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Abstract 

Turbulence is the chaotic motion of fluid occurring in most of the natural and 

other flow fields. Since it is very difficult to treat the turbulent flow analytically, 

various techniques and models have been developed to describe turbulent flow -

with the help of the increasing power of computers- numerically. The present 

study incorporates a numerical treatment of a turbulent flow over a backward 

facing step having a circular obstacle. The standard  k  turbulence model is 

used to simulate and obtain the numerical results. This turbulence model has 

been solved using Galerkin weighted residual finite element method. The effect 

of size and position of the circular obstacle on the streamlines, velocity 

magnitude, pressure distribution, velocity profiles and turbulent kinetic energy 

profiles are presented graphically. The result shows that size and position of the 

obstacle has noteworthy effect on the aforementioned parameter profiles. 
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Chapter 1 

Introduction 

1.1 Basic Concepts: Laminar and Turbulent Flows 

The motion of fluids caused by unbalanced forces or stresses is called the fluid 

flow. This motion continues as long as the unbalanced forces act on the fluid. 

Generally two types of flows are there namely the laminar flow and the 

turbulent flow. The laminar flow occurs when the fluid flows in parallel layers, 

with no mixing between the layers. In this case the center of the pipe has the 

fastest flow and at the wall the flow is stalled with no slip condition. The 

currents do not cross each other and there is no component perpendicular to the 

direction of the flow. The motion of the fluid particles is very orderly and 

systematic. High momentum diffusion and low momentum convection 

characterizes the laminar flow regime. 

 

Figure 1.1: Laminar flow through a pipe. 

 

On the other hand, the irregular motion of the fluid is generally known as the 

turbulence or turbulent flow which occurs in most of the natural or physical 

phenomena. Although laminar flow is commonly studied by scientists and 

engineers it is in fact a rare occurrence in the nature. Almost in all of the cases 

the flow at some stage becomes turbulent. In turbulent flow variables like 
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velocity, density and pressure etc. are random variables having some mean 

values. The following section discusses in detail about turbulence. 

 

Figure 1.2: Turbulent flow through a pipe. 

 

1.2 General Properties of Turbulence 

The Basic Definition 

 In 1937 von Karman defined turbulence in a presentation at the Twenty Fifth 

Wilbur Wright Memorial Lecture entitled ―Turbulence.‖ He quoted G. I. Taylor 

as follows (von Karman (1937)): 

“Turbulence is an irregular motion which in general makes its appearance  in 

fluids, gaseous or liquid, when they flow past solid surfaces or even when 

neighboring streams of the same fluid flow past or over one another.” 

With the progress of the understanding of turbulence, scientists have found the 

term “irregular motion” to be very imprecise. The simple definition says that 

an irregular motion is one that is typically aperiodic and that cannot be 

described as a regular function of time and space coordinates.  An irregular 

motion may also depend strongly and sensitively upon the initial conditions. 

The problem with the Taylor-von Karman definition of turbulence lies in the 

fact that there are nonturbulent flows that can be described as irregular.  



15 

 

Turbulent motion is indeed irregular in the sense that it can be described by the 

laws of probability. Although instantaneous properties in a turbulent flow are 

extremely sensitive to initial conditions, statistical averages of the instantaneous 

properties are not.  

To provide a sharper definition of turbulence, Hinze (1975) offers the following 

revised definition: 

“Turbulent fluid motion is an irregular condition of flow in which the various 

quantities show a random variation with time and space coordinates, so that 

statistically distinct average values can be discerned.” 

To complete the definition of turbulence, Bradshaw [Cebeci and Smith (1974)] 

adds the statement that “turbulence has a wide range of scales.” Time and 

length scales of turbulence are represented by frequencies and wavelengths that 

are revealed by a Fourier analysis of a turbulent flow time history. 

The irregular nature of turbulence stands in contrast to laminar motion, so called 

historically because the fluid was imagined to flow in smooth layers. To 

describe turbulence, many researchers refer to eddying motion, which is a local 

swirling motion where the vorticity can often be very severe. The eddies appear 

in a wide range of sizes and give rise to extensive mixing and effective turbulent 

stresses which is large compared to laminar values. 

Instability and Nonlinearity 

Analysis of solutions to the Navier-Stokes equation, or more typically to its 

boundary layer form, shows that turbulence develops as an instability of laminar 

flow. To analyze the stability of laminar flows, classical methods begin by 

linearizing the equations of motion. Although linear theories achieve some 

degree of success in predicting the onset of instabilities that ultimately lead to 

turbulence, the inherent nonlinearity of the Navier-Stokes equations precludes a 
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complete analytical description of the actual transition process, let alone the 

fully turbulent state. For a real fluid, mathematically speaking, the instabilities 

result mainly from interaction between the Navier-Stokes equations‘ nonlinear 

inertial terms and viscous terms. The interaction is very complex in nature. 

 As an overview, the nonlinearity of the Navier-Stokes equations lead to 

interactions between fluctuations of differing wavelengths and directions. The 

wavelengths of the motion usually extend all the way from a maximum 

comparable to the width of the flow to a minimum fixed by viscous dissipation 

of energy. The main physical process that spreads the motion over a wide range 

of wavelengths is vortex stretching. The turbulence gains energy if the vortex 

elements are primarily oriented in a direction in which the mean velocity 

gradients can stretch them. Most importantly, wavelengths that are not too small 

compared to the mean flow width interact most strongly with the mean flow. 

Consequently, the larger scale turbulent motion carries most of the energy and 

is mainly responsible for the enhanced diffusivity and attending stresses. In turn 

the larger eddies randomly stretch the vortex elements that comprise the smaller 

eddies, cascading energy to them. Energy is dissipated by viscosity in the 

shortest wavelengths, although the rate of dissipation of energy is set by long 

wavelengths motion at the start of the cascade. The shortest wavelengths simply 

adjust accordingly.  

Turbulence is a Continuum Phenomenon 

In principle the time dependent, three dimensional continuity and Navier- 

Stokes equations contain all the physics of a given turbulent flow. It is true from 

the fact that turbulence is a continuum phenomenon. As noted by Tennekes and 

Lumely (1983), 

“Even the smallest scales occurring in a turbulent flow are ordinarily far larger 

than any molecular length scale.” 



17 

 

However, the smallest scales of turbulence are still extremely small. They are 

generally many orders of magnitude smaller than the largest scale of turbulence, 

the latter often being of the same order of magnitude as the dimension of the 

object about which the fluid is flowing. Furthermore, the ratio of smallest to 

largest scales decreases rapidly as the Reynolds number increases. To make an 

accurate numerical simulation of a turbulent flow, all physically relevant scales 

must be resolved. 

Turbulence scales and the cascade 

Turbulence consists of a continuous spectrum of scales ranging from largest to 

smallest, as opposed to a discrete set of scales. In order to visualize a turbulent 

flow with a spectrum of scales we often cast the discussion in terms of eddies. A 

turbulent eddy can be thought of as a local swirling motion whose characteristic 

dimension is the local turbulence scale. It is observed that eddies overlap in 

space, large ones carrying smaller ones. Turbulence features a cascade process 

whereby, as the turbulence decays, its kinetic energy transfers from larger 

eddies to smaller eddies. Ultimately, the smallest eddies dissipate into heat 

through the action of molecular viscosity. Thus, like any viscous flow, turbulent 

flows are always dissipative. 

Large eddies and turbulent mixing 

An especially striking feature of a turbulent flow is the way large eddies migrate 

across the flow, carrying smaller scale disturbances with them. The arrival of 

these large eddies near the interface between the turbulent region and 

nonturbulent fluid distorts the interface into a highly convoluted shape. In 

addition to, migrating across the flow, they have a lifetime so long that they 

persist for distances as much as 30 times the width of the flow (Bradshaw, 

1972). Hence the state of a turbulent flow at a given position depends upon 
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upstream history and cannot be uniquely specified in terms of the local strain 

rate tensor as in laminar flow. 

Enhanced diffusivity is another important feature of turbulence. Turbulent 

diffusion greatly enhances the transfer of mass, momentum and energy. 

Apparent stresses in turbulent flows are often several orders of magnitude larger 

than laminar flows. 

The Reynolds number is a non-dimensional quantity which measures the trend 

of a laminar flow to develop into turbulent flow. The Reynolds number is 

defined as: 



UL
Re  

Here  is the density, U is the velocity of the fluid, L is the characteristic length 

and  is the viscosity. If the value of Re is less than 2300 the flow remains 

laminar and when it gets larger than 4000 the flow becomes turbulent [Holman, 

2002]. If the value of Re is between 2300 and 4000 the flow is in a transitional 

stage where it starts to convert from laminar into turbulent nature depending on 

the geometry. If the viscosity of the fluid in the pipe or channel is small then the 

irregular motion develops quicker than when the viscosity is high. 

1.3 Examples of Turbulence 

A lot of flows occurring naturally or other ways are turbulent. The flows we 

observe in our surroundings are mostly turbulent. Following are a few examples 

of turbulent flow: 

Smoke rising from a cigarette is mostly turbulent. However, for the few 

centimeters the flow is laminar. The plume becomes turbulent as the Reynolds 

number increases due to its velocity and characteristic length. 
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Figure 1.3: Smokes rising from a cigarette 

The flow over a cricket ball is turbulent. This can be best understood if the ball 

is considered stationary and the air is flowing over it. If the cricket ball is 

considered smooth, the boundary layer flow over the front of the sphere would 

be laminar at typical conditions. But the boundary layer would separate early, as 

the pressure gradient switched from favorable to unfavorable, creating a large 

region of low pressure behind the ball that creates high form drag. To prevent 

this from happening the surface is covered by seam to perturb the boundary 

layer and promote transition to turbulence. This results in higher skin friction, 

but moves the point of boundary layer separation further along, resulting in 

lower form drag and lower overall drag. 

 

Figure 1.4: Flight of a cricket ball. 
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During an airplane flight and in poor astronomical seeing, clear air turbulence is 

observed. Most of the terrestrial atmospheric circulation is turbulent. The 

oceanic and atmospheric intensive mixed layers are turbulent.  

Other examples of turbulence are: 

The flow conditions in many industrial equipment (such as pipes, ducts, 

precipitators, gas scrubbers, dynamic scraped surface heat exchangers, etc.) 

and machines (for instance, internal combustion engines and gas turbines). 

The external flow over all kind of vehicles such as cars, airplanes, ships and 
submarines. 

The motions of matter in stellar atmospheres. 

A jet exhausting from a nozzle into a quiescent fluid. As the flow emerges 

into this external fluid, shear layers originating at the lips of the nozzle are 

created. These layers separate the fast moving jet from the external fluid, 

and at a certain critical Reynolds number they become unstable and break 

down to turbulence. 

Biologically generated turbulence resulting from swimming animals affects 
ocean mixing. 

The motion of clouds in the upper atmosphere. 

The motion of water in the water falls, dam or rivers. 
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Figure 1.5: Air circulation in atmosphere. 

1.4 Describing the Turbulent Flow 

The Navier-Stokes equations which describe all the flow of fluids can also be 

used to depict the turbulent flow. But this will require a huge computational cost 

and time. Because all the scales from the largest to the smallest will have to be 

resolved which do not facilitate economy at all. A good alternative is to separate 

the larger and smaller scales where the larger scales are resolved and the smaller 

scales are modeled. The target of this turbulence model is to be much less 

expensive than the fully resolved flows. There are several types of turbulent 

models based on the modification on the Navier-Stokes equations. The 

modification is called the Reynolds averaging procedure and the resulting 

equations are called the Reynolds-Averaged Navier-Stokes (RANS) equations. 

The models based on this averaging are classified as the zero equation model, 

one equation model and two equations model. The model in which two 

additional equations are supplemented with the RANS equations is called a two 

equation model. If one additional equation is used then it is called one equation 

model and no additional equation gives the zero equation model. The Reynolds- 

averaging procedure is briefly discussed below.  
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In this process a quantity is resolved into two parts: the time-averaged part and 

the fluctuating part. For example if u is the velocity component of the fluid 

then it is written as: 

uuu   

where u is the averaged part and u  is the fluctuating part. The average of the 

fluctuating part is assumed to be zero, i. e., 0u    

so that  

uuuuuuu  0  

Some other basic properties of the averaging procedure are:  

vuvu  , uu  , vuvu  ,  

vuvu  , 0vu , x
u

x
u









. 

 

Figure 1.6: Distribution of  u and u in turbulent flow. 
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To describe turbulent flow two types of averages are considered: 

i) Average with respect to time 

ii) Average with respect to space 

Time average of velocity (mean velocity at time t) can be calculated as: 








2

2

1
Tt

Tt

udt
T

u
 

where T is the time scale of average. 

The incompressible Navier-Stokes equations for a Newtonian fluid are (in 

vector form): 

0 u  

u-uuu  pt  

The equations are written here without the body-force term. 

From the continuity equation we get, 

0 uu)uu(u  

Averaging this equation results in  

0 uu  

which means we have,  0 u  or 0 u  (discarding the bar sign). 
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In a similar manner applying the same decomposition and averaging procedure 

in the momentum equation we get 

)(1 Tp
t

u)(u)uu(uu
u








 

Here   represents the outer vector product. The last term on the left hand side 

is a new term comparing to the original Navier-Stokes equations. The term is 

called the Reynolds stress tensor which represents the relations between the 

fluctuating velocities. To model the flow this term is needed to deal with.  

Treating the turbulent flow in absolutely diffusive mode is one of best way to 

good modeling.  

Joseph Valentin Boussinesq was the first to attack the closure problem, by 

introducing the concept of eddy viscosity. In 1877 Boussinesq proposed that the 

Reynolds stresses could be linked to the mean rate of deformation. The 

Boussinesq hypothesis is applied to model the Reynolds stress term. 

The Reynolds stress tensor is thus denoted by  

)(
3

T
Ttrace u)(u)uu()uu(  


 

where T  is the turbulent viscosity or the eddy viscosity. 

The turbulent viscosity depends on the flow, i.e. the state of turbulence. The 

turbulent viscosity is not homogeneous, i.e. it varies in space. 

 Due to this term sometimes the models using this term are called the ―eddy 

viscosity models‖.  
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The second term on the left side of the above equation is added to make it 

applicable to normal turbulent stress and can be written in the form 

ktrace 


3
2

3
 )uu(  

Here k  is the turbulent kinetic energy.  

The two equation models are most popular to describe the turbulent flow. Of 

them the k  model and the k  model are prominent. There are several 

other two equations models also. 

 

1.5 k Turbulence Model 

The k  turbulence model is the most common model to describe the turbulent 

flow. It can simulate the mean flow characteristics very well for turbulent flow 

conditions. This two equation model gives a general description of turbulence 

by means of two additional transport equations. Although, the original aim for 

the k  model was to improve the mixing length model, as well to find an 

alternative to algebraically prescribing turbulent length sales in moderate to 

highly complex flows, it has exceeded its target far better than projected. 

Turbulent kinetic energy )(k  is the first transported variable which determines 

the energy in the turbulence. The second transported variable is the turbulent 

dissipation rate )(  which determines the rate of dissipation of the turbulent 

kinetic energy. Unlike earlier turbulence models, k  model focuses on the 

mechanisms that affect the turbulent kinetic energy. The underlying assumption 

of this model is that the turbulent viscosity is isotropic, i. e. the ratio between 

the Reynolds stress and mean rate of deformations is the same in all directions. 
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The exact k  equations contain many unknown and unmeasurable terms. For 

a much more practical approach , the standard k  turbulence model is used 

which is based on the understanding of the relevant processes, thus minimizing 

unknowns and presenting a set of equations which can be applied to a large 

number of turbulent applications. 

The transport equations are as follows: 





 




k

k

T Pkk
t
k ))((u  

)())(( 21 













CPC
kt k

T 



u  

In the above two equations the format is as follows:  

Rate of change of k  or   + Transport of k  or   by convection 
= Transport of k  or  by diffusion + Rate of production – Rate of destruction 
 

Here the production term kP  is given by  

2)(
2

TT
kP uu 



  

In the standard k  model, the turbulent eddy viscosity )(



 T

T   is defined by 


 

2kCT      or     


 

2kCT   

 

1.6 Backward Facing Step 

In a backward facing step the inlet channel is narrower than the outlet channel 

and there is a sudden step in the flow field. The flow separates at the step and 

reattaches again down the stream. If the flow velocity is sufficiently high then 



27 

 

the Reynolds number also becomes high and the flow becomes turbulent after 

separation. A lot of turbulent models and conditions are tested on the backward 

facing step. This is a benchmark geometry to study various fluid flow models 

and conditions. 

 

 

 

Figure 1.7: A backward facing step 

 

 

1.7 Historical Background and Literature Review 

 

Primarily this work is based upon the Reynolds-Averaged Navier-Stokes 

equations. The origin of this approach dates back to the end of the nineteenth 

century when Reynolds (1895) published results of his research on turbulence. 

His pioneering work proved to have such profound importance for all future 

developments that we refer to the standard time-averaging process as one type 

of Reynolds averaging. 

The earliest attempts at developing a mathematical description of turbulent 

stresses sought to mimic the molecular gradient-diffusion process. In this 

essence, Boussinesq (1877) introduced the concept of a so-called eddy 

viscosity. As with Reynolds, Boussinesq has been immortalized in turbulence 

literature. The Boussinesq eddy viscosity approximation is so widely known 

that few authors find a need to reference his original paper. 

Neither Reynolds nor Boussinesq attempted a solution of the Reynolds-

averaged Navier-Stokes equation in any orderly manner. Much of the physics of 

Outlet Inlet 
Step 
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viscous flows was a mystery in the nineteenth century, and additional progress 

waited for the discovery of boundary layer by Prandtl in 1904. Keeping a focus 

upon the turbulent flows, Prandtl (1925) introduced the mixing-length (an 

analog of the mean free path of a gas) and a straightforward prescription for 

computing the eddy viscosity in terms of the mixing length. The mixing length 

hypothesis, very close to the eddy viscosity concept, formed the basis of 

virtually all turbulence modeling research for the next twenty years. Several 

researchers made some important early contributions, most notable of them is 

von Karman (1930). In present days the model based on the mixing length 

theory is refered as an algebraic model or a  zero equation model. As stated 

above, an n-equation model signifies a model that requires solution of n 

additional diferential transport equations in additoin to those expressing 

conservation of mass, momentum and energy for the mean flow. 

To improve the ability to predict properties of turbulent flows and to develop a 

more realistic mathematical description of the turbulent stresses, Prandtl (1945) 

postulated a model in which the eddy viscosity depends upon the kinetic energy 

of the turbulent fluctuations, k . He proposed a modeled partial differential 

equation approximating the exact equation for k . This improvement, on a 

conceptual level, takes account of the fact that the turbulent stresses and thus the 

eddy viscosity, are affected by where the flow has been, i. e. upon flow history. 

Thus the one equation model of turbulence was born. 

While having an eddy viscosity that depends upon flow history provides a more 

physically realistic model, the need to specify a turbulence length scale remains. 

That is, on dimensional grounds, viscosity has dimensions of velocity multiplied 

by length. Since the length scale can be thought of as a characteristic eddy size 

and since such scales are different for each flow, turbulence models that do not 

provide a length scale are incomplete. That is, we must know something about 
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the flow, other than initial and boundary conditions, in advance in order to 

obtain a solution. Incomplete models are not without merit and, in fact, have 

proven to be of great value in many engineering applications. To elaborate a bit 

further, an incomplete model generally defines a turbulence length scale in a 

prescribed manner from the mean flow for an attached boundary layer. 

However, a different length scale would be needed when the boundary layer 

separates. Yet another length might be needed for the free shear flows. In 

essence, incomplete models usually define quantities that may vary more simply 

or more slowly than the Reynolds stresses (i. e. eddy viscosity and mixing 

length). Presumably such quantities would prove to be much easier to correlate 

than the actual stresses. 

A particularly desirable type of turbulence model would be one that can be 

applied to a given turbulent flow by prescribing at most the appropriate 

boundary  and/ or initial conditions. Ideally no advance knowledge of any 

property of the tubulence should be required to obtain a solution. Such type of 

model is defined as complete. It is to be noted that this definition implies 

nothing regarding the accuacy or universality of the model, only that it can be 

used to determine a flow with no prior knowledge of any flow details. 

Kolmogorov (1942) introduced the first complete model of turbulence. In 

addition to having a modeled equation for k , he introduced a second parameter 

  that he referred to as ― the rate of dissipation of energy in unit volunme and 

time.‖ The reciprocal of   serves as turbulence time scale, while 


2
1

k   serves as 

the analog of the mixing length and k  is the analog of the dissipation rate  . 

In this model known as k  model,   satisfies a differential equation 

somewhat similar to the equation for k . The model is thus termed a two 

equatoin model of turbulence. While this model offered great promise, it went 



30 

 

with virtually no applications for the next quarter century. Chou (1945) and 

Rotta (1951) laid the foundation for turbulence models that obviate use of the 

Boussinesq approxiamtion. Rotta devised a plausible model for the differential 

equation governing evolution of tensor that represents the turbulent stresses, i. 

e., the Reynolds stress tensor. Such models are most appropriately described as 

stress- transprot models. Many authors refer to this approach as second order  

closure. The primary conceptual advantages of stress trasnsprot model is the 

natural manner in which non local and history affects are incorporated.  

Although quantitative accuracy often remains difficult to achieve, such models 

automatically accommodate complicating effects such as sudden changes in 

strain rate, streamline curvature, rigid body rotation, and body forces. This 

stands in distinct contrast to eddy viscosity models that account of these effects 

only if empirical terms are added. 

Some surveying has been done and it is found in the literature that some 

important and very crucial investigations are done regarding the k  

turbulence model and backward facing step. Kuzmin et al. (2007) studied the 

standard k  turbulence model on the backward facing step with various 

boundary conditions. They used a positivity constraint to get convergent 

solutions. Wilcox (2006) in his renowned book ―Turbulence Modeling for 

CFD‖ discussed in detail about the development and description of the 

turbulence models and their various aspects and the technique to solve these 

models numerically using computer programs.  

 

While Kolmogorov‘s k  model was the first of this kind, it remained in 

obscurity until the computers became available. By far the most extensive work 

on two equation models has been done by Launder and Spalding (1974) who 
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devised a k turbulence model which is recognized as the standard k  

turbulence model. Abe et al. (1994) formulated a low Reynolds number k  

turbulence model to calculate separating and re-attaching flows. Lasher and 

Taulbee (1992) applied Reynolds stress model to study the turbulent back-step 

flow. Driver and Seegmiller (1985) experimentally studied a rear-ward facing 

divergent channel flow. Kim (1978) investigated the separation and reattaching 

of the turbulent shear layer flow over a backward facing step. Very recently 

Jehad et al. (2015) studied different turbulence models numerically over a 

backward facing step and Ratha et al. (2015) studied turbulent flow over a 

modified backward facing step with transition. 

Lew et al. (2001) used a decoupling technique in the transport equations of the 

k  model to simplify them further. Utnes et al. (1988) studied the two 

equation turbulence model using a finite element outline. Ilinca et al. (1997A) 

studied how to preserve positivity and adapt the solution of a k turbulence 

model.  Ilinca et al. (1997B) studied a finite element scheme for the free shear 

flows in turbulence. Codina and Soto (1999) investigated finite element 

implementation on the two equation and algebraic stress models for turbulent 

flow. 

1.8 Motivation 

From the above section it is observed that a lot of research and studies were 

done on the backward facing step flow using turbulence models. Different 

models with various boundary conditions and numerical techniques were used 

to study the flow in the geometry shown in Figure 1.7. In those studies nobody 

considered any obstacle inside the backward facing step, but in the present 

study a circular shaped obstacle is considered at the downstream of the step. 
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1.9 Objectives  

The objectives of the present study is as follows: 

 To study the standard k  turbulence model on backward facing step 

with an obstacle. 

 To investigate the effect of the size and position of the obstacle on the 

flow pattern inside the geometry. 

 To visualize the stream lines, velocity magnitudes, pressure distribution, 

velocity profiles, turbulent kinetic energy and turbulent dissipation rate 

etc. on the flow field. 
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Chapter 2 

Formulation 

2.1 Problem Formulation 

The intention is to study the turbulent flow over a backward facing step by 

modifying the geometry. To study the turbulent flow the standard k model 

has been chosen. The modification in the geometry is that a circular solid 

obstacle has been placed at the downstream of the backward step. The step 

height H is taken as the half of the inlet channel height. 

The figure of the geometry is given below: 

 

Figure 2.1: Geometry of the flow. 

 

The flow will enter from the left at the inlet with velocity U . Then it will go 

past the step and the obstacle. Finally the flow will go out through the outlet. In 

the geometry a circular obstacle is placed which is centered at a distance 5H (H 

is the step height) from the step and has a radius H/2. The vertical coordinate of 

the center of the circle has been taken in the middle of the channel. In Sections 

4.1 and 4.2 the flow field using variations in the distance and size of the 

obstacle will be studied. 

 

 

 

Inlet, U Outlet Step, H Obstacle 
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2.2 Mathematical Model 

The hydrodynamic/ hydrokinetic behavior of a turbulent flow can be portrayed 

by the eddy viscosity models using the RANS equations for the velocity and 

pressure denoted by u  and p  respectively as follows: 

0 u        (1) 
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The equation (1) is the continuity equation and the equation (2) is the 

momentum equation. 

In the k  model two additional transport equations for turbulent kinetic 

energy k  and turbulent dissipation rate   are introduced to complement the 

above equations. These are: 
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Here the production term kP  is given by  

2)(
2
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kP uu 



       (5) 

In the standard k  model, the turbulent eddy viscosity )(



 T

T   is defined by 


 

2kCT      or     


 

2kCT       (6) 
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The values for the empirical constants [Kuzmin, 2007] are: 

Table 2.1: Constants used in the model 
Constants C  1C  2C  k    

Values 0.09 1.44 1.92 1.0 1.3 

 

It is difficult to solve the equations (3)-(5) directly. Preventing the division by 

zero during the solution process is almost impossible. An upper limit lim
mixl  in the 

mixing length is introduced [Kuzmin, 2007]. 

 ),max( lim
2
3

mixmix lkCl


      (7) 

Turbulent viscosity is calculated using this mixing length. A converged solution 

does not use this upper limit but it is simply used to obtain convergence. 

The Reynolds stress tensor for the eddy viscosity model is written as:  

     ijijTji kSuu 
3
22       (8) 

where ij is the Kronecker delta and ijS  is the strain-stress tensor. The 

calculation of T  from equation (6) does not guarantee the non-negativity of the 

diagonal elements of the Reynolds stress tensor which is essential. To make 

sure that  

0iiuu  

a realizability constraint is imposed on the turbulent viscosity. For two 

dimensional axisymmetry the constraint is: 
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ijij
T SS

k
3

2
                (9) 

From equations (6), (7), and the definition of the mixing length we obtain the 

limit of the mixing length as:  

ijij
mix SS

kl
3
2

                   (10) 

This gives two limitations to the mixing length: limit in (7) and the realizability 

constraint in (10). Unnecessary turbulence production can be noticed if the 

realizability constraint is not applied. That is why this constraint is always 

applied in the RANS models. 

2.3 Boundary Conditions 

At the initial level it is not so easy to make an appropriate initial guess for the 

simulations of a turbulent flow. If we take the initial velocity to be zero, then a 

wastefully large amount of time will be required for the flow to become fully 

turbulent. That is why the turbulent model comes into action after a while from 

the startup. The initial values for the k and   for the turbulent flow are taken as: 
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C     ; at the time before the turbulence 

starts. 

At the inlet boundary the velocity components and k  and   have the following 

values: 
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Here )01.0,003.0(c is an empirical constant and u  represents the Euclidean 

norm of the velocity. At the outlet boundary a Neumann condition is imposed 

which implies that the normal gradients of the variables will vanish: 

0][  Tuun , 0 kn  and 0 n . 

At an impermeable solid wall the normal component of the velocity is put 

identical to nil. 

0un  

Here the tangential slip is allowed in the simulations of the turbulent flow. In 

the subsequent step the velocity is projected onto the tangential vector and in 

the process restrict the defect vector to be zero 

 nun-uu **   

After this manipulation the corrected values of u  act as a Dirichlet boundary 

condition for the solution at the end of the correction step. 

2.4 Wall Functions 

Very near to the solid walls the turbulent flow is different from that of the free 

stream flow. Therefore, in the vicinity of the walls the assumptions made for the 

k  turbulence model are not applicable all the time. Since it is not very cost-

effective to modify the model to describe the flow field near the wall domain, 

close to the walls some analytical expressions called the wall functions are used 

as an alternate. 

 

 

 

Figure 2.2: The computational domain starts at a distance w  from the wall. 

Mesh cells 

w  

Solid wall 
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The distance w is automatically updated with the formula: 




 wT

w
u

  

where kCuT
4

1
   is the friction velocity. The value becomes 11.06 which 

correspond to the distance from the wall where the logarithmic layer meets the 

viscous sublayer. w  is limited from below so that it never becomes smaller than 

half of the height of the boundary mesh cell.  

The constraints for the velocity and shear stress at the boundary are: 

0un  and 
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u
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where  ][ Tuu    is     the viscous stress tensor and 

B

u

wV 
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

ln
1
u  

where in turn 41.0v  is the von Karman constant and B is another constant 

having a value of 5.2. 

The turbulent kinetic energy has a normal component zero, i. e., 0 kn , and 

the dissipation rate is expressed by:  

wv

kC




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Chapter 3 

Methodology 

3.1 Numerical Scheme 

The finite element method is used to solve the mathematical model for the 

geometry. There are some advantages of this method over the other methods. 

The prime advantage of this method is that it can handle complicated 

geometries with ease. This is the center power of the finite element method. 

Any complex geometrical shape is discretized into small parts called elements 

and hence the name. This method can handle a large range of engineering and 

physical problems having complicated mathematical formulations.  

To fill the information gap of a system, experimental setups are made and 

prototypes need to be built. And this requires a lot of time and investment. An 

advanced computational tool like the finite element method can come to rescue.  

It can analyze a problem and obtain the results in a detailed form than the 

experimental setup can do. Also it is much quicker and the cost is a lot lesser. If 

the discretized mesh is dense enough the results become very close to the 

accurate ones. This method can construct broad result sets and produce physical 

response at any location. Also it can find results in detailed form that might be 

ignored by the analytical approach. This method can also solve some 

indeterminate forms. 

The numerical technique to solve the system of partial differential equations is 

based on Galerkin weighted residual method of finite element formulation. At 

first the solution domain is discretized into finite element meshes of non-

uniform elements. Two types of elements are taken in building the mesh. At the 

free stream the elements are triangular in shape, but near the walls it is observed 

that the quadrilateral elements give a much better result.  
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At the next step the nonlinear partial differential equations are transferred into a 

system of integral equations using weighted Galerkin residual method. Gauss‘s 

quadrature technique is used to perform integrations involved in each term. The 

boundary conditions are imposed to modify the obtained nonlinear algebraic 

equations. Newton‘s method is used to convert the system of nonlinear 

algebraic equations into linear equations. Lastly, this system is solved by 

triangular factorization method. 

The numerical results are presented graphically and / or in tabular form in terms 

of streamlines, velocity magnitude, pressure, velocity profiles, turbulent kinetic 

energy profiles and turbulent dissipation rate profiles etc. 
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3.2 Meshes 

The mesh is a small partition of the geometry into small units of a simple form. 

These units are called the mesh elements. The types of the elements depend on 

the dimension of the geometry. For example, for a two dimensional geometry 

the elements can be triangles, quadrilaterals or other two dimensional 

geometrical shapes. The meshing can be treated as the starting point of the finite 

element scheme. In the present study the total number of elements is 29665 of 

which triangular element number is 24086 and rest is other elements. 

 

 

Figure 3.1: Magnified view of the mesh elements 
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3.3 Grid Independence Test 

To obtain a grid independent solution a grid refinement test was performed. The 

Table 3.1 and Figure 3.2 describe the result as satisfactory for the grid 

refinements. In this problem 29665 elements are used for the whole domain. 

Using more elements are time consuming and do not improve the result 

significantly. 

Table 3.1: Grid sensitivity test. 

Number of 
Elements 

4330 6326 11520 17483 29665 72108 

Time (Sec) 19 31 47 73 137 447 
Average 
Velocity 

0.66995 0.67001 0.67006 0.67010 0.67013 0.67015 
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Figure 3.2: Average velocity versus the number of mesh elements. 
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Chapter 4 

Results and Discussions 

To get turbulence in a flow field it is necessary for the flow to be fully 

developed. In the present work the flow entering the inlet is fully developed and 

it is clear from the graph in Figure 4.1. This graph shows that the turbulent 

dynamic viscosity after initially displaying some ups and downs remains 

constant for rest which is an indication of fully developed flow. 

 

Figure 4.1: Turbulent dynamic viscosity versus arc length taken along the centerline. 

 

4.1 Variation of the Size of the Obstacle 

In this section the effect of some geometrical modifications in the turbulent flow 

field of the backward facing step are investigated. Effects of obstacle sizes are 

taken into consideration. 
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The results are displayed graphically in the form of stream lines, velocity 

profiles, turbulent kinetic energy profiles, and turbulent dissipation rate profiles 

for different sizes of the obstacle. The obstacle sizes are chosen as r = H/4, r = 

H/2 and r = H. 

 

Figure 4.2 represents the stream lines of the flow field for three sizes of the 

obstacle. For obstacle size r = H/4, a small vortex forms just after the obstacle 

which increases in size and length down the stream for larger obstacles. Also it 

is observed that for the smallest obstacle size only one vortex is produced 

whereas two vortices are produced for the larger obstacles. In addition, the 

vortex after the step shows a decreasing trend due to the pressure involved with 

size of the obstacle. The flow separation that occurs at the step reattaches below 

the obstacle rapidly when the radius of the circular obstacle is H. The colored 

graphs displayed in the Figure 4.3 indicates the velocity magnitude at the 

various positions of the flow field. The velocity magnitudes at the step and at 

the wake of the obstacle is much lower as usual. In the Figure 4.4 it is observed 

that the pressure builds at the lead point of the obstacle as it lowers the passage 

of the fluid past it in the geometry and obtains the highest value for the largest 

one. 

Velocity profiles in Figures 4.5 and 4.6 show the variation at different positions 

for different sizes of the obstacle. Figures 4.4 and 4.5 display the velocity 

profile at the cross section at the center of the obstacle and at the downstream at 

distance x = 8H respectively. In Figure 4.5 the gaps in the profiles are due to the 

presence of the solid obstacle. Since the pressure increases with the size of the 

obstacle the fluid comes out at high speed and reaches more than double of the 

inlet velocity for the largest one. The lower parts of the profiles project a lesser 

speed of fluid because of the step present at the lower part of the upstream. 
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The profiles representing the turbulent kinetic energy k  in the Figures 4.6 and 

4.7 show synchronized effect with the velocity profiles and stream lines. From 

Figure 4.6(c) it is observed that the turbulent kinetic energy k fluctuates near the 

obstacle wall at the top and bottom side for the largest obstacle. At the 

downstream in Figure 4.6 it is seen that for the obstacle sizes r = H/4 and r = 

H/2 the pattern is almost similar whereas the change is visible for the largest 

size of the obstacle. 

 

Turbulent dissipation rate   profiles are shown in the Figures 4.9 and 4.10. 

These profiles are also taken for three obstacle sizes mentioned above. The 

graph shown in the Figure 4.9 is taken at the center of the obstacle. At the 

boundary of the obstacle the dissipation values varies sharply. The smaller size 

of the obstacle shows little dissipation rate values whereas the larger obstacle 

size shows larger values at the downstream in the Figure 4.10. Also at the 

downstream it is noticeable that the lower half and the upper half of the profile 

is not symmetric whilst the larger obstacle size makes the profile sufficiently 

symmetric as well as increasing the magnitude. 

(a) 

 

(b) 

 

(c) 

 

Figure 4.2: Stream lines for the different sizes of the circular obstacle: (a) obstacle with 
radius r = H/4, (b) obstacle with radius r = H/2 and (c) obstacle with radius r = H.  
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(a) 

 

(b) 

 

(c) 

 

 
Figure  4.3: Velocity magnitude for obstacle size with radius r= H/4, H/2, H. 
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(a) 

 

(b) 

 

(c) 

 

Figure 4.4: Pressure distribution for obstacle size with radius r= H/4, H/2, H. 
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                (a) (b) (c) 

Figure 4.5: Velocity profiles for three obstacle sizes at the center of the obstacle: (a) obstacle 
with radius r = H/4, (b) obstacle with radius r = H/2 and (c) obstacle with radius r = H.  

 
 

   
                   (a) (b) (c) 

Figure 4.6: Velocity profiles for three obstacle sizes at the downstream (x/H = 8): (a) 
obstacle with radius r = H/4, (b) obstacle with radius r = H/2 and  

(c) obstacle with radius r = H.   
 

   

                  (a) (b) (c) 
Figure 4.7: Turbulent kinetic energy for three obstacle sizes at the center of the obstacle: (a) 

obstacle with radius r = H/4, (b) obstacle with radius r = H/2 and  
(c) obstacle with radius r = H. 
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                   (a) (b) (c) 

Figure 4.8: Turbulent kinetic energy for three obstacle sizes at the downstream (x/H = 8): (a) 
obstacle with radius r = H/4, (b) obstacle with radius r = H/2 and 

 (c) obstacle with radius r = H.  
 

 

   
                  (a) (b) (c) 

Figure 4.9: Turbulent dissipation rate for three obstacle sizes at the center of the obstacle: (a) 
obstacle with radius r = H/4, (b) obstacle with radius r = H/2 and  

(c) obstacle with radius r = H. 
 

   
                  (a) (b) (c) 

Figure 4.10: Turbulent dissipation rate for three obstacle sizes at the downstream (x/H = 8):  
(a) obstacle with radius  r = H/4, (b) obstacle with radius r = H/2 and 

 (c) obstacle with radius r = H.  
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4.2 Variation of the Position of the Obstacle 
 

In this section the position of the circular obstacle is varied keeping its size 

fixed. The size is kept at r = H/2 and the positions are taken at a distance H, 3H 

and 5H from the step respectively. 

The Figure 4.11 shows the streamlines with the circular obstacle placed at 

different distances from the step. It is clear from the graphs that the vortices are 

bigger when the obstacle is nearest to the step. Also it makes the vortex at the 

step much smaller. This is due to the fact that smaller amount of fluid can enter 

in that lower region at a certain time. The velocity magnitudes are presented in 

the Figure 4.12. The lower part of the flow field cannot recover from the low 

velocities for the closest obstacle to the step due to the same reason stated 

above. Pressure contours shown in the Figure 4.13 have a similar pattern except 

the fact that for the nearest obstacle to the step the maximum value is higher 

than other two cases.  

The velocity profiles are shown in the Figure 4.14 for different positions of the 

obstacle from the step. These profiles are taken at the center of the obstacle. It is 

observed that at the upper end and the lower end of the obstacle the velocity is 

much higher for all three cases. The lower part of the profile has smaller 

magnitude due to the presence of the step upstream. Similar pattern can be seen 

in the velocity profiles downstream of the obstacle in the Figure 4.15. 
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 (a) 

 

   
(b) 

 

(c) 

 

Figure  4.11: Stream lines for the different positions of the circular obstacle with size r = 
H/2: (a) obstacle with center at distance H from step, (b) obstacle with center at distance 3H 

from step and (c) obstacle with center at distance 5H from step.  

 
 

The turbulent kinetic energy profiles are presented in the Figures 4.16 and 4.17. 

The variations in the lower part are due to the presence of the step at the 

upstream and are more visible for the obstacle nearest to the step. The turbulent 

dissipation rate profiles are shown in the Figures 4.18 and 4.19. The higher 

values in the Figure 4.18 at the lower end of the profiles might be due to the 

limitations of the model at the boundary. The profiles at the downstream in the 

Figure 4.19 show lesser and lesser effects of the step on the flow field which is 

likely as usual. 
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(a) 

 

(b) 

 

(c) 

 
 

 Figure 4.12: Velocity magnitude for the different positions of the circular obstacle with size 
r = H/2: (a) obstacle with center at distance H from step, (b) obstacle with center at distance 

3H from step and (c) obstacle with center at distance 5H from step.  



53 

 

(a) 

 

(b) 

 

(c) 

 

Figure 4.13: Pressure distribution for obstacle positions with radius H/2 at: (a) obstacle with 
center at distance H from step, (b) obstacle with center at distance 3H from step and (c) 

obstacle with center at distance 5H from step.  
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                   (a) (b) (c) 

Figure 4.14: Velocity profiles for three obstacle positions at the center of the obstacle: (a) 
obstacle at position x/H = 1, (b) obstacle at position x/H = 3 and  

(c) obstacle at position x/H = 5. 
 
 

   
                   (a) (b) (c) 

Figure 4.15: Velocity profiles for three obstacle positions at the downstream (4H from the 
obstacle): (a) obstacle at position x/H = 1, (b) obstacle at position x/H = 3 and  

(c) obstacle at position x/H = 5. 
 
 

   
                  (a) (b) (c) 

Figure 4.16: Turbulent kinetic energy for three obstacle positions at the center of the 
obstacle: (a) obstacle at position x/H = 1, (b) obstacle at position x/H = 3 and 

 (c) obstacle at position x/H = 5. 
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                   (a) (b) (c) 

Figure 4.17: Turbulent kinetic energy for three obstacle positions at the downstream (4H 
from the obstacle): (a) obstacle at position x/H = 1, (b) obstacle at position x/H = 3 and (c) 

obstacle at position x/H = 5. 

 
 

   
                  (a) (b) (c) 

Figure 4.18: Turbulent dissipation rate for three obstacle positions at the center of the 
obstacle: (a) obstacle at position x/H = 1, (b) obstacle at position x/H = 3 and (c) obstacle at 

position x/H = 5.  
 

   
                  (a) (b) (c) 

Figure 4.19: Turbulent dissipation rate for three obstacle positions at the downstream (4H 
from the obstacle): (a) obstacle at position x/H = 1, (b) obstacle at position x/H = 3 and (c) 

obstacle at position x/H = 5.  
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Chapter 5 

Conclusion 

5.1 Conclusions from the Present Study  
 

Two situations were considered in the above study namely the variations of the 

size of the obstacle and the variations of the positions of the obstacle in the 

backward facing step flow field. Standard k  turbulence model was used to 

describe the turbulent flow. The model was solved using the finite element 

method and the results are presented graphically in terms of streamlines, 

velocity magnitude, pressure, velocity profiles, turbulent kinetic energy and 

turbulent dissipation rate profiles etc. The following conclusions can be derived 

from the above numerical investigations: 

 The obstacle size and position changes the flow and energy configurations 

significantly. 

 The flow remains turbulent up to a considerable distance from the obstacle 

and the turbulence grows higher when the step and the obstacle are nearer. 

 Velocity reaches as high as double from the initial one for largest obstacle 

size in the narrower part of the flow field. 

 The leading face of the obstacle encounters high pressure and grows with 

the size of the obstacle. 

 Highest turbulent kinetic energy fluctuation in the flow field between 

channel and the top end and the bottom end of the obstacle is observed for 

the largest obstacle. 
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5.2 Suggestions for Further Study 
 

For further study on this topic several suggestions can be made. First of all in 

the present study the standard k  turbulence model was used. Other 

turbulence models based on RANS equations can be used on this geometry. 

These models can include but not limited to low Reynolds number k  

turbulence model, k  turbulence model, RNG turbulence model, Spalart-

Allmaras turbulence model etc. Also models based on the large eddy simulation 

technique and direct numerical simulation technique can be used provided that 

sufficient computing power is available. 

On the other hand the geometry can be modified further by taking different 

types of obstacles in the flow field. These can include square, rectangle, an 

airfoil, other designs of vessels etc. 
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