basic

structure of a standard LFSR. It consists of a set of storage elements (D-Flip-Flops) and modulo-

2 adder (X-OR gate). The connection is in such a way that the state of each element is shifted to

the next element with the application of clock signal.

In Figure 2.3, all the operations are in Galois Field GF (2). S= (0S , 1S , ………., 1nS), the

binary n-tuples, represents the state of the LFSR. It can be represented in the polynomial form as

follows:

1

1
2

210)(





  n
n

n
n xSxSxSSxS (2.1)

where ix denotes the ith stage of the LFSR. For example, 0x represents stage 0, 1x

represents stage 1 and so on. Feedback function of the LFSR is called the feedback polynomial

or the generator polynomial and can be represented as follows:

nn

n xxhxhhxh  



1
1

1
10)((2.2)

where ih {1,0} denotes the feedback tap in the ith stage of the LFSR. 0ih means

there exists no feedback link in the ith stage whereas 1ih means there exists feedback link in

that stage.

Fig. 2.3: General structure of an n-bit LFSR

h0h1hn-1 hn-2

19

With the application of clock signal, the LFSR goes into autonomous mode. The past

state of the LFSR (S(x)) changes to a new state and generates pseudo-random patterns (Chen

1988; Lin and Costello 1983). If the period of the LFSR is u then the LFSR returns to the initial

state after u number of shifts. The period (u) of the LFSR depends on the feedback polynomial

and initial state. If the initial state is all zero then u will be 1 meaning that the state remains

unchanged. Again if the initial state of the LFSR is non-zero and the feedback polynomial is

primitive then u becomes near exhaustive (Bardell et al. 1987).

The states of an LFSR can be represented in matrix form. It is helpful in computation and

analysis of the pseudo-random sequences generated from it. Matrix representation of the states of

the LFSR is illustrated as follows:

Matrix Representation of LFSR:
Let‟s assume the present state of an n-stage LFSR (at time t) is

)(...,),........(),(),(1210 tXtXtXtX n then the next state of the LFSR (at time t+1)

)1(...,),........1(),1(),1(1210   tXtXtXtX n can be written as follows (Wang and McCluskey

1988):






























































































)(
)(
)(

.

.

.
)(
)(

...
10...000
01...000
.
.
.

.

.

.
...

.

.

.

.

.

.

.

.

.
00...100
00...010

)1(
)1(
)1(

.

.

.
)1(
)1(

1

2

3

1

0

122101

2

3

1

0

tX
tX
tX

tX
tX

hhhhhtX
tX
tX

tX
tX

n

n

n

nnn

n

n

 (2.3)

i.e.)()1(tCXtX  (2.4)

where X(t), X(t+1) are n-by-1 state matrix representing the present state and the next

state of the LFSR respectively and C is n-by-n companion matrix of the LFSR. In the companion

matrix,)10( nihi is either 1 or 0, depending on the existence or absence of the feedback

path in the LFSR. If companion matrix of the LFSR is known then the states traveled by the

LFSR starting from a non-zero initial state X(t) can be calculated as follows:

,......,,, 32 XCXCCXX .. If the period of the LFSR is u then XXC u  , where u is the smallest

integer for which IC u  (I is an n-by-n identity matrix). However, if the initial state of the

20

LFSR is zero then u is always 1 and the state of the LFSR remains unchanged and independent

of C.

The companion matrix can be derived from the generator polynomial of the LFSR. It can

be proven in the following way:

 The characteristic polynomial of the companion matrix (C), say f(x), can be determined

from the determinant of C-IX which is given by:

IXCxf )((2.5)

Since in modulo-2 arithmetic, addition and subtraction are equivalent, determinant of C-

IX is same as the determinant of C+IX. Hence the Equation 2.7 can be rewritten as:

nn

n xxhxhhIXCIXCxf  



1
1

1
10||||)((2.6)

Equation 2.6 and Equation 2.2 prove that companion matrix can be obtained from the

generator polynomial of an LFSR.

Again the same characteristic polynomial, f(x), as in Equation 2.6, can be obtained by

substituting the transpose of C (tC) in Equation 2.5 where

































1

2

2

1

0

10...00
01...00

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
00...10
00...01
00...00

n

n

t

h
h

h
h
h

C (2.7)

Hence Equation 2.4 can be rewritten as:

)()()1(tXCtCXtX t (2.8)

Hence the states of a LFSR can be written in the matrix form by obtaining the companion

matrix or its transpose from the generator polynomial of the LFSR.

21

2.7 Theory of Data Compression Technique

To detect circuit faults, a set of test vectors is applied to a CUT and then the output

responses of the CUT are compared with that of a fault-free CUT. Fault-free output data is stored

in the memory of the tester. If they are identical then the CUT is certified as fault-free otherwise

as faulty. With the increase of complexities in ICs, bit-by-bit comparison is being more difficult

and time consuming. Moreover, if the circuit size is large and complex, it takes much memory to

store the output response data of a fault-free circuit and thereby increases the cost of IC testing.

In order to overcome the problem, data compression techniques are usually used for test response

evaluation. Figure 2.4 shows a generalized block diagram of data compression scheme.

The choice of a compression scheme is influenced by two factors such as (a) the amount

of circuitry required to implement the scheme and (b) the loss of data due to aliasing errors.

Some of the important compression schemes are (a) one‟s counting, (b) transition counting, (c)

parity checking and (d) signature analysis.

In our project, we have used signature analysis which is described in below:

CUT

Compressor

Input

Test
Sequence

Output Response
Compressed Data

Fig. 2.4: Generalized data compression scheme

22

2.7.1 Signature Analysis

Signature analysis is a widely used data compression technique. It is popular because of

its simplicity in hardware implementation and good test coverage (David 1986; Bardel et al.

1987; Ivanov and Agrawal 1989). Signature Analyzer (SA) consists of an LFSR and a modulo-2

adder, M-2, as shown in Figure 2.5.

The „start‟ and the „stop‟ signal establish the time window within which the SA performs

data compression. The start signal initializes all the memory elements to zero and after that, the

SA starts shifting the input data stream to be compressed bit by bit with the edge of every clock

cycle. On each clock cycle, the 1st memory position of the SA is loaded by the incoming data and

shifted towards right.

Let‟s assume an input data stream of length l is applied at the input of the SA. When l

clock cycles elapse, the binary data left in the memory of the SA is the signature of the input data

sequence. In the signature analysis approach, cyclic redundancy checking (CRC) technique is

used for data compression (Bardell et al. 1987). In this technique, the input data sequences are

divided by the feedback polynomial of the SA and the remainder from the division is considered

the signature of the input data sequences. Let‟s the polynomial representation of an m-bit input

data stream (1,.......,1,0},1,0{  mjd j) and the feedback connection of a r-stage SA (

1...,,.........1,0},1,0{  rihi) are as follows respectively:

1

1
2

2
1

10)(

 m
m xdxdxddxd (2.9)
r

r xhxhxhhxh )(2
2

1
10 (2.10)

where m > r.

LFSR M-2

clock start stop

Fig. 2.5: Block diagram of a signature analyzer

Input data

stream (d(k))

23

Polynomial division of d(x) by h(x) is as follows:

)(
)()(

)(
)(

xh
xRxQ

xh
xd

 (2.11)

i.e.)().()()(xhxQxdxR  (2.12)

In the Equation (2.12), Q(x) and R(x) indicate quotient and remainder respectively.

Figure 2.6 shows an example of a 5-stage single input SA with feedback polynomial
531 xxx  . Binary representation of the feedback polynomial of the SA is 101011.

Let the data stream to be compressed is 10010101. The division of 10010101 by 101011

is as follows:

In the above division, the remainder i.e. signature is 10010. Table 2.4 shows the timing

chart of the states of SA‟s memory element. The SA is initially set to zero. The data to be

compressed is serially fed to the SA‟s input with the edge of every clock cycle, high order bit

first, the content of the SA after the last input data bit is the remainder (signature) of the input

data.

Fig. 2.6: Block diagram of a 5-stage single input signature analyzer

Input

data-stream

 101 = Q

101011 10010101
 101011

 00111001

24

Initial state

Remainder

clock input 0s 1s 2s 3s 4s
0 0 0 0 0 0
1 1 1 0 0 0 0
2 0 0 1 0 0 0
3 0 0 0 1 0 0
4 1 1 0 0 1 0
5 0 0 1 0 0 1
6 1 0 1 1 1 0
7 0 0 0 1 1 1
8 1 0 1 0 0 1

When multiple parallel data stream needs to be compressed, multiple input signature

register (MISR) is preferred rather than using single input SA for each input data stream. Figure

2.7 shows 5-stage MISR with feedback polynomial 531 xxx  where the modulo-2 adders

are placed between two stages of MISR and inputs are inserted with the modulo-2 adder.

Signature analysis is not a fault-free process. In the SA, an erroneous sequence from a

faulty circuit in some cases is compressed into the same signature as that of the fault-free circuit

of the same type. This phenomenon is known as „aliasing‟ or „masking‟ since the effect of fault

is masked by the compression process in the SA (Bardell et al. 1987; Abramavoci et al. 1990).

Masking is a loss of information caused by the compression of the output sequence of the CUT.

Let‟s assume an n-bit output data and r-bit signature SA. For an n-bit output, the possible

combination of the output sequence is n2 . Since only one output sequence is correct out of these

sequences, total numbers of possible erroneous sequence are 12 n . Again for r-bit signature

TABLE 2.4: STATES OF THE SIGNATURE ANALYZER DURING DIVISION OF INPUT
DATA=10010101

Figure 2.7: Block diagram of a 5-stage multiple input signature analyzer

Input 0 Input 1 Input 2 Input 3 Input 4

25

register, possible number of signature is r2 . If it is assumed that all signatures are equally likely,

the number of bit sequences that generates a particular signature is given by (Abramavoci et al.

1990):

rn

r

n
 2

2
2 (2.13)

For the signature of a particular fault-free response, there are 12 rn erroneous bit

sequences that produce the same signature. Since total number of the possible error sequences is

12 n , the probability of aliasing or masking is given by:

12
12








n

rn

alP (2.14)

If rn , ralP
2
1

 (2.15)

where alP indicates the probability that incorrect response will go undetected, hence the

probability of no masking:

1- alP = r
r

 21
2
11 (2.16)

Hence aliasing error is possible to be made negligible by sufficiently increasing the value of r.

2.8 Overview of FPGA

Field Programmable Gate Array (FPGA) is a semiconductor device containing

programmable logic components and interconnects. It contains up to thousands of gates. The

programmable logic components can be programmed to duplicate the functionality of basic logic

gates such as AND, OR, XOR, NOT or more complex combinational functions such as decoders

or simple math functions. In most FPGA, these programmable logic components (or logic

blocks, in FPGA parlance) also include memory elements, which may be simple flip-flops or

more complete blocks of memories. These logic blocks and interconnects can be programmed

after the manufacturing process by the customer/designer (hence the “field programmable” i.e.

programmable in the field) so that the FPGA can perform whatever logical function is needed.

There are various vendor manufacturers for different types of FPGA chip such as Altera, Xilinx,

26

Lattice Semiconductor, Actel, Quick Logic, Cypress Semiconductor, Atmel, Achromix

Semiconductor etc. Among them Altera and Xilinx are the most famous FPGA companies since

both of the companies have lot of varieties of FPGA device from small number of gate counts to

higher number of gate counts. However Altera devices offer the general benefits of PLDs as

innovative architectures, advanced process technologies, state-of- the-art development tools and

a wide selection of mega function. The common advantages of Altera devices include: High

performance, High density logic integration, Cost effectiveness, Short development cycles with

the Quartus II software, Mega core functions, Benefits of in-system programming. In this project

the used FPGA device is Altera provided EP2C5F256C7 from Cyclone II family.

2.8.1 FPGA Cyclone II Device

This subsection presents some basic information about this device which will help for

development of the proposed ASIC with this Cyclone II device [32-33].

Cyclone II FPGAs are manufactured on 300-mm wafers using TSMC's 90-nm low-k

dielectric process to ensure rapid availability and low cost. By minimizing silicon area, Cyclone

II devices can support complex digital systems on a single chip at a cost that rivals that of

ASICs. Unlike other FPGA vendors who compromise power consumption and performance for

low-cost, Altera‟s latest generation of low-cost FPGAs—Cyclone II FPGAs, offer 60% higher

performance and half the power consumption of competing 90-nm FPGAs. The low cost and

optimized feature set of Cyclone II FPGAs make them ideal solutions for a wide array of

automotive, consumer, communications, video processing, test and measurement, and other

end-market solutions.

The Cyclone II device family offers the following features:

■ High-density architecture with 4,608 to 68,416 LEs

● M4K embedded memory blocks

● Up to 1.1 Mbits of RAM available without reducing available

logic

27

● 4,096 memory bits per block (4,608 bits per block including 512

parity bits)

● Variable port configurations of ×1, ×2, ×4, ×8, ×9, ×16, ×18, ×32,

and ×36

● True dual-port (one read and one write, two reads, or two

writes) operation for ×1, ×2, ×4, ×8, ×9, ×16, and ×18 modes

● Byte enables for data input masking during writes

● Up to 260-MHz operation

■ Embedded multipliers

● Up to 150 18- × 18-bit multipliers are each configurable as two

independent 9- × 9-bit multipliers with up to 250-MHz

performance

● Optional input and output registers

■ Advanced I/O support

● High-speed differential I/O standard support, including LVDS, RSDS, mini-LVDS, LVPECL,

differential HSTL, and differential SSTL

● Single-ended I/O standard support, including 2.5-V and 1.8-V, SSTL class I and II, 1.8-V and

1.5-V HSTL class I and II, 3.3-V PCI and PCI-X 1.0, 3.3-, 2.5-, 1.8-, and 1.5-V LVCMOS, and

3.3-, 2.5-, and 1.8-V LVTTL

● Peripheral Component Interconnect Special Interest Group (PCI SIG) PCI Local Bus

Specification, Revision 3.0 compliance for 3.3-V operation at 33 or 66 MHz for 32- or 64-bit

interfaces

● PCI Express with an external TI PHY and an Altera PCI Express ×1 Megacore® function

● 133-MHz PCI-X 1.0 specification compatibility

● High-speed external memory support, including DDR, DDR2, and SDR SDRAM, and QDRII

SRAM supported by drop in Altera IP MegaCore functions for ease of use

● Three dedicated registers per I/O element (IOE): one input register, one output register, and

one output-enable register

● Programmable bus-hold feature

28

● Programmable output drive strength feature

● Programmable delays from the pin to the IOE or logic array

● I/O bank grouping for unique VCCIO and/or VREF bank settings

● MultiVolt™ I/O standard support for 1.5-, 1.8-, 2.5-, and 3.3-interfaces

● Hot-socketing operation support

● Tri-state with weak pull-up on I/O pins before and during configuration

● Programmable open-drain outputs

● Series on-chip termination support

■ Flexible clock management circuitry

● Hierarchical clock network for up to 402.5-MHz performance

● Up to four PLLs per device provide clock multiplication and division, phase shifting,

programmable duty cycle, and external clock outputs, allowing system-level clock management

and skew control

● Up to 16 global clock lines in the global clock network that drive throughout the entire device

■ Device configuration

● Fast serial configuration allows configuration times less than 100 ms

● Decompression feature allows for smaller programming file storage and faster configuration

times

● Supports multiple configuration modes: active serial, passive serial, and JTAG-based

configuration

● Supports configuration through low-cost serial configuration devices

● Device configuration supports multiple voltages (either 3.3, 2.5, or 1.8 V)

■ Intellectual property

● Altera megafunction and Altera MegaCore function support, and Altera Megafunctions

Partners Program (AMPPSM) megafunction support, for a wide range of embedded processors,

on-chip and off-chip interfaces, peripheral functions, DSP functions, and communications

functions and protocols.

● Nios II Embedded Processor support

29

2.9 Development Tool Quartus II

The proposed Hummingbird Crypto ASIC implementing BIST technique is designed

using Quartus II EDA tool (provided by Altera Company). Quartus II enables analysis and

synthesis of HDL designs, which enables the developer to compile their designs, perform timing

analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure

the target device with the programmer. Quartus includes an implementation of VHDL and

Verilog for hardware description, visual editing of logic circuits, and vector waveform

simulation. Quartus II software provides a simple, automated mechanism to allow designers to

obtain the best performance for their designs. This software provides the way to design the

solution through Verilog HDL and compile the design to ensure the workability and efficiency

logically.

Compiling mode: The Quartus II compiler consists of a set of independent modules that

check the design for errors, synthesize the logic, fit the design into an Altera Device, and

generate output files for simulation, timing analysis, software building and device programming.

The basic compiler consists of the Analysis & Synthesis, Partition Merge, Fitter, Assembler and

Classic Timing Analyzer modules. Each of the compiler modules can be run individually or

together from the Quartus II user Interface. Alternatively, these modules can be run

independently with the appropriate command line executable.

Compile the Design: The compiler automatically locate and uses all non- design files

associated with the design, such as include files (.inc) containing AHDL, Function Prototype

statements; Memory initialization files (.mif) or Hexadecimal intel format files (.hex) containing

the initial content of the memories; as well as Quartus II Project Files (.qpf) and Quartus II

Settings Files (.qsf) containing project and setting information. During compilation the Compiler

generates information, warning and error messages that appear automatically in the Message

window.

Simulation mode: Simulation allows testing a design thoroughly to ensure that it responds

correctly in every possible situation before configuring a device. Depending on the type of

information need, functional or timing simulation can be performed with the simulator.

Functional simulation tests only the logical operation of a design by simulating the behavior of

30

flattened netlist extracted from the design files, while timing simulation uses a fully compiled

netlist containing information to test both the logical operation and the worst case timing for the

design in the target device. Before running a simulation input vectors need to specify as the

stimuli for the Quartus II simulator. The simulator uses these input vectors to simulate the output

signals that a programmed device would produce under the same condition. The simulator

supports input vector stimuli in the form a Vector Waveform File (.vwf), Vector Table File

(.tbf), Power Input File (.pwf), or a Quartus II generated vector File (.vec) or Simulator Channel

File (.scf).

Program an Altera Device: When the design is ready to program a device, it needs to open

the Programmer and create a Chain Description File (.cdf) that stores the device name, device

order, programming and hardware setup information. CDFscan can be used to program or

configure one or more devices in a JTAG chain or a Passive Serial chain.

Chapter 3

Implementation of Hummingbird Crypto ASIC with BIST

3.1 Introduction

This chapter will discuss about the FPGA implementation of the proposed design and

also intend procedure of the proposed ASIC using Verilog HDL and FPGA implementation will

be described.

3.2 Architecture of the Design

Fig 3.1 shows the main module of the design and its internal connections and relations.

Memory

Initialization

Encryption Decryption

Control Module

Input Selector
Test Pattern
Generator

Signature
Analyzertext

Fig. 3.1: Functional Blocks of Hummingbird Crypto ASIC with BIST

32

It is a standard practice to partition a complex design into different modules based on

their specific functionality and features.

In our design, we have used the following blocks/modules:

1. Memory module

2. Initialization module

3. Input Selector

4. Test Pattern generator

5. Encryption

6. Decryption

7. Signal Analyzer

8. Control Module

Brief description of each module is given below:

Memory module:

We have used a memory (32X16 RAM) to store data which are used in different phases

of the design. Initially the memory is loaded (write enable, when we signal is High) through

data_in port with 4 NONCE values which are used in initialization module, 5 golden signatures

to test encryption module and 5 golden signatures to test decryption module, 256 bit key

subdivided into 16 16-bit and one 16 bit seed which is used to initialize LFSR and MISR. The

stored values are read out from Memory when write enable, we signal is low.

 clk

 data_in 16

 32X16 RAM 16 data_out

 addr 5

 we

Fig. 3.2: Block diagram of Memory Module

33

Initialization Module:

When ‘init’ signal is high, initialization started. After getting ‘init’ signal is high, control

module generates high ‘en_initialization’ which is wired with ‘en’ port of initialization module.

 en

 clk 16 RS1

reset 16 RS2

 init Initialization 16 RS3

 we Module 16 RS4

 NONCE 16 16 LFSR

 key 16 READY

 5 addr

 en_init_addr

Fig.3.3: Block diagram of Initialization Module

256 bit key subdivided into 16 16-bit subkey (K11, K12, K13, K14, K21 ….K44) and

RS1, RS2, RS3 & RS4 are first initialized by 4 16-bit NONCE values stored in RAM. After

loading data from memory for key and initial value of Registers ciphering started using four

block ciphers. After 16 cycles, READY signal goes high and we get 4 initialized registers (RS1,

RS2, RS3, RS4) and LFSR which are used in encryption and decryption modules.

34

Input Selector:

After initialization completed, Input Selector Module choses input to be used for

encryption and decryption modules based on the modes determined by user through ‘tst’ signal.

 clk

 reset Input

 tst 2 Selector

 PTi 16 16 PTx

 CTi 16 16 CTx

 LFSRt 16

 CTy 16

 READY

 testPatternReady

Fig. 3.4: Block Diagram of Input Selector Module

In the below table, depending on the mode of operation value of ‘tst’ and selected inputs

are shown. For the test cases, output (LFSRt) of pseudo random test pattern generator is used as

input to encryption/decryption modules

Table 3.1: Mode of Operation

Mode of Operation Value of tst Selected Input
Normal encryption/decryption 00 PTi, CTi
Test mode (Encryption Module) 01 LFSRt
Test mode (Decryption Module) 10 LFSRt
Decryption followed by encryption of the
same input

11 PTi, CTy

35

Test Pattern Generator:

 An LFSR is used as test pattern generator which generates pseudorandom test pattern to

be used as input of encryption and decryption modules based on ‘testCount’ signal. In this

project, we have used 100/200/300/400/500 as test count number.

en

clk

 reset Test Pattern 16 LFSRt

 READY Generator 5 addr

 tst 2 testPatternReady

testCount 10 en_tpg_addr

seed 16

Fig. 3.5: Block Diagram of Test Pattern Generator

36

Encryption Module:

Encryption module operates in two modes based on the ‘tst’ signal. When the value of

‘tst’ is ‘00’ it operates as normal mode and takes external plain text PT as its input and when the

value of ‘tst’ is ‘01’ it enters in test mode and takes test generator produced output LFSRt as its

input.

 clk

 init

 reset

 tst 2

 PT 16 Encryption

 RS1i 16 Module 16

 RS2i 16 CT

 RS3i 16

 RS4i 16

 LFSRi 16 VO

 READY

 testPatternReady

 key 16

Fig. 3.6: Block Diagram of Encryption Module

When the ‘init’ signal is high 256 bit key is subdivided into 16 16-bit subkey are loaded
into 16 registers K11,K12,K13,K14,K21, …. K44 of the module. After completion of the
initialization ‘READY’ signal goes high and outputs of initialization module are used to
initialize 4 registers (RS1, RS2, RS3, RS4) and LFSR of the encryption module. After each 4
cycles it provides ciphered text (CT) of the signal PT and updates status of its internal 4 registers
RS1, RS2, RS3, RS4 and LFSR.

37

Decryption Module:

Decryption module also operates in two modes based on the ‘tst’ signal. When the value

of ‘tst’ is ‘00’ it operates as normal mode and takes external cipher text CT as its input and when

the value of ‘tst’ is ‘10’ it enters in test mode and takes test generator produced output LFSRt as

its input.

 clk

 init

 reset

 tst 2

 CT 16 Encryption

 RS1i 16 Module 16

 RS2i 16 PT

 RS3i 16

 RS4i 16

 LFSRi 16 VO

 READY

 testPatternReady

 key 16

Fig. 3.7: Block Diagram of Decryption Module

Its keys are also loaded from memory module and internal registers are initialized same

as encryption module. It provides plain text output after every 4 clock cycles and updates status

of its internal registers and LFSR.

38

Signature Analyzer:

This module tests functionalities of encryption and decryption modules separately. When

‘tst’ signal is ‘01’ functionality of encryption module is tested. Depending on the value of

‘testCount’ 100/200/300/400/500, number of test count varied. Pseudorandom pattern generated

by the test pattern generator is input to the encryption module. Cipher text output from

encryption module is fed to the ‘CTy’ of Signature Analyzer in which MISR generates sign

output, after the desired test count final sign is compared with the stored golden signature. ‘OK’

signal goes high if final sign matches with golden signature, otherwise it remains low. In this

way module is tested for other test counts. For decryption module test, pseudorandom test pattern

is input to the decryption module and plain text output of decryption module is fed to the ‘PTy’

of Signature Analyzer.

 en

 clk

 reset

 tst 2 Signature OK

 testcount 10 Analyzer 16 sign

 seed 16

 PTy 16

 CTy 16

 golden_sign 16

 READY 5 addr

 testPatternReady en_sa_addr

 VO

 VOd

Fig. 3.8: Block Diagram of Signature Analyzer Module

39

Control Module:

One control module is used to control the sequence which module will be in action in
which time.

 clk
 reset en_initialization
 init en_testPatternGen
 we Control en_signAnlzr
 READY Module
 tst 2

Fig. 3.9: Block Diagram of Control Module

40

3.3 Flow Chart of the Design

Fig 3.10 shows the Flowchart of the Hummingbird Crypto ASIC with BIST

Start/

Power on

Initialization Memory User Data: Key,
 Nonce values etc

Mode:
 Normal/Test?

Encryption/
Decryption

Test pattern
generator

Normal

Test

Plain Text/
Cipher Text

Signature
Analyzer

Cipher Text/
Plain Text

Matched with
Golden Signature?

No. of test
counts

Module tetsted OK

Encryption/
Decryption

Yes

No
Module Tested

Not OK

text

After each 4
clock cycles

After 20 clock
cycles

Fig. 3.10: Flowchart of the Hummingbird Crypto ASIC with BIST

The Hummingbird Algorithm operates on a block of 16 bits of input data and generates

16 bits of output. The length of the key used to encrypt/decrypt is 256 bits and there are 80 bits

of internal states.

At the start, our desired Crypto ASIC is initialized. In this phase, internal registers and

LFSR are initialized using NONCE and key values stored in the Memory which are preloaded.

These initialized internal registers and LFSR are used in later phases in encryption/decryption

41

modules. Depending on the mode of operation, the proposed ASIC can operate in Normal/Test

mode. In Normal mode, both encryption and decryption modules works in parallel and provide

output cipher text or plain text respectively for input of plain text or cipher text. In Test mode

the proposed ASIC performs test for either encryption/decryption module, i.e. one at a time. In

test mode, pseudorandom pattern generated by the test pattern generator is input to the desired

test module (encryption/decryption) and then output is fed to the Signature Analyzer which

produces a signature. This process is continued for the desired number of test count and the final

signature is matched with the golden signature stored in the Memory. If it matches it indicates

the functionality of the module under test is OK.

3.4 Device Used

The proposed Hummingbird crypto ASIC is implemented in FPGA device of family

Altera, Cyclone II, EP2C5F256C7 device. This device is chosen considering below:

- Has required numbers of Logic Elements, Pins for the design

- Small device hence low power consumption

- Low cost

 The device specifications are given below:

Total Logic Elements : 4608

 Total Combinational Functions : 4608

 Dedicated Logic Registers : 1615

 Total Registers : 1615

Total Pins : 158

Total Virtual Pins : 0

Total Memory Bits : 119,808

Embedded Multiplier 9-bits Elements : 26

Total PLLs : 2

42

3.6 Tools Used

The proposed Hummingbird Crypto ASIC implementing BIST technique is designed
using Quartus II EDA tool (provided by Altera Company). Full compilation of the design using
the Quartus II simulation software includes the following modules:

- Analysis & Synthesis

- Partition Merge

- I/O Assignment Analysis

- Fitter

- Assembler

- Classic Timing Analyzer

- EDA Netlist Writer

Then symbol files are created for the design files.

Then vector waveform simulation is performed using Simulator tool. Signal Activity File

is also generated during simulation which is used later for power analysis.

PowerPlay Power Analyzer Tool is used for power analysis.

Chapter 4

Experimental Results and Discussions

4.1 Introduction

The proposed Hummingbird crypto ASIC is implemented in FPGA device of family

Altera, Cyclone II, EP2C5F256C7 device. The simulation is performed in Quartus II simulation

software. The device specifications are given below:

Total Logic Elements : 4608

 Total Combinational Functions : 4608

 Dedicated Logic Registers : 1615

 Total Registers : 1615

Total Pins : 158

Total Virtual Pins : 0

Total Memory Bits : 119,808

Embedded Multiplier 9-bits Elements : 26

Total PLLs : 2

4.2 Resources Used

The compilation result of the design shows the resources used:

 Total Logic Elements : 4122

 Total Combinational Functions : 3988

 Dedicated Logic Registers : 1615

 Total Registers : 1615

44

Total Pins : 121

Total Virtual Pins : 0

Total Memory Bits : 512

Embedded Multiplier 9-bits Elements : 0

Total PLLs : 0

Below is the snapshot of the Compilation Report – Flow Summary

45

Fig. 4.1: Snapshot of the Compilation Report – Flow Summary

4.3 Simulation Results

This project only considers the implementation with BIST to get Hummingbird Crypto

ASIC. During the simulation, the top module is the core module which is simulated using

Quartus II simulator. And also each block (Memory, Initialization, input selector, test pattern

generator, encryption, decryption, and signature analyzer) is simulated independently. The

simulation results of each block are provided in the following subsections.

4.3.1 Core Module:

In simulation, we used 4 16-bit NONCE 39F1, 268A, 19A4, 59AE; 256 bit key

11223810AB52EC9F11223810AB52EC9F11223810AB52EC9F11223810AB52EC9F, and

100F as seed. Besides these 5 golden signatures 4F58,737D,92CC,4C88,04BE are used for

testing of encryption module for 5 different test counts (100,200,300,400,500) and 5 golden

signatures 460E,6262,8F9D,E15D,1E52 for testing of decryption module. All these values are

first loaded into RAM when ‘we’ signal is high. Later during initialization 4 NONCE values are

used to initialize 4 registers RS1, RS2, RS3 and RS4 of initialization module. In this phase 256

bit key also loaded as 16 16-bit subkeys in Initialization, Encryption and Decryption modules.

46

Fig. 4.2: Schematic Diagram for Core Module

clk

reset

init

we

tst[1..0]

testCount[9..0]

PTi[15..0]

CTi[15..0]

data_in[15..0]

addr_in[4..0]

CTo[15..0]

PTo[15..0]

sign[15..0]

VO

VOd

OK

READY

encr_decr_core

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
init INPUT

VCC
we INPUT

VCC
tst[1..0] INPUT

VCC
testCount[9..0] INPUT

VCC
PTi[15..0] INPUT

VCC
CTi[15..0] INPUT

VCC
data_in[15..0] INPUT

VCC
addr_in[4..0] INPUT

CTo[15..0]OUTPUT

PTo[15..0]OUTPUT

sign[15..0]OUTPUT

VOOUTPUT

VOdOUTPUT

OKOUTPUT

READYOUTPUT

47

Fig. 4.3: RTL Viewer of Hummingbird Crypto ASIC with BIST

48

Normal Mode:

Fig. 4.4: Simulation result of Core module in normal operation mode (‘tst’=’00’)

After completion of the initialization ‘READY’ signal goes high and after each 4 cycle

encryption module generates cipher text output (CTo) of the input plain text (PTi) whereas

decryption module generates plain text output (PTo) of the input cipher text (CTi).

49

Test mode:

Fig. 4.5: Simulation result of Core module in test mode (test of encryption block with 100 test

count)

For this mode, ‘tst’ is set as ‘01’ and test pattern generator produces 100 (‘testCount’)

pseudorandom test pattern (LFSRt) which are input to encryption module. For each test input,

output of encryption module fed to signature analyzer which generates corresponding sign. After

100 run of encryption module, final sign 4F58 matches with golden signature and ‘OK’ signal

goes high meaning encryption module is functioning as expected. In this way, the module can be

tested for test count 200,300,400 and 500.

50

Fig. 4.6: Simulation result of Core module in test mode (test of encryption block with 500 test

count)

In the same way, decryption block can be tested. For this, ‘tst’ is set to ‘10’.

Fig. 4.7: Simulation result of Core module in test mode (test of decryption block with 100 test

count)

51

Fig. 4.8: Simulation result of Core module in test mode (test of decryption block with 500 test

count)

4.3.2 Memory Module:

In our design, we used a bit memory module to store 256 bit Key, 4 NONCE values, 10

golden signatures for 5 different test counts of encryption/decryption block.

Fig.4.9: Schematic Diagram for RAM

When ‘we’ signal is high, the required values are written into different addresses of RAM

through ‘data_in’ ports. These values are read by other blocks on demand basis through

‘data_out’ port by passing appropriate address.

clk

we

addr[4..0]

data_in[15..0]

data_out[15..0]

ram_v 5

inst

VCC
clk INPUT

VCC
we INPUT

VCC
addr[4..0] INPUT

VCC
data_in[15..0] INPUT

data_out[15..0]OUTPUT

52

Fig. 4.10: Simulation Result of Memory Module

4.3.3 Initialization Module

4 NONCE values are read from Memory and loaded into 4 Registers in 4 clock cycles

after getting high ‘init’ signal. Then after another 16 cycles we got initialized 4 internal Registers

RS1, RS2, RS3, RS4 and LFSR which are used in encryption and decryption blocks. At the end

of the initialization ‘READY’ signal goes high marking that it’s ready for encryption and

decryption.

Fig. 4.11: Schematic Diagram of Initialization Module

clk

reset

init

en

NONCE[15..0]

key [15..0]

RS1[15..0]

RS2[15..0]

RS3[15..0]

RS4[15..0]

LFSR[15..0]

addr[4..0]

READY

en_init_addr

initialization_v 7

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
init INPUT

VCC
en INPUT

VCC
NONCE[15..0] INPUT

VCC
key [15..0] INPUT

RS1[15..0]OUTPUT

RS2[15..0]OUTPUT

RS3[15..0]OUTPUT

RS4[15..0]OUTPUT

LFSR[15..0]OUTPUT

addr[4..0]OUTPUT

READYOUTPUT

en_init_addrOUTPUT

53

Fig. 4.12: Simulation Result of Initialization Module

54

4.3.4 Input Selector

This module decides whether external data or test pattern generated by the test pattern

generator will be used as input for encryption or decryption blocks depending on the mode of

operation.

Fig. 4.13: Schematic Diagram of Input_Sel Module

Fig.4.14: Simulation Result of Input Selector Module

VCC
clk INPUT

VCC
reset INPUT

VCC
tst[1..0] INPUT

VCC
PTi[15..0] INPUT

VCC
CTi[15..0] INPUT

VCC
LFSRt[15..0] INPUT

VCC
CTy [15..0] INPUT

VCC
READY INPUT

VCC
testPatternReady INPUT

PTx[15..0]OUTPUT

CTx[15..0]OUTPUT
clk

reset

tst[1..0]

PTi[15..0]

CTi[15..0]

LFSRt[15..0]

CTy [15..0]

READY

testPatternReady

PTx[15..0]

CTx[15..0]

input_sel

inst

55

4.3.5 Test Pattern Generator

This module generates required number of test patterns depending on the number of test

counts. ‘testPatternReady’ signal goes high when a test pattern is ready.

Fig.4.15: Schematic Diagram of Test Pattern Generator Module

Fig.4.16: Simulation Result of Test Pattern Generator Module

clk

reset

en

READY

tst[1..0]

testCount[9..0]

seed[15..0]

addr[4..0]

LFSRt[15..0]

en_tpg_addr

testPatternReady

test_pattern_generator

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
en INPUT

VCC
READY INPUT

VCC
tst[1..0] INPUT

VCC
testCount[9..0] INPUT

VCC
seed[15..0] INPUT

addr[4..0]OUTPUT

LFSRt[15..0]OUTPUT

en_tpg_addrOUTPUT

testPatternReadyOUTPUT

56

4.3.6 Encryption

This module provides encrypted output for the plain text input of its ‘PT’ port in 4 clock

cycles. It started with 4 initialized internal registers RS1, RS2, RS3, RS4 and LFSR. These

represent 80 bits internal states which change their state in each cycle of encryption/decryption.

Fig. 4.17: Schematic Diagram for Encryption Module

clk

reset

init

tst[1..0]

PT[15..0]

key [15..0]

RS1i[15..0]

RS2i[15..0]

RS3i[15..0]

RS4i[15..0]

LFSRi[15..0]

READY

testPatternReady

CT[15..0]

VO

encry ption_v 5

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
init INPUT

VCC
tst[1..0] INPUT

VCC
PT[15..0] INPUT

VCC
key [15..0] INPUT

VCC
RS1i[15..0] INPUT

VCC
RS2i[15..0] INPUT

VCC
RS3i[15..0] INPUT

VCC
RS4i[15..0] INPUT

VCC
LFSRi[15..0] INPUT

VCC
READY INPUT

VCC
testPatternReady INPUT

CT[15..0]OUTPUT

VOOUTPUT

57

Fig.4.18: Simulation Result of Encryption Module

58

4.3.7 Decryption

This module provides deciphered output for the cipher text input of its ‘CT’ port in 4

clock Cycles. Like encryption block it also started with 4 initialized internal registers RS1, RS2,

RS3, RS4 and LFSR which change their state in each cycle of decryption.

Fig. 4.19: Schematic Diagram for Decryption Module

clk

reset

init

tst[1..0]

CT[15..0]

key [15..0]

RS1i[15..0]

RS2i[15..0]

RS3i[15..0]

RS4i[15..0]

LFSRi[15..0]

READY

testPatternReady

PT[15..0]

VO

decry ption_v 5

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
init INPUT

VCC
tst[1..0] INPUT

VCC
CT[15..0] INPUT

VCC
key [15..0] INPUT

VCC
RS1i[15..0] INPUT

VCC
RS2i[15..0] INPUT

VCC
RS3i[15..0] INPUT

VCC
RS4i[15..0] INPUT

VCC
LFSRi[15..0] INPUT

VCC
READY INPUT

VCC
testPatternReady INPUT

PT[15..0]OUTPUT

VOOUTPUT

59

4.3.8 Signature Analyzer

Below figure shows the block diagram of Signature Analyzer module. Output of the

module, encryption/decryption to be tested is fed to the CTy/PTy ports. The input drives a

Multiple Input Shift Register (MISR). This is continued upto the number determined by the

‘testCount’ signal. Final output of the MISR is the signature which is compared with the golden

signature.

Fig. 4.20: Schematic Diagram for Signature Analyzer Module

clk

reset

en

tst[1..0]

testCount[9..0]

seed[15..0]

PTy [15..0]

CTy [15..0]

golden_sign[15..0]

READY

testPatternReady

VO

VOd

OK

en_sa_addr

addr[4..0]

sign[15..0]

sign_anlzr_v 5

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
en INPUT

VCC
tst[1..0] INPUT

VCC
testCount[9..0] INPUT

VCC
seed[15..0] INPUT

VCC
PTy [15..0] INPUT

VCC
CTy [15..0] INPUT

VCC
golden_sign[15..0] INPUT

VCC
READY INPUT

VCC
testPatternReady INPUT

VCC
VO INPUT

VCC
VOd INPUT

OKOUTPUT

en_sa_addrOUTPUT

addr[4..0]OUTPUT

sign[15..0]OUTPUT

60

4.3.9 Control Module

This module determines the sequence of initialization, test pattern generator and signature

analyzer module operations as these modules use RAM, we need to maintain a proper sequence.

Fig. 4.21: Schematic Diagram for Control Module

Fig.4.22: Simulation Result of Control Module

clk

reset

init

we

READY

tst[1..0]

en_initialization

en_testPatternGen

en_signAnlzr

controlModule

inst

VCC
clk INPUT

VCC
reset INPUT

VCC
init INPUT

VCC
we INPUT

VCC
READY INPUT

VCC
tst[1..0] INPUT

en_initializationOUTPUT

en_testPatternGenOUTPUT

en_signAnlzrOUTPUT

61

4.4 Test Result

Encryption/Decryption Functionality of the proposed ASIC is tested by using the output

of the encryption block as the input to the decryption block. In this case we should get back the

original plain text. In our design we have this arrangement to test the encryption followed by

decryption.

Fig.4.23: Simulation Result of Core Module (tst=’11’)

In this case, test mode value tst =’11’ is used.

Table 4.1 Input and Output in Test Result

Encryption Block

input (PTi)

Encryption Block

output (CTo)

Decryption Block input

(CTx)

Decryption Block

output (PTo)

A19C 6E5F 6E5F A19C

49D1 7582 7582 49D1

3B79 05B0 05B0 3B79

6921 E054 E054 6921

62

In the simulation result show above we have used plain text (PTi) input stream as A19C,

49D1, 3B79, 6921 for Encryption module. After 4 clock cycles we got the encrypted output

(CTo) stream as 6E5F, 7582, 05B0, E054. In the next clock these cipher text used as input (CTx)

to the Decryption module. After another 4 clock cycles, we got the plain text (PTo) output stream

as A19C, 49D1, 3B79, 6921 which is found same as Plain Text (PTi) input to the encryption

module.

4.5 HW Implementation

We have used Altera DE2 board for HW implementation. Below are the snapshots of

HW implementation with different test mode.

Fig.4.24: Snapshot of HW Implementation

63

Table 4.2 Pin Assignment

Signal Name

Description in DE2 No. Pin

Signal Name

in Design

CLOCK_50 PIN_N2 clk

HEX0 6 PIN_V13 Cto

HEX0 5 PIN_V14 Cto

HEX0 4 PIN_AE11 Cto

HEX0 3 PIN_AD11 Cto

HEX0 2 PIN_AC12 Cto

HEX0 1 PIN_AB12 Cto

HEX0 0 PIN_AF10 Cto

HEX1 6 PIN_AB24 Cto

HEX1 5 PIN_AA23 Cto

HEX1 4 PIN_AA24 Cto

HEX1 3 PIN_Y22 Cto

HEX1 2 PIN_W21 Cto

HEX1 1 PIN_V21 Cto

HEX1 0 PIN_V20 Cto

HEX2 6 PIN_Y24 Cto

HEX2 5 PIN_AB25 Cto

HEX2 4 PIN_AB26 Cto

HEX2 3 PIN_AC26 Cto

HEX2 2 PIN_AC25 Cto

HEX2 1 PIN_V22 Cto

HEX2 0 PIN_AB23 Cto

HEX3 6 PIN_W24 Cto

HEX3 5 PIN_U22 Cto

HEX3 4 PIN_Y25 Cto

HEX3 3 PIN_Y26 Cto

HEX3 2 PIN_AA26 Cto

64

Signal Name

Description in DE2 No. Pin

Signal Name

in Design

HEX3 1 PIN_AA25 Cto

HEX3 0 PIN_Y23 Cto

HEX4 6 PIN_T3 Pto

HEX4 5 PIN_R6 Pto

HEX4 4 PIN_R7 Pto

HEX4 3 PIN_T4 Pto

HEX4 2 PIN_U2 Pto

HEX4 1 PIN_U1 Pto

HEX4 0 PIN_U9 Pto

HEX5 6 PIN_R3 Pto

HEX5 5 PIN_R4 Pto

HEX5 4 PIN_R5 Pto

HEX5 3 PIN_T9 Pto

HEX5 2 PIN_P7 Pto

HEX5 1 PIN_P6 Pto

HEX5 0 PIN_T2 Pto

HEX6 6 PIN_M4 Pto

HEX6 5 PIN_M5 Pto

HEX6 4 PIN_M3 Pto

HEX6 3 PIN_M2 Pto

HEX6 2 PIN_P3 Pto

HEX6 1 PIN_P4 Pto

HEX6 0 PIN_R2 Pto

HEX7 6 PIN_N9 Pto

HEX7 5 PIN_P9 Pto

HEX7 4 PIN_L7 Pto

HEX7 3 PIN_L6 Pto

HEX7 2 PIN_L9 Pto

65

Signal Name

Description in DE2 No. Pin

Signal Name

in Design

HEX7 1 PIN_L2 Pto

HEX7 0 PIN_L3 Pto

SW[17] PIN_V2 tst

SW[16] PIN_V1 tst

SW[15] PIN_U4 Pti

SW[14] PIN_U3 Pti

SW[13] PIN_T7 Pti

SW[12] PIN_P2 Pti

SW[11] PIN_P1 Pti

SW[10] PIN_N1 Pti

SW[9] PIN_A13 Pti

SW[8] PIN_B13 Pti

SW[7] PIN_C13 Pti

SW[6] PIN_AC13 Pti

SW[5] PIN_AD13 Pti

SW[4] PIN_AF14 Pti

SW[3] PIN_AE14 Pti

SW[2] PIN_P25 Pti

SW[1] PIN_N26 Pti

SW[0] PIN_N25 Pti

KEY[3] PIN_W26

KEY[2] PIN_P23

KEY[1] PIN_N23 init

KEY[0] PIN_G26 reset

LEDG[8] PIN_Y12

LEDG[7] PIN_Y18

LEDG[6] PIN_AA20

LEDG[5] PIN_U17

66

Signal Name

Description in DE2 No. Pin

Signal Name

in Design

LEDG[4] PIN_U18

LEDG[3] PIN_V18 VO

LEDG[2] PIN_W19 VOd

LEDG[1] PIN_AF22 READY

LEDG[0] PIN_AE22 OK

LEDR[17] PIN_AD12

LEDR[16] PIN_AE12

LEDR[15] PIN_AE13 Sign

LEDR[14] PIN_AF13 Sign

LEDR[13] PIN_AE15 Sign

LEDR[12] PIN_AD15 Sign

LEDR[11] PIN_AC14 Sign

LEDR[10] PIN_AA13 Sign

LEDR[9] PIN_Y13 Sign

LEDR[8] PIN_AA14 Sign

LEDR[7] PIN_AC21 Sign

LEDR[6] PIN_AD21 Sign

LEDR[5] PIN_AD23 Sign

LEDR[4] PIN_AD22 Sign

LEDR[3] PIN_AC22 Sign

LEDR[2] PIN_AB21 Sign

LEDR[1] PIN_AF23 Sign

LEDR[0] PIN_AE23 Sign

67

Fig.4.25: Snapshot of HW Implementation (tst=’11’)

In the above setup, tst is set to 11 which indicate the module is in self-test. Here SW0 to

SW15 is used as input PTi and HEX4 to HEX7 is used as output. Here PTo showed the same

value as PTi and thus proved the proper functionality in this mode.

68

Fig.4.26: Snapshot of HW Implementation (tst=’10’)

In the above setup, test mode is set at 10 by SW17 and SW16, LEDR0 to LEDR15

showed the final sign and LEDG0 assigned as OK sign. High ‘OK’ sign showed final sign

matched with the golden signature.

4.6 Power Analysis and Measurement of Power Consumption

In this section the total power consumption of the proposed ASIC is determined. We used

PowerPlay Power Analyzer Tool of Quartus II for this analysis.

The total power consumed by a device, output loading, and external termination networks

(if present) is generally comprised of the following major power components:

 Standby (Static)

 Dynamic

 I/O

69

It can be shown as below:

Total thermal power dissipation= Core Static Thermal Power Dissipation + Core Dynamic

Thermal Power Dissipation + I/O Thermal Power Dissipation

Static Power is consumed regardless of the activity in a chip; it depends on the processor

temperature. Static power does not depend on the switching activity and toggle count. So in this

project we don’t focus on the static power. Dynamic power is consumed from internal switching

within the device (charging and discharging capacitance on internal nodes). It requires

knowledge of switching activity of a node (toggle count of a node). I/O power is from external

switching (charging and discharging external load capacitance connected to device pins), I/O

drivers, and external termination network. Below snapshot of PowerPlay Power Analyzer report

shows the component of power consumption

Fig.4.27: Power Consumption of the Proposed ASIC

70

4.7 Comparison with other Research Works

In this project we have implemented Hummingbird Crypto Core with BIST. Here we

have used Cyclone II device of Altera family and simulation is performed in Quartus II

simulation software. From simulation result we found it took 282 LAB and FMax is 59.3 MHz.

Maximum Throughput is calculated as 238.4 Mbps and Efficiency (Mbps/# of Slices) is

calculated as 0.85. Comparing this with other Hummingbird implementations as shown in below

Table 4.3 we found the performance is quite satisfactory over other works of the table in terms of

Throughput and Efficiency. Above all the proposed design has the unique feature of BIST which

we didn’t find in other Hummingbird implementations.

Table 4.3 Comparison with other research works

Design/Cipher Device Total Occupied
Slices/LAB

FMax
(MHz)

Throughput
(Mbps)

Efficiency (Mbps/#
of Slices)

Hummingbird[31] Spartan-3 XC3S200-5 273 40.1 160.4 0.59

Hummingbird[34] Spartan-3 XC3S200-5 40 260.8 55.64 1.38

Hummingbird-
2[35]

Spartan-3 XC 35200 273 40.1 160.4 0.59

Hummingbird[36] Virtex-5
XC5V1X20T-2-FF-

323

4242 152.90
5

NA NA

This work Cyclone II 282 59.3 238.4 0.85

Chapter 5

Conclusion

5.1 Conclusion

The widespread deployment of various wireless networks such as mobile ad-hoc

networks, sensor networks, mesh networks, personal area networks and RFID systems is making

possible a world of pervasive computing a reality. While the wireless communication technology

and devices under development are enabling our march toward the era of pervasive computing,

the security and privacy concerns in pervasive computing remains a serious impediment to

widespread adoption of emerging technologies. Employing cryptographic primitives to perform

strong authentication and encryption and provide other security functionalities is a promising

solution to overcome those concerns. Classical cryptographic primitives designed for full-

fledged computers might not be suited for resource-constrained pervasive devices and it is often

desirable to have cryptographic primitives as small as possible. As a response to the

aforementioned issue, lightweight cryptography, which focuses on designing new cryptographic

primitives with small footprint in hardware and low average and peak power consumption, has

received a lot of attention from both academia and industry in recent years. Hummingbird is a

recently proposed ultra-lightweight cryptographic algorithm targeted for low-cost smart devices.

Again testability of an IC is of prime concern now a days. Built-In-Self-Test (BIST) is a norms

of this day because external testing using ATE is not cost effective in this case. This project

presented design of Hummingbird Crypto ASIC implementing BIST. The design is implemented

in FPGA device of Family Altera, Cyclone II. Simulation result of the design ensures that the

design is functioning properly. The ciphered output from the design is verified by using it as

input to the decryption and revert back the original plain text.

5.2 Future Works

The work performed in this project also exposes several new areas that can be explored.

In future, rigorous performance analysis and optimization in terms of power, speed and hardware

resources can be performed and also to improve fault coverage different approaches of BIST like

recursive pseudo exhaustive two pattern generator can be explored.

72

References:
[1] Stallings, W., “Cryptography and Network Security: Principles and Practices,” Pearson

 Education, Inc. 2010.

[2] Coppersmith, D., “The Data Encryption Standard (DES) and its strength against attacks,”

 IBM Journal of Research and Development, Vol. 38 (3), May 1994.

[3] Smid, M. E., and Branstad, D. K., “Data Encryption Standard: past and future,” published

 in proceedings of the IEEE, Vol. 76(5), May 1988.

[4] Standaert, F. -X., Rouvroy, G., and Quiswater, J. -J., “FPGA Implementations of the DES

 and Triple-DES Masked against Power Analysis Attacks,” published in International

 conference on Field Programmable Logic and Applications, 2006. FPL ’06.

[5] “Advanced encryption standard (AES),” Federal Information Processing Standards

 Publication (FIPS PUB) 197, National Institute of Standards and Technology (NIST),

 November, 2001.

[6] Fan, X., Gong, G., Lauffenburger, K., and Hicks, T., “FPGA Implementations of the

 Hummingbird Cryptographic Algorithm”, IEEE International Symposium on Hardware

 -Oriented Security and Trust (HOST), 13-14 June, 2010.

[7] Engels, D., Fan, X., Gong, G., Hu, H. and Smith, E.M., “Hummingbird: Ultra-

 Lightweight Cryptography for Resource- Constrained Devices”, 14th International

 Conference on Financial Cryptography and Data Security - FC 2010, Berlin, Germany,

 Springer-Verlag, 2010.

[8] Fan, X., Hu, H., Gong, G., Smith, E.M., and Engels, D., “Lightweight Implementation of

 Hummingbird Cryptographic Algorithm on 4-Bit Microcontrollers”, 1st International

 Workshop on RFID Security and Cryptography 2009 (RISC’09), pp. 838-844, 2009.

[9] K. Nivita and A. Titus, “A BIST Circuit for Fault Detection Using Recursive Pseudo

 Exhaustive Two Pattern Generator,” International Journal of Modern Engineering

 Research (IJMER), vol. 2, Issue.3, pp. 676-681, May-June 2012.

[10] Parag, K. Lala, “An introduction to logic circuit testing,” Morgan&Claypool publishers,

 2008.

[11] Karaklaji , D., Kne evi , M., and Verbauwhede, I., “Low Cost Built In Self Test for

 Public Key Crypto Cores,” published in Workshop on Fault Diagnosis and Tolerance in

 Cryptography, 2010.

73

[12] Natale, G.D., Doulcier, M., Flottes, L., and Rouzeyre, B., “Low–Cost Self-Test of Crypto

 Devices,” 2nd Workshop on Dependable and Secure Nano computing, Anchorage,

 Canada, United States. Pp.41-46, Jun 2008.

[13] Yang, B., Wu, K., and Karri, R., “Secure Scan: A Design-for-Test Architecture for

 Crypto Chips,” published in IEEE Transactions on Computer-Aided Design of

 Integrated Circuits and Systems, Vol. 25(10), August, 2006.

[14] http://en.wikipedia.org/wiki/Built-in_self-test; last modified on 25 October 2014 at 19:54.

[15] Poschmann, A., “Lightweight Cryptography - Cryptographic Engineering for a Pervasive

 World,” Ph.D. Thesis, Department of Electrical Engineering and Information Sciences,

 Ruhr-University Bochum, Bochum, Germany, 2009.

[16] Feldhofer, M., Dominikus, S., and Wolkerstorfer, J., “Strong Authentication for RFID

 Systems Using the AES Algorithm,” The 6th International Workshop on Cryptographic

 Hardware and Embedded Systems-CHES 2004, LNCS 3156, M. Joye and J.-J.

 Quisquater (eds.), Berlin, Germany: Springer-Verlag, pp. 357-370, 2004.

[17] Feldhofer, M., Wolkerstorfer, J. and Rijmen, V., “AES Implementation on a Grain of

 Sand”, IEE Proceedings Information Security, vol. 15, no. 1, pp. 13-20, 2005.

[18] Hämäläinen, P., Alho, T., Hännikäinen, M. and Hämäläinen, T. D., “Design and

 Implementation of Low-Area and Low-Power AES Encryption Hardware Core”, The 9th

 EUROMICRO Conference on Digital System Design: Architectures, Methods and Tools

 - DSD 2006, pp. 577-583, IEEE Computer Society, 2006.

[19] Liu, D., Yang, Y., Wang, J. and Min, H., “A Mutual Authentication Protocol for RFID

 Using IDEA,” Auto-ID Labs White Paper, WP-HARDWARE-048, March 2009,

 available at http://www.autoidlabs.org/uploads/media/AUTOIDLABS-WP-

 HARDWARE-048.pdf.

[20] Kaps, J.-P. “Chai-Tea, Cryptographic Hardware Implementations of xTEA,” The 9th

 International Conference on Cryptology in India-INDOCRYPT 2008, LNCS 5356, D.R.

 Chowdhury, V. Rijmen, and A. Das (eds.), Berlin, Germany: Springer-Verlag, pp. 363-

 375, 2008.

[21] Leander, G., Paar, C., Poschmann, A. and Schramm, K. “New Lightweight DES

 Variants,” The 14th Annual Fast Software Encryption Workshop-FSE 2007, LNCS 4593,

 A. Biryukov (ed.), Berlin, Germany: Springer-Verlag, pp. 196-210, 2007.

http://www.autoidlabs.org/uploads/media/AUTOIDLABS-WP-HARDWARE-048.pdf
http://www.autoidlabs.org/uploads/media/AUTOIDLABS-WP-HARDWARE-048.pdf

74

[22] Hong, D. , Sung, J., Hong, S. , Lim, J., Lee, S., Koo, B. S. , Lee, C. , Chang, D. , Lee, J.,

 Jeong, Kim, K. H., and Chee, S., “HIGHT: A New Block Cipher Suitable for Low-

 Resource Device,” The 8th International Workshop on Cryptographic Hardware and

 Embedded Systems-CHES 2006, LNCS 4249, L. Goubin and M. Matsui (eds.), Berlin,

 Germany: Springer-Verlag, pp. 46-59, 2006.

[23] Lim , C. and Korkishko, T., “mCrypton - A Lightweight Block Cipher for Security of

 Low-cost RFID Tags and Sensors,” Workshop on Information Security Applications-

 WISA 2005, LNCS 3786, Song, J.T. and Yung (eds.), M. Berlin, Germany: Springer-

 Verlag, pp. 243-258, 2005.

[24] Standaert, F.-X. , Piret, G. , Gershenfeld, N. and Quisquater, J.-J., “SEA: A Scalable

 Encryption Algorithm for Small Embedded Applications,” The 7th IFIP WG 8.8/11.2

 International Conference on Smart Card Research and Advanced Applications-CARDIS

 2006, LNCS 3928, Domingo-Ferrer, J., Posegga, J. and Schreckling (eds.), D. Berlin,

 Germany: Springer-Verlag, pp. 222-236, 2006.

[25] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M. J.

 B., Seurin, Y. and Vikkelsoe, C., “PRESENT: An Ultra-Lightweight Block Cipher,” The

 9th International Workshop on Cryptographic Hardware and Embedded Systems - CHES

 2007, LNCS 4727, Paillier, P. and Verbauwhede (eds.), I. Berlin, Germany: Springer-

 Verlag, pp. 450-466, 2007.

[26] De Cannière, C., Dunkelman, O. and Kne evi , M., “KATAN and KTANTAN – A

 Family of Small and Efficient Hardware-Oriented Block Ciphers,” The 11th International

 Workshop on Cryptographic Hardware and Embedded Systems - CHES 2009, LNCS

 5747, Clavier , C. and Gaj (eds.), K. Berlin, Germany: Springer-Verlag, pp. 272-288,

 2009.

[27] Hell, M., Johansson, T. and Meier, W., “Grain: A Stream Cipher for Constrained

 Environments,” International Journal of Wireless and Mobile Computing, vol. 2, no. 1,

 pp. 86-93, 2007.

[28] De Cannière, C. and Preneel, B. “Trivium – A Stream Cipher Construction Inspired by

 Block Cipher Design Principles,” ECRYPT Stream Cipher, Available at

 http://www.ecrypt.eu.org/stream/papersdir/2006/021.pdf, 2005.

75

[29] Babbage, S. and Dodd, M. “The Stream Cipher MICKEY 2.0,” ECRYPT Stream Cipher,

 Available at http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf, 2006.

[30] Eisenbarth,T., Kumar,S., Paar, C., Poschmann, A. and Uhsadel, L., “A Survey of

 Lightweight-Cryptography Implementations,” IEEE Design & Test of Computers, vol.

 24, no. 6, pp. 522-533, 2007.

[31] Fan, X., Gong, G., Lauffenburger, K., and Hicks, T., “Design Space Exploration of

 Hummingbird Implementations on FPGAs”. (2010) The citeseerx website. [Online]

 Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.233.1601.

[32] “Stratix Device Handbook, Volume 1,” on Altera website. [Online]. Available:

 https://www.altera.com/content/dam/altera-

 www/global/en_US/pdfs/literature/hb/stx/stratix_handbook.pdf

[33] (2016) Altera website. [Online]. Available:

 https://www.altera.com/products/fpga/overview.html

[34] San, I., and At, N., "Compact Hardware Architecture for Hummingbird Cryptographic

 Algorithm," 21st International Conference on Field Programmable Logic and

 Applications, Chania, 2011, pp. 376-381, 2011.

[35] John, J., “Performance Analysis of New Light Weight Cryptographic Algorithms,” IOSR

 Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727, vol.

 5, Issue 5, pp. 01-04, Sep-Oct. 2012.

[36] Arora, N., and Gigras, Y., “FPGA Implementation of Low Power and High Speed

 Hummingbird Cryptographic Algorithm,” International Journal of Computer

 Applications (0975-8887), vol. 92- No.16, April 2014.

