

M.SC. ENGG. THESIS

An Improved Round Robin Tournament

 Ranking Algorithm

by

Afsana Ahmed Munia

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

 Dhaka 1000

March 04, 2017

The thesis titled “An Improved Round Robin Tournament Ranking Algorithm”, submitted

by Afsana Ahmed Munia, Student Number: 0413052032 P, Session April 2013, to the

Department of Computer Science and Engineering, Bangladesh University of Engineering

and Technology, has been accepted as satisfactory in partial fulfillment of the requirements for

the degree of Master of Science in Computer Science and Engineering and approved as to its

style and contents. The examination held on March 04, 2017.

ii

Board of Examiners

1.

Dr. M. Kaykobad Chairman

Professor (Supervisor)

Department of Computer Science and Engineering, BUET, Dhaka.

2.

Dr. Md. Sohel Rahman Member

Professor and Head (Ex-Officio)

Department of Computer Science and Engineering, BUET, Dhaka

3.

Dr. Muhammad Abdullah Adnan Member

Assistant Professor

Department of Computer Science and Engineering, BUET, Dhaka

4.

Dr. Atif Hasan Rahman Member

Assistant Professor

Department of Computer Science and Engineering, BUET, Dhaka

5.

Dr. Md. Kamrul Hasan Member

Associate Professor (External)

Department of Computer Science and Engineering, Islamic University

of Technology, Board Bazar, Gazipur, Bangladesh.

iii

Dedicated to my loving parents and husband

iv

Candidate’s Declaration

This is hereby declared that the work titled “An Improved Round Robin Tournament Rank-

ing Algorithm” is the outcome of research carried out by me under the supervision of Dr. M.

Kaykobad, in the Department of Computer Science and Engineering, Bangladesh University

of Engineering and Technology, Dhaka 1000. It is also declared that this thesis or any part

of it has not been submitted elsewhere for the award of any degree or diploma.

Afsana Ahmed Munia

Candidate

v

Acknowledgment

I would like to express my sincere gratitude to my supervisor Prof. Dr. M Kaykobad for

the continuous support of my M.Sc. study and research, for his patience, motivation, enthu-

siasm, and immense knowledge. His guidance helped me all along this research as well as

writing this thesis. He has always pointed me in the right direction when I was lost and sup-

ported me when I was on the right path. I could not have imagined having a better supervisor

and mentor for my M.Sc. study.

Besides my supervisor, I would like to thank the rest of the exam committee: Dr. Md. Sohel

Rahman, Dr. Muhammad Abdullah Adnan, Dr. Atif Hasan Rahman and Dr. Md. Kamrul

Hasan for their encouragement and insightful comments.

In this regard, I remain ever grateful to my beloved parents, who always exists as sources of

inspiration behind every success of mine I have ever made.

vi

Abstract

A round-robin tournament (or all-play-all tournament) is a competition “in which each con-

testant plays all other contestants in turn”. The problem of ranking players in a round-robin

tournament with a win or a loss outcome of every match is to rank players according to

their performances in the tournament. This tournament structure also arises in other envi-

ronments, for example, in the problems of soliciting customer preferences regarding a set

of products, establishing funding priorities of a set of projects, establishing searching prior-

ities for a set of search engines in the Internet. In this thesis, we have improved previously

developed MST (Majority Spanning Tree) algorithm for solving this problem, where the

number of violations has been chosen as the criterion of optimality. Whereas in previous

MST algorithms a subset A of consecutively ranked players could be swapped with a subset

B of consecutively ranked players, where A and B are consecutively ranked, in this improved

version we have allowed A and B to be any disjoint subset. We also developed another Hy-

brid algorithm using five related algorithms (Sort, Hamiltonian path, Arrange, MST and

Improved MST) and compare the performance of these algorithms for the same sets of input

data. Experimental results suggest that these new algorithm outperforms the existing ones.

vii

Contents

Board of Examiners ii

Dedication iv

Candidate’s Declaration v

Acknowledgment vi

Abstract vii

1 Introduction 1

1.1 The Round Robin Tournament Problem .. 3

1.2 Literature Survey .. 4

1.2.1 Time Relaxed Single Round Robin Tournament Problem (TRSRR) 7

1.2.2 Time Relaxed Double Round Robin Tournament (TRDRRT) 7

1.3 Objective of the Thesis ... 8

1.4 Organization of the Thesis .. 8

2 Existing Algorithms 9

2.1 Iterated Kendall Algorithm ... 9

2.2 Generalized Iterated Kendall Algorithm .. 11

viii

2.3 Hamiltonian Path Algorithm ... 13

2.4 Arrange Algorithm .. 15

2.5 The Feedback Arc Set Problem .. 16

2.5.1 Some Applications of FAS ... 17

2.6 Sorting Algorithms .. 18

2.7 A PTAS for Weighted Feedback Arc Set on Tournaments 19

3 Majority Spanning Tree 20

3.1 Introduction to MST .. 20

3.2 Existing MST Algorithm For Round Robin Tournament Problem 22

3.2.1 Majority Spanning Tree Algorithm .. 22

3.2.2 A Modified Algorithm For Round-Robin Tournament 25

3.3 Limitations in Existing Algorithms ... 28

3.4 Improved MST Algorithm .. 28

3.4.1 Procedure of Improved MST .. 30

3.5 Hybrid Algorithm ... 32

4 Implementations and Experiments 35

4.1 Implementation .. 35

4.1.1 Implementation of Sort .. 35

4.1.2 Implementation of HP .. 36

4.1.3 Implementation of Arrange .. 36

4.1.4 Implementation of MST ... 36

4.1.5 Implementation of Improved MST .. 37

4.2 Experiments ... 37

ix

4.2.1 Graphical Analysis of the Results ... 44

5 Conclusion 47

5.1 Contribution .. 47

5.2 Future Works .. 48

References

x

List of Figures

1.1 Representation of results of a Round-Robin Tournament in a digraph . . . 4

2.1 Procedure of Iterated Kendall algorithm .. 10

2.2 Before applying Hamiltonian Path algorithm .. 13

2.3 After applying Hamiltonian Path algorithm ... 13

3.1 Example of fundamental cutset .. 21

3.2 Majority Spanning Tree ... 22

3.3 A Tournament digraph and a matrix of the result of the tournament 30

3.4 The algorithm divides the graph into three sets .. 30

3.5 Situation of digraph after swapping set I and set K 31

3.6 Situation of digraph after swapping set I and set J 32

3.7 Situation of digraph after swapping set J and set K 32

4.1 Comparison among MST, Improved MST and Hybrid Algorithm 44

4.2 Situation in worst case ... 45

4.3 Situation in best case ... 45

4.4 Average computational time required by each algorithm 46

xi

List of Tables

1.1 Four team Round Robin Tournament .. 2

1.2 Five team Round Robin Tournament .. 2

1.3 Representation of the game result .. 4

1.4 Time Relaxed Single Round Robin Tournament ... 7

4.1 Number of upsets for different algorithms .. 38

4.2 Average number of upsets for different algorithms 42

4.3 Average computational time of three algorithms in seconds 43

4.4 Ranking of various algorithms for 10 players .. 44

xi

M.SC. ENGG. THESIS

An Improved Round Robin Tournament

 Ranking Algorithm

by

Afsana Ahmed Munia

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

 Dhaka 1000

March 04, 2017

The thesis titled “An Improved Round Robin Tournament Ranking Algorithm”, submitted by

Afsana Ahmed Munia, Student Number: 0413052032 P, Session April 2013, to the

Department of Computer Science and Engineering, Bangladesh University of Engineering

and Technology, has been accepted as satisfactory in partial fulfillment of the requirements for

the degree of Master of Science in Computer Science and Engineering and approved as to its

style and contents. The examination held on March 04, 2017.

ii

Board of Examiners

1.

Dr. M. Kaykobad Chairman

Professor (Supervisor)

Department of Computer Science and Engineering, BUET, Dhaka.

2.

Dr. Md. Sohel Rahman Member

Professor and Head (Ex-Officio)

Department of Computer Science and Engineering, BUET, Dhaka

3.

Dr. Muhammad Abdullah Adnan Member

Assistant Professor

Department of Computer Science and Engineering, BUET, Dhaka

4.

Dr. Atif Hasan Rahman Member

Assistant Professor

Department of Computer Science and Engineering, BUET, Dhaka

5.

Dr. Md. Kamrul Hasan Member

Associate Professor (External)

Department of Computer Science and Engineering, Islamic University

of Technology, Board Bazar, Gazipur, Bangladesh.

iii

Dedicated to my loving parents and husband

iv

Candidate’s Declaration

This is hereby declared that the work titled “An Improved Round Robin Tournament Rank-

ing Algorithm” is the outcome of research carried out by me under the supervision of Dr. M.

Kaykobad, in the Department of Computer Science and Engineering, Bangladesh University

of Engineering and Technology, Dhaka 1000. It is also declared that this thesis or any part

of it has not been submitted elsewhere for the award of any degree or diploma.

Afsana Ahmed Munia

Candidate

v

Acknowledgment

I would like to express my sincere gratitude to my supervisor Prof. Dr. M Kaykobad for

the continuous support of my M.Sc. study and research, for his patience, motivation, enthu-

siasm, and immense knowledge. His guidance helped me all along this research as well as

writing this thesis. He has always pointed me in the right direction when I was lost and sup-

ported me when I was on the right path. I could not have imagined having a better supervisor and

mentor for my M.Sc. study.

Besides my supervisor, I would like to thank the rest of the exam committee: Dr. Md. Sohel

Rahman, Dr. Muhammad Abdullah Adnan, Dr. Atif Hasan Rahman and Dr. Md. Kamrul

Hasan for their encouragement and insightful comments.

In this regard, I remain ever grateful to my beloved parents, who always exists as sources of

inspiration behind every success of mine I have ever made.

vi

Abstract

A round-robin tournament (or all-play-all tournament) is a competition “in which each con-

testant plays all other contestants in turn”. The problem of ranking players in a round-robin

tournament with a win or a loss outcome of every match is to rank players according to

their performances in the tournament. This tournament structure also arises in other envi-

ronments, for example, in the problems of soliciting customer preferences regarding a set

of products, establishing funding priorities of a set of projects, establishing searching prior-

ities for a set of search engines in the Internet. In this thesis, we have improved previously

developed MST (Majority Spanning Tree) algorithm for solving this problem, where the

number of violations has been chosen as the criterion of optimality. Whereas in previous

MST algorithms a subset A of consecutively ranked players could be swapped with a subset

B of consecutively ranked players, where A and B are consecutively ranked, in this improved

version we have allowed A and B to be any disjoint subset. We also developed another Hy-

brid algorithm using five related algorithms (Sort, Hamiltonian path, Arrange, MST and

Improved MST) and compare the performance of these algorithms for the same sets of input

data. Experimental results suggest that these new algorithm outperforms the existing ones.

vii

Contents

Board of Examiners ii

Dedication iv

Candidate’s Declaration v

Acknowledgment vi

Abstract vii

1 Introduction 1

1.1 The Round Robin Tournament Problem .. 3

1.2 Literature Survey .. 4

1.2.1 Time Relaxed Single Round Robin Tournament Problem (TRSRR) 7

1.2.2 Time Relaxed Double Round Robin Tournament (TRDRRT) 7

1.3 Objective of the Thesis ... 8

1.4 Organization of the Thesis .. 8

2 Existing Algorithms 9

2.1 Iterated Kendall Algorithm ... 9

2.2 Generalized Iterated Kendall Algorithm .. 11

viii

2.3 Hamiltonian Path Algorithm ... 13

2.4 Arrange Algorithm .. 15

2.5 The Feedback Arc Set Problem .. 16

2.5.1 Some Applications of FAS ... 17

2.6 Sorting Algorithms .. 18

2.7 A PTAS for Weighted Feedback Arc Set on Tournaments 19

3 Majority Spanning Tree 20

3.1 Introduction to MST .. 20

3.2 Existing MST Algorithm For Round Robin Tournament Problem 22

3.2.1 Majority Spanning Tree Algorithm .. 22

3.2.2 A Modified Algorithm For Round-Robin Tournament 25

3.3 Limitations in Existing Algorithms ... 28

3.4 Improved MST Algorithm .. 28

3.4.1 Procedure of Improved MST .. 30

3.5 Hybrid Algorithm ... 32

4 Implementations and Experiments 35

4.1 Implementation .. 35

4.1.1 Implementation of Sort .. 35

4.1.2 Implementation of HP .. 36

4.1.3 Implementation of Arrange .. 36

4.1.4 Implementation of MST ... 36

4.1.5 Implementation of Improved MST .. 37

4.2 Experiments ... 37

ix

4.2.1 Graphical Analysis of the Results ... 44

5 Conclusion 47

5.1 Contribution .. 47

5.2 Future Works .. 48

References

x

List of Figures

1.1 Representation of results of a Round-Robin Tournament in a digraph . . . 4

2.1 Procedure of Iterated Kendall algorithm .. 10

2.2 Before applying Hamiltonian Path algorithm .. 13

2.3 After applying Hamiltonian Path algorithm ... 13

3.1 Example of fundamental cutset .. 21

3.2 Majority Spanning Tree ... 22

3.3 A Tournament digraph and a matrix of the result of the tournament 30

3.4 The algorithm divides the graph into three sets .. 30

3.5 Situation of digraph after swapping set I and set K 31

3.6 Situation of digraph after swapping set I and set J 32

3.7 Situation of digraph after swapping set J and set K 32

4.1 Comparison among MST, Improved MST and Hybrid Algorithm 44

4.2 Situation in worst case ... 45

4.3 Situation in best case ... 45

4.4 Average computational time required by each algorithm 46

xi

List of Tables

1.1 Four team Round Robin Tournament .. 2

1.2 Five team Round Robin Tournament .. 2

1.3 Representation of the game result .. 4

1.4 Time Relaxed Single Round Robin Tournament ... 7

4.1 Number of upsets for different algorithms .. 38

4.2 Average number of upsets for different algorithms 42

4.3 Average computational time of three algorithms in seconds 43

4.4 Ranking of various algorithms for 10 players .. 44

xii

Chapter 1

Introduction

A round-robin tournament (or all-play-all tournament) is a competition in which each con-

testant plays all other contestants in turn. The term round-robin is derived from the French

term ruban, meaning “ribbon”. Over a long period of time, the term was corrupted and

idiomized to robin. In the United Kingdom, a round-robin tournament is often called an

American tournament in sports such as tennis or billiard which are usually knockout tour-

naments. In Italian it is called girone all’italiana (literally “Italian-style circuit”).

In theory, a round-robin tournament is the fairest way to determine the champion among a

known and fixed number of participants. Each participant, player or team, has equal chances

against all other opposites.

Round Robin scheduling is interesting in its own right. Some leagues have a schedule that is a

single or double round-robin schedule. Examples of this include many U.S college

basketball leagues and many European football leagues. For such leagues, the scheduling

problem is exactly a constrained round-robin scheduling problem, where the constraints are

generated by team requirements, league rules, media needs, and so on [27].
(n)

If n is the number of competitors, a pure round robin tournament requires
n

(2)

2 games. If n is

even, then in each of n
2

(n2)
⌊ n 2⌋ rounds,eachwith⌊ 2

rounds,n2 gamescanberunconcurrently.Ifnisodd,therewillbe
⌋

games, and one competitor having no game in that round.

1

The table 1.1 is an example of four team round-robin tournament.

Team Win Loss

1

2

3

4

Round1 Round2 Round3

1 vs 2 1 vs 4 1 vs 3

4 vs 3 3 vs 2 2 vs 4

Table 1.1: Four team Round Robin Tournament

The table 1.2 is an example of five team round-robin tournament.

Team Win Loss

1

2

3

4

5

Round1 Round2 Round3 Round4 Round5

1 vs 4 3 vs 1 5 vs 3 2 vs 5 4 vs 2

2 vs 3 4 vs 5 1 vs 2 3 vs 4 5 vs 1

5-bye 2-bye 4-bye 1-bye 3-bye

Table 1.2: Five team Round Robin Tournament

2

1.1 The Round Robin Tournament Problem

Ranking is a fundamental activity for organizing and, later, understanding data. Advice of

the form “a should be ranked before b” may be given by ranking [8, 26, 25]. If this advice is

consistent, and complete, then there is a total ordering on the data and the ranking problem

is essentially a sorting problem. If the advice is consistent, but incomplete, then the problem

becomes topological sorting. If the advice is inconsistent, then we have the Feedback Arc

Set (FAS) problem: the aim is then to rank a set of items to satisfy as much of the advice

as possible. An instance in which there is advice about every pair of items is known as a

tournament. This ranking task is equivalent to ordering the nodes of a given directed graph

from left to right, whilst minimising the number of arcs pointing left [8].

The problem of ranking players in a round-robin tournament, in which outcome of any match

is a win or a loss, is to rank players according to their performances in the tournament.

It is known that the results of a tournament can be represented in a digraph, G = (V, A)

known as tournament graph, where vertices correspond to players and arcs correspond to

match results. A tournament result is said to be upset (or violation) if a lowly-ranked player

has defeated a highly-ranked player [11]. Our goal is to reduce the number of upsets as

much as possible.

The problem of minimizing the number of upsets is equivalent to finding the minimum

number of arcs in a digraph deletion of which results in an acyclic digraph. This problem is

known as the Minimum Feedback Arcset Problem, which is NP-hard [13, 15, 25]. A

classical result of Lawler and Karp [18] asserts that finding a minimum feedback arc set in a

digraph is NP-hard. The minimum FAS for tournaments is polynomially equivalent to the

minimum FAS for digraphs, and thus also NP-hard.

Theorem 1.1.1. The minimum feedback arc set for tournaments is NP-hard [7].

Let us consider a simple scenario where five players (a, b, c, d, e) have participated in a

Round Robin Tournament. Figure 1.1 shows the graphical representation of the game. From

figure if we look at player A, we see there are three incoming arcs and one outgoing arc

which means A has lost three times and has won just one time. Player A is defeated by

player B, C and D won against E. Similarly, player B is defeated by C and E and won

against A and D and so on.

3

Figure 1.1: Representation of results of a Round-Robin Tournament in a digraph

 E D C B A

A 1 0 0 0

B 0 1 0

C 1 0

D 0

E

Table 1.3: Representation of the game result

Table 1.3 represents the result of the tournament with 0 indicating a loss and 1 indicating a win.

For understanding result we have to traverse each row from left to right. Since A has won

against E we have 1 in the cell. Let us analyze the situation of player A in respect to other

players. First consider A with E. Here 1 represents A has won the match with E as A is in the

row and E is in the column. Then in case of A and D, 0 means A has lost the match. Similarly 0

and 1 represents the match status for other players.

1.2 Literature Survey

The Round Robin tournament structure also arises in other environments, for example, es-

tablishing searching priorities for a set of search engines in the internet. In [28], Ka Wai and

Chi Ho present an algorithm for merging results from different data sources in meta-search

engine. They further extend one that has developed for ranking players of a round-robin

4

tournament to a more general one when the ranking input is given from multiple sources.

The problem in meta-search engine can be represented by a complete directed graph which can

be used by the Majority Spanning Tree (MST) algorithm [19].

In the situation where a consumer or respondent in a market survey specifies preferences

pertaining to a set of products, these preferences are often given in the form of pairwise

comparisons (product i is preferred to product j). In the case where such a comparison

is made between all pairs then a binary matrix of the tournament type would result. The

ranking of this tournament would constitute a preference ordering of the products for this

particular respondent. Techniques such as those discussed in Cook and Seiford [10], e.g.,

could then be utilized to derive a group preference or consensus of opinions. The tournament

approach, therefore, becomes a valuable technique for processing consumer preferences

involving pairwise comparisons.

In any organization regular assessments of personnel are done as a matter of course. It is

particularly true in the case of the military, e.g., that officers as well as enlisted personnel

undergo performance appraisal on an annual basis. While it is generally true that each

individual is to be assessed on his/her own merits, it is also the case that relative comparisons are

often made, particularly when promotion quotas are enforced. In the final analysis some form of

pairwise comparison of candidates would or could be invoked to arrive at a ranking of these

candidates. In this instance the same tournament structure could be created, with the

modification that some pairs may not be compared.

The problem of establishing funding priorities for a set of projects (e.g. in a transporta-

tion department) can also give rise to the tournament model. This is particularly true in

a multicriteria project evaluation situation. Here a common approach is to apply a non-

compensatory method such as concordance analysis [23]. Briefly, the concordance model

is constructed as follows: Assign a rating rij to each project i relative to criterion j. Letting

wj denote the weight or importance to be attached to criterion j, determine for each pair

(i, i′) of projects a concordance index sii′ and a discordance index dii′ , where

Sii′ =

Sum of the weights of those criteria where project i is rated equal to or better than i’
 Sum of all weights

5

dii′ =Largestnegativedifference(i.e.i’ratedhigherthani)betweenratingsforasinglecriterion

 The difference between the maximum obtainable and minimum obtainable ratings.

Using thresholds Ts and Td , compute a preference index

1, if Sii′ ≥ Ts and dii′ ≤ Td
aij = 0, otherwise.

The matrix A = (aii′) is then used to rank the projects. These and related applications are

discussed in [1]

In [27], Michael A. Trick has worked on a large practical scheduling problem, that is Major

League Baseball (MLB). Fully defining the MLB schedule is a daunting task, requiring

the collection of more than 100 pages of team requirements and requests, along with an

extensive set of league practices. The key inside into effectively scheduling MLB, however,

was the recognition that the complicated schedule could generally be broken into various

phases, where each phase consists of a round-robin schedule, sometimes among subsets of

teams.

Round robin tournament format is also used in National Basketball Association (NBA).

Bao [5, 16] examine the properties of general time-relaxed round robin tournaments and also

defined single round, double round and multiple round time-relaxed round robin tournament.

In modern days, most leagues use a round robin tournament schedule format which means

each team play every other team for a fixed number of times during a time span, which is

called a round. The round robin tournament schedules can be divided into two broad types:

time constrained schedules and time relaxed schedules. In time constrained schedules, the

number of available game slots is equal to necessary game slots. The time constrained sched-

ules are used by many leagues, including most college basketball conferences, professional

soccer leagues in the Europe and the South America. In the time relaxed schedules, the time

of available game slots is bigger than the necessary number. It is used by a few leagues, the

National Basketball Association (NBA) and the National Hockey League (NHL) in North

America are two examples. The NBA is the most popular professional basketball league

in North America. Bao [5] was inspired by the scheduling problem for the NBA regular

season.

6

The round-robin is widely used in many other leagues, especially amateur sports leagues. As

a result of the limited arena and player availability, round robin tournament format is the only

choice for most amateur leagues.

1.2.1 Time Relaxed Single Round Robin Tournament Problem (TRSRR)

Time relaxed single round robin tournaments have the general round robin tournament struc-

ture requirement: every team will meet every other team at a fixed number, which is one in

this case. In a time constrained round robin tournament, the number of the available game

days is equal to the minimum required days. Unlike its counterpart, time relaxed round robin

tournaments have more game days than the minimum required. Therefore it is necessary to

define the parameter of the number of available game days. Let, the number of available

time slots is double size of the number of the games. For instance, there are 2(n − 1) time

slots available if a team has to play n − 1 games. Table 1.4 is an example schedule for a

tournament with six teams.

Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Team 1 vs 3 vs 2 vs 6 vs 5 vs 4

Team 2 vs 1 vs 4 vs 5 vs 3 vs 6

Team 3 vs 1 vs 6 vs 4 vs 2 vs 5

Team 4 vs 6 vs 5 vs 2 vs 3 vs 1

Team 5 vs 4 vs 1 vs 2 vs 3 vs 6

Team 6 vs 4 vs 3 vs 1 vs 5 vs 2

Table 1.4: Time Relaxed Single Round Robin Tournament

1.2.2 Time Relaxed Double Round Robin Tournament (TRDRRT)

Teams play each other twice in a double round robin tournament, normally one at home,

the other on road. In the time constrained schedules, the mirrored double round robin tour-

nament is popular. A mirrored double round robin tournament consists of two rounds with

identical timetables, and the venues in the second round are reversed to those in the first

round. For example, it team i play at home with team j on day d(d ≤D
2),thenteamjwill

7

play at home with team i on day d + 2D.

1.3 Objective of the Thesis

In this thesis, we concentrate to give a better ranking for the players or teams of a round-

robin tournament, so that the number of violations reduces as much as possible. Although a

number of techniques have been developed to solve the problem of Ranking player in

Round-Robin tournament. We improve these algorithms further to obtain better solutions.

Therefore, the main objectives of our thesis are as follows:

• First is to examine the properties of the round robin tournament problem structure and to

analyze and understand various Ranking algorithms.

• Second is to develop a new heuristic algorithm, which will give better results com-

pared to the previous algorithms.

• Third is extend this algorithm for solution of related problems.

1.4 Organization of the Thesis

The work is organized as follows. Chapter 1 introduces the round-robin tournament struc-

ture and also explains the round-robin tournament problem in details. An extensive survey

about existing algorithms for the round robin tournaments is given in Chapter 2. A detailed

description about Majority Spanning Tree (MST), previously developed MST algorithms for

round-robin tournaments and our new inventions Improved MST algorithm and Hybrid al-

gorithm are depicts in Chapter 3. Chapter 4 is divided into two main parts: part-1 illustrates

the implementation process of Sort, HP, Arrange, MST and Improved MST, experimental

results in two different forms (table and graph) is described in part-2. Comparison of up-

set and computational time in these five algorithms is also presented in this Chapter. Our

contribution on this thesis and some suggestion for future work is given in Chapter 5.

8

Chapter 2

Existing Algorithms

In this Chapter, we provide an overview of round-robin tournament ranking algorithms that

focus on reducing number of violations among the players or teams. A significant amount

of works have been done to alleviate the round-robin tournament ranking problem. One of

the earliest proposed was that based on Kendall scores [20, 2]. In this method, players are

ranked according to the number of opponents each defeats. Section 2.1 discusses Iterated

Kendall(IK) algorithm. An Improved version of IK is Generalized Iterated Kendall, dis-

cussed in Section 2.2. Section 2.3 describes how Hamiltonian Path (HP) algorithm works

and Section 2.4 reviews the working procedure of Arrange algorithm. We have already said

that this problem is similar to Minimum Feedback Arcset Problem(FAS), so we have also

studied some algorithms which are related to FAS problem. In Section 2.5 we illustrate the

Feedback Arcset Problem. A Polynomial Time Approximation Scheme (PTAS) to solve

FAS problem on tournaments is discussed in Section 2.7.

2.1 Iterated Kendall Algorithm

In Ali et al. [1] the IK algorithm is presented. This algorithm is an extension of the Kendall

scores approach, and is guaranteed to produce a ranking with no ties. The method works as

follows:

1. Compute the Kendall scores by finding the row sums of the tournament matrix A(T),

 and rank order the players according to these scores. If there are no ties, the resulting

9

ranking will produce no violations and the procedure terminates.

2. If k players are tied for some position, break the ties by considering the submatrix of

 A(T) containing only the rows and columns of these k players, and performing the

 ranking as in step (1).

3. If there are l players who are tied among themselves (i.e. the row sums of the 1x1

 submatrix for these players are all equal), select any one of the 1 players and place

 it first in the subranking. The tie among the remaining l − 1 players is broken by

 performing step (2).

Referring to the previous example in which players (c, d, e) tied in the row sums, step (2) of

the IK algorithm indicates that row sums for the submatrix for these 3 players should be

computed. Specifically,

Figure 2.1: Procedure of Iterated Kendall algorithm

Since there is still a tie in these row sums, we randomly select one of the players (c, d, e) to be

the first in the submatrix-say player c (step3). Returning to step (2) with the remaining

submatrix corresponding to de, we get row sums

d→0

e→1

According to step (2) of the algorithm, player e should be ranked next after c. The final

ranking is then a > c > e > d > b.

10

2.2 Generalized Iterated Kendall Algorithm

In the GIK algorithm restoring is done by using that sub-tournament involving all players

not yet ranked. In case there is still a tie in this sub-tournament, the GIK procedure tries to

find a player who defeated the last player put in the ranking. If such a player exists, it is

advantageous to put that player next, and then immediately change his place with the

previously last ranked player. In this manner, a reduction in the overall number of violations by

one (as compared with a random positioning) is guaranteed.

The GIK algorithm appears below. The following conventions are used.

• |S1| denotes the cardinality of the set of players.

• 0 denotes the empty set.

• If S1, and S2 denote sets (subsets) of players, then S1/S2, denotes those players in S1, but

not in S2.

• If R denotes a ranking and P a player, R||P denotes the ranking formed by placing

player P after the last player in the ranking R.

• Given R1 = (P1 > P2 > · · · > Pk) and R2 = (Q1 > Q2 > · · · > Ql), then R1||R2 = (P1 >

 P2 ··· > Pk > Q1 > Q2 > ··· > Ql.

In the following algorithm, A will denote the set of unranked players. Initially, the players

will all be scored according to the row sums as in the IK algorithm. Let the set D include all

players that have the maximum score. There might be one such player or several. This set

D will be referred to as the dominant set in A. As set A changes, so also will set D.

Algorithm 1 GIK Algorithm

1: Let R = 0, A = {P1, P2, . . . , Pn}.

2: if A = 0 then go to (15); otherwise determine the current scores of players in A. 3: if

A = 0 then go to (15); otherwise determine D, the dominant set.

4: If |D| > 1, then go to (6).

5: Letting P denote the only player in D, form the ranking R = R||P, let A = A/{P} and

 go to (3).

11

Algorithm 1 GIK Algorithm Continued...

6: If from the last time of updating the current scores of A [step (2)], set A has changed, then

go to (2).
7: If D > 2, then go to (9).

8: Let P1 and P2, denote the players in D with P1 > P2. Let R = R||P1||P2, and A =

A/{P1, P2}. Go to (2).

9: If R = 0, then go to (11).

10: Arrange all players in D in Hamiltonian order H, i.e. H = (P1 > P2 > · · · > Pk). Let R

= R||H and A = A/{P1,P2,...,Pk). Go to (2).

11: Let Q denote the last player presently in R, and let {P1, P2, . . . , Pk} constitute D. Let

i = 1.

12: If i > k, go to(10).

13: If Pi > Q, put Pi in R ahead of Q. Let A = A{Pi} and D = D/{Pi}. If |D| = 0, then go to

(2). Otherwise go to (4).

14: Let i = i + 1, and go to (12).

15: Execute procedure Arrange on the ranking R.

16: End.

Once the first set of scores for all players is determined (step 2), steps 3 and 5 are carried

out to determine the initial partial ordering among the dominant set of untied players. As

soon as the first block of ties is reached (|D| > l), an attempt is made to rank this block in

a manner which is advantageous. If |D| = 2, then step 8 arranges the two dominant players

in the remaining set A according to their tournament outcome. If |D| > 2, then steps 11, 12,

13 and 14 attempt to find a player in D who defeated the last ranked player Q in R. If one is

found, then this player is ranked ahead of Q and we continue to look for the next player

(among those remaining ones in D) who defeated Q etc. When all players have been ranked,

procedure Arrange, described earlier, is executed (step 15).

Theorem 2.2.1. The complexity of the GIK algorithm is O(n4) [9].

Proof. Step 2 requires O(n2), step 3, O(n) and step 10, O(k2) operations. Loop 12-13-14

can be executed at most k times, and from step 13 we can proceed to step 4 at most k − 2

times. We can return to step 2 only if A is changed, which can occur at most n − 1 times.

12

Taking all this into consideration, after O(n3) operations, step 15 is reached, which requires at

most O(n4) operations as discussed above. Thus the algorithm is O(n4).

2.3 Hamiltonian Path Algorithm

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or

directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian

circuit) is a Hamiltonian path that is a cycle.

The Hamiltonian path algorithm finds a ranking of players such that a player always defeats a

player ranked immediately below him. For example consider the following graph of five

players A, B, C, D and E.

Figure 2.2: Before applying Hamiltonian Path algorithm

Figure 2.3: After applying Hamiltonian Path algorithm

From Figure 2.3 we observed that A defeats B, B defeats D, D defeats E and E defeats C. So

the ranking is A > B > D > E > C.

Definition 2.3.1. A ranking R of a tournament is said to be Hamiltonian if for any i (i = 1,

2, ..., n),the player ranked in ith position has defeated (in the tournament) the player ranked in

position (i + 1) [9].

Such a ranking is referred to as a Hamiltonian Path. From the above example it is clear that

significant improvements, in terms of reducing the number of violations, may be obtainable

when a nonHamiltonian ranking is transformed into a Hamiltonian ranking. The following

algorithm can be utilized to convert any given ranking into a Hamiltonian Path.

13

Algorithm 2 Hamiltonian Path Algorithm 1:
Let i = 1.

2: Let I = i.

3: If Pi > Pi + 1, then go to(9).

4: Interchange Pi and Pi + 1 (i.e. let Pi = Pi + 1 and Pi + 1 = Pi). 5:

Let K = 1. If K = 1, then go to (9).

6: If PK−1 > PK , then go to (9).

7: Interchange PK−1 and PK and set K = K − 1. 8:

If K > 1, then to go (6).

9: Set i = i + 1.

10: If i < n, then go to (2).

11: End.

In step 3, the algorithm determines if the ith ranked player actually defeated the (i + 1)st

ranked player. If so then they are sequenced in the “proper” order. We then update i (step 9), and

check the next consecutive pair in the sequence. If player i did not defeat player i + 1 in the

tournament, then these two players are interchanged in the ranking (step 4).

Each time a pair of players is interchanged, it is necessary to back up through the ranking

just examined to see if the new player Pi (which was player Pi+ 1) must be interchanged

with player Pi−1, etc. This is accomplished in steps 5 to 8. Since this is not the case, the

ranking is Hamiltonian. Since the outer loop (steps 2 to 10) is repeated n times, and since

the inner loop (steps 6 to 8) can involve at most n passes, the following theorem holds.

Theorem 2.3.1. The Hamiltonian Path algorithm converges in at most O(n2) operations.

The Hamiltonian Path algorithm checks only to determine if two adjacent players can be

switched [9].

Limitations in Hamiltonian Path algorithm:

Only consider a ranking of the players such that each player lost to the player ranked one

position higher. Do not observe the total scenario.

14

2.4 Arrange Algorithm

ARRANGE algorithm starts with an arbitrary ranking and improves it by rearranging the

ranking of a single player so that the total number of violations is decreased. Starting with a

given ranking R = (P1, P2, , ..., Pn) of n players in a tournament, an improvement in the

ranking (reduction in the number of violations) can be attempted by determining whether or not

each player is ranked in the “best” possible position. Specifically, a check can be made to

determine whether or not the moving of a player to some new position in the ranking, while

keeping all other players fixed in their respective positions, will reduce the number of

violations. If so, a new ranking R′ is created as follows.

Starting with R, consider moving some player Pi to a new position k(k = 1). This gives rise to

the new ranking

R′ = (P1, P2,...,Pk−1, Pi, Pk,...,Pi−1, Pi+1 ...Pn)

Now, generally this move would be executed if and only if the number of violations in R′

will be strictly less than that of R, with one exception. The move to create R′ with R′ having

the same number of violations as R will be carried out, if and only if player Pi+1 is defeated

by player Pi−1. In this instance R′ is easily converted to R′′, in which Pi−1 and Pi+1 are

interchanged, i.e.

R′′ = (P1, P2,...,Pk−1, Pi, Pk,...,Pi+1, Pi−1 ...Pn)

R′′ has 1 less violation than did R. In order to determine the number of violations that will

result by moving Pi to a new position k, only O(n) operations rather than O(n2) are required.

The moving of Pi to position k can be regarded as k − i movements (from i to i + 1, from i

+ 1 to i + 2, and so on). The number of violations for each new ranking (formed by moving

Pi from position j to j + 1 say) differs from the number for the previous ranking by +1 or

−1, and thus can be computed by O(1) steps. Therefore, the number of violations of the

new ranking can be computed in O(k − i) operations. Since k − i < n then the number of

operations is O(n).

The instructions for procedure Arrange appear below. Steps 3 and 6 require O(n) operations

 15

each, while all other steps require O(1) operations. The main loop from step 2 to step 9 is

done n times. In case no new ranking is formed, the algorithm requires O(n2) steps. In case

new rankings are formed, reducing the number of violations from V1 to V2, then because after

each new ranking is formed we return to step 1, the number of steps is (V1 − V2) × O(n2). In

the worst possible case, the number of violations is O(n2). Hence, at most O(n2) new

rankings are formed, and the maximum number of steps is O(n4).

Theorem 2.4.1. The Arrange procedure converges in at most O(n4) operations [9].

Algorithm 3 Arrange Algorithm

1: Let i = 1, and go to (3).

2: if Pi+1 defeats Pi−1, then go to (6).

3: For j = 1 to n, move Pi to position j if and only if a better ranking is achieved. 4:

If a better ranking is obtained, go to (1).

5: Go to (8).

6: For j = 1 to n(j = i), move Pi to position j if and only if a ranking is obtained which

 has no more violations than is true of the present one.

7: If Pi is moved, interchange Pi+1 and Pi−1 to get a better ranking, and go to step (1). 8:

Set i = i + 1.

9: If i < n, then go to (2).

10: End.

Limitations in Arrange algorithm:

Only works upon single player but not for a set of players.

2.5 The Feedback Arc Set Problem

The Feedback Arc Set (FAS) problem is a key combinatorial problem: to rank items in a

set given only advice about the correct way to order specific pairs. A ranking of a set is

simply a permutation of that set. Thus the only information we have to help us to form our

ranking is a set of statements of the form ‘a should be ranked before b’. If each statement is

consistent with all others, the problem is simple to solve— just return a ranking that agrees

with all the advice. However, difficulties arise when there is contradictory, or inconsistent,

16

advice. For instance, given the three statements, ‘a should be ranked before b’, ‘b should be

ranked before c’ and ‘c should be ranked before a’, there is no ranking of a, b and c which

agrees with all the statements. The difficulty of the FAS problem, much like problems of

clustering with advice— such as the correlation clustering problem [4] — is in deciding

which of the inconsistent advice to follow, and which to violate. The aim is to minimize the

number of statements that are violated. The natural graph representation of the problem uses a

vertex for each item and a directed arc from a to b for each demand ‘a should be ranked

before b’. In this context, the aim is to order the vertices from left to right so that the number of

arcs pointing left (back-arcs) is as small as possible.

Problem: Feedback Arc Set (FAS)

Given a directed graph G = (V, E), find an ordering over V to minimize the number of

 back arcs: that is the number of arcs

{v → w ∈ E|π(v) > π(w)}

Given some ranking π, if the set of back-arcs is removed, then all cycles in the graph will

eliminate. Such a set is called a Feedback Arc Set. An equivalent formulation of the problem is

therefore: given a digraph G, find the smallest subset S of the arcs of G that intersects all cycles

in G. The graph G′ obtained by removing the arcs in S from G is acyclic and thus a DAG—and

admits a consistent ordering via a topological sort.

2.5.1 Some Applications of FAS

Originally motivated by problems in circuit design [17], FAS has found applications in many

areas, including computational chemistry [22, 24], and graph drawing [14]. Closely related to

the FAS problem is the Rank Aggregation problem.

Problem: Rank Aggregation

Given a set ∏ of rankings over a set V , find a ranking σ to minimise ∑π∈ ∏ K(σ, π), where K(π,

σ) is the Kemeny distance [1959]; defined to be the number of pairs v, w ∈ V where π(v) <

π(w) and σ(v) > σ(w).

Dwork et al. [12] outline the problem and motivate it as a method for aggregating data from

 17

search engines. There is a significant body of work studying this problem, which is known as

MetaSearch [3].

Rank Aggregation is a special case of FAS on weighted tournaments. There is a fairly simple

reduction: for each v, w ∈ V , if v is ranked above w in some fraction f of the input rankings,

place an arc between v and w with weight f . The connection to Rank Aggregation is a

principal reason for the attention paid to the FAS problem on tournaments.

2.6 Sorting Algorithms

It is possible to define a FAS algorithm which is analogous to almost any sorting algorithm.

Unlike traditional sorting problems, in which we assume there is a total order on the data,

the difficulty in FAS is the lack of transitivity, which sorting algorithms are designed to

exploit. Nevertheless, sorting algorithms provide schemes for deciding which of the advice to

believe. So we can define a general strategy for FAS based on some sorting algorithm S; run S

over the vertices of G, using as the comparison function “u < v if and only if u → v”. For

instance, using this strategy, Quicksort is defined as follows:

Algorithm: Quicksort

Choose a pivot p ∈ V , uniformly at random. Let L ⊆ V be all vertices v such that v ∈ p, and let R

= V \(L ∪ {v}). Also, let πL be the ordering of L obtained by Quicksort, and πR be the

analogous ordering of R. Output (πL, v, πR), the ordering resulting from placing vertices in L

on the left (ordered by πL), etc.

Cook et al. [9] focus on ensuring a Hamiltonian path exists along the final ordering of the

nodes; any sensible algorithm should achieve this. The method they use to achieve this is

in effect a bubble sort of the tournament. Chanas and Kobylanski [6] apply an insertion

technique to the Linear Ordering problem that is more involved than the usual Insertionsort.

As a subroutine, they use what is in effect Insertionsort, which they name SORT. It is defined

as follows:

Algorithm: Sort

Make a single pass through the nodes from the left to the right. As each node is considered,

it is moved to the position to the left of its current position that minimises the number of

18

back-arcs (if that number of back arcs is fewer than its current position).

2.7 A PTAS for Weighted Feedback Arc Set on Tournaments

In [21] Claire et al. gives a polynomial time approximation scheme for solving FAS on tour-

naments. They uses existing constant factor approximation algorithms as well as polynomial-

time approximation schemes for the complementary maximization problem.

Theorem 2.7.1. (PTAS). There is a randomized polynomial-time approximation scheme for

minimum weighted Feedback Arc Set on tournaments and for Kemeny-Young rank aggre-

gation. Given ε > 0, the algorithm outputs, in time O((1/ε)n6 + 22O(b/ε)n4), an ordering

whose exptected cost is less than (1 + ε) OPT. The algorithm can be derandomized at the

cost of increasing the running time by a factor of n2O(1/ε) [21].

Algorithm 4 Polynomial Time Approximation Scheme of Theorem 2.7.1
Given: Fixed parameters ε > 0 and b ∈ (0, 1].

Input: A weighted tournament.

Round each weight to the nearest integer multiple of εb/n2.

π← output of any constant factor approximation algorithm.

While there exists a cost-decreasing move, do that move. The two types of moves are:

1. Single vertex moves. Choose a vertex x and a rank j, take x out of the ordering π and

 insert it back in so that its rank is j.

2. Additive approximation. Choose two integers i < j; let U be the set of vertices whose

 current ranks are in [i, j]. Execute the derandomized version of algorithm AddApprox

on U , with β = 9−rmax ε3. Let π′U denotetheresult.Replacetherestrictionπ
U ofπto

U by π′U .

Output: π

19

Chapter 3

Majority Spanning Tree

In this Chapter, we provide an overview of Majority Spanning Tree (MST) and MST algo-

rithms that focus on reducing violations of round-robin tournament. Section 3.1 discusses

definition and properties of Majority Spanning Tree (MST). Two MST algorithms which are

already developed for solving the round-robin tournament problem are reviewed in Section

3.2. Section 3.3 identifies some problems of existing algorithms. Finally, Section 3.4 shows the

new modification of MST algorithm and Section 3.5 discussed our another invention

Hybrid algorithm.

3.1 Introduction to MST

For understanding majority spanning tree (MST) first we need to know what is fundamental

cutset. Fundamental cutset is defined by-

(V − 1) ∗ (V − 1) matrix Q = (qij)

 1, if edge j is in the positive orientation of cutset k

qkj =

-1, if edge j is in the negative orientation of cutset k
0, Otherwise

20

Figure 3.1: Example of fundamental cutset

Let T be any arbitrary spanning tree of G, Kk be the fundamental cutset defined by edge

(i1, j1) = ek ∈ T , and

rk = ∑ Pi j − ∑ Pi j
(i, j)∈K+ (i, j)∈K−

k k

where, K+
k , K−

k
arethesetofforwardandreverseedgesofthecutsetK

k. We define the

value of the cutset Kk by P(Kk) = rk, Pij is the weight of the edge (i, j).

If ek = (AB) then K+ = {AB, GE}, K− = {ED} So, rk = 7 + 11 − 5 = 13

k k

Definition of MST: A spanning tree T is said to be a majority spanning tree of the digraph G

= (V,E) with real weight function P : E → R+ if for each fundamental cutset Kk, deter-

mined by the edges of T ,P(Kk) ≥ 0

For example consider the figure3.2, the value of the cutset determined by the edge DA is

(−5 + 3 − 8 + 11) = 1 ≥ 0 since DA and GE are in the same orientation whereas AC and ED are

in the opposite. In this way cut-set determined by other edges of the spanning tree with thick

edges can be shown to have non-negative weights.

Each edge of an MST is in the majority direction of the fundamental cutset it defines.

21

Figure 3.2: Majority Spanning Tree

3.2 Existing MST Algorithm For Round Robin Tournament Problem

3.2.1 Majority Spanning Tree Algorithm

In [19], Kaykobad et al. consider the problem of ranking players by the criterion of mini-

mizing the number of violations (upsets).

Let R be a ranking and GR = (VR, AR) be a subgraph of G = (V, A) such that VR = V and AR = {(i, j)

| rank of player corresponding to vertex j is immediately below player corresponding to

vertex i }. It is obvious that GR = (VR, AR) is a spanning tree of G, more accurately GR =

(VR,AR) is a Hamiltonian semi-path.

Theorem 3.2.1. Let R be any optimal ranking of a tournament represented by G = (V, A).

Then GR = (VR, AR) is an MST of G [19].

Proof. Suppose that GR = (VR, AR) does not correspond to an MST. Then there exists a

violating cutset (a cutset is said to be violating if its weight is negative) [V′,V \V′]. This

means that the set of players corresponding to V′ has lost more games to the remaining

players than they have won from them. Therefore, if we rank players corresponding to V \V′

first, without changing their relative ranking, and then rank players corresponding to V′, the

number of upsets will be decreased. Therefore, the result is true.

22

Let Gij(R) be the subgraph of G induced by the set of vertices corresponding to players

ranked from i to j, and let Gij
R bethesubgraphofGij(R)havingthesamesetofvertices,

and only those arcs that correspond to the results of matches between consecutively ranked

players.

Theorem 3.2.2. For any optimal ranking R and 1 ≥ i ≥ j ≥ n, G ij
R mustbeanMSTof

Gij(R) [19].

Proof. The algorithm MST finds a Gij
R thatisanMSTofG.Ifitisnotso,thentheranking

can be improved by swapping the set of consecutively ranked players as has been noted in

the proof of Theorem 3.2.1. A systematic search for a violating cutset is carried out by this

algorithm through choosing subdigraphs induced by consecutively ranked players, and then

checking all its possible cutsets. If no more violating cutset can be found for any of the

subdigraphs Gij(R) for all possible values of i, j, the MST algorithm stops. However, the

quality of solution can still be improved, as is done in ARRANGE, by swapping players

around a cut-set with 0 weight, which will not deteriorate the current solution.

From Theorem 3.2.2 we have the following corollaries relating the properties of the MST

algorithm with those of HP and ARRANGE algorithms.

Corollary 3.2.3. For any ranking R obtained by the MST algorithm, Gij
R isadirectedHamil-

tonian Path of Gij(R) for 1 ≥ i ≥ j ≥ n [19].

Corollary 3.2.4. For any ranking R obtained by the MST algorithm, R cannot be improved by

applying Hamiltonian Path or ARRANGE algorithms [19].

By virtue of Corollary 3.2.3 MST ranking cannot be improved by the HP algorithm, whereas if a

ranking can be improved by ARRANGE algorithm then one can still find a violating cutset

for the MST algorithm to get an improved solution. Hence, ARRANGE algorithm cannot

improve any solution obtained by the MST algorithm.

Below we give some explanations of what the algorithm does, and the functions that are

used in the algorithm.

• cutset(i, k, j)− is the difference between the numbers of outgoing arcs from set (i, k) to

set (k + 1, j) and outgoing arcs from set (k + 1, j) to set (i, j), where set (i, j) is the set of

vertices corresponding to players ranked from i to j.

23

• maxwin(i, j)− is the maximum number of wins of a player in set (i, j).

• pair(i, j)− corresponds to an upset if the player ranked j defeats the player ranked i.

• size− is the number of players in the tournament.

In the algorithm i-loop selects the first vertex of Gij(R), j-loop selects the last vertex of

Gij(R), whereas k-loop selects the position of cutset. In case of the absence of any violating

cutset, players, around a cutset with zero weight, are swapped, just as is done in ARRANGE.

However, if even such a swapping does not guarantee an improvement of the solution the

subset of players containing player corresponding to maxwin(i, j) is given better ranking by

swapping.

Algorithm 5 Majority Spanning Tree

1: Majority (MST)

2: repeat

3: swap ← false

4: for i = 1 to size − 1 do

5: for j = i + 1 to size do

6: for k = i to j − 1 do

7: if cutset(i, k, j) < 0

8: swap ← true

9: else if cutset(i, k, j) = 0 then

10: if pair(i, j) or (i − l, k + l) or (k, j + l) is upset then

11: swap ← true

12: swap respective pair

13: else

14: if maxwin(i, k) < maxwin(k + 1, j)

15: swap ← true

16: swap respective pair

17: endif

18: endif

19: endif

24

Algorithm 5 Majority Spanning Tree Continued...
20: if swap = true then

21: swap set ({i, k}, {k + 1, j})

22: break i-loop

23: endif

24: endfor (k-loop)

25: endfor (j-loop)

26: endfor (i-loop)

27: until not swap

Assuming the number of players in the tournament to be n, complexity of the MST algorithm

can be derived as follows: In the k-loop, calculation of cutset value requires O(n) operations.

Each of the i, j and k-loop will be done at most n times for a single swap, which will

reduce the number of violations by 1. The amount of computation for this is at most O(n4).

Since there can be at most O(n2) violations initially, the algorithm requires at most O(n6)

calculations.

3.2.2 A Modified Algorithm For Round-Robin Tournament

For modification of MST, in [11], Avijit et al. introduced the following functions:

• kut(i,k)− cutset (i,k,n), the difference between the numbers of outgoing arcs from

set (i, k) to set (k + 1, n) and outgoing arcs from set (k + 1, n) to set (i, k),where set (i, k)

is the set of vertices corresponding to players ranked from i to k.

• updateKut()− updates the kut (i,k) whenever the SetSwap (i,k, j) is done and it does

this in the following incremental approach :

kut(i, k) = kut (i, k − 1) + sum

where,

n k−1
sum = ∑ Arcs(k, l) - ∑ Arcs(l, k)

l=k+1 l=i

25

 1, if player ranked k defeates player ranked l

Arcs(k, l) =

-1, if player ranked l defeates player ranked k
0, if k=1

each of i and k loops is run at most n times, and computation of sum takes another O(n)

complexity. So, the total complexity of UpdateKut() is O(n3). To derive the relationship

between cutset (i, k, j) and kut (i, k), we consider the set (i, n) as a union of 3 disjoint sets:

set (i, k), set (k + 1, j) and set (j + 1, n).

Let,

A denote the set (i, k)

B denote the set (k + 1, j)

C denote the set (j + 1, n)

Then if we express AB = cutset (i, k, j)

We get, A(B +C) = cutset (i, k, n) = kut (i, k)

i k k+1 j j+1 n

A B C

here, cutset(i, k, j) = AB

= A(B +C) + BC − (A + B)C

= kut(i,k) + kut(k+1, j) − kut(i, j)

26

Algorithm 6 Modified MST

1: Repeat

2: done = false

3: for i = 1 to n-1 do

4: for j = i + 1 to n do

5: for k = i to j-1 do

6: if kut(i, k) + kut(k + 1, j) - kut(i, j) < 0 then

7: done = true

8: SetSwap(i, k, j)

9: UpdateKut ()

10: UpdateMaxWin ()

11: else if kut(i, k) + kut(k + 1, j) - kut(i, j) = 0 then

12: if maxwin(i, k) < maxwin(k + 1, j) then

13: done = true

14: SetSwap(i, k, j)

15: UpdateKut ()

16: UpdateMaxWin ()

17: end if

18: end if

19: end for (k-loop)

20: end for (j-loop)

21: end for (i-loop)

22: Until not done

Assuming the number of players in the tournament to be n, complexity of the MST algorithm

can be derived as follows: execution of UpdateKut() to update the kut (i, k) value requires

computation of at most O(n3) complexity. Execution of UpdateMaxWin() to compute the

maxwin(i, j) value requires computation of at most O(n3) complexity. Each of the i, j and

k-loop will be done at most n times for a single swap, which will reduce the number of

violations by at least 1. So, the amount of computation is at most O(n3). Since there can be

at most O(n2) violations initially, the algorithm requires at most O(n5) computation. Space

requirement of kut is O(n2).

27

3.3 Limitations in Existing Algorithms

• Only consecutive set swap is possible.

For example if there are three set A, B and C, the algorithm can swap only set(A, B) or

set(B,C) but can not swap set(A,C).

• Because of this reason most of the time required number of passes increases.

3.4 Improved MST Algorithm

In this Section, we propose an improved MST algorithm which gives better results compared

to the MST algorithm and modified MST algorithm. We consider only simple connected di-

graphs G = (V, A). Spanning trees of any digraph are denoted by T . A directed cutset(Vi,Vj)

is defined as (Vi,Vj) = {(k, l) | k ∈ Vi, l ∈ Vj}. For improvement of the algorithm we divide

the data in three sets and compare among them. In this algorithm we can swap sets which

are not adjacent but in the previous algorithms this feature was not established. Below we

give some explanations of what the algorithm does, and the functions that are used in the

algorithm.

• cutset(i, l, l + 1, k)− is the difference between the numbers of outgoing arcs from

set(i, l) to set(l + 1, k) and outgoing arcs from set(l + 1, k) to set(i, l).

• cutset(l + 1, k, k + 1, j)− is the difference between the numbers of outgoing arcs from

set(l + 1, k) to set(K + 1, j) and outgoing arcs from set(k + 1, j) to set(l + 1, k).

• cutset(i, l, k + 1, j)− is the difference between the numbers of outgoing arcs from

set(i, l) to set(k + 1, j) and outgoing arcs from set(k + 1, j) to set(i, l).

28

Algorithm 7 Improved MST

1: Repeat

2: swap = false

3: for i = 0 to less than size-2 do

4: for j = i + 2 to less than size do

5: for k = i to j do

6: for l = i to k do

7: if

8: (cutset(i, l, l + 1, k) + cutset(l + 1, k, k + 1, j) + cutset(i, l, k + 1, j)) < 0

9: swap (i, l, k + 1, j)

10: elseif

11: (cutset(i, l, l + 1, k) + cutset(l + 1, k, k + 1, j) + cutset(i, l, k + 1, j)) = 0

12: if (pair(i − 1, i) or pair(l, l + 1)

13: or pair(k, k + 1) or pair(j, j + 1) is upset) then

14: swap respective pair

15: elseif (maxwin(i, l) < maxwin(k + 1, j))

16: swap respective pair

17: endfor l loop

18: endfor k loop

19: endfor j loop

20: endfor i loop

21: Until not swap

Assuming the number of players in the tournament to be n, complexity of the Improved

MST algorithm can be derived as follows: In the l-loop, calculation of cutset value requires

O(n) operations. Each of the i, j, k and l-loop will be done at most n times for a single

swap, which will reduce the number of violations by 1. The amount of computation for this

is at most O(n5). Since in the worst possible case there can be at most O(n2) violations,

then the algorithm requires at most O(n7) calculations. In case no new ranking is formed,

the algorithm requires O(n5) steps.

29

3.4.1 Procedure of Improved MST

Figure 3.3 shows a tournament digraph with six players and the result of the game in matrix

form. We use this digraph to explain the procedure of our algorithm. Let, at any instance

the algorithm divides the graph into three sets I, J and K, Figure 3.4 shows this scenario.

According to Improved MST procedure first calculate the value of cutset(I, J), cutset(I, K)

and cutset(J, K), then sum up these values and take further decisions.

Figure 3.3: A Tournament digraph and a matrix of the result of the tournament.

Figure 3.4: The algorithm divides the graph into three sets.

For this instance, cutset(I, J) = cutset(i, l, l + 1, k)

= set(i, l) − set(l + 1, k)

= 0−4 = −4

30

cutset(I, K) = cutset(i, l, K + 1, j)

= set(i, l) − set(K + 1, j)

= 0−4 = −4

cutset(J, K) = cutset(l + 1, k, k + 1, j)

= set(l + 1, k) − set(k + 1, j) =

0−3 = −3

cutset value = cutset(I, J) + cutset(I, K) + cutset(J, K)

 = −4 − 4 − 3 = −11

According to Improved MST condition if the summation of three cutsets is less than zero

then the algorithm swap set I and set K. Figure 3.5 shows the situation after swapping.

Figure 3.5: Situation of digraph after swapping set I and set K

Figure 3.5 reveals that the number of upset reduces by 10. For proving that most of the time

nonconsecutive set swap is better than consecutive set swap we also swap consecutive set. First

we swap set I and set J then calculate the upsets and found that number of upset is 9, Figure

3.6 shows this scenario. We also swap another two consecutive sets, set J and set K where

we found that number of upset is 11. Our improved MST algorithm gives much better result

comparing these cases.

31

Figure 3.6: Situation of digraph after swapping set I and set J

Figure 3.7: Situation of digraph after swapping set J and set K

3.5 Hybrid Algorithm

We have fabricated a Hybrid algorithm by combining four algorithms which are previously

used for solving round-robin tournament problem as well as our newly developed improved

algorithm. The output of Hybrid algorithm produces a better result compared to any other

algorithm. However, in the worst case scenario its complexity is quite high. In contrast, this

algorithm is not time consuming for most cases because we sort the dataset in the beginning

using sort algorithm. Afterwords, we improve the result by running the sorted output on

HP. Complexity of sort and HP is negotiable, so we get a less violating dataset compared

to initial input within a short period of time. As IMST uses a dataset which is already well

ranked, so it does not require much effort on moving the sets of players, thus, it does not

take much time. Hybrid algorithm keeps running until the amount of upset is declining.

32

Moreover when the result becomes stable it terminates the program.

Algorithm 8 Hybrid Algorithm

1: Sort the players according to number of wins

2: HpInput ← Sorted Result

3: Hamiltonian ()

\\ Works on the data stored on the HpInput

\\ Procedure is given on Algorithm 2

4: ArrangeInput ← Result of Hamiltonian

5: Improvement ← true

6: while (Improvement) do

7: BeforeUpset ← count upset before calling Arrange

8: Arrange ()

\\ Works on the data stored on the ArrangeInput

\\ Procedure is given on Algorithm 3

9: AfterUpset ← count upset after calling Arrange

10: if (AfterUpset ≥ BeforeUpset) then

11: break

12: end if

13: end while

14: MSTInput ← Final Result of Arrange

15: while (Improvement) do

16: BeforeUpset ← count upset before calling MST

17: MST ()

\\ Works on the data stored on the MSTInput

\\ Procedure is given on Algorithm 5

18: AfterUpset ← count upset after calling MST

19: if (AfterUpset ≥ BeforeUpset) then

20: break

21: end if

22: end while

33

Algorithm 8 Hybrid Algorithm Continued...
23: ImpMSTInput ← Final Result of MST

24: while (Improvement) do

25: BeforeUpset ← count upset before calling Improved MST

26: ImprovedMST ()

\\ Works on the data stored on the ImpMSTInput

\\ Procedure is given on Algorithm 7

27: AfterUpset ← count upset after calling Improved MST

28: if (AfterUpset ≥ BeforeUpset) then

29: break

30: end if

31: end while

32: Give final result

33: end Hybrid algorithm

The Improved MST and Hybrid algorithm discussed in this Chapter can substantially im-

prove upon an existing ranking in terms of reducing the number of violations. As will be

demonstrated in next Chapter, this algorithm is superior in terms of reducing violations to

any of the heuristics presently available.

34

Chapter 4

Implementations and Experiments

To validate the correctness of our new algorithm, extensive simulation experiments have

been conducted. We implement our proposed improved MST algorithm and previously de-

veloped MST algorithm. In addition, we developed a Hybrid algorithm where we implement

Sort, Hamiltonian Path, Arrange and MST algorithms. Then compare the performance of

these algorithms. In this Chapter, we describe the experimental setup and results in brief. In

Section 4.1 we provide an overview of our implementation of Sort, HP, Arrange, MST and

improved MST algorithm and Section 4.2 presents the simulation results to evaluate the

performance of our proposed Improved MST algorithm and Hybrid algorithm in terms of

both number of violations and computational time.

4.1 Implementation

This Section describes the implementation of Sort, HP, Arrange, MST and our proposed

Improved MST algorithm. We developed a Hybrid algorithm in which we implement these

algorithms as individual method. Here, we describe the different module of the implemen-

tation process and their functionality.

4.1.1 Implementation of Sort

Inputs: The main parameters for the Sort algorithm are number of players(n) and the result

of all the games they have played. These information is stored in a file in the form of

35

upper triangular matrix of 0 and 1. We read this data according to file name then stored this

information in a 2D array named inputArray

Outputs:The output shows the number of upsets within players and their rank.

Scenario: Here we simply count the number of wins of each player then sort them according to

the number of wins.

4.1.2 Implementation of HP

Inputs: The main parameters for the HP algorithm are number of players(n) and the result of

all the games they have played. Actually, this input is the output of Sort algorithm.

Outputs: The output shows the number of upsets within players and their rank.

Scenario: Find the violation of consecutive players among n players. Say, there exist a pair

of players Pi and Pi+1 where Pi is the ith (0 < i < n) player in the derived ranking, yet player

Pi+1 defeated player Pi in their match. Therefore, then new ranking will change to Pi+1, Pi.

4.1.3 Implementation of Arrange

Inputs: The main parameters for the Arrange algorithm are number of players(n) and the

result of all the games they have played. Actually, this input is the output of HP algorithm.

Outputs: The output shows the number of upsets within players and their rank.

Scenario: Starting with a given ranking R = (P1, P2, . . . , Pn) of n players in a tournament, an

improvement in the ranking (reduction in the number of violations) can be attempted by

determining whether or not each player is ranked in the “best” possible position. Specifi-

cally, a check can be made to determine whether or not the moving of a player to some new

position in the ranking, while keeping all other players fixed in their respective positions,

will reduce the number of violations.

4.1.4 Implementation of MST

Inputs: The main parameters for the MST algorithm are number of players(n) and the result

of all the games they have played. Actually, this input is the output of Arrange algorithm.

36

Outputs: The output shows the number of upsets within players and their rank.

Scenarios: According to the procedure of MST algorithm first we calculate the Cutset value.

After that, depending on this value we take the decision of what to do next. Let the Cutset

value between two sets of players is less than zero, in such case we just swap those sets.

If the Cutset value between two sets of players is equal to zero then we check another two

conditions and if one of these condition is true then we swap respective pair of players. If

the Cutset value is greater than zero then there will be no change between the sets.

4.1.5 Implementation of Improved MST

Inputs: The main parameters for the Improved MST algorithm are number of players(n)

and the result of all the games they have played. Actually, this input is the output of the

MST algorithm.

Outputs: The output shows the number of upsets within players and give their final ranking.

Scenario: According to the procedure of Improved MST algorithm first we calculate the

three cutset value with four parameters. Then sum up these values and depending on this

value we take the decision of what to do next. Let the summation of three sets of players is

less than zero, in such case we swap first and last set of players keeping the second set of

players fixed in their respective positions. If this summation value is equal to zero then we

check another two conditions (i. upset between consecutive pair ii. max winner between

first last set) and if one of these condition is true then we swap respective pair of players.

If the sum is greater than zero then there will be no change between the sets.

4.2 Experiments

For comparing performance, three algorithms, namely MST, Improved MST and Hybrid

MST have been considered. The basis for comparison of the above-mentioned heuristics

is a set of randomly generated tournaments of sizes ranging from 10 to 100 players. All

heuristics have been programmed in Java which is an object oriented programming lan-

guage. Eclipse is an Integrated Development Environment (IDE) is used for writing all the

algorithms. All the algorithms were run on core i3 machine with 4 GB RAM and the oper-

37

ating system was windows 10. All the datasets are generated by a built in function rand()

which returns a pseudo-random number in the range of 0 to Total Player. Performance of

the heuristics has been measured in terms of both violations and computational time. Table

4.1 depicts the result of MST, Improved MST and Hybrid algorithm in terms of number of

upsets. Most of the time previously developed MST algorithm improves solutions compared

to Sort, HP and Arrange algorithms [19]. Our Improved MST algorithm has an improved

outcome when put into comparison with MST algorithm and in no case does it deteriorate

the MST solution, thus, it would be futile to compare those algorithms with our Improved

MST algorithm. In order to obtain better statics in number of violations, in Table 4.2 we

showed average of 12 different datasets (10 random datasets and one for worst case, an-

other for best case) of same size for all three algorithms. In Table 4.3 we measured average

computational time of these three algorithms.

Table 4.1: Number of upsets for different algorithms

No.of Players Initial Upset MST Improved MST Hybrid

10 25 10 9 8

10 24 13 11 8

10 19 10 10 9

10 24 13 11 8

10 22 14 12 10

10 28 12 9 7

10 25 15 11 9

10 25 10 10 10

10 28 9 9 6

10 15 8 9 8

10 0 0 0 0

10 45 0 0 0

20 156 45 27 24

20 52 31 29 23

20 56 33 29 23

20 68 44 41 38

38

No.of Players Initial Upset MST Improved MST Hybrid

20 66 51 43 39

20 138 55 46 37

20 65 43 39 37

20 79 56 45 44

20 79 55 51 48

20 69 56 45 44

20 0 0 0 0

20 190 0 0 0

30 60 65 62 56

30 106 103 82 80

30 106 109 82 85

30 110 127 105 96

30 120 130 104 101

30 140 159 120 120

30 120 114 97 94

30 119 128 104 103

30 84 112 92 88

30 116 121 103 101

30 0 0 0 0

30 435 0 0 0

40 577 206 156 156

40 636 144 110 110

40 564 201 168 164

40 522 261 228 207

40 501 276 225 225

40 568 228 182 175

40 541 252 196 192

40 529 260 210 210

40 584 196 158 158

40 547 265 209 208

39

No.of Players Initial Upset MST Improved MST Hybrid

40 0 0 0 0

40 780 0 0 0

50 566 517 490 433

50 592 506 499 441

50 592 506 499 441

50 598 515 434 434

50 604 500 473 439

50 567 511 436 436

50 591 520 517 445

50 602 508 420 419

50 570 518 511 438

50 598 526 500 436

50 0 0 0 0

50 1225 0 0 0

60 895 746 682 656

60 908 741 719 640

60 921 733 683 633

60 886 747 638 638

60 885 717 627 627

60 903 735 730 645

60 900 741 626 626

60 916 754 628 628

60 923 774 730 653

60 900 764 688 652

60 0 0 0 0

60 1770 0 0 0

70 1195 1061 970 901

70 1235 1046 1033 916

70 1207 1033 973 891

70 1211 1075 1019 926

40

No.of Players Initial Upset MST Improved MST Hybrid

70 1195 1038 998 920

70 1207 1048 1014 901

70 1210 1016 951 867

70 1201 1069 1032 894

70 1211 1073 1072 925

70 1210 1066 993 896

70 0 0 0 0

70 2415 0 0 0

80 1556 1368 1319 1194

80 1554 1325 1280 1182

80 1568 1383 1338 1201

80 1567 1372 1343 1182

80 1560 1359 1327 1212

80 1551 1346 1223 1223

80 1552 1358 1308 1199

80 1551 1347 1279 1189

80 1564 1356 1324 1194

80 1551 1350 1261 1179

80 0 0 0 0

80 3160 0 0 0

90 1986 1755 1613 1562

90 2014 1724 1724 1724

90 1888 1685 1607 1601

90 1967 1744 1656 1661

90 1986 1755 1613 1562

90 2021 1745 1696 1501

90 1943 1698 1623 1604

90 1921 1667 1721 1512

90 1898 1732 1622 1562

90 2213 1824 1723 1667

41

No.of Players Initial Upset MST Improved MST Hybrid

90 0 0 0 0

90 4005 0 0 0

100 2472 2092 1991 1845

100 2478 1951 1786 1696

100 2556 1877 1802 1780

100 2567 2167 1886 1856

100 2321 1988 1778 1699

100 2456 1950 1802 1710

100 2510 2192 1978 1812

100 2331 1851 1756 1756

100 2675 2250 2021 1945

100 2451 1932 1845 1802

100 0 0 0 0

100 4950 0 0 0

Form Table 4.1 we see that MST, Improved MST and Hybrid algorithm gives the same result

for tiny dataset. Small dataset, those are constructed of 10 to 40 players, for those Hybrid

algorithm and Improved MST algorithm gives a better result than MST. Being a dataset of

20 players, which have initial upsets 156, after applying MST, Improved MST and Hybrid

we get 45, 27, 4 upsets respectively. For large dataset, the results are far better than MST in

Improved MST. Although Hybrid algorithm provides a superior result in all cases, however, for

large datasets, the diversity of result is significant.

Table 4.2: Average number of upsets for different algorithms

No.of Players Average Initial Upset MST Improved MST Hybrid

10 23.3333 9.5000 8.5000 6.9167

20 84.8333 39.0833 32.9167 29.7500

30 156.2727 106.1818 86.4545 84.9091

40 420.0036 190.7500 153.5000 153.0000

50 592.0833 427.2500 398.2500 364.6667

42

No.of Players Average Initial Upset MST Improved MST Hybrid

60 900.5833 621.0000 562.5833 535.6667

70 1208.0833 877.0833 838.4167 753.0833

80 1561.1667 1130.3333 1083.5000 996.3333

90 1986.8333 1444.0833 1383.1667 1329.6667

100 2480.5833 1687.5 1553.75 1491.75

Table 4.3: Average computational time of three algorithms in seconds

No.of Players MST Improved MST Hybrid

10 2.5000 3.1200 2.0076

20 3.3303 5.5200 7.2200

30 5.2100 7.7508 8.3544

40 46.3385 10.4862 19.0594

50 155.0833 179.8263 50.8765

60 719.0833 1447.865 1065.9663

70 1040.4167 2922.9983 3251.2354

80 4842.25 5953.7083 6779.2027

90 5678.0098 7912.686 8597.393

100 6871.0371 8990.5471 9861.0023

Table 4.3 shows the average execution time of each algorithm for 12 datasets of same size.

We calculate this time by using currentTimeMillis() methods which exists in System class

of java.lang package. The System.currentTimeMillis() method returns the current time in

milliseconds and the granularity of the value depends on the underlying operating system.

Here we call this method two times for each algorithm: first one is just before the algorithm

start and the second one is just after the algorithm ends. Then compute the difference be-

tween them for getting actual processing time of each algorithm. For large datasets it takes

a lot of time in millisecond, that is why we converted milliseconds into seconds.

For better understanding how the rank changes among players we show the initial ranking

and all the new ranking of each algorithms. Table 4.4 shows the rank for 10 players given

43

by MST, Improved MST and Hybrid algorithms.

Table 4.4: Ranking of various algorithms for 10 players

Rank 1 2 3 4 5 6 7 8 9 10

Initial Rank: A B C D E F G H I J

MST Rank: G E H B C D J F I A

Improved MST Rank: B E G H A C D I J F

Hybrid Rank: B G E H C D J I F A

4.2.1 Graphical Analysis of the Results

For understanding more transparently upset’s reduction trends, we represented all the al-

gorithms result in graphical form. Figure 4.1 is constructed on the average of ten random

datasets of same size starting from 10 players and ending at 100 players. Figure 4.2 is rep-

resenting the worst case scenario. Where as Figure 4.3 represents the best case scenario,

followed by Figure 4.4 representing average computational time.

Figure 4.1: Comparison among MST, Improved MST and Hybrid Algorithm

In Figure 4.1, number of players are on X-axis and number of upset are shown on Y-axis.

The graph reveals that the dataset is inclining, the amount of upset is also increasing. All

44

Figure 4.2: Situation in worst case

three algorithms almost give nearest result for 10 to 40 players. Afterwords, as the number

of players increase, Improved MST and Hybrid algorithm give more enhancing results.

Figure 4.2 shows the worst case scenario where each player is defeated by all players below that

specific rank. The input data that we have collected from worst case scenario is 0 in upper

triangle. For this reason, in this case, initial upset is highest and after that when we pass this

data in any algorithm we get 0 because of unique number of losses.

Figure 4.3: Situation in best case

45

Figure 4.3 shows the complete opposite scenario of Figure 4.2. Here, all the input is 1. This

means there is no upset in the beginning and the algorithms have nothing to refuse.

Figure 4.4: Average computational time required by each algorithm

Figure 4.4 represents the execution time of MST, Improved MST and Hybrid. This Figure

reveals that execution time required for Hybrid is really high where as for MST that is very

low. Although Hybrid and Improved MST give a much better result than MST.

46

Chapter 5

Conclusion

In this Chapter, we draw conclusion by highlighting the major contributions made in this

thesis. We have also provided some directions for future research. In Section 5.1, the con-

tribution of our thesis is elaborated. How this thesis can be extended in future is discussed

in Section 5.2.

5.1 Contribution

At the time of starting of this thesis our first objective was to examine the properties of the

round robin tournament problem structure and to analyze and understand the various Rank-

ing algorithms. We elaborately discuss this problem as well as some other scenario where this

problem arises. In this thesis we discuss about seven algorithms which are previously used

for solving round-robin tournament problem: Iterated Kendall, Generalized Iterated

Kendall, Hamiltonian Path, Arrange, Sort, MST and modified MST. Among them we also

implement and run Sort, Hamiltonian Path, Arrange and MST.

Our second objective was to develop a new heuristic algorithm, which will somehow break

the local minima and reach a solution, superior in terms of number of upsets. We have

developed a new heuristic algorithm for improving ranking of the players named Improved

MST algorithm. Furthermore, we have developed another algorithm named Hybrid in which

we combine five algorithms: Sort, HP, Arrange, MST and Improved MST. A comparison is

made of these two algorithms with previously developed MST algorithm on the basis of

47

randomly generated tournaments upto 100 players. We have also compared the average

value of 3 different datasets of the same size. The statistics demonstrate the superiority of the

Improved MST algorithm and Hybrid algorithm over existing heuristics in terms of the

number of violations, although for very large problems (100 players or more e.g.) running

times may become excessive.

5.2 Future Works

Minimum Feedback Arcset Problem is NP-hard even for tournament digraph probability

finding a polynomial time algorithm is very small. For any problem of this complexity class

since there is a computational explosion with the increase of the problem size, heuristic

algorithms are used. However, quite often these heuristic algorithms are caught at a local

minimum, and cannot come out. Sometimes, a significant amount of computational effort is

needed to move out of such situation. In this thesis we have introduced a new heuristic to be

known as Improved MST algorithm which somehow breaks comes out of the local

minimum quite often. However, one needs to develop algorithms that wil be more effective in

solving problems of sizes that appear in practice.

48

REFERENCES

[1] I. Ali, W. D. Cook, and M. Kress. On the minimum violations ranking of a tournament.

M qmt Sci., (32):660-674, 1986.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local

search heuristics for k-median and facility location problems. SIAM Journal on Com-

puting, 33(3):544-562, 2004.

[3] J. Aslam and M. Montague. Models for metasearch. Proceedings of the Twenty-

Fourth annual international ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 276-284, 2001.

[4] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning,

1(56):89-113, 2004.

[5] R. Bao. Time relaxed round robin tournament and the nba scheduling problem. Tech-

nical report, Cleveland State University, 2009.

[6] S. Chanas and P. Kobylanski. A new heuristic algorithm solving the linear ordering

problem. Computational Optimization and Applications, 6(2):191-205, 1996.

[7] P. Charbit, S. Thomasse, and A. Yeo. The minimum feedback arc set problem is np-

hard for tournaments. Combinatorics, Probability and Computing, Cambridge Uni-

versity Press (CUP), 16:01-04, 2007.

[8] T. Coleman and Wirth. Ranking tournaments: Local search and a new algorithm. ACM

J. Exp. Algor., Article 2.6(14), 2009.

[9] W. Cook, I. Golan, and M. Kress. Heuristics for ranking players in a round-robin

tournaments. Computers Ops. Res., 15:135-144, 1988.

[10] W. D. CooK and L. M. Seiford. Priority ranking and consensus formation. Manage-

ment Sci., 24(16):1721-1732, 1978.

[11] A. Datta, M. Hossain, and M. Kaykobad. A modified algorithm for ranking players of a

round-robin tournament. International Journal of Computer Mathematics, 85(1):1-7,

2007.

49

[12] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation revisited. Pro-

ceedings of the Tenth International World Wide Web Conference (WWW10), pages

613-622, 2001.

[13] P. Eades, X. Lin, and W. Smyth. A fast and effective heuristic for the feedback arcset

problem. 47(6):319-323, 1993.

[14] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algo-

rithmica, 11(4):379-403, 1994.

[15] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory

of npcompleteness. 1990.

[16] M. Henz. Scheduling a major college basketball conference—revisited. Technical

report, National University of Singapore, 2001.

[17] D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal

of Computing, 4(1):77-84, 1975.

[18] R. Karp. Reducibility among combinatorial problems. Proc. Sympos., IBM Thomas J.

Watson Res.Center, Yorktown Heights, N.Y.:85-103, 1972.

[19] M. Kaykobad, Q. Ahmed, A. Khalid, and R. Bakhtiar. A new algorithm for ranking

players of a round-robin tournament. Computers Ops. Res., 22(2):221-226, 1995.

[20] M. Kendall. Further contributions to the theory of paired comparisons. Biometrics,

11:43-62, 1955.

[21] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. Proceedings of the

thirty-ninth annual ACM symposium on Theory of computing, (07):95-103, 2007.

[22] D. J. Klein and M. Randic. Innate degree of freedom of a graph. Journal of Computa-

tional Chemistry, 4(8):516-521, 1987.

[23] B. Massam. Spatial search:application to planning problems in the public sector.

Progress in Human Geography, 6(4), 1982.

[24] L. Pachter and P. Kim. Forcing matchings on square grids. Discrete Mathematics,

190:287-294, 1998.

50

[25] G. Post and G. Woeginger. Sports tournaments, home-away assignments, and the break

 minimization problem. Discrete Optimization, 3(2):165-173, 2006.

[26] R. V. Rasmussen and M. A. Trick. Round robin scheduling - a survey. European

 Journal of Operational Research, 188(3):617-636, 2007.

[27] M. A. Trick. Integer and constraint programming approaches for round robin tour-

 nament scheduling. Practice and Theory of Automated Timetabling IV, 2740:63-77,

 2002.

[28] K. Wai and C. Ho. Rank aggregation for metasearch engines. ACM, New York, USA,

 (1581139128/04/0005):17-22, 2004.

	01 Round_Robin_Tournament_Algo final
	02 Round_Robin_Tournament_Algo final (2)

