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Abstract 

Under the increasing pressure of issues like reducing the time to market, managing 

lower production costs, and improving the flexibility of operation, batch process 

industries thrive towards the production of high value added commodity, i.e. specialty 

chemicals, pharmaceuticals, agricultural, and biotechnology enabled products. For 

better design, consistent operation and improved control of batch chemical processes 

one cannot ignore the sensing and computational blessings provided by modern 

sensors, computers, algorithms, and software. In addition, there is a growing demand 

for modelling and control tools based on process operating data. This study is focused 

on developing process operation data-based iterative learning control (ILC) strategies 

for batch processes, more specifically for batch crystallisation systems.  

In order to proceed, the research took a step backward to explore the existing control 

strategies, fundamentals, mechanisms, and various process analytical technology 

(PAT) tools used in batch crystallisation control. From the basics of the background 

study, an operating data-driven ILC approach was developed to improve the product 

quality from batch-to-batch. The concept of ILC is to exploit the repetitive nature of 

batch processes to automate recipe updating using process knowledge obtained from 

previous runs. The methodology stated here was based on the linear time varying 

(LTV) perturbation model in an ILC framework to provide a convergent batch-to-

batch improvement of the process performance indicator. In an attempt to create 

uniqueness in the research, a novel hierarchical ILC (HILC) scheme was proposed for 

the systematic design of the supersaturation control (SSC) of a seeded batch cooling 

crystalliser. This model free control approach is implemented in a hierarchical 

structure by assigning data-driven supersaturation controller on the upper level and a 

simple temperature controller in the lower level.  

In order to familiarise with other data based control of crystallisation processes, the 

study rehearsed the existing direct nucleation control (DNC) approach. However, this 

part was more committed to perform a detailed strategic investigation of different 

possible structures of DNC and to compare the results with that of a first principle 
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model based optimisation for the very first time. The DNC results in fact 

outperformed the model based optimisation approach and established an ultimate 

guideline to select the preferable DNC structure.   

Batch chemical processes are distributed as well as nonlinear in nature which need to 

be operated over a wide range of operating conditions and often near the boundary of 

the admissible region. As the linear lumped model predictive controllers (MPCs) 

often subject to severe performance limitations, there is a growing demand of simple 

data driven nonlinear control strategy to control batch crystallisers that will consider 

the spatio-temporal aspects. In this study, an operating data-driven polynomial chaos 

expansion (PCE) based nonlinear surrogate modelling and optimisation strategy was 

presented for batch crystallisation processes. Model validation and optimisation 

results confirmed this approach as a promise to nonlinear control.  

The evaluations of the proposed data based methodologies were carried out by 

simulation case studies, laboratory experiments and industrial pilot plant experiments. 

For all the simulation case studies a detailed mathematical models covering reaction 

kinetics and heat mass balances were developed for a batch cooling crystallisation 

system of Paracetamol in water. Based on these models, rigorous simulation programs 

were developed in MATLAB®, which was then treated as the real batch cooling 

crystallisation system. The laboratory experimental works were carried out using a lab 

scale system of Paracetamol and iso-Propyl alcohol (IPA). All the experimental works 

including the qualitative and quantitative monitoring of the crystallisation 

experiments and products demonstrated an inclusive application of various in situ 

process analytical technology (PAT) tools, such as focused beam reflectance 

measurement (FBRM), UV/Vis spectroscopy and particle vision measurement (PVM) 

as well. The industrial pilot scale study was carried out in GlaxoSmithKline 

Bangladesh Limited, Bangladesh, and the system of experiments was Paracetamol and 

other powdered excipients used to make paracetamol tablets. 

The methodologies presented in this thesis provide a comprehensive framework for 

data-based dynamic optimisation and control of crystallisation processes. All the 

simulation and experimental evaluations of the proposed approaches emphasised the 

potential of the data-driven techniques to provide considerable advances in the current 

state-of-the-art in crystallisation control. 
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Chapter 1 

Introduction 
 

1.1 Motivation 

In recent years there has been a growing emphasis on the control of complex 

distributed parameter chemical systems due to the boost of computing power, 

significant evolution in sensor and actuator, and the development of modern 

optimisation and model reduction algorithms (Roman et al., 2009; Araujo et al., 

2007). Typically batch processes are distributed in nature that are widely applied in 

many sectors of the chemical industries including pharmaceuticals, polymers, food 

products, biotechnology, and electronic chemicals (Nagy and Braatz, 2003). These 

days, batch reactors have become an important feature of chemical industries. Batch 

chemical reactor operation throws up many challenging issues which engineers must 

endeavour to understand, model, and control (Ekpo, 2006). A few of these are time 

varying characteristics, strongly nonlinear behaviour and the presence of disturbances. 

However, in batch process industries there is a common practice of overlooking those 

features and usually batch processes are designed using conventional methods 

approximating lumped models. Hence linear feedback control has developed a long 

history of research and diverse applications (Qin and Badgwell, 2000; Kayihan, 

1997). From single-input-single-output proportional-integral-derivative (SISO PID) 

controllers to plantwide Model Predictive Control (MPC) systems (Qin and Badgwell, 

2003), there are an abundance of feedback control systems, which implicitly or 

explicitly assume that process dynamics are either inherently linear or almost linear 

owing to process operation close to a steady state.  

Because of the inherent nonlinearity of batch processes, the linear models are often 

not sufficient to describe the process dynamics adequately. This inadequacy of linear 

models is principal motivations for the increasing interest in Nonlinear Model 

Predictive Control (NMPC). Moreover, the spatio temporal coupled nature of DPSs 

demands more difficult infinite dimensional modelling as compared to the modelling 



Chapter 1: Introduction                                                                                                                          2                                

 

Iterative Learning Control of Crystallisation Systems                                                                      2013 

of lumped parameter systems (LPSs) (Gay and Ray, 1995). However, while the 

industrial application of  NMPC is growing rapidly, a few of the NMPC algorithms 

provided by vendors includes stability constraints as required by control theory for 

nominal stability; usually the available techniques rely implicitly upon setting the 

prediction horizon long enough to effectively approximate an infinite horizon 

(Allgower et al., 2004). Moreover, nonlinear control usually poses substantially 

higher data, design, implementation, and maintenance demands than linear control 

(Nikolaou and Misra, 2003). Therefore, it is still a quandary to decide whether a 

nonlinear control strategy will offer a significant improvement over linear control 

alternatives because of the time and effort required to develop a nonlinear model 

(Seborg, 1999). The common feature of both linear and nonlinear MPC is that both of 

these are first principle model based approaches hence not their development is 

complicated, time-consuming and also expensive. 

Since the model based controllers are subjected to several limitations, i.e. 

development of first principle model is a complicated process which is time 

consuming and expensive while existing models are often poor and incomplete 

(Bonvin, 2013). Therefore due to the limited availability of robust on-line sensors, 

often only off-line quality measurements are widely available for batch processes. As 

a result, there is a growing demand of simple data driven and computationally 

efficient control strategies for the robust optimal control of these processes. 

Researchers also have to confront the challenge of controlling operating conditions in 

such a way to improve the final product quality from batch-to-batch (Xiong and 

Zhang, 2004). This batch-to-batch control approach exploits the repetitive nature of 

batch processes to update the process operating trajectories using process knowledge 

obtained from previous batch runs. This policy undoubtedly drags the concept of 

Iterative Learning Control (ILC) in the terrain of batch process control. ILC is a 

general technique for improving transient tracking performance of a system that 

executes the same operation repeatedly over a fixed time interval (Lee and Lee, 

2007). It has been successfully applied to industrial robots (Arimoto et al., 1984; 

Norrlof, 2002), computer numerical control (CNC) machine tools (Kim and Kim, 

1996), wafer stage motion systems (de Roover and Bosgra, 2000), cold rolling mills 
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(Garimella and Srinivasan, 1998), induction motors (Saab, 2004), chain conveyor 

systems (Barton et al., 2000), camless engine valves (Hoffmann et al., 2003), 

autonomous vehicles (Chen and Moore, 2002), antilock braking (Mi et al., 2005). 

However, still it is a newer concept in chemical process control after its introduction 

at late 1990’s. Today, the control practitioners have started to take advantage of the 

repetitive nature of chemical processes by introducing the idea of ILC in almost every 

sector like chemical process, chemical reactor, thermal processing (Yang et al., 2003), 

water heating system, laser cutting, industrial extruder plant, moving problem of 

liquid container, injection moulding machines (Gao et al., 2001), packaging and 

assembly, and tracking control of product quality in agile batch manufacturing 

processes.  

ILC is more advantageous than traditional feedback and feedforward controller. A 

feedback controller reacts to inputs and disturbances and, hence, always lags in 

tracking. For accurately known or measurable signals, a feedforward controller can 

eliminate this lag but still insufficient for unknown disturbances. On contrary, ILC 

being anticipatory can compensate for exogenous signals, such as persistent 

disturbances, in advance by learning from previous iterations. ILC also provides 

opportunities for advanced filtering and signal processing. Since it generates open-

loop control through practice (feedback in the iteration domain), this high-

performance control is also highly robust to system uncertainties. Above all, ILC has 

the potency to be designed as an operating data based control strategy for batch 

processes. 

Another approach that can be used to develop a nonlinear data based control strategies 

for batch chemical processes is polynomial chaos expansion (PCE) based system 

identification and optimisation techniques. The PCE is well suited to robust design 

and control when the objectives are strongly dependent on the shape or tails of the 

distributions of product quality or economic objectives (Nagy and Braatz, 2007). PCE 

is convergent in the mean-square sense (Ghanem and Spanos, 1991), so the 

coefficients in the PCE can be calculated using least-squares minimisation 

considering sample input/output pairs from the model, to achieve the best fit between 

the PCE and nonlinear model (or experimental data). After the introduction of PCE by 
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Wiener in late thirties for turbulence modeling (Wiener, 1938) only relatively recently 

it is being widely used in different disciplines (Nagy and Braatz, 2010) and has been 

applied mostly for uncertainty analysis in chemical processes (Nagy and Braatz, 

2007). In this study, PCE based surrogate modelling and optimisation was developed 

for batch crystallisation processes.   

Crystallisation is a widely used solid-liquid separation process mostly carried out in 

batches. It has a wide range of applications in different industries such as food, fine 

chemical, pharmaceutical, and in the petrochemical industry. Batch crystallisation 

offers manufacturing of products that are able to meet certain specific regulatory 

requirements and specifications, such as toxicity, viscosity, and hygiene standards in 

food industry, or specific bio-performance and dissolution properties of active 

pharmaceutical ingredients (API). Batch crystallisers are simple and have the 

flexibility of reusing the same processing equipment for different chemical substances 

hence it is the best available option for multi product manufacturing (Barker and 

Rawtani, 2004).  

Although batch crystallisation is one of the oldest unit operations there are still a 

number of unresolved issues associated with its control. It poses a complex process 

dynamics and also significant uncertainties are related to the exact mechanisms of the 

governing phenomena (Aamir, 2010). The control objectives of batch crystallisation 

processes are defined in terms of product purity, crystal habit or morphology, average 

particle size, crystal size distribution (CSD), bulk density, product filterability, and 

dry solids flow properties (Worlitschek and Mazzotti, 2004). The main difficulty in 

batch crystallisation is to produce a uniform and reproducible CSD which is crucial 

for efficient downstream operations (i.e. filtration, drying, and formulation) and better 

product performance (i.e. dissolution rates, bioavailability and shelf life). Many 

scientists and researchers have worked in the development of batch crystallisation 

processes for the production of crystalline compounds (Hounslow and Reynolds, 

2006) with consistent physical properties i.e. purity, morphology, size distribution and 

polymorphic form. The suggestions for improving the control of CSD came in the 

form of either supersaturation control (SSC) (Aamir et al., 2009; Braatz, 2002; 
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Fujiwara et al., 2005; Yu et al., 2006) or direct nucleation control (DNC) (Abu Bakar 

et al., 2009; Woo et al., 2009).  

After the Food and Drug Administration’s (FDA’s) process analytical technology 

(PAT) initiative (FDA, 2004) of encouraging more quality-by-design (QbD) 

approaches rather than the conventional quality-by-testing (QbT) techniques, there is 

a growing emphasis on active control schemes that changes process conditions based 

on in situ measurements. Several PAT technologies (ATR-FTIR; ATR-UV/vis) are 

reported to be used in pharmaceutical industry but mainly for monitoring and control 

concentration during batch cooling and antisolvent crystallisation, for dissolving 

fines, and for supersaturation control (Saleemi et al., 2012a). There are several sensors 

available for in situ monitoring of solid phase during crystallisation process. 

Ultrasound probe has been used for in situ solid and liquid phase monitoring mostly 

for inorganic systems. Focused beam reflectance measurement (FBRM) is used to 

provide both real time qualitative and quantitative information about nucleation and 

growth. It is often used as a complementary tool alongside other PAT tools (e.g. 

ATR-UV/Vis, BVI) for monitoring purpose or to trigger the switching between 

different predetermined operating conditions (Saleemi et al., 2012b). Other direct 

observation based methods like bulk video imaging (BVI), particle vision 

measurement (PVM) and image analysis has also been used for nucleation detection 

and real-time in situ particle system characterisation.  

In this verge of increased sensing and computational capabilities afforded by modern 

sensors, computers, algorithms, and software it is more convenient to adopt operating 

data based operation and control strategies for batch chemical processes. The major 

focus of this research is to develop data driven control approaches that are able to 

predict and control the desired end point properties in batch chemical processes, e.g. 

batch crystallisation. It is expected that the ultimate contribution of this research work 

will reduce the gap between academic and industrial developments thereby opening 

the ways towards novel product manufacturing and integrated process design. 
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1.2 Research Aim and Objectives 

The aim of this research project is to develop and apply operating data based robust 

optimal control approaches for batch chemical processes to achieve desired end point 

properties. The work will consider batch cooling crystallisation process as an example 

case for study.   

The major objectives to achieve the overall aim of the research will be as follows: 

a. To gain knowledge and understanding about the distributed parameter batch 

processes, e.g. batch crystallisation systems’ fundamentals and behaviour 

through a comprehensive literature review and a hands-on in situ monitoring 

of the crystallisation processes.  

b. Development of operating data based process models with good prediction 

quality based on linear time varying (LTV) perturbation model. 

c. Development of an LTV perturbation model based robust iterative learning 

control (ILC) algorithm for monitoring and control of batch processes. 

d. Development of a novel hierarchical ILC (HILC) for the systematic design of 

supersaturation control (SSC) of seeded batch cooling crystallisation system. 

Evaluation of the developed method through simulation and laboratory scale 

experiments. 

e. Strategic investigation of different structures of an alternative operating data 

based control strategy, the direct nucleation control (DNC) structures via 

computer simulations and experiments.  

f. Development of an operating data driven and polynomial chaos expansion 

(PCE) based nonlinear surrogate modeling and optimisation strategy for batch 

chemical processes. 

g. Application of PAT based tools like ATR-UV/Vis spectroscopy, FBRM and 

PVM probes for monitoring and data based control. 
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1.3 Scope of the Research 

The  present  work,  given  the  time  and  resource  constraints,  focuses  mainly  on 

end point (i.e. mean length, total number of counts) control of batch crystallisation 

systems by three different data based control approaches. As a means to reduce batch 

to batch variations the application of iterative learning control (ILC) was proposed. 

Iterative learning control is relatively a new concept in the field of batch chemical 

processes and there are a few algorithms developed so far. These algorithms can be 

first principle model based or data based, based on a linear model or a nonlinear 

model. The exploration of all the existing ILC methodologies is somewhat outside the 

scope of the research. This work was focused on a linear time varying perturbation 

model based ILC strategy for batch crystallisation systems. Later this LTV model 

based ILC was extended to a hierarchical ILC (HILC) concept for supersaturation 

control of a seeded batch cooling crystalliser. Since the research was aimed at the 

development of direct design tools for batch crystallisation system operation and 

control. Another data based approach called direct nucleation control (DNC) was 

evaluated under four different structure and three different end target limits. In order 

to incorporate the effect of process nonlinearity in batch crystallisation control, a 

polynomial chaos expansion (PCE) derived nonlinear model based control approach 

was developed and validated for its performance. However, this research did not 

conduct any comparative performance analysis among all these three different control 

strategies but recommends this as a basis for further researches to carry out in this 

sector.  

All the proposed methodologies were evaluated through simulation case studies, 

laboratory scale experiments and one industrial pilot scale experiment. The simulation 

case studies were performed using MATLAB® version 2008a. The experimental 

works were aided by process analytical technology (PAT) tools (e.g. UV/Vis 

spectrophotometer, FBRM, PVM) to extract operating data from the system. Since the 

scope of this research was limited to temperature control only strategies and 

recommendations of this research are based on the system’s response to different 

temperature profiles and corresponding concentration profiles. However, the effect of 

other variables, e.g. pressure, density, viscosity, purity of solid was not considered in 
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this study. The problems considered here are all single input single output systems 

(SISO) problems. It is expected that the research would be used as a basis for further 

research to investigate the performance of proposed data based methodologies for 

controlling other multiple input multiple output (MIMO) batch chemical processes. 

1.4 Research Contribution 

The main contributions of the work presented in the thesis can be summarised as 

follows: 

1. This research provides a comprehensive literature survey of the existing 

modeling and control strategies of batch chemical processes. Reviews of the 

fundamentals and mechanisms of crystallisation processes and various PAT 

tools used in batch crystallisation control are presented as well. 

2. Development of an operating data-driven approach to improve the product 

quality from batch-to-batch by exploiting the repetitive nature of batch 

processes to automate recipe updating using process knowledge obtained from 

previous runs. The data based methodology introduced is based on using the 

LTV perturbation model in an ILC framework to provide a convergent batch-

to-batch improvement of the process performance indicator.  

3. The major contribution of this research work is the development of a novel 

hierarchical ILC (HILC) scheme for the systematic design of the 

supersaturation control (SSC) of a seeded batch cooling crystalliser. This 

model free control approach is implemented in a hierarchical structure. On the 

upper level, a data-driven supersaturation controller determines the extent of 

optimal supersaturation needed to produce the desired end-point property of 

crystals. On the lower level, the corresponding temperature trajectory is 

determined by time domain experiments to generate necessary supersaturation. 

The proposed approach is evaluated in the case of a simulated seeded batch 

cooling crystallisation system of Paracetamol in water and also in a laboratory 

scale crystallisation system of Paracetamol and iso-Propyl alcohol (IPA) 

system. 
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4. This research also includes a detailed systematic evaluation of different 

structures of direct nucleation control (DNC) approaches of controlling batch 

cooling crystallisation systems. DNC is another model free approach that is 

adaptive in nature and requires no prior knowledge on nucleation or growth 

kinetics of the system. The performance and robustness of proposed DNC 

approaches were examined through computer simulations and laboratory 

experiment. Computer simulations were done in two phases. In the first phase, 

detailed mathematical models covering reaction kinetics and heat mass 

balances were developed for a batch cooling crystallisation system of 

Paracetamol in water. Based on these models, rigorous simulation programs 

were developed in MATLAB®. This mechanistic model was used to solve an 

open loop optimal control problem of maximizing the mean crystal length 

within a fixed batch time. The successive quadratic programming solution 

provides the optimal temperature trajectory, corresponding number of counts 

and the total length. In the second phase, treating the MATLAB® model as the 

real processes, the performance of DNC was evaluated in comparison to the 

model based optimal control. Later the simulated results were justified through 

laboratory experiments using a system of Paracetamol and iso-Propyl alcohol 

(IPA). 

5. Development of PCE based surrogate modelling and optimisation for batch 

crystallisation processes. The MatLab model of paracetamol in water system 

was used to generate historical data and the system was then re-identified 

under the nonlinear PCE scheme using those. The developed model was then 

validated to see how the PCE is able to predict final size, using other input 

profiles, which were not used in the parameter identification. Later the 

nonlinear model was used to optimise the temperature profile needed to obtain 

a desired mean length of crystals at the end of the batch.  

6. All the experimental works including the qualitative and quantitative 

monitoring of the crystallisation experiments and products demonstrated an 

inclusive application of various in situ process analytical technology (PAT) 

tools, such as focused beam reflectance measurement (FBRM), UV/Vis 

spectroscopy and particle vision measurement (PVM) as well.    
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7. Evaluation of the proposed LTV perturbation model based ILC was carried 

out in an industrial pilot scale laboratory in GlaxoSmithKline Bangladesh 

Limited, Chittagong, Bangladesh. The method was applied to determine the 

required drying temperature of Paracetamol granules to obtain desired 

moisture content at the end of the batch.  

1.5 Thesis Structure 

A brief description of each chapter of the thesis is as follows: 

Chapter 1 introduces the subject area with a background to the research problem. The 

research objective and methodology is identified in this chapter.  

Chapter 2 provides an overview of the literary works pertaining to the subject area. 

The chapter is divided in three main parts. The first part provides an overview of 

batch chemical processes and the different control problems associated with these. It 

also reviews past works and the present trends to control such systems. The second 

part provides a brief analysis of the ILC approaches used for batch chemical processes 

and pinpoints the limitations associated with those technique. The last part provides a 

brief review of the fundamentals and mechanism of crystallisation processes along 

with the optimisation and control strategies used. In addition it also discusses in short 

the role of process analytical technologies in crystallisation processes. 

Chapter 3 introduces the methodology for batch-to-batch control. Two Simulated 

systems were studied for the assessment of the proposed methodology.  

Chapter 4 presents the development of a systematic approach for supersaturation 

control (SSC) of a seeded batch crystallisation systems. Based on the experimental 

data a novel hierarchical ILC (HILC) approach has been developed, in which the 

constant supersaturation trajectories in the phase diagram can be defined in terms of 

temperature trajectories, in the time domain, to produce desired crystal properties at 

the end of the batch. In the later part of this chapter, the proposed mythology has been 

evaluated for a simulated seeded batch crystallisation system of Paracetamol in water. 

In addition, the simulation results have been presented and discussed in detail.  
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Chapter 5 presents laboratory scale experimental works to evaluate the proposed 

HILC (described in Chapter 4) for systematic design of SSC for batch cooling 

crystallisers. Details of materials, seed preparation, experimental set-up, experimental 

conditions and experimental results are provided. 

Chapter 6 presents a systematic evaluation of different direct nucleation control 

(DNC) approaches for controlling batch crystallisation systems. In order to examine 

the performance and robustness of proposed DNC approaches computer simulations 

were done in two phases and a novel twofold systematic evaluation of the proposed 

DNC approaches has been described. In the last part laboratory scale experimental 

results have also been included and discussed to justify the results of simulation case 

studies.  

Chapter 7 presents the development of polynomial chaos expansion (PCE) based 

surrogate modelling and optimisation for batch crystallisation processes. The chapter 

starts with a brief review of the theoretical aspects of PCE. The results obtained by 

simulations case studies have also been included and discussed in detail.   

Chapter 8 presents the industrial field work carried out in GlaxoSmithKline (GSK). 

The plan of work and experimental works performed in a pilot plant system have been 

described and the results have been presented and discussed. 

Chapter 9 concludes the thesis by summarising all the simulation and experimental 

results. The conclusions of the research along with proposals for future work are also 

presented. 
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Chapter 2 

Literature Review 
 

2.1 Overview 

Batch chemical processes hold a significant portion of the chemical process industry. 

Now a day it has captured almost 40-50% of the total empire (Wang et al., 2006). 

Batch or semi-batch processes are essential for the production of high value added 

commodity such as specialty chemicals and pharmaceuticals. Due to their time space 

varying nature, batch processes are generally modelled as distributed parameter 

systems (DPSs). The knowledge of stochastic DPSs is highly important in chemical 

industries for the purpose of fault detection, measurement device placing, and control 

(Hangos and Virág, 1986). This chapter provides an overview of the past works for 

modelling and control of DPSs. As an example of distributed parameter batch 

processes, batch crystallisation has been studied throughout the research work. The 

later part of this chapter includes theories and common practices for the control of 

batch crystallisation processes.  

2.2 Distributed Parameter Systems  

Distributed parameter systems (DPSs) are processes with spatially varying states, 

controls, and parameters (Miller and Rawlings, 1994). Almost all natural and 

industrial processes are distributed in nature (Gay and Ray, 1995). Chemical 

processes show some spatial variations due to imperfect mixing (Lee, 2008). Table 

2.1 gives examples of some industrial processes whose noticeably nonuniform spatial 

profiles have created great interest between process and control engineering 

practitioner. 

A proper mathematical model of the system is crucial for applications like system 

identification, numerical simulation, control design, and optimisation. Since the DPSs 

have time-space coupled characteristic, to adequately describe this distributed feature 

one needs to use partial differential equation (PDE) models with mixed or 
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homogeneous boundary constraints (Curtain, 2003). Generally, DPSs are described by 

first and second order PDEs that are commonly classified into three categories 

(Hanczyc and Palazoglu, 1995) as 1) hyperbolic, 2) parabolic, and 3) elliptic. All 

single first-order PDEs are considered hyperbolic. Higher order PDEs may be any one 

or a combination of the three. To predict the nonlinear and distributed dynamic nature 

accurately, these infinite-dimensional PDE models are useful.  

Table 2.1: Examples of Distributed Parameter Systems (DPSs) (Gay and Ray, 1995; Shang 
et al., 2004; Li and Qi, 2010) 

System Example 

Thermal process - Heat conduction through a plate 

- Drying or curing operations 

- Metallurgical heating 

- Sheet-coating processes 

Fluid process - Counter-current heat exchanger 

- Absorption columns 

- Fluidised beds 

Convection-
diffusion-reaction 
process 

- Polymer-extrusion 

- Plug-flow reactor or packed-tube reactor 

- Fixed-bed-reactor 

- Crystallisers 

Flexible beam -Flexible magnetic bearing system (Zhou et al., 1992) 

-Non-linear power generator system (United States   

 Patent 7732994)  

However, in practice there are a limited number of actuators and sensors for sensing 

and control and limited computing privilege for execution. Due to the infinite 

dimensional nature of the models, it is not possible to use them directly for the design 

of nonlinear controllers that can be readily put into action in real-time with available 

computing power.  

Therefore, for engineering applications such infinite dimensional systems need to be 

approximated by finite dimensional systems. Then modelling and control design is 

generally based on different lumping techniques. Conventional trends to discretise the 
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nonlinear DPS involve transforming the PDEs and boundary conditions using finite-

difference/finite-element methods that lead to an approximate system of thousands of 

ordinary differential equations. However, these solutions are also unrealistic for 

controller synthesis and real-time controller implementation due to the inadequacy of 

sensors and actuators for measuring and implementing the solution (Zheng and Hoo, 

2002). Thus, further order reduction (Bonvin and Mellichamp, 1982) may be 

necessary to develop controllers that can be readily implemented in real time with 

available computing power. Moreover, it is not always possible to have a 

mathematical model of the system. Whether there is an exact model of the system or 

not, model reduction is necessary. In case an exact mode is unavailable, a nominal 

model of the system is conventionally used as a design platform. Figure 2.1 illustrates 

the steps for modelling both known and unknown DPSs for control design and 

development purposes. 

 

 

 
 

 

 

Figure 2.1: Steps for modelling known and unknown DPSs. 

2.3 Control of DPSs 

The diverse applications in the fields of aeronautics, biotechnology, nanotechnology, 

semiconductor manufacturing, and material engineering as well as in chemical 

processes have highly motivated the research on control of DPS. However, the spatio 

temporal coupling and infinite dimensionality of the DPS’s still make them very 

complicated for analysis, modelling, and control (Wang et al., 2010). Table 2.2 

summarises the industrially important control problems associated with DPS in 

different fields. 

Modelling of DPS 

Known DPS 

-System identification 
-Model reduction 

Unknown DPS 

   -Structure design 
   -Parameter estimation 
   -System identification 
   -Model reduction 
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The general objectives behind the control of DPSs are more or less the same as those 

for lumped parameter systems (LPS); these are stability, optimality, robustness, etc. 

However, the spatially distributed characteristic requires an infinite-dimensional 

modelling, which is more difficult and complicated than modelling of lumped 

parameter systems. In addition to that, it poses certain unique challenges like 

satisfying the spatial boundary conditions, non-collocated, collocated control design 

(assuring separate locations for controllers and actuators) (Padhi and Ali, 2009). 

Table 2.2: Distributed Control Problems and Applications (Christofides, 2001) 

DPS Control Problem Area of Application 

Control of spatial profiles CVD, Etching, Crystal growth, 

Packed-bed reactors. 

Control of size distributions Aerosol production, Crystallisation, 

Emulsion polymerisation, Cell cultures. 

Control of fluid flows Fluid mixing, Wave suppression, Drag 

reduction, Separation delay. 

Control of material microstructure Thin film growth, Nano-structured 

coatings processing. 

The following sub-section provides an overview of the existing practices for 

controlling DPSs. Since this particular study is based on data based control, the 

overview is mainly focused on different data based control strategies. 

2.3.1 Model Based Control 

At present, there are several important advanced control techniques. The classification 

of these techniques is shown in Figure 2.2. Advanced control techniques are primarily 

classified in four conceptually different categories. However, a common feature of all 

these algorithms is that all are based on a process model. The most important 

approach, the model predictive control (MPC), can be classified further, for example, 

according to different model types used for prediction in the controller (Agachi et al., 

2006). MPC is a form of control in which the current control action is obtained by 

solving on-line, at each sampling instant, a finite horizon open-loop optimal control 

problem (Orukpe, 2005).  
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Figure 2.2: Classification of advanced control techniques (Agachi et al., 2006). 

For a linear model, the objective function is a quadratic cost function. Using the 

current state of the plant as the initial state, the tracking error, which is the difference 

between the predicted output and the desired reference, is minimised over a future 

horizon, possibly subject to constraints on the manipulated inputs and outputs 

(Bemporad and Morari, 1999). The result of the optimisation is applied according to a 

receding horizon philosophy; at time t only the first input of the optimal command 

sequence is actually applied to the plant. The remaining optimal inputs are discarded, 

and a new optimal control problem is solved at time 1+t . The prediction horizon 

keeps being shifted forward, for this reason MPC is also called receding horizon 

control. This idea is illustrated in Figure 2.3. 

With over 4500 industrial installations across a wide range from chemicals to 

aerospace industries, MPC is currently the most widely implemented advanced 

process control technology for chemical process plants (Qin and Badgewell, 2003). 

MPC is suitable for almost any kind of control problem, however, it displays its main 

strength when applied to problems with a large number of manipulated and controlled 

variables, constraints imposed on both the manipulated and controlled variables, 

Advanced Control Techniques

Model Predictive
Control (MPC)

Optimal 
Control (OC)

Adaptive 
Control (AC)

Expert Systems 
Based Control 

(ESC) 

Linear MPC Nonlinear MPC 

- Step response models 
- Impulse response models 
- State space models 
- Polynomial models  
  (ARX, ARMAX, etc.) 

- First principle models  
- Artificial neural networks 
- Fuzzy models 
- Linear weighted models 
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changing control objectives and/or equipment failure and time delays (Seborg et al., 

2004).       

                              (Past) Inputs and Outputs (t)                              

                                                                                                                                                                                                   
-          

                       - Predicted Output                 

 + Reference  
    Trajectory                                             

                                                           

                               

(Future) Inputs (t+1)                                  

                                                                 

           Cost Function     Constraints 

Figure 2.3: Basic structure of model predictive control (MPC). 

As discussed earlier, MPC is further classified as linear and nonlinear. Linear MPC 

refers to a family of MPC schemes in which linear models are used to predict the 

system dynamics and considers linear constraints on the states and inputs and a 

quadratic cost function. Linear feedback control of chemical processes has a long 

history of research and diverse industrial applications (Qin and Badgwell, 2000; 

Kayihan, 1997). Whether it is a SISO-PID controllers or plantwide MPC systems 

there are versatile applications of feedback controllers, which implicitly or explicitly 

assume that process dynamics are either inherently linear or almost linear owing to 

process operation close to a steady state (Qin and Badgwell, 2003).  

However, this is not always the right practice; even if the system is linear, the closed-

loop dynamics are in general nonlinear due to the presence of constraints. There is 

pronounced nonlinear nature of several chemical processes such as, biochemical 

production of chemicals,  systems operating near constraints (e.g. petroleum refining, 

natural gas processing), non-routine operation situations (e.g. start-ups, shut-downs, 

change-overs, flares, relief valve emissions), nonlinear distributed parameter systems 

such as control of spatial profiles (Christofides, 2001), control of size distributions 

(Chiu and Christofides, 1999), crystallisation, emulsion, polymerisation, cell cultures, 

Model 

Optimiser 

     Plant 



Chapter 2: Literature Review                                                                                                                               

 

Iterative Learning Control of Crystallisation Systems                                                                      2013 

18 

control of fluid flows, control of material microstructure (Nikolaou and Misra, 2003), 

etc. This inherent nonlinearity of batch chemical processes, along with higher product 

quality specifications and rising productivity demands, tighter environmental 

regulations and challenging economic considerations force the process dynamics to be 

described by nonlinear models to capture the nonlinear aspects and to adopt nonlinear 

model predictive control for betterment.  

Nonlinear model predictive control (NMPC) refers to MPC schemes that are based on 

nonlinear models and/or consider non-quadratic cost-functional and general nonlinear 

constraints on the states and inputs (Findeisen et al., 2003). In NMPC, the process 

nonlinearities and constraints are explicitly considered in the controller (Allgower et 

al., 2004). As a result, from 1990s, there is a steadily increasing attention from control 

theoretists as well as control practitioners in the area of NMPC. Over 125 NMPC 

applications have been reported in chemical industries in the past decade (Nagy and 

Allgower et al., 2004) and the industrial processes are now pushed to nonlinear 

operation windows. Although the potential advantages of nonlinear model-based 

control strategies are readily apparent, there are still a number of major unresolved 

issues (Seborg, 1999). Nonlinear control systems usually pose substantially higher 

data, design, implementation, and maintenance demands than linear control systems 

(Nikolaou and Misra, 2003). Therefore, it is still a quandary to decide whether a 

nonlinear control strategy will offer a significant improvement over linear control 

alternatives because of the time and effort required to develop a nonlinear model 

(Seborg, 1999). Before developing and implementing a nonlinear control system, one 

must carefully examine the potential advantages of such a system in comparison to a 

linear one. While the existing schemes increase the general understanding, a few 

robust NMPC formulations exist and are computationally difficult to be applied in 

practice (Allgower et al., 2004). Theoretical analysis of closed-loop performance 

properties (e.g. stability and robustness) are very complex, especially if inequality 

constraints are present. Additional problems in NMPC are to ensure stability of 

closed-loop systems with unknown disturbances and model plant mismatch. While 

nominal stability and feasibility have been extensively addressed in the past decades 

(Limon et al., 2009), NMPC with asymptotic stability does not guarantee robust 

stability and large unmeasured disturbances can lead to poor performance for dynamic 
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real-time optimisation (D-RTO). Considering these issues, robust design strategies are 

necessary to account for uncertainties, explicitly in the controller formulation (Huang 

et al., 2009). A well-known strategy to guarantee the robust stability is the min-max 

NMPC formulation, which computes the best control policy based on the worst 

expected realisation of the uncertainties. However, this formulation dramatically 

increases the computational cost of the on-line NMPC problem, despite some recent 

remedies (Diehl et al., 2008). As the control action is based on the worst case, the 

performance is compromised (e.g. output variables present large offset). Therefore, 

more research is required for effective application of the NMPC strategy especially in 

batch chemical processes that are distributed in nature. 

2.3.2 Data Based Control 

Batch processes retain the characteristics of operating in the absence of steady state, 

in the presence of constraints and are repetitive in nature. The challenge of batch 

process control is the control of product quality, which is only at run end while the 

batch traverses through a wide range of operating conditions. The most appreciable 

approach for quality improvement is to use precise first-principle models and adopt 

MPC as described in the previous section. However, the available models are often 

poor and incomplete (Bonvin, 2013) and models are not available for most newly 

developed processes. Modelling of a complex industrial process is very difficult, 

time-consuming, and expensive. Usually modelling costs account for over 75% of the 

expenditures in the design of an advanced control project (Hussain, 1999). Moreover, 

it is difficult to build precise first-principle models that can explain why defects 

appear in products (Kano and Nakagawa, 2008).  

In this scenario, the monitoring and control of batch processes are obviously diverted 

towards the use of abundant operation data. Industrial processing plants are usually 

equipped with a large number of sensors primarily to deliver data for process 

monitoring and control. It has been only two decades since the researchers started to 

use this operating data for building predictive models of the related process based on 

this data (Kadlec et al., 2009). These data based predictive models are called none 

other than the Soft Sensors in the context of process industry. 
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Soft Sensors can be either model-driven or data-driven. The model driven Soft 

Sensors are typically based on First Principle Models (FPM), extended Kalman filter 

or adaptive observer (Kadlec et al., 2009 and the references cited therein). First 

Principle Models describe the physical and chemical background of the process. 

However, the data-driven Soft Sensors gained more popularity in the process industry 

for being based on the data measured within the processing plants. These soft sensors 

describe the real process conditions in a better way. Various modelling techniques 

applied to data-driven Soft Sensors are the Principle Component Analysis (PCA) 

(Jolliffe, 2002) in a combination with a regression model for monitoring the process 

plan, Partial Least Squares (PLS) (Wold et al., 2001), Artificial Neural Networks 

(Principe et al., 2000; Hastie et al., 2001), Neuro-Fuzzy Systems (Jang et al., 1997; 

Lin and Lee, 1996), Data Driven Quality Improvement (DDQI) (Kano and Nakagawa, 

2008) and Support Vector Machines (SVMs). In the next subsection, the more 

commonly used data based control techniques have been briefly discussed.  

2.3.2.1 Artificial Neural Network  

Artificial neural networks (ANN) designed on the concept of animal brain function 

(McCulloch and Pitts, 1943) are networks of simple processing elements (called 

‘neurons’) operating on their local data and communicating with other elements. It 

has been extensively studied. Although there exist many different types of neural 

networks (Haykin, 1994) the basic principles are very similar. Each neuron in the 

network is able to receive input signals for processing and to send an output (Svozil et 

al., 1997). 

While dealing with a chemical process with severe/unknown non-linearities neural 

networks offer a simpler and efficient alternative to extract information from plant in 

an efficient manner with normal availability of rich data (Kano and Nakagawa, 2008). 

As a data-driven modeling method, ANN possesses the ability to approximate any 

complex nonlinear relationships to any desired degree of accuracy with less a prior 

knowledge (Liu et al., 2011; Xiong and Zhang, 2005). As a result there has been 

substantial interest and fast development in soft sensor modeling based on ANN 

within batch process industry (Bo et al., 2003). However, it is still very difficult to 

obtain satisfying Soft Sensor model in the absence of construction theory. It is 
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important to establish a strict construction theory of Soft Sensor model based on 

artificial neural network SS-ANN and improve its performance for the on-line 

estimation of the key immeasurable variables (Liu et al., 2011). 

Xiong and Zhang (2005) divided the neural networks for nonlinear process modelling 

broadly into two categories, e.g. static networks, including multi layer feed forward 

neural networks and radical basis function networks and dynamic networks which 

include globally and locally recurrent neural networks and dynamic filter networks, 

etc. Neural networks can also be classified according to its incorporation in three 

major categories of control, i.e. predictive, adaptive and inverse-model based control 

techniques in both simulation and online applications. For an extensive review of 

various neural networks based works please see Hussain (1999). 

2.3.2.2 Iterative Learning Control (ILC) 

Iterative Learning Control (ILC) is a general technique for improving transient 

tracking performance of a system that executes the same operation repeatedly over a 

fixed time interval (Lee and Lee, 2007). The supplementary requirements are that, the 

reference trajectories (to be followed by the outputs) remain the same from run to run 

and the process starts from the same state during each operation. ILC had been 

developed and studied primarily in the context of training and controlling robots and 

other mechanical systems under repetitive operations (Moore, 1998). In practice there 

are many processes repeating the same task in a finite interval, ranging from a 

welding robot in a VLSI production line, to a batch reactor in pharmaceutical 

industry. Recently the control practitioners in the field of chemical engineering have 

started to take advantage of this similarity of repetitiveness to introduce the idea of 

ILC for controlling batch chemical processes (Lee et al., 1994). 

The focus of this research is to develop operating data based ILC for batch chemical 

processes. The following section provides a detailed review of the ILC including its 

structure, applications in chemical batch processes and critical analysis of the existing 

ILC strategies developed by researchers. 
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2.4 Iterative Learning Control (ILC) 

2.4.1 Generic Description of ILC/ Technical overview  

ILC differs from most existing control methods in the sense that, it exploits every 

possibility to incorporate past control information like the past tracking error signals 

and in particular the past control input signals, into the construction of the present 

control action (Xu and Tan, 2003). The basic idea of ILC is illustrated in Figure 2.4.  

                        Uk, Yk                                                           Uk+1 

 

 

    Uk+1, Yk+1                     Yd       Uk+1                                                                    Yk+1                                            

                 

 
                Figure 2.4: Basic framework of iterative learning control (ILC).  

All the signals shown are defined on a finite interval ],0[ ftt ∈ , the subscript k  

denotes the run number. The key objective is to find an input profile for a new batch 

run based on the information gathered from previous batches such that (Lee and Lee, 

2003), ∞→→ kek   as   0 , where, )()()( d tytyte kk −= , is the difference between 

the desired output dy  and the actual output ky  during thk  batch. The key concept is, 

during the thk  trial an input )(tuk  is applied to the system, producing the output 

)(tyk . Based on the output error the ILC algorithm computes a modified input signal 

)(1 tuk+  that will be stored in memory until the next time the system operates, at which 

time this new input signal is applied to the system. A first-order learning algorithm is 

used to update the input profile as shown in Equation 2.1. 

11 −− += kkk euu H                                             (2.1) 

Here, H  is called the diagonal learning gain matrix. With the above form of the 

learning algorithm, ILC design problem is reduced to the design of the learning gain. 

ILC 

Memory 

Plant 
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2.4.2 ILC in Batch Chemical Processing  

Traditionally batch process industries have managed to run quite stably by following a 

recipe leading to consistent and successful products. Usually the recipe is arrived at 

over a long period through a continuous, iterative improvement based on some 

analysis of products. Although such a recipe is usually adjusted based on perception 

and heuristics instead of a rigorous model and optimisation, such a practice can 

indeed be interpreted as feedback control or feedback optimisation. The repetitive 

nature of typical batch operations enables feedback of the results of previous batches 

on the recipe to improve the operation (Lee and Lee, 2003). Nonetheless, whatever 

the control is or however they do this, it sounds more like the basic concept of ILC. 

Now a day batch chemical processing and ILC is closely intertwined to each other. 

The repetitive nature of batch processing undoubtedly demands the application of ILC 

to reduce batch-to-batch variations.  

The dynamic nature of operation of batch processes differs considerably from that of 

continuous processes. In batch processes variables swing over large ranges during 

operation and displays nonlinear behaviour. This makes a linear controller ineffective 

that is used over whole batch duration and demands manual operation over some 

periods. This is one of the reasons the researchers prefer to associate the problem of 

batch process control primarily with that of nonlinear control (Berber, 1996). 

However, due to the time consuming nature and economic constraints nonlinear 

modelling as well as nonlinear control techniques had failed to attract much attention 

from batch process industries (Lee and Lee, 2003) for a long time. Recently this 

scenario is changing; in the world of process control, the new challenge is to 

incorporate ILC and nonlinear control together for the betterment of the industry. 

Table 2.3 summarises the recent trends in ILC for batch process control. 

From the literature study, it is evident that although ILC was introduced and practiced 

in the world of control since early 70’s, this is a new concept in batch chemical 

process industries. However, today ILC applications have increased significantly after 

its introduction in late 90’s. Lee and Lee, (1999) first presented a paper on model 

based ILC framework in AIChE Meeting, Chicago (1996) which was later published 

in Automatica in 1999. Among the researchers who are working in this field two 
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groups have attained significant position for their continual contribution in this sector. 

The first group is led by Lee and Lee whilst the second group is led by Xiong and 

Zhang. The following subsection gives a brief discussion on the methods tabulated in 

Table 2.3.  

Table 2.3: ILC Methodologies for the Control of Batch Chemical Processes 

Method Example Case Studies/ Application Literature Cited 

Q-ILC  Numerical example  Lee et al. (1996, 
2000) 

Batch-MPC (BMPC)  Simulation of an experimental batch 
reactor system involving a highly 
exothermic reaction, Unseeded 
crystallisation of poly (hydroxyl- 
benzophenone) (PHBP) 

Lee et al. (1999) 
Kim et al. (2009) 

QBMPC (Quality Control-
Combined Batch MPC)  

Numerical illustration for control of a 
semi-batch reactor 

Lee and Lee (2003) 

ILC Based on Time-Varying 
Perturbation Models  

Simulated batch reactor, Simulated 
batch polymerisation process, 
Simulated batch crystallisation   
process 

Zhang et al. (2009a) 
Xiong and Zhang 
(2003) 

ILC of Output PDF Shaping 
in Stochastic Systems  

For stochastic systems Wang et al. (2005) 

Combined Batch-to-Batch 
ILC with On-line Shrinking 
Horizon MPC (SHMPC) 

Simulated batch polymerisation 
reactor 

Xiong et al. (2005) 

Recurrent Neural Network 
(RNN) Models 

Simulated batch polymerisation 
reactor 

Xiong and Zhang 
(2005) 

Auto Regressive Moving 
Average Models with 
eXogenous Inputs (ARMAX) 
Model 

Simulation of an industrial pilot  
plant fermentation 
Simulated east fermentation 

Bonne (2005) 

Iterative Learning Reliable 
Control (ILRC)  

Simulation of injection modelling, i.e. 
injection velocity control 

Wang et al. (2006)  

ILC of DPSs based on 
Geometric Analysis 

ILC problem of distributed parameter 
system 

Zheng et al. (2009)  

Neural Network (NN) based 
ILC  

Simulated batch reactor Xiong et al. (2010) 

ILC for Spatio-Temporal 
Dynamics using nD Discrete 
Linear Systems Models 

Systems described by PDEs Cichy et al. (2011) 
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Quadratic Criterion Based ILC (Q-ILC)  

Lee et al. (2000) developed a general and comprehensive framework for Quadratic 

criterion based ILC (Q-ILC) especially for the application in chemical processes 

where excessive input movements are undesirable and many process variables are 

subject to hard constraints. In fact, it was a tailored version of their Q-ILC algorithm 

(Lee et al., 1996) proposed to be implemented as an output feedback algorithm to 

improve robustness. This quadratic performance criteria based algorithms were 

designed to consider the issues relevant to process control, such as disturbances, 

noises, nonlinearities, constraints, and model errors. They evaluated their proposed 

methodology using numerical examples.   

In the algorithm, they first introduced an error transition model that represents the 

transition of tracking error trajectories between two adjacent batches. They also 

discussed the integration of the effects of various types of disturbances into the 

transition model. Based on this model, one-batch-ahead quadratic optimal control 

algorithms were derived for both the unconstrained and constrained cases. In addition, 

they proposed a robust ILC algorithm that minimises the worst-case tracking error for 

the next batch. They also investigated the relevant mathematical properties like 

convergence, robustness, and noise sensitivity for each algorithm. 

Limitations 

A potential problem in implementing the algorithm was that the large dimensionality 

of the system could lead to numerical difficulties in computing the optimal learning 

gain matrix. 

Batch-MPC (BMPC) 

Lee et al. (1999) introduced the concept of Batch-MPC (BMPC). It was based on a 

time-varying MIMO linear model, i.e. representing a nonlinear system along a fixed 

trajectory. The technique was developed by integrating the concept of iterative 

learning into the conventional MPC technique. They evaluated the performance of 

BMPC for tracking a pre-specified reaction temperature trajectory in an experimental 

batch reactor system involving a highly exothermic reaction. The process was 
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identified as a linear time-varying model by combining two linear time-invariant 

models with time-dependent weighting functions. They showed that BMPC is not 

only capable of eliminating persisting errors from previous runs but also removes new 

disturbances as they occur during a run. 

Limitations of the BMPC Technique 

Although more approachable the BMPC technique suffers from the inadequacy of 

fitting into every existing batch process control problem. It is not possible to 

manipulate the time windows within the BMPC formulation so that one can consider 

inputs and outputs that are active for a particular period only. Therefore, the operating 

trajectories cannot be contracted or dilated by reducing or expanding various phases. 

As they used a linearised model the operating trajectories from run-to-run did not 

differ so much. It requires a fundamental model to be available to re-linearise that 

model for updating the dynamic matrix after each batch run.  

In this paper, Lee et al. (1999) evaluated the technique by using a temperature 

tracking problem. However, in a chemical process industry the final product quality is 

affected by many other factors as well the temperature trajectory. It is necessary to 

develop a single control framework to handle the issues of both quality control and 

temperature tracking.  

QBMPC (Quality Control-Combined Batch Model Predictive Control)  

Lee and Lee (2003) developed QBMPC (Quality Control-Combined Batch Model 

Predictive Control) as a batch process control technique based on a series of previous 

research works. As discussed earlier the first contribution of this group was Q-ILC 

(Lee et al., 1996) and batch MPC technique (BMPC) (Lee et al., 1999; Kim et al., 

2009). QBMPC is a subsequent extension of BMPC with the added capability to 

perform inferential control of end-product variables. It was a fusion of Q-ILC, real-

time feedback MPC, and end-product regression model to build an integrated end-

product and transient profile control technique for industrial chemical batch 

processes.  
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Limitations 

This ILC type approach may not be straight forwardly applied to product quality 

control in all batch processes. 

ILC Based on Time Varying Perturbation Models  

While most of the earlier works on optimal batch process control generally utilise 

nonlinear models such as mechanistic models, neural network models, and hybrid 

models (Wang et al., 2010; Shang et al., 2004; Seborg, 1999); Xiong and Zhang 

(2003) proposed a novel ILC strategy for tracking control of product quality in batch 

processes. They developed an operating data based least-squares regression method 

for estimating the parameters of a perturbation model linearised around the nominal 

trajectories. Their work was novel in the sense that they combined an updated model 

with modified predictions to batch-to-batch ILC by adding the model prediction errors 

of the previous batch run to the model predictions for the current batch run. Another 

perspective of this updating strategy was to handle the negative effects of unmeasured 

disturbances and process variations. For ensuring more weight to the recent batch runs 

than the previous ones, they introduced a forgetting factor. Further details of this 

method are discussed in Chapter 3. The convergence of tracking error under ILC was 

analysed. The proposed technique was successfully demonstrated on a simulated 

batch reactor and a simulated batch polymerisation process. 

Limitations  

The perturbation model proposed by Xiong and Zhang (2003), which is a linearised 

representation of typical nonlinear batch processes, causes offsets to occur as a result 

of modelling errors and unmeasured disturbances. The tracking performance is much 

dependent on the precision of the model. The tracking error can be decreased to a 

smaller value but it never becomes zero.  

ILC of Output PDF Shaping in Stochastic Systems 

Wang et al. (2005) developed an ILC strategy for shaping the output population 

density function (PDF) of stochastic systems by using a set of fixed basis functions 



Chapter 2: Literature Review                                                                                                                               

 

Iterative Learning Control of Crystallisation Systems                                                                      2013 

28 

(Bemporad and Morari, 1999) in the B-spline approximation to the output PDFs. This 

concept transfers the shape control of the output PDFs into the control of the weights 

in the B-spline approximation. They used the traditional concept of using the tracking 

errors of the output PDFs with respect to the desired PDF in a batch for the iterative 

learning of the B-spline basis functions and the model parameters. The updated basis 

functions were used to design controller for the next batch. The convergence 

condition of the learning rate was identified. Figure 2.5 shows the basic concept of the 

proposed ILC law. 

                              

 

                                         Control                                        Output 
                                          Input                                           PDF 
 

 

 

                                                                                              Desired PDF 

        

  

 

 

 

Figure 2.5: Basic structure of ILC for output PDF shaping (Wang et al., 2005). 

Limitations 

The proposed ILC scheme is based on complicated algorithm. The authors did not 

provide any rigorous proof of the convergence of the proposed ILC law. The 

necessary and sufficient conditions of the ILC convergence is still an open window 

for future research. In addition, the authors used only a simple second order tuning 

law of the B-spline basis functions, which is P-type learning in the ILC context. 
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Development of iterative tuning laws improved by using other shapes of the basis 

functions is still an open question.  

Combined Batch-to-Batch ILC with On-line Shrinking Horizon MPC (SHMPC) 

As a consequence of their endless effort to design ILC algorithms Xiong et al. (2005) 

proposed a combined batch-to-batch ILC and on-line shrinking horizon MPC 

(SHMPC) strategy for controlling product quality tracking in batch processes. They 

argued that though the performance of future batch runs can be improved under the 

conventional batch-to-batch ILC, there is no control on current batch run to improve 

its performance. Alternatively, on-line SHMPC within a batch, that is based on 

current output values and remaining input moves can reduce the effects of 

disturbances and improve the performance of the current batch run. However, model 

prediction is also modified by adding the estimated error calculated from the batch-to-

batch controller. They evaluated the proposed strategy on a simulated batch 

polymerisation process.  

In SHMPC, the optimisation problem is constantly changing during the batch because 

of the arrival of additional measurements and because of the decreasing length of the 

control vector. It means that as time progresses fewer control moves can be changed 

to affect the quality outcome of the batch, and prediction horizon also shrinks with 

time as the batch progresses (Ahn et al., 2007). Thus, the model prediction horizon p 

is equal to the control horizon m and they both decline as time t passes within the 

current batch (i.e. m = p = n – t). Although all of the remaining input moves are 

calculated at each time, only the first of these inputs is implemented, and the rest are 

recalculated at the next time. 

Limitations 

Due to the immediate response of on-line SHMPC to disturbances and correcting 

action of batch-to-batch ILC to correct any residual error, it is tempting to integrate 

both methods. However, a naive combination of the two strategies will not work 

rather SHMPC will ‘undo’ the ILC corrections due to conflicting predictions between 

the two. The idea of ILC needs to be integrated into SHMPC at the level of model 
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preparation. The ILC method is implemented using the batch-wise LTV perturbation 

model (Xiong and Zhang, 2003), for tracking trajectories, however in order to apply 

SHMPC on-line, a more precise model has to be developed based on the current 

output values and remaining control moves.  

However, first principle models are usually very complicated and difficult to obtain 

and implement for on-line control (Xiong et al., 2010). In addition, due to the limited 

availability of robust on-line sensors in the industrial practice of batch process 

operations, typically only off-line quality measurements are available.  

Recurrent Neural Network (RNN) Models 

As a non-linear regression tool, properly trained and validated neural networks are 

increasingly used in modelling and control of chemical processes, especially for 

complex non-linear processes where process understanding is limited (Shang et al., 

2005; Orukpe, 2005). In their paper Xiong and Zhang (2005) used Recurrent Neural 

Networks (RNN) to develop empirical models for providing improved long range 

predictions from batch process operational data. 

The existence of model-plant mismatches and/or unknown disturbances is represented 

by the NN model prediction errors. They used the errors of the previous RNN model 

iteratively to modify the model predictions. Updated control policy was then 

calculated for each batch using the modified model predictions. As a result, modified 

prediction based model errors were gradually reduced as the number of batches 

increases. In this way, the idea of ILC was adopted in RNN scheme for improving 

product quality from batch-to-batch. The method is discussed below in brief. If the 

input and product quality sequences are defined as in Equation 2.2, 

,)]1-(,),1(),0([ TNxxx kkkk …=X   and               

T)](,),2(),1([ Nyyy kkkk …=Y                            (2.2) 

where, k  is the batch index, nRy∈  are product quality variables of batch processes, 
mRx∈  is the input (manipulated) variable for the product qualities, and the initial 
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conditions ),( 00 yx  are given. The measured prediction error of the RNN model for the 

thk  batch is, )(-)(=)( tytyte kkk
�� . Using the averaged model prediction error to 

correct model predictions can reduce the effect of measurement noise and the effect of 

disturbances that only exist in one batch. The average model error )(tek
� , of all 

previous runs is calculated as in Equation 2.3. 
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���                                                                        (2.3) 

By adding this average model error, the modified prediction )(~
1 tyk+  of RNN models 

is defined in Equation 2.3, 

kk+k etyty �� α+)(=)(~
11+                                                                                                (2.3) 

Where, α  is called the bias correction parameter with the range 0 <α  ≤ 1. 

Xiong et al. (2005) successfully illustrated the RNN algorithms on a simulated MMA 

polymerisation reactor.  

Limitations 

In this algorithm the value of α  cannot be set to 0. If 0=α , the model prediction is 

not modified further and the same control policy is repeated in the subsequent batch 

run by solving the same optimisation problem. On the other hand, a larger value of α  

which increases the modified RNN model prediction accuracy, also causes significant 

changes of modified prediction in presence of considerable disturbances and/or 

uncertainties in the earlier batch run and the convergence of iterative optimisation is 

affected. Therefore, it is necessary to consider the trade-off between the convergence 

rate and the accuracy of the modified RNN model prediction. 

The proposed algorithm considered only linear inequality constraints of the inputs and 

final product qualities. Although these constraints are helpful for defining the feasible 

region of the optimisation problem during solving it by Sequential Quadratic 

Programming (SQP), the lower and upper bound on the temperature may become 
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active and prevent the tracking error to converge to zero. Moreover, use of the SQP 

approach for solving the optimisation problem increase the computation cost 

significantly. 

Auto Regressive Moving Average Models with eXogenous Inputs (ARMAX) Model 

In his PhD thesis Dennis Bonne (Bonne, 2005) proposed a data driven methodology 

as a cost and time effective alternative to develop models. According to this method, 

models are developed with relatively large sets of interdependent local Auto 

Regressive Moving Average Models with Exogenous inputs (ARMAX). This new 

concept of introducing interdependency among the local ARMAX models notably 

decreases the sensitivity to measurement noise. 

He also developed an algorithm for model quality optimisation, which includes model 

structure identification. For successful reduction of batch-to-batch variations and the 

achievement of optimal operation, he combined the concept of ILC with MPC. 

Initially, the proposed control methodology defines an optimal model as the solution 

to a Linear Program (LP) and furthermore proposes a procedure in which the learning 

MPC algorithm is used to iteratively bring the operation of a batch process closer to 

its optimal batch operational model. 

The combined methodology for optimal and reproducible operation of batch chemical 

process proposed has been tested on several case studies including simulation of an 

industrial pilot plant fermentation and simulated east fermentation. Based on the 

results and the theory presented they claimed that the proposed methodology has 

demonstrated sufficient potential.   

Limitations 

The state of the art reproducibility proofs for ILC and Learning MPC algorithm only 

apply to implementations on known deterministic batch systems with perfect 

observations. However, as the optimisation procedure is based on local linear models 

it cannot be proven to achieve the optimal batch operation model.  
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Iterative Learning Reliable Control (ILRC)  

In their paper, Wang et al. (2006) developed an iterative learning reliable control 

(ILRC) by combining ILC and reliable control method for batch processes with 

unknown disturbances and actuator faults. They transformed the batch process to a 

two-dimensional Fornasini-Marchsini (2D-FM) model and also introduced the 

relevant concepts of fault-tolerance along two-dimensional (2D) axes. Linear Matrix 

Inequalities (LMIs) were used to express the sufficient conditions for the proposed 

fault tolerance. They claimed that the closed-loop convergence is guaranteed along 

both time and cycle directions even in presence of unknown disturbances and actuator 

faults as compared to the traditional reliable control. 

The proposed closed-loop system has good robust performances to unknown 

disturbances. They demonstrated the feasibility and effectiveness of the proposed 

method with the help of a simulated injection velocity control problem. To evaluate 

the tracking performance, they introduced the following performance index, 

∑
200

1=

2 ),(ˆ)(
t

ktekDT =                                                                                                (2.4) 

The smaller the value of )(kDT  the better is the tracking performance in the kth cycle. 

Limitations 

A linear state space model of a batch process was used to evaluate the proposed 

methodology. However, batch processes are nonlinear in many cases. However, they 

argued that the proposed method could also be used for nonlinear batch processes. 

Developing an iterative learning fault-tolerant control scheme for batch processes that 

is based on a nonlinear model is still an open problem 

ILC of Distributed Parameter Systems based on Geometric Analysis 

Zheng et al. (2009) proposed a new nonlinear ILC problem for DPSs based on 

geometric analysis. They included a complete convergence analysis of the algorithm 

using special norm. This algorithm could be a corner stone as the common practice of 
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employing ILC to DPSs are not yet so fruitful and the trend is to use linear ILC 

algorithms for both linear and nonlinear systems (Xie and Liu, 1998; Xie et al., 1999). 

Based on geometric analysis method discussed in (Xie et al., 2004; Tian et al., 2004), 

this group studied the ILC problem of an uncertain linear DPS and proposed a 

nonlinear ILC algorithm with adaptive factor. They proved the convergence of this 

new algorithm following the norm defined in Xie et al. (2005). The basic P-type ILC 

method for obtaining the control sequence ),(1 tzxk+  is, 

),()(),(),(1 tzettzxtzx kkk Γ+=+                                                                               (2.5) 

where, ),(),(),( tzytzytze kdk −= . The basic idea behind this method is to eventually 

make the norm of the vector, i.e. ),()(Γ tzet k , corresponding to the sequence 

),(1 tzxk+  smaller, tending to zero. Considering every term in Equation 2.5 as a vector, 

the following vector chart can be drawn as shown in Figure 2.6. 

Limitations 

Although they proposed a nonlinear ILC algorithm, they implemented it using a linear 

DPS example. However, most of the DPS in batch chemical processing are nonlinear 

in nature. Therefore, there is still a gap of employing it to a real nonlinear system. In 

addition, they assumed that all the states of system start with the same initial value, 

which is also not always realistic. 

                                                                                    b 

 

                                     kx                   keΓ  

                                                                     

                            

                                     a                 1+kx             c 

                                                         
Figure 2.6: Concept of geometric analysis (Zheng et al., 2009). 
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Neural Network (NN) based ILC 

Xiong et al. (2010) proposed a neural network based iterative learning control (NN-

ILC) strategy to improve the product qualities in batch processes from batch to batch. 

Instead of building a model for the system dynamics, they used a single hidden-layer 

feed-forward neural network (FNN) as nonlinear learning gains in the ILC. As usual, 

tracking error profile of the previous batch is the input to the network, while the 

output of the network is the control change profile for the next batch. They proved 

that a properly trained network could make the tracking error to converge to zero with 

increasing batch number. Moreover, for handling model uncertainties, the neural 

network can be retrained during the ILC to renew the learning gain. A batch process 

can usually be described in the following form, 

,xzf=z kkk ),( 0)0( kk z=z , 

),(= kkk xzgy                                                                           (2.6) 

In Equation 2.6, z , x , y  and subscript k are the same as discussed in the earlier 

methods, )(.f  and (.)g  are two nonlinear functions. It is assumed here that the 

duration of batch run consists of N sampling intervals (i.e. N= Tf /h). A discrete-time 

form of Equation 2.6 using only input and output is shown in a matrix form in 

Equation 2.7. 

)( kk XFY =                    (2.7) 

here, (.)F  is a nonlinear function in a matrix form. For the nonlinear system in 

Equation 2.7 the Taylor series expansion around control trajectory and output 

trajectory in the kth batch run is obtained as, 
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∂

)(∂•
2
1+)-(

∂
)(∂+)(=)(= 2

1+2
1+

2

1+
1k+

1+1+ kk
k

k
kk

k
kkk XX

X
XFXX

X
XFXFXFY  
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where,  (.)1+kF is a nonlinear function of )-( 1+ kk XX . In this method, they used a 

nonlinear learning gain rather than using a proportional-type learning gain. Equation 

2.8 is rewritten as, 

)(=1+ kkk eLXX +                   (2.9) 

In Equation 2.9, kdk YYe −=  is the tracking error and )( keL  denotes a nonlinear 

function. The nonlinear learning gains can be determined by neural networks (Ahn et 

al., 2007). The control policy of the thk )1( +  batch run can be generated by the 

following NN-ILC law of Equation 2.10, 

)()-(=1+ kkkdkk eNNXYYNNXX +=+              (2.10) 

Based on the above NN-ILC law in Equation 2.9, the control profile 1+kU  for the next 

batch is modified from the control profile of the previous batch kU . Xiong et al. 

(2010) evaluated the proposed method successfully using a simulated batch reactor. 

Limitations 

Usually, abundant historical data are required to train a neural network with sufficient 

representation capability. However, it is not always realistic to collect a lot of process 

operation data for agile batch manufacturing processes as the product type changes 

frequently according to the changes in consumer demands. For that reason, it is highly 

desirable to develop neural network based methodologies that can be trained with 

fewer batch runs.  

ILC for Spatio-Temporal Dynamics using nD Discrete Linear Systems Models 

Cichy et al. (2011) developed an ILC scheme for the spatio-temporal systems 

described by a linear PDE. They used explicit discretisation approach to approximate 

the system dynamics resulting in a multidimensional, or nD, discrete linear system 

based on which the control law was designed. Here, n, the number of directions of 

information propagation is equal to the total number of indeterminates in the PDE. 

The resultant control laws were computed using Linear Matrix Inequalities (LMIs). 



Chapter 2: Literature Review                                                                                                                               

 

Iterative Learning Control of Crystallisation Systems                                                                      2013 

37 

This work is an improvement over the work of Rogers et al. (2007), who applied this 

method to discrete linear repetitive processes.   

Let us consider the following process model over the fixed time domain 

}1-,,1,0;,,1,0:),{( α…… === pNkpkR  to achieve the pre-specified output )(* pyk , 

),()(∑ )1()(1 pxp+izi+γpz l
k

l
k

γ

i=-γ

l
k ΒΑ ++=+                                                                      

)()( pzpy l
k

l
k C=                                                                 (2.11) 

In Equation 2.11, z  is state vector, x  is the vector of control inputs, y  is the pass 

profile vector and subscript k  denotes pass itself and α  denotes pass length, the 

superscript l  is used to denote the trials and Α , Β , C  are the coefficient matrices. 

The tracking error )( pel
k  over R is )(-)()( pypype l

k
*
k

l
k =�  and it is easy to see that, 

))()(()()( 1
1
11

1
1 p-ypy-pepe l

k+
l+
k

l
k

l
k ++
+
+ =                            (2.12) 

The updating in p  can be written as, 

)()()1()( 111
1 pxBipiAp l

k
l
k

i

l
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++
γ

γ−=

+
+ Δ++η∑ +γ+=η             (2.13) 

Consider now the control law, 

)()()1()( 1)22(
-
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l
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l
k ++

=

++ ++++=Δ                                               (2.14) 

applying Equation 2.14 to Equation 2.12 and 2.13 the following model is obtained for 

the controlled dynamics, 
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where, 

)22(2)22(1 -1, +γ+γ == CBKBK ΓΓ ,                         

)1()1()1()1()1( -    , ++++++++++ =+= γγγγγ iiiii CBKA ΦΥΦ                         (2.16)  

for all γγ …… ,0,,−=i . Equation 2.15 represents the dynamics of a discrete 3D linear 

repetitive system with two non-temporal directions of information propagation p  and 

l  (space and the number of trials respectively), and one temporal )(k . The subsequent 

ILC design algorithms can be computed using LMIs. Moreover, the resulting control 

law has a well defined structure which has attractions in terms of implementation 

architectures. They successfully evaluated their proposed mechanism using a 

numerical system defined by parabolic PDE. 

Limitations 

Obviously more research needs to be done on this method to efficiently produce a 

more satisfactory discrete model for design and to verify its numerical stability. They 

have used a numerical example to illustrate the design algorithms instead of an actual 

solution to a given problem. Other discretisation techniques should also be considered 

simultaneously with algorithms for pre-specified actuator/sensor configurations such 

as boundary control. In addition, it is also necessary to develop a robust control theory 

and supporting design algorithms for nonlinear repetitive processes.  

2.5 Polynomial Chaos Expansion (PCE) Based Control 

The concept of polynomial chaos was first introduced by Norbert Wiener in 1938 for 

turbulence modeling (please see Wiener, 1938) and later justified by Cameron and 

Martin (1947). Polynomial chaos expansion (PCE) can be considered as an addition to 

Volterra’s theory of nonlinear functionals for stochastic systems (Lin et al., 2012). 

However, after the introduction of PCE in late thirties only relatively recently it is 

being widely used in different disciplines (Nagy and Braatz, 2010). 
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PCE have been used as a useful tool that reduced the computational effort required to 

simulate a stochastic system significantly (Fagiano and Khammash, 2012). Many 

researchers have applied PCE into various engineering applications subject to 

stochastic uncertainties, e.g. mechanics, heat convection, fluid dynamics or 

automatics (modeling and control) problems (Fisher and Bhattacharya, 2009; Thomas 

and C´edric, 2011). In recent years, the PCE technique has been extended to the 

generalised polynomial chaos (gPC) framework (Xiu and Karniadakis, 2002; Xiu 

2010; Lin and Tartakovsky, 2009; Sepahvand et al., 2010). In fact gPC is the 

extension of PCE towards a finite number of parametric statistical distributions (e.g. 

Gamma, Beta, and Uniform).  

Other adaptive forms of the PCE includes a multi-element generalised polynomial 

chaos (ME-gPC) method (Wan and Karniadakis, 2006; Prempraneerach at el., 2010) 

and a data-driven arbitrary polynomial chaos expansion (aPC) (Oladyshkin and 

Nowak, 2012). In the ME-gPC method the random space is decomposed into local 

elements which subsequently implements gPC locally within the individual elements. 

The proposed aPC offers a constructive and relatively simple tool for uncertainty 

quantification, global sensitivity analysis, and robust design (Oladyshkin and Nowak, 

2012). In their paper Oladyshkin et al. (2011) explained how to apply PCE for robust 

design in presence of uncertainty with controlled failure probability. Recently, PCE 

decomposition based sensitivity analysis (Buzzard, 2011; Sandoval et al., 2012) has 

created much interest among the researchers. Sudret (2008) and Oladyshkin et al. 

(2012) demonstrated respectively how classical PCE and its aPC version can 

distribute the information essential for global sensitivity analysis at a lower 

computational costs. 

With the increase of the polynomial’s order and the number of parameters, the 

number of coefficients increases extensively. This makes the computation of the 

expansion’s coefficients a crucial task. Researchers have proposed different 

approaches to compute coefficients. One of the methods (Xiu and Karniadakis, 2002) 

utilises Galerkin projection to obtain an augmented set of deterministic differential 

equations, which are then solved for computing the PCE coefficients. This method 

was originated from structural mechanics (Ghanem and Spanos, 1991) and studied for 
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modelling uncertainties in flow problems (Ghanem and Spanos, 1993; Matthies and 

Keese, 2005). This approach is affected by the limitation of being difficult and time-

consuming because it requires deriving the augmented set of differential equations for 

complex nonlinear models. Moreover the large number of differential equations may 

be unfeasible to use with standard ODE solvers to produce efficient numerical 

solution. 

For computing the coefficients of the PCE, some researchers have proposed methods 

that use the principle of collocation, e.g.  the probabilistic collocation method (PCM) 

(Xiu and Hesthaven, 2005; Nagy and Braatz, 2010; 2007; Li and Zhang, 2009) and 

the regression method with improved sampling (RMIS) (Isukapalli et al., 1998). The 

basic concept is estimating the coefficients from a finite number of data, i.e. 

collocation points and these weighted-residual schemes differ only in the way the 

sampling points are chosen. These approaches can be more viable for the analysis of 

large-scale, complex stochastic dynamical systems. Probabilistic collocation requires 

a series of preliminary simulations to collect the data to be used in the coefficients’ 

computation. However, sometimes for problems with relatively high stochastic 

dimensions and strong nonlinearities the number of collocation points can be very 

high and makes the coefficient calculations a complicated process (Fagiano and 

Khammash, 2012). Other proposed methods include non-intrusive sparse quadrature 

approach proposed by (Keese and Matthies, 2003). Fagiano and Khammash (2012) 

also proposed a computationally tractable technique that exploits a regularisation 

technique with a particular choice of weighting matrices and based on convex 

optimisation. 

From the above survey it is clear, PCE is mostly applied for uncertainty analysis in 

chemical processes (Nagy and Braatz, 2007; Lin et al., 2012). In order to create a 

model response surface in presents of uncertain model parameters, PCE can be a good 

choice to represent the system in the form of a high-dimensional polynomial 

(Oladyshkin and Nowak, 2012). It also enables the inclusion of nonlinear effects in 

stochastic analysis. The chances and limitations associated with existing PCE 

techniques were discussed in Augustin et al. (2008). A recent wide survey of the 
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theoretical background including some practical results of PCE is also available in 

Templeton (2009).  

However, in the research community it is still a new concept and not many works 

have been done yet. In this research work, a computationally efficient operating data 

based approach to identify the states and outputs of finite-time control trajectories for 

nonlinear systems, based on the approximate representation of the full process model 

via PCE was developed (please see Chapter 7 for details).  

2.6 Theory and Practices in Crystallisation Process  

Crystallisation is important in the pharmaceutical industry as a separation process for 

the intermediates and often serves as the final step in the manufacture of active 

pharmaceutical ingredients (APIs) (Chen et al., 2011). It is responsible for 70% of all 

solid materials produced by the chemical industry (Giulietti et al., 2001), more than 

80% of pharmaceutical products involve at least one crystallisation step in their 

manufacturing process (Reutzel-Edens, 2006) whilst 90% of the Active 

Pharmaceutical Ingredients (API’s) are found in crystalline form (Choong and Smith, 

2004). The control objectives of batch crystallisation processes are defined in terms of 

product purity, crystal habit or morphology, average particle size, crystal size 

distribution (CSD), bulk density, product filterability, and dry solids flow properties 

(Worlitschek and Mazzotti, 2004). CSD is important for efficient downstream 

operations (i.e. filtration, drying, and formulation) and better product performance 

(i.e. dissolution rates, bioavailability, and shelf life).  

This section describes the fundamentals of pharmaceutical crystallisation processes 

that include solubility, crystallisation mechanisms, and crystal properties. The existing 

techniques for characterising crystal properties are briefly reviewed. The conventional 

approaches for crystallisation operation and control are described. Brief reviews on 

process analytical technology (PAT), its tools and their application in pharmaceutical 

crystallisation are also included in this chapter. 

 

 



Chapter 2: Literature Review                                                                                                                               

 

Iterative Learning Control of Crystallisation Systems                                                                      2013 

42 

2.6.1 Fundamentals and Mechanisms of Crystallisation Processes 

Crystallisation is the formation of solid particles by a phase change operation like 

formation of solid particles from a vapour, solidification of a liquid melt, or the 

formation of dispersed solids from a solution. Among these, the most common 

approach is the production of crystals from a solution. This approach involves at least 

a two component system, a solute and a solvent. Hence, the concepts of solubility, 

supersaturation and metastable zone width (MSZW) are crucial in developing and 

characterising the behaviour of crystallisation system.  

• Solubility 

Solubility is the amount of a substance (solute) that can be dissolved in a given 

amount of solvent at a given temperature and pressure. A saturated solution is defined 

as the solution that is in equilibrium with excess of the solute present in the solution. 

Under certain circumstances, a solution can dissolve more solute than defined by the 

condition of saturation at a particular temperature which is referred to as a 

supersaturated solution.  

Crystalline product properties like polymorphic form, shape and yield are dependent 

on solubility and supersaturation (Modarresi et al., 2008). Basically the selection of 

the type of crystallisation process, e.g. cooling or anti-solvent crystallisation is guided 

by the solubility of the component in selected solvents. The phase relationship 

between solute and solution helps to understand the mechanisms of solute 

crystallisation from a solution. A typical phase diagram for a crystallisation process is 

shown in Figure 2.7.   

In Figure 2.7, AB represents the solubility curve that is determined by 

thermodynamics and is a function of temperature, solvent and impurities present in 

the system. A solution with composition laying on the equilibrium curve is called 

saturated; on the other hand, solutions with composition laying below and above the 

curve are termed as undersaturated and supersaturated respectively. Being in non-

equilibrium system, the supersaturated solution tends to reach equilibrium and thereby 

it removes the solids in the form of nuclei, which then grow into crystals. The 



Chapter 2: Literature Review                                                                                                                               

 

Iterative Learning Control of Crystallisation Systems                                                                      2013 

43 

generation of supersaturation is therefore regarded as the first step in the 

crystallisation process. 

                       

Figure 2.7: Supersaturation in crystallisation processes. 

• Supersaturation 

As mentioned earlier, supersaturation is the driving force for the crystallisation 

process (Mullin, 2001). It is defined as the difference between the concentration of the 

solute (C ) and the saturation concentration at a particular temperature ( satC ) as given 

by Equation 2.17, 

satCCCS −=Δ=                  (2.17)   

with units consistent with the units of the concentrations (e.g. kg solute/kg solvent or 

kg solute/kg solution). It is essential to control the extent of the supersaturation during 

crystallisation process since the size, shape, and solid-state properties of the product 

crystals are decided by the supersaturation profile achieved during the crystallisation 

process. 

• Nucleation 

When the supersaturation moves far enough from the solubility, eventually a point is 

reached where the formation of nuclei occurs spontaneously. The nucleation curve is 
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designated as the line CD in phase diagram in Figure 2.7. The formation of nuclei is 

an attempt of the system to reach equilibrium. The process of forming nuclei is called 

nucleation that can be termed as the first step towards the formation of a solid phase 

(Jones, 2002). The region above the solubility curve where the nucleation starts to 

occur is called the metastable zone. The width of this metastable zone depends on 

kinetic variables, such as the rate at which supersaturation was created, the agitator 

speed, and the presence of impurities (Tititz-Sargut and Ulrich, 2002). Knowledge of 

the metastable zone width (MSZW) is important in crystallisation because it provides 

information on nucleation kinetics, so that the nucleation behaviour of a system can 

be understood (Myerson, 2002).  

Nucleation is commonly classified into two types, e.g. primary nucleation and 

secondary nucleation. However, it can be further divided as shown in Figure 2.8. 

Primary nucleation is the formation of a solid phase from a clear liquid and it is more 

prevalent in unseeded crystallisation (Hardenberg et al., 2004). Primary nucleation is 

further classified as homogeneous and heterogeneous nucleation. Nucleation that 

occurs spontaneously from a clear pure solution is called homogeneous nucleation, 

whereas one stimulated by foreign particles or surfaces is called a heterogeneous 

nucleation (Rawlings et al., 1993).  

 

 

 

 

 

 
 
             

Figure 2.8: Types of nucleation. 

Secondary nucleation takes place when a supersaturated solution is in contact with 
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chance present in the system. These seed crystals catalyse the nucleation process and 

as a result, nucleation takes place at a relatively lower supersaturation than that for the 

primary nucleation. As a result, the secondary nucleation can be controlled more 

easily (Rawlings et al., 1993). 

Crystal growth 

After formation, nuclei grow with time by addition of solute molecules from a 

supersaturated solution to the crystal surface (Rodriguez-Hornedo and Murphy, 

1999). Crystal growth is generally a two-step process. In the first stage, mass transfer 

involves the diffusion of solute molecules from the bulk liquid through the solution 

boundary layer adjacent to the crystal surface. In the next stage, the adsorbed solute 

molecules at the crystal surface are then integrated into the crystal lattice by surface 

reaction. However, several researchers have added heat transfer as the third step that 

occurs in parallel with the other two steps (Hixson and Knox, 1951).  

Aggregation 

The next significant phenomenon in the crystallisation process is aggregation. It is the 

particle size enlargement process by which fines are joined together in an assembly. 

Therefore, the particle characteristics obtained in the product depend on the 

mechanism of aggregation as well. Researchers and scientists have extensively 

studied and modelled the aggregation processes (Yu et al., 2005). 

Dissolution 

Crystal dissolution cannot be defined exactly as the reverse process of the crystal 

growth because dissolution does not require the surface integration step; rather it is 

completely controlled by the solute diffusion. Crystal dissolution rate is of first order 

with respect to supersaturation and the dissolution occurs at all levels of 

undersaturation (Mullin and Gaska, 1969). The coefficient for the dissolution rate is a 

function of the diffusion coefficient, crystal size, and local hydrodynamics.  
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Breakage and Attrition 

Particle breakage initiates the formation of new smaller particles of varying sizes.  

The breakage occurs due to different types of collisions like particle-particle 

collisions, collisions of particles with the walls of the container, inserted probes, and 

impeller. When a crystal is fractured into two or more pieces it is called breakage, 

whereas attrition is the fracture of a crystal into many small fragments. Therefore, 

these phenomena can impose a strong impact on the CSD and the median crystal size 

(Qu, 2007). Breakage processes have also got significant attention by the researchers 

and gone through intense analysis by (Soos et al., 2006). 

2.6.2 Measurement Techniques for State Variables 

Generally, three types of measurement techniques are required for batch chemical 

processes these are, 

1. On-line measurements to provide information during the course of the batch. 

2. In situ measurements to get measurements made directly in the process      

                                                medium. 

3. Off-line measurements to characterise the properties based on the after batch                 

                                          analysis of samples taken from the process. 

The common practice is to gather enough data during the experiments to provide 

sufficient information about the system under investigation. As crystallisation 

involves both solid and solution phases, information about both phases are crucial. 

The information about the solution phase is provided by solution temperature, 

concentration and supersaturation, while crystal size distribution provides information 

about the dispersed solid phase.  

A wide variety of experimental techniques are devised for the parameter estimation of 

crystallisation processes. However, in most of the practical circumstances, not all 

variables can be reliably measured. The conventional approach is to estimate those 

unmeasured variables in terms of other available measurements and the model, using 

state estimators or observers (Motz and Gilles, 2008). The following subsection 

discusses in brief the different techniques for measuring the state variables. 
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Temperature measurement 

Thermocouples are most commonly used to measure temperature. Factors that affect 

the selection of thermocouple are; temperature range, medium, required response 

time, and accuracy. Generally, the temperatures of the slurry, inlet and outlet jacket 

temperatures are measured using PT-100 thermocouples. These thermocouples have 

quick response time with accuracy within ± 0.15 °C. 

Concentration/supersaturation measurement 

During supersaturation control (SSC), in order to maintain the supersaturation 

setpoint ( spS ) curve in the phase diagram the controller needs to measure the 

concentration of the system. Some common conventional ways to measure the 

concentration of the solute in the continuous phase are briefly described next.  

 Conductivity 

For conducting solutions, such as salts, the solute concentration can be measured 

using conductivity probes. The technique has been demonstrated in the case of 

crystallisation of inorganic salts by Nyvlt et al. (1994). 

 Refractive index 

Since refractive index is well correlated to the concentration of many solutions (Zhou 

et al., 2006), this is sometimes used to measure solution concentration. However, the 

technique can work if there is a significant change in refractive index with change in 

concentration. 

 Spectroscopy 

Modern equipments like Attenuated Total Reflectance (ATR), Fourier Transform 

Infrared (FTIR), and ultra-violet–visible (UV-Vis) spectrometers can be used to track 

the changes in the concentration with time (Fujiwara et al., 2002) (see section 2.5.4 

for details). In recent years, the applications of spectroscopic techniques have 
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increased (Liotta and Sabesan, 2004; Yu et al., 2006) especially to measure the 

concentration of multiple dissolved species.  

 Density 

Another way to measure the change in concentration is to measure the change in 

density. The technique has also been used on-line for potassium nitrate-water system 

(Miller and Rawlings, 1994).  

Crystal size distribution (CSD) measurement 

CSD provides information about the solid phase. CSD can be measured by a series of 

methods described as follows. 

 Sieve analysis 

Sieve analysis offers an inexpensive, simple and portable approach that is the most 

commonly used method for measuring particle size in the range of 10 μm to 5500 μm. 

However, sieving is time consuming and should be applied offline (Adi et al., 2007). 

 Laser diffraction 

The particles passing through a laser beam scatter light at an angle that is directly 

related to their size. As a result, large particles scatter light at narrow angles with high 

intensity; on the other hand, small particles scatter at wider angles with low intensity. 

Equipments, such as the Malvern Mastersizer and Malvern Insitic are based on this 

principle of laser diffraction. Malvern Mastersizer can be used both on-line and 

offline to measure a size range of 0.01μm to 1000 μm.  

 Laser backscattering 

Laser backscattering involves an alternative light scattering approach that is used to 

focus a laser beam forward through a window in a probe tip, and collect the laser light 

scattered back to the probe. It facilitates on-line measurement of the particle size 

distribution (PSD). The Lasentec Focused Beam Reflectance Measurement (FBRM) 
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instrument works on the laser backscattering method. The equipment is able to 

measure size in the range of approximately 0.5 μm to 1000 μm. 

 Image analysis 

Image analysis is the simplest direct technique to monitor the crystal size and shape in 

crystallisation processes that does not require any assumptions for the size or shape of 

the crystals. Two dimensional information are obtained in situ from the Lasentec 

Particle Vision Measurement (PVM) system that provides pictures of the crystals in 

the solution using a probe inserted directly into the dense crystal slurry (Barrett and 

Glennon, 2002). This video microscope can take 10-30 pictures per second and 

capable to measure crystals as small as 1-15 μm. PVM is more suitable for using in 

industrial crystallisers (Braatz, 2002);  

Details of the modern tools and technologies that are used for operation, control, and 

measurement of crystallisation system have been discussed in subsection 2.6.4.  

2.6.3 Crystallisation Operation and Control 

Crystallisation can either be operated in a batch, semi-batch or continuous mode. 

However, batch operation is more frequently used for pharmaceutical crystallisation 

since their production rates are generally small and loss of the expensive materials 

should be kept at minimum (Myerson, 2002). In addition, the operation offers the 

flexibility of execution with changing recipes (Costa and Filho, 2005). Batch or semi-

batch crystallisers are used to form pharmaceutical crystals by reducing the solubility 

of the solute in the solution and creating sufficient supersaturation. The solubility is 

usually reduced by different techniques depending on the properties of the material. 

The common methods are cooling the solution, removing the solvent (evaporation), 

addition of an anti-solvent (drowning out), reactive crystallisation (precipitation), and 

adjusting the solution pH (isoelectric precipitation). However, freeze crystallisation is 

also sometimes useful for those APIs that exhibit poor stability in solution (Connolly 

et al., 1996). The type of crystallisation operation that will be studied in this research 

work is cooling crystallisation. 
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Cooling crystallisation 

The most economical means of crystallisation is cooling crystallisation, which can be 

applied if the temperature sensitivity of the solute is large enough (Rohani, 2010). 

There are several cooling policies, e.g. natural cooling, linear cooling, and controlled 

cooling. In natural cooling constant temperature coolant is used to cool the crystalliser 

contents resulting in a rapid temperature drop in the beginning of the batch run. 

Despite being simple, this uncontrolled cooling cannot provide good final product 

quality because in the early stage the supersaturation profile passes through a high 

peak (Tavare, 1995). In linear cooling, temperature decreases at a constant rate. The 

supersaturation profile shows a maximum relatively early in the batch run and hence 

results in copious nucleation (Jagadesh et al., 1996). This can lead to a poor quality 

product, with a small mean size and a wide CSD (Yang, 2005).  

 
Time 

Figure 2.9: Typical profiles of natural, linear, and programmed cooling operations. 

In controlled cooling, depending on the availability of accurate on-line data, either the 

crystalliser temperature is controlled to follow a reference trajectory or the solute 

concentration is controlled to follow a supersaturation profile in a feedback loop. 

These two approaches are known as T-control and C-control strategy respectively in 

literature (Fujiwara et al., 2005). T- control has the inability to reproduce results from 

one batch to the other since temperature is not closely related to the crystallisation 

dynamics. On the other hand, though supersaturation has direct influence on 

crystallisation process, the need for high accuracy of concentration measurement 

makes C-control unfeasible in industrial scale (Forgione et al., 2012). In addition, the 
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absence of in situ adjustments made during the process, these approaches cannot 

respond to unexpected disturbances (e.g. a temperature spike, mixing disturbance) 

resulting in a failed batch (Yu et al., 2003).   

Cooling crystallisation is advantageous in the sense that it does not require additional 

raw material during operation which could affect the product purity and thereby 

increase operating and capital costs (Nagy et al., 2006). Figure 2.9 shows the 

difference in the profiles of the natural, linear, and the programmed cooling curves. 

The following section included a brief discussion about different control strategies for 

cooling crystallisation. 

Model-based approach 

The model-based approach is often referred to as the first-principle approach (Braatz, 

2002) that is a theoretical prediction of the cooling profile to fulfill different control 

targets. The control targets can be either to maintain a constant supersaturation profile 

during operation, or to achieve the desired crystal properties using optimisation 

methods (Yang, 2005). When the control targets of the crystallisation process are 

defined in terms of desired properties of crystals at the end of the batch, the operating 

temperature profiles are usually based on a priori knowledge of nucleation and growth 

kinetics as a function of supersaturation. Therefore, the key of model based control is 

to develop an accurate kinetic model of the system in order to obtain the correct 

optimal cooling profile (Choong and Smith, 2004); Optimal cooling has been 

extensively studied by the researchers during the last four decades (Jones, 1974; 

Miller and Rawlings, 1994; Shen et al., 1999). Several approaches have been 

proposed by researchers to develop the kinetic models. Rawlings et al. (1993) 

proposed non-linear optimisation approaches to estimate the parameters in the kinetic 

models. In addition to the effects of the potential deviations from the model 

assumptions, Nagy and Braatz (2004) pointed out that the effects of parameter 

uncertainties and disturbances also have to be taken into consideration to ensure that 

the model-based approach produces the expected optimised product quality. From 

Miller and Rawlings (1994), Zhang and Rohani (2003) to Mohameed et al. (2003) are 

among many other research groups that used the approach to develop the cooling 

profiles. Although efficient, this kind of model based techniques and the resulting 
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performances are often susceptible to the accuracy of the model (Nagy et al., 2008b) 

and Chew et al. (2007a) pointed out that the substantial expertise required in process 

modelling and optimisation has restricted its application to small-scale laboratory 

studies. 

Direct design approach 

As mentioned above due to the complex nature of the model based approaches, now a 

day researchers are more prone to shift the research paradigm from an art towards a 

better understood scientific process. In addition the availability of PAT tools 

(described in Section 2.6.4) for measuring concentration and various solid state 

properties of crystals offers down to earth solutions of the crystallisation control 

approaches. These control strategies, which are also known as model-free or direct 

design approaches, use feedback control based on information provided by in situ 

sensors (Zhao et al., 2007). A major characteristic of these approaches is that no 

information about process kinetics is required. This is a prime advantage as multiple 

phenomena take place during crystallisation, for which the parameters estimation and 

modelling becomes very difficult. Its difference with the model-based approach is that 

instead of optimising a certain objective function, the direct design approach is aimed 

to avoid secondary nucleation to maximise crystal growth. 

The direct design approach is typically based on concentration control or 

supersaturation control where the system follows an adaptable supersaturation 

setpoint within the metastable zone to obtain crystals of desired size distribution. The 

direct design approach has been successfully used for enhancing the crystalline 

product quality in many applications. Zhou et al. (2006) used this approach based on 

ATR-FTIR for antisolvent crystallisation of a proprietary pharmaceutical compound. 

They demonstrated that the approach provides rapid determination of an optimal 

recipe for suppressing secondary nucleation and enhancing crystal growth. Liotta and 

Sabesan (2004) reported significant improvement in crystal size when supersaturation 

control was applied for cooling crystallisation of a drug compound. Kee et al. (2009) 

showed how the direct design approach can be used for production of the α-form of L-

glutamic acid, by using ATR-FTIR based supersaturation control. 
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2.6.4 Process Analytical Technology (PAT) in Crystallisation Operation 

2.6.4.1 Basic concepts of PAT 

In August 2002, recognising the need to eliminate the hesitancy of pharmaceutical 

industries to innovate, the US Food and Drug Administration (FDA) launched a new 

initiative entitled “Pharmaceutical CGMPs for the 21st Century: A Risk-Based 

Approach.” This is also known as process analytical technology (PAT) initiative 

which is defined as, “a system for designing, analyzing, and controlling 

manufacturing through timely measurements (i.e. during processing) of critical 

quality and performance attributes of raw and in-process materials and processes, 

with the goal of ensuring final product quality” (FDA, 2004). The main goals were to 

promote the use of modern sensor technologies, facilitating real-time monitoring, and 

better control concepts to achieve reduction in process time and cost, decrease 

variability, improve product quality, and minimise batch failures (Yu et al., 2003). 

The overall PAT scheme is shown in Figure 2.10. 

 

 
 

Figure 2.10: Scheme of process analytical technology (PAT) (Valero, 2013). 

Conventionally, pharmaceutical industries managed to analyse the finished products’ 

quality in the laboratory after the production. This approach is called Quality by 

Testing (QbT) that requires a continuous process optimisation along with higher risk 

of producing failed batches (Yu, 2008). Therefore, the concept of Quality by Design 
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(QbD) was introduced to aid the pharmaceutical industries to have a more efficient 

manufacturing system. The goal of PAT is harmonic with that of QbD “quality cannot 

be tested into products; it should be built in by design” (FDA, 2004). In fact, PAT can 

be considered as a tool or system that helps in the implementation of QbD. The word 

“analytical” in PAT comprises physical, chemical, microbiological, as well as 

statistical analysis conducted in an integrated approach (Yu et al., 2003).PAT is able 

to provide important information about different processes at various stages of the 

drug development. In crystallisation processes PAT is used to measure and monitor 

solubility, MSZW, supersaturation, concentration, formation of polymorphic forms, 

hydrates, solvates, and CSD as well as crystallisation process scale up. In the 

following section applications, advantages and disadvantages of the most common 

PAT tools have been discussed. 

2.6.4.2 Overview of PAT tools and applications in crystallisation control 

ATR-UV/Vis Spectroscopy 

A relatively new technique for in situ analysis of measuring liquid phase 

concentration is the use of UV/Vis spectroscopy. The availability of UV resistant 

optical fibres, cheap diode array detectors, and chemometrics has facilitated its 

inline/online applications in many fields. However, the application of UV/Vis 

spectroscopy is limited as most of the compounds or functional groups are transparent 

in the UV/Vis spectroscopy range, i.e. 190 nm to 800 nm (Bakeev, 2005). Absorbance 

is correlated with the concentration of a compound according to the Beer-Lambert’s 

law, 

cl
I
IA o ε=⎟
⎠
⎞

⎜
⎝
⎛= log                 (2.18)      

where A  is the absorbance, oI   is the incident light intensity, I is intensity of light 

leaving, c  is the molar concentration of the solute, l  is the path length in cm, and ε  

is the molar absorptivity. According to this law, absorbance is linearly dependent on 

concentration on the occasion of the molar absorptivity and path length remain 

constant. Absorbance depends on the temperature too. In addition, the presence of 

several absorbing species, interaction between solute and solvent can sometimes 
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cause deviations from this law. The instrumentation commonly used for UV/Vis are 

classified into the following four types (Cazes, 2005), 

 Scanning instruments 

 Diode-array instruments 

 Photometers 

 Fibre-optic diode array and CCD instruments 

The first two are more suitable for off-line measurements and the later two are more 

suitable for in situ analysis.  

The attenuated total reflection (ATR) probe functions by utilising the difference in 

refractive indices of the ATR crystal and that of the solution. Whilst ATR probes are 

most commonly used in conjunction with Fourier transform infrared spectroscopy 

(FTIR) only few studies are available that actually demonstrated the use of ATR-

UV/Vis spectroscopy in crystallisation. The first application of ATR-UV/Vis 

spectroscopy for monitoring the crystallisation of sulfathiazole was reported by 

Anderson et al. (2001). Thompson et al. (2005) also used ATR-UV/Vis spectroscopy 

for in situ concentration measurements of a drug candidate and developed calibration 

model using partial least squares regression (PLSR).  

ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR) 

ATR-FTIR is a form of vibrational spectroscopy and probably one of the most widely 

used techniques in pharmaceutical crystallisation (Togkalidou et al., 2001). The IR 

region covers the spectral range from 4000 cm-1 to 400 cm-1 (2.5 µm to 25 µm) which 

is also bounded by near infrared and far infrared regions as well. The most prominent 

feature of using IR is the determination of the structure of the molecules. The 

spectrum generated is a fingerprint of a particular molecule indeed. The frequency at 

which IR energy is absorbed is a characteristic of a molecule, this fact can be used to 

identify a compound and hence the term fingerprint is used. The fact that IR 

absorptivities can occur in CH, OH and NH groups that are in any way prevalent in 

organic molecule, made IR the most extensively practiced approach in pharmaceutical 

crystallisation. The combination of IR spectrometers with ATR probe have facilitated 
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real time monitoring and control of crystallisation. Example applications include 

determination of metastable zone width, concentration measurement (Wang and 

Berglund, 2000), supersaturation control, detection of impurities, etc.  

Near Infrared Spectroscopy (NIR) 

Near infrared (NIR) spectroscopy represents another type of vibrational spectroscopy 

along with Raman and IR. NIR covers the range of 4000 cm-1 to 12500 cm-1 in the 

electromagnetic spectrum. The intensity of the NIR bands being weaker than the 

corresponding fundamental bands it eliminates the necessity of diluting the sample. 

Moreover, it allows the measurement of thick samples. The penetration depth of NIR 

beam is up to a few millimeters, which is particularly useful in the analysis of bigger 

sample volumes.  

Raman Spectroscopy 

Raman spectroscopy also belongs to the vibrational spectroscopy group along with IR 

and NIR. Its approximate spectral range is between 50 cm-1 to 4000 cm-1. Raman 

spectrum is due to a change in the polarisability of the molecule. The key 

characteristic of Raman spectroscopy is that the wavelength of the scattered light 

changes according to the vibrational energy levels of the molecules. This fact is used 

to categorise the state and nature of bonds present in a molecule. 

Raman spectroscopy is a powerful nondestructive technique for both qualitative and 

quantitative analysis. It can be applied during different stages of drug manufacturing. 

Being based on vibration energy changes, Raman spectroscopy is able to distinguish 

almost all the crystal forms. This feature is useful for characterising different forms of 

a pharmaceutical compound, i.e. polymorphic forms, hydrates and solvates. Raman 

spectroscopy requires small quantity of sample which is in favor of the 

pharmaceutical compounds prepared in small amounts during the early stages of 

development. In addition, it does not require special sample preparation hence 

prevents compounds from changing during sample preparation (Vergote et al., 2004). 
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Focused Beam Reflectance Measurement (FBRM)  

FBEM provides the chord length distributions (CLD) of the crystal size. Using FBRM 

coupled with inverse geometric modelling the CLD can be converted into size 

distribution (Hukkanen and Braatz, 2003). The equipment is able to measure particle 

size in the range of approximately 0.5 μm to 1000 μm. FBRM is a commonly used in 

situ technique for obtaining information about nucleation, dissolution, metastable 

zone width, polymorphic transformation, growth, and size distribution in particulate 

systems in real time (Barthe et al., 2008; Howard et al., 2009; Abu Bakar et al., 2009). 

The probe is usually inserted in a crystalliser to provide real time information about 

the system. The laser beam used to scan a particular region is highly focused. The 

beam is projected through the sapphire window of the probe. This speed of the 

rotation of the beam is 2-6 ms-1 (Pons et al., 2006) and continuously scan the particles 

on which it is being focused. An optical receiver receives the back scattered reflected 

beam. The focused beam crosses the particles on a straight line between any two 

points on the edge of that particle. FBRM measured the CLD through 90 channels 

ranging from 0.8 µm to 1000 µm can be related to different phenomena, such as 

nucleation, growth, agglomeration, and attrition (Yu et al., 2007). The data obtained 

from FBRM can be interpreted in several formats from simple total number of counts 

per second to square weighted or length weighted mean chord length as defined in 

Equation 2.19 and Equation 2.20 respectively, 
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where, k  is the number of channels in FBRM, in  is the counts in an individual 

measurement channel and iM  is the midpoint of an individual channel. FBRM can be 

used for measuring solubility, detecting nucleation and MSZW determination (Barett 
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et al., 2002), controlling CSD, monitoring crystal growth, nucleation (Barrett et al., 

2005) and agglomeration detection (Loan et al., 2002). 

The above mentioned in situ techniques provide real time information about the liquid 

and solid phases. However, these tools are often accompanied by other off-line 

analysis techniques for a more complete assessment and characterisation of crystalline 

products (Howard et al., 2009). Some of the other commonly used techniques which 

are applied for monitoring crystallisation systems are briefly described below. 

Particle vision measurement (PVM) probe provides in situ information about changes 

in crystal shape and morphology, and typically used as a complementary technique 

alongside FBRM and other spectroscopic tools. Another alternative and cheap 

technique is bulk video imaging (BVI), along with image analysis it also provides 

important information about crystallisation such as MSZW, solubility etc. 

Turbidimetry is another type of monitoring tool that usually measures the changes in 

optical properties of the solution. Turbidimetry can be used for the detection of 

nucleation or dissolution events during crystallisation operations.  

2.6.5 Chemometrics 

PAT implementation eliminates the drawbacks of traditional methods that involve 

excessive sampling and it also facilitates rapid testing through direct sampling without 

any destruction of sample. However, to adapt PAT tools successfully into 

pharmaceutical and biopharmaceutical environment, thorough understanding of the 

process is needed along with mathematical and statistical tools to analyse large 

multidimensional spectral data generated by PAT tools. Chemometrics is a chemical 

discipline which incorporates both statistical and mathematical methods to obtain and 

analyse relevant information from PAT tools (Challa and Potumarthi, 2013). Yu et al., 

(2003) defined chemometrics, as the science of relating measurements and analysis 

made on a system or process to the state of the system through the application of 

mathematical or statistical methods. It is very helpful in the interpretation of the 

multivariate data generated by in-situ process monitoring devices (Yu et al., 2003). 

Chemometrics is used for multivariate data collection and analysis protocols, 
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calibration, process modeling, pattern recognition and classification, signal correction 

and compression, and statistical process control (Workman Jr., 2005).  

2.7 Conclusions  

In this chapter the concept of distributed parameter systems, e.g. batch processes, the 

associated control objectives and challenges were addressed. The existing control 

practices, i.e. model predictive control and data based control were pointed out. Since 

the main focus of the work is to develop operating data based iterative learning 

control (ILC) for batch chemical processes. This chapter introduced the concept of 

iterative learning control (ILC) and critically analysed the available ILC strategies in 

the field of batch chemical processing. Details of fundamental and mechanisms of 

batch crystallisation, its associated control practices are also discussed in brief. Batch 

crystallisation will be considered as an example case for this study. Last but not the 

least, the advent of process analytical technology (PAT), commencement of quality 

by design (QBD), applications of various PAT tools in pharmaceutical crystallisation 

have also been discussed in brief. The next chapter describes the ILC based 

methodology developed to be used in simulation studies. 
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Chapter 3 

Development of Linear Time Varying 
(LTV) Perturbation Model Based 
Iterative Learning Control (ILC) 
 

3.1 Overview 

Development of a first principle model is usually very complicated and difficult to 

obtain for industrial batch process (Xiong et al., 2010). In addition, due to the limited 

availability of robust on-line sensors in the industrial practice of batch process 

operations, typically only off-line quality measurements are available. Under these 

circumstances, it is more useful and convenient to develop and practice operating data 

based control strategies. In this chapter a data based control methodology is 

introduced based on the work of Xiong and Zhang (2003). The linear time varying 

(LTV) perturbation methodology developed for iterative learning control (lLC) has 

been evaluated through simulation case studies.  

3.2 Methodology Development 

In order to deal with the problem of nonlinearities in batch processes, it is a common 

practice to use the perturbation variables instead of using the actual process variables. 

Perturbation variables are deviations of variables from their nominal trajectories. 

Typically the input/output trajectories in batch processes are inherently nonlinear and 

time varying. However, the concept of subtracting the time-varying nominal 

trajectories from the batch operation trajectories for removing process nonlinearity is 

tempting which enables conventional linear modeling methods to be applied (Russell 

et al., 1998). So, a linear perturbation model obtained by linearising a nonlinear model 

along the nominal trajectories can be used in ILC scheme for tracking control of 

product quality. 
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Initially the analysis followed the methodology applied/recommended in Xiong and 

Zhang (2003), which is an ILC scheme based on linear time varying (LTV) 

perturbation models. If we consider the following nonlinear function between input 

)(tbX  and output )(tbY  in the matrix form as in Equation 3.1.  

 +)(= bbb nXΨY                                                                                                      (3.1) 

where, )•(ψ  is the nonlinear static function between the input and output and bn  is 

the vector of measurement noise at time t . For the system in Equation 3.1, an LTV 

perturbation model sL  is developed by linearising the nonlinear model along the 

nominal trajectories. At first, several sets of historical process operating data are 

collected and the input - output data matrices are defined as, T
21

0 ],...,,[ Hx XXXΩ =  and 

T
21

0 ],...,,[ Hy YYYΩ =  respectively, here, H  is the number of historical batches. From 

the historical data sets, the best performing trajectories are selected as the nominal 

trajectories ),( ss YX . At any time t , the perturbation variables for thb  batch are 

calculated as s - XXX bb =  and s - = YYY bb . Linearising the nonlinear model of 

Equation 3.1 around the nominal trajectories gives the following expression (Xiong 

and Zhang, 2003).  

bbb
b

b
b nmXX

X
XΨ

YY X ++)-(∂
)(∂

+= ss s
                             (3.2) 

Where, TTTT )](,),...2(),1([= Nmmm bbbbm  is the sequence of model errors of N  

observations due to linearisation. However, the linearised time varying perturbation 

model and the corresponding absolute model prediction are shown in Equation 3.3a 

and Equation 3.3b respectively. 

bbb dXLY += s                   (3.3a) 

bb XLYY ss
ˆ+=

�
                (3.3b) 

The tracking errors of the actual process and of the predicted perturbation model are 

bb YYe -= d  and bb YYe ˆ-=ˆ d  respectively. The transfer function sL̂  is predicted 
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according to the steps of Equation 3.4 and Equation 3.5, for Ni ,...,2,1= , number of 

observations per batch and Hh ,...,2,1= , the number of historical batches,  

)(-)(=)( s iyiyiy hh , )(-)(=)( s ixixix hh , and T
1-21 )](),(),...,(),([=)( ixixixixi hhhu  

                    (3.4) 
if we define,  
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then, using Equation 3.5, il̂  is estimated by the least square method as,  

ii-ii
i )=(l 0

T
0

1
0

T
0

ˆ VUUU  and sL̂  are obtained as in Equation 3.6,  

T
21s ]ˆ,...,ˆ,ˆ[=ˆ

NlllL                              (3.6) 
After the completion of the thb  batch, prediction errors between off-line measured or 

analysed product qualities and their model predictions can be calculated as, 

bbb YYε ˆ-= . The absolute modified model prediction is defined as, bbb εYY += ++ 11
ˆ~ . 

The tracking error of the modified prediction of the perturbation model is defined as, 

bb YYe ~-~
d= . In ILC, it is desired that the learning algorithm should have the 

following property,  
22

∞→
min→lim ee

Xbb
                   (3.8) 

Finally, the following quadratic objective function of Equation 3.9 is formulated 

based on the minimisation of the predicted tracking errors,  

]ΔΔ+~~[
2
1

min= 1+
T

1+1+
T

1+Δ1+
1+

bbbbb
b

J XPXeOe
X

                             (3.9) 

where, O  and P  are weighting matrices based on output performance and input 

change, respectively. Since the weighting matrices influence the convergence rates 

they should be chosen carefully. Larger P   imposes larger penalty on input changes 

implying slower convergence. The weight O  should be chosen relative to P  such that 

the performance due to input changes will not be degraded (Xiong and Zhang, 2005). 

This objective function of Equation 3.9 should be solved upon completion of the thb  
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batch to update the input trajectory for the th)1( +b  batch as, bbbb eKXX ˆ
1 +=+ , 

where, OLPLOLK T
s

1
s

T
s

ˆ]ˆˆ[ˆ +=b , is the calculated control action. According to the 

ILC algorithm, after the completion of each iteration the new data is added to the 

historical data set to update sL̂ . While updating sL̂ , in order to emphasise the most 

recent batches, a forgetting factor 1≤β  is multiplied with historical data in decreasing 

order (i.e. from 11-  toββ +bh ). The algorithm is shown in Figure 3.1. 
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Figure 3.1: Algorithm of the LTV perturbation models based on ILC scheme. 
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3.3 Results and Discussions 

3.3.1 Case Study 1: Typical Batch Reactor 

In this case study a typical nonlinear batch reactor is considered where temperature is 

the control variable (Ray, 1981; Logsdon and Biegler, 1989). The objective of the 

control problem is to maximize the intermediate product ( B ) after a certain reaction 

time. The reaction scheme is shown in Equation 3.10. 

CBA
21 kk
→→                                                                                     (3.10) 

The rate equations describing the batch process are, 

 2
1ref11

1 )-exp(
d
d cvTEk

t
c
=                            (3.11) 

 2ref22
2
1ref11

2 )exp()exp(
d

d cvTEkcvTEk
t

c
−−−=                        (3.12) 

where, 1c  and 2c  represent the dimensionless concentrations of A  and B , 

respectively; ref/TTv =  is the dimensionless temperature of the reactor; and refT  is 

the reference temperature. The final time tf is fixed to be 1 hr, and values of 1k , 2k , 

1E , and 2E , are given in Table 3.1.  

Table 3.1: Parameter Values for the Batch Reactor (Ray, 1981) 

Parameter Values 

1k  
3100.4 ×  

2k  
3102.6 ×  

1E  
3105.2 ×  

2E  
3100.5 ×  

refT  348 K 

The initial conditions are )0(1c = 1 and )0(2c = 0, and the reactor temperature is 

constrained to the interval of 298 K < T  < 398 K. Based on the above information a 

rigorous simulation program was developed in MATLAB®  and was treated as the 
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real process. Initially, the batch length is divided into N=10 equal stages. Eleven 

batches of process operations under different temperature profiles were simulated 

using the MATLAB® model. From these eleven data sets ten were used as the 

historical data sets and the data set with the best result (i.e. closest to the desired 

output) was used as the nominal trajectory, sX and sY . The existing mechanistic 

model was also used to generate the desired product reference trajectory, dY . In the 

next phase it was assumed that a mechanistic model of the system is unavailable. 

Since the objective of the reactor is to maximize the product B, an LTV perturbation 

model is built to model the relationship between output 2cy =  and input Tx = . Then, 

using these historical process data sets and the selected sU  and sY , the parameters of 

sL̂  were identified according to Equations 3.4 to Equation 3.7. The values of positive 

definitive matrices are set as O=105×diag (0.05,5,5,5,5,5,5,5,5,5) and P = 0.01I. The 

nominal case without any uncertainties (unknown disturbances) in the batch reactor 

was considered. According to the ILC algorithm, after sL  had been identified, it was 

then updated using new process data after the completion of each batch run.  

After the termination of simulations, the final simulated input temperature profile was 

then applied to the mechanistic model and the corresponding concentration profile for 

the intermediate product (B) was obtained. This input/output data was then again 

included in the historical data sets and the best input temperature trajectory is again 

simulated using the ILC algorithm. The forgetting factor, β, selected as 0.98 was kept 

fixed throughout the successive batch runs. It was selected so that only the relatively 

recent batches are considered most. Figure 3.2 shows the tracking performance of this 

ILC. It can be seen from Figure 3.2 that both the concentration and temperatute 

profile converged to the desired trajectories as the number of batches increases. In 

these figures, 121,2,3,...,121,2,3,...,  and YX  are the input and ouput trajectories respectively 

for different batches as indicated by the subscripts. The simulation study was stopped 

at the end of thirteen real batches as the final result was not improving further. Figure 

3.3 shows the sum squared error (SSE) values of the desired concentration trajectory 

and the real batch concentration trajectories.  
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        Figure 3.2: Simulated ILC profiles of different batches (a) concentration profiles (b) 
temperature profiles. 
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Figure 3.3: The SSE values for the batches. 
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3.3.2 Case Study 2: Batch Cooling Crystallisation System 

In this study, an unseeded batch cooling crystalliser of Paracetamol in water was 

considered with a batch time of 300 minutes. The kinetics of the crystallisation system 

is given by the following sets of ordinary differential equations from Equation 3.13 to 

Equation 3.15 (Nagy et al., 2008a). 

Btμ =/dd 0                                                                                               (3.13) 

,....2,1                 /dd 01- =+= iBriGμtμ i
ii                   (3.14) 

)+3(-=/dd 3
03 BrGμρktC v                                        (3.15) 

where, B  and G  are the nucleation and growth rates respectively, )(- TCCS S=  is 

the absolute supersaturation, C  is concentration, SC  is the solubility as a function of 

the temperature T , ,,, 210 μμμ  and 3μ  are the moments defining total number, length, 

area, and volume of crystals in the system respectively, 0r  is the size of the nuclei. 

The initial and final temperatures were 314.13K and 294.15K respectively. The 

physical properties are given in Table 3.2. 

Table 3.2: Parameters of the Crystallisation Model 

Solubility in water (T  in K) 31.110057.9-1058.1 3-25- +××= TTCS  

Growth rate   
⎩
⎨
⎧

≤×
>×

=
0    64.1-
0    64.1

54.1

54.1

SifS
SifS

G  

Nucleation rate 
⎩
⎨
⎧

≤××
>××

=
0    108529.7-
0    108529.7

23.619

23.619

SifS
SifS

B  

Density of crystal (g/cm3) ρ = 1.296 

Volumetric shape factor  vk = 0.24 

Initial concentration (g/g solvent) 0C = 0.0254  

A detailed mathematical model covering reaction kinetics and heat mass balances has 

been developed for the system. The details of the experimental and parameter 
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estimation procedures are available in literature (Nagy et al., 2008b; Fujiwara et al., 

2002). Based on this model, a simulation program was developed in MATLAB® for 

this system to be treated as the real process. The objective of this case study was to 

control the crystallisation process to achieve a desired mean crystal size Ln  defined 

in Equation 3.16 by manipulating the reactor jacket inlet temperature ( jinT ). 

0

1

μ
μLn =                                             (3.16) 

This temperature was selected as a means to control supersaturation to restrict 

nucleation for obtaining appropriate sized crystals. The initial and the final 

temperature of the jacket were maintained at a constant value to ensure same start-up 

and end point condition for every batch. The batch length was divided into 10 equal 

stages. Eleven batches of process operations under different temperature profiles were 

simulated using the MATLAB® model. From these eleven data sets ten were used as 

the historical data sets and the data set with the best result was used as the nominal 

trajectory, ( sX , sY ). Initially the existing mechanistic model was also used to 

generate the desired product reference trajectory dY . In the next phase it was assumed 

that a detailed mechanistic model of the system is not available and so, the parameters 

of LTV perturbation model sL̂  were re-identified using these historical process data 

sets and the selected nominal trajectories ( sX , sY ). The weighting matrices were set 

as, )1,5.1,5.2,5.2,5.2,5.2,5.2,5.2,5.2,1( diag105 ×=O  and IP 5.0=  in the light of the 

paper by Zhang et al. (2009b). The nominal case without any uncertainties (unknown 

disturbances) in the system was considered. According to the ILC algorithm, after the 

completion of each simulation the new input/output data is included in historical data 

to update sL̂  and determine the temperature profile for the next batch until the 

termination conditions are satisfied. Finally, the temperature profile for the next batch 

as calculated by ILC scheme was applied to the real process (i.e. mechanistic model) 

and the corresponding mean crystal size at the end of the batch was obtained.  

This input/output data was then again included in the historical data sets and the best 

input temperature trajectory is again simulated using the ILC algorithm as mentioned 
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before. The forgetting factor, β, selected as 0.8 was kept fixed throughout the 

successive batch runs. It was selected so that only the recent batches are considered 

most. 
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Figure 3.4: Historical data sets (a) mean crystal length trajectories (b) temperature trajectories. 

Figure 3.4 (a) and Figure 3.4 (b) shows the simulated historical data sets for mean 

crystal length Ln  and temperature trajectories respectively, dY  is the desired mean 

length trajectory and sY  is the selected nominal trajectory from which the simulation 

case study for ILC was initialised. Similarly, dU  is the theoretical temperature profile 

corresponding to dY  and sU  is the nominal temperature trajectory. The results of the 

ILC approach are shown in Figure 3.5 (a) and Figure 3.5 (b). For simplicity, here only 

ten trajectories are shown. However, it is evident that the mean size of crystals 
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converged to the desired trajectory and the resulting final temperature profile was also 

very close to the theoretically optimum trajectory.  
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              Figure 3.5: Trajectories of (a) mean crystal size (b) temperature. 

Figure 3.6 shows the sum squared error (SSE) values of the desired and the real mean 

crystal size trajectories. It took about 34 batches to arrive at the final trajectories 

without the need of any process model. However, the results were almost converged 
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from the 5th batch onwards, and practically all subsequent batches after the 5th would 

produce crystals with very similar size to the desired target. 
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Figure 3.6: The SSE values for the batches. 

3.3.3 Case Study 3: Batch Cooling Crystallisation System with Model-Plant 

Mismatch 

In order to assess the robustness of the proposed ILC approach, here the sensitivity of 

the model-based optimal control approach to errors in the model parameters is 

demonstrated. It was assumed that the model was identified with an error of -10% in 

both the growth and nucleation rate constants. In practical situation, this level of error 

can often occur, in particular when the scale of the crystalliser changes compared to 

the system used for model identification. This would often be the case when the 

model is identified using laboratory experiments and then the optimal operating 

trajectory is applied on the industrial scale. This model with error was then used for 

the model based optimisation to determine the optimal temperature trajectory to 

maximise the mean crystal size Ln . However, when this optimal temperature 

trajectory was applied to the real system (simulated by the same model but with the 

“true” parameters) it caused a 32% decrease in the actual final Ln  (see Figure 3.7 (a), 

‘Actual’ line). This simulation clearly indicates the sensitivity of model-based 

optimisation to uncertainties in the model parameters. This generally occurs since the 

optimal results of the nominal optimisation is generally on the boundary of the 
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feasible operating envelope and any deviation from the nominal optimal trajectory 

may cause violation of constraints or significant quality degradation. One remedy to 

this problem is to use robust optimisation schemes that consider parameter 

uncertainties (Nagy and Braatz, 2004; Nagy, 2009), however these generally lead to 

complex and computationally intensive optimisation problems. On the other hand, the 

ILC control, however, is a model free approach (i.e. based on an adaptive LTV model 

that is re-identified after each batch based on experimental measurements). 

To apply ILC to this system, the same historical input/output data and nominal 

trajectories were used as mentioned before in the previous sections. The optimal Ln  

trajectory from the model-based optimisation using the model with error was set as 

the desired output. The weighting matrices were set as, 

)2,15,2.5,2.5,2.5,2.5,2.1,2.5,2.5,( diag105 ×=O and IP 5.0= . The forgetting factor 

was set as, β = 0.8. The rest of the test followed exactly the same steps as before.  

The results of the ILC approach are shown in Figure 3.7 (a) and Figure 3.7 (b), 

indicating the measurement based ILC converged to the desired trajectory 

successfully and the resulting final temperature profile was also very close to the 

theoretical optimum trajectory, unlike in the case of applying the temperature 

trajectory resulting from the model-based optimisation using the model with 

parameter error. Figure 3.8 shows the sum squared error (SSE) values of the desired 

and the real mean crystal size trajectories. It took about 12 batches to arrive at the 

final trajectories without the need of any process model. The SSE values are 

comparatively more oscillatory than the previous case study example (see Figure 3.6) 

as the profiles of mean crystal size, Ln , oscillated relatively dramatically for the first 

few batches. However, the result was almost converged during the 12th batch and ILC 

simulation was terminated as both the termination conditions (i.e. 

00001.0)(-)()( d <= fbffb tytyte  or 00001.0∑ )(SSE 2 <= teb , see Figure 3.1) 

were fulfilled. These results indicate the increased robustness of the ILC, which can 

provide close to theoretically optimal results due to its adaptive nature. 
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         Figure 3.7: Trajectories of (a) mean crystal size (b) temperature.       
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          Figure 3.8: Tracking performance of ILC. 
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3.3.4 Case Study 4: Determination of Drying Temperature to Obtain a Desired 

Moisture Content in Paracetamol Granules at the End of the Batch   

Paracetamol tablet is a mild analgesic and antipyretic. The main ingredients of 

paracetamol tablet are Acetaminophen powder along with other powdered excipients. 

The preparations are recommended for the treatment of most painful and febrile 

conditions. The Paracetamol tablet manufactured by GlaxoSmithKline Bangladesh 

Limited was initially marketed under generic name of ‘Paracetamol Tablet’ and later 

with trade a name from 1993 as ‘Parapyrol tablets’. Parapyrol is a registered 

trademark product of GlaxoSmithKline Bangladesh Limited. This product is managed 

locally (PML). The formulation has been adopted from Speke document, UK dated 3 

March 1983. Table 3.3 lists the Active Ingradient and excipients used in the 

formulation of Parapyrol tablets. 

Table 3.3: Ingredients of Parapyrol Tablet 

Active Ingredient (AI) Functions 

                    Paracetamol Analgesic and Antipyretic 

Excipients Functions 

 
Maize starch, Pregelatinised (Amigel) 
BP/EP/ USNF 

Binder 

 Maize starch, BP/EP/ USNF Diluent, Disintegration 

 Potassium Sorbate Antimicrobial Preservative 

 Stearic acid  (Powder) Lubricant 

The powder should posses good flow property to have uniformity of weight of the 

tablet. The flow property of powder depends upon moisture content of the powder as 

well as particle size, particle shape, porosity and density. Water interacts with 

pharmaceutical solids at virtually all stages of manufacture. Therefore, water-powder 

interaction is a major factor in the formulation, processing, and performance of solid 

dosage forms. Besides, moisture content is important for the mechanical strength of 

the tablet. Hence, it is important to know the optimal moisture content for the 
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formation of strong tablets. Within the pharmaceutical industries, it is well established 

that Acetaminophen with 2% moisture content gives tablet of optimum strength 

(Nokhodchi, 2005). Nonetheless, it is important to know the drying temperature to 

reach the desired moisture content after the drying process.  

In the pharmaceutical industry, most products are manufactured using the wet 

granulation process. Wet granulation offers a wide range of capabilites for forming 

granules from the production of light granules to the production of very dense 

granules. More than 70% of the global industry’s granulations are made using this 

method. (Tousey, 2002). When a wet-granulation technique is employed, control of 

the  residual moisture after the drying step is important for smooth tablet compression.  

Too low or too high moisture contents may influence the chemical and physical 

stability of the final tablet (WHO, 2011). 

The current practice in pharmaceutical industries for moisture content determination 

is based on off-line loss on drying (LOD) techniques (Bhalani, 2010). LOD 

techniques requires frequent stopping of the dryer during the operation to check the 

moisture content. This results in significantly increased cycle times. Samples 

collected manually are also susceptible to changes in physical conditions like 

humidity and segregation leading to inaccurate moisture analysis. In addition, 

generally there is a delay before analysis results are available to the operator that 

causes processing decisions, like end-point determination, to be made without optimal 

product moisture information. 

Within the existing pharmaceutical industrial practice framework, the exact 

knowledge of drying temperature against a fixed time to reach the desired moisture 

content is important. This saves companies huge energy cost, eliminate the damage of 

product due to over-drying, and increase the overall efficiency of the drying process.  

In this study an LTV perturbation model based ILC was applied to determine the 

drying temperature to obtain the desired moisture content in Paracetamol granules 

granulates at the end of the batch. The industrial case study was carried out in the 

pilot plant laboratory at GlaxoSmithKline Bangladesh Limited, Bangladesh.  



Chapter 3: Development of Linear Time Varying (LTV) Perturbation Model Based ILC                        

 

    

Iterative Learning Control of Crystallisation Systems                                                                      2013 

76

3.3.4.1 Experimental Set-up 

Figure 3.9 to Figure 3.11 shows the different experimental units operated in the pilot 

scale laboratory at GlaxoSmithKline Bangladesh Limited during this case study work. 

 

Figure 3.9: Mighty Mixer Granulator.  

   

(a) (b) 

Figure 3.10: Sapphire Fluid Bed Dryer (a) with wet granules loaded (b) during 
operation.  
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(a) (b) 

Figure 3.11: MJ33 Moisture Analyser (a) sieved granules loaded (b) during operation. 

3.3.4.2 Batch Size and Duration 

The amounts of the material required for the work have been listed below,  

Paracetamol Powder 2 Kg, 

Amigel 239.5 gm, 

Maize Starch 80.239 gm, 

Potassium Sorbate 7.98 gm, 

Water 400 mL. 

The batch time was 20 minutes and it was divided in 5 time steps each of 5 minutes. 

Sample was collected after each 5 minutes and the corresponding moisture content 

was measured for 10 minutes using a MJ33 Moisture analyser by Mettler Toledo.  

3.3.4.3 Experimental Procedure 

Moisture content was determined by loss on drying (LOD) method. Formula for 

calculating moisture content in percentage is as follows, 
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Figure 3.12 shows the block diagram of the complete drying and moisture content 

measurement procedure. 

 

 

 

 

 

 

   

 

 

 
Figure 3.12: Process block diagram. 

During drying sample was collected after each 5 minutes, sieved with #20 Mesh and 

used to measure the moisture content in a MJ33 Moisture analyser by Mettler Toledo 

balance at 373.16 K for 10 minutes. 

3.3.4.4 Results and Discussions 

The historical data sets were collected for six batches to identify the LTV perturbation 

model of the system. The required drying temperature was calculated using LTV 

model based ILC. The historical data, nominal data, desired MC and calculated ILC 

data are tabulated in Table 3.4 to Table 3.7 consecutively. 

 

Dry 
Granulation

Drying in 
FBD 

Wet 
Granulation

Potassium Sorbate 
Solution 

Paracetamol, 
Amigel,  
Maize Starch 

Air 

Measurement of 
moisture content (MC) using 

Infra-red balance 



Chapter 3: Development of Linear Time Varying (LTV) Perturbation Model Based ILC                        

 

    

Iterative Learning Control of Crystallisation Systems                                                                      2013 

79

Table 3.4: Historical Data 

Time (min) 0 5 10 15 20 

Batch 

No. 

Drying Temp. (oC) Moisture Content (%) 

1  313.16 9.96 7.55 6.79 6.59 5.95 
2 315.66 9.61 7.40 6.32 6.22 5.00 
3 318.16 9.90 7.25 6.59 6.20 4.91 
4 320.66 9.92 6.96 6.07 6.07 4.63 
5 323.16 9.89 6.85 5.91 5.61 4.59 
6 325.66 9.76 6.68 5.61 5.16 4.49 

Table 3.5: Nominal Data 

Time (min) 0 5 10 15 20 

Drying Temp. (oC) Moisture Content (%) 

328.16 9.85 6.77 4.85 4.71 4.46 

Table 3.6: Desired Moisture Content (%) 

Time (min) 0 5 10 15 20 

Moisture Content (%) 9.5 5.0 4.0 3.0 2.0 

Table 3.7: Experimental ILC Data 

Time (min) 0 5 10 15 20 

Batch 
No. 

Drying Temp.  
(oC) 

Moisture Content (%) 

1  331.44 9.96 6.90 5.64 4.39 4.15 
2 334.18 9.61 6.20 5.14 4.15 4.00 
3 337.07 9.9 6.77 5.11 4.07 3.88 
4 339.81 9.92 6.41 5.14 3.68 3.50 
5 343.07 9.89 5.95 4.92 3.80 3.00 
6 344.86 9.76 6.73 4.89 3.56 2.80 
7 347.06 9.85 5.11 4.07 3.88 2.40 
8 348.56 9.96 5.60 4.38 3.04 2.05 

Here, drying temperature is the input and moisture content (%) is the output. 

Figure 3.13 shows the moisture content trajectories for different temperatures and 

Figure 3.14 shows how the final moisture content decreased gradually with the 

increase in drying temperature. Figure 3.15 shows the sum squared error SSE values 
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between the desired and actual MC trajectories. It took 7 batches to drop the SSE 

significantly and during the 8th batch the result converged to the desired MC trajectory 

(See Figure 3.14 and Figure 3.15). The required temperature is 348.56 K. To confirm 

the drying temperature two additional batches were ran at 348.56 K and these gives 

slight deviations in MC trajectories within acceptable limit. 
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Figure 3.13: Trajectories of moisture content. 
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Figure 3.14: Final moisture content vs. temperature plot. 
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Figure 3.15: Tracking performance of ILC. 

The study shows that the proposed ILC strategy can calculate the required drying 

temperature, eliminate the within batches measurement of moisture contents and gives 

the desired moisture content at the end of the batch under a fixed batch time.  

3.4 Conclusions 

In this Chapter a linear time varying (LTV) perturbation model based iterative lerning 

control (ILC) strategy was developed for batch processes which are distributed 

parameter systems in nature. Since this is an operating data based methodology it is 

capable of controlling a process in the absence of a first principle model. The 

proposed methodology was evaluated using three simulation case studies and one 

industrial pilot scale case study. The results show that this approach can track the 

desired set points satisfactorily even in the present of model plant mismatch. In the 

next chapter this LTV perturbation model based ILC strategy is used to develop a 

systematic supersaturation control scheme for batch crystallisation system. 
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Chapter 4 

Design of Supersaturation Control 
(SSC) of a Seeded Batch Cooling 
Crystalliser Based on ILC 
 

4.1 Overview 

Following from Chapter 4, a novel hierarchical ILC (HILC) scheme for the systematic 

design of the supersaturation control (SSC) of a seeded batch cooling crystalliser was 

developed and introduced. The proposed HILC can be a convenient tool to select the 

operating profile. This model free control approach is implemented in a hierarchical 

structure. On the upper level, a data-driven supersaturation controller determines the 

extent of optimal supersaturation needed to produce the desired end-point property of 

crystals. On the lower level, the corresponding temperature trajectory is determined 

by time domain experiments to generate necessary supersaturation. In the later part of 

this chapter the proposed approach is evaluated in the cases of a simulated seeded 

batch cooling crystallisation system of Paracetamol in water.  

4.2 Theory of SSC for Controlling Crystallisation Process 

Supersaturation is the driving force to create crystals from the solution. It is defined as 

the difference between the actual dissolved concentration and the corresponding 

saturated concentration (or solubility) at a specific temperature (Barrett et al., 2010). 

Supersaturation control of batch cooling crystalliser is a popular control strategy since 

it does not require any first principle model of the system. The basic idea of this direct 

design approach is to maintain the operating profile within the metastable zone (see 

Figure 4.1) over the course of the batch to avoid nucleation (Fujiwara et al., 2005).  

Supersaturation is the fundamental parameter that affects the outcome of 

crystallisation processes, such as chemical purity, polymorphic content, crystal 

dimension and shape, and batch-to-batch consistency of the product. The main 
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advantage of this approach is its insensitivity to most parameter variations and process 

disturbances (Woo et al., 2009). However, it is crucial to have a systematic 

methodology for designing the supersaturation and temperature trajectories to produce 

products with the desired CSD. Operation close to the metastable limit (high 

supersaturation) results in excessive nucleation, lower purity and longer filtration 

times. Operation close to solubility curve (low supersaturation) leads to slow growth 

and long batch times. Hence, the setpoint supersaturation curve is a compromise 

between fast crystal growth and low nucleation rate (Aamir et al., 2008).  

 

Figure 4.1: Operating curve for supersaturation control of a seeded batch cooling crystalliser. 

Although applying SSC improves the quality of the product CSD, and can produce 

consistently high quality crystals, until now there is no systematic design approach to 

select the set-point operating profiles. In practice, the supersaturation profile is chosen 

by trial-and-error experimentation (Fujiwara et al., 2005; Aamir et al., 2008). Zhou et 

al. (2006) investigated an automated approach to design a nearly optimal 

supersaturation profile by applying different constant supersaturation (CSS) profiles 

and observing the related counts/sec over time. Due to unsatisfactory results, they 

ended up with constant relative supersaturation instead of CSS to avoid secondary 

nucleation. However, it was not mentioned in the paper how the specified constant 

relative supersaturation was selected.  
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Therefore, in an effort to develop a systematic approach for supersaturation control 

(SSC) of seeded batch cooling crystalliser a novel hierarchical ILC (HILC) scheme is 

introduced here.  

4.3 Development of Hierarchical ILC (HILC) for Systematic Design 

of SSC of a Seeded Batch Cooling Crystalliser 

The proposed HILC is a systematic approach to determine the setpoint supersaturation 

profile and corresponding temperature trajectory by two consecutive ILC strategies 

(ILC1 and ILC2) arranged in a hierarchical structure. ILC1 is applied at the upper 

level of hierarchy, aimed to determine the extent of constant supersaturation needed to 

produce crystals with desired end-point properties. With this end, initially a set of 

input-output data is generated from constant supersaturation control experiments of a 

seeded batch cooling crystalliser where the inputs are constant supersaturation (SS) 

values and the outputs are the mean length ( Ln ) of crystals at the end of the batch. 

The supersaturation is usually maintained at the desired constant value throughout the 

entire batch by application of properly designed control algorithms (Zhang and 

Rohani, 2003). This historical data is then used in ILC1 framework to identify the 

LTV perturbation system, )Css(fLn =  and optimise the extent of supersaturation 

(SS) needed for a desired mean length of crystals at the end of the batch. Since direct 

supersaturation measurement sensors are often not available for industrial scale use 

(Braatz, 2002; Fujiwara et al., 2005), ILC1 is developed to be implemented in pilot 

plant or laboratory scale.  

ILC2 is applied at the lower level of hierarchy. The main objective of ILC2 is to 

redefine the supersaturation profile in terms of the temperature profile in time, which 

is designed to maintain the supersaturation at a certain setpoint. This follows the 

concept of direct design introduced by Fujiwara et al. (2005), whereby supersaturation 

control can be used to generate a temperature profile which is then applicable at 

industrial scale. However, instead of directly applying a temperature profile obtained 

at the lab scale, the HILC determines, based on historical real plant data, the required 

temperature profile under the real operating conditions. For ILC2, initially a set of 

input-output data is generated by typical temperature controlled operation of the 
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industrial crystalliser where the inputs are different cooling temperature profiles and 

the outputs are corresponding supersaturation (SS) trajectories (not necessarily 

constant supersaturation trajectories). This historical data is then used in ILC2 

framework to identify the LTV system )(TSS f=  and determine the best temperature 

profile needed to maintain the optimal supersaturation profile as calculated by ILC1. 

The hierarchical implementation of the approach, which consists of the constant 

supersaturation controller (SSC) at the higher level and the temperature controller at 

the lower level is shown in Figure 4.2. 

 

Figure 4.2: Architecture of proposed HILC for SSC of a seeded batch cooling crystalliser. 

4.4 Results and Discussions   

4.4.1 Seeded Batch Cooling Crystallisation System 

In this case, the same system of Paracetamol in water as described in Chapter 3 was 

used but this time seed was introduced to the system at the beginning of the batch. 

The HILC was applied to design the setpoint of the SSC required to achieve a desired 
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Ln  at the end of the batch, as well as to determine the necessary temperature 

trajectory in time domain that can produce the required constant supersaturation. 

The ILC for the supersaturation control design – ILC1 

The objective was to achieve a desired mean crystal size Ln  of 0.012 cm at the end of 

the batch by maintaining a constant supersaturation throughout the batch. Six batches 

considering different supersaturation profiles were simulated using the MatLab®  

model that was treated as the real process. From these six data sets, five were used as 

the historical data and the data with the best result was selected as the nominal data 

set ( sX , sY ). Using the historical data sets and the selected nominal trajectories 

( sX , sY ), the parameters of LTV model sL̂ were re-identified. The weighting matrices 

were set as, O = 105×2.5 and P = 0.005I, since only the supersaturation and the 

corresponding mean length at the end of the batch was considered, i.e. ( sX , sY ) is a 

(1,1) matrix. The forgetting factor was, β = 0.8. In this study, ILC1 was completed in 

a single stage of one thousand iterations instead of applying the result again to the real 

system to update the historical data.  

Direct design of temperature trajectory for constant supersaturation control using 

ILC – ILC2 

The objective of this ILC scheme (ILC2) was to achieve a desired supersaturation 

profile (i.e. =S 3.76×10-4, as determined by ILC1) by manipulating the reactor 

temperature T  in time domain. The batch time was divided into 10=N  equal stages. 

Eleven batches considering different temperature profiles were simulated using the 

model. From these eleven data sets ten were used as the historical data and the best 

data was selected as the nominal data ( sX , sY ). The LTV model sL̂  was determined 

similarly as in the previous cases. The weighting matrices were set as, 

)2.5,15,2.5,2.5,2.5,2.5,2.1,2.5,2.5,( diag105 ×=O  and IP 05.0= . The forgetting 

factor was, β = 0.8. The temperature profile resulting from the ILC2 scheme was 

applied to the mechanistic model (i.e. real process) and the corresponding 
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supersaturation was obtained. Figure 4.3 illustrates the steps followed in the proposed 

HILC.  

 

Figure 4.3: Steps followed in the case study of SSC of a seeded batch cooling crystalliser by HILC. 
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Figure 4.4 shows the results of the ILC1, however, these are all simulated batches 

where every batch corresponds to a single iteration within the LTV perturbation 

model based ILC algorithm. It shows the error between desired Ln  and calculated Ln  

at the end of the batch continues to decrease from simulated batch-to-batch. The 

calculated input supersaturation was 3.76×10-4 producing 0.0107=Ln  cm at the end 

of one thousand simulated batches resulting in a 10.83 % error which was considered 

acceptable for this study. 
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        Figure 4.4: Tracking performance of ILC1. 

Figure 4.5 (a) and Figure 4.5 (b) show the supersaturation profiles and corresponding 

temperature profiles respectively from the ILC2. For simplicity only five batches have 

been shown. The trajectories named as ‘Batch 25’ in Figure 4.5 (a) and Figure 4.5 (b) 

represents the concentration profile that was closest to 3.76×10-4 target supersaturation 

and the corresponding temperature profile respectively. 

Figure 4.6, the SSE plot for ILC2 shows that it took about 25 real batches to arrive at 

the final trajectories without the need of any process model and the SSE dropped 

significantly after the fourth batch onwards. One point to be noted that, like the 

previous case studies the initial and final temperatures were always maintained at 

314.13 K and 214.15 K respectively. These constraints tend to limit the performance 

of ILC2, and the error )(-)()( d tytyte bb =  was always higher at the beginning and 

end, ultimately this led to compromise the extent of desired supersaturation at these 
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time steps. Figure 4.7  shows that the final temperature profile from ILC2 produced an 

Ln  profile that increased linearly over time and the final Ln  was 0.0114 cm resulting 

in only a 5% error with the desired Ln  of 0.012 cm. This 5% error can be subject to 

the linearisation of a nonlinear crystallisation system by LTV perturbation model. 

However, the overall results indicate that the proposed approach can be used to 

improve crystallisation processes very quickly within a small number of batches. 
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Figure 4.5: Profiles from simulated batch to batch (a) SSC profiles (b) input temperature 
trajectories.                                                              
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        Figure 4.6: Tracking performance of ILC2. 
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                             Figure 4.7: Mean length profile for the final temperature trajectory. 

4.4.2 Seeded Batch Cooling Crystallisation System with Kinetic Parameter 

Perturbation  

In order to assess the robustness of the HILC in presence of kinetic parameters 

perturbation, error was introduced in both the growth and nucleation rate constants 

during the batch-to-batch improvement in ILC2.  

The objective was to achieve a desired supersaturation profile (i.e. =S 3.76×10-4, 

determined from ILC1) by manipulating the reactor temperature T  in presence of 
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kinetic parameter perturbation. The batch time was divided into 10=N  equal stages. 

Eleven batches considering different cooling temperature profiles were simulated 

using the model. From these eleven data sets ten were used as the historical data and 

the best data was selected as the nominal data ( sX , sY ). The LTV model sL̂  was 

determined similarly as in the previous cases. The weighting matrices were set as, 

)2.5,2.55,2.5,2.5,2.5,2.5,2.1,2.5,2.5,( diag105 ×=O  and IP 05.0= . The forgetting 

factor was, β = 0.8. The temperature profile resulting from each step of the ILC 

scheme was applied to the mechanistic model (i.e. real process) and the corresponding 

supersaturation was obtained.  

In order to assess the robustness of the HILC in presence of kinetic parameters 

perturbation, after the 10th real batch an error of -5% was introduced in both the 

growth and nucleation rate constants. Hence, from the 11th batch onwards the 

iterations are based on historical data from a wrong system. The SSE plot for this test 

is shown in Figure 4.8.  
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Figure 4.8: Tracking performance of ILC2 when a -5% error was introduced to the system after 10th 

batch for kinetic parameter perturbation test. 

It shows that after the 10th batch the SSE increased suddenly and started to oscillate as 

the process changes. This time the controller needed more iterations until the 

historical data set is slowly replaced by the data from the new process (with new 



Chapter 4: Design of Supersaturation Control (SSC) of a Seeded Batch Cooling Crystalliser Based 
on ILC                 92 

 

Iterative Learning Control of Crystallisation Processes                   2013 

kinetic parameters). From the 39th batch, ILC started to converge again. It took 45 

batches to arrive at the final trajectories without the need of any process model.  

4.5 Conclusions 

A hierarchical ILC (HILC), is proposed for the systematic design of supersaturation 

controlled (SSC) seeded batch cooling crystallisation processes. This automated 

approach uses two ILC strategies in a hierarchical structure primarily to determine the 

optimal supersaturation profile to produce crystals with desired end-point properties 

and to generate the corresponding temperature trajectory in the time domain. The 

proposed method was evaluated using simulated batch cooling crystallisation process 

of Paracetamol in water. The results demonstrated that the approach is able to 

converge to the desired operating profiles even in the presence of kinetic parameter 

perturbations without the need of a detailed mechanistic process model. The 

convergence of the approach can be improved by using nonlinear data-driven models 

in the ILC scheme, such as artificial neural networks or polynomial chaos expansions. 
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Chapter 5 

Experimental Evaluation of the 
Hierarchical ILC (HILC) Approach for 
Supersaturation Control (SSC) of a 
Seeded Batch Cooling Crystalliser 
 

5.1 Overview 

This chapter describes the experimental evaluation of the hierarchical ILC (HILC) 

approach for supersaturation controlled (SSC) batch cooling crystallisation processes. 

The methodology has been described in detail in Chapter 4. All experiments were 

carried out in a laboratory scale seeded batch cooling crystallisation system of 

Paracetamol in isoPropyl alcohol (IPA). For in situ measurement of chord length 

distributions (CLD) and particle counts of crystals a Lasentec FBRM probe and for in 

situ measurement of concentration an ATR-UV/Vis probe was used. Microscopic 

images of the crystals were taken at the end of the batches using a light microscope. 

In the later part of the chapter, the experimental results have been presented and 

discussed.  

5.2 Experimental Evaluation of HILC  

As described in the previous section, ILC1 is applied at the upper level of hierarchy, 

aimed to determine the extent of constant supersaturation needed to produce a certain 

SWMCL of crystals at the end of the batch. With this end, initially five batches of 

constant supersaturation control experiments of a seeded batch cooling crystalliser 

were run where the inputs are constant supersaturation (CSS) values and the outputs 

are the SWMCL of crystals at the end of the batch. These five data sets were then 

arranged in the order of increasing supersaturation. The first four sets were used as 

historical data for ILC1. The data set that produced the maximum SWMCL was used 
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as the nominal data set. This historical data along with the nominal data were then 

used in ILC1 framework to identify the LTV perturbation system, 

)CSS(fSWMCL = . The LTV model was then used to optimise the extent of constant 

supersaturation (CSS) needed for two desired SWMCL of crystals at the end of the 

batch. The first desired SWMCL was set to lie within the limit of measured historical 

data to validate the findings of the measurements. The second SWMCL was chosen to 

be just outside the boundary to investigate the extrapolation characteristics of the 

system. During all the ILC1 experiments, the supersaturation was maintained at a 

desired constant value throughout the entire batch by application of a feedback 

controller.  

ILC2 is applied at the lower level of hierarchy. The main objective of ILC2 was to 

redefine the constant supersaturation profile determined in ILC1 in terms of the 

temperature profile in time, which is designed to maintain the supersaturation at a 

certain setpoint. During implementing ILC2, initially eleven sets of input-output data 

was generated by typical temperature controlled operation of the seeded batch cooling 

crystalliser where the inputs are different random cooling temperature profiles and the 

outputs are corresponding supersaturation trajectories (not necessarily constant 

supersaturation trajectories). From these data sets, ten were used as historical data and 

the data with the best result was selected as the nominal data. These historical data 

and the nominal data was then used in ILC2 framework to identify the LTV system 

)(TSS f= .  

In this study, two individual sets of ILC2 experiments were performed against two 

different desired SWMCL as mentioned above. Using the same historical and nominal 

data and the LTV model in ILC2 framework, the temperature profiles were 

determined to maintain the desired optimal supersaturation profiles as calculated by 

ILC1. In all of the experiments, after the solution was cooled down to just below the 

saturation temperature, 5% seed was added to the system. Further details of the 

experiments are discussed in the results and discussions section of this chapter. 
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5.3 Experiment Design 

As mentioned in the previous section, the experimental investigation of 

supersaturation control of the seeded batch cooling crystallisation for Paracetamol in 

IPA was carried out in two different sets of experimental work. The experimental data 

was obtained from a laboratory scale crystallisation system at Loughborough 

University. This section describes the experimental setup, materials used and seed 

preparation in detail. 

5.3.1 Experimental Set-up 

The experiments were carried out in a 500 mL jacketed glass vessel. The temperature 

in the vessel was controlled with a stainless steel Pt100 thermocouple connected to a 

thermo fluid circulator bath (Huber Variostat CC-415 VPC) via a specially designed 

crystallisation control interface in Labview (National Instruments). The temperature 

readings were recorded every 10 seconds on a PC. Snapshots of the control interface 

are shown in Appendix B. An overhead PTFE coated 4-pitched blade was used to 

agitate the system at 360 rpm. This agitation speed was chosen to be high enough to 

guarantee that particles are well suspended throughout the process, but low enough to 

avoid attrition or generation of bubbles due to vortex formation. An FBRM probe 

(model D600L, Lasentec) was used to measure chord length distributions. FBRM data 

collection and monitoring was carried out by the FBRM control interface software 

(version 6.7). The probe was inserted into the solution to measure chord length 

distributions in the range 0.8 to 1000 μm (the lower limit therefore requires nucleation 

plus some growth to occur before detection occurs in the FBRM) using 38 bins. The 

position and orientation of the probe were chosen according to the standard 

recommendations to avoid particles adhering to the probe and provide suitable 

sampling. The distributions were collected at every 10 seconds and averaged during 

collection. The UV/vis spectra of the solution were measured using a Hellma 661.822 

ATR probe connected to a Carl Zeiss MCS621 UV/ vis spectrometer. Software 

written in LabVIEW (National Instruments) using libraries provided by Carl Zeiss 

was used for spectra collection. The absorbance was recorded at every 10 s over a 

wavelength range of 240 – 720 nm, and the absorbance values at selected wavelengths 
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were used in calibration to determine the concentration. The data collected by 

computers connected to FBRM and UV/vis were sent to a third computer, running the 

Crystallisation Process Informatics System (CryPRINS) software (in-house developed 

software) written in LabVIEW. This software is capable of receiving and sending data 

through an RS232 interface, by file sharing, or using an OPC (OLE, Object Linking 

and Embedding, for Process Control) server. The software enables the simultaneous 

monitoring of the data from various PAT tools and the implementation of the required 

temperature profiles in an automated way. A schematic representation of the 

equipment is shown in Figure 5.1. 

 

 
 
 

Figure 5.1: A schematic representation of the experimental set-up. 

5.3.2 Materials 

The experiments were carried out using pharmaceutical-grade Paracetamol (4- 

Acetamiphenol, 98% purity, purchased from Aldrich) and Analytical grade 2-
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Propanol (isoPropanol, IPA). Based on a saturation temperature of 323.16 K, the 

solution was prepared by mixing 63.02 g of Paracetamol in 300 g of IPA. Crystalline 

seeds of 3.151 gm (5% of 63.02 gm Paracetamol) were added to the system. For the 

current study, Paracetamol in IPA was selected as the model system as it is a widely 

used compound and relevant solubility data are easily available. 

5.3.3 Seed Preparation 

Paracetamol and IPA solution was prepared corresponding to a solubility of 21.07 g 

of Paracetamol per 100 g of water at 323.16 K. Paracetamol was dissolved in IPA by 

heating to 333.16 K at a rate of 0.67 K/min. The solution was equilibrated at 333.16 K 

for 15 minutes, to ensure complete dissolution of solids, and then the temperature of 

the solution was reduced from 333.16 K to 283.16 K following a linear cooling profile 

at a rate of 0.1 K/min. The solution was left at 283.16 K for 20 min so that newly 

nucleated crystals could grow. The crystals obtained were filtered, dried at 323.16 K 

for two hours, and then sieved using laboratory scale sieves. The consecutive sieve 

sizes used were 125-106 µm, 106-90 µm and 90-75 µm (coarser sizes were placed on 

the top and finer at the bottom).  

 

Figure 5.2: Microscopic image of seeds. 

The sieving time was 120 minutes, and the shaking caused the crystals to distribute 

throughout the sieve stack. The product obtained between the sieve sizes of 125-75 
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µm was collected for seeding. The required amount of the seed mass was achieved 

after several batches of sieving. Microscopic images of the seeds are shown in Figure 

5.2, which reveals that the crystal shape is irregular. 

5.3.4 Concentration Measurement 

Measurement of the solution concentration is the key to SSC of batch crystallisation 

systems. To maintain the operating curve along a constant supersaturation in the 

phase diagram the feedback controller requires continuous concentration 

measurement. In these experimental works an ATR-UV/Vis spectroscopy probe in 

conjunction with a suitable calibration model was used for concentration 

measurements. The applied solubility relation for Paracetamol in IPA was adopted 

from Hojjati and Rohani (2006). The solubility of Paracetamol in IPA is given by a 

second-order polynomial of Equation 5.1 (for details please see Hojjati and Rohani, 

2006). 

osol aTaTaTC ++= 1
2

2)(                  (5.1) 

where,  2a =0.00002742, 1a = 0.001328, and =oa 0.072027. 

The concentration is computed from the derivative of the absorbance at a 

characteristic wavelength of 240 – 720 nm for Paracetamol in IPA, using the 

calibration model of Equation 5.2 adopted from Saleemi et al. (2012b), 

dTbTbdbbC o 321 +++=                  (5.2) 

where, C  is the concentration in (g/g solvent), ob , 1b , 2b  and 3b  are the regression 

coefficients, d  is the derivative of absorbance at the selected wavelength, and T  is 

the system temperature. The term d  can either be the absorbance or the derivative of 

the absorbance (first or second) depending on the model selected. Since derivative 

absorbance can remove any baseline offset in the spectrum it was selected for this 

operation. A simple nonlinear term, expressed as the product of the derivative 

absorbance and temperature, is also included to improve the accuracy of the 



Chapter 5: Experimental Evaluation of the Hierarchical ILC (HILC) Approach for Supersaturation 
Control (SSC) of a Seeded Batch Cooling Crystalliser                                                                           99  

 

Iterative Learning Control of Crystallisation Processes                   2013 

calibration model (Saleemi et al., 2012b). The supersaturation is computed using the 

concentration measurement and the solubility information. In this study the absolute 

supersaturation ( S ) has been used, which is defined as the difference between the 

solution concentration and the equilibrium concentration (solubility) at a particular 

temperature as given by Equation 5.3, 

solCCS −=                    (5.3) 

5.4 Results and Discussions 

5.4.1 Results from ILC1 

Figure 5.3 shows the historical data of output SWMCL values of crystals at the end of 

the batches against input constant supersaturation (CSS) values. The results conform 

to the theoretical concept of the relation between mean crystal size and increasing 

supersaturation (SS) for growth-dominated processes (which are controlled in a 

supersaturation region where nucleation is negligible), i.e. with increasing 

supersaturation crystal grow to larger size. However, with further increase in 

supersaturation crystal nucleation dominates crystal growth and the overall CSD 

reduces (O'Grady, 2011) as also be seen from Figure 5.3. 
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Figure 5.3: Variation in SWMCL at the end of the batch with increasing supersaturation. 
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Figure 5.4 shows the SWCLD at the end for the historical batches along with the 

SWCLD of seeds added at the beginning. The seed distribution stands at the left most 

side and with increasing supersaturation the SWCLD curves tend to shift to the right 

as they produce bigger crystals. However, the SWCLD for SS=0.05 shifted to the left 

again which simply confirms the drop in CSD with increasing supersaturation.  
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Figure 5.4: Variation in CLD at the end of the batch with increasing supersaturation. 
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Figure 5.5: Variation in SWMCL over the batch with increasing supersaturation. 



Chapter 5: Experimental Evaluation of the Hierarchical ILC (HILC) Approach for Supersaturation 
Control (SSC) of a Seeded Batch Cooling Crystalliser                                                                           101  

 

Iterative Learning Control of Crystallisation Processes                   2013 

Figure 5.5 shows the SWMCL profiles for the historical batches for ILC1. This figure 

once again conforms to the findings in previous figures that with increasing 

supersaturation the SWMCL increases up to a level and then will decrease again. The 

nominal SWMCL was 88.5 μm and nominal CSS was 0.022. The first desired 

SWMCL at the end of the batch was set as 70 μm which was within the limit of these 

data and the second desired SWMCL was set as 80μm just outside the boundary. 

Based on these historical data, ILC1 calculated the desired CSS to be 0.017 for a 

SWMCL of 70 μm and 0.0223 for 80 μm indicated as 1 and 2 in Figure 5.3 

respectively.  

5.4.2 Results from ILC2 

5.4.2.1 Case 1: Required SWMCL within the limit  

As mentioned in Section 5.2, these experiments were performed under ILC2 

framework to determine the temperature profile needed to maintain a constant 

supersaturation over the entire batch to produce crystal with a desired SWMCL at the 

end of the batch. For this particular case, the desired SWMCL was chosen to lie 

within the bound of historical data as indicated by Point 1 in Figure 5.3. The constant 

supersaturation of SS = 0.017 needed to produce a SWMCL of 70μm was determined 

by ILC1 experiments (see subsection 5.4.1). The objective of this case study was to 

evaluate the performance and robustness of the proposed HILC scheme.  

Figure 5.6 (a) and Figure 5.6 (b) shows the trajectories of batches used as historical 

batches (HB) for ILC2 for Case 1 and Case 2, these figures include the nominal 

trajectories as well. All the temperature trajectories are cooling profiles and were 

chosen randomly (see subsection 4.4.1). The supersaturation (SS) curves were the 

corresponding output profiles. For all these experiments, the batch duration was 4 hr 

and 30 minutes and it was discretised in 9 intervals of 30 minutes to have 10 data 

points over the batches. For these experiments, the initial temperature was 323.16 K 

and the final temperature was 283.16 K, which were kept constant during all batches. 

A 5% (wt/wt) seed was added after the temperature reached 320.16 K in all cases. 

 



Chapter 5: Experimental Evaluation of the Hierarchical ILC (HILC) Approach for Supersaturation 
Control (SSC) of a Seeded Batch Cooling Crystalliser                                                                           102  

 

Iterative Learning Control of Crystallisation Processes                   2013 

0 30 60 90 120 150 180 210 240 270

-0.01

0.00

0.01

0.02

0.03

0.04

Time (min)

Su
pe

rs
at

ur
at

io
n

 

Desired
HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
Nominal

(a)  

0 50 100 150 200 250
280

285

290

295

300

305

310

315

320

325

Time (min)

T
em

pe
ra

tu
re

 (K
)

 

 

HB1
HB2
HB3
HB4
HB5
HB6
HB7
HB8
HB9
HB10
Nominal

(b)  

Figure 5.6: Trajectories of historical batches (a) SS trajectories (b) temperature trajectories. 

Figure 5.7 (a) to Figure 5.7 (f) shows the concentration profiles in the phase diagram 

for these ILC2 experiments. It is evident from the figures that the concentration 

profiles eventually became consistent from batch-to-batch and converged to the 

desired SS profile at (0.017) very closely. Figure 5.8 shows the SSE plot between 

desired supersaturation and the actual supersaturation in the system. It also shows that 

the SSE eventually decreased and the experiments were terminated after the 7th batch 

as SSE reached a stable value for two consecutive batches.  
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Figure 5.7: Plots for concentration profiles in the phase diagram for different experimental batches (a) 
Batch 1 (b) Batch 2 (c) Batch 3 (d) Batch 4 (e) Batch 5 (f) Batch 6. 
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Figure 5.9 shows the resulting SWMCL values for the experimental batches as 

obtained from FBRM data. After the 5th batch onwards the SWMCL subsided closer 

to the desired value of 70μm. The obtained SWMCL was 71μm after 7th batch. This 

error is subjected to the effect of linearising the system. Figure 5.10(a) to Figure 5.10 

(g) shows the microscopic images of the crystals taken. The images reveal that from 

an array of irregular shaped crystals finally the crystals adopted a regular size 

distribution as the system approached the set-point supersaturation more closely.   
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    Figure 5.8: Plot for SSE for different experimental batches. 
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Figure 5.9: Plot for SWMCL vs. no of experimental batches for Case 1. 
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Figure 5.10: Microscopic images of crystals (a) Batch 1 (b) Batch 2 (c) Batch 3 (d) Batch (e) Batch 5 
( f) Batch 6 (g) Batch 7. 
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5.4.2.2 Case 2: Required SWMCL outside the limit 

According to Section 5.2, these case study experiments were performed under ILC2 

framework to determine the temperature profile needed to maintain a constant 

supersaturation over the entire batch to produce crystal with a desired SWMCL at the 

end of the batch. For this particular case, the desired SWMCL was chosen to lie 

outside the bound of historical data as indicated by Point 2 in Figure 5.3. The extent 

of constant supersaturation required to maintain a SWMCL of 80μm was SS = 0.024 

which was determined by ILC1 experiments (see subsection 5.4.1). The objective of 

this case study was to evaluate the extrapolation performance of the proposed HILC 

scheme. For Case 2 experiments, the same set of historical data was used and exactly 

the same procedure was followed as mention in subsection 5.4.2.1. 

Figure 5.11 (a) to Figure 5.11 (g) shows the concentration profiles in the phase 

diagram for the ILC2 experiments. It is evident from the figures that the concentration 

profiles eventually became consistent from batch to batch and converged to the 

desired SS profile at (0.024) quite closely. This time the set-point was at a larger 

distance from the solubility than the previous case. Figure 5.12 shows the SSE plot 

between desired supersaturation and the actual supersaturation in the system. It also 

shows that the SSE eventually decreased and the experiments were terminated after 

the 7th batch as SSE reached a stable value for two consecutive batches. Figure 5.13 

shows the resulting SWMCL values for the experimental batches as obtained from 

FBRM data. It shows that SWMCL was always in the range of 78μm to 80μm, since 

the operating line of concentration was hovering in the same region of the phase 

diagram and shifting slowly to the desired set-point supersaturation. This is also 

indicated by Figure 5.12 which shows that the SSE was quite larger than the previous 

case. The obtained SWMCL was 79μm after 7th batch. This error is subjected to the 

effect of linearising the system. However, this SWMCL is in good consistency of the 

findings in Figure 5.3. Figure 5.14 (a) to Figure 5.14 (g) shows the microscopic 

images of the crystals taken. The images reveal that from an array of irregular shaped 

crystals finally the crystals adopted a regular size distribution as the system 

approached the set-point supersaturation more closely. 
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Figure 5.11: Phase diagrams for (a) Batch 1 (b) Batch 2 (c) Batch 3 (d) Batch 4 (e) Batch 5 (f) Batch 6 
(g) Batch 7. 
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  Figure 5.12: Plot for SSE for different experimental batches. 
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Figure 5.13: Plot for SWMCL vs. no of experimental batches for Case 2.  
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Figure 5.14: Microscopic images of crystals (a) Batch 1 (b) Batch 2 (c) Batch 3 (d) Batch (e) Batch 5 
(f) Batch 6 (g) Batch 7. 
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5.5 Conclusions 

In this chapter the proposed hierarchical ILC (HILC) for systematic design of 

supersaturation control of seeded batch cooling crystallisation (please see Chapter 4) 

was evaluated through laboratory scale experiments. The system was Paracetamol in 

IPA. The results from the two case studies indicate that HILC could converge to the 

desired set points closely. However, there is some discrepancy due to the linearisation 

of the system. This chapter also presents a successful application of various PAT tools 

(e.g. FBRM, UV/Vis probe) in robust optimal automated control of batch cooling 

crystallisation processes. Therefore, the proposed HILC can be used as a systematic 

design tool to select the required extent of supersaturation to produce crystals with 

desired end property. This is a simple data based approach hence does not require 

model building, extensive modelling or experimentation. 
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Chapter 6 

Direct Nucleation Control (DNC) 
Approach for Controlling Batch 
Crystallisation Processes 

 

6.1 Overview 

This chapter presents a systematic evaluation of direct nucleation control (DNC) 

approach of controlling batch cooling crystallisation systems. DNC, as named is 

aimed to control nucleation events to achieve the desired crystal size distribution 

(CSD) in a model free approach that requires no prior knowledge on nucleation or 

growth kinetics of the system and responds immediately to any unexpected 

disturbances. In order to examine the performance and robustness of proposed DNC 

approaches computer simulations were done in two phases and a novel twofold 

systematic evaluation of the proposed DNC approaches has been described in this 

chapter. Laboratory experimental results have also been included to justify the results 

of simulation case studies.  

6.2 Direct Nucleation Control (DNC) Approaches 

In crystallisation processes, focused beam reflectance measurement (FBRM) is used 

to provide both real time qualitative and quantitative information about nucleation and 

growth. It is often used as a complementary tool alongside other PAT tools (e.g. 

ATR-UV/Vis, BVI) for monitoring purpose or to trigger the switching between 

different predetermined operating conditions (Saleemi et al., 2012a) in open loop 

control and rarely used as a direct control tool (Chew et al., 2007b; Woo et al., 2009). 

Recently, Abu Bakar et al. (2009) proposed a novel model-free real time feedback 

control approach, that uses FBRM measurements. This approach, called direct 

nucleation control (DNC), relates the chord length distributions measurements to the 
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number and size of the particles present in the system to maintain a desired number of 

FBRM counts during the entire duration of crystallisation.  

The operating profile of conventional DNC in the phase diagram is represented in 

Figure 6.1. The main idea behind DNC approach is to automatically alter from 

cooling to heating cycles to generate nucleation or fines dissolution, for maintaining 

the number of counts/s at desired level. In the event, the number of counts/s exceeds 

the desired value or a certain acceptable limit, the system’s temperature increases 

causing the excess particles to be dissolved, which drives the process close to the 

solubility curve until the number of counts/s decreases. This controversial idea of 

including heating steps in typical cooling crystallisation concept benefits the system 

by providing in situ fine removal and eradicating the need for external heating loop 

installation.  

            

Figure 6.1: Conventional DNC operating profile in the phase diagram. 

The different DNC algorithms proposed in this work is described below in brief. The 

minimum and maximum temperature limits were specified for the system. 
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between cooling and heating as it crosses the desired target counts and continues the 

heating and cooling cycles until the total counts have stabilised close to the target 

value and the crystalliser temperature at its minimum limit.  

6.2.2 Predictive DNC Approach 

Figure 6.2(b) illustrates the algorithm of predictive DNC, used to maintain the total 

counts/s at its target value. In this method an upper and lower limits were used along 

with the target number of counts/s setpoint. Initially when everything is dissolved, the 

process starts cooling at a specified rate until the nucleation takes place and counts/s 

reached the lower limit. As it crosses the lower limit, the cooling rate is slowed until 

the upper limit is reached. After crossing the upper limit, the system adapts fast 

heating mode to facilitate the dissolution of fine particles and drives the number of 

counts/s measurements to fall below the upper limit. This turns on slow heating and 

keeps the system in heating mode until the counts is above the lower limit. The 

heating and cooling cycles continue until the total counts have stabilised in the 

specified range and the crystalliser temperature is at its minimum limit. 

6.2.3 Reverse DNC Approach 

Figure 6.2(c) illustrates the algorithm of reverse DNC. As described earlier, upper and 

lower limits on the number of counts/s were used. Initially when everything is 

dissolved, the process starts cooling at a specified rate to start nucleation and drive the 

counts/s to reach the lower limit. As it crosses the lower limit, the system switches to 

slow heating to suppress excess nucleation until the upper limit is reached. After 

crossing the upper limit, the system adapts fast heating mode to facilitate dissolution 

of fine particles and drives the number of counts/s to fall below the upper limit. This 

turns on slow cooling to prevent rapid dissolution of particles and keeps the system in 

slow cooling mode until the counts reside above the lower limit. The heating and 

cooling cycles continue until total counts have stabilised in the specified range and the 

temperature is at its minimum limit.  
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Figure 6.2: Algorithms of different DNC approach (a) Simple DNC (b) Predictive DNC (c) Reverse 
DNC (d) Basic DNC. 

6.2.4 Basic DNC Approach 

Figure 6.2(d) illustrates the algorithm of conventional DNC (Abu Bakar et al., 2009) 

used to maintain the total counts/s at its target value. In this method an upper limit 

was used along with the target setpoint. Initially when everything is dissolved, the 

process starts cooling at a specified rate until the nucleation takes place and counts/s 

reached the target. As it crosses the target, the cooling rate is slowed until the upper 

limit is reached. After crossing the upper limit, the system adapts fast heating mode to 

facilitate dissolution of fine particles and drives the number of counts/s measurements 

to fall below the upper limit. This turns on slow heating and keeps the system in 

heating mode until the counts is above the target. Once the number of counts/s falls 
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below the target, the system starts faster cooling again. One intelligent aspect is that, 

it itself can recognize whether it is in cooling or heating modes while changing from 

faster to slower cooling rates and vice versa. The heating and cooling cycles continue 

until the total counts have stabilised in the specified range and the crystalliser 

temperature at its minimum limit.  

In practice, during crystallisation processes, FBRM provides thousands of individual 

cord length measurements through its channels. The summation of the number of cord 

lengths detected gives the total number of counts/s (#/s) in the system. In this work, 

imitating the real life FBRM measurements, the total number of counts/s from a 

simulated system of Paracetamol in water is continuously sent to the simulated 

nucleation controller, where the measurement is compared against the target counts/s 

and the vessel jacket temperature ( jacketT ) was controlled accordingly. As the 

operating profile is always based on the real time detection of nucleation and 

dissolution events, the proposed approach is free from pre-designing a temperature 

profile. 

In order to examine its performance and robustness of the proposed DNC approaches, 

a comparison study has been carried out between a first principle model based optimal 

control and the model-free DNC approach. Computer simulations were done using an 

unseeded batch cooling crystallisation system of Paracetamol in water developed in 

MATLAB®. In the first phase, the mechanistic model was used to solve an open loop 

optimal control problem where the objective was to maximise the mean crystal length 

within a fixed batch time. The successive quadratic programming solution provides 

the optimal temperature trajectory, corresponding number of counts and the total 

length. In the second phase, treating the MATLAB® model as the real process the 

performance of DNC was evaluated by setting the optimal number of counts as the 

control target. In addition, the DNC approach itself was evaluated by changing the 

algorithm of the DNC; varying the acceptable range of counts limits; increasing and 

decreasing the target of counts/s; and changing the heating and cooling rates for the 

same system. The results identified the advantages and disadvantages of different 
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DNC structures in terms of producing large uniform crystals, reduced number of 

cooling-heating loops, reduced batch time while maintaining the same yield.  

6.3 Experimental Set-up and Materials 

The experimental set-up was the same as described in the subsection 5.3.2 in Chapter 

5. The only difference was that a PVM probe, Model V819 by Mettler Toledo was 

inserted in to the system to capture in situ images of the crystals. The probe was 

connected to a third computer to store the image sequences captured. 

The laboratory experiments were carried out using pharmaceutical-grade Paracetamol 

(4- acetaminophenol, 98% purity, purchased from Aldrich) and Analytical grade 2-

Propanol (isopropanol, IPA). The solute (paracetamol in IPA) concentration in all 

experiments was 0.21 g g-1 solvent.  

Two DNC experiments, one Basic DNC and one Simple DNC were performed under 

similar experimental conditions using the same experimental setup. The target was 

4000 counts/s with a cooling rate of -0.3 °K/min and heating rate of 0.K °C/min. For 

Basic DNC the acceptable range was ±200 counts/s. In both experiments, the cooling 

was initiated after complete dissolution and was continued until primary nucleation 

occurred (in situ seed generation). 

6.4 Results and Discussions 

6.4.1 Simulation Case Studies 

Batch Cooling Crystalliser 

A simulation program was developed in MATLAB® for Paracetamol in water system 

to treat as the real process. The kinetics of this unseeded system has been described in 

subsection 3.3.2. As previous case studies, the initial and final temperatures were 

314.13K and 294.15K respectively. The model parameters are shown in Table 6.1.  
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Table 6.1: Parameters of the Crystallisation Model 

Solubility in water (T in K) 31.110057.91058.1 325 +×−×= −− TTCS  

Growth rate  
⎩
⎨
⎧

≤×
>×

=
0    644.1-
0   64.1 54.1

SifS
SifS

G  

Nucleation rate ⎪⎩

⎪
⎨
⎧

≤××

>××+××
=

0    4108529.7-

0    4101.34108529.7
8.319

3
8.5208.719

SifS

SifμSS
B

 
Density of crystal (g/cm3) ρ = 1.296 
Volumetric shape factor  vk = 0.24 

Initial concentration (g/g solvent) 0C = 0.0254  

The unseeded nucleation rate for the system is given as, 

aband μSKSKB b
b

a
a <+=    3                                                                              (6.4)  

where, a
a SK  stands for primary nucleation and 3μSK b

b  for secondary nucleation. 

Figure 6.3 shows the nucleation rate, B  against S . It is evident from the plot that, 

while only primary nucleation is considered, the rate increases very slowly for smaller 

supersaturation and only when the system goes far in the metastable zone (i.e. higher 

supesaturation) the rate increases considerably. In case of a combined primary and 

secondary nucleation system, initially primary nucleation dominates until the surface 

area of the crystals are large enough for substantial secondary nucleation to occur, 

which then accelerates the formation of number of counts/s even for a smaller 

supersaturation.  

Another, important aspect of this model is the inclusion of dissolution and 

disappearance rates (negative G  and B  respectively, when 0 ≤S . These rates are as 

important as nucleation and growth rates in batch crystallisation, to produce a uniform 

and reproducible CSD (Nagy et al., 2011). During the process, different sizes of 

crystals are present in the system due to simultaneous nucleation and growth, attrition, 

breakage and agglomeration. A controlled dissolution event dissolves out small 

crystals (fines dissolution) and aids the production of large crystals. Hence, a 

combined mechanism of nucleation-growth-dissolution provides better control over 

batch crystallisation. For this system, since the growth rate is slower than nucleation 
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rate as given in Table 6.1, the system is nucleation dominated and both dissolution 

and disappearance rates are faster than nucleation and growth rates as expected.  
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Figure 6.3: Primary and secondary nucleation rates. 

6.4.1.1 Phase 1: Model Based Open Loop Optimal Control  

The simulation model developed above is used to optimise its performance. In open 

loop optimal control of a batch process generally the time profile of the manipulated 

variable is determined that optimises the process performance. For a batch cooling 

crystalliser, the manipulated variable is reactor jacket temperature jacketT . In this 

work,  the objective function was to maximise the mean crystal size ( Ln ) defined in 

Equation 6.5, leading to the optimal control problem of Equation 6.6.  

0

1

μ
μLn =                                                 (6.5) 

Ln
NTTT )(),.....,2(),1(

max                                   (6.6) 

The system is subjected to the following constraints, 

max,

maxmin

maxmin

and ,/
,)(

finalfinal CC
RdtdTR

TkTT

≤
≤≤

≤≤

                  (6.7)
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where, minT , maxT , minR , and maxR  are the minimum and maximum temperatures and 

temperature ramp rates, respectively, during the batch. The first two inequality 

constraints ensure that the optimised temperature profile is implementable. The last 

inequality constraint is imposed to ensure minimum yield as specified by economic 

considerations (Miller and Rawlings, 1994; Nagy et al., 2008a). The optimisation 

problem is solved using a sequential quadratic programming (SQP) approach 

implemented in the MATLAB® function fmincon. Figure 6.4 (a) shows the optimal 

temperature trajectory. Initially the temperature drops to create nuclei by primary 

nucleation (Doki et al., 2002) after that secondary nucleation takes hold and 

temperature decreases at different rates. The mean length of crystals increase steadily 

(please see Figure 6.4 (a)) with the maximum value at the end of the batch equal to 

0.015 cm. The )(TC  trajectory corresponding to the optimum temperature profile 

from Figure 6.4 (a) is shown in Figure 6.4 (b).  
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Figure 6.4: Simulated optimum profiles (a) temperature profile and change in mean length (b) 
concentration profile with simulated metastable limit (c) number of counts/s and total length (d) 

supersaturation profile. 
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The optimum temperature profile creates a higher supersaturation at the beginning to 

generate the initial nuclei, and then it keeps a nearly constant supersaturation within 

the metastable zone for remaining of the batch as expected for an unseeded system. In 

this work, the metastable limit was generated by simulating six batches of linear 

cooling crystallisation system for different initial temperature leading to different 

initial concentration. From all these simulations, the point of maximum 

supersaturation was noted and plotted in the concentration vs. temperature plot (see 

Figure 6.4 (b)). Figure 6.4 (c) shows optimal number of counts and corresponding 

total length with time. Figure 6.4 (d) shows the supersaturation profile; initially the 

high driving force for the growth of seed crystals causes the supersaturation to 

achieve its peak value at about 66 minute. After the initial peak at around 66 minutes 

to 134 minutes, the supersaturation raises again during 400 minute leading to 

additional nucleation events and growth. 

6.4.1.2 Phase 2: Evaluation of Different DNC Algorithms  

In the second phase of simulation case studies, various structures of DNC (simple, 

predictive, reverse and basic) were evaluated. Under each structure the target number 

of counts/s were changed as, i) optimal counts; ii) 100% increase in optimal counts; 

and iii) 50% reduction in optimal counts, and under each target various acceptable 

ranges (e.g. 100 and ; 1000 ; 500 ±±± ) were tested where applicable. Equation 6.8 

shows the expression of the controller that was used in the DNC algorithm to 

calculate the successive temperatures (T ). 

tRiTiT Δ×±=+ )()1(                                       (6.8) 

where, Ni ,...,3,2,1=  and N  is the total number of observation at an interval ( tΔ ) of 

40 seconds throughout the batch, R  is the rate of cooling and heating (i.e. R+  is the 

heating rate and R−  is the cooling rate).  

The crucial design parameters of the DNC approach are the cooling and heating rates. 

Initially for a new system, it requires some trial runs to tune the cooling and heating 

rates to their bests. Conventionally, for a system that is nucleation dominated, lower 

cooling rates are preferable. It was observed that the present system was growth 
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dominated; hence, the determined cooling rates were higher than the heating rates in 

all case. Another important point to be noted that though the heating rates were almost 

the same for all the cases, the system was quite sensitive to the rate of cooling. A 

higher cooling rate (for both fast and slow cooling) is required for a larger target and 

vice versa. Selection of an appropriate cooling rate is a challenge because a wrong 

rate may take the system far away from the metastable zone resulting in excessive 

nucleation or render the system in overheated condition resulting in very small or no 

crystals at all. Finally, after several trial runs the appropriate cooling and heating rates 

were carefully selected so that the operating curve (OC) does not cross the solubility 

curve (SC) and go to the undersaturated region during the simulation case studies as 

discussed below. 

Case 1: The Simple DNC 

The Simple DNC structure was investigated to understand the impact of introducing 

heating steps in typical cooling crystallisation systems and to compare the approach 

with model based optimal control. Figure 6.4 (a-c) shows the target counts/s along 

with the temperature profile for different cases. In each case there is zero offset with 

respect to counts/s. However, the system took the longest batch time of 1000 minutes 

for the optimal target case. The temperature profile shows instability resulting in too 

many heating-cooling loops in the phase diagrams of Figure 6.6 (a-c) where OC is the 

operating curve and SC is the solubility curve. 
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Figure 6.5: Counts/s and temperature profiles for simple DNC when the target is (a) optimal 
counts/s (b) doubled optimal counts/s (c) optimal counts/s is reduced by 50%. 
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Figure 6.6: Cooling-heating cycles in simple DNC approach when the target is (a) optimal counts/s 
(b) doubled optimal counts/s (c) optimal counts/s is reduced by 50%. 

Case 2: Applying the Predictive DNC Approach 

The aim of this experiment was to understand the impact of using acceptable ranges 

of target counts/s, as well as, its impact on batch time and offset. Figure 6.7 (a-c) 

shows, how the set point target of counts/s was achieved along with the mean length 

and temperature profile when optimal counts/s is the target. System’s responses with 

different acceptable ranges were plotted in the same plot to compare their effects. It is 

shown clearly that, with a smaller acceptable range of ± 100 counts/s, the target was 

achieved very closely (offset is 65.8) and for the largest range of ± 1000 counts/s, it 

was the maximum (offset is -744) from the target as expected. In addition, the initial 

overshoot was less for case; Target Counts (TC) ± 1000, as it started to slow down the 

cooling rate earlier and it took least time to stabilise because of its less sensitivity to 

the target. For all cases, the mean length of crystals were three times greater than the 

optimal mean length of 0.015 cm with the maximum achieved by TC ± 1000 case of 

0.048 cm. This was because, in these studies the yield achieved was 3.5 % greater 

than the optimal case. All three simulations took 220 to 280 minutes to finish which 

was less than the time used in the optimal case study. All the cases started from 314 K 

and ended at 294.15 K. Similar results were obtained for cases, when the target was 

double the optimal counts/s and half the optimal counts/s as shown in Figures 6.8 (a-

c) and Figure 6.9 (a-c) respectively. Figure 6.10 shows the temperature loops created 

by the operating curve (OC) in phase diagram.  



Chapter 6: Direct Nucleation Control (DNC) Approach for Controlling Batch Crystallisation 
Processes                                                                                     123 

 

Iterative Learning Control of Crystallisation Processes                   2013 

0 100 200 300

1

2

3

4

5

6

7

8

9

10

x 10
4

Time (min)

μ
0

 

 

TC±500
TC±1000
TC±100

0 100 200 300

296

298

300

302

304

306

308

310

312

314

Time (min)

Te
m

p.
 (K

)
 

 

TC±500
TC±1000
TC±100

0 100 200 300

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (min)

Ln
 (c

m
)

 

 

TC±500
TC±1000
TC±100

100 200 300
6000

6500

7000

7500

8000

(b) (c)(a)

Set point 

 
Figure 6.7: Predictive DNC (a) counts/s (b) mean length (c) temperature profile when optimal 

counts/s is the target. 
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Figure 6.8: Predictive DNC (a) counts/s (b) mean length (c) temperature profile when optimal 

counts/s is doubled and set as the target. 
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Figure 6.9: Predictive DNC a) counts/s b) mean length c) temperature profile when optimal counts/s 

is reduced by 50% and set as the target. 
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For all cases, the number of cycles increases with the decrease of acceptable ranges as 

the system becomes more target sensitive. In addition it took longer batch time and 

more temperature loops as the target counts/s was set double of the optimal counts/s. 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)
co

nc
. (

g/
g 

w
at

er
)

 
295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

OC
SC

OC
SC

OC
SC

OC
SC

OC
SC

OC
SC

OC
SC

OC
SC

(d) (e) (f)

(h)

(a) (b) (c)

(g)
 

Figure 6.10: Cooling-heating cycles in Predictive DNC approach with target limits (a) optimal 
counts ±500 (b) optimal counts ±1000 (c) optimal counts ±100 (d) double of optimal counts ±500 (e) 
double of optimal counts ±1000 (f) double of optimal counts ±100 (g) half of optimal counts ±500 (h) 

half of optimal counts ±100. 

Case 3: Applying the Reverse DNC Approach  

The aim of this experiment was to investigate the effect of a different DNC structure 

on offset, batch time and temperature loops. Figure 6.11 (a-c) shows, how the set 

point target of counts/s was achieved along the temperature profile when optimal 

counts/s is the target. System’s responses with different acceptable ranges were 

plotted in the same plot to compare their effects. It is shown clearly that, in this case 

the batch time reduces for TC±100 case (see Figure 6.11 and Figure 6.12). The 

inclusion of heating as the counts/s crosses the target limit made the system more 

unstable with many smaller cooling-heating cycles. The minimum offset was 100 for 
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TC±100 case and it was 35% larger than the predictive DNC. It was also observed 

that this structure has the tendency of oscillating either around the upper or lower 

acceptable limit. Batch times increased as compared to the conventional DNC cases 

by about 100 minutes and for the TC± 500 case, batch time was greater than the 

optimal batch time as well. Similar results were obtained for the case where the target 

was double the optimal counts/s. Figure 6.13 shows the temperature loops in phase 

diagram. As it is seen in the temperature profiles (please see Figure 6.11 (b) and 

Figure 6.12 (b)), there are many temperature loops created in this structure. 
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Figure 6.11: Reverse DNC (a) counts/s (b) mean length (c) temperature profile when optimal 
counts/s is the target. 
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Figure 6.12: Reverse DNC (a) counts/s (b) mean length (c) temperature profile when optimal 

counts/s is doubled and set as the target. 
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Figure 6.13: Cooling-heating cycles in Reverse DNC approach (a) optimal counts/s± 500 (b) optimal 
counts/s± 100 (c) doubled optimal counts/s± 500 (d) doubled optimal counts/s± 100.   

Case 4: Applying the basic DNC approach 

The aim of this experiment was to investigate the effect of eliminating the lower 

bound of target counts/s. The effects of introducing heating steps as well as its 

performance compared to model based optimal control was also examined. Figure 

6.14 (a-c) shows, how the set point target of counts/s was achieved along with the 

mean length and temperature profile when optimal counts/s is the target. System’s 

responses with different acceptable ranges were plotted in the same plot to compare 

their effects. As usual, with a smaller acceptable range of +100 counts/s, the target 

was achieved very closely (offset was 95) and for the largest range of +1000 counts/s, 

it was the maximum (offset was 490) from the target as expected. The initial 

overshoot was the same for all. For all cases, the mean length of crystals ( Ln ) were 

almost three times greater than the optimal mean length of 0.015 cm with the 

maximum achieved by TC+100 case of 0.0435 cm. This was because, in these studies 

the yield achieved was 3.5 % greater than the optimal case. All three simulations took 

200 to 240 minutes to finish which was less than the time used in the optimal case 

study. Similar results were obtained for cases, when the target was double the optimal 
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counts/s and half the optimal counts/s as shown in Figures 6.15 (a-c) and Figure 6.16 

(a-c) respectively. All the cases started from 314 K and ended at 294.15 K. The 

bottleneck of this approach is the rate of cooling. A higher cooling rate (for both fast 

and slow cooling) is required for large target and vice versa. The heating rates were 

almost the same for all the cases. Therefore, selection of an appropriate cooling rate is 

a challenge for this approach. Figure 6.17 shows the temperature loops created by the 

operating curve (OC) in the phase diagram.  
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Figure 6.14: Basic DNC (a) counts/s (b) mean length (c) temperature profile when optimal counts/s 
is the target. 
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Figure 6.15: Basic DNC (a) counts/s (b) mean length (c) temperature profile when optimal counts/s 
is doubled and set as the target. 
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Figure 6.16: Basic DNC (a) counts/s (b) mean length (c) temperature profile when optimal counts/s 
is reduced by 50% and set as the target. 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

295 300 305 310

0.015

0.02

0.025

Time (min)

co
nc

. (
g/

g 
w

at
er

)

 

 

OC
SC

OC
SC

OC
SC

OC
SC

OC
SC

OC
SC

OC
SC

OC
SC

(h)

(f)(e)(d)

(b) (c)(a)

(g)  

Figure 6.17: Cooling-heating cycles in Basic DNC approach with target limits (a) optimal counts 
±500 (b) optimal counts ±1000 (c) optimal counts ±100 (d) double of optimal counts ±500 (e) double 
of optimal counts ±1000 (f) double of optimal counts ±100 (g) half of optimal counts ±500 (h) half of 

optimal counts ±100. 
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6.4.2 DNC Experiments 

Figure 6.18 and Figure 6.19 shows the results of the Basic and Simple DNC 

respectively.  
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Figure 6.18: Temperature and counts/s profile for the Basic DNC.         
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Figure 6.19: Temperature and counts/s profile for the Simple DNC. 
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In both cases, primary nucleation generated a significant overshoot in the FBRM 

counts/s which took place at about 278.16 K. The large primary nucleation zone 

generated very high initial supersaturation, leading to a very fast and significant 

nucleation. Due to the overshoot the DNC system switched to the heating stage 

automatically. Since, in the second and subsequent cooling cycles particles were 

already present, both the DNC automatically switches to the heating stage earlier as 

the increase in counts/s is detected leading to the smaller cycles. These results exhibit 

the core advantage of the DNC approach, that it can detect any variations in number 

of counts/s and can change the operating conditions (heating or cooling rates) 

accordingly.  
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Figure 6.20: SWMCL over the entire batch time of the crystals produced by Basic DNC and Simple 

DNC experiments.  

Figure 6.20 shows the comparative square weighted mean chord lengths (SWMCL) 

results and Figure 6.21 shows a comparison of the square weighted chord length 

distributions (SWCLD) for the two DNC experiments. After the systems stabilised, 

SWMCL for Basic DNC was 94.15 μm and for Simple DNC it as 93.88 μm and both 

the DNCs showed unimodal SWCLD at the end of the batch. The PVM images of 

Basic and Simple DNC have been shown in Figure 6.22 (a) and Figure 6.22 (b) 

respectively. These PVM figures also reveal that the crystals produced by different 

DNC approaches are of almost similar size and shapes.   
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 Figure 6.21: SWCLD at the end of the batches. 

 
(a) 

 
(b) 

Figure 6.22: PVM images of (a) Basic DNC (b) Simple DNC.  

6.4.3 Comparative Analysis of Different Simulated and Experimental DNC 

Results 

DNC works through a feedback control strategy, which reduces the solution 

temperature to create nuclei up to a desired number of counts/s and increases the 

temperature to dissolve excess nuclei. The results of simulation case studies, Case 1 to 

Case 4 reveal the performances of different DNC structures. The observations are 

listed below, 
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1. While comparing the results (i.e. yield, mean crystal length, batch time) with 

those obtained by model based optimal control, it was found that all the DNC 

structures provide better results in terms of increased yield (3.5%) and larger 

mean crystal length (215%) though some batches were unusually lengthy. In 

fact, all the results prove the robustness of DNC as a crystallisation control 

method.  

2. It was observed that the mean crystal length mainly depends on the target 

counts/s; that is, a lower target counts/s resulted in larger crystals with the 

same yield produced as larger target counts/s produces. 

3. In the cases of Reverse and Simple DNC, more heating/cooling cycles were 

generated resulting in longer batch times and it was more difficult to control 

the process at lower counts/s. These results indeed reflect the overprotective 

design of reverse and imperceptive design of Simple DNC structures. 

4. While designing the Reverse DNC structure, it was expected to reduce the 

initial overshoot in counts/s as an early heating step was introduced. However, 

the results showed there is no improvement with this end. 

5. Only the Simple DNC structure maintained zero offset with respect to target 

counts/s for all three conditions.  

6. Although, the pattern and the number of temperature cycles were the same for 

both Basic and Predictive DNC structure whilst the later took a slightly longer 

batch time.  

7. The main difference between basic and other DNC was that, in Basic DNC the 

final no. of counts/s always resided over the target as compared to other 

structures where the final counts/s tended to reside within the lower and upper 

bounds. As a result, sometimes there was reduced number of counts/s at the 

end of the batch.  

8. It was found that the Basic DNC provided the best performance with respect 

to reduced batch time while maintaining the same yield as other structures.  

9. As observed in the simulation case studies, the Basic DNC requires less 

number of heating-cooling loops than the Simple DNC. In addition, for the 

Simple DNC it was more difficult to maintain the counts without any 

acceptable range which led to relatively noisy temperature which kept 
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changing towards the end. As it was observed in simulations, the Simple DNC 

took longer batch time (600 min) to reach and stabilize at the desired # 

counts/sec than the Basic DNC (470 min). 

Since, in batch crystallisation, the focus is to produce large uniform crystals within a 

given time (Nagy et al., 2008a); the performance of the Basic DNC is preferable over 

other DNC structures. 

6.5 Conclusions   

A strategic evaluation of different direct nucleation control (DNC) approaches were 

performed for the first time to compare its performance with model based optimal 

control of a batch cooling crystallisation system of paracetamol in water. In addition, 

different DNC structures were examined to understand the impact of different designs 

on batch length, mean crystal size and the number of cooling-heating cycles required 

to reach the target counts/s. Simulation case studies were performed to controls the 

amount of nuclei present in the system directly by imitating the performance of 

FBRM in real life. It was also shown that the laboratory DNC experimental results 

conform to the simulation findings successfully. The bottleneck of the proposed DNC 

approach is determination of the appropriate cooling and heating rates, which 

demands extensive trial and error experimentation to finalise these rates. The main 

advantage of this simple model free approach is continuous in situ fine removal 

during the heating stages without the installation of external heating loops leading to 

the growth of larger crystals even in the presence of unknown disturbances.   
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Chapter 7 

Polynomial Chaos Expansion (PCE) 
Based Modelling and Optimisation of 
Batch Crystallisation Processes 
 

7.1 Overview 

In this chapter an operating data based surrogate modelling and optimisation 

technique has been developed for batch crystallisation processes. The proposed 

methodology is based on polynomial chaos expansion (PCE) containing orthogonal 

basis with respect to the Gaussian probability measure. The method was successfully 

applied for designing nonlinear surrogate model of a batch cooling crystallisation 

system of Paracetamol in water. Initially, a MatLab model of the system (see Chapter 

3) was treated as the real process and used to generate historical data. The system was 

then re-identified under the nonlinear PCE scheme using those historical data. The 

developed model was then validated by using different inputs. Later the nonlinear 

model was used to optimise the temperature profile needed to obtain a desired mean 

length of crystals at the end of the batch. A brief introduction about the state of the 

art, development of the methodology and simulated results have been presented and 

discussed herein. 

7.2 Introduction 

There is a growing emphasis on the control of complex distributed parameter 

chemical systems due to the boost of computing power, significant evolution in sensor 

and actuator, and the development of modern optimisation and model reduction 

algorithms (Roman et al., 2009; Araujo et al., 2007; Skogestad, 2004). Typically 

batch processes are distributed in nature that are widely applied in many sectors of the 

chemical industries including many high value products such as pharmaceuticals, 

batteries, microelectronic devices, and artificial organs which are manufactured using 
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finite-time processing steps. These processes often throw up many challenging issues 

which engineers must endeavour to understand, model, and control (Ekpo, 2006). A 

few of these are time varying characteristics, strongly nonlinear behaviour, and the 

presence of disturbances. Because of this inherent nonlinearity of batch processes, the 

use of typical linear data-driven modelling approaches cannot yield models with 

acceptable accuracy and robustness. In addition, due to the limited availability of 

robust on-line sensors, often only off-line quality measurements are widely available. 

As a result, there is a growing demand for the development of relatively simple data-

driven and computationally efficient nonlinear models that can be applied for robust 

model based optimisation or the robust optimal control of these processes. 

One general trend is to state a system as a polynomial based on the assumption that a 

finite sum of polynomials can accurately approximate the function of interest. For 

polynomial approximations, orthogonal polynomials are often used. (Kim and Braatz, 

2012) and different orthogonal functions are optimal for different parameter 

probability density functions (PDFs) (e.g. Gaussian, Gamma, Beta, Uniform, Poisson, 

Binomial). Table 7.1 summarises the correspondence between the choice of 

polynomials and the type of distribution of the random variables.  

Table 7.1: Most Common Distributions of Random Parameters with Corresponding 
Polynomial Bases (Nagy and Braatz, 2010) 
 

Random variable Polynomials 

Beta Jacobi 

Gamma Laguerre 

Gaussian  Hermite  

Uniform  Legendre 

Since PCE contains orthogonal basis with respect to the Gaussian probability 

measure, it is stated as an expansion of multidimensional Hermite polynomial 

functions of the uncertain parameters. PCE can be used to replace a nonlinear system 

with surrogate model that accurately describes the input-to-state and input-to-output 

behaviour within the trajectory bundle (Braatz, 2010).  
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After the introduction of PCE by Wiener in the late thirties for turbulence modeling 

(Wiener, 1938) only relatively recently PCE has been widely accepted and applied in 

different disciplines, e.g. climate modelling, hurricane prediction, computational fluid 

dynamics (CFD), and batch process control for uncertainty propagation (Nagy and 

Braatz, 2007; Huan and Marzouk, 2013). Researchers have also demonstrated that use 

of PCE promises to be a computationally efficient and cheap alternative to Monte 

Carlo (MC) approaches for analysis and controller design of uncertain systems (Kim 

and Braatz, 2012; Augustin et al., 2008). However, despite their potential to capture 

the systems nonlinear behavior until now only a few studies have been directed 

towards the application of PCE in the field of batch chemical processing. PCE is well 

suited to robust design and control when the objectives are strongly dependent on the 

shape or tails of the distributions of product quality or economic objectives. PCE is 

convergent in the mean-square sense (Ghanem and Spanos, 1991), so the coefficients 

in the PCE can be calculated using least-squares minimisation (LSM) considering 

sample input/output pairs from a complex model or directly from experiments.  

In this work polynomial chaos expansion (PCE) is used to provide surrogate models 

for a batch crystallisation process. In addition, performance analysis was performed 

on the surrogate model to evaluate its accuracy. Later this model was used to optimise 

the temperature profile required to obtain a desired mean length of crystal at the end 

of the batch for analysing the robustness of the developed surrogate model.   

7.3 Methodology Development 

This work presents a computationally efficient approach to represent a data-driven 

input/output model between the finite-time control trajectories and the quality index at 

the end of the batch, based on the approximate representation of the full process 

model via PCE. The batch cooling crystallisation system of Paracetamol in water was 

used to estimate the dependence of output mean length of crystals at the end of the 

batch on the temperature trajectory used during the crystallisation. The methodology 

followed the PCE approach described by Nagy and Braatz (2007). If the input 

temperature trajectory described in terms of standard normal random variables, the 

polynomial chaos expansion (PCE) can describe the model output ψ  as an expansion 
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of multidimensional Hermite polynomial functions of the input parameters θ  (Nagy 

and Braatz, 2010). Using the Hermite bases in the PCE, the output can be expressed 

as shown in Equation 7.1, in terms of the standard random normal variables }{ iθ  

using an expansion of order d , 
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of their arguments, the subscripts denote the order of the expansion which is 

convergent in the mean square. The Hermite polynomials of order greater than one 

have mean zero, and polynomials of different order are orthogonal to each other; so 

are polynomials of the same order with a different argument list. Up to the third order, 

the Hermite polynomials are given by the set of expressions given by Equation 7.2, 
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A combined alternative expression for deriving the multi-dimensional Hermite 

polynomials of degree ),...,(,,...,, 121 mimθn θθiiim Γ=  is shown in Equation 7.3, 
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The parameter vector in the proposed approach represents the temperature values at 

the discretised batch times. The polynomial chaos terms are random variables, since 

they are functions of the random variables, and terms of different order are orthogonal 

to each other (with respect to an inner product defined in Gaussian measures as the 
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expected value of the product of the two random variable, i.e. jiji Γ≠Γ=ΓΓε for    0][ . 

In PCE any form of polynomial could be used but the properties of orthogonal 

polynomials make the uncertainty analysis more efficient (Nagy and Braatz, 2007). 

The number of coefficients )(N  in the PCE depends on the number of uncertain 

parameters ( θn ) and the order of expansion ( m ), Equation 7.4 shows the general 

formula for the determination of number of coefficients, 
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Figure 7.1 shows the flowchart summarising the PCE based surrogate modelling and 

model optimisation steps. 
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Figure 7.1: The flowchart summarising the PCE based surrogate modelling and model optimisation 

steps. 
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For most engineering applications, in order to adequately representing fairly large 

levels of random fluctuations the recommended order of expansion is not higher than 

four (Ghanem and Spanos, 1991). Since, the PCE is convergent in the mean-square 

sense it is beneficial to calculate the coefficients (e.g. )(
321

)(
21

)(
1

 and,, d
iii

d
ii

d
i aaa ) using least-

square minimisation (LSM) considering sample input/output pairs from the model. 

During computer simulations, the LSM based determination of the PCE coefficients 

run the optimisation repeatedly from the previous solution to allow convergence to the 

best PCE parameters. In this way, the best fit is achieved between the surrogate PCE 

model and the nonlinear model (or experimental data).  

7.4 Results and Discussions 

7.4.1 Surrogate Model Identification and Validation 

The application of PCE for the surrogate modelling of the batch crystallisation 

process was evaluated first via simulations. In this case, a detailed mathematical 

model of the batch crystallisation system was developed and treated as the real 

processes to generate historical input output data. The details of the mathematical 

model development and historical data generation have been given in Chapter 3. For 

this particular study, thirty sets of historical data were used as training data. The 

criterion for generating the training data was to span the behaviour of the states as 

much as possible so that they can capture the system’s response. The inputs were the 

temperature trajectories discretised in 9 points (hence 10 input parameters, iθ ) over 

the batch duration. The output was the corresponding mean length of crystal ( Ln ) at 

the end of the batch (i.e. a single parameter). The system was then re-identified under 

the nonlinear PCE scheme using these training data. Both second and third order PCE 

was tested. For second and third order PCE with 10 parameters, the numbers of 

coefficients are 66 and 286 respectively according to Equation 7.4. The Hermite 

polynomials for the second-order-ten-dimensional PCE have been shown in Table 7.2 

and the Hermite polynomials for the third-order-ten-dimensional PCE have been 

given in Appendix E. 
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Table 7.2: Hermite Polynomials for the Second-Order-Ten-Dimensional PCE 

ith 

Polynomial 

Chaos 

iΓ  Order of 

Polynomial 

Chaos 

ith 

Polynomial 

Chaos 

iΓ  Order of 

Polynomial 

Chaos 

0 1 1 33 )( 63θθ  2 
1 1θ  1 34 )( 73θθ  2 
2 2θ  1 35 )( 83θθ  2 
3 3θ  1 36 )( 93θθ  2 
4 4θ  1 37 )( 103θθ  2 
5 5θ  1 38 )1( 2

4 −θ  2 

6 6θ  1 39 )( 54θθ  2 

7 7θ  1 40 )( 64θθ  2 
8 8θ  1 41 )( 74θθ  2 
9 9θ  1 42 )( 84θθ  2 
10 10θ  1 43 )( 94θθ  2 
11 )1( 2

1 −θ  2 44 )( 104θθ  2 

12 )( 21θθ  2 45 )1( 2
5 −θ  2 

13 )( 31θθ  2 46 )( 65θθ  2 
14 )( 41θθ  2 47 )( 75θθ  2 
15 )( 51θθ  2 48 )( 85θθ  2 
16 )( 61θθ  2 49 )( 95θθ  2 
17 )( 71θθ  2 50 )( 105θθ  2 
18 )( 81θθ  2 51 )1( 2

6 −θ  2 

19 )( 91θθ  2 52 )( 76θθ  2 
20 )( 101θθ  2 53 )( 86θθ  2 
21 )1( 2

2 −θ  2 54 )( 96θθ  2 

22 )( 32θθ  2 55 )( 106θθ  2 
23 )( 42θθ  2 56 )1( 2

7 −θ  2 

24 )( 52θθ  2 57 )( 87θθ  2 
25 )( 62θθ  2 58 )( 97θθ  2 
26 )( 72θθ  2 59 )( 107θθ  2 
27 )( 82θθ  2 60 )1( 2

8 −θ  2 

28 )( 92θθ  2 61 )( 98θθ  2 
29 )( 102θθ  2 62 )( 108θθ  2 
30 )1( 2

3 −θ  2 63 )1( 2
9 −θ  2 

31 )( 43θθ  2 64 )( 109θθ  2 
32 )( 53θθ  2 65 )1( 2

10 −θ  2 
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In order to initiate the calculation of the PCE coefficients by the LSM method, a set of 

initial coefficients were assumed randomly. Selection of the initial coefficients is 

important since they affect the accuracy of the approximation. For this study, initial 

coefficients were selected through successive trials, i.e. the simulation were continued 

from one trial to another using the coefficients calculated by the previous trial as the 

initial guess for the next trial until there was no further improvement in prediction 

accuracy. Afterwards, the surrogate model was validated using other input profiles, 

which were not used in the training data. The validation data were selected as such 

that some input profiles lead to Ln  within the range used for the PCE identification 

and some were outside the range to check extrapolation ability too. The results of the 

second order and third order PCE prediction have been shown in Figure 7.2 (a), 7.2(b) 

and Figure 7.3 (a), 7.3 (b) respectively along with the validation points. 
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Figure 7.2: Prediction of the second order PCE (a) for 30 training batches and 10 validation batches 

(b) comparison of PCE prediction with nonlinear model. 
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Figure 7.3: Prediction of the third order PCE (a) for 30 training batches and 10 validation batches 

(b) comparison of PCE prediction with nonlinear model. 

It is evident from the figures that the third order PCE captured the system more 

closely as compared to the second order predictions. However, it took almost 8 hours 

to finish the third order computations whilst it took only 15 seconds for the second 

order computations. The computation time is based on a personal computer with 

Microsoft Windows XP Professional Version 2002 Service Pack 3 operating system 

and Intel Core 2 Duo processor with 2 GB of RAM. Table 7.3 gives the validation 

results for better understanding of the actual values. The sum squared error (SSE) was 

calculated as, SSE = ∑(actual Ln  from the nonlinear model – calculated Ln  by the 

surrogate model)2. For the training and validation of the second order PCE the overall 

SSE was 2.5338×10-8 and 5.7943×10-7 respectively. On the other hand, for the 
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training and validation of the third order PCE the overall SSE was 9.8300×10-9 and 

4.1397×10-7 respectively. 

Table 7.3: Actual and Calculated Ln Values by Different Order PCE and the Corresponding SSEs. 

Sl. 
No. 

Actual  
Ln  

Second 
order Ln  

Third order 
Ln  

Second Order 
SSE 

Third Order 
SSE 

Input trajectories within the limit of the training data. 

1 0.0044 0.0047 0.0046 9.0000×10-8 4.0000×10-8 

2 0.0036 0.0046 0.0036 1.0000×10-6 0 

3 0.0038 0.0043 0.0035 2.5000×10-7 9.0000×10-8 

4 0.0066 0.0056 0.0062 1.0000×10-6 1.6000×10-8 

5 0.0043577 0.0051 0.0045 5.5101×10-7 1.5426×10-8 

6 0.005261 0.0058 0.0054 2.9052×10-7 2.4274×10-8 

7 0.0069 0.0074 0.0086 2.5000×10-7 2.8900×10-8 

8 0.0034 0.0038 0.0027 1.6000×10-7 4.9000×10-8 

Input trajectories outside the limit of the training data. 

9 0.0073294  0.0061 0.006689 1.5114×10-6 4.1011×10-7 

10 0.0083315 0.0075 0.0081904 6.9139×10-7 1.9909×10-8 

7.4.2 Optimisation of the Surrogate Model  

After validation, the nonlinear surrogate model was then used to determine the 

optimal temperature profile needed to obtain a desired mean length ( Ln ) of crystals at 

the end of the batch. To compare the performance of the developed nonlinear 

surrogate model, the desired mean length ( Ln ) was set as the one obtained from the 

optimisation of the first principle nonlinear model of Paracetamol in water (please see 

subsection 7.4.1). The following sub-sections describe the procedure in detail. 
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7.4.2.1 First Principle Model Based Open Loop Optimal Control  

The simulation model of Paracetamol in water (please see Chapter 3 for details of the 

kinetics and other parameters for model development) was subject to optimise its 

performance. The first principle model based optimisation followed the exact 

procedure as described in subsection 6.4.1.1 with the same optimal control problem. 

Figure 7.4 shows the optimal temperature trajectory and the corresponding mean 

length ( Ln ) trajectory. The mean length of crystals increased steadily with the 

maximum value at the end of the batch equal to 102 μm.  
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Figure 7.4: Optimum temperature profile and the corresponding Ln trajectory by first principle 

model based optimisation 

7.4.2.2 Determination of the Optimal Temperature to Produce Crystals with Desired 

Mean Length 

The nonlinear surrogate model was then used to determine the optimal temperature 

profile needed to obtain the crystals with the desired mean length ( Ln ) of 102 μm. 

The objective function is shown in Equation 7.8,  
2

)(),.....,2(),1(
100

 Desired
 Model Surrogate by the Calculated  -  Desiredmin ⎟

⎠
⎞

⎜
⎝
⎛ ×

Ln
LnLn

NTTT
             (7.8) 

The system was subjected to the following constraints of Equation 7.9.  

maxmin

maxmin

/
and ,)(

RdtdTR
TkTT
≤≤

≤≤
              (7.9) 

where, minT , maxT , minR , and maxR  were the same as those for the first principle 

model based optimisation. The minimum and maximum temperatures were 314.13 K 
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and 294.15 K. The temperature ramp rates were, K/min 0/1 o≤<− dTdt . This part 

was divided in four cases as described below. 

Case 1a Optimisation of the Surrogate Model Using a Linear Initial Temperature 

Profile with Fixed Terminal Conditions on Temperatures       

In this case, the initial profile was a linear cooling temperature profile that produced 

an Ln  of 59 μm. During optimising the cooling temperature the initial and final 

temperature was kept constant at K15.294 andK 087.3140 == fTT . These were the 

terminal temperatures determined by the first principle model based optimisation 

(please see sub-section 7.4.2.1). When applied to the theoretical nonlinear model, the 

optimum temperature calculated by the second order PCE produced an actual Ln  of 

67 μm at the end of the batch with the SSE of 1.225×10-5. On the other hand, the 

optimum temperature calculated by the third order PCE produced an actual Ln  of 71 

μm at the end of the batch with the SSE of 9.61×10-6. The results are shown in Figure 

7.5 (a) to Figure 7.5 (d). 
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Figure 7.5: Optimum profiles for Case 1a (a) temperature (b) Ln (c) concentration (d) μo.  
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Case 1b Optimisation of the Surrogate Model Using a Nonlinear Initial 

Temperature Profile with Fixed Terminal Conditions on Temperatures    

In this case, in an effort to further improve the performance of the surrogate model, 

the initial profile was changed to a nonlinear cooling temperature profile that 

produced an Ln  of 73 μm. During optimising the cooling temperature the initial and 

final temperature was kept constant at K15.294 andK 087.3140 == fTT  as in Case 

1a. As a result of this nonlinear temperature profile with improved initial Ln  of 73 

μm, the resultant optimal temperatures produced relatively better final Ln  as 

compared to Case 1a. When applied to the theoretical nonlinear model, the optimum 

temperature calculated by the second order PCE produced an actual Ln  of 70 μm at 

the end of the batch with the SSE of 1.024×10-5. The optimum temperature calculated 

by the third order PCE produced an actual Ln  of 78 μm at the end of the batch with 

the SSE of 5.76×10-6, this was an improvement over the previous case. The results are 

shown in Figure 7.6 (a) to Figure 7.6 (d). 
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Figure 7.6: Optimum profiles for Case 1b (a) temperature (b) Ln (c) concentration (d) μo.  
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Case 2a Optimisation of the Surrogate Model Using a Linear Initial Temperature 

Profile without Fixing the Terminal Conditions on Temperatures       

In this case, in an effort to improve the performance of the surrogate model, the 

constraints on the terminal temperatures, i.e. fTT  and 0 , were removed. As a result of 

this imposed flexibility, the optimal temperatures produced even better final Ln  as 

compared to Case 1a and Case 1b. When applied to the theoretical nonlinear model, 

the optimum temperature calculated by the second order PCE produced an actual Ln  

of 67 μm at the end of the batch with the SSE of 1.225×10-5 which was the same as 

for Case 1a. However, the optimum temperature calculated by the third order PCE 

produced an actual Ln  of 82 μm at the end of the batch with the SSE of 4×10-6. The 

results are shown in Figure 7.7 (a) to Figure 7.7 (d). 
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Figure 7.7: Optimum profiles for Case 2a (a) temperature (b) Ln (c) concentration (d) μo.  
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Case 2b Optimisation of the Surrogate Model Using a Nonlinear Initial 

Temperature Profile without Fixing the Terminal Conditions on Temperatures     

In this case, again a nonlinear cooling temperature profile that produced an Ln  of 73 

μm was used. The constraints on the terminal temperatures were removed as well. As 

a result of this nonlinear temperature profile with improved initial Ln  of 73 μm and 

imposed flexibility on optimal temperature calculation, the resultant optimal 

temperatures produced even better final Ln  as compared to the previous cases. When 

applied to the theoretical nonlinear model, the optimum temperature calculated by the 

second order PCE produced an actual Ln  of 89 μm at the end of the batch with the 

SSE of 1.69×10-6. The optimum temperature calculated by the third order PCE 

produced an actual Ln  of 96 μm at the end of the batch with the SSE of 3.6×10-7, this 

was an improvement over the previous cases. The results are shown in Figure 7.8 (a) 

to Figure 7.8 (d). 
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Figure 7.8: Optimum profiles for Case 2b (a) temperature (b) Ln (c) concentration (d) μo.  
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It was observed that the first principle optimal target of  Ln  = 102 μm was quite far 

from the maximum limit used in the training data (84 μm, please also see Table 7.3) 

while identifying the nonlinear surrogate model. As a result of this extrapolation, the 

Ln  produced by the optimal temperature profiles by second and third order surrogate 

models were quite far from the desired 102 μm in Case 1a, Case 1b,  and Case 2a. In 

addition, the linear initial profile used in these cases (Case 1a and Case 2a) was 

corresponding to a Ln  of 59 μm. Since, this initial guess of 59 μm was very far from 

the desired 102 μm, the surrogate models suffered to capture the nonlinearity of the 

system properly. This inferior performance due to a large difference in the initial 

guess was proved when a nonlinear profile producing a closer initial guess, i.e. 73 μm 

was used in Case 1b and Case 2b (please see figure Figure 7.6 (b) and Figure 7.8 (b)). 

Although the second and third order surrogate models produced larger Ln , in both 

Case 1b and Case 2b as compared to Case 1a and Case 2a respectively, the 

corresponding temperature profiles were quite different for different initial 

temperatures under the same optimisation conditions. Theoretically, this study should 

have been produced two optimal temperature profiles, i.e. same optimal temperature 

profile for Case 1a and Case 1b and same optimal temperature profiles for Case 2a 

and Case 2b. This difference of resultant optimal temperature profiles under the same 

optimisation conditions can be identified as a limitation of the developed nonlinear 

surrogate model.   

Another point to be noted that the second and third order optimal temperature profiles 

were not the same as the theoretical optimal profile. The reason behind this 

discrepancy can be the fact that, the first principle model based optimisation was 

subject to other nonlinear constraints (i.e. constraint on maximum concentration of 

solution after the batch). Moreover, since this study was aimed at the mean length at 

the end of the batch, it is possible to arrive at the same final Ln  from multiple 

temperature trajectories. The SSE values for the optimisation test are in perfect 

harmony with the previous validation SSEs. Moreover, apart from the temperature 

and Ln  profiles Figures 7.5 (c) - Figures 7.5 (d) to Figures 7.8 (c) - Figures 7.8 (d) 

shows the concentration and μo profiles. From these figures, it is evident that the 

performance of the third order surrogate model was better in terms of better yield and 
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nucleation point of view. This coherency indeed suggests the choice of third order 

PCE over second order PCE.  

7.5 Conclusions 

In this chapter a polynomial chaos expansion (PCE) based nonlinear surrogate 

modelling approach was developed for batch cooling crystallisation system. The 

approach used operating data to capture the system’s response by representing the 

system as a sum of Hermite polynomials. The developed surrogate model was then 

validated and optimised to generate the required temperature profile to obtain a 

desired mean length ( Ln ) of crystals at the end of the batch. The PCE approach used 

least square minimisation (LSM) to calculate the coefficients. The initial assumption 

of the PCE coefficients played a vital role during all the simulations. So, the overall 

bottleneck of the PCE based nonlinear surrogate modelling can be identified to be the 

initial guess of coefficients (e.g. )(
321

)(
21

)(
1

 and,, d
iii

d
ii

d
i aaa ). Although, LSM is more likely 

to provide more robust PCE coefficients than the probabilistic collocation method 

(PCM) it requires many repeated optimisation iterations from previous solution. The 

LSM focuses mainly at the high probability region, which is good, but not always 

(e.g. worst case). Although LSM performs better off-line PCM would be required for 

robust optimisation for quick computation of the PCE coefficients. However, the 

findings conform to the fact that as the order of expansion was increased the nonlinear 

system can be identified more precisely. The validation and optimisation results prove 

that the experimental data based PCE can provide a very good approximation of the 

desired outputs, providing a generally applicable approach for rapid design, control, 

and optimisation of batch crystallisation systems based on experimental optimisation.  
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Chapter 8 

Conclusions and Future Works 
 

8.1 Conclusions  

The main aim of this research work was to develop and apply different operating data 

based control strategies for batch chemical processes. As an example case of batch 

chemical process pharmaceutical batch cooling crystallisation system was chosen to 

evaluate the proposed data based control strategies. As a kernel of data based control 

the application of various PAT tools was also facilitated for monitoring and control of 

pharmaceutical crystallisation operations to ensure consistent production of the 

desired quality of APIs for efficient downstream operation and product effectiveness. 

The work began with a review of the literary works pertaining to this research. The 

present state of various model based and data based control strategies for batch 

chemical processes were discussed along with an overview of the fundamentals and 

control of batch crystallisation processes. The various aspects of PAT tools and their 

applications in pharmaceutical crystallisation were discussed as well. This is a part of 

the objective to gain knowledge and understanding about batch processes so that these 

can be considered in the design of controllers for batch processes. 

In this work an LTV perturbation model based ILC strategy was developed for 

controlling batch chemical processes. The initial concept was based on the work of 

Xiong and Zhang (2003). The linear perturbation model was obtained by linearizing 

the nonlinear model along the nominal trajectories to use in ILC scheme for tracking 

control of product quality. Since this is an operating data based methodology it is 

capable of controlling a process in the absence of a first principle model. The 

developed controller was evaluated through computer simulation studies using 

MATLAB® as platform for three cases. The results show that this approach can track 

the desired set points satisfactorily even in the present of model plant mismatch.  
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An industrial case study work has also been performed as a field evaluation of LTV 

perturbation model based ILC approach. The case studies were carried out in a pilot 

scale laboratory at GlaxoSmithKline Bangladesh Limited, Chittagong, Bangladesh. 

The objective was to determine the required drying temperature of Paracetamol 

granules to obtain desired moisture content at the end of the  batch. The result 

conforms to the converging behaviors of ILC very well. Although the work was 

undertaken within a limited scope, it was a first hand experience of the researcher to 

work in an industrial environment.  

A novel hierarchical ILC (HILC) scheme for the systematic design of the 

supersaturation control (SSC) of a seeded batch cooling crystalliser was developed. 

The proposed HILC can be a convenient tool to select the operating profile in phase 

diagram. This automated model free approach is implemented in a hierarchical 

structure. On the upper level, a data-driven supersaturation controller determines the 

extent of optimal supersaturation needed to produce the desired end-point property of 

crystals. On the lower level, the corresponding temperature trajectory is determined 

by time domain experiments to generate necessary supersaturation. The proposed 

method was evaluated using simulated batch cooling crystallisation process of 

Paracetamol in water and in a laboratory scale batch crystallisation system of 

Paracetamol in IPA. The results demonstrated that the approach is able to converge to 

the desired operating profiles even in the presence of kinetic parameter perturbations 

without the need of a detailed mechanistic process model. The experimental results 

also prove that defining the supersaturation trajectories in terms of temperature 

trajectories is a powerful technique to control the supersaturation throughout the 

batch. Not only that the temperature trajectories are easier to implement because of 

the availability of good quality temperature sensors but it also offers the flexibility for 

adjusting the batch time, which serves as an additional benefit for industrial scale 

usage. 

A systematic evaluation strategy was designed and implemented for direct nucleation 

control (DNC) approaches of controlling batch cooling crystallisation systems. DNC, 

as named is aimed to control nucleation events to achieve the desired crystal size 

distribution (CSD) in a model free approach that requires no prior knowledge on 
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nucleation or growth kinetics of the system and responds immediately to any 

unexpected disturbances. For the first time the performance of DNC was compared to 

that of model based optimal control of a batch cooling crystallisation system of 

paracetamol in water. In addition, different DNC structures were examined to 

understand the impact of different designs on batch length, mean crystal size and the 

number of cooling-heating cycles required to reach the target counts/s. Simulation 

case studies were performed to controls the amount of nuclei present in the system 

directly by imitating the performance of FBRM in real life. It was also shown that the 

laboratory DNC experimental results conform to the simulation findings successfully. 

The main advantage of this simple model free approach is continuous in situ fine 

removal during the heating stages without the installation of external heating loops 

leading to the growth of larger crystals even in the presence of unknown disturbances.  

A polynomial chaos expansion (PCE) based nonlinear surrogate modeling approach 

was developed for controlling batch cooling crystallisation system. The data based 

nonlinear surrogate model was validated first and then optimised to generate the 

required temperature profile to obtain a desired mean length ( Ln ) of crystals at the 

end of the batch. However, the validation and optimisation results prove that the 

experimental data based PCE can provide a very good approximation of the desired 

outputs, providing a generally applicable approach for rapid design, control, and 

optimisation of batch crystallisation systems based on experimental optimisation. 

The research was aimed at developing data based control strategies for batch chemical 

processes. The developed approaches were then implemented and evaluated for their 

performance using a laboratory experimental setup built at Loughborough University, 

UK. The experiments presented in the thesis also illustrates the inclusive application 

of in situ PAT tools, such as focused beam reflectance measurement (FBRM) for 

nucleation detection, attenuated total reflection (ATR) UV/Vis spectroscopy for 

concentration monitoring, particle vision measurement (PVM) for in situ image 

observation. The experimental framework also satisfies the QbD concept, which 

accelerates process understanding, inspires incorporation of this process and product 

knowledge into the process design and ensures improved control of the 

pharmaceutical crystallisation processes. The key findings of this work can be used to 
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produce desired crystalline product consistently and commercially through minimal 

operation costs and reduced batch-to-batch variability.  

8.2 Recommendations for Future Works  

The following steps of works are recommended as future works: 

a) The LTV perturbation model based ILC developed in this study can be applied 

to any batch process. As an example of field work, the drying temperature 

required to obtain desired moisture content in paracetamol granules was 

performed in GlaxoSmithKline, Bangladesh. The experimental evaluation 

field work was carried out under limited scope. It is recommended that other 

industrial case studies should be performed to evaluate the proposed approach 

under wider scope of work. 

b) The HILC approach for systematic design of supersaturation control (SSC) of 

batch cooling crystallisation can also be applied to an industrial scale case 

study.  

c) In this thesis, only computer simulations were performed for the validation 

and optimisation of the PCE based nonlinear surrogate modelling approach. 

However, application of this method in the real life laboratory experiments can 

be a more profound evaluation technique. 

d) Both the DNC and PCE based nonlinear surrogate modelling needs to be put 

into ILC framework for better performance. In case of DNC it is challenging 

to establish the cooling and heating rates so that the system remains within the 

metastable limit. Initially for a new system, it requires some trial runs to tune 

the cooling and heating rates to their bests. It will be an extra benefit to the 

DNC if it can determine the required heating and cooling rate from the 

previous history of the systems response under an ILC scheme. In case of PCE 

based nonlinear surrogate modelling the overall bottleneck of the approach can 

be identified to be the initial guess of coefficients (e.g. )(
321
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Therefore, it will also be helpful in PCE based surrogate modelling to finalise 

the initial coefficients using the ILC approach. 
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Appendix A 

Experimental setup 

 

Figure D.1: Image of the experimental setup used to carry out the experiments for the Paracetamol 
in IPA system. In situ measurement for concentration and chord length distribution was obtained 

using ATR-UV/Vis and FBRM probes. 

 

 

 

FBRM Probe 

UV/Vis Probe 
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Appendix B 

Crystallisation control interfaces used in the HILC and DNC experiments. 

 

Figure B.1: CryPRINS Interface showing the phase diagram and operating line. 

 

Figure B.2: CryPRINS Interface showing the operating lines of temperatures, concentration, # of 
counts/sec in time domain. 
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Figure B.3: CryPRINS Interface for selecting the type of control to be implemented. 

 

Figure B.4: Interface for Lasentec FBRM probe measurement observation. 
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Appendix C 

 

 

 

 

 

 

 

 

 

 

Figure 5: Process block diagram. 

Figure C.1: Bock diagram of the drying process along with the materials and facilities required in 

GSK Limited, Bangladesh. 
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Appendix D 

Materials used during the experimental works in GSK Limited, Bangladesh. 

 

 

 

Figure D.1: Maize starch. Figure D.2: Potassium Sorbate. 

 
 

Figure D.3: Amigel. Figure D.4: Potassium Sorbate Solution. 
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Figure D.5: Dry granules of Paracetamol. Figure D.6: Wet granules of Paracetamol. 

  
Figure D.7: Granules on #20 Mesh. Figure D.8: Sieved granules. 
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Appendix D 

Table D.1: Hermite polynomials for the third-order-ten-dimensional PCE. 

ith    
Polynomial 

Chaos 

iΓ  Order of 
Polynomial 

Chaos 

ith 
Polynomial 

Chaos 

iΓ  Order of 
Polynomial 

Chaos 
0 1 1 143 )( 8

2
78 θθθ −  3 

1 1θ  1 144 )( 8
2
98 θθθ −  3 

2 2θ  1 145 )( 8
2
108 θθθ −  3 

3 3θ  1 146 )3( 9
3
9 θθ −  3 

4 4θ  1 147 )( 9
2
19 θθθ −  3 

5 5θ  1 148 )( 9
2
29 θθθ −  3 

6 6θ  1 149 )( 9
2
39 θθθ −  3 

7 7θ  1 150 )( 9
2
49 θθθ −  3 

8 8θ  1 151 )( 9
2
59 θθθ −  3 

9 9θ  1 152 )( 9
2
69 θθθ −  3 

10 10θ  1 153 )( 9
2
79 θθθ −  3 

11 )1( 2
1 −θ  2 154 )( 9

2
89 θθθ −  3 

12 )( 21θθ  2 155 )( 9
2
109 θθθ −  3 

13 )( 31θθ  2 156 )3( 10
3
10 θθ −  3 

14 )( 41θθ  2 157 )( 10
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15 θθθ −  3 250 1093 θθθ  3 
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ith    
Polynomial 

Chaos 

iΓ  Order of 
polynomial 

chaos 

ith 
Polynomial 

Chaos 

iΓ  Order of 
polynomial 

chaos 
108 )( 5

2
25 θθθ −  3 251 654 θθθ  3 

109 )( 5
2
35 θθθ −  3 252 754 θθθ  3 

110 )( 5
2
45 θθθ −  3 253 854 θθθ  3 

111 )( 5
2
65 θθθ −  3 254 954 θθθ  3 

112 )( 5
2
75 θθθ −  3 255 1054 θθθ  3 

113 )( 5
2
85 θθθ −  3 256 764 θθθ  3 

114 )( 5
2
95 θθθ −  3 257 864 θθθ  3 

115 )( 5
2
105 θθθ −  3 258 964 θθθ  3 

116 )3( 6
3
6 θθ −  3 259 1064 θθθ  3 

117 )( 6
2
16 θθθ −  3 260 874 θθθ  3 

118 )( 6
2
26 θθθ −  3 261 974 θθθ  3 

119 )( 6
2
36 θθθ −  3 262 1074 θθθ  3 

120 )( 6
2
46 θθθ −  3 263 984 θθθ  3 

121 )( 6
2
56 θθθ −  3 264 1084 θθθ  3 

122 )( 6
2
76 θθθ −  3 265 1094 θθθ  3 

123 )( 6
2
86 θθθ −  3 266 765 θθθ  3 

124 )( 6
2
96 θθθ −  3 267 865 θθθ  3 

125 )( 6
2
106 θθθ −  3 268 965 θθθ  3 

126 )3( 7
3
7 θθ −  3 269 1065 θθθ  3 

127 )( 7
2
17 θθθ −  3 270 875 θθθ  3 

128 )( 7
2
27 θθθ −  3 271 975 θθθ  3 

129 )( 7
2
37 θθθ −  3 272 1075 θθθ  3 

130 )( 7
2
47 θθθ −  3 273 985 θθθ  3 

131 )( 7
2
57 θθθ −  3 274 1085 θθθ  3 

132 )( 7
2
67 θθθ −  3 275 1095 θθθ  3 

133 )( 7
2
87 θθθ −  3 276 876 θθθ  3 

134 )( 7
2
97 θθθ −  3 277 976 θθθ  3 

135 )( 7
2
107 θθθ −  3 278 1076 θθθ  3 

136 )3( 8
3
8 θθ −  3 279 986 θθθ  3 

137 )( 8
2
18 θθθ −  3 280 1086 θθθ  3 

138 )( 8
2
28 θθθ −  3 281 1096 θθθ  3 

139 )( 8
2
38 θθθ −  3 282 987 θθθ  3 

140 )( 8
2
48 θθθ −  3 283 1087 θθθ  3 

141 )( 8
2
58 θθθ −  3 284 1097 θθθ  3 

142 )( 8
2
68 θθθ −  3 285 1098 θθθ  3 
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