
An Automated Directive Fall Detection System Using Single 3D 
Accelerometer and Learning Classifier  

 

 

 

 

 

By 

Shaikh Farhad Hossain 
 

 

 

 

MASTER OF SCIENCE IN 
 

INFORMATION AND COMMUNICATION TECHNOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

Institute of Information and Communication Technology 
 

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY 
 

February, 2017 



ii
 

 

This thesis titled, “AN AUTOMATED DIRECTIVE FALL DETECTION SYSTEM 

USING SINGLE 3D ACCELEROMETER AND LEARNING CLASSIFIER” submitted 

by Shaikh Farhad Hossain, Roll No: 0412312030, Session: April 2012 has been accepted as 

satisfactory in partial fulfillment of the requirement for the degree of Master of Science in 

Information and Communication Technology on the 8 February, 2017. 

 

BOARD OF EXAMINERS 

 

 

 
1. Dr. Md. Zahurul Islam                                    Chairman 
    Associate Professor 
    Department of Electrical and Electronic Engineering 
    BUET, Dhaka- 1205 
 
 
 
 
 
2. Director                      Ex-Officio  
    Institute of Information and Communication Technology              
    BUET, Dhaka- 1205 
 
 
 
 
 
 
3. Dr. Md. Rubaiyat Hossain Mondal                               Member 
    Associate Professor  
    Institute of Information and Communication Technology  
    BUET, Dhaka- 1205 
 
 
 
 
 
 
4. Dr. Khondaker Abdullah Al Mamun                                Member  
    Associate Professor          (External) 
    Department of CSE                      
    United International University, Dhaka 



iii
 

 

 
CANDIDATE’S DECLARATION 

 
 

 

 

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the 

award of any degree or diploma. 

 

 

 

 

  

Shaikh Farhad Hossain 

 

 

 

 

 

 

 

 

 

 

 

 



iv
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

DEDICATED TO MY PARENTS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v
 

 

Contents 

 

Board of Examiners         ii 

Candidate’s Declaration          iii 

Dedication                                                                                              iv 

Contents                                                                          vi 

List of Figures                                                                 x 

List of Tables                                                                            xiii 

List of Abbreviations          xiv  

Acknowledgements                                                                    xv 

Abstract                                                                                       xvi 

 

 

 

 

 

 

 

 

 

 



vi
 

 

CHAPTER 1: Introduction 

 1.1. Introduction 1 

 1.2. Fall Detection System: Present State of the  Problem   And 

Motivation for this Thesis 3 

 1.3. Objectives 4 

 1.4. Overview of the Thesis 4 

 1.5  Thesis Organization 5 

CHAPTER 2: Background and Related Work 

 2.1. Definitions of falls  6 

 2.2. Falls in the elderly  6 

         2.2.1. Circumstances of falls  6 

 2.3. Typical fall scenarios  7 

         2.3.1. Fall from standing 7 

         2.3.2. Fall from chair  7 

         2.3.3. Fall from bed 8 

 2.4. Fall risk factors 8 

        2.4.1. Intrinsic risk factors 8 

        2.4.2. Extrinsic risk factors 11 

 2.5. Causes and Consequences of fall 12 

        2.5.1. Physical causes  12 

        2.5.2. Activities  12 

        2.5.3. Physical damage 12 

        2.5.4. Psychological damage 13 

        2.5.5. Economic damage 13 



vii
 

 

 2.6. Related Work 14 

        2.6.1. Camera based fall detection  14 

        2.6.2.  Ambient sensor based fall detection 15 

        2.6.3.  Fall detection by image processing 17 

        2.6.4.  Thresholds based fall detection 17 

        2.6.5.  Smartphones based fall detection 19 

        2.6.6.  Machine Learning Based fall detection 20 

 2.7. Categorization of fall detectors  23 

        2.7.1. First generation   24 

        2.7.2. Second generation  24 

        2.7.3. Third generation 24 

 2.8. Existing wearable fall detectors           24 

 2.9. Traditional Direction Measurement System  25 

 2.10. Issues with existing wearable fall detectors  26 

CHAPTER 3: Methodology and Data Collection 

 3.1. System Design  29 

 3.2. Use of accelerometer 30 

 3.3. Hardware platform  30 

 3.4. Network Setup  32 

 3.5. Sampling frequency  34 

 3.6. Placement of Sensors 34 

 3.7. Participant experimental step 35 

        3.7.1. Subjects recruited for data acquisition  35 

        3.7.2. Consent form  36 

        3.7.3. Age and height  36 



viii
 

 

        3.7.4. Data acquisition  36 

 3.8. Falls and Activities of Daily Living 37 

 3.9. Analysis of accelerometer signals 39 

 3.10.Feature extraction 40 

 3.11.The 3-axis graph representation of accelerations  42 

 3.12. Frequency Domains 51 

 3.13. Calculation of Statistical Features 54 

 3.14. Data Analysis / Feature selection 59 

        3.14.1. Accelerometer Axis configuration 60 

        3.14.2. To Detect Direction  61 

        3.14.3. Direction analysis  62 

        3.14.4. Decision 63 

 3.15. Classification 64 

 3.16. Training and Testing data  64 

CHAPTER 4: Algorithms and Feature Implementation 

 4.1. Introduction 65 

 4.2. Support vector machines (SVM) 65 

        4.2.1. Multiclass SVM 68 

        4.2.2. Implementation 69 

        4.2.3. Results 71 

        4.2.4. Data Analysis Interface                                            72 

 4.3. K-nearest neighbor (KNN) 73 

        4.3.1. Implementation 74 

        4.3.2. Results 76 

        4.3.3. Data Analysis Interface  77 



ix
 

 

 4.4. Algorithms Comparison  78 

CHAPTER 5: Experimental Results 

 5.1. Introduction 80 

 5.2. Classifier 1 (SVM) 81 

 5.3. Classifier 2 (KNN) 81 

 5.4. Result assessment  82 

        5.4.1. Conclusion  85 

        5.4.2. Discussion  85 

 5.5. Real time fall detection  85 

 5.6. Comparing the performance with existing works  87 

        5.6.1. Our proposed system  89 

        5.6.2. Discussion 89 

CHAPTER 6: Conclusion 

 6.1. Summary 90 

 6.2. Limitations  90 

 6.3. Future Work  91 

  
 References 92 

 Publication 101 

 Appendix 102 

 

 

 

 

 



x
 

 

LIST OF FIGURES 

Fig 2.1: Camera based fall detection 14 

Fig 2.2: Ambient sensor based fall detection 16 

Fig 2.3: Fall detection by images processing 17 

Fig 2.4: Commercial fall detectors  25 

Fig 2.5: Gyroscope 26 

Fig 2.6: 3 Accelerometer with cross product 26 

Fig 3.1: Data flow diagram of the direction sensitive fall detection system 29 

Fig 3.2: Shimmer Sensor 30 

Fig 3.3: Block diagram of the SHIMMER base board  interconnections and integrated 

devices 31 

Fig 3.4: Connection and Data Streaming 33 

Fig 3.5: Multi Shimmer sync 33 

Fig 3.6: Data collection set-up 35 

Fig 3.7: Placement of SHIMMER sensor nodes 37 

Fig 3.8: Falls and ADL data gathering 39 

Fig 3.9: Segment of acceleration signal 40 

Fig 3.10: The 3-axis readings for a ‘forward fall down’  recorded using an accelerometer 42 

Fig 3.11: The 3-axis readings for a ‘backward fall down’ recorded using an accelerometer 43 

Fig 3.12: The 3-axis readings for a ‘left fall down’ recorded using an accelerometer 43 

Fig 3.13: The 3-axis readings for a ‘right fall down’   recorded using an accelerometer 44 

Fig 3.14: The 3-axis readings for a ‘idle’ activity  recorded using an accelerometer 45 

Fig 3.15: The 3-axis readings for a ‘lying down’ activity recorded using an accelerometer 45 

Fig 3.16: The 3-axis readings for a ‘sit down’ activity  recorded using an accelerometer 46 



xi
 

 

Fig 3.17: The 3-axis readings for a ‘bend down’ activity   recorded using an 

accelerometer 46 

Fig 3.18: The 3-axis readings for a ‘full down’ activity recorded using an accelerometer 47 

Fig 3.19: The 3-axis readings for a ‘go head down’ activity recorded using an   

accelerometer 48 

Fig 3.20: The 3-axis readings for a ‘knee’ activity recorded using an accelerometer 48 

Fig 3.21: The 3-axis readings for a ‘walking’ activity recorded using an accelerometer  49 

Fig 3.22: The 3-axis readings for a ‘jogging’ activity recorded using an accelerometer 49 

Fig 3.23: The 3-axis readings for a ‘stand up’ activity recorded using an accelerometer 50 

Fig 3.24: The 3-axis readings for a ‘up’ activity   recorded using an accelerometer 50 

Fig 3.25: The 3-axis readings for a ‘jumping’ activity recorded using an accelerometer 51 

Fig 3.26: FFT of acceleration signal (Forward fall) 52 

Fig 3.27: FFT of acceleration signal (Backward fall) 52 

Fig 3.28: FFT of acceleration signal (Left side Fall) 52 

Fig 3.29: FFT of acceleration signal (Right side fall) 52 

Fig 3.30: FFT of acceleration signal (Lying Down) 53 

Fig 3.31: FFT of acceleration signal (Sit down) 53 

Fig 3.32: FFT of acceleration signal (Bend down) 53 

Fig 3.33: FFT of acceleration signal (Down) 53 

Fig 3.34: FFT of acceleration signal (Go down head) 53 

Fig 3.35: FFT of acceleration signal (knee) 53 

Fig 3.36: FFT of acceleration signal (Walk) 54 

Fig 3.37: FFT of acceleration signal (Jogging) 54 

Fig 3.38: FFT of acceleration signal (Up) 54 

Fig 3.39: FFT of acceleration signal (Jumping) 54 



xii
 

 

Fig 3.40: Significant feature- fall Mean 59 

Fig 3.41: Significant feature- Standard Deviation 60 

Fig 3.42: X-Y-Z coordinate system 61 

Fig 3.43: Axis value and direction 62 

Fig 4.1: A linearly classifiable problem 66 

Fig 4.2: A non-linearly classifiable problem 66 

Fig 4.3: Support vectors with margin 67 

Fig 4.4: Example of a multi-class SVM 69 

Fig 4.5: Flow chart of our SVM method 70 

Fig 4.6: Learning Classifier SVM 71 

Fig 4.7: Using trained model SVM to predict activity 72 

Fig 4.8: KNN algorithms 74 

Fig 4.9: Flow chart of our KNN method 75 

Fig 4.10: Learning Classifier KNN 77 

Fig 4.11: Using trained model KNN to predict activity 78 

Fig 5.1: Fall detection performance (True Pos. & True Neg.) of  SVM  & KNN 82 

Fig 5.2: Fall detection performance ( False Neg. & False Pos.) of  SVM & KNN 83 

Fig 5.3: Accuracy of SVM & KNN classifiers 83 

Fig 5.4: Precision   of SVM & KNN classifiers 84 

Fig 5.5: Recall of SVM & KNN classifiers 84 

 

 
 
 
 
 
 
 



xiii
 

 

LIST OF TABLES 

Table 2.1: Wearable sensors for falls and activity monitoring 26 

Table 3.1: Ages and heights of the subjects recruited for the experimental  fall data 

collection 36 

Table 3.2: Calculated features (g) 55 

Table 3.3: Calculated features (gx)  56 

Table 3.4: Calculated features ( gy ) 57 

Table 3.5: Calculated features ( gz ) 58 

Table 3.6: Direction findings 63 

Table 3.7: Accelerometer, features and algorithm 64 

Table 4.1: Detection result of svm classifier 72 

Table 4.2: Detection result of knn classifier 77 

Table4.3: Comparison between svm & knn learning algorithms 78 

Table 5.1: Test result of different classifiers 79 

Table 5.2: Summary results of SVM & KNN classifiers (only fall & ADL) 80 

Table 5.3: Confusion matrix (svm) 80 

Table 5.4: Summary results of svm  81 

Table 5.5: Confusion matrix (knn) 81 

Table 5.6: Summary results of knn  82 

Table 5.7: Confusion matrix (svm) to detect real time fall 86 

Table 5.8: Summary results of svm   to detect   real time fall 87 

Table 5.9: Performance comparison with existing works  87 

Table 5.10: Our proposed system 89 

 
 

 



xiv
 

 

LIST OF ABBREVIATIONS 

 

ADL Activities of Daily Living 

BPNN Back Propagation Neural Network 

BSN Body Sensor Networks 

DFS Depth-First Search 

DFT Discrete Fourier Transform 

DSP Digital Signal Processor 

DT Decision Tree 

FFT Fast Fourier Transform 

FN False Negatives 

FP False Positives 

FPGA Field-Programmable Gate Array 

GUI Graphical User Interface 

HMM Hidden Markov Model 

HOGs Histogram of Oriented Gradients 

KNN K-Nearest Neighbors 

LASA Longitudinal Aging Study Amsterdam 

MEMS Micro Electro Mechanical Systems 

NHS National Health Service 

PCA Principal Component Analysis 

PIR Pyroelectric Infrared 

RN Rovering Network 

SVM Support Vector Machines 

TN True Negatives 

TP True Positives 

VM Vector Magnitude 

WHO World Health Organization 

WSN Wireless Sensor Networks 

 

 



xv
 

 

ACKNOWLEDGEMENTS 
 

 

First of all, I would like to thank Almighty Allah for his mercy and charity. This thesis  

is  the  most significant   accomplishment  in  my life  and  would  have  been   impossible  

without the will and wish of the almighty and I am grateful to him. 

 

I would like to thank my supervisor Dr. Md. Zahurul Islam, Associate Professor, Dept. of 

EEE, BUET. His patience, sincere guidance and encouragement had made this work possible. 

My sincere gratitude and thanks to him. 

 

I have had the help of a lot of people without whose contribution this work may ever have 

come to light. The second person to acknowledge should be Prof. Dr. Md. Liakot Ali, 

Institute of Information and Communication Technology (IICT), Bangladesh University of 

Engineering and Technology (BUET), for introducing me in the arena of Bio-medical 

Engineering.  

 

My thanks to all my teachers here at IICT for helping me prepare for this task. I also have had 

the pleasure of support from the cordial and always helpful staff of IICT over the years that 

have made my task at IICT that much easier. I would also like to thank the  

volunteers who came to the lab for giving me their time so I could perform the experiments. 

 

I would like to thank Dr. Khondaker Abdullah Al Mamun, Associate Professor, Dept. of 

CSE, United International University (UIU) for his wonderful suggestions to improve the 

thesis during and after the oral examination. 

 

Finally, my gratitude must go to my family whose unconditional support had made life 

challenges easier to meet and reach for success. 

 



xvi
 

 

Abstract 
 

Technology advances to accelerate the quality and type of services provided for health care 

and monitor. Wearable sensor systems, composed of small and light sensing nodes, have the 

potential to revolutionize the health care system. An important application of wearable 

sensors can be the detection of fall with its direction, particularly for elderly or otherwise 

vulnerable people. In this thesis work, we implemented a direction-sensitive fall detection 

system prototype using a single three-dimensional accelerometer and machine learning 

algorithm which includes feature extraction and classification methods, e.g. PCA, SVM and 

KNN. Four types of fall, forward, backward, left and right falls are detected. In addition to 

the detection of a fall, it is also important to determine its direction, which could help locate 

joint weakness or post-fall fracture and help decrease reaction time. Most wearable fall 

detection algorithms are based on thresholds set by observational analysis for various fall 

types. However, such algorithms do not generalize well for unseen data sets and their 

applications in finding the directions of falls are not well recognized. A more appropriate 

approach, as presented in this thesis, is a machine learning based algorithm SVM and KNN 

were implemented for fall detection. Among the two methods, SVM provides better 

performances which leads to 96.45% of accuracy using PCA, mean and standard deviation 

features, exceeding the performances reported in the literature. The performances of the 

developed system in real time were also evaluated and they were found satisfactory.   

This work  not only shows a machine learning algorithm that provides accuracy beyond the 

currently available algorithms but also shows direction-sensitive and  cost-effective fall 

detection system using single 3D accelerometer. 
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Chapter 1 
Introduction 

1.1.  Introduction  

Fall, particularly among the elderly people, may result in serious injury or even death if the 

person becomes incapacitated or fails to seek medical aid in a short time. It is at the sixth 

position in the list of causes of death for the people aged between 60 and 65; the second 

between 65 and 75 and the first over 75 [1]. The number of elderly people is ever increasing. 

There are more than 600 million people over the age of 60 around the world and that number 

is expected to approach two billion in 2050 [2]. Statistics from 2001 showed that 17 per cent 

of the population in Europe was 65 or older, and by 2035, an estimated 33 per cent will be 65 

or older [3]. In Canada, the number of elderly people aged 65 years and older was 10.6 per 

cent of the population in 1991. This number is expected to increase rapidly, reaching 14.5 per 

cent by 2011 and 21.8 per cent by 2031 [4]. This future large population of elderly people 

pose a potential high risk of fall related injury and fatality. Also, among the people affected 

by Alzheimer’s disease, the probability of a fall increases by a factor of three [1]. According 

to the American Heart Association, Treatment of a patient, experiencing complications due to 

a fall, within the first 12 minutes after the fall brings a survival rate of 48% -75% [5]. This 

sensitive post-fall time is one of the key factors that determine the future of an elderly fall 

patient. Many older fallers are unable to get up again without assistance and any subsequent 

long inactivity can lead to hypothermia, dehydration, bronchopneumonia and pressure sores 

[6]. Because of these life-threatening consequences of falls, automated and accurate fall 

detection is emerging as a big necessity for many countries where the society adopts the 

culture of independent living for elderly people [7]. 
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Treatment of fall injuries can be very costly.  In 2013, the payments of patients and insurance 

companies totaled to $34 billion for direct medical cost for falls [8]. Over 800,000 patients a 

year are hospitalized because of a fall injury, most often because of a broken hip or head 

injury [9]. The costs of treatment of fall injuries go up with age. The condition of a fall 

patient may deteriorate and can be critical as time passes after the fall. This can further 

increase the cost of treatment. So, automatic fall detection with high accuracy is a crying 

need for the societies that adopt independent living of elderly people.  

 

A long-term, continuous monitoring system becomes a necessity for detecting fall of elderly 

people and for the patients, particularly during their time spent at home. Traditionally, people 

at risk of falls are provided with pendants containing a button that can be pressed for summon 

help. But, in case a fall results in a faint, the patient will not be able to press the button and 

the alarm will not be activated.  

 

Different technologies have been adapted and integrated to support the monitoring of elderly 

people at independent living or patient in a home environment. Small and light wearable 

sensor systems have the potential to save lives. Mobile wearable sensor systems and wireless 

sensor networks (WSNs) in particular, are worn on the body for the purpose of acquiring 

physiological data. Over the years, there has been an increase in the use of such systems to 

healthcare for long-term monitoring of patients in their homes. Micro electro-mechanical 

systems (MEMS) technology for sensors is allowing smaller and lower-power sensors. 

Wearable sensors have advantages that they are generally smaller and cheaper and able to 

track the wearer at any location [10]. This facilitates independent living and safety as it 

allows the person to live normally in their own home ensuring that a caregiver or medical 

practitioner is alerted if a fall occurs. As no wearer-accessible activation button is needed, the 
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system can be concealed on the person's body more easily. Wearable fall detection system 

may be used to alert appropriate personnel in the event of a fall. The need for wearable 

sensors in the healthcare sector continues to increase such as long-term monitoring of patients 

in their homes. However, the commercialization of this technology is relatively slow due to 

the following reasons: 

• lack of existing communication infrastructure within medical facilities and homes  

• low reliability of the detection system, particularly with regard to issues, such as, the 

accuracy of detection of events, radio interference and battery life.  

 

1.2. Fall Detection System: Present State of the Problem and 

Motivation for this Thesis 

Recently, many studies have been made on fall detection system in terms of hardware 

(sensors) and algorithms, and both. Different fall detection schemes are reported in the 

literature that used different types of sensors, e.g. accelerometer, acoustic sensors, 

gyroscopes, cardio tachometer, magnetometer and barometric pressure sensors [11]. Some 

schemes used multiple sensors in single system for increased accuracy but they have the 

disadvantages of being expensive [12]. Some researchers report the use of Doppler Radar 

[13] which has high cost and complex method to implement. Some used video based fall 

detection which has video limitation [14]. In terms of algorithm, most fall detection 

algorithms are based on setting thresholds determined via observational analysis for various 

fall types [15, 16]. However, such algorithms resulted in high rates of 'false positive' (FP) and 

'false negative' (FN) when evaluated on unseen data sets [17, 18, 19]. Existing solutions do 

not provide the detection accuracy required for the technology to gain the trust of medical 

professionals. Some schemes used complex data processing algorithms for increased 
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accuracy. Hidden Markov model [20], neural network [21, 22] and fuzzy logic [23, 24], 

which have high space and time complexity, are some examples. Some researchers used 

image processing which needed more processing time [25, 26, 27]. 

 

1.3. Objectives 

The objective of this work is to develop an automated and directive fall detection system with 

increased accuracy using single accelerometer. To fulfill this objective, the studies have set 

the following aims:  

1. To implement a wireless fall detector using commercial 3D accelerometer module 

SHIMMERTM 

2. To collect and analyze fall data to extract important and sensitive statistical features 

related to a fall 

3. To analyze the accelerometer data for a detected fall to determine the direction of the 

fall 

4. To utilize machine learning algorithms (e.g. SVM, KNN) to configure the system 

with the selected classifiers for fall detection and compare the results. 

5. To compare the performance of the proposed system with existing works 

 

1.4.    Overview of the Thesis 

This thesis aims to develop a fall detection system based on single sensor and machine 

learning algorithm with a view to improving the detection accuracy at a reduced cost. For this 

purpose, a wireless fall detector using a commercial 3D accelerator module has been 

implemented; fall data of human subjects have been collected and analyzed to extract 

important and sensitive statistical features related to the fall and its direction; machine 
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learning algorithms, SVM and KNN have been used to configure the system with the selected 

classifiers; and, the performance of the resulting automated fall detection system are 

compared with the existing works. The feature of determining the direction of the falls is also 

included in the study, as it can help determine the locations of joint weakness or post-fall 

fracture and help decrease reaction time [11].    

 

1.5. Thesis Organization 

The rest of this thesis is organized as follows:  

In Chapter 2, a brief overview of fall detection systems and different aspects of fall events are 

described. Surveys on existing works or literature review are also carried out in this chapter. 

Chapter 3 describes the methodology adopted for the research work and data collection. 

Chapter 4 discusses the algorithms and features used for fall detection along with the details 

of the classification method. Chapter 5 presents the experimental results including their 

discussions. Chapter 6 concludes the thesis with future vision. 
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Chapter 2 
Background and Related Work 

2.1.    Definitions of falls 

According to Kellogg International Working Group, falls can be defined as unintentional 

coming to ground or a lower level as a result of a sustained blow, loss of consciousness or 

health related problems. Moylan and Binder define falls as unintentional position changes 

that result in patients coming to rest on the ground, floor or other lower surface [28]. A fall is 

an event in which a body’s center of gravity quickly declines, according to Liu and Cheng 

[29]. 

2.2.    Falls in the elderly 

The above definitions show a general agreement that falls are unintentional and result in a 

faller coming to rest on the ground, and may involve causal agents.  The following sections 

further discuss the circumstances of falls. 

2.2.1.    Circumstances of falls  

As age increases, degeneration of body muscles occurs.  This degeneration may result in 

weakness of bones and skeletal system thus being unable to adequately support the body.  

Trips and slips are also events that can result in falls.  Interventions such as clearing obstacles 

from paths around the home and administering medical treatments to increase muscle 

strength can reduce fall incidence. Continuous monitoring will allow fallers to be identified in 

advance before serious falls occur. Incorrect shifting of body weight (which causes the center 

of gravity of the body to move from the base of support during walking or standing) 
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accounted for around 40% of falls recorded, followed by tripping or stumbling.  Slipping was 

considered to cause the least number of falls.  

    Overstall et al. considered tripping as the most common cause of falls, but argues that the 

proportion of falls due to tripping decline with increasing age [30]. The ADL during which 

falls occur most is walking. 

2.3.    Typical fall scenarios  

The most important scenarios of falls are described [1] below in detail:  

2.3.1.   Fall from standing 

1.  It lasts for 1 to 2 seconds.  

2.  In the beginning, the person is standing. At the end, the head is stuck on the floor for a

  certain amount of time.  

3.  A person falls along one direction and the head and the center of mass move along a

  plane.  

4.  The height of the head varies from the height while standing to the height of the floor.  

5.  During the fall the head is in free-fall.  

6.  During the fall the head traces a virtual circle that is centered in the position of the feet

 before the fall and has a radius equal to the height of the person.  

2.3.2. Fall from chair 

1.  It lasts for 1 to 3 seconds.  

2.  The height of the head varies from the height of the chair to the height of the floor.  

3.  During the fall the head is in free-fall.  

2.3.3.   Fall from bed 

1.  It lasts for 1 to 3 seconds.  
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2.  In the beginning the person is lying.  

3.  The height of the body varies from the height of the bed to the height of the floor.  

4.  During the fall the head is in free-fall.  

2.4.   Fall risk factors 

A person can be more or less prone to fall, depending on a number of risk factors and hence a 

classification based on only age as a parameter is not enough. In fact, medical studies have 

determined a set of so called risk factors: (i) Intrinsic (ii) Extrinsic 

2.4.1. Intrinsic risk factors 

History of falls: Associated with an increased risk in recurrent falls [31]. 

Age: Falls increase with age because of a reduced ability to respond rapidly and effectively 

compared to younger adults. Moreover, studies of reaction time in old people observed a 

decrease in stepping, step initiation, and execution timing and coordination time – which has 

also been linked to lower extremity fracture risk – when breaking a fall by outstretching the 

hand is also delayed [32]. 

Gender: For the younger elderly, the rate of falls is similar for both men and women; 

however, among the most elderly people, women fall more often than men and are more 

likely to suffer from fractures when they fall [33]. 

Medical conditions: Vascular diseases, chronic obstructive pulmonary disease, depression, 

and arthritis are each associated with a 32% increased risk. The frequency of falling increases 

with increasing deterioration due to chronic disease. Moreover, the risk increases with thyroid 

dysfunction, which leads to an excessive secretion of thyroid hormones, and also with 

diabetes and arthritis that leads to loss of peripheral sensation. The incidence of falls relevant 

to cardiovascular causes is unknown in the general population, but vertigo is common in 
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people with falls. Depression and incontinence also occur frequently in populations with falls 

[34]. 

Impaired mobility and gait: The reduction of strength and endurance after the age of 30 

(10% loss per decade) as well as loss of muscle power (30% loss per decade) lead to a 

decrease in physical function below the limit. As a result, daily living activities become 

difficult and then impossible – this is the case in early aging in generally sedentary subjects. 

When strength, endurance, power, and especially functionality are reduced considerably, it is 

not impossible for a false trip or a slip to turn into fall. Muscle weakness is a significant risk 

factor in falls, as well as difficulty in gait, imbalance, and the use of walking aids. Any 

disability of lower limbs (lack of power, orthopedic disorders, or poor sensation) is associated 

with increased risk. Having difficulty in getting up from a chair is also associated with 

increased risk [35]. 

Drugs: The use of benzodiazepines in older people is associated with a 44% increase in risk 

of hip fracture and night falls. There is a significantly increased risk of falling when using 

drugs such as psychotropic, antiarrhythmic drugs, digoxin, diuretics, and sedatives. The 

degree of prescription of medicines has been increased in chronic disease management. 

According to almost all studies, the risk increases significantly if more than four medications 

are taken, regardless of the type of drug [36]. 

Solitary lifestyle: It may indicate greater functional capability, but injuries and their 

consequences could be even worse, especially if the person cannot get up from the floor. The 

fact that someone lives alone seems to be a risk factor in falls, although part of this effect 

appears to depend on the type of house in which they reside [34]. 
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Race: Evidence from the United Kingdom and the United States suggests that Caucasian 

subjects fall more often than African tribes of the Caribbean, Hispanics, or South Asians, but 

there are no studies to report national differences in continental Europe [37]. 

Attenuated vision: Visual acuity, contrast sensitivity, field of vision, cataracts, glaucoma, 

and glaucoma plus bifocals or multifocal lenses lead to risk of falls. Multifocal lenses reduce 

the depth of perception and impair edge-contrast sensitivity when detecting obstacles in the 

environment. The elderly can benefit from wearing non-multifocal glasses when using stairs 

and in unfamiliar surroundings outside their home [34, 38]. 

Foot problems: Calluses on the big toe, long toe defects, ulcers, deformed nails, and general 

pain when walking increase the difficulty of balance and the risk of falls. Correctly fitting 

shoes are also important [34, 39]. 

Cognitive disorders: A lack of understanding is clearly associated with increased risk, even 

at relatively modest levels. For example, a result of less than 26 or less than 24 on the Mini 

Mental State Examination is related to increased risk. Poor memory has been proven to be an 

independent risk factor for falls in people over 75 years, according to LASA (Longitudinal 

Aging Study Amsterdam). Residents of institutions with dementia fall more than twice as 

often as people with normal cognition, but there is no difference in the severity of injury 

between the two groups [34]. 

Deconditioning/immobility: Those who fall tend to be less active and, through disuse, may 

cause further irreversible atrophy of the muscle around an unstable joint. Nonactive persons 

fall down more often than those who are moderately or very active, but fall down in a safe 

environment [34]. 

Psychological condition/fear of falling: Up to 70% of people who have recently fallen down 

and up to 40% of those who have not reported a recent fall confess fears of falling. Reduced 
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physical and functional activity is associated with stress and fear of falling. Up to 50% of 

those who fear falling limit or exclude social or physical activities because of this fear. Strong 

links were found between fear and poor posture, low-speed walking and muscle weakness, 

and poor health self-esteem and reduced quality of life. Women with a history of stroke are at 

greater risk of falling and experiencing fear of falling. Having four or more medications is 

also implicated in a fall-related phobia. However, many older people do not appreciate 

sufficiently the level of danger [31, 34]. 

Nutritional deficiencies: A low body mass index, which indicates poor nutrition, is 

associated with increased risk. Vitamin D deficiency is quite common in elderly people living 

in institutions and may lead to wrong gait patterns, muscle weakness, osteomalacia and 

osteoporosis [34]. 

2.4.2.    Extrinsic risk factors 

The magnitude of the influence of environmental factors on the risk of falls in the elderly is 

uncertain. Some studies have indicated that in the elderly living in the community, 30%–50% 

of falls are due to environmental cause’s e.g.  

o Slipping floors 

o Stairs 

o Need to reach high objects 

o External Environment: 

o Damaged roads 

o Crowded places 

o Dangerous steps 

o Poor lighting 

o uneven surfaces 
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and approximately 20% of falls are due to significant external factors (i.e., those that would 

lead to a fall in any healthy elderly person). A frequent problem that older people encounter 

is to slip, trip, or misstep, i.e., a loss of balance where righting mechanisms prevent a fall 

[34]. 

2.5.    Causes and Consequences of fall 

Among elderly people that live at home, almost half of the falls take place near or inside the 

house. Usually women fall in the kitchen whereas men fall in the garden [40].  

The rate of falls increases significantly among elderly people living in nursing homes: at least 

40% of the patients fall twice or more within 6 months [34, 41].  This rate is five times more 

with respect to the rate of fall when people live at home. The most important causes of falls 

are described in detail:  

2.5.1.    Physical causes  

The factors that lead to most of the falls in people over 65 are to stumble on obstacles or steps 

and to slip on a smooth surface. The fall is usually caused by loss of balance due to dizziness. 

Approximately 14% of people do not know why they fall and a smaller number of people 

state that the fall is due to the fragility of the lower limbs [42].  

2.5.2.     Activities  

Most of the falls happen during the activities of daily living (ADL) that involve a small loss 

of balance such as standing or walking. Fewer falls happen during daily activities that involve 

a more significant movement such as sitting on a chair or climbing the stairs.  Conversely, 

activities usually defined “dangerous”, such as jogging or physical exercises are less likely to 

increase the probability of a fall. There are more falls during the day than during the night. 

[41] 
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Accidental falls are the main cause of admission in a hospital and the sixth cause of death for 

people over 65.  For people aged between 65 and 75 accidental falls are the second cause of 

death and the first cause in those over 75 [1].  

2.5.3.    Physical damage  

Scratches and bruises are the soft injures due to a fall. In the worst cases the injuries are 

concentrated on the lower part of the body, mainly on the hip.  On the upper part of the body 

the head and the trunk injuries are the most frequent. About 66% of admissions to a hospital 

are due to at least one fracture. The fracture of elbow and forearm are more frequent but hip 

fracture is the most difficult to recover from. Such a fracture in fact requires a long recovery 

period and involves the loss of independence and mobility. Sometimes, when a person falls 

and is not able to stand up by himself, he lies down on the floor for long time. This leads to 

additional health problems such as hypothermia, confusion, complications and in extreme 

cases can cause death [42].  

2.5.4.    Psychological damage 

A fall also involves hidden damages that affect the self-confidence of a person [42].  

Common consequences are fear, loss of independence, limited capabilities, low self-esteem 

and generally, a lower quality of life.  

2.5.5.    Economic damage 

The direct costs associated with falls are due to the medical examinations, hospital 

recoveries, rehabilitation treatments, tools of aid (such as wheelchairs etc.) and caregivers 

service cost. Indirect costs concern the death of patients and their consequences. Recent 

studies have determined that in the year 2000 alone fall-related expenses was above 19 billion 

dollars and it is estimated to reach 54.9 billion in 2020. This shows that year by year, health 

costs due to the falls are increasing dramatically [43].  
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2.6.    Related Work 

2.6.1.    Camera based fall detection  

Camera based detection systems make decisions on whether an event is a fall or not (Fig 2.1) 

by extracting fall patterns from the images captured [44]. 

    Ozcan et al [45] created an autonomous system that is able to provide quick and accurate 

real-time responses to critical events like a fall. The system is not only able to detect falls but 

also to classify non-critical events such as sitting and lying down. Their solution is based on a 

modified version of the histogram of oriented gradients (HOGs) algorithm. When a fall occur 

edge orientations in a frame vary drastically and extremely fast, as a result of this subsequent 

frames get blurred. One of the drawbacks of the system is its lack of auto exposure 

adjustment in the camera. False alarms may be raised if the scenery changes. 

     Crispim-Junior et al. [46] used a video camera in addition to an accelerometer device 

(strapped to subject’s chest) for fall detection.  They considered that, by combining the 

subject’s acceleration with visual information, the detection sensitivity and precision could be 

improved compared to using only visual data. In their proposed system, the vision component  

 

Fig: 2.1:  Camera based fall detection [87] 

detected postures such as standing, sitting, lying and changes in postures. The multisensor 
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approach (vision and acceleration) resulted in a system with a sensitivity of 93.5% and 

precision of 63.6%, while the approach based only on vision produced a sensitivity of 77.3% 

and a precision of 57.7%. 

A major advantage driving the use of camera based systems is that they are non-intrusive 

because they do not have to be worn on the body.  Nonetheless, they have disadvantages that 

make them less attractive to users, including:  

1.  The addition of cameras around a home may be considered an invasion of privacy by 

the occupants due to the fear that images captured on the cameras can be viewed by a 

third party.  Many falls occur in wash-rooms and patients will generally not accept 

cameras to be installed in such a place.  

2.  Algorithms developed based on camera data are computationally demanding and 

require multiple cameras to be installed in and around the house. High specification 

microprocessors are necessary to deliver fall decisions in real-time. Also, in situations in 

which there are multiple occupants in a room, it becomes difficult to know whom to 

track. This increases the computation complexities. 

Despite the limitations described, cameras are still in wide use as platforms for fall 

detection. 

2.6.2.   Ambient sensor based fall detection  

Ambient solutions use sensors installed in the surroundings (Fig 2.2) of users (for example, 

pressure sensors, and acoustic sensors) [47]. 

   Litvak et al. [48] proposed a system based on floor vibration and acoustic sensing for fall 

detection. Their system acquired sound and vibration data using a microphone and 

accelerometer, and the algorithm used pattern recognition techniques to differentiate between 

ADL, human’s falls, and an object being dropped /falling. 
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Fig 2.2: Ambient sensor based fall detection [88] 

A human-like doll was used in fall simulation and objects such as a bag, plastic box and 

metal box were used to simulate objects being dropped.  The doll was used to simulate 48 

forward falls, while the objects were dropped 78 times.  An evaluation of the algorithm 

showed a sensitivity and specificity of 95%. As pointed out by the authors, the fall detection 

system is not sensitive to low impact falls and was only tested for distances between 2 meters 

and 5 meters. 

   Luo et al. [49] developed a fall detection system using 7 pyro-electric infrared (PIR) 

sensors to detect the heat energy emitted by individuals within a room. Each PIR sensor was 

sampled at 25 Hz and detected the variance of the thermal heat flux within each section of a 

room.  Then, a 2-layer Hidden Markov Model (HMM) classifier was used to model the time 

varying PIR signal. PIR sensors were used in order to avoid infringing individual’s privacy as 

can happen with cameras.  Eighty falls were simulated, but only 87% were classified 

correctly. 

   Khawandi et al. [50] used multiple webcams to perform fall detection. Their algorithm 

detects faces and measures the speed with which detected faces move toward the ground. 

Based on a set threshold, it determines if a fall has occurred or not. 
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2.6.3.    Fall detection by image processing 

    Liu and Zuo [51] proposed an algorithm that compares the ratio of the width and height of 

a person while standing and lying, the ratio of the area of a person’s figure to the area of the 

room and the rate of variation of an image (Fig 2.3) during a fall.  

  

Fig 2.3: Fall detection by images processing [51] 

They concluded that by computing the three features on each image frame, their system will 

prevent FPs, and thus increase accuracy.  However, evaluation results were not presented.  

    Olivieri et al. [52] extracted velocity information across video frames and trained a 

machine learning algorithm to detect falls. Their system was able to detect 99% of falls, but 

the number of FPs recorded was not reported. 

2.6.4.    Thresholds based fall detection 

Most wearable fall detection algorithms are based on thresholds set to discriminate between 

falls and ADL. However, majority of the thresholds are set based on observational analysis of 

acceleration and angular velocity signals.  

    Bashir et al [53] proposed a system based on a wireless body area network. It uses a tri-

axial accelerometer, and a tri-axial gyroscope sensor. Three stages are used to determine 

human status namely, fall, ADL, and sleep. The algorithms used are threshold-based and very 

simple. It employs the posture angle, angular velocity, and acceleration to determine if a fall 

has occurred. The accuracy for ADLs was 100%, while the sensitivity was 81.6%. 
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    Jantaraprim et al. [54] computed vector magnitude (VM) for a 3D accelerometer mounted 

on subjects’ trunk region. A threshold was set by observing the VM signal to discriminate 

between falls and ADL. Similarly, Ivo et al. (2011) set thresholds manually for VM in their 

fall detection algorithm.  

   Ojetola et al. [17] showed that VM alone is sufficient to accurately detect falls. Sudden 

movements, transitions from one posture to another and walking do generate high VM similar 

to falls. Hence, algorithms based on thresholds set for VM alone will trigger false alarms. 

    Li et al. [55] proposed an algorithm that used a 3D accelerometer and 3D gyroscope for  

fall detection. Their algorithm use thresholds set for acceleration and angular velocity to 

determine if transition to a lying position is intentional or not, and it is based on thresholds set 

for VM and postures. An unintentional transition to a lying posture was considered a fall. 

Basically, their algorithm only detects falls in which fallers end-up in a lying posture. 

Conversely, activities which are not falls, but result in lying position will trigger False 

Positives (FP).  

      Wang et al. [56] proposed a fall detection system based on a 3D accelerometer placed 

behind subjects’ ears. Their algorithm was based on simple rules and thresholds set by 

observational analysis of acceleration data. VM of acceleration, magnitude of horizontal 

acceleration, time from start to end of a fall and velocity were computed as part of their 

algorithm. During falls, acceleration signals vary considerably from subject to subject and for 

different fall types. Hence, thresholds set for features based on observation of acceleration 

signal only will result in high level of FPs and FNs.  

      Anania et al. [57] implemented a fall detection algorithm based on 3D acceleration data 

sampled at 100 Hz. A Kalman filter was used to separate the signal component due to gravity 

from acceleration data and then the trunk inclination angle was computed. Anania et al.  
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defined two thresholds; one for the subject’s tilt angle and the second for the rate of change 

of tilt angle.  A fall is detected if the subject’s tilt angle is greater than the first threshold and 

when the change in the tilt angle over a short period is greater than the second threshold. The 

main drawbacks with this algorithm are i) thresholds set manually do not generalize well for 

unseen subjects, and ii) only 2 postures are considered as corresponding to falls, however 

fallers may end up in other unrecognized postures such as crouching and kneeling. 

2.6.5.    Smartphones based fall detection  

A growing number of wearable fall detection systems are now based on smartphones; this is 

due in part to the inclusion of accelerometers in smartphones.  

    Sposaro and Tyson [58] used an android-based smartphone as a platform for fall detection. 

Their algorithm was based on threshold set for acceleration data. They noted that their 

algorithm triggers a false alarm when the phone is dropped to the floor.  

    Kaenampornpan et al. [59] in their study assumed that phones are placed in the left breast 

pocket and thresholds were set for the minimum and maximum acceleration reading of a 

subject’s body during falls and ADL. Before their algorithm is used, it is expected that 

subjects will simulate falls first so that appropriate unique thresholds are for each subject. 

Two major draw backs exist with this approach. 

1) A fall detector should be trained with more than one fall instance from one subject.  

2) The elderly, many of whom are frail, will not be able to simulate falls before using the 

proposed solution.  

Some of the main challenges with the use of smartphones as a platform for fall detection 

are:  

1) The need to understand how individuals use their phones so that algorithms can adapt 

to differences between normal use of phones and falls, 
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2) The need to track orientation of a phone during normal use since fall algorithms often 

consider subjects orientations, and  

3) The need to differentiate between when a phone is dropped and when a fall actually 

occurs.  

From the literature reviewed above, it is evident that a major challenge in fall detection is 

identifying appropriate thresholds that can discriminate between falls and ADL. Human gait 

patterns are complex and vary considerably for different subject set. As a result, thresholds 

set manually will not allow for algorithms that generalize well for different subjects and 

different fall types to be developed. 

2.6.6.    Machine Learning Based fall detection  

In the previous section, algorithms based on thresholds set by an observational analysis of fall 

data were discussed and their limitations are identified.  This section reviews the literature 

with regard to machine learning algorithms for fall detection. It is to mention again here that 

the work in this thesis proposes a machine learning approach for fall detection. 

     Zhang et al. [60] proposed one-class support vector machine (SVM) for fall detection, Liu 

and Cheng [61]    also proposed SVM to discriminate between falls and ADL. 

    Decision tree based algorithm was proposed by Zhao et al. [62]. They identified faller’s 

locations by using wireless network infrastructure distributed within a building, with 

notifications being sent to carers whenever falls were detected. A tree based machine learning 

algorithm was implemented for fall detection and features such as mean, standard deviation, 

slope, energy and correlation were used as input.  Ten subjects (5 for training and 5 for 

testing) were recruited for their experimentation and the phones were strapped to subject 

waist.  No false alarm was recorded and the system had a recall of 75%. 
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     Shi et al [63] developed a fall detection system based on an android-based smartphone. It 

integrates an SVM. The proposed technique uses the acceleration data from the phone’s 

accelerometer to detect a fall. The fall detection process is divided into five phases namely, 

normal, unstable, free fall, adjustment, and motionless. An acceleration threshold is used to 

trigger the five-phase feature extraction method. A 16-elements vector is obtained as a result 

of the extraction method. This vector is fed into a SVM that is used to differentiate falls from 

ADLs. The acquired results were the following: recall 90% and precision 95.7%. 

     Liu and Cheng [61] proposed the use of an SVM for fall detection. Features were 

developed using 3D acceleration data sampled at 200 Hz.  The features extracted include the 

VM, the difference between the maximum and minimum acceleration for each axis of 

acceleration, the vertical acceleration and the tilt angle. 

     Sengto et al [22] proposed a fall detection system algorithm based on a back propagation 

neural network (BPNN). The system utilizes a tri-axial accelerometer mounted on the user’s 

waist in order to collect his/her acceleration data behavior. Human activities are divided in 

three groups: falling activities (forward, backward, right and left), slow motion activities 

(walking, getting up from bed, flopping), and sudden motion activities (running, jumping). 

An acceleration threshold is set to differentiate between slow motion activities and other 

activities. The overall recall of the detection algorithm was 96.25% while the specificity was 

99.5%. 

      Humenberger et al [64] developed a bio-inspired stereo vision fall detection system. It 

utilizes two optical detector chips, a field-programmable gate array (FPGA), a digital signal 

processor (DSP) and a wireless communication module. The optical chips capture video 

frames. The FPGA creates the input data for the DSP by calculating 3D representations of the 

environment. The DSP is loaded with a neural network that is used for classification 

purposes. Falls are divided into 4 states or phases pre-fall, critical, post-fall, and recovery 
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phase. To run the experiments the hardware was mounted on the top corners of a room in 

order to monitor the subjects of interest. The trial results are 90% of fall detection. 

     Takeda et al. [24] developed a foot age assessment system that estimates how likely a 

person is to fall based on his/her balance ability and gait condition. The system uses mat type 

distribution sensor to gather the SOI’s gait characteristics. Fuzzy logic the system is able to 

make educated guesses. The fuzzy membership functions were obtained through a learning 

process. The system was not reliable method  

    Zhang and Sawchuk [65] proposed a fall detection framework that combines decisions 

from a fall detection algorithm with context information using a Bayesian network. The 

context information includes physical activity level, personal health record, blood pressure 

level, heart rate and location (indoor or outdoor).  However, gathering physiological data 

such as blood pressure level and heart rate requires additional sensors to be worn by subjects 

and thus affect the acceptability of such systems.  

     Lan et al. [66] embedded a 3D accelerometer, 3D gyroscope and two pressure sensors in a 

walking cane. The two pressure sensors were fixed to the handle and the tip of the cane and 

measure the grip and the downward-push force, respectively. The accelerometer and 

gyroscope measure the acceleration and angular velocity of the cane.  A Decision Tree  (DT) 

and subsequent matching  (a technique in data mining for finding exact or closely matching 

segments of a much longer sequence) were used to discriminate between falls and ADL.  

Data were sampled at 26 Hz.  The main challenge of the system is in differentiating between 

whether an individual has fallen or the cane was just dropped or left on the floor. 

Furthermore, authors noted that the system gives FNs in cases where the cane hits an obstacle 

midway during a fall before coming to rest. 
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     Chen et al [67] developed A human fall detection system using a computer vision 

approach is introduced. The solution is capable of detecting fall-related events in real time 

using skeleton features and human shape variations. The system is able to extract the human 

posture and reduce the computational burden by using a 2D model instead of a complicated 

3D one. The skeleton (a spanning tree) is acquired by running the well-known graph traversal 

algorithm Depth-first search (DFS) on the center of the triangular meshes. A distance map is 

used to calculate the distance between two skeletons. A fall is detected if the user’s motion 

does not change within a certain period of time. The system is able to obtain a high detection 

accuracy (90.9%) while maintaining a low false alarm rate. 

      Gjoreski et al [68] proposed combines posture recognition with thresholds set by 

observation analysis to detect falls. Their algorithm uses 3D acceleration data sampled at 6 

Hz. The extracted features were VM, tilt angle, mean of accelerometer x-axis, Root Mean 

Square (RMS) of VM, standard deviation of VM and change in VM. Postures (such as such 

as lying or sitting on the floor) are recognized via a Random Forest machine learning 

algorithm. A fall is detected by combining the recognized posture with a threshold set for the 

VM. If a subject’s posture is lying or sitting and the VM goes above the threshold, then a fall 

is detected. 

2.7.    Categorization of fall detectors  

Wearable fall detectors are generally categorized into three generations, namely, first 

generation, second generation and Third generation [69].  

2.7.1.   First generation 

First generation systems rely only on the user interaction. Often known as a pendant around 

the neck or wrist bands, the user must push a button to contact the call center or emergency 

services. This type of fall detector do not possess any form of intelligence, they rely entirely 
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on the user pushing a button in order to summon help. In circumstances where the user is 

unable to push the button (for instance, in case of unconsciousness), help will not be available 

and such a case could result in aggravated consequences.  

2.7.2.    Second generation  

Second-generation systems that are based on the first-generation systems have an embedded 

level of intelligence. The second generation comprises fall detection devices and life-style 

monitoring systems, and includes worn automatic fall detectors that are triggered without the 

wearer having to press a button. 

2.7.3.    Third generation 

Third-generation systems use data, often via ambient monitoring systems, to detect changes 

(e.g. changes in activity levels) that may increase the risk of falling (or risk factors for other 

negative events). The third-generation systems are more preemptive rather than reactive 

approach.   

2.8. Existing wearable fall detectors 

There are many existing fall detection products on the market to assist elderly (Fig 2.4). 

a. Wrist-Worn: An integrated health monitoring instrument with a tele-reporting device for 

telemedicine and telecare (Fig 2.4: a). 

b. MCT-241MD:  It is a stylish wireless fall detector that functions both as a standard 

manual emergency alert button and as a fall detector, which automatically triggers a call to 

the monitoring center for immediate help. The fall detection is enabled by a built-in tilt sensor 

that can sense when the detector, which is worn by the user, tilts at more than 600; for more 

than a predefined period of time (usually about a minute). This activates an alert transmission 
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to the control panel, which notifies the monitoring station, enabling help to be dispatched 

immediately (Fig 2.4: b). 

c. Galaxy fall detector: Fall detection system that will immediately detect a fall and get the 

help you need on its way. (Fig 2.4: c) 

d. iHelp Smart Fall Detector: The device simply clips onto your clothing and is small and 

un-obstructive to wear. The iHelp device can also remind a user to take any medicine they 

might be taking at specific intervals. GPS coordinates can be queried by relatives and sent in 

the event of a fall. These coordinates are also sent to a dedicated care support network. (Fig 

2.4: d) 

e. Oval Fall Alert: This is the world’s smallest and sensitive fall detector. Designed to rest 

easily in the palm of your hand and sized so one can carry it anywhere. It is able to detect a 

fall and automatically send a signal to the monitoring station (Fig 2.4: e). 

 

  

Fig 2.4: Commercial fall detectors 

f. The Vigi’ Fall:  This solution generates an alert automatically in case of a fall followed  



26
 

 

by the inability to get up by oneself. It is dedicated to elderly persons living at home, to 

geriatric institutions (nursing homes, sheltered homes, etc.) and hospital premises (acute, 

rehabilitation, long term care settings) (Fig 2.4: f). 

g. Medical Fall Alert: These systems feature sensors (multiple accelerometers and 

processors) that can detect between normal activity, and an actual fall. By continuously 

measuring the speed of movements in all directions, the fall detector can compare what it 

senses to what it considers an actual fall (Fig 2.4: g). 

h. SafetyCare: It is an emergency alert system with monitoring service designed for use by 

seniors or individuals at risk for falls (Fig 2.4: h) 

 

Table 2.1:   Wearable sensors for falls and activity monitoring 

Sensor Measurement Products 

Goniometer Angles (for example: angle of 
joint movement) 

Motion Lab Systems Electro 
Goniometers 

Gyroscope Angular velocity SHIMMER sensors, Xsens 
MVN BIOMECH 

Accelerometer Acceleration Vigi Fall, Brickhouse Fall 
Detector  

Actometer Motion Timex Model 108 Motion 
Recorder 

Pedometer Step counter (counts number of
  
steps a person takes) 

Omron Pedometers 

Insole pressure
  
plantar sensor 

Pressure distribution across the sole 
of the foot 

Pedar System 

 

2.9.   Traditional Direction Measurement System  

In traditional methods to find out direction, gyroscope (Fig 2.5) or more accelerometers (Fig 

2.6) are used. 
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Fig 2.5: Gyroscope [89] 

Using the key principles of angular momentum, the gyroscope helps indicate orientation. 

Gyroscopes, or gyros, are devices that measure or maintain rotational motion. 

 

Fig 2.6: 3 Accelerometers with cross product [90] 

In determining the direction with the help of more than one accelerometer, the cross product 

to find the angle between two sensors is used. 

In our thesis, there is no gyroscopes sensor or more than one accelerometer. Based on, axis 

amplitude we successfully find out the directions.   
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2.10.    Issues with existing wearable fall detectors 

There are currently numerous commercial fall detection systems available in the market. 

Some of the brands are: Vivatec’s wrist care , Tynetec, FALLWATCH (Vigi’ Fall), activPAL 

, Philips Lifeline AutoAlert pendant, Brickhouse fall detector , SafeGuard, Task Community 

Care fall detectors and Tunstall fall detector (Fig 2.4). Despite numerous commercial and 

research based solutions, automatic fall detection has several outstanding challenges. A major 

reason for low acceptance of automatic fall detectors is the high level of FPs and FNs [70]. 

Both FPs and FNs result in lack of trust for the system.  For instance, Ward et al. [71] 

reported that health and social care staff are not convinced about the benefits of automatic fall 

detectors. 
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Chapter 3 
Methodology and Data Collection 

3.1. System Design 

The system consists of two main parts: Body sensor network (BSN) and the monitoring 

application (Fig 3.1). The BSN consists of wearable sensor that collects accelerometer data. 

Sensor has a wireless Bluetooth to communicate with the user’s server side. 

 

 

Fig 3.1: Data flow diagram of the direction-sensitive fall detection system 

The monitoring application is installed in the user’s server side (patient’s home or health 

institute). The server should have the Internet connectivity to send alert to the healthcare 

provider or mobile message to relative and send/retrieve data from the medical server. 
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If a patient’s fall occurs, then user server generate the alert by triggering alarm locally as well 

as sending notification to healthcare provider via Internet and message to mobile phone. 

Patient fall related information will be recorded in the medical server for further requirement. 

The patient’s therapist has specific interface for viewing and manipulating the sensory data 

and an administration panel is implemented to handle the exceptional data. 

 

3.2.    Use of accelerometer 

Motion acceleration is widely used to classify the type of executed activity by analyzing the 

change of accelerations with respect to time. Therefore, the accelerations are used to assess 

postures and motions by calculating a vector of features, such as mean and standard deviation 

of the acceleration signal. Attaching an accelerometer to different body segments helps 

identify the type of activity and distinguish one activity from another by analyzing the data 

and identifying appropriate vector of features. 

 

3.3.    Hardware platform  

We used the SHIMMER [10] wearable wireless sensor, an acronym for Sensing Health with 

Intelligence, Modularity, Mobility and Experimental Reusability. We picked the SHIMMER 

(Figure 3.2) due to its low-power consumption, lightweight (27g) and small size (53 x 32 x 

19 mm). 

 

Fig 3.2: Shimmer Sensor [79] 



31
 

 

The SHIMMER sensor holds a lithium-polymer battery, and a TI MSPP430 microprocessor 

with 10 KB of RAM and a flash memory of 48 KB of capacity. It supports wireless 

communications through its Bluetooth wireless module. The Bluetooth device (Rovering 

Network RN-42) has a range exceeding 10 m, a default transmission rate of 115 kbaud, and is 

a class 2 Bluetooth module. The battery life of the SHIMMER mainly depends on the type of 

application installed on the tiny node platform and the type of selected mode of power 

consumption. Figure 3.3 shows SHIMMER block diagram and its integrated devices. 

 

Fig 3.3: Block diagram of the SHIMMER base board interconnections and integrated devices [10]. 

The sensor node consists of a 3D accelerometer. The tri-axial accelerometer (MMA7260Q) 

from Free scale Semiconductor has a range up to ±6g.  A Micro-Electro-Mechanical Systems 

(MEMS) accelerometer behaves as a mass on a spring which is displaced when it experiences 

acceleration. The displacement of the mass is measured to determine the acceleration of the 

sensor.  An accelerometer measures an acceleration of g = 9.81 m.s-2 (1g). 
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IEEE 802.15.4 compliant wireless communications SHIMMER uses a Chipcon CC2420 

radio transceiver and gigaAnt 2.4 GHz Rufa™ antenna. The CC2420 [72] is designed for 

low-power and low-current applications (current usage 17.4 mA for transmission and 18.8 

mA for reception). The radio may be turned off by the MSP430 for low-power operation. The 

CC2420 is controlled by an SPI connection over the USART1. The CC2420 has support for 

applications such as packet handling, data transmissions, data encryption, received signal 

strength, link quality and packet timing, the work load on the MSP430 controller is reduced. 

Lowering the duty cycle of interaction between the radio or microSD card can be used to 

extend battery life, however this is not feasible with applications that require high frequency 

data capture. SHIMMER2 hardware provides features to simplify application programming 

and enhance event driven applications which can be used to improve power management. 

A push-button power controller is used to control the board power-on sequence. From an 

“off” state, board reset is low and the board power regulator is disabled. When the reset 

button is pushed, the regulator is enabled and the processor is brought out of reset after a 

short delay. Short subsequent reset button pushes will generate a board reset. A long button 

push (preset to 6 s but HW customizable) will shut down the board regulator. When the 

battery voltage falls below a preset kill voltage, e.g., 2.5 V, a signal is also generated to 

power-off the board. 

The accelerometer, microSD card, 802.15.4 radio and Blue- tooth radio module can be 

powered off by firmware when not in use. The digital serial number IC component can also 

go to auto sleep mode when not in use [73].  

3.4.   Network Setup  

The communication between the BSN (Body Sensor Networks) and the user server side is 

carried out using a wireless Bluetooth connection (Fig 3.4). Bluetooth is a low-power  
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consumer   and low-cost option, but has short transmission range. 

 

                         Fig 3.4: Connection and Data Streaming [79] 

We used the 'Multi Shimmer Sync' software for capturing data. A screenshot of the user 

interface of the software is shown in Fig. 3.5. The accelerometer sensor captures the change   

 

Fig 3.5: Multi Shimmer sync 

of accelerations over the x, y, and z-axis along with the timestamps and sends them back to 

the monitoring 'Multi Shimmer Sync’ application. 'Multi Shimmer Sync' is ideal for users 
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looking to develop applications where simultaneous data capture from a number of units is 

required and interpretation and analysis require the data to be synchronized with a high level 

of accuracy (synchronization error of the order of milliseconds).  

3.5.   Sampling frequency  

Sampling at low frequencies implies a low processor resource requirement and low power 

requirements.   We use sampling frequencies 50 Hz for fall classification. Other fall detection 

also used data sampled at 10-200 Hz. Considering battery life and detection accuracy; we set 

50 Hz of sampling frequency. High frequency gives high accuracy but low battery life. 

3.6.   Placement of Sensors 

There are a number of body locations used for sensors in the literature, including: waist, 

thigh, hip, trunk, chest, lower back, lower leg, wrist and behind the ear. Some investigation 

has been carried out regarding the best location for sensors to provide optimum algorithm 

performance. Doughty et al. [74] evaluated a Tunstall fall detector strapped to the chest, 

waist, knee, wrist and arm. They concluded that the chest and waist are the most appropriate 

locations of the body to place fall detectors.   

     Similarly, Gjoreski et al. [75] investigated the placement of sensor nodes on the chest, 

waist, thigh and ankle.  Results showed that placing a fall detector on the chest provided the 

best performance. The literature reviewed suggests that the chest is the best location to place 

a sensor node for fall detection. Thus, the work in this thesis compares the performance of a 

fall detection algorithm based on sensor node placed on the chest.  

Acceleration data (in three dimensions) was gathered from Shimmer sensor nodes placed on 

each subject’s chest.  Data were sampled at 50 Hz and transmitted via Bluetooth to a PC for 

further processing. An overview of the data gathering set-up is shown in Figure 3.6.  Subjects 
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were asked to perform various falls and daily activities. The resulting data is collated, 

analyzed and used to feed the algorithms presented in this thesis.  

 

Fig 3.6: Data collection set-up 

The falls acted in a laboratory environment are similar to those experienced by fallers under 

real-life scenarios. 

3.7.   Participant experimental step 

This section describes a set of steps engaged with by subjects during data acquisition. 

3.7.1. Subjects recruited for data acquisition  

Thirteen subjects were recruited for this work.  Before the subjects were recruited, approval 

was taken from the Director, IICT, BUET. Participation was completely voluntary. 
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3.7.2. Consent form 

Consent form was signed by each participant. Verbal explanations were also provided to each 

subject in order to ensure that participants understood what was required of them.  

3.7.3. Age and height  

The youngest subject was 25 years and oldest 55 years old. The mean for the age, height were 

37.47 years and 5.37 feet respectively. The details of the thirteen subjects are shown in Table 

3.1.  

Table 3.1: Ages and heights of the subjects recruited for the experimental fall data collection 

Subjects Age(years) Height (feet) Gender 
S1 26 5′6″ M 
S2 40 5′4″ M 
S3 38 5′5″ M 
S4 55 5′1″ M 
S5 30 5′5″ M 
S6 26 5′5″ M 
S7 32 5′4″ M 
S8 44 5′6″ M 
S9 50 5′ M 

S10 52 5′4″ M 
S11 38 5′9″ M 
S12 26 5′5″ M 
S13 30 5′4″ M 

 

3.7.4. Data acquisition 

The SHIMMER sensor was worn by subjects during data acquisition. The sensor node 

strapped to the chest (Fig 3.7) of subjects was used for data acquisition and transmission from 

subjects to a remote PC.  
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Fig 3.7: Placement of SHIMMER sensor nodes 

3.8.   Falls and Activities of Daily Living  

Subjects were directed to (Fig 3.8) fall down in  forward, backward, left, right directions and 

to do the normal activities ADL, like, idling, lying down ,sitting down, bending down, down, 

going down head, knee, walking, jogging, standing up, up, jumping.  It was assumed that in 

real-life people will normally engage in activities. 
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01.Forward fall 

 
02. Backward fall 

 
03. Left side Fall 

 
04. Right side fall 

 

. 
05. Go down head 

 
06. Lying Down 

 
07. Bend down 

 

 
08. knee 

 

 
09. Down 

 
10. Up 
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11. Jogging 

 

 
12 Walking 

 
13. Sit down 

 
14. Stand up 

 
15. Idle 

 

 
16. Jumping 

Fig 3.8: Falls and ADL data gathering 

3.9.    Analysis of accelerometer signals 

The acceleration signals received from the BSN are segmented into window frames where 

each window holds 2.56 seconds of data for the three axes. Signal features are then extracted 

from each window to characterize the signal being received. As we have discussed earlier, the 

sample rate configured for data acquisition is 50 Hz. By default, low pass filter is configured 

in SHIMMER sensor. The acceleration values recorded contain positive or negative 
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accelerations as well as null in case there was no change of acceleration recorded at the same 

unit of time.  

3.10.   Feature extraction 

Feature extraction is the process by which relevant characteristics or attributes are identified 

from the collected data. Identifying optimum number and type of features is an integral part 

of fall detection.  

Finding the optimal feature subset is as important as selecting an appropriate algorithm. 

Feature extraction is also known as dimensionality reduction. Raw data are usually filled with 

meaningless information. By selecting only the features that best describe the input data and 

discarding redundant features, the size of the dataset is reduced. Feature selection is a key 

element in the data analysis process, and has a significant impact on subsequent stages of the 

learning.  

Falls are events (sudden motion that occurs for a short period of time) and often result in 

acceleration signals with higher amplitude (Fig 3.9) than ADL. Primarily, we select the most 

popular features, which are called a wrapper technique. The computation and extraction of  

 

                                 Fig 3.9: Segment of acceleration signal 
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significant features from the motion signals start from calculating the Mean, Standard 

deviation, Median, MAX, MIN, Range, Sum, PCA and FFT for each axis (gx, gy and gz) and 

their resultant g = (gx2+gy2+gz2)½. Since each window represents 2.56 seconds of the data 

and the sample rate used is equal to 50 Hz, then each window consists of 50 x 2.56 = 128 

samples/rows of data. The collected data is analyzed offline. The feature components 

extracted are based on the computed Vector Magnitude (VM). 

The statistical features that we calculated are defined below: 

Mean:    The mean is the average of the signal- a calculated "central" value of a set of 128

       numbers. 

Standard deviation:  The standard deviation of a probability distribution is defined as the 

   square root of the variance. 

Median:   The Median is the "middle" of a sorted list of numbers. 

MAX:     The maximum value of the Vm (Vmmax) over the next 2.56 second window of       

data. 

MIN:      The minimum value of the Vm (Vmmin) over the next 2.56 second window 

     of data. 

Range:   Difference between Max and Min 

Sum:     Summation of the 128 rows    

PCA:    Principal component analysis (PCA) is a statistical procedure that uses an orthogonal 

    transformation to convert a set of observations of possibly correlated variables into

    a set of values of linearly uncorrelated variables called principal components. 

FFT:    A fast Fourier transform (FFT) algorithm computes the discrete Fourier transform 

  (DFT) of a sequence, or its inverse. Fourier analysis converts a signal from its 
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  original domain (often time or space) to a representation in the frequency domain and

  vice versa. 

3.11. The 3-axis graph representation of accelerations  
The graph represents the accelerations of x, y, and z axis collected from a sensor attached to 

the chest. The blue curve represents the x-axis, the red curve represents the y-axis, and the 

green curve represents the z-axis. The horizontal axis of the graph represents the time unit 

where each 50 unit represents one second. The vertical axis of the graph represents the 

acceleration reading in g unit.  

Figure 3.10 illustrates changes in acceleration that occur during a forward fall. The interval of 

vertical lines indicates the changes in amplitudes of the accelerometer during this fall. The 

accelerations during falling are completely different. gz clearly shows a negative  large peak 

when the forward fall happened. From the sensor configure the value of -gz should maximum 

when forward fall occur. We get the same scenario that we are expected after sensor 

configuration.  

 
Fig 3.10: The 3-axis readings for a ‘forward fall down’ recorded using an accelerometer 
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Figure 3.11 illustrates changes in acceleration that occur during a backward fall. The 

interval of vertical lines indicates the changes in amplitudes the accelerometer during this 

fall. gz clearly shows a positive  large peak when the forward fall happened. From the 

sensor configure the value of gz should maximum when backward fall occur. 

 
 

Fig 3.11:  The 3-axis readings for a ‘backward fall down’ recorded using an accelerometer 
 

Figure 3.12 illustrates changes in acceleration that occur during a left fall. The interval of  

 

Fig 3.12: The 3-axis readings for a ‘left fall down’ recorded using an accelerometer.  
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vertical lines indicates the changes of amplitudes of the accelerometer during this fall. gy 

clearly shows a negative  large peak when the forward fall happened. From the sensor 

configure the value of -gy should maximum when left fall occur. 

 

Figure 3.13 illustrates changes in acceleration that occur during a right fall. The interval of 

vertical lines indicates the changes in amplitudes of the accelerometer during this fall. gy 

clearly shows a positive  large peak when the forward fall happened. From the sensor 

configure the value of -gy should maximum when left fall occur. 

 

Fig 3.13: The 3-axis readings for a ‘right fall down’ recorded using an accelerometer.  

 

Figure 3.14 illustrates changes in acceleration that occur during activities of daily living 

(Idle) 
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Fig 3.14: The 3-axis readings for an ‘idle’ activity recorded using an accelerometer. 

 

Figure 3.15 illustrates changes in acceleration that occur when activities of daily living 

(Lying Down). The interval of vertical lines indicates that amplitude changes of 

accelerometer during Lying Down.  

 

Fig 3.15: The 3-axis readings for a ‘lying down’ activity recorded using an accelerometer. 
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Figure 3.16 illustrates changes in acceleration that occur when activities of daily living (Sit 

down). The interval of vertical lines indicates that amplitude changes of accelerometer during 

sit down.  

 

Fig 3.16: The 3-axis readings for a ‘sit down’ activity recorded using an accelerometer. 

 

Figure 3.17 illustrates changes in acceleration that occur when activities of daily living (Bend  

 

Fig 3.17: The 3-axis readings for a ‘bend down’ activity recorded using an accelerometer. 
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down). The interval of vertical lines indicates that amplitude changes of accelerometer during 

bend down.  

Figure 3.18 illustrates changes in acceleration that occur when activities of daily living (Full 

Down). The interval of vertical lines indicates that amplitude changes of accelerometer 

during full down.  

 

Fig 3.18:  The 3-axis readings for a ‘full down’ activity recorded using an accelerometer. 

 

Figure 3.19 illustrates changes in acceleration that occur when activities of daily living (Go 

down head). The interval of vertical lines indicates that amplitude changes of accelerometer 

during Go down head.  
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Fig 3.19: The 3-axis readings for a ‘go head down’ activity recorded using an accelerometer. 

 

Figure 3.20 illustrates changes in acceleration that occur when activities of daily living 

(knee). The interval of vertical lines indicates that amplitude changes of accelerometer during 

knee.  

 

Fig 3.20: The 3-axis readings for a ‘knee’ activity recorded using an accelerometer. 
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Figure 3.21 illustrates changes in acceleration that occur when activities of daily living 

(Walking).  

 

Fig 3.21: The 3-axis readings for a ‘walking’ activity recorded using an accelerometer  

 

Figure 3.22 illustrates changes in acceleration that occur when activities of daily living 

(Jogging). 

 

Fig 3.22: The 3-axis readings for a ‘jogging’ activity recorded using an accelerometer  
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Figure 3.23 illustrates changes in acceleration that occur when activities of daily living (Stand 

up).The interval of vertical lines indicates that amplitude changes of accelerometer during up. 

 

Fig 3.23: The 3-axis readings for a ‘stand up’ activity recorded using an accelerometer  

 

Figure 3.24 illustrates changes in acceleration that occur when activities of daily living (Up). 

 

Fig 3.24: The 3-axis readings for an ‘up’ activity recorded using an accelerometer.  
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Figure 3.25 illustrates changes in acceleration that occur when activities of daily living 

(Jumping). The interval of vertical lines indicates that amplitude changes of accelerometer 

during Jump.  

 

Fig 3.25: The 3-axis readings for a ‘jumping’ activity recorded using an accelerometer.  

 
3.12. Frequency Domains 

The amplitude spectrum of g obtained by FFT analysis is shown in Fig. 3.26 to 3.39. 
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Fig 3.26: FFT of acceleration signal 
(Forward fall) 

Fig 3.27: FFT of acceleration signal 
(Backward fall) 

 

Fig 3.28: FFT of acceleration signal         
(Left side Fall) 

 

Fig 3.29: FFT of acceleration signal      
(Right side fall) 
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Fig 3.30: FFT of acceleration signal       

(Lying Down) 

 
Fig 3.31: FFT of acceleration signal    

(Sit down) 

 

Fig 3.32: FFT of acceleration signal        
(Bend down) 

 
 

Fig 3.33: FFT of acceleration signal 
(Down) 

Fig 3.34: FFT of acceleration signal          
(Go down head) 

 
Fig 3.35: FFT of acceleration signal 

(knee) 
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Fig 3.36: FFT of acceleration signal  
(Walk) 

 

 

Fig 3.37: FFT of acceleration signal 
(Jogging) 

 

 
Fig 3.38: FFT of acceleration signal  

(Up) 

 
Fig 3.39: FFT of acceleration signal 

(Jumping) 
 

 

From the FFT analysis, we have not found any significant peck to distinguish from fall and 

ADL.  

3.13. Calculation of Statistical Features 

Four types of falls and twelve types of activities were recorded in dat file. We calculated 

every single record using Mean, Standard deviation, Median, MAX, MIN, Range, Sum, PCA 

and FFT function for each axis (gx, gy and gz) and their resultant g = (gx2+gy2+gz2)½. Also 

we recorded the upper and lower value of each function for each record. Recorded result is 

shown in Table 3.2, Table 3.3, Table 3.4 and Table 3.5.  
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                                                                      Table 3.2: Calculated features (g) 

 

 

 

Features Selection Table     

  
g     

                   Mean  Median Std dev MAX MIN Range sum Count FFT 
    Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower 

01 Forward fall  11.377 10.06 10.33 9.149 6.35484 4.458 34.33 21.249 4.319 0.287 32.75 19.98 1410 598.4 131 56 1400 600 

02 Backward fall  11.867 10.28 10.64 8.698 6.41074 3.829 34.62 25.2929 4.83 0.884 32.51 21.28 1301 583.4 123 51 1200 570 

03 Left side Fall  11.271 10 10.26 9.131 4.75733 3.244 29.04 21.0603 5.508 2.277 23.88 16.19 1114 676.3 111 60 1100 670 

04 Right side fall  12.296 10.21 11.13 9.17 5.24942 4.319 26.82 23.8978 5.86 3.371 23.24 18.21 757.1 479.5 73 39 750 380 

05 Idle  9.64 9.568 9.641 9.544 0.20961 0.128 10.15 9.84566 9.34 9.021 1.134 0.587 771.2 765.5 80 80 770 760 

06 Lying Down  11.062 10.2 10.89 10.18 2.33795 0.899 19.23 12.4952 8.384 4.427 13.42 4.565 1294 497.8 122 45 1300 500 

07 Sit down  10.169 9.368 9.689 9.171 1.15 0.431 12.95 11.0221 9.255 8.009 3.961 2.323 677.1 374.7 72 40 680 380 

08 Bend down   9.7635 9.591 9.722 9.283 0.87691 0.569 11.72 10.8548 8.783 8.285 3.44 2.302 712.7 594.6 73 62 700 590 

09 Down  9.9157 9.61 9.735 9.324 2.17455 1.617 16.7 15.0294 7.095 4.363 10.67 8.279 1230 682.3 124 71 1200 590 

10 Go down head  9.7534 9.494 9.781 9.4 0.56952 0.389 11.45 10.7487 8.466 8.216 2.986 2.353 1631 579.2 171 61 1600 580 

11 knee  10.028 9.817 9.625 9.306 2.3501 1.644 14.97 13.6786 7.108 5.763 9.212 6.571 847.5 621.7 86 62 830 600 

12 Walk  10.074 9.584 9.275 9.006 2.68716 2.17 18.43 15.8321 6.384 5.165 12.5 9.673 720.3 562.8 74 57 700 580 

13 Jogging  11.643 10.47 11.38 9.46 6.75297 5.83 25.45 22.2236 1.964 1.055 24.3 20.61 477.3 418.9 42 40 480 400 

14 Stand up  10.036 9.372 9.867 9.195 1.17522 0.811 12.72 11.7804 8.617 7.652 5.039 3.164 581 500.3 62 50 590 500 

15 Up  9.7677 9.397 9.69 9.058 2.22085 1.728 15.82 14.9994 7.62 6.584 8.698 7.57 1065 573.2 109 61 1030 580 

16 Jumping  10.155 9.515 8.456 7.275 8.0393 6.887 25.5 22.7507 1.276 0.272 25.23 21.78 838.8 511.7 84 53 830 500 
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                                                                           Table 3.3: Calculated features (gx)  

  
gx 

               

    Mean Median 
Standard 
deviation MAX MIN Range sum Count 

    Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower 
01 Forward fall  -2.216 -5.374 -0.89 -5.186 6.38353 4.084 15.19 4.11 -11.1 -22.16 37.06 19.06 -124 -474.2 131 56 

02 Backward fall  0.2459 -5.934 3.188 -6.041 8.09517 5.607 19.87 6.399 -21.9 -22 41.76 28.33 18.44 -456.5 123 51 

03 Left side Fall  -1.075 -6.111 0.817 -7.648 6.18867 4.313 11.61 0.801 -13 -22.03 28.38 19.87 -64.5 -551.1 111 60 

04 Right side fall  -1.171 -6.539 -2.78 -6.499 6.44517 3.815 9.912 -0.241 -11.8 -15.48 22.83 15.18 -45.7 -316.7 73 30 

05 Idle  -9.068 -9.542 -9.04 -9.536 0.2462 0.128 -8.43 -9.075 -9.35 -10.02 1.216 0.641 -725 -763.3 80 80 

06 Lying Down  11.062 -6.544 10.89 -7.467 4.29028 0.899 19.23 1.738 8.384 -16.49 18.23 4.565 1294 -798.4 122 45 

07 Sit down  -8.829 -9.724 -8.76 -9.466 0.71439 0.271 -7.78 -8.97 -9.63 -11.47 2.861 1.288 -361 -635.7 72 40 

08 Bend down   -7.758 -8.169 -8.5 -8.736 1.70003 0.999 -4.04 -5.29 -9.17 -9.844 5.42 3.881 -500 -587.7 73 62 

09 Down  -8.826 -9.244 -8.67 -9.071 1.92184 1.211 -4.22 -6.985 -13.3 -14.81 9.288 6.413 -627 -1146 124 71 

10 Go down head  -5.213 -8.207 -6.77 -8.911 4.23593 1.73 1.743 -2.941 -9.5 -10.08 11.62 7.12 -412 -1403 171 61 

11 knee  -9.31 -9.657 -8.96 -9.319 2.40455 1.672 -5.32 -6.489 -13.5 -14.36 8.645 7.122 -589 -823.4 86 62 

12 Walk  -9.076 -9.601 -8.52 -8.794 2.49421 1.954 -5.06 -6.161 -14.7 -17.76 12.09 8.567 -539 -688.9 74 57 

13 Jogging  -9.066 -9.592 -8.82 -10.85 8.52171 6.553 7.102 3.568 -21.9 -22.05 27.87 25.62 -368 -402.9 42 40 

14 Stand up  -8.779 -9.603 -8.57 -9.378 1.06161 0.575 -7.53 -8.387 -10.7 -12.41 4.487 2.555 -480 -545.4 62 50 

15 Up  -8.954 -9.142 -8.73 -9.086 1.90582 1.434 -6.41 -7.454 -13.4 -14.22 7.471 6.319 -546 -987.7 109 61 

16 Jumping  -8.315 -8.791 -6.79 -7.984 8.97932 7.67 8.035 3.378 -22 -22.01 30 25.34 -457 -733.7 84 53 
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                                                                              Table 3.4: Calculated features (gy) 

  
gy 

               

    Mean Median 
Standard 
deviation MAX MIN Range sum Count 

    Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower 
01 Forward fall  -2.055 -5.42 -0.54 -6.919 5.56881 4.049 16.9 2.039 -12.9 -20.43 34.42 16.09 -123 -510.2 131 56 

02 Backward fall  6.7083 -4.239 5.627 -4.373 7.22797 2.573 22.33 1.583 -1.01 -19.59 32.68 13.93 462.9 -360.3 123 51 

03 Left side Fall  -4.326 -7.999 -1.78 -8.621 7.27736 4.925 8.816 2.161 -16.8 -20.34 29.16 18.99 -322 -497.9 111 60 

04 Right side fall  8.4636 3.745 8.795 0.752 8.92874 6.792 22.17 21.89 -4.72 -8.542 30.43 26.82 330.1 170.7 73 30 

05 Idle  -0.394 -1.129 -0.36 -1.048 0.38572 0.143 -0.07 -0.699 -0.95 -2.611 2.202 0.622 -31.6 -90.33 80 80 

06 Lying Down  1.105 -2.948 0.972 -3.232 3.35498 1.211 7.056 3.066 -1.53 -10.71 17.61 5.739 108.3 -263.5 122 45 

07 Sit down  -0.473 -1.075 -0.43 -1.116 0.4381 0.233 0.221 -0.487 -1.32 -1.67 1.726 1.122 -24.1 -77.37 72 40 

08 Bend down   -0.462 -0.737 -0.51 -0.769 0.36903 0.217 0.37 -0.079 -1.04 -1.217 1.532 1.089 -33.3 -53.8 73 62 

09 Down  -1.141 -1.625 -1.13 -1.643 0.80086 0.397 0.7 -0.581 -2.13 -3.159 3.859 1.763 -87.8 -201.5 124 71 

10 Go down head  0.4887 0.23 0.484 0.236 0.37937 0.322 1.638 1.002 -0.18 -1.28 2.437 1.444 47.37 20.47 171 61 

11 knee  -0.345 -1.189 -0.32 -1.256 2.17934 0.598 4.63 1.078 -2.01 -7.293 11.92 3.092 -26.9 -78.38 86 62 

12 Walk  -0.092 -0.421 -0.11 -0.535 1.41632 1.081 4.846 1.807 -2.3 -3.59 7.559 4.498 -5.72 -26.95 74 57 

13 Jogging  0.1844 -0.645 0.275 -0.742 2.88615 2.112 6.537 4.603 -4.38 -9.035 13.47 9.287 7.561 -27.07 42 40 

14 Stand up  -0.936 -1.198 -0.96 -1.275 0.4783 0.22 0.537 -0.672 -1.51 -1.82 2.357 0.837 -53.7 -73.11 62 50 

15 Up  -0.922 -1.327 -0.87 -1.372 0.68229 0.372 0.613 -0.515 -2.4 -2.724 3.337 1.948 -80.9 -100.4 109 61 

16 Jumping  0.188 -0.645 0.193 -0.696 1.25948 0.72 4.49 1.469 -1.47 -5.595 9.167 3.269 12.03 -41.91 84 53 
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                                                                        Table 3.5: Calculated features (gz)  

  
gz 

               

    Mean Median 
Standard 
deviation MAX MIN Range sum Count 

    Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower 
01 Forward fall  -2.804 -6.223 -0.61 -7.146 7.17958 4.886 16.08 1.284 -16.3 -17.07 32.45 18.08 -227 -667.5 131 56 

02 Backward fall  7.4385 1.978 9.171 1.154 6.41005 2.895 25.42 9.68 -0.61 -12.28 37.07 13.7 763.1 134.5 123 51 

03 Left side Fall  2.5262 -1.43 3.103 -0.01 4.50593 2.578 11.66 3.431 -5.31 -16.24 20.61 14.74 209.7 -94.4 111 60 

04 Right side fall  1.8959 -2.39 1.108 -2.215 3.58025 2.725 11.08 3.065 -5.61 -9.38 18.35 10.82 119.4 -110 73 30 

05 Idle  2.9713 1.269 2.964 1.278 0.44683 0.144 3.708 1.923 2.683 0.644 2.057 0.758 237.7 101.5 80 80 

06 Lying Down  -4.983 -10.11 -3.57 -10.15 4.72263 0.929 5.009 -7.529 -11.8 -16.46 17.44 4.938 -418 -1000 122 45 

07 Sit down  0.1899 -2.051 0.793 -1.792 3.06568 2.04 3.916 2.022 -4.33 -6.534 9.239 6.708 13.68 -98.46 72 40 

08 Bend down   -2.504 -3.962 -1.93 -4.392 4.4929 3.758 3.713 2.017 -9.48 -10.44 14.15 12.31 -155 -285.2 73 62 

09 Down  -2.202 -3.218 -2.88 -3.869 3.0274 1.694 2.824 1.998 -6.41 -8.293 11.12 8.659 -156 -389.3 124 71 

10 Go down head  0.7346 -5.554 3.233 -6.99 4.89896 4.162 4.604 1.617 -10.6 -11.21 15.17 12.82 125.6 -438.7 171 61 

11 knee  -0.092 -1.262 0.426 -1.615 2.73197 1.653 5.188 3.353 -3.19 -5.344 10.31 6.541 -7.92 -81.77 86 62 

12 Walk  2.7867 2.291 2.942 2.293 1.69297 1.252 7.874 5.676 -0.19 -1.054 8.717 5.863 178.3 135 74 57 

13 Jogging  1.5676 1.038 1.649 0.788 3.79407 2.844 10.93 6.325 -3.19 -8.445 18.27 12.12 62.7 42.54 42 40 

14 Stand up  1.2922 0.093 2.362 0.659 3.20862 2.549 4.853 3.155 -4.67 -6.327 10.65 7.828 74.95 5.697 62 50 

15 Up  -0.621 -2.735 -0.54 -3.417 3.00662 2.391 3.559 3.236 -6.04 -7.691 11.13 9.276 -38.5 -298.1 109 61 

16 Jumping  2.1339 0.89 1.975 0.451 3.1317 2.38 13.2 8.887 -2.6 -6.643 17.69 12.1 148.9 74.73 84 53 
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3.14. Data Analysis / Feature selection 

Feature selection is the process of selecting a subset of relevant features for use in model 

construction. It eliminates the redundant and meaningless values without losing significant 

information. Irrelevant input features induce greater computational cost. Figure 3.39 and 

Figure 3.40,  show  that the Mean and Standard deviation features are the top 2 most 

important features in the dataset and median, max, min, range, sum, count features are the 

less important. Among the falls, the least value of mean is 10.0047560. If we choose, mean 

10.0047560 is threshold than idle, bend down, down, go down head and up can be discarded 

(Figure 3.40). Similarly if we choose, Standard deviation 3.244006244 is threshold than  

lying down , sit down, knee, walking , stand up can discard (Figure 3.41). 

 

 

Fig 3.40: Significant feature- fall Mean  
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Fig 3.41: Significant feature- Standard Deviation 

3.14.1. Accelerometer Axis configuration  

The axes of the accelerometer were configured as shown below (with reference to the Fig 

3.42) 

Forward   = -Z Max 

Backward   = +Z Max 

Left   = -Y Max 

Right  = +Y Max 

Up               = +X Max 

Down   = -X Max 
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Fig 3.42: X-Y-Z coordinate system [79] 

 

3.14.2.   To Detect Direction 

The mainboard of the Shimmer contained within the Shimmer casing. The mechanical design 

of the mainboard  is such that the direction of the X, Y and Z axis of the accelerometer are 

forward direction - Z,  backward  direction + Z, left direction - Y , right direction + Y, up 

direction + X,  down direction - X. Figure 3.43 illustrates the hardware co-ordinate system for 

the  sensor on the Shimmer2r with mainboard. The accelerometer has a right handed 

coordinate system.  
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                                         Fig 3.43: Axis value and direction [91] 

Setting up the configuration, we should get direction   

Forward Fall           = - Z should be max value 

Backward Fall        = + Z should be max value   

Left Fall                  = - Y should be max value  

Right Fall               = + Y should be max value 

Up                          = + X should be max value but no effect on Fall Direction 

Down                     = - X should be max value but no effect on Fall Direction 

 

3.14.3.   Direction analysis  

From our data analysis, we find out some important characteristics of the feature that can be 

contributed to the fall direction and this outcome matches with axis value concept (Table 

3.6). 
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                                        Table 3.6: Direction findings 

Axis Max value Direction Conclusion 
+Z (max) Backward Fall Confirm 
-Z (max) Forward Fall Confirm but Rare, -Y problem 
+Y (max) Right Fall Confirm 
-Y (max) Left or Forward it should be Left Fall 

 

3.14.4. Decision 

The important thing is to decide on which statistical features are significant for a 

classification of falls. We find the following significant parameters to detect falls with their 

directions based on fall characteristics: “Mean, Standard Deviation and Principal component 

analysis (PCA)”. The mean is calculated for x, y, and the z component of the acceleration 

signal of the 128 (2.56s) samples according to Eq. 3.1: 

                                              

ഥ ݔ  =
1
݊
ݔ −−− −− −− −  − 3.1


ୀଵ

 

The standard deviation is calculated for each axis according to Eq. 3.2: 

       

ߪ = ඩ
1
݊
(ݔ −  ଶ(ݔ̅


ୀଵ

−−  −− −−− 3.2 

Principal component analysis (PCA) is calculated for each axis according to Eq. 3.3: 

ܵ = (ݔ − ݔ)(ݔ̅ − ்(̅ݔ −−  −− − 3.3


ୀଵ

 

                                           

ഥ ݔ  =
1
݊
ݔ −−− −  − −− −− 3.4


ୀଵ
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3.15.   Classification  

We need to develop an algorithm to be able to classify directive fall by recognizing the signal 

patterns and matching a vector of significant statistical features with pre-learned ones. 

Thereafter, the resulting computation is fed to the classifier in order to detect the directive 

fall. We have used “classificationLearner” [MATLAB R2016a] tool to train and to test. Two 

learning classifiers namely support vector machines (SVM) and k-Nearest Neighbors (KNN) 

have been used to classify directive fall. 

3.16.   Training and Testing data 

Machine learning based algorithms require an optimum number of subjects to simulate falls 

and ADL in order to provide a good performance [76]. On the other hand, training with more 

subjects than needed do not necessarily lead to improved performance. Sometimes it can 

affect the performance negatively [76]. It is necessary that the optimum number of subjects 

required for training is identified during algorithm implementation. In this thesis work, 

individual learning classifier was used to learn to distinguish among falls and ADLs. Whole 

data are divided in two parts randomly with 50% overlap .One for training (66%) and another 

for testing (34%). Summary of the methodology is provided in Table 3.7.  

                 Table 3.7: Accelerometer, features and algorithm 

Sensor Accelerometer 

Segmentation Sample frequency 50 Hz 

Window Size 2.56 seconds 

Window Overlap 50 % 

Features Mean, standard deviation, Principal component 
analysis (PCA) 

Classification SVM and KNN 
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Chapter 4 
Algorithms and Feature Implementation 

4.1.   Introduction 
 
There are two main approaches to detect falls using acceleration signals: thresholding 

techniques and machine learning methods. Applications based on the first approach are 

simple to implement and their computational work is minimal. They are able to detect when a 

fall occurs. However, the rate of false positives is a significant issue due to the complex 

nature of human movement. The machine learning approach is more sophisticated and leads 

to better detection rates. Machine learning is difficult from implementation point of view (for 

example: requirement of high mathematical skills, use of more computation resources etc.) 

although they are currently the prevailing trend, since thresholding methods are proved to be 

ineffective. In addition to the complexities mentioned above, no single implementation has 

been widely accepted and different paper presents different approach among the variety of 

machine learning algorithms. This chapter presents the following two fall detection 

algorithms in detail:  

1.  Support vector machines (SVM) 

2.  K-Nearest Neighbors (KNN) 

SVM and KNN both are supervised algorithms. We use supervised algorithms because 

supervised algorithms are much more powerful than unsupervised algorithm. 

4.2.   Support vector machines (SVM) 

SVMs are a relatively new type of supervised machine learning algorithms. In a two-class 

classification problem, the main goal is to create a model that places every new example in 

the correct class. SVMs algorithms try to solve this problem by taking the training examples 
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into a higher dimension where they are linearly separable and can be assigned to a class with 

little uncertainty. Binary class datasets that are linearly separable are easy to classify because 

the decision boundary of the two classes is just a straight line (Fig 4.1) or plane (Fig 4.2) that 

divides the feature space into two regions [77]. 

 

                                      Fig 4.1: A linearly classifiable problem 

In SVMs, the input space is transformed into a higher dimensional space using a non-linear 

mapping (Fig 4.2).  

 

                                 Fig 4.2: A non-linearly classifiable problem [93] 

The idea is to take the instances from the original feature space where they are not linearly 

separable to a new feature space where they are. On this new space, a hyperplane (a straight 
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line in 2 dimensions) is created, and it works as a decision boundary that separates the data; 

this boundary is also known as the maximum margin hyperplane. 

The training points that are closest to the decision boundary are called support vectors. The 

support vectors uniquely define the maximum-margin hyperplane for the learning problem. In 

this manner, support vector machines search for a maximum margin hyperplane to separate 

the data with the examples on the border called support vectors (Fig: 4.3). 

 

 

Fig 4.3: Support vectors with margin [94] 

Every new entry will be taken to this new space where it will be classified depending on the 

region. Figure (Fig 4.3) shows an example of a decision boundary. 

      ALGORITHM   1: SVM  training pseudocode. 
                    Input :  Training data 
                    Output :  Maximum margin hyperplane, Hmax.  
                                       calculate support vectors a(i) 
                                       calculate maximum-margin hyperplane, Hmax  

                     

             return Hmax 
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The math involved in SVMs is extremely complex and therefore difficult to implement. The 

steps in order to realize a SVM training algorithm are described in Algorithm 1. 

Calculating the maximal margin hyperplane can be achieved by solving the following 

equation, Eq. 4.1. 

ܺ = ܾ + ∑α ܿܽ(݅).ܽ ------------------------------------------- (4.1) 
                                                        

 where 
                                                         b    = Numeric parameter (i)   
             α     = Numeric parameter 
                                                        ܽ(݅)   = Support Vector 
                                                          ܽ   = Test vector 

Finding b, α  and the support vectors ܽ(݅)  is a type of optimization problem known as 

constrained quadratic optimization.  

4.2.1.   Multiclass SVM 

In this work, five classes are to be detected, which is why a multi-class classifier is needed. 

Multi-class SVMs handle this problem by combining several binary SVMs, using either one-

versus-one or one-versus-all as training strategy. In this work, one-versus-one strategy is 

utilized, where for training purposes one class is considered positive and one other class 

negative. To get a classification result, a voting strategy is used, where for all pairs of classes 

the current feature vector is assigned to one of the two classes and finally, the class that 

receives most votes is considered the correct class.  

An illustration of one-versus-one multi-class SVMs is displayed in the following figure (Fig 

4.4). In the above figure for each pair of classes, a separating hyperplane is learned. To assign 

a new sample to a class, it is classified by all pairs of classes, the votes/wins are counted and 

the sample is assigned to the class with most votes/wins. The one-versus-one classification in 

this example happens as follows: the first pair of classes is (A, B), the new sample lies on the 



69
 

 

’B-side’ of the separating hyperplane and therefore B gets one vote. The second pair of 

classes is (A, C) and the new sample is classified as A. The last pair is (B, C) classifying the 

sample as B. Summing up, A has one vote, B has two votes, C has zero votes; therefore, the 

new sample is classified as B. 

 

                         

                                        Fig 4.4: Example of a multi-class SVM [92] 

4.2.2. Implementation 

The implement of the fall detection system comprises of a number of stages as explained here 

briefly. A 3D accelerometer is attached to chest of human subjects (An overview of the 

system implement is shown in Figure 4:5). We use the SHIMMER accelerometer module for 

this study. A fixed orientation of this module is maintained to keep the directions of its three 

axes the same with respect to bodies for all the subjects. The signals from the accelerometer 

are streamed wirelessly to a PC. The signals are segmented into window frames and the 

frames are analyzed to extract statistical features (Mean, Std_dev, and PCA) to characterize 

the signals related to falls  
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Fig 4.5: Flow chart of our SVM method 
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The segments are resized and the analysis is repeated to cover the probability that an activity 

may be divided into one or more windows, overlapping between the previous and next 

windows. The resulting statistical features are fed to the SVM classifiers for fall detection. 

The classifier SVM algorithm are set to classify directive fall by recognizing the signal 

pattern and matching a vector of features with pre-learned ones. SVM algorithm is 

implemented using “classificationLearner” of MATLAB R2016a toolkit. The algorithm takes 

in features as input attributes and computes information gain for each attribute in order to 

determine which attribute leads to the shortest route for a fall or no-fall decision. Sampling 

frequency, training size and sensor location have impact on performance. We determine the 

efficacy of SVM classifiers using this method and compare the results with KNN classifier. 

4.2.3.   Results 

SVM learning classifier was used to learn to distinguish among falls and ADL. Whole data  

  

Fig 4.6: Learning Classifier SVM 

are divided into two parts randomly, one for training (66%) and another for testing (34%). K-

fold cross-validation is used to train and test. Figure 4.6 shows the classification of four types 
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of fall and ADL. Twelve types of activities are considered as one class called ADL. A total of 

five classes are classified (Four type falls and ADL). Classifier was successful in scoring 97.2 

for the learning rate. In testing, total 110 fall data and 366 ADL are taken. Table 4.1 shows 

the detection result of SVM classifier.  

Table 4.1.: Detection result of SVM classifier 

Algorithm Learning 
Rate (%) 

Fall detected. 
(/110) 

Fail to Fall 
detected. (/110) 

ADL 
detected.  

(/366) 

ADL show in 
fall detected. 

(/366) 

SVM 97.2 104 6 360 6 

 

4.2.4.   Data Analysis Interface 

We develop a GUI to show the detection result of fall detection for SVM algorithm. Figure 

4.7 is the graphical user interface (GUI) of fall detection.  3D accelerometer testing data is  

 

Fig 4.7: Using trained model SVM to predict activity 

recorded in dat file. MATLAB is capturing the signals and calculating the value that are 
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previously defined .After calculating the functional value, features vector is fed to KNN 

classifier. SVM is applying its classification logic to find out the class of imputed vector. 

SVM shows the result after “Algorithm Predicted Result:” string. From the beginning, we 

also insert the actual class result in system to show the actual vs. algorithm predicted result. 

“Previous Known Record…” string indicates the actual result. If actual and predicted result is 

same than background color remain same as blue. If result is mismatch than background 

color becomes change as red. 
 

4.3. K-nearest neighbor (KNN) 

This algorithm belongs to a subgroup of supervised learning algorithms known as instance-

based classifiers. New and unseen instances are compared with instances that are stored in the 

training set. K algorithms are also called lazy classifiers because there is no training involved. 

The basic algorithm uses the closest neighbors of the not yet classified new instances to 

classify them. Every time that a new example needs to be classified, it is compared with all 

the examples in the dataset. Consequently, k-neighbor algorithms use a straightforward 

approach to solve classification problems. 

Suppose there is a dataset with n classified examples. Each classified example acts as a point 

in the feature space. A way to calculate the k-nearest neighbors for unclassified examples 

would be to find the k already classified examples that are closest to the unclassified data. 

Once the k neighbors have been identified, a majority class vote will take place among them 

to classify the new instances. Since the attributes are numeric, distance measurements can be 

used to determine which the k closest neighbors (Fig 4.8) are. Euclidean, Manhattan and city-

block distances are commonly used in KNN algorithms.[78] 
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Fig 4.8: KNN algorithms [95] 

On KNN algorithms, most of the time, the information or collected data are stored in 

matrices. Moreover, since every instance must be checked in order for a new entry to be 

classified. 

 A basic KNN pseudocode is shown in Algorithm 2. 
 
      ALGORITHM 2: KNN training pseudocode.  
 
                    Input : Dataset D= {(x1, c1)... (xN ,cN )}, and unlabeled instance x=(x1,...,xN ). 
                 Output : predicted class Ci. 
                      for  
                              each classified example (xi,ci) do  
                              calculate distance d(xi,x) 
                              order d(xi,x) from lowest to highest select k nearest neighbors to x 
                              vote for majority class among k neighbors, Ci 
                              return Ci 

                    end 

4.3.1. Implementation 

The implement of the fall detection system comprises of a number of stages as explained here 

briefly. A 3D accelerometer is attached to chest of human subjects (An overview of the 

system implement is shown in Figure Fig 4:9).  
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Fig 4.9: Flow chart of the KNN method 



76
 

 

We use the SHIMMER accelerometer module for this study. A fixed orientation of this 

module is maintained to keep the directions of its three axes the same with respect to bodies 

for all the subjects. The signals from the accelerometer are streamed wirelessly to a PC. The 

signals are segmented into window frames and the frames are analyzed to extract statistical 

features (Mean, Std_dev, and PCA) to characterize the signals related to falls. The segments 

are resized and the analysis is repeated to cover the probability that an activity may be 

divided into one or more windows, overlapping between the previous and next windows. The 

resulting statistical features are fed to the KNN classifiers for fall detection. The classifier 

KNN algorithm are set to classify directive fall by recognizing the signal pattern and 

matching a vector of features with pre-learned ones. KNN algorithm is implemented using 

“classificationLearner” of MATLAB R2016a toolkit. The algorithm takes in features as input 

attributes and computes information gain for each attribute in order to determine which 

attribute leads to the shortest route for a fall or no-fall decision. Sampling frequency, training 

size and sensor location have impact on performance. We determine the efficacy of KNN 

classifiers using this method and compare the results with SVM classifier.  

4.3.2.   Results 

KNN learning classifier was used to learn to distinguish among falls and ADL. Whole data 

are divided in two parts randomly, one for training (66%) and another for testing (34%). K-

fold cross-validation is used to train and test. Figure 4.6 shows the classification of four types 

of fall and ADL. Twelve types of activities are considered as one class called ADL. A total of 

five classes are classified (Four type falls and ADL). Classifier was successful in scoring 93.3 
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for the learning rate. In testing, total 110 fall data and 366 ADL are taken.  

 

Fig 4.10: Learning Classifier KNN 

Table 4.2 shows the detection result of KNN classifier. 

Table 4.2.: Detection result of KNN classifier 

Algorithm Learning 
Rate (%) 

Fall detected. 
(/110) 

Fail to Fall 
detected. (/110) 

ADL 
detected.  

(/366) 

ADL show in 
fall detected. 

(/366) 

KNN 93.5 101 9 362 4 

 

4.3.3.   Data Analysis Interface  

We develop a GUI to show the detection result of fall detection for KNN algorithm. Figure 

4.11 is the graphical user interface (GUI) of fall detection. 3D accelerometer testing data is 

recorded in dat file. MATLAB is capturing the signals and calculating the value that are 

previously defined .After calculating the functional value, features vector is fed to KNN 
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classifier. KNN is applying its classification logic to find out the class of imputed vector. 

KNN shows the result after “Algorithm Predicted Result:” string. From the beginning, we 

also insert the actual class result in system to show the actual vs. algorithm predicted result. 

“Previous Know Record…” string indicates the actual result. If actual and predicted result is 

same than background color remain same as blue. If result is mismatch than background 

color becomes change as red. 

 

                  Fig 4.11: Using trained model KNN to predict activity 

4.4.   Algorithms Comparison 

Table 4.3 shows the algorithms complexity comparison between SVM & KNN 

TABLE 4.3: Comparison between SVM and KNN learning algorithms 

Algorithm Data Structure Approach Time Complexity 
 

K-nearest Neighbor 
 

Matrices 
 

Brute Force 
 

O(n2) 
Support Vector 

Machine 
 

Matrices 
 

Optimization 
 

O(n a2 + a3) 
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Chapter 5  
Experimental Results 

5.1.   Introduction 

In this work, individual learning classifier was used to learn to distinguish among falls and 

ADL. A total of 13 subjects have been recruited to perform for the experiments. The results 

of a classifier are stored in an array known as confusion matrix. It visualizes the learning 

algorithm’s performance (True Positives (TP), True Negatives (TN), False Positives (FP) and 

False Negatives (FN)). Performance is evaluated based on the efficiency of learning 

algorithms. The accuracy of the system is the most extensively used performance.  

Accuracy =
(TN +  TP)

(TP +  TN +  FP +  FN) −− −− −− − − −− −− −−− 5.1 

The recall or sensitivity or true positive rate is the ratio of the correctly classified positive 

instances over the entire set of positive instances.  

Recall =
TP

(TP +  FN) −− − − −− −− −−− −− − − −− −− −− −5.2 

The precision or positive predicted value is the ratio of the number of correctly classified 

positive instances to the entire set of instances classified as positives.  

Precision =
TP

(TP +  FP)−− −− −− −−− −− −− −− −− −− −− 5.3 

Only fall (not considering direction) and ADL testing results for SVM and KNN 

classifiers are shown in Table 5.1.  

Table 5.1: Test result of different classifiers (only fall & ADL) 

Algorithm Learning 
Rate (%) True Pos.  False  Neg.  True Neg.   False Pos.  

SVM 97.2 94.54 5.45 98.36 
 

1.60 

KNN 
93.5 91.81 8.10 98.90 1.09 
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Only fall (not considering direction) and ADL summary results for SVM and KNN classifiers 

are shown in Table 5.2. 

Table 5.2: Summary results of SVM & KNN classifiers (only fall & ADL) 

Algorithm Accuracy (%) Precision (%) Recall (%) 

SVM 96.45 98.28 94.54 

KNN 
95.36 98.82 91.81 

 

5.2. Classifier 1 (SVM) 

Confusion matrix and summary results of directive fall and ADLs of test data, using SVM 

classifier are shown in Table 5.3 and Table 5.4, respectively. 

Table 5.3: Confusion matrix (SVM) 
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 C
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 Table 5.4:  Summary results of SVM    

Task Total Accuracy (%) Precision (%) Recall (%) 

Right F 23 97.60 99.54 95.65 

Backward F 32 90.17 98.90 81.25 

ADL 366 96.47 94.79 98.36 

Left F 28 92.41 98.96 85.71 

Forward F 27 99.88 99.77 100 

 

5.3. Classifier 2 (KNN) 

Confusion matrix and summary results of directive fall and ADLs of test data, using KNN 

classifier are shown in Table 5.5 and Table 5.6, respectively. 

    Table 5.5:  Confusion matrix (KNN) 
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Table 5.6:  Summary results of KNN 

Task Total Accuracy (%) Precision (%) Recall (%) 

Right F 23 99.77 99.56 100 

Backward F 32 88.38 98.29 78.125 

ADL 366 95.36 92.35 98.90 

Left F 28          92.63 99.48 85.71 

Forward F 27 92.59 100 85.18 
 

5.4. Result assessment  

We assess the misclassification and classification rate over the different variants of 

classifiers. The optimal classifier is selected by tuning parameters True Positive (TP), True 

Negative (TN), False Negative (FN), False Positive (FP), Accuracy, Precision and Recall.  

The vertical axis of the graph (Fig 5.1) represents the True positive and True Negative peck 

of SVM and KNN respectively. SVM classifier is providing better results as its classification 

True Positive is high. SVM clearly shows a large peak than KNN of True Positive tuning 

parameter. True Negative pecks are all most same of SVM and KNN.  

 

 Fig 5.1:   Fall detection performance (True Pos. & True Neg.) of SVM & KNN 
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The vertical axis of the graph (Fig 5.2) represents the False Positive and False Negative peck  

 

         Fig 5.2:   Fall detection performance (False Neg. & False Pos.) of SVM & KNN 

of SVM and KNN respectively. SVM classifier is providing better results as its classification 

False Negative is low. SVM clearly shows a small peak than KNN of False Negative tuning 

parameter. Though KNN has low rate of False Positive but it has also high rate of False 

Negative. 

The vertical axis of the graph (Fig 5.3) represents the accuracy peck of SVM and KNN  

 

Fig 5.3:   Accuracy of SVM & KNN classifiers 
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respectively. SVM classifier is providing better results as its classification of Forward Fall, 

Backward Fall and ADL high. KNN classifier is providing better of Right Fall, Left Fall high. 

The vertical axis of the graph (Fig 5.4) represents the precision peck of SVM and KNN 

respectively. SVM classifier is providing better results as its classification Backward Fall, 

Right Fall and ADL high. KNN classifier is providing better of Forward Fall, Left Fall high. 

In forward and left fall, the False Positive (FP) is low rate   as a result KNN precision high 

than SVM. 

 

Fig 5.4:   Precision   of SVM & KNN classifiers 
 

The vertical axis of the graph (Fig 5.5) represents the Recall peck of SVM and KNN 

respectively. SVM classifier is providing better results as its classification Forward Fall, 

Backward Fall and Left Fall high. KNN classifier is providing better of Backward Fall and 

ADL high. In forward and backward fall, the False Negative (FN) is low rate   as a result 

SVM recalls high than KNN. 
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Fig 5.5:  Recall of SVM & KNN classifiers 

5.4.1. Conclusion 

We can conclude that SVM classifier is providing better results as its classification accuracy 

is high and error rate is minimal over the investigated classifiers based on tuning parameters.  

5.4.2. Discussion 

This result describes two machine learning algorithm-based methods for direction-sensitive 

fall detection using single 3D accelerometer.  Fall data are collected and analyzed to extract 

important and sensitive statistical features related to a fall and its direction. After successful 

completion of this work, we get the result in optimum classifier for direction-sensitive fall 

detection system. Four types of falls were identified with high accuracy, precision and recall 

using the optimum classifier, SVM. 

5.5. Real time fall detection   

As SVM classifier is providing better results based on tuning parameters. So we discard the 

KNN algorithm and implement the SVM algorithm in real time. Real time fall detection is 
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developed in MATLAB language to be executed on the SHIMMER MSPP430 

microprocessor. Third party software Realterm version 2.0.0.70 is used for PC port scanning 

(recommended by SHIMMER [79]). Port is scanned every .256s and data is sent to 

MATLAB. MATLAB extracts statistical features (Mean, Std_dev, and PCA) and fed to the 

SVM classifier to determine directive fall or ADL decision. SVM algorithm is implemented 

using “classificationLearner” of MATLAB R2016a toolkit. After developing the real time 

system, again five human subjects who are recruited for this testing work. A total of 52 falls 

and 144 ADL have been performed and we get the result (table 5.7 and table 5.8) 

 

 Table 5.7:  Confusion matrix (SVM) to detect real time fall 
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Table 5.8:  Summary results of SVM   to detect real time fall 

Task Total Accuracy (%) Precision (%) Recall (%) 

Right F 13 95.88 99.41 92.30 

Backward F 13 91.48 98.09 84.61 

ADL 144 94.76 92.66 97.22 

Left F 13 88.18 99.29 76.92 

Forward F 13 95.60 98.82 92.30 

 

From the table, we compare the simulation result and real time result table 5.2 vs. table 5.6 

and table 5.3 vs. 5.7. We point out the performance of the real time is very similar to the 

simulation result. In fact, the similar accuracy, precision, recall were obtained. These results 

confirm the quality of the real time system to accurately classify fall and ADL events. 

Developed real time fall detection system is providing similar result like simulation result 

with less technical error rate and high classification accuracy.  

5.6. Comparing the performance with existing works  

In this thesis, we have used single accelerometer and SVM learning algorithm to detection 

direction sensitive fall and found accuracy leads to 96.45%. Table 5.9, presents the 

performance with existing works.  

Table 5.9: Performance comparison with existing works 

SL       Authors Hardware 
Platform Algorithms Accuracy (%) 

01 Beevi et al [16] Accelerometer Linear 
prediction 84 



88
 

 

 
SL       Authors Hardware 

Platform Algorithms Accuracy (%) 

02 Ojetola et al [17] 2 Accelerometers, 
Gyroscopes 

C4.5 decision 
trees 90 

03 Jantaraprim et al.  
[54] Accelerometer Threshold based 96.11 

04 Anania et al. [57] Accelerometer Threshold based, 
Kalman filter 90 

05 Zhang et al. [60] Accelerometer 

One class 
support  

vector machine 
 

96.7 

06 Zhang et al. [65] 
Sun SPOT 

Transceiver, 
Accelerometer 

SVM, Bayesian 
network 93 

07 Gjoreski  et al. [58]  3 Accelerometers 
Random Forest, 
Threshold set 

manually 
90 

08 Lee et al. [80] Accelerometer - 93.2 

09 Noury et al. [82] 2 Accelerometers - 81 

10 Noury et al. [83] Accelerometer, 
Posture, Vibrator - 85 

11 Tapia et al. [84] 5 Accelerometers, 
Heart rate sensor 

C4.5 Decision 
Tree 80.6 

12 Hwang et al. [85] 
Accelerometer,  

Gyroscope, 
Tiltsensor 

Threshold based 96.7 

13 Degen et al. [86] 2 Accelerometers Threshold based 65 
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5.6.1. Our proposed system 

  

Table 5.10 represents our proposed system. 

Table 5.10: Our proposed system 

SL       Authors Hardware 
Platform Algorithms Accuracy (%) 

01. Farhad et al. Single 
Accelerometer 

SVM 96.45 

 

5.6.2. Discussion  

Four types of falls were simulated by data-set and its performance leads to 96.45 % accuracy 

a sampling rate of 50 Hz, exceeding the performance provided by the literature. From the 

table 5.8, most of the fall detection algorithms are based on thresholds set. A major challenge 

in fall detection is identifying appropriate thresholds. Such algorithms do not generalize well 

for unseen data sets. To minimize the false alarm rate of fall detection, some researchers 

embedded extra sensor with main sensor like Acoustic sensors, Gyroscopes, Cardio 

tachometer, Magnetometer, Barometric Pressure. Existing works can detect only lateral fall 

not direction. It shows only fall when forward, backward, left, right fall occur. In addition to 

fall detection , it is also important to determine the direction  of  a  fall, which  could  help  in  

the  location  of  joint weakness  or  post-fall  fracture and help decrease reaction time. This 

work  not only shows a machine learning algorithm that provides accuracy beyond the 

currently available algorithms but also shows direction-sensitive and  cost-effective fall 

detection system using single 3D accelerometer. 
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Chapter 6 
Conclusions and Future Work 

6.1.    Summary 

In this thesis, we have analyzed sensor accelerometer signal to determine their reliability to 

discriminate between falls and ADL. We extract important and sensitive statistical features 

related to a fall and its direction. We analyze the accelerometer data for a detected fall to 

decide on the fall direction. We have explored the features of fall detection. Based on our 

results, the accelerometer appears to be the most reliable sensor. This directive fall detection 

system uses single accelerometer which is of low cost. Using the information provided by the 

sensor, two algorithms (SVM & KNN) are implemented and tested. The algorithms are 

simple and can easily be implemented in MATLAB platforms. In our data-set, its 

performance leads to 96.45 % accuracy and 92% precision. The SVM analysis confirms the 

good performance of the method. A comparative study with the performance of two machines 

learning to fall detection algorithms, shows that the implemented SVM & KNN is very 

competitive. We use more advanced pattern recognition and machine learning techniques that 

increase the robustness of the fall detection algorithm. We implement the algorithm in real 

world environment and found the performance of the real time is very similar to the 

simulation that increases the acceptance of the fall detection system. After successful 

completion of this thesis, we get the result in optimum classifier for direction-sensitive fall 

detection system. Four types of falls are identified with high accuracy, precision and recall 

using the optimum classifier, SVM.  

6.2. Limitations  

The elderly and infirm people are the primary end-users of fall detection solutions. However,   
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due to ethical concerns, the algorithms developed in this thesis were only evaluated using 

data from young and healthy subjects.  Thus, it is necessary that the proposed SVM based 

machine learning algorithm is evaluated on data gathered from the elderly and disabled 

subjects.  

6.3. Future Work 

There are several areas of future work that can serve to improve the system functionality and 

provide additional evaluation of its performance. 

1. Chest is the best body location for fall detection accuracy but waist is the best 

comfortable body locations for placement of sensor according to subjects. In future, 

fall detection studies may be done for a sensor placed in the waist while keeping the 

accuracy on the same level. 

2. Fall pre-impact stage consists of when a fall begins before a faller’s body makes 

impact with the floor. This stage is characterized by acceleration of the faller 

approaching zero just before the impact. For preventive fall, it is also important to 

identify pre-impact stage of fall and alert the user for minimizing risk.   

3. Further work may focus on: online monitoring and messaging system to mobile 

phone. 
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Appendix A: SIMULATION OF FALL DETECTION  
 
The following code generates the direction sensitive fall detection as described  

in the thesis. 
function saveSensorDataAsMATFiles 

  

if exist('rawSensorData_train.mat','file') && exist('rawSensorData_test.mat','file') 

    fprintf(1,'rawSensorData_train.mat and rawSensorData_test.mat already exists at 

location:\n'); 

    disp(['* ', which('rawSensorData_train.mat')]); 

    disp(['* ', which('rawSensorData_test.mat')]); 

    disp(' ') 

else 

    %% Load training data from files 

    activity_labels = {'Forward Fall','WUs','WDs','Backward Fall','Left Fall','Right Fall'}; 

    trainActivity = categorical(importdata('D:\Fall 

Detection\Fall_ADL_DataSet\Train\y_train.txt'),1:6,activity_labels); 

    trainActivity = mergecats(trainActivity,{'WUs','WDs'},'Activities of Daily Living'); 

    trainActivity = reordercats(trainActivity ,{'Right Fall','Backward Fall','Activities of Daily 

Living','Left Fall','Forward Fall'}); 

  

    filestoload = strcat('D:\Fall Detection\Fall_ADL_DataSet\Train\',{'total*'}); 

  

  

    disp('Loading training data from files:') 

    try 

        dstrain = datastore(filestoload,'TextscanFormats',repmat({'%f'},1,128), 

'ReadVariableNames',false); 

    catch err 

        if strcmp(err.identifier,'MATLAB:datastoreio:pathlookup:fileNotFound') 

            error('File not found. Please make sure that you download and extract the data first 

using ''downloadSensorData'' function') 

        end 

    end 
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    [~,fnames] = cellfun(@fileparts,dstrain.Files,'UniformOutput',false); 

    iter = 1; 

    while hasdata(dstrain) 

        fprintf('Importing: %16s ...',fnames{iter}) 

        M = table2array(read(dstrain)); 

        rawSensorDataTrain.(fnames{iter}) = M; 

        iter = iter + 1; 

        fprintf('Done\n') 

    end 

    rawSensorDataTrain.trainActivity = trainActivity; 

    disp(' ') 

    %% Load test data from files 

    testActivity = categorical(importdata('D:\Fall 

Detection\Fall_ADL_DataSet\Test\y_test.txt'),1:6,activity_labels); 

    testActivity = mergecats(testActivity,{'WUs','WDs'},'Activities of Daily Living'); 

    testActivity = reordercats(testActivity ,{'Right Fall','Backward Fall','Activities of Daily 

Living','Left Fall','Forward Fall'}); 

     

    filestoload = strcat('D:\Fall Detection\Fall_ADL_DataSet\Test\',{'total*'}); 

  

    disp('Loading test data from files:') 

    dstest = 

datastore(filestoload,'TextscanFormats',repmat({'%f'},1,128),'DatastoreType','tabulartext',... 

        'ReadVariableNames',false); 

    [~,fnames] = cellfun(@fileparts,dstest.Files,'UniformOutput',false); 

    dstest.ReadSize = 'file'; 

    iter = 1; 

    while hasdata(dstest) 

        fprintf('Importing: %16s ...',fnames{iter}) 

        M = table2array(read(dstest)); 

        rawSensorDataTest.(fnames{iter}) = M; 

        iter = iter + 1; 

        fprintf('Done\n') 
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    end 

    rawSensorDataTest.testActivity = testActivity; 

disp(' ') 

    %% Saving MAT file with raw data 

    fprintf('Saving MAT files: rawSensorData_train.mat ...') 

    save rawSensorData_train.mat -struct rawSensorDataTrain 

    disp('Done') 

    fprintf('Saving MAT files: rawSensorData_test.mat ...') 

    save rawSensorData_test.mat -struct rawSensorDataTest 

    disp('Done') 

end 
 
 
 
% A Matlab code for Function Building 

function Y = Wmean(X) 

  

    Y = mean(X,2); 

end 

--------------------------------------------------------------- 

function Y = Wmedian(X) 

  

    Y = median(X,2); 

end 

----------------------------------------------------------------- 

 

function Y = Wpca1(X) 

  

    [~,Y] = pca(X,'NumComponents',1); 

end 

--------------------------------------------------------------------- 

 

function Y = Wstd(X) 

  



105
 

 

    Y = std(X,[],2); 

end 

--------------------------------------------------------------------------- 

 
% GUI of fall simulation  

function plotActivityResults(mdl,rawSensorDataTest,humanActivityTest,delay) 

  

if nargin < 4 

delay = 0.02; 

end 

  

time = linspace(0,2.56,128); 

  

fig = figure('Name','Human Fall Detection','NumberTitle','off','Visible','off'); 

fig.Position(3:4) = 600; 

movegui('center') 

fig.Visible = 'on'; 

  

 ax1 = subplot(2,1,1,'Parent',fig,'Xgrid','on','Ygrid','on',... 

'XLim',[time(1) time(end)],'YLim',[-45 35]); 

  

clr = get(groot,'DefaultAxesColorOrder'); 

L(1) = 

line(time,rawSensorDataTest.total_acc_x_test(1,:),'color',clr(1,:),'Parent',ax1,'LineWidth',1.5,'

DisplayName','Accelerometer X'); 

L(2) = 

line(time,rawSensorDataTest.total_acc_y_test(1,:),'color',clr(2,:),'Parent',ax1,'LineWidth',1.5,'

DisplayName','Accelerometer Y'); 

L(3) = 

line(time,rawSensorDataTest.total_acc_z_test(1,:),'color',clr(5,:),'Parent',ax1,'LineWidth',1.5,'

DisplayName','Accelerometer Z'); 

  

xlabel(ax1,'Time (s)') 

ylabel(ax1,'(Accelerometer Readings (m \cdot s^{-2})') 
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%legend(ax1,'show') 

legend(ax1,'show','Location','northwest','Orientation','horizontal') 

title(ax1,['Fall Detection System: ', getClassifierName(mdl)]); 

  

  

ann1 = annotation(fig,'textbox',[ax1.Position(1:3) 0.04],... 

'String','Algorithms Predicted Activity : NA','FontSize',12,'FitBoxToText','off',... 

'BackgroundColor',[0 0.7 

0.3],'HorizontalAlignment','Center','VerticalAlignment','middle','FaceAlpha',0.5); 

ann2 = annotation(fig,'textbox',[ax1.Position(1) ax1.Position(2)+0.04 ax1.Position(3) 0.04],... 

'String','Previous Recorded Activity : NA','FontSize',12,'FitBoxToText','off',... 

'BackgroundColor',[0 0.7 

0.3],'HorizontalAlignment','Center','VerticalAlignment','middle','FaceAlpha',0.5); 

  

%% Loop through the raw data and plot the sensor values 

try 

for ii = 1:height(humanActivityTest) 

mycell1 = fieldnames(mdl); 

myclassifier1 = strcat('mdl.',mycell1(3)); 

activity = predict(eval(myclassifier1{:}),humanActivityTest{ii,1:end-1}); 

  

  

if activity == humanActivityTest.activity(ii) 

  

    predclr = [0 0.7 0.3]; 

else 

predclr = [1 0 0]; 

end 

set(ann1,'String',['Algorithms Predicted Result : ' char(activity)],... 

'BackgroundColor',predclr); 

set(ann2,'String',['Previous Known Record : ' char(humanActivityTest.activity(ii))],... 

'BackgroundColor',[0 0.7 0.3]); 

  

L(1).YData = rawSensorDataTest.total_acc_x_test(ii,:); 
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L(2).YData = rawSensorDataTest.total_acc_y_test(ii,:); 

L(3).YData = rawSensorDataTest.total_acc_z_test(ii,:); 

  

drawnow 

pause(delay) 

end 

catch err 

end 

  

function cname = getClassifierName(trainedClassifier) 

mycell = fieldnames(trainedClassifier); 

cname = mycell(3); 

 

%Algorithm learning and export model   
function [trainedClassifier, validationAccuracy] = trainClassifier(trainingData) 
% trainClassifier(trainingData) 
% classifier. 
inputTable = trainingData; 
predictorNames = {'Wmean_total_acc_x_train', 'Wmean_total_acc_y_train', 
'Wmean_total_acc_z_train', 'Wstd_total_acc_x_train', 'Wstd_total_acc_y_train', 
'Wstd_total_acc_z_train', 'Wpca1_total_acc_x_train', 'Wpca1_total_acc_y_train', 
'Wpca1_total_acc_z_train'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.activity; 
isCategoricalPredictor = [false, false, false, false, false, false, false, false, false]; 
  
% Train a classifier 
% This code specifies all the classifier options and trains the classifier. 
template = templateSVM(... 
    'KernelFunction', 'polynomial', ... 
    'PolynomialOrder', 2, ... 
    'KernelScale', 'auto', ... 
    'BoxConstraint', 1, ... 
    'Standardize', true); 
classificationSVM = fitcecoc(... 
    predictors, ... 
    response, ... 
    'Learners', template, ... 
    'Coding', 'onevsone', ... 
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    'ClassNames', categorical({'Right Fall'; 'Backward Fall'; 'Activities of Daily Living'; 'Left 
Fall'; 'Forward Fall'}, {'Right Fall' 'Backward Fall' 'Activities of Daily Living' 'Left Fall' 
'Forward Fall'})); 
  
% Create the result struct with predict function 
predictorExtractionFcn = @(t) t(:, predictorNames); 
svmPredictFcn = @(x) predict(classificationSVM, x); 
trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 
  
% Add additional fields to the result struct 
trainedClassifier.RequiredVariables = {'Wmean_total_acc_x_train', 
'Wmean_total_acc_y_train', 'Wmean_total_acc_z_train', 'Wstd_total_acc_x_train', 
'Wstd_total_acc_y_train', 'Wstd_total_acc_z_train', 'Wpca1_total_acc_x_train', 
'Wpca1_total_acc_y_train', 'Wpca1_total_acc_z_train'}; 
trainedClassifier.ClassificationSVM = classificationSVM; 
trainedClassifier.About = 'This struct is a trained classifier exported from Classification 
Learner R2016a.'; 
trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  yfit 
= c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g. 
''trainedClassifier''. \n \nThe table, T, must contain the variables returned by: \n  
c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) must match the original 
training data. \nAdditional variables are ignored. \n \nFor more information, see <a 
href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 
''appclassification_exportmodeltoworkspace'')">How to predict using an exported 
model</a>.'); 
  
% classifier. 
inputTable = trainingData; 
predictorNames = {'Wmean_total_acc_x_train', 'Wmean_total_acc_y_train', 
'Wmean_total_acc_z_train', 'Wstd_total_acc_x_train', 'Wstd_total_acc_y_train', 
'Wstd_total_acc_z_train', 'Wpca1_total_acc_x_train', 'Wpca1_total_acc_y_train', 
'Wpca1_total_acc_z_train'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.activity; 
isCategoricalPredictor = [false, false, false, false, false, false, false, false, false]; 
  
% Set up holdout validation 
cvp = cvpartition(response, 'Holdout', 0.2); 
trainingPredictors = predictors(cvp.training,:); 
trainingResponse = response(cvp.training,:); 
trainingIsCategoricalPredictor = isCategoricalPredictor; 
  
% Train a classifier 
% This code specifies all the classifier options and trains the classifier. 
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template = templateSVM(... 
    'KernelFunction', 'polynomial', ... 
    'PolynomialOrder', 2, ... 
    'KernelScale', 'auto', ... 
    'BoxConstraint', 1, ... 
    'Standardize', true); 
classificationSVM = fitcecoc(... 
    trainingPredictors, ... 
    trainingResponse, ... 
    'Learners', template, ... 
    'Coding', 'onevsone', ... 
    'ClassNames', categorical({'Right Fall'; 'Backward Fall'; 'Activities of Daily Living'; 'Left 
Fall'; 'Forward Fall'}, {'Right Fall' 'Backward Fall' 'Activities of Daily Living' 'Left Fall' 
'Forward Fall'})); 
  
% Create the result struct with predict function 
svmPredictFcn = @(x) predict(classificationSVM, x); 
validationPredictFcn = @(x) svmPredictFcn(x); 
  
 
  
% Compute validation accuracy 
validationPredictors = predictors(cvp.test,:); 
validationResponse = response(cvp.test,:); 
  
[validationPredictions, validationScores] = validationPredictFcn(validationPredictors); 
correctPredictions = (validationPredictions == validationResponse); 
validationAccuracy = sum(correctPredictions)/length(correctPredictions); 

 

%Computing the features and run program 

%Human Fall Detection System as well as Direction 

 %% Human Directive Fall Detection  Using  

%Raw accelerometer sensor data &  Learning Algorithm 

%Directive Fall (Forward Backward, Left, Right).  

%The goal of this thesis is to build a classifier that can  automatically  

%identify the Fall from ADL as well as Fall Direction.  

  

%% Description of the Data 

%  The dataset consists of accelerometer data captured at 50Hz.  
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%  The raw sensor data contain fixed-width sliding windows of 2.56 sec  

% (128 readings/window). 

  

% * |saveSensorDataAsMATFiles| : This will create two MAT files:  

% |rawSensorData_train|  and |rawSensorData_test| with the raw sensor data 

  

if ~exist('rawSensorData_train.mat','file') && ~exist('rawSensorData_test.mat','file') 

    saveSensorDataAsMATFiles; 

end 

  

%Load Train Data 

load rawSensorData_train 

  

%Display data summary 

% 923(Train data) will be changed w.r to data number 

plotRawSensorData(total_acc_x_train, total_acc_y_train, ... 

    total_acc_z_train,trainActivity,923);   

  

%Create Table variable for train data 

rawSensorDataTrain = table(... 

    total_acc_x_train, total_acc_y_train, total_acc_z_train); 

  

%Extract features from Train raw sensor data 

T_mean = varfun(@Wmean, rawSensorDataTrain); 

T_stdv = varfun(@Wstd,rawSensorDataTrain); 

T_pca  = varfun(@Wpca1,rawSensorDataTrain); 

  

  

humanActivityData = [T_mean, T_stdv, T_pca]; 

humanActivityData.activity = trainActivity; 

  

%T_medn  = varfun(@Wmedian,rawSensorDataTrain); 

%humanActivityData = [T_mean, T_stdv, T_medn]; 
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%classificationLearner calling,learning & export model 

classificationLearner 

  

  

%Load Test Data (476 test data) 

load rawSensorData_test 

  

% Create Table variable for test data 

rawSensorDataTest = table(... 

    total_acc_x_test, total_acc_y_test, total_acc_z_test); 

  

% Extract features from Test raw sensor data 

T_mean = varfun(@Wmean, rawSensorDataTest); 

T_stdv = varfun(@Wstd,rawSensorDataTest); 

T_pca  = varfun(@Wpca1,rawSensorDataTest); 

  

humanActivityData = [T_mean, T_stdv, T_pca]; 

humanActivityData.activity = testActivity; 

  

%T_medn  = varfun(@Wmedian,rawSensorDataTest); 

%humanActivityData = [T_mean, T_stdv, T_medn]; 

  

%Using trained model(called trainedClassifier),  

%Features and Test raw sensor data 

%calling |*plotActivityResults| function & Show the result 

  

plotActivityResults(trainedClassifier,rawSensorDataTest,humanActivityData,0.1) 
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Appendix B: REAL TIME IMPLEMENT 
 
%  Human Fall Detection System as well as Direction 
  
if ~exist('rawSensorData_train.mat','file') 
          saveSensorDataAsMATFiles; 
end 
  
%Load Train Data 
load rawSensorData_train 
  
%Create Table variable for train data 
rawSensorDataTrain = table(... 
    total_acc_x_train, total_acc_y_train, total_acc_z_train); 
  
%Extract features from Train raw sensor data 
T_mean = varfun(@Wmean, rawSensorDataTrain); 
T_stdv = varfun(@Wstd,rawSensorDataTrain); 
T_pca  = varfun(@Wpca1,rawSensorDataTrain); 
  
humanActivityData = [T_mean, T_stdv, T_pca]; 
humanActivityData.activity = trainActivity; 
  
%classificationLearner calling,learning & export model 
classificationLearner 
 

% Enable Accelerometer Sensor 

classdef SetEnabledSensorsMacrosClass < handle 
     
     
    properties (Constant = true) 
        ACCEL='Accel';   % Accelerometer; for Shimmer3 Low Noise Accelerometer will be 
selected. 
        LNACCEL='LowNoiseAccel';        % Low Noise Accelerometer for Shimmer3 
        WRACCEL='WideRangeAccel';       % Wide Range Accelerometer for Shimmer3 
        ALTACCEL='AlternativeAccel';    % MPU9150 Accelerometer for Shimmer3 
        GYRO = 'Gyro';                  % Gyroscope 
        MAG = 'Mag';                    % Magnetometer 
        ALTMAG = 'AlternativeMag';      % MPU9150 Magnetometer for Shimmer3 
        ECG = 'ECG';                    % ECG 
        ECG24BIT ='ECG 24BIT';          % ECG 24BIT for Shimmer3 
        ECG16BIT ='ECG 16BIT';          % ECG 16BIT for Shimmer3 
        EMG = 'EMG';                    % EMG 
        EMG24BIT = 'EMG 24BIT';         % EMG 24BIT for Shimmer3 
        EMG16BIT = 'EMG 16BIT';         % EMG 16BIT for Shimmer3 
        EXG1 = 'EXG1';                  % EXG1 for Shimmer3 



113
 

 

        EXG124BIT = 'EXG1 24BIT';       % EXG1 24BIT for Shimmer3 
        EXG116BIT = 'EXG1 16BIT';       % EXG1 16BIT for Shimmer3 
        EXG2 = 'EXG2';                  % EXG2 for Shimmer3 
        EXG224BIT = 'EXG2 24BIT';       % EXG2 24BIT for Shimmer3 
        EXG216BIT = 'EXG2 16BIT';       % EXG2 16BIT for Shimmer3 
        GSR = 'GSR';                    % GSR 
        EXPA0 = 'ExpBoard_A0';          % External Expansion Board A0 for Shimmer2r 
        EXPA7 = 'ExpBoard_A7';          % External Expansion Board A7 for Shimmer2r 
        EXTA7 = 'EXT A7';               % External ADC A7 for Shimmer3 
        EXTA6 = 'EXT A6';               % External ADC A6 for Shimmer3 
        EXTA15 = 'EXT A15';             % External ADC A15 for Shimmer3 
        STRAIN = 'Strain Gauge';        % Strain Gauge for Shimmer2r 
        BRIDGE = 'Bridge Amplifier';    % Bridge Amplifier for Shimmer3 
        HEART = 'Heart Rate';           % Heart Rate for Shimmer2r 
        BATT = 'BattVolt';              % Battery Voltage 
        INTA1 = 'INT A1';               % Internal ADC for Shimmer3 
        INTA12 = 'INT A12';             % Internal ADC for Shimmer3 
        INTA13 = 'INT A13';             % Internal ADC for Shimmer3 
        INTA14 = 'INT A14';             % Internal ADC for Shimmer3 
        PRESSURE = 'Pressure';          % BMP180 Pressure (and Temperature) for Shimmer3 
    end 
     
    %%%%%%%%%%%%%%%%%%%%%% 
    % Constructor Method 
     
    methods 
         
        function theseMacros = SetEnabledSensorsMacrosClass 
             
                  
        end % function SetEnabledSensorsMacrosClass   
         
    end % methods (Constructor) 
end 
 

% Real time data streaming and features calculation 
 
function void = plotandwriteexample(mdl, comPort, captureDuration, fileName) 
  
%%  EXAMPLE: plotandwriteexample(trainedClassifier, '3', 30, 'testdata.dat') 
  
if nargin < 4                                                               
delay = 0.04; 
end 
  
shimmer = ShimmerHandleClass(comPort);                                      
SensorMacros = SetEnabledSensorsMacrosClass;                                
  
DELAY_PERIOD = 0.2;                                                        
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nn = 1;                                                                     
M  = [1.33 2.33 3.33];                                                                                   
M1  =  dlmread('farhad.dat','','B1..D30');                                  
M2  =  dlmread('farhad.dat','','B1..D30');                                  
M3  =  dlmread('farhad.dat','','B1..D30');                                  
M4  =  dlmread('farhad.dat','','B1..D30');                                  
M5  =  dlmread('farhad.dat','','B1..D30');                                  
  
M = vertcat(M1,M2,M3,M4,M5);                                                
M = M(1:128,1:3);                                                           
N = M.';                                                                                                                    
total_acc_x_test = N(1:1,1:128);                                            
total_acc_y_test = N(2:2,1:128);                                            
total_acc_z_test = N(3:3,1:128);                                               
  
  
if (shimmer.connect)                                                        
     
    % Define settings for shimmer 
    shimmer.setsamplingrate(51.2);                                          
    shimmer.setinternalboard('9DOF');                                       
    shimmer.disableallsensors;                                              
    shimmer.setenabledsensors(SensorMacros.ACCEL,1); 
    shimmer.setaccelrange(0);                                              % 
   
    %GUI define 
    time = linspace(0,2.56,128);                                                         
  
    fig = figure('Name','Human Fall Detection','NumberTitle','off','Visible','off'); 
    fig.Position(3:4) = 600; 
    movegui('center') 
    fig.Visible = 'on'; 
  
    ax1 = subplot(2,1,1,'Parent',fig,'Xgrid','on','Ygrid','on',... 
    'XLim',[time(1) time(end)],'YLim',[-45 35]); 
  
    clr = get(groot,'DefaultAxesColorOrder'); 
    L(1) = 
line(time,total_acc_x_test(1,:),'color',clr(1,:),'Parent',ax1,'LineWidth',1.5,'DisplayName','Acce
lerometer X'); 
    L(2) = 
line(time,total_acc_y_test(1,:),'color',clr(2,:),'Parent',ax1,'LineWidth',1.5,'DisplayName','Acce
lerometer Y'); 
    L(3) = 
line(time,total_acc_z_test(1,:),'color',clr(5,:),'Parent',ax1,'LineWidth',1.5,'DisplayName','Acce
lerometer Z'); 
  
    xlabel(ax1,'Time (s)') 
    ylabel(ax1,'(Accelerometer Readings (m \cdot s^{-2})') 
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    legend(ax1,'show','Location','northwest','Orientation','horizontal') 
    title(ax1,['Real Time Fall Detection System: ']); 
  
    ann1 = annotation(fig,'textbox',[ax1.Position(1:3) 0.04],... 
    'String','Algorithms Predicted Activity : NA','FontSize',12,'FitBoxToText','off',... 
    'BackgroundColor',[0 0.7 
0.3],'HorizontalAlignment','Center','VerticalAlignment','middle','FaceAlpha',0.5); 
  
  
     if (shimmer.start) 
             elapsedTime = 0;                                                                                 
             tic;                                                                                           
         
        while (elapsedTime < captureDuration)             
                 pause(DELAY_PERIOD);                                                                       
                 [newData,signalNameArray,signalFormatArray,signalUnitArray] = 
shimmer.getdata('c');        
                         
            if ~isempty(newData)                                                                            
                                 
                switch nn                                                                        
              
                    case 1 
                    dlmwrite(fileName, newData, 'delimiter', '\t','precision',6);                
                    M1 = dlmread('testdata.dat', '',0,1);                                        
                    M = vertcat(M2,M3,M4,M5,M1);                                                 
                    nn = 2;                                                                          
                          
                    case 2 
                    dlmwrite(fileName, newData, 'delimiter', '\t','precision',6); 
                    M2 = dlmread('testdata.dat','',0,1); 
                    M = vertcat(M3,M4,M5,M1,M2); 
                    nn = 3; 
              
                    case 3 
                    dlmwrite(fileName, newData, 'delimiter', '\t','precision',6); 
                    M3 = dlmread('testdata.dat', '',0,1); 
                    M = vertcat(M4,M5,M1,M2,M3); 
                    nn = 4; 
              
                    case 4 
                    dlmwrite(fileName, newData, 'delimiter', '\t','precision',6); 
                    M4 = dlmread('testdata.dat', '',0,1); 
                    M = vertcat(M5,M1,M2,M3,M4); 
                    nn = 5; 
              
                    case 5 
                    dlmwrite(fileName, newData, 'delimiter', '\t','precision',6); 
                    M5 = dlmread('testdata.dat', '',0,1); 
                    M = vertcat(M1,M2,M3,M4,M5); 
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                    nn = 1; 
  
                end 
          
                MM = size(M,1)                                                   
                 
                if (MM > 127)                                                    
                     M = M(1:128,1:3);                                           
                else 
                     M  =  dlmread('farhad.dat','','B1..D128');                  
                end 
                 
                N = M.';                                                                         
                rawSensorDataTest = table(N);                                        
                T_mean = varfun(@Wmean, rawSensorDataTest);                          
                T_stdv = varfun(@Wstd, rawSensorDataTest);                           
                T_pca  = varfun(@Wpca1, rawSensorDataTest);                          
  
                YourArray = table2array(T_mean);                                     
                YourNewTable1 = array2table(YourArray.');                            
                YourNewTable1.Properties.VariableNames = {'Wmean_total_acc_x_test' 
'Wmean_total_acc_y_test' 'Wmean_total_acc_z_test'};   
  
                YourArray = table2array(T_stdv); 
                YourNewTable2 = array2table(YourArray.'); 
                YourNewTable2.Properties.VariableNames = {'Wstd_total_acc_x_test' 
'Wstd_total_acc_y_test' 'Wstd_total_acc_z_test'}; 
  
                YourArray = table2array(T_pca); 
                YourNewTable3 = array2table(YourArray.'); 
                YourNewTable3.Properties.VariableNames = {'Wpcal_total_acc_x_test' 
'Wpcal_total_acc_y_test' 'Wpcal_total_acc_z_test'}; 
  
                C = {'NA'};                                                           
                T = cell2table(C,... 
                    'VariableNames',{'activity'}); 
  
                humanActivityTest = [YourNewTable1, YourNewTable2, YourNewTable3, T];   
  
                pause(0.25);                                                           
  
                total_acc_x_test = N(1:1,1:128);                                         
                total_acc_y_test = N(2:2,1:128); 
                total_acc_z_test = N(3:3,1:128); 
  
                %% Loop through the raw data and plot the sensor values 
                try 
                   for ii = 1:height(humanActivityTest) 
                       mycell1 = fieldnames(mdl); 
                       myclassifier1 = strcat('mdl.',mycell1(3)); 
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                       activity = predict(eval(myclassifier1{:}),humanActivityTest{ii,1:end-1}); 
  
                        if activity == 'Forward Fall'       
                            predclr = [1 0 0]; 
                            pause(1.01); 
                                
                            elseif activity == 'Backward Fall' 
                               predclr = [1 0 0]; 
                               pause(1.01); 
                                   
                            elseif activity == 'Left Fall' 
                                predclr = [1 0 0]; 
                                pause(1.01); 
                                    
                            elseif activity == 'Right Fall' 
                               predclr = [1 0 0]; 
                               pause(1.01); 
                                   
                            else  
                               predclr = [0 0.7 0.3]; 
                        end 
  
  
                    set(ann1,'String',['Directive  Fall Detection : ' char(activity)],... 
                        'BackgroundColor',predclr); 
  
                     L(1).YData = total_acc_x_test;                  
                     L(2).YData = total_acc_y_test; 
                     L(3).YData = total_acc_z_test; 
  
                     drawnow 
                     %pause(0.1) 
                    end 
                  
                 catch err 
                 end 
  
         end 
          elapsedTime = elapsedTime + toc;                                
          tic;                                                                       
             
    end   
     elapsedTime = elapsedTime + toc;                                     
     shimmer.stop;                                                                                                            
        
end  
 shimmer.disconnect;                                                      
         
end                                                                       
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% Call classifier to detect real time directive fall detection 
% Calling the function to detect real-time fall detection system. 
 
plotandwriteexample(trainedClassifier, '3', 30, 'testdata.dat') 
 

%Developed by: Shaikh Farhad Hossain, MSc Engg. (IICT, BUET), Bangladesh 
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