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Chapter 1 

 

Introduction 

 

 

A round-robin tournament (or all-play-all tournament) is a competition in which each con- 

testant plays all other contestants in turn. The term round-robin is derived from the French  

term ruban, meaning “ribbon”.  Over a long period of time, the term was corrupted and  

idiomized to robin.  In the United Kingdom, a round-robin tournament is often called an  

American tournament in sports such as tennis or billiard which are usually knockout tour- 

naments. In Italian it is called girone all’italiana (literally “Italian-style circuit”). 

In theory, a round-robin tournament is the fairest way to determine the champion among a 

known and fixed number of participants. Each participant, player or team, has equal chances 

against all other opposites. 

Round Robin scheduling is interesting in its own right. Some leagues have a schedule that is a 

single or double round-robin schedule.  Examples of this include many U.S college 

basketball leagues and many European football leagues. For such leagues, the scheduling 

problem is exactly a constrained round-robin scheduling problem, where the constraints are 

generated by team requirements, league rules, media needs, and so on [27]. 
(n) 

If n is the number of competitors, a pure round robin tournament requires 
n 

(2) 

2 games. If n is 

even, then in each of n  
2 

(n2)  
⌊ n 2⌋  rounds,eachwith⌊ 2 

rounds,n2 gamescanberunconcurrently.Ifnisodd,therewillbe 
⌋  

games, and one competitor having no game in that round. 
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The table 1.1 is an example of four team round-robin tournament. 
 

Team Win Loss 

1 
  

2   

3   

4   

 
 

Round1 Round2 Round3 

1 vs 2 1 vs 4 1 vs 3 

4 vs 3 3 vs 2 2 vs 4 

 

Table 1.1: Four team Round Robin Tournament 
 
 

The table 1.2 is an example of five team round-robin tournament. 
 

Team Win Loss 

1 
  

2   

3   

4   

5   

 

 

Round1 Round2 Round3 Round4 Round5 

1 vs 4 3 vs 1 5 vs 3 2 vs 5 4 vs 2 

2 vs 3 4 vs 5 1 vs 2 3 vs 4 5 vs 1 

5-bye 2-bye 4-bye 1-bye 3-bye 

 

Table 1.2: Five team Round Robin Tournament 
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1.1 The Round Robin Tournament Problem 

Ranking is a fundamental activity for organizing and, later, understanding data. Advice of  

the form “a should be ranked before b” may be given by ranking [8, 26, 25]. If this advice is  

consistent, and complete, then there is a total ordering on the data and the ranking problem  

is essentially a sorting problem. If the advice is consistent, but incomplete, then the problem  

becomes topological sorting. If the advice is inconsistent, then we have the Feedback Arc  

Set (FAS) problem: the aim is then to rank a set of items to satisfy as much of the advice  

as possible. An instance in which there is advice about every pair of items is known as a  

tournament. This ranking task is equivalent to ordering the nodes of a given directed graph  

from left to right, whilst minimising the number of arcs pointing left [8]. 

The problem of ranking players in a round-robin tournament, in which outcome of any match  

is a win or a loss, is to rank players according to their performances in the tournament. 

It is known that the results of a tournament can be represented in a digraph, G = (V, A)  

known as tournament graph, where vertices correspond to players and arcs correspond to  

match results. A tournament result is said to be upset (or violation) if a lowly-ranked player  

has defeated a highly-ranked player [11].  Our goal is to reduce the number of upsets as  

much as possible. 

The problem of minimizing the number of upsets is equivalent to finding the minimum 

number of arcs in a digraph deletion of which results in an acyclic digraph. This problem is 

known as the Minimum Feedback Arcset Problem, which is NP-hard [13, 15, 25].  A 

classical result of Lawler and Karp [18] asserts that finding a minimum feedback arc set in a 

digraph is NP-hard. The minimum FAS for tournaments is polynomially equivalent to the 

minimum FAS for digraphs, and thus also NP-hard. 

Theorem 1.1.1. The minimum feedback arc set for tournaments is NP-hard [7]. 

Let us consider a simple scenario where five players (a, b, c, d, e) have participated in a  

Round Robin Tournament. Figure 1.1 shows the graphical representation of the game. From  

figure if we look at player A, we see there are three incoming arcs and one outgoing arc  

which means A has lost three times and has won just one time.  Player A is defeated by  

player B, C and D won against E.  Similarly, player B is defeated by C and E and won  

against A and D and so on. 
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Figure 1.1: Representation of results of a Round-Robin Tournament in a digraph 

 
 E D C B A 

A 1 0 0 0  

B 0 1 0   

C 1 0    

D 0     

E      

Table 1.3: Representation of the game result 

 

Table 1.3 represents the result of the tournament with 0 indicating a loss and 1 indicating a win. 

For understanding result we have to traverse each row from left to right. Since A has won 

against E we have 1 in the cell. Let us analyze the situation of player A in respect to other 

players. First consider A with E. Here 1 represents A has won the match with E as A is in the 

row and E is in the column. Then in case of A and D, 0 means A has lost the match. Similarly 0 

and 1 represents the match status for other players. 
 

 

1.2 Literature Survey 

The Round Robin tournament structure also arises in other environments, for example, es- 

tablishing searching priorities for a set of search engines in the internet. In [28], Ka Wai and  

Chi Ho present an algorithm for merging results from different data sources in meta-search  

engine.  They further extend one that has developed for ranking players of a round-robin 

 
 

4 
 



 

 

 

tournament to a more general one when the ranking input is given from multiple sources. 

The problem in meta-search engine can be represented by a complete directed graph which can 

be used by the Majority Spanning Tree (MST) algorithm [19]. 

In the situation where a consumer or respondent in a market survey specifies preferences  

pertaining to a set of products, these preferences are often given in the form of pairwise  

comparisons (product i is preferred to product j).  In the case where such a comparison  

is made between all pairs then a binary matrix of the tournament type would result.  The  

ranking of this tournament would constitute a preference ordering of the products for this  

particular respondent. Techniques such as those discussed in Cook and Seiford [10], e.g.,  

could then be utilized to derive a group preference or consensus of opinions. The tournament  

approach, therefore, becomes a valuable technique for processing consumer preferences  

involving pairwise comparisons. 

In any organization regular assessments of personnel are done as a matter of course. It is 

particularly true in the case of the military, e.g., that officers as well as enlisted personnel 

undergo performance appraisal on an annual basis.  While it is generally true that each 

individual is to be assessed on his/her own merits, it is also the case that relative comparisons are 

often made, particularly when promotion quotas are enforced. In the final analysis some form of 

pairwise comparison of candidates would or could be invoked to arrive at a ranking of these 

candidates. In this instance the same tournament structure could be created, with the 

modification that some pairs may not be compared. 

The problem of establishing funding priorities for a set of projects (e.g.  in a transporta- 

tion department) can also give rise to the tournament model.  This is particularly true in  

a multicriteria project evaluation situation.  Here a common approach is to apply a non- 

compensatory method such as concordance analysis [23]. Briefly, the concordance model  

is constructed as follows: Assign a rating rij to each project i relative to criterion j. Letting  

wj denote the weight or importance to be attached to criterion j, determine for each pair  

(i, i′) of projects a concordance index sii′  and a discordance index dii′ , where 

 
 
 

Sii′ = 

 

 

Sum of the weights of those criteria where project i is rated equal to or better than i’  
 Sum of all weights 
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dii′ =Largestnegativedifference(i.e.i’ratedhigherthani)betweenratingsforasinglecriterion 
 

 The difference between the maximum obtainable and minimum obtainable ratings. 
 

Using thresholds Ts and Td , compute a preference index 

 

 
 

1,  if Sii′ ≥ Ts and dii′ ≤ Td 
aij  =  0,  otherwise. 

The matrix A = (aii′ ) is then used to rank the projects. These and related applications are 

discussed in [1] 

In [27], Michael A. Trick has worked on a large practical scheduling problem, that is Major  

League Baseball (MLB). Fully defining the MLB schedule is a daunting task, requiring  

the collection of more than 100 pages of team requirements and requests, along with an  

extensive set of league practices. The key inside into effectively scheduling MLB, however,  

was the recognition that the complicated schedule could generally be broken into various  

phases, where each phase consists of a round-robin schedule, sometimes among subsets of  

teams. 

Round robin tournament format is also used in National Basketball Association (NBA).  

Bao [5, 16] examine the properties of general time-relaxed round robin tournaments and also  

defined single round, double round and multiple round time-relaxed round robin tournament. 

In modern days, most leagues use a round robin tournament schedule format which means  

each team play every other team for a fixed number of times during a time span, which is  

called a round. The round robin tournament schedules can be divided into two broad types:  

time constrained schedules and time relaxed schedules. In time constrained schedules, the  

number of available game slots is equal to necessary game slots. The time constrained sched- 

ules are used by many leagues, including most college basketball conferences, professional  

soccer leagues in the Europe and the South America. In the time relaxed schedules, the time  

of available game slots is bigger than the necessary number. It is used by a few leagues, the  

National Basketball Association (NBA) and the National Hockey League (NHL) in North  

America are two examples.  The NBA is the most popular professional basketball league  

in North America.  Bao [5] was inspired by the scheduling problem for the NBA regular  

season. 
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The round-robin is widely used in many other leagues, especially amateur sports leagues. As 

a result of the limited arena and player availability, round robin tournament format is the only 

choice for most amateur leagues. 
 
 

1.2.1  Time Relaxed Single Round Robin Tournament Problem (TRSRR) 

Time relaxed single round robin tournaments have the general round robin tournament struc- 

ture requirement: every team will meet every other team at a fixed number, which is one in  

this case. In a time constrained round robin tournament, the number of the available game  

days is equal to the minimum required days. Unlike its counterpart, time relaxed round robin  

tournaments have more game days than the minimum required. Therefore it is necessary to  

define the parameter of the number of available game days. Let, the number of available  

time slots is double size of the number of the games. For instance, there are 2(n − 1) time  

slots available if a team has to play n − 1 games. Table 1.4 is an example schedule for a  

tournament with six teams. 
 

Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Team 1 vs 3  vs 2 vs 6 vs 5  vs 4    

Team 2   vs 1 vs 4  vs 5 vs 3   vs 6 

Team 3 vs 1 vs 6  vs 4  vs 2 vs 5    

Team 4 vs 6 vs 5  vs 2 vs 3  vs 1    

Team 5  vs 4   vs 1 vs 2  vs 3 vs 6  

Team 6 vs 4 vs 3  vs 1     vs 5 vs 2 

Table 1.4: Time Relaxed Single Round Robin Tournament 
 
 
 

1.2.2  Time Relaxed Double Round Robin Tournament (TRDRRT) 

Teams play each other twice in a double round robin tournament, normally one at home,  

the other on road. In the time constrained schedules, the mirrored double round robin tour- 

nament is popular. A mirrored double round robin tournament consists of two rounds with  

identical timetables, and the venues in the second round are reversed to those in the first  

round. For example, it team i play at home with team j on day d(d ≤D
2),thenteamjwill 
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play at home with team i on day d + 2D. 
 

 

1.3  Objective of the Thesis 

In this thesis, we concentrate to give a better ranking for the players or teams of a round- 

robin tournament, so that the number of violations reduces as much as possible. Although a 

number of techniques have been developed to solve the problem of Ranking player in 

Round-Robin tournament. We improve these algorithms further to obtain better solutions. 

Therefore, the main objectives of our thesis are as follows: 

• First is to examine the properties of the round robin tournament problem structure and to 

analyze and understand various Ranking algorithms. 

• Second is to develop a new heuristic algorithm, which will give better results com- 

pared to the previous algorithms. 
 

• Third is extend this algorithm for solution of related problems. 
 

 

1.4  Organization of the Thesis 

The work is organized as follows. Chapter 1 introduces the round-robin tournament struc- 

ture and also explains the round-robin tournament problem in details. An extensive survey  

about existing algorithms for the round robin tournaments is given in Chapter 2. A detailed  

description about Majority Spanning Tree (MST), previously developed MST algorithms for  

round-robin tournaments and our new inventions Improved MST algorithm and Hybrid al- 

gorithm are depicts in Chapter 3. Chapter 4 is divided into two main parts: part-1 illustrates  

the implementation process of Sort, HP, Arrange, MST and Improved MST, experimental  

results in two different forms (table and graph) is described in part-2. Comparison of up- 

set and computational time in these five algorithms is also presented in this Chapter. Our  

contribution on this thesis and some suggestion for future work is given in Chapter 5. 
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Chapter 2 

 

Existing Algorithms 

 

 

In this Chapter, we provide an overview of round-robin tournament ranking algorithms that  

focus on reducing number of violations among the players or teams. A significant amount  

of works have been done to alleviate the round-robin tournament ranking problem. One of  

the earliest proposed was that based on Kendall scores [20, 2]. In this method, players are  

ranked according to the number of opponents each defeats. Section 2.1 discusses Iterated  

Kendall(IK) algorithm.  An Improved version of IK is Generalized Iterated Kendall, dis- 

cussed in Section 2.2. Section 2.3 describes how Hamiltonian Path (HP) algorithm works  

and Section 2.4 reviews the working procedure of Arrange algorithm. We have already said  

that this problem is similar to Minimum Feedback Arcset Problem(FAS), so we have also  

studied some algorithms which are related to FAS problem. In Section 2.5 we illustrate the  

Feedback Arcset Problem.  A Polynomial Time Approximation Scheme (PTAS) to solve  

FAS problem on tournaments is discussed in Section 2.7. 
 

 

2.1  Iterated Kendall Algorithm 

In Ali et al. [1] the IK algorithm is presented. This algorithm is an extension of the Kendall  

scores approach, and is guaranteed to produce a ranking with no ties. The method works as  

follows: 

1. Compute the Kendall scores by finding the row sums of the tournament matrix A(T ),  

 and rank order the players according to these scores. If there are no ties, the resulting 
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ranking will produce no violations and the procedure terminates. 

2. If k players are tied for some position, break the ties by considering the submatrix of  

 A(T ) containing only the rows and columns of these k players, and performing the  

 ranking as in step (1). 

3. If there are l players who are tied among themselves (i.e. the row sums of the 1x1  

 submatrix for these players are all equal), select any one of the 1 players and place  

 it first in the subranking.  The tie among the remaining l − 1 players is broken by  

 performing step (2). 

Referring to the previous example in which players (c, d, e) tied in the row sums, step (2) of 

the IK algorithm indicates that row sums for the submatrix for these 3 players should be 

computed. Specifically, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Procedure of Iterated Kendall algorithm 

Since there is still a tie in these row sums, we randomly select one of the players (c, d, e) to be 

the first in the submatrix-say player c (step3). Returning to step (2) with the remaining 

submatrix corresponding to de, we get row sums 

 
 
 

d→0 

 
e→1 

According to step (2) of the algorithm, player e should be ranked next after c.  The final 

ranking is then a > c > e > d > b. 
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2.2 Generalized Iterated Kendall Algorithm 

In the GIK algorithm restoring is done by using that sub-tournament involving all players 

not yet ranked. In case there is still a tie in this sub-tournament, the GIK procedure tries to 

find a player who defeated the last player put in the ranking.  If such a player exists, it is 

advantageous to put that player next, and then immediately change his place with the 

previously last ranked player. In this manner, a reduction in the overall number of violations by 

one (as compared with a random positioning) is guaranteed. 
 
The GIK algorithm appears below. The following conventions are used. 

 
 
• |S1| denotes the cardinality of the set of players. 
 

• 0 denotes the empty set. 

• If S1, and S2 denote sets (subsets) of players, then S1/S2, denotes those players in S1, but 

not in S2. 

• If R denotes a ranking and P a player, R||P denotes the ranking formed by placing 

player P after the last player in the ranking R. 

• Given R1 = (P1 > P2 > · · · > Pk) and R2 = (Q1 > Q2 > · · · > Ql ), then R1||R2 = (P1 >  

 P2 ··· > Pk > Q1 > Q2 > ··· > Ql. 

In the following algorithm, A will denote the set of unranked players. Initially, the players  

will all be scored according to the row sums as in the IK algorithm. Let the set D include all  

players that have the maximum score. There might be one such player or several. This set  

D will be referred to as the dominant set in A. As set A changes, so also will set D. 
 
Algorithm 1 GIK Algorithm 

1:  Let R = 0, A = {P1, P2, . . . , Pn}. 

2:  if A = 0 then go to (15); otherwise determine the current scores of players in A. 3:  if 

A = 0 then go to (15); otherwise determine D, the dominant set.  

4:  If |D| > 1, then go to (6). 

5:  Letting P denote the only player in D, form the ranking R = R||P, let A = A/{P} and  

 go to (3). 
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Algorithm 1 GIK Algorithm Continued... 

6:  If from the last time of updating the current scores of A [step (2)], set A has changed, then  

go to (2). 
7:  If D > 2, then go to (9). 

8:  Let P1  and P2, denote the players in D with P1 > P2.  Let R = R||P1||P2, and A = 

A/{P1, P2}. Go to (2). 

9:  If R = 0, then go to (11). 

10:  Arrange all players in D in Hamiltonian order H, i.e. H = (P1 > P2 > · · · > Pk). Let R 

= R||H and A = A/{P1,P2,...,Pk). Go to (2). 

11:  Let Q denote the last player presently in R, and let {P1, P2, . . . , Pk} constitute D.  Let  

i = 1. 

12:  If i > k,  go to(10). 

13:  If Pi > Q, put Pi in R ahead of Q. Let A = A{Pi} and D = D/{Pi}. If |D| = 0, then go to 

(2). Otherwise go to (4). 

14:  Let i = i + 1, and go to (12). 

15:  Execute procedure Arrange on the ranking R.  

16:  End. 

 

Once the first set of scores for all players is determined (step 2), steps 3 and 5 are carried  

out to determine the initial partial ordering among the dominant set of untied players. As  

soon as the first block of ties is reached (|D| > l), an attempt is made to rank this block in  

a manner which is advantageous. If |D| = 2, then step 8 arranges the two dominant players  

in the remaining set A according to their tournament outcome. If |D| > 2, then steps 11, 12, 

13 and 14 attempt to find a player in D who defeated the last ranked player Q in R. If one is 

found, then this player is ranked ahead of Q and we continue to look for the next player 

(among those remaining ones in D) who defeated Q etc. When all players have been ranked, 

procedure Arrange, described earlier, is executed (step 15). 
 

Theorem 2.2.1. The complexity of the GIK algorithm is O(n4) [9]. 

Proof. Step 2 requires O(n2), step 3, O(n) and step 10, O(k2) operations. Loop 12-13-14  

can be executed at most k times, and from step 13 we can proceed to step 4 at most k − 2  

times. We can return to step 2 only if A is changed, which can occur at most n − 1 times. 
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Taking all this into consideration, after O(n3) operations, step 15 is reached, which requires at 

most O(n4) operations as discussed above. Thus the algorithm is O(n4). 
 

 

2.3  Hamiltonian Path Algorithm 

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or 

directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian 

circuit) is a Hamiltonian path that is a cycle. 

The Hamiltonian path algorithm finds a ranking of players such that a player always defeats a 

player ranked immediately below him. For example consider the following graph of five 

players A, B, C, D and E. 
 
 
 
 
 
 
 

Figure 2.2: Before applying Hamiltonian Path algorithm 
 
 
 
 
 
 

Figure 2.3: After applying Hamiltonian Path algorithm 

From Figure 2.3 we observed that A defeats B, B defeats D, D defeats E and E defeats C. So 

the ranking is A > B > D > E > C. 

Definition 2.3.1. A ranking R of a tournament is said to be Hamiltonian if for any i (i = 1, 

2, ..., n),the player ranked in ith position has defeated (in the tournament) the player ranked in 

position (i + 1) [9]. 

Such a ranking is referred to as a Hamiltonian Path. From the above example it is clear that 

significant improvements, in terms of reducing the number of violations, may be obtainable 

when a nonHamiltonian ranking is transformed into a Hamiltonian ranking. The following 

algorithm can be utilized to convert any given ranking into a Hamiltonian Path. 
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Algorithm 2 Hamiltonian Path Algorithm 1:  
Let i = 1. 

2:  Let I = i. 

3:  If Pi > Pi + 1, then go to(9). 

4:  Interchange Pi and Pi + 1 (i.e. let Pi = Pi + 1 and Pi + 1 = Pi). 5:  

Let K = 1. If K = 1, then go to (9). 

6:  If PK−1 > PK , then go to (9). 

7:  Interchange PK−1 and PK and set K = K − 1. 8:  

If K > 1, then to go (6). 

9:  Set i = i + 1. 

10:  If i < n, then go to (2).  

11:  End. 

 

In step 3, the algorithm determines if the ith ranked player actually defeated the (i + 1)st 

ranked player. If so then they are sequenced in the “proper” order. We then update i (step 9), and 

check the next consecutive pair in the sequence. If player i did not defeat player i + 1 in the 

tournament, then these two players are interchanged in the ranking (step 4). 

Each time a pair of players is interchanged, it is necessary to back up through the ranking  

just examined to see if the new player Pi (which was player Pi+ 1) must be interchanged  

with player Pi−1, etc. This is accomplished in steps 5 to 8. Since this is not the case, the  

ranking is Hamiltonian. Since the outer loop (steps 2 to 10) is repeated n times, and since  

the inner loop (steps 6 to 8) can involve at most n passes, the following theorem holds. 

Theorem 2.3.1. The Hamiltonian Path algorithm converges in at most O(n2) operations.  

The Hamiltonian Path algorithm checks only to determine if two adjacent players can be  

switched [9]. 
 

Limitations in Hamiltonian Path algorithm: 

Only consider a ranking of the players such that each player lost to the player ranked one 

position higher. Do not observe the total scenario. 
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2.4 Arrange Algorithm 

ARRANGE algorithm starts with an arbitrary ranking and improves it by rearranging the 

ranking of a single player so that the total number of violations is decreased. Starting with a 

given ranking R = (P1, P2, , ..., Pn) of n players in a tournament, an improvement in the 

ranking (reduction in the number of violations) can be attempted by determining whether or not 

each player is ranked in the “best” possible position. Specifically, a check can be made to 

determine whether or not the moving of a player to some new position in the ranking, while 

keeping all other players fixed in their respective positions, will reduce the number of 

violations. If so, a new ranking R′ is created as follows. 

Starting with R, consider moving some player Pi to a new position k(k = 1). This gives rise to 

the new ranking 

 
 

R′ = (P1, P2,...,Pk−1, Pi, Pk,...,Pi−1, Pi+1 ...Pn) 

Now, generally this move would be executed if and only if the number of violations in R′  

will be strictly less than that of R, with one exception. The move to create R′ with R′ having  

the same number of violations as R will be carried out, if and only if player Pi+1 is defeated  

by player Pi−1.  In this instance R′ is easily converted to R′′, in which Pi−1 and Pi+1 are  

interchanged, i.e. 
 
 

R′′ = (P1, P2,...,Pk−1, Pi, Pk,...,Pi+1, Pi−1 ...Pn) 

R′′ has 1 less violation than did R. In order to determine the number of violations that will  

result by moving Pi to a new position k, only O(n) operations rather than O(n2) are required.  

The moving of Pi to position k can be regarded as k − i movements (from i to i + 1, from i  

+ 1 to i + 2, and so on). The number of violations for each new ranking (formed by moving  

Pi from position j to j + 1 say) differs from the number for the previous ranking by +1 or  

−1, and thus can be computed by O(1) steps. Therefore, the number of violations of the  

new ranking can be computed in O(k − i) operations. Since k − i < n then the number of  

operations is O(n). 

The instructions for procedure Arrange appear below. Steps 3 and 6 require O(n) operations  
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each, while all other steps require O(1) operations. The main loop from step 2 to step 9 is 

done n times. In case no new ranking is formed, the algorithm requires O(n2) steps. In case 

new rankings are formed, reducing the number of violations from V1 to V2, then because after 

each new ranking is formed we return to step 1, the number of steps is (V1 − V2) × O(n2). In 

the worst possible case, the number of violations is O(n2). Hence, at most O(n2) new 

rankings are formed, and the maximum number of steps is O(n4). 
 
Theorem 2.4.1. The Arrange procedure converges in at most O(n4) operations [9]. 
 

Algorithm 3 Arrange Algorithm 

1:  Let i = 1,  and go to (3). 

2:  if Pi+1 defeats Pi−1, then go to (6). 

3:  For j = 1 to n, move Pi to position j if and only if a better ranking is achieved. 4:  

If a better ranking is obtained, go to (1). 

5:  Go to (8). 

6:  For j = 1 to n( j = i), move Pi to position j if and only if a ranking is obtained which  

 has no more violations than is true of the present one. 

7:  If Pi is moved, interchange Pi+1 and Pi−1 to get a better ranking, and go to step (1). 8:  

Set i = i + 1. 

9:  If i < n, then go to (2).  

10:  End. 
 
 

Limitations in Arrange algorithm: 
 
Only works upon single player but not for a set of players. 
 

 

2.5  The Feedback Arc Set Problem 

The Feedback Arc Set (FAS) problem is a key combinatorial problem: to rank items in a  

set given only advice about the correct way to order specific pairs. A ranking  of a set is  

simply a permutation of that set. Thus the only information we have to help us to form our  

ranking is a set of statements of the form ‘a should be ranked before b’. If each statement is  

consistent with all others, the problem is simple to solve— just return a ranking that agrees  

with all the advice. However, difficulties arise when there is contradictory, or inconsistent, 
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advice. For instance, given the three statements, ‘a should be ranked before b’, ‘b should be 

ranked before c’ and ‘c should be ranked before a’, there is no ranking of a, b and c which 

agrees with all the statements. The difficulty of the FAS problem, much like problems of 

clustering with advice— such as the correlation clustering problem [4] — is in deciding 

which of the inconsistent advice to follow, and which to violate. The aim is to minimize the 

number of statements that are violated. The natural graph representation of the problem uses a 

vertex for each item and a directed arc from a to b for each demand ‘a should be ranked 

before b’. In this context, the aim is to order the vertices from left to right so that the number of 

arcs pointing left (back-arcs) is as small as possible. 
 

Problem: Feedback Arc Set (FAS) 

Given a directed graph G = (V, E), find an ordering over V to minimize the number of  

 back arcs: that is the number of arcs 

 

{v → w ∈  E|π(v) > π(w)} 

 

Given some ranking π, if the set of back-arcs is removed, then all cycles in the graph will 

eliminate. Such a set is called a Feedback Arc Set. An equivalent formulation of the problem is 

therefore: given a digraph G, find the smallest subset S of the arcs of G that intersects all cycles 

in G. The graph G′ obtained by removing the arcs in S from G is acyclic and thus a DAG—and 

admits a consistent ordering via a topological sort. 
 
 

2.5.1  Some Applications of FAS 

Originally motivated by problems in circuit design [17], FAS has found applications in many 

areas, including computational chemistry [22, 24], and graph drawing [14]. Closely related to 

the FAS problem is the Rank Aggregation problem. 
 
Problem: Rank Aggregation 

Given a set ∏ of rankings over a set V , find a ranking σ to minimise ∑π∈ ∏ K(σ, π), where K(π, 

σ) is the Kemeny distance [1959]; defined to be the number of pairs v, w ∈  V where π(v) < 

π(w) and σ(v) > σ(w). 

Dwork et al. [12] outline the problem and motivate it as a method for aggregating data from  
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search engines. There is a significant body of work studying this problem, which is known as 

MetaSearch [3]. 

Rank Aggregation is a special case of FAS on weighted tournaments. There is a fairly simple 

reduction: for each v, w ∈  V , if v is ranked above w in some fraction f of the input rankings, 

place an arc between v and w with weight f .  The connection to Rank Aggregation is a 

principal reason for the attention paid to the FAS problem on tournaments. 
 

 

2.6 Sorting Algorithms 

It is possible to define a FAS algorithm which is analogous to almost any sorting algorithm. 

Unlike traditional sorting problems, in which we assume there is a total order on the data, 

the difficulty in FAS is the lack of transitivity, which sorting algorithms are designed to 

exploit. Nevertheless, sorting algorithms provide schemes for deciding which of the advice to 

believe. So we can define a general strategy for FAS based on some sorting algorithm S; run S 

over the vertices of G, using as the comparison function “u < v if and only if u → v”. For 

instance, using this strategy, Quicksort is defined as follows: 
 
Algorithm: Quicksort 

Choose a pivot p ∈  V , uniformly at random. Let L ⊆  V be all vertices v such that v ∈  p, and let R 

= V \(L ∪  {v}). Also, let πL be the ordering of L obtained by Quicksort, and πR be the 

analogous ordering of R. Output (πL, v, πR), the ordering resulting from placing vertices in L 

on the left (ordered by πL), etc. 

Cook et al. [9] focus on ensuring a Hamiltonian path exists along the final ordering of the  

nodes; any sensible algorithm should achieve this. The method they use to achieve this is  

in effect a bubble sort of the tournament.  Chanas and Kobylanski [6] apply an insertion  

technique to the Linear Ordering problem that is more involved than the usual Insertionsort.  

As a subroutine, they use what is in effect Insertionsort, which they name SORT. It is defined  

as follows: 
 
Algorithm: Sort 

Make a single pass through the nodes from the left to the right. As each node is considered,  

it is moved to the position to the left of its current position that minimises the number of 
 

18 



 
 
 
 
 

back-arcs (if that number of back arcs is fewer than its current position). 
 

 

2.7  A PTAS for Weighted Feedback Arc Set on Tournaments 

In [21] Claire et al. gives a polynomial time approximation scheme for solving FAS on tour- 

naments. They uses existing constant factor approximation algorithms as well as polynomial- 

time approximation schemes for the complementary maximization problem. 

Theorem 2.7.1. (PTAS). There is a randomized polynomial-time approximation scheme for 

minimum weighted Feedback Arc Set on tournaments and for Kemeny-Young rank aggre- 

gation. Given ε > 0, the algorithm outputs, in time O((1/ε)n6 + 22O(b/ε)n4), an ordering 

whose exptected cost is less than (1 + ε) OPT. The algorithm can be derandomized at the 

cost of increasing the running time by a factor of n2O(1/ε) [21]. 
 

Algorithm 4 Polynomial Time Approximation Scheme of Theorem 2.7.1 
Given: Fixed parameters ε > 0 and b ∈  (0, 1]. 

Input: A weighted tournament. 

Round each weight to the nearest integer multiple of εb/n2.  

π← output of any constant factor approximation algorithm. 

While there exists a cost-decreasing move, do that move. The two types of moves are: 

1. Single vertex moves. Choose a vertex x and a rank j, take x out of the ordering π and  

 insert it back in so that its rank is j. 

2. Additive approximation. Choose two integers i < j; let U be the set of vertices whose  

 current ranks are in [i, j]. Execute the derandomized version of algorithm AddApprox 

on U , with β = 9−rmax ε3. Let π′U denotetheresult.Replacetherestrictionπ
U ofπto 

 

U by π′U . 
 

Output: π 
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Chapter 3 

 

Majority Spanning Tree 

 

 

In this Chapter, we provide an overview of Majority Spanning Tree (MST) and MST algo- 

rithms that focus on reducing violations of round-robin tournament. Section 3.1 discusses  

definition and properties of Majority Spanning Tree (MST). Two MST algorithms which are  

already developed for solving the round-robin tournament problem are reviewed in Section 

3.2. Section 3.3 identifies some problems of existing algorithms. Finally, Section 3.4 shows the 

new modification of MST algorithm and Section 3.5 discussed our another invention 

Hybrid algorithm. 
 

 

3.1  Introduction to MST 

For understanding majority spanning tree (MST) first we need to know what is fundamental 

cutset. Fundamental cutset is defined by- 
 

(V − 1) ∗  (V − 1) matrix Q = (qij) 
 
 

 
  1,   if edge j is in the positive orientation of cutset k  
 

qkj  =  
 
 

-1,  if edge j is in the negative orientation of cutset k 
0,  Otherwise 
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Figure 3.1: Example of fundamental cutset 

Let T be any arbitrary spanning tree of G, Kk be the fundamental cutset defined by edge 

(i1, j1) = ek ∈  T , and 

 
 

rk = ∑ Pi j − ∑ Pi j 
(i, j)∈K+ (i, j)∈K− 

k k 

where, K+
k  , K−

k  
arethesetofforwardandreverseedgesofthecutsetK

k.  We define the 

value of the cutset Kk by P(Kk) = rk, Pij is the weight of the edge (i, j). 
 
If ek = (AB) then K+ = {AB, GE}, K−  = {ED} So, rk = 7 + 11 − 5 = 13 

k k 

Definition of MST: A spanning tree T is said to be a majority spanning tree of the digraph G 

= (V,E) with real weight function P : E → R+ if for each fundamental cutset Kk, deter- 

mined by the edges of T ,P(Kk) ≥ 0 

For example consider the figure3.2, the value of the cutset determined by the edge DA is 

(−5 + 3 − 8 + 11) = 1 ≥ 0 since DA and GE are in the same orientation whereas AC and ED are 

in the opposite. In this way cut-set determined by other edges of the spanning tree with thick 

edges can be shown to have non-negative weights. 
 
Each edge of an MST is in the majority direction of the fundamental cutset it defines. 
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Figure 3.2: Majority Spanning Tree 

 

3.2 Existing MST Algorithm For Round Robin Tournament Problem  

 

3.2.1 Majority Spanning Tree Algorithm 

In [19], Kaykobad et al. consider the problem of ranking players by the criterion of mini- 

mizing the number of violations (upsets). 

Let R be a ranking and GR = (VR, AR) be a subgraph of G = (V, A) such that VR = V and AR = {(i, j) 

| rank of player corresponding to vertex j is immediately below player corresponding to 

vertex i }.  It is obvious that GR = (VR, AR) is a spanning tree of G, more accurately GR = 

(VR,AR) is a Hamiltonian semi-path. 

Theorem 3.2.1. Let R be any optimal ranking of a tournament represented by G = (V, A). 

Then GR = (VR, AR) is an MST of G [19]. 

Proof. Suppose that GR = (VR, AR) does not correspond to an MST. Then there exists a 

violating cutset (a cutset is said to be violating if its weight is negative) [V′,V \V′].  This 

means that the set of players corresponding to V′ has lost more games to the remaining 

players than they have won from them. Therefore, if we rank players corresponding to V \V′ 

first, without changing their relative ranking, and then rank players corresponding to V′, the 

number of upsets will be decreased. Therefore, the result is true. 
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Let Gij(R) be the subgraph of G induced by the set of vertices corresponding to players  

ranked from i to j, and let Gij
R bethesubgraphofGij(R)havingthesamesetofvertices,  

and only those arcs that correspond to the results of matches between consecutively ranked  

players. 

Theorem 3.2.2. For any optimal ranking R and 1 ≥ i ≥ j ≥ n, G ij
R mustbeanMSTof 

Gij(R) [19]. 

Proof. The algorithm MST finds a Gij
R thatisanMSTofG.Ifitisnotso,thentheranking  

can be improved by swapping the set of consecutively ranked players as has been noted in  

the proof of Theorem 3.2.1. A systematic search for a violating cutset is carried out by this  

algorithm through choosing subdigraphs induced by consecutively ranked players, and then  

checking all its possible cutsets.  If no more violating cutset can be found for any of the  

subdigraphs Gij(R) for all possible values of i, j, the MST algorithm stops. However, the  

quality of solution can still be improved, as is done in ARRANGE, by swapping players  

around a cut-set with 0 weight, which will not deteriorate the current solution. 

From Theorem 3.2.2 we have the following corollaries relating the properties of the MST 

algorithm with those of HP and ARRANGE algorithms. 

Corollary 3.2.3. For any ranking R obtained by the MST algorithm, Gij
R isadirectedHamil- 

tonian Path of Gij(R) for 1 ≥ i ≥ j ≥ n [19]. 

Corollary 3.2.4. For any ranking R obtained by the MST algorithm, R cannot be improved by 

applying Hamiltonian Path or ARRANGE algorithms [19]. 

By virtue of Corollary 3.2.3 MST ranking cannot be improved by the HP algorithm, whereas if a 

ranking can be improved by ARRANGE algorithm then one can still find a violating cutset 

for the MST algorithm to get an improved solution. Hence, ARRANGE algorithm cannot 

improve any solution obtained by the MST algorithm. 

Below we give some explanations of what the algorithm does, and the functions that are 

used in the algorithm. 

• cutset(i, k, j)− is the difference between the numbers of outgoing arcs from set (i, k) to 

set (k + 1, j) and outgoing arcs from set (k + 1, j) to set (i, j), where set (i, j) is the set of 

vertices corresponding to players ranked from i to j. 
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• maxwin(i, j)− is the maximum number of wins of a player in set (i, j). 
 

• pair(i, j)− corresponds to an upset if the player ranked j defeats the player ranked i. 
 

• size− is the number of players in the tournament. 

 

In the algorithm i-loop selects the first vertex of Gij(R), j-loop selects the last vertex of  

Gij(R), whereas k-loop selects the position of cutset. In case of the absence of any violating  

cutset, players, around a cutset with zero weight, are swapped, just as is done in ARRANGE.  

However, if even such a swapping does not guarantee an improvement of the solution the  

subset of players containing player corresponding to maxwin(i, j) is given better ranking by  

swapping. 
 
Algorithm 5 Majority Spanning Tree 

1: Majority ( MST) 

2: repeat 

3: swap ← false 

4: for i = 1 to size − 1 do 

5: for j = i + 1 to size do 

6: for k = i to j − 1 do 

7: if cutset(i, k, j) < 0 

8: swap ← true 

9: else if cutset(i, k, j) = 0 then 

10: if pair(i, j) or (i − l, k + l) or (k, j + l) is upset then 

11: swap ← true 

12: swap respective pair 

13: else 

14: if maxwin(i, k) < maxwin(k + 1, j) 

15: swap ← true 

16: swap respective pair 

17: endif 

18: endif 

19: endif 
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Algorithm 5 Majority Spanning Tree Continued... 
20: if swap = true then 

21: swap set ({i, k}, {k + 1, j}) 

22: break i-loop 

23: endif 

24: endfor (k-loop) 

25: endfor ( j-loop) 

26: endfor (i-loop) 

27: until not swap 

 

Assuming the number of players in the tournament to be n, complexity of the MST algorithm  

can be derived as follows: In the k-loop, calculation of cutset value requires O(n) operations.  

Each of the i,  j and k-loop will be done at most n times for a single swap, which will  

reduce the number of violations by 1. The amount of computation for this is at most O(n4).  

Since there can be at most O(n2) violations initially, the algorithm requires at most O(n6)  

calculations. 
 
 

3.2.2  A Modified Algorithm For Round-Robin Tournament 
 

For modification of MST, in [11], Avijit et al. introduced the following functions: 

• kut(i,k)− cutset (i,k,n), the difference between the numbers of outgoing arcs from 

set (i, k) to set (k + 1, n) and outgoing arcs from set (k + 1, n) to set (i, k),where set (i, k) 

is the set of vertices corresponding to players ranked from i to k. 

• updateKut()− updates the kut (i,k) whenever the SetSwap (i,k, j) is done and it does 

this in the following incremental approach : 
 

kut(i, k) = kut (i, k − 1) + sum 

where, 
 

n k−1 
sum = ∑ Arcs(k, l) - ∑ Arcs(l, k) 

l=k+1 l=i 
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  1,   if player ranked k defeates player ranked l  
 

Arcs(k, l) =  
 
 

-1,  if player ranked l defeates player ranked k  
0,  if k=1 

 

 

 

each of i and k loops is run at most n times, and computation of sum takes another O(n) 

complexity. So, the total complexity of UpdateKut() is O(n3). To derive the relationship 

between cutset (i, k, j) and kut (i, k), we consider the set (i, n) as a union of 3 disjoint sets: 

set (i, k), set (k + 1, j) and set ( j + 1, n). 
 
Let, 
 

A denote the set (i, k) 

B denote the set (k + 1, j)  

C denote the set ( j + 1, n) 

Then if we express AB = cutset (i, k, j) 
 
We get, A(B +C) = cutset (i, k, n) = kut (i, k) 

 
 

i .......  k k+1 ........  j j+1 ........  n 
 

A B C 

 
 
here, cutset(i, k, j) = AB 

 

= A(B +C) + BC − (A + B)C 

 

= kut(i,k) + kut(k+1, j) − kut(i, j) 
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Algorithm 6 Modified MST 

1: Repeat 

2: done = false 

3: for i = 1 to n-1 do 

4: for j = i + 1 to n do 

5: for k = i to j-1 do 

6: if kut(i, k) + kut(k + 1, j) - kut(i, j) < 0 then 

7: done = true 

8: SetSwap(i, k, j) 

9: UpdateKut () 

10: UpdateMaxWin () 

11: else if kut(i, k) + kut(k + 1, j) - kut(i, j) = 0 then 

12: if maxwin(i, k) < maxwin(k + 1, j) then 

13: done = true 

14: SetSwap(i, k, j) 

15: UpdateKut () 

16: UpdateMaxWin () 

17: end if 

18: end if 

19: end for (k-loop ) 

20: end for ( j-loop ) 

21: end for (i-loop ) 

22: Until not done 

 

Assuming the number of players in the tournament to be n, complexity of the MST algorithm  

can be derived as follows: execution of UpdateKut() to update the kut (i, k) value requires  

computation of at most O(n3) complexity. Execution of UpdateMaxWin() to compute the  

maxwin(i, j) value requires computation of at most O(n3) complexity. Each of the i, j and  

k-loop will be done at most n times for a single swap, which will reduce the number of  

violations by at least 1. So, the amount of computation is at most O(n3). Since there can be  

at most O(n2) violations initially, the algorithm requires at most O(n5) computation. Space  

requirement of kut is O(n2). 
 
 

27 
 



 

 

 

 

3.3 Limitations in Existing Algorithms 

 

• Only consecutive set swap is possible. 

For example if there are three set A, B and C, the algorithm can swap only set(A, B) or 

set(B,C) but can not swap set(A,C). 
 

• Because of this reason most of the time required number of passes increases. 
 

 

3.4  Improved MST Algorithm 

In this Section, we propose an improved MST algorithm which gives better results compared  

to the MST algorithm and modified MST algorithm. We consider only simple connected di- 

graphs G = (V, A). Spanning trees of any digraph are denoted by T . A directed cutset(Vi,Vj)  

is defined as (Vi,Vj) = {(k, l) | k ∈  Vi, l ∈  Vj}. For improvement of the algorithm we divide  

the data in three sets and compare among them. In this algorithm we can swap sets which  

are not adjacent but in the previous algorithms this feature was not established. Below we  

give some explanations of what the algorithm does, and the functions that are used in the  

algorithm. 

• cutset(i, l, l + 1, k)− is the difference between the numbers of outgoing arcs from 

set(i, l) to set(l + 1, k) and outgoing arcs from set(l + 1, k) to set(i, l). 

• cutset(l + 1, k, k + 1, j)− is the difference between the numbers of outgoing arcs from 

set(l + 1, k) to set(K + 1, j) and outgoing arcs from set(k + 1, j) to set(l + 1, k). 

• cutset(i, l, k + 1, j)− is the difference between the numbers of outgoing arcs from 

set(i, l) to set(k + 1, j) and outgoing arcs from set(k + 1, j) to set(i, l). 
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Algorithm 7 Improved MST 

1: Repeat 

2: swap = false 

3: for i = 0 to less than size-2 do 

4: for j = i + 2 to less than size do 

5: for k = i to j do 

6: for l = i to k do 

7: if 

8: (cutset(i, l, l + 1, k) + cutset(l + 1, k, k + 1, j) + cutset(i, l, k + 1, j)) < 0 

9: swap (i, l, k + 1, j) 

10: elseif 

11: (cutset(i, l, l + 1, k) + cutset(l + 1, k, k + 1, j) + cutset(i, l, k + 1, j)) = 0 

12: if ( pair(i − 1, i) or pair(l, l + 1) 

13: or pair(k, k + 1) or pair( j, j + 1) is upset) then 

14: swap respective pair 

15: elseif (maxwin(i, l) < maxwin(k + 1, j)) 

16: swap respective pair 

17: endfor l loop 

18: endfor k loop 

19: endfor j loop 

20: endfor i loop 

21: Until not swap 

 

Assuming the number of players in the tournament to be n, complexity of the Improved  

MST algorithm can be derived as follows: In the l-loop, calculation of cutset value requires  

O(n) operations.  Each of the i, j, k and l-loop will be done at most n times for a single  

swap, which will reduce the number of violations by 1. The amount of computation for this  

is at most O(n5). Since in the worst possible case there can be at most O(n2) violations,  

then the algorithm requires at most O(n7) calculations. In case no new ranking is formed,  

the algorithm requires O(n5) steps. 
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3.4.1 Procedure of Improved MST 

Figure 3.3 shows a tournament digraph with six players and the result of the game in matrix 

form. We use this digraph to explain the procedure of our algorithm. Let, at any instance 

the algorithm divides the graph into three sets I, J and K, Figure 3.4 shows this scenario. 

According to Improved MST procedure first calculate the value of cutset(I, J), cutset(I, K) 

and cutset(J, K), then sum up these values and take further decisions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: A Tournament digraph and a matrix of the result of the tournament. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: The algorithm divides the graph into three sets. 
 

For this instance, cutset(I, J) = cutset(i, l, l + 1, k) 
 

= set(i, l) − set(l + 1, k) 
 

= 0−4 = −4 
 

30 



 
 
 
 
 

cutset(I, K) = cutset(i, l, K + 1, j) 
 
= set(i, l) − set(K + 1, j) 
 

= 0−4 = −4 

 

cutset(J, K) = cutset(l + 1, k, k + 1, j) 

= set(l + 1, k) − set(k + 1, j) = 

0−3 = −3 

cutset value = cutset(I, J) + cutset(I, K) + cutset(J, K)  

 = −4 − 4 − 3 = −11 

According to Improved MST condition if the summation of three cutsets is less than zero  

then the algorithm swap set I and set K. Figure 3.5 shows the situation after swapping. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: Situation of digraph after swapping set I and set K 

Figure 3.5 reveals that the number of upset reduces by 10. For proving that most of the time 

nonconsecutive set swap is better than consecutive set swap we also swap consecutive set. First 

we swap set I and set J then calculate the upsets and found that number of upset is 9, Figure 

3.6 shows this scenario. We also swap another two consecutive sets, set J and set K where 

we found that number of upset is 11. Our improved MST algorithm gives much better result 

comparing these cases. 
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Figure 3.6: Situation of digraph after swapping set I and set J 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Situation of digraph after swapping set J and set K 

 

3.5 Hybrid Algorithm 

We have fabricated a Hybrid algorithm by combining four algorithms which are previously  

used for solving round-robin tournament problem as well as our newly developed improved  

algorithm. The output of Hybrid algorithm produces a better result compared to any other  

algorithm. However, in the worst case scenario its complexity is quite high. In contrast, this  

algorithm is not time consuming for most cases because we sort the dataset in the beginning  

using sort algorithm.  Afterwords, we improve the result by running the sorted output on  

HP. Complexity of sort and HP is negotiable, so we get a less violating dataset compared  

to initial input within a short period of time. As IMST uses a dataset which is already well  

ranked, so it does not require much effort on moving the sets of players, thus, it does not  

take much time.  Hybrid algorithm keeps running until the amount of upset is declining. 
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Moreover when the result becomes stable it terminates the program. 
 
Algorithm 8 Hybrid Algorithm 

1: Sort the players according to number of wins 

2: HpInput ← Sorted Result 

3: Hamiltonian () 

\\ Works on the data stored on the HpInput 

\\ Procedure is given on Algorithm 2 

4: ArrangeInput ← Result of Hamiltonian 

5: Improvement ← true 

6: while (Improvement) do 

7: BeforeUpset ← count upset before calling Arrange 

8: Arrange () 

\\ Works on the data stored on the ArrangeInput 

\\ Procedure is given on Algorithm 3 

9: AfterUpset ← count upset after calling Arrange 

10: if (AfterUpset ≥ BeforeUpset) then 

11: break 

12: end if 

13: end while 

14: MSTInput ← Final Result of Arrange 

15: while (Improvement) do 

16: BeforeUpset ← count upset before calling MST 

17: MST () 

\\ Works on the data stored on the MSTInput 

\\ Procedure is given on Algorithm 5 

18: AfterUpset ← count upset after calling MST 

19: if (AfterUpset ≥ BeforeUpset) then 

20: break 

21: end if 

22: end while 
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Algorithm 8 Hybrid Algorithm Continued...  
23:  ImpMSTInput ← Final Result of MST 

24:  while (Improvement) do 

25: BeforeUpset ← count upset before calling Improved MST 

26: ImprovedMST () 

\\ Works on the data stored on the ImpMSTInput 

\\ Procedure is given on Algorithm 7 

27: AfterUpset ← count upset after calling Improved MST 

28: if (AfterUpset ≥ BeforeUpset) then 

29: break 

30: end if 

31:  end while 

32:  Give final result 

33:  end Hybrid algorithm 

 

The Improved MST and Hybrid algorithm discussed in this Chapter can substantially im- 

prove upon an existing ranking in terms of reducing the number of violations. As will be 

demonstrated in next Chapter, this algorithm is superior in terms of reducing violations to 

any of the heuristics presently available. 
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Chapter 4 

 

Implementations and Experiments 

 

 

To validate the correctness of our new algorithm, extensive simulation experiments have 

been conducted. We implement our proposed improved MST algorithm and previously de- 

veloped MST algorithm. In addition, we developed a Hybrid algorithm where we implement 

Sort, Hamiltonian Path, Arrange and MST algorithms. Then compare the performance of 

these algorithms. In this Chapter, we describe the experimental setup and results in brief. In 

Section 4.1 we provide an overview of our implementation of Sort, HP, Arrange, MST and 

improved MST algorithm and Section 4.2 presents the simulation results to evaluate the 

performance of our proposed Improved MST algorithm and Hybrid algorithm in terms of 

both number of violations and computational time. 
 

 

4.1 Implementation 

This Section describes the implementation of Sort, HP, Arrange, MST and our proposed 

Improved MST algorithm. We developed a Hybrid algorithm in which we implement these 

algorithms as individual method. Here, we describe the different module of the implemen- 

tation process and their functionality. 
 
 

4.1.1  Implementation of Sort 

Inputs: The main parameters for the Sort algorithm are number of players(n) and the result  

of all the games they have played.  These information is stored in a file in the form of 
 

35 



 

 

 

upper triangular matrix of 0 and 1. We read this data according to file name then stored this 

information in a 2D array named inputArray 

 
Outputs:The output shows the number of upsets within players and their rank. 

Scenario: Here we simply count the number of wins of each player then sort them according to 

the number of wins. 
 
 

4.1.2  Implementation of HP 

Inputs: The main parameters for the HP algorithm are number of players(n) and the result of 

all the games they have played. Actually, this input is the output of Sort algorithm. 
 
Outputs: The output shows the number of upsets within players and their rank. 

Scenario: Find the violation of consecutive players among n players. Say, there exist a pair  

of players Pi and Pi+1 where Pi is the ith (0 < i < n) player in the derived ranking, yet player  

Pi+1 defeated player Pi in their match. Therefore, then new ranking will change to Pi+1, Pi. 
 
 

4.1.3  Implementation of Arrange 

Inputs: The main parameters for the Arrange algorithm are number of players(n) and the  

result of all the games they have played. Actually, this input is the output of HP algorithm. 
 
Outputs: The output shows the number of upsets within players and their rank. 

Scenario: Starting with a given ranking R = (P1, P2, . . . , Pn) of n players in a tournament, an 

improvement in the ranking (reduction in the number of violations) can be attempted by 

determining whether or not each player is ranked in the “best” possible position. Specifi- 

cally, a check can be made to determine whether or not the moving of a player to some new 

position in the ranking, while keeping all other players fixed in their respective positions, 

will reduce the number of violations. 
 
 

4.1.4  Implementation of MST 

Inputs: The main parameters for the MST algorithm are number of players(n) and the result  

of all the games they have played. Actually, this input is the output of Arrange algorithm. 
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Outputs: The output shows the number of upsets within players and their rank. 

Scenarios: According to the procedure of MST algorithm first we calculate the Cutset value.  

After that, depending on this value we take the decision of what to do next. Let the Cutset  

value between two sets of players is less than zero, in such case we just swap those sets.  

If the Cutset value between two sets of players is equal to zero then we check another two  

conditions and if one of these condition is true then we swap respective pair of players. If  

the Cutset value is greater than zero then there will be no change between the sets. 
 
 

4.1.5  Implementation of Improved MST 

Inputs: The main parameters for the Improved MST algorithm are number of players(n) 

and the result of all the games they have played.  Actually, this input is the output of the 

MST algorithm. 

Outputs: The output shows the number of upsets within players and give their final ranking.  

Scenario: According to the procedure of Improved MST algorithm first we calculate the  

three cutset value with four parameters. Then sum up these values and depending on this  

value we take the decision of what to do next. Let the summation of three sets of players is  

less than zero, in such case we swap first and last set of players keeping the second set of  

players fixed in their respective positions. If this summation value is equal to zero then we  

check another two conditions ( i. upset between consecutive pair  ii. max winner between  

first last set ) and if one of these condition is true then we swap respective pair of players.  

If the sum is greater than zero then there will be no change between the sets. 
 

 

4.2 Experiments 

For comparing performance, three algorithms, namely MST, Improved MST and Hybrid  

MST have been considered.  The basis for comparison of the above-mentioned heuristics  

is a set of randomly generated tournaments of sizes ranging from 10 to 100 players.  All  

heuristics have been programmed in Java which is an object oriented programming lan- 

guage. Eclipse is an Integrated Development Environment (IDE) is used for writing all the  

algorithms. All the algorithms were run on core i3 machine with 4 GB RAM and the oper- 
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ating system was windows 10. All the datasets are generated by a built in function rand()  

which returns a pseudo-random number in the range of 0 to Total Player. Performance of  

the heuristics has been measured in terms of both violations and computational time. Table 

4.1 depicts the result of MST, Improved MST and Hybrid algorithm in terms of number of  

upsets. Most of the time previously developed MST algorithm improves solutions compared  

to Sort, HP and Arrange algorithms [19]. Our Improved MST algorithm has an improved  

outcome when put into comparison with MST algorithm and in no case does it deteriorate  

the MST solution, thus, it would be futile to compare those algorithms with our Improved  

MST algorithm. In order to obtain better statics in number of violations, in Table 4.2 we  

showed average of 12 different datasets (10 random datasets and one for worst case, an- 

other for best case) of same size for all three algorithms. In Table 4.3 we measured average  

computational time of these three algorithms. 
 

Table 4.1: Number of upsets for different algorithms 

 

No.of Players Initial Upset MST Improved MST Hybrid 

10 25 10 9 8 

10 24 13 11 8 

10 19 10 10 9 

10 24 13 11 8 

10 22 14 12 10 

10 28 12 9 7 

10 25 15 11 9 

10 25 10 10 10 

10 28 9 9 6 

10 15 8 9 8 

10 0 0 0 0 

10 45 0 0 0 

20 156 45 27 24 

20 52 31 29 23 

20 56 33 29 23 

20 68 44 41 38 
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No.of Players Initial Upset MST Improved MST Hybrid 

20 66 51 43 39 

20 138 55 46 37 

20 65 43 39 37 

20 79 56 45 44 

20 79 55 51 48 

20 69 56 45 44 

20 0 0 0 0 

20 190 0 0 0 

30 60 65 62 56 

30 106 103 82 80 

30 106 109 82 85 

30 110 127 105 96 

30 120 130 104 101 

30 140 159 120 120 

30 120 114 97 94 

30 119 128 104 103 

30 84 112 92 88 

30 116 121 103 101 

30 0 0 0 0 

30 435 0 0 0 

40 577 206 156 156 

40 636 144 110 110 

40 564 201 168 164 

40 522 261 228 207 

40 501 276 225 225 

40 568 228 182 175 

40 541 252 196 192 

40 529 260 210 210 

40 584 196 158 158 

40 547 265 209 208 
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No.of Players Initial Upset MST Improved MST Hybrid 

40 0 0 0 0 

40 780 0 0 0 

50 566 517 490 433 

50 592 506 499 441 

50 592 506 499 441 

50 598 515 434 434 

50 604 500 473 439 

50 567 511 436 436 

50 591 520 517 445 

50 602 508 420 419 

50 570 518 511 438 

50 598 526 500 436 

50 0 0 0 0 

50 1225 0 0 0 

60 895 746 682 656 

60 908 741 719 640 

60 921 733 683 633 

60 886 747 638 638 

60 885 717 627 627 

60 903 735 730 645 

60 900 741 626 626 

60 916 754 628 628 

60 923 774 730 653 

60 900 764 688 652 

60 0 0 0 0 

60 1770 0 0 0 

70 1195 1061 970 901 

70 1235 1046 1033 916 

70 1207 1033 973 891 

70 1211 1075 1019 926 
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No.of Players Initial Upset MST Improved MST Hybrid 

70 1195 1038 998 920 

70 1207 1048 1014 901 

70 1210 1016 951 867 

70 1201 1069 1032 894 

70 1211 1073 1072 925 

70 1210 1066 993 896 

70 0 0 0 0 

70 2415 0 0 0 

80 1556 1368 1319 1194 

80 1554 1325 1280 1182 

80 1568 1383 1338 1201 

80 1567 1372 1343 1182 

80 1560 1359 1327 1212 

80 1551 1346 1223 1223 

80 1552 1358 1308 1199 

80 1551 1347 1279 1189 

80 1564 1356 1324 1194 

80 1551 1350 1261 1179 

80 0 0 0 0 

80 3160 0 0 0 

90 1986 1755 1613 1562 

90 2014 1724 1724 1724 

90 1888 1685 1607 1601 

90 1967 1744 1656 1661 

90 1986 1755 1613 1562 

90 2021 1745 1696 1501 

90 1943 1698 1623 1604 

90 1921 1667 1721 1512 

90 1898 1732 1622 1562 

90 2213 1824 1723 1667 
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No.of Players Initial Upset MST Improved MST Hybrid 

90 0 0 0 0 

90 4005 0 0 0 

100 2472 2092 1991 1845 

100 2478 1951 1786 1696 

100 2556 1877 1802 1780 

100 2567 2167 1886 1856 

100 2321 1988 1778 1699 

100 2456 1950 1802 1710 

100 2510 2192 1978 1812 

100 2331 1851 1756 1756 

100 2675 2250 2021 1945 

100 2451 1932 1845 1802 

100 0 0 0 0 

100 4950 0 0 0 

 

Form Table 4.1 we see that MST, Improved MST and Hybrid algorithm gives the same result  

for tiny dataset. Small dataset, those are constructed of 10 to 40 players, for those Hybrid  

algorithm and Improved MST algorithm gives a better result than MST. Being a dataset of 

20 players, which have initial upsets 156, after applying MST, Improved MST and Hybrid 

we get 45, 27, 4 upsets respectively. For large dataset, the results are far better than MST in 

Improved MST. Although Hybrid algorithm provides a superior result in all cases, however, for 

large datasets, the diversity of result is significant. 
 

Table 4.2: Average number of upsets for different algorithms 

 

No.of Players Average Initial Upset MST Improved MST Hybrid 

10 23.3333 9.5000 8.5000 6.9167 

20 84.8333 39.0833 32.9167 29.7500 

30 156.2727 106.1818 86.4545 84.9091 

40 420.0036 190.7500 153.5000 153.0000 

50 592.0833 427.2500 398.2500 364.6667 
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No.of Players Average Initial Upset MST Improved MST Hybrid 

60 900.5833 621.0000 562.5833 535.6667 

70 1208.0833 877.0833 838.4167 753.0833 

80 1561.1667 1130.3333 1083.5000 996.3333 

90 1986.8333 1444.0833 1383.1667 1329.6667 

100 2480.5833 1687.5 1553.75 1491.75 

 
 

Table 4.3: Average computational time of three algorithms in seconds 

 

No.of Players MST Improved MST Hybrid 

10 2.5000 3.1200 2.0076 

20 3.3303 5.5200 7.2200 

30 5.2100 7.7508 8.3544 

40 46.3385 10.4862 19.0594 

50 155.0833 179.8263 50.8765 

60 719.0833 1447.865 1065.9663 

70 1040.4167 2922.9983 3251.2354 

80 4842.25 5953.7083 6779.2027 

90 5678.0098 7912.686 8597.393 

100 6871.0371 8990.5471 9861.0023 

 

Table 4.3 shows the average execution time of each algorithm for 12 datasets of same size.  

We calculate this time by using currentTimeMillis() methods which exists in System class  

of java.lang package. The System.currentTimeMillis() method returns the current time in  

milliseconds and the granularity of the value depends on the underlying operating system.  

Here we call this method two times for each algorithm: first one is just before the algorithm  

start and the second one is just after the algorithm ends. Then compute the difference be- 

tween them for getting actual processing time of each algorithm. For large datasets it takes  

a lot of time in millisecond, that is why we converted milliseconds into seconds. 

For better understanding how the rank changes among players we show the initial ranking  

and all the new ranking of each algorithms. Table 4.4 shows the rank for 10 players given 
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by MST, Improved MST and Hybrid algorithms. 
 
 
Table 4.4: Ranking of various algorithms for 10 players 

 

Rank 1 2 3 4 5 6 7 8 9 10 

Initial Rank: A B C D E F G H I J 

MST Rank: G E H B C D J F I A 

Improved MST Rank: B E G H A C D I J F 

Hybrid Rank: B G E H C D J I F A 

 
 

4.2.1  Graphical Analysis of the Results 

For understanding more transparently upset’s reduction trends, we represented all the al- 

gorithms result in graphical form. Figure 4.1 is constructed on the average of ten random 

datasets of same size starting from 10 players and ending at 100 players. Figure 4.2 is rep- 

resenting the worst case scenario.  Where as Figure 4.3 represents the best case scenario, 

followed by Figure 4.4 representing average computational time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Comparison among MST, Improved MST and Hybrid Algorithm 

In Figure 4.1, number of players are on X-axis and number of upset are shown on Y-axis.  

The graph reveals that the dataset is inclining, the amount of upset is also increasing. All 
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Figure 4.2: Situation in worst case 

three algorithms almost give nearest result for 10 to 40 players. Afterwords, as the number  

of players increase, Improved MST and Hybrid algorithm give more enhancing results. 

Figure 4.2 shows the worst case scenario where each player is defeated by all players below that 

specific rank. The input data that we have collected from worst case scenario is 0 in upper 

triangle. For this reason, in this case, initial upset is highest and after that when we pass this 

data in any algorithm we get 0 because of unique number of losses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: Situation in best case 
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Figure 4.3 shows the complete opposite scenario of Figure 4.2. Here, all the input is 1. This 

means there is no upset in the beginning and the algorithms have nothing to refuse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: Average computational time required by each algorithm 

Figure 4.4 represents the execution time of MST, Improved MST and Hybrid. This Figure 

reveals that execution time required for Hybrid is really high where as for MST that is very 

low. Although Hybrid and Improved MST give a much better result than MST. 
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Chapter 5  

Conclusion 

 

In this Chapter, we draw conclusion by highlighting the major contributions made in this  

thesis. We have also provided some directions for future research. In Section 5.1, the con- 

tribution of our thesis is elaborated. How this thesis can be extended in future is discussed  

in Section 5.2. 
 

 

5.1 Contribution 

At the time of starting of this thesis our first objective was to examine the properties of the 

round robin tournament problem structure and to analyze and understand the various Rank- 

ing algorithms. We elaborately discuss this problem as well as some other scenario where this 

problem arises. In this thesis we discuss about seven algorithms which are previously used 

for solving round-robin tournament problem: Iterated Kendall, Generalized Iterated 

Kendall, Hamiltonian Path, Arrange, Sort, MST and modified MST. Among them we also 

implement and run Sort, Hamiltonian Path, Arrange and MST. 

Our second objective was to develop a new heuristic algorithm, which will somehow break  

the local minima and reach a solution, superior in terms of number of upsets.  We have  

developed a new heuristic algorithm for improving ranking of the players named Improved  

MST algorithm. Furthermore, we have developed another algorithm named Hybrid in which  

we combine five algorithms: Sort, HP, Arrange, MST and Improved MST. A comparison is  

made of these two algorithms with previously developed MST algorithm on the basis of 
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randomly generated tournaments upto 100 players.  We have also compared the average 

value of 3 different datasets of the same size. The statistics demonstrate the superiority of the 

Improved MST algorithm and Hybrid algorithm over existing heuristics in terms of the 

number of violations, although for very large problems (100 players or more e.g.) running 

times may become excessive. 
 

 

5.2 Future Works 

Minimum Feedback Arcset Problem is NP-hard even for tournament digraph probability 

finding a polynomial time algorithm is very small. For any problem of this complexity class 

since there is a computational explosion with the increase of the problem size, heuristic 

algorithms are used. However, quite often these heuristic algorithms are caught at a local 

minimum, and cannot come out. Sometimes, a significant amount of computational effort is 

needed to move out of such situation. In this thesis we have introduced a new heuristic to be 

known as Improved MST algorithm which somehow breaks comes out of the local 

minimum quite often. However, one needs to develop algorithms that wil be more effective in 

solving problems of sizes that appear in practice. 
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