
An Automated Directive Fall Detection System Using Single 3D
Accelerometer and Learning Classifier

By

Shaikh Farhad Hossain

MASTER OF SCIENCE IN

INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

February, 2017

ii

This thesis titled, “AN AUTOMATED DIRECTIVE FALL DETECTION SYSTEM

USING SINGLE 3D ACCELEROMETER AND LEARNING CLASSIFIER” submitted

by Shaikh Farhad Hossain, Roll No: 0412312030, Session: April 2012 has been accepted as

satisfactory in partial fulfillment of the requirement for the degree of Master of Science in

Information and Communication Technology on the 8 February, 2017.

BOARD OF EXAMINERS

1. Dr. Md. Zahurul Islam Chairman
 Associate Professor
 Department of Electrical and Electronic Engineering
 BUET, Dhaka- 1205

2. Director Ex-Officio
 Institute of Information and Communication Technology
 BUET, Dhaka- 1205

3. Dr. Md. Rubaiyat Hossain Mondal Member
 Associate Professor
 Institute of Information and Communication Technology
 BUET, Dhaka- 1205

4. Dr. Khondaker Abdullah Al Mamun Member
 Associate Professor (External)
 Department of CSE
 United International University, Dhaka

iii

CANDIDATE’S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the

award of any degree or diploma.

Shaikh Farhad Hossain

iv

DEDICATED TO MY PARENTS

v

Contents

Board of Examiners ii

Candidate’s Declaration iii

Dedication iv

Contents vi

List of Figures x

List of Tables xiii

List of Abbreviations xiv

Acknowledgements xv

Abstract xvi

vi

CHAPTER 1: Introduction

 1.1. Introduction 1

 1.2. Fall Detection System: Present State of the Problem And

Motivation for this Thesis 3

 1.3. Objectives 4

 1.4. Overview of the Thesis 4

 1.5 Thesis Organization 5

CHAPTER 2: Background and Related Work

 2.1. Definitions of falls 6

 2.2. Falls in the elderly 6

 2.2.1. Circumstances of falls 6

 2.3. Typical fall scenarios 7

 2.3.1. Fall from standing 7

 2.3.2. Fall from chair 7

 2.3.3. Fall from bed 8

 2.4. Fall risk factors 8

 2.4.1. Intrinsic risk factors 8

 2.4.2. Extrinsic risk factors 11

 2.5. Causes and Consequences of fall 12

 2.5.1. Physical causes 12

 2.5.2. Activities 12

 2.5.3. Physical damage 12

 2.5.4. Psychological damage 13

 2.5.5. Economic damage 13

vii

 2.6. Related Work 14

 2.6.1. Camera based fall detection 14

 2.6.2. Ambient sensor based fall detection 15

 2.6.3. Fall detection by image processing 17

 2.6.4. Thresholds based fall detection 17

 2.6.5. Smartphones based fall detection 19

 2.6.6. Machine Learning Based fall detection 20

 2.7. Categorization of fall detectors 23

 2.7.1. First generation 24

 2.7.2. Second generation 24

 2.7.3. Third generation 24

 2.8. Existing wearable fall detectors 24

 2.9. Traditional Direction Measurement System 25

 2.10. Issues with existing wearable fall detectors 26

CHAPTER 3: Methodology and Data Collection

 3.1. System Design 29

 3.2. Use of accelerometer 30

 3.3. Hardware platform 30

 3.4. Network Setup 32

 3.5. Sampling frequency 34

 3.6. Placement of Sensors 34

 3.7. Participant experimental step 35

 3.7.1. Subjects recruited for data acquisition 35

 3.7.2. Consent form 36

 3.7.3. Age and height 36

viii

 3.7.4. Data acquisition 36

 3.8. Falls and Activities of Daily Living 37

 3.9. Analysis of accelerometer signals 39

 3.10.Feature extraction 40

 3.11.The 3-axis graph representation of accelerations 42

 3.12. Frequency Domains 51

 3.13. Calculation of Statistical Features 54

 3.14. Data Analysis / Feature selection 59

 3.14.1. Accelerometer Axis configuration 60

 3.14.2. To Detect Direction 61

 3.14.3. Direction analysis 62

 3.14.4. Decision 63

 3.15. Classification 64

 3.16. Training and Testing data 64

CHAPTER 4: Algorithms and Feature Implementation

 4.1. Introduction 65

 4.2. Support vector machines (SVM) 65

 4.2.1. Multiclass SVM 68

 4.2.2. Implementation 69

 4.2.3. Results 71

 4.2.4. Data Analysis Interface 72

 4.3. K-nearest neighbor (KNN) 73

 4.3.1. Implementation 74

 4.3.2. Results 76

 4.3.3. Data Analysis Interface 77

ix

 4.4. Algorithms Comparison 78

CHAPTER 5: Experimental Results

 5.1. Introduction 80

 5.2. Classifier 1 (SVM) 81

 5.3. Classifier 2 (KNN) 81

 5.4. Result assessment 82

 5.4.1. Conclusion 85

 5.4.2. Discussion 85

 5.5. Real time fall detection 85

 5.6. Comparing the performance with existing works 87

 5.6.1. Our proposed system 89

 5.6.2. Discussion 89

CHAPTER 6: Conclusion

 6.1. Summary 90

 6.2. Limitations 90

 6.3. Future Work 91

 References 92

 Publication 101

 Appendix 102

x

LIST OF FIGURES

Fig 2.1: Camera based fall detection 14

Fig 2.2: Ambient sensor based fall detection 16

Fig 2.3: Fall detection by images processing 17

Fig 2.4: Commercial fall detectors 25

Fig 2.5: Gyroscope 26

Fig 2.6: 3 Accelerometer with cross product 26

Fig 3.1: Data flow diagram of the direction sensitive fall detection system 29

Fig 3.2: Shimmer Sensor 30

Fig 3.3: Block diagram of the SHIMMER base board interconnections and integrated

devices 31

Fig 3.4: Connection and Data Streaming 33

Fig 3.5: Multi Shimmer sync 33

Fig 3.6: Data collection set-up 35

Fig 3.7: Placement of SHIMMER sensor nodes 37

Fig 3.8: Falls and ADL data gathering 39

Fig 3.9: Segment of acceleration signal 40

Fig 3.10: The 3-axis readings for a ‘forward fall down’ recorded using an accelerometer 42

Fig 3.11: The 3-axis readings for a ‘backward fall down’ recorded using an accelerometer 43

Fig 3.12: The 3-axis readings for a ‘left fall down’ recorded using an accelerometer 43

Fig 3.13: The 3-axis readings for a ‘right fall down’ recorded using an accelerometer 44

Fig 3.14: The 3-axis readings for a ‘idle’ activity recorded using an accelerometer 45

Fig 3.15: The 3-axis readings for a ‘lying down’ activity recorded using an accelerometer 45

Fig 3.16: The 3-axis readings for a ‘sit down’ activity recorded using an accelerometer 46

xi

Fig 3.17: The 3-axis readings for a ‘bend down’ activity recorded using an

accelerometer 46

Fig 3.18: The 3-axis readings for a ‘full down’ activity recorded using an accelerometer 47

Fig 3.19: The 3-axis readings for a ‘go head down’ activity recorded using an

accelerometer 48

Fig 3.20: The 3-axis readings for a ‘knee’ activity recorded using an accelerometer 48

Fig 3.21: The 3-axis readings for a ‘walking’ activity recorded using an accelerometer 49

Fig 3.22: The 3-axis readings for a ‘jogging’ activity recorded using an accelerometer 49

Fig 3.23: The 3-axis readings for a ‘stand up’ activity recorded using an accelerometer 50

Fig 3.24: The 3-axis readings for a ‘up’ activity recorded using an accelerometer 50

Fig 3.25: The 3-axis readings for a ‘jumping’ activity recorded using an accelerometer 51

Fig 3.26: FFT of acceleration signal (Forward fall) 52

Fig 3.27: FFT of acceleration signal (Backward fall) 52

Fig 3.28: FFT of acceleration signal (Left side Fall) 52

Fig 3.29: FFT of acceleration signal (Right side fall) 52

Fig 3.30: FFT of acceleration signal (Lying Down) 53

Fig 3.31: FFT of acceleration signal (Sit down) 53

Fig 3.32: FFT of acceleration signal (Bend down) 53

Fig 3.33: FFT of acceleration signal (Down) 53

Fig 3.34: FFT of acceleration signal (Go down head) 53

Fig 3.35: FFT of acceleration signal (knee) 53

Fig 3.36: FFT of acceleration signal (Walk) 54

Fig 3.37: FFT of acceleration signal (Jogging) 54

Fig 3.38: FFT of acceleration signal (Up) 54

Fig 3.39: FFT of acceleration signal (Jumping) 54

xii

Fig 3.40: Significant feature- fall Mean 59

Fig 3.41: Significant feature- Standard Deviation 60

Fig 3.42: X-Y-Z coordinate system 61

Fig 3.43: Axis value and direction 62

Fig 4.1: A linearly classifiable problem 66

Fig 4.2: A non-linearly classifiable problem 66

Fig 4.3: Support vectors with margin 67

Fig 4.4: Example of a multi-class SVM 69

Fig 4.5: Flow chart of our SVM method 70

Fig 4.6: Learning Classifier SVM 71

Fig 4.7: Using trained model SVM to predict activity 72

Fig 4.8: KNN algorithms 74

Fig 4.9: Flow chart of our KNN method 75

Fig 4.10: Learning Classifier KNN 77

Fig 4.11: Using trained model KNN to predict activity 78

Fig 5.1: Fall detection performance (True Pos. & True Neg.) of SVM & KNN 82

Fig 5.2: Fall detection performance (False Neg. & False Pos.) of SVM & KNN 83

Fig 5.3: Accuracy of SVM & KNN classifiers 83

Fig 5.4: Precision of SVM & KNN classifiers 84

Fig 5.5: Recall of SVM & KNN classifiers 84

xiii

LIST OF TABLES

Table 2.1: Wearable sensors for falls and activity monitoring 26

Table 3.1: Ages and heights of the subjects recruited for the experimental fall data

collection 36

Table 3.2: Calculated features (g) 55

Table 3.3: Calculated features (gx) 56

Table 3.4: Calculated features (gy) 57

Table 3.5: Calculated features (gz) 58

Table 3.6: Direction findings 63

Table 3.7: Accelerometer, features and algorithm 64

Table 4.1: Detection result of svm classifier 72

Table 4.2: Detection result of knn classifier 77

Table4.3: Comparison between svm & knn learning algorithms 78

Table 5.1: Test result of different classifiers 79

Table 5.2: Summary results of SVM & KNN classifiers (only fall & ADL) 80

Table 5.3: Confusion matrix (svm) 80

Table 5.4: Summary results of svm 81

Table 5.5: Confusion matrix (knn) 81

Table 5.6: Summary results of knn 82

Table 5.7: Confusion matrix (svm) to detect real time fall 86

Table 5.8: Summary results of svm to detect real time fall 87

Table 5.9: Performance comparison with existing works 87

Table 5.10: Our proposed system 89

xiv

LIST OF ABBREVIATIONS

ADL Activities of Daily Living

BPNN Back Propagation Neural Network

BSN Body Sensor Networks

DFS Depth-First Search

DFT Discrete Fourier Transform

DSP Digital Signal Processor

DT Decision Tree

FFT Fast Fourier Transform

FN False Negatives

FP False Positives

FPGA Field-Programmable Gate Array

GUI Graphical User Interface

HMM Hidden Markov Model

HOGs Histogram of Oriented Gradients

KNN K-Nearest Neighbors

LASA Longitudinal Aging Study Amsterdam

MEMS Micro Electro Mechanical Systems

NHS National Health Service

PCA Principal Component Analysis

PIR Pyroelectric Infrared

RN Rovering Network

SVM Support Vector Machines

TN True Negatives

TP True Positives

VM Vector Magnitude

WHO World Health Organization

WSN Wireless Sensor Networks

xv

ACKNOWLEDGEMENTS

First of all, I would like to thank Almighty Allah for his mercy and charity. This thesis

is the most significant accomplishment in my life and would have been impossible

without the will and wish of the almighty and I am grateful to him.

I would like to thank my supervisor Dr. Md. Zahurul Islam, Associate Professor, Dept. of

EEE, BUET. His patience, sincere guidance and encouragement had made this work possible.

My sincere gratitude and thanks to him.

I have had the help of a lot of people without whose contribution this work may ever have

come to light. The second person to acknowledge should be Prof. Dr. Md. Liakot Ali,

Institute of Information and Communication Technology (IICT), Bangladesh University of

Engineering and Technology (BUET), for introducing me in the arena of Bio-medical

Engineering.

My thanks to all my teachers here at IICT for helping me prepare for this task. I also have had

the pleasure of support from the cordial and always helpful staff of IICT over the years that

have made my task at IICT that much easier. I would also like to thank the

volunteers who came to the lab for giving me their time so I could perform the experiments.

I would like to thank Dr. Khondaker Abdullah Al Mamun, Associate Professor, Dept. of

CSE, United International University (UIU) for his wonderful suggestions to improve the

thesis during and after the oral examination.

Finally, my gratitude must go to my family whose unconditional support had made life

challenges easier to meet and reach for success.

xvi

Abstract

Technology advances to accelerate the quality and type of services provided for health care

and monitor. Wearable sensor systems, composed of small and light sensing nodes, have the

potential to revolutionize the health care system. An important application of wearable

sensors can be the detection of fall with its direction, particularly for elderly or otherwise

vulnerable people. In this thesis work, we implemented a direction-sensitive fall detection

system prototype using a single three-dimensional accelerometer and machine learning

algorithm which includes feature extraction and classification methods, e.g. PCA, SVM and

KNN. Four types of fall, forward, backward, left and right falls are detected. In addition to

the detection of a fall, it is also important to determine its direction, which could help locate

joint weakness or post-fall fracture and help decrease reaction time. Most wearable fall

detection algorithms are based on thresholds set by observational analysis for various fall

types. However, such algorithms do not generalize well for unseen data sets and their

applications in finding the directions of falls are not well recognized. A more appropriate

approach, as presented in this thesis, is a machine learning based algorithm SVM and KNN

were implemented for fall detection. Among the two methods, SVM provides better

performances which leads to 96.45% of accuracy using PCA, mean and standard deviation

features, exceeding the performances reported in the literature. The performances of the

developed system in real time were also evaluated and they were found satisfactory.

This work not only shows a machine learning algorithm that provides accuracy beyond the

currently available algorithms but also shows direction-sensitive and cost-effective fall

detection system using single 3D accelerometer.

1

Chapter 1
Introduction

1.1. Introduction

Fall, particularly among the elderly people, may result in serious injury or even death if the

person becomes incapacitated or fails to seek medical aid in a short time. It is at the sixth

position in the list of causes of death for the people aged between 60 and 65; the second

between 65 and 75 and the first over 75 [1]. The number of elderly people is ever increasing.

There are more than 600 million people over the age of 60 around the world and that number

is expected to approach two billion in 2050 [2]. Statistics from 2001 showed that 17 per cent

of the population in Europe was 65 or older, and by 2035, an estimated 33 per cent will be 65

or older [3]. In Canada, the number of elderly people aged 65 years and older was 10.6 per

cent of the population in 1991. This number is expected to increase rapidly, reaching 14.5 per

cent by 2011 and 21.8 per cent by 2031 [4]. This future large population of elderly people

pose a potential high risk of fall related injury and fatality. Also, among the people affected

by Alzheimer’s disease, the probability of a fall increases by a factor of three [1]. According

to the American Heart Association, Treatment of a patient, experiencing complications due to

a fall, within the first 12 minutes after the fall brings a survival rate of 48% -75% [5]. This

sensitive post-fall time is one of the key factors that determine the future of an elderly fall

patient. Many older fallers are unable to get up again without assistance and any subsequent

long inactivity can lead to hypothermia, dehydration, bronchopneumonia and pressure sores

[6]. Because of these life-threatening consequences of falls, automated and accurate fall

detection is emerging as a big necessity for many countries where the society adopts the

culture of independent living for elderly people [7].

2

Treatment of fall injuries can be very costly. In 2013, the payments of patients and insurance

companies totaled to $34 billion for direct medical cost for falls [8]. Over 800,000 patients a

year are hospitalized because of a fall injury, most often because of a broken hip or head

injury [9]. The costs of treatment of fall injuries go up with age. The condition of a fall

patient may deteriorate and can be critical as time passes after the fall. This can further

increase the cost of treatment. So, automatic fall detection with high accuracy is a crying

need for the societies that adopt independent living of elderly people.

A long-term, continuous monitoring system becomes a necessity for detecting fall of elderly

people and for the patients, particularly during their time spent at home. Traditionally, people

at risk of falls are provided with pendants containing a button that can be pressed for summon

help. But, in case a fall results in a faint, the patient will not be able to press the button and

the alarm will not be activated.

Different technologies have been adapted and integrated to support the monitoring of elderly

people at independent living or patient in a home environment. Small and light wearable

sensor systems have the potential to save lives. Mobile wearable sensor systems and wireless

sensor networks (WSNs) in particular, are worn on the body for the purpose of acquiring

physiological data. Over the years, there has been an increase in the use of such systems to

healthcare for long-term monitoring of patients in their homes. Micro electro-mechanical

systems (MEMS) technology for sensors is allowing smaller and lower-power sensors.

Wearable sensors have advantages that they are generally smaller and cheaper and able to

track the wearer at any location [10]. This facilitates independent living and safety as it

allows the person to live normally in their own home ensuring that a caregiver or medical

practitioner is alerted if a fall occurs. As no wearer-accessible activation button is needed, the

3

system can be concealed on the person's body more easily. Wearable fall detection system

may be used to alert appropriate personnel in the event of a fall. The need for wearable

sensors in the healthcare sector continues to increase such as long-term monitoring of patients

in their homes. However, the commercialization of this technology is relatively slow due to

the following reasons:

• lack of existing communication infrastructure within medical facilities and homes

• low reliability of the detection system, particularly with regard to issues, such as, the

accuracy of detection of events, radio interference and battery life.

1.2. Fall Detection System: Present State of the Problem and

Motivation for this Thesis

Recently, many studies have been made on fall detection system in terms of hardware

(sensors) and algorithms, and both. Different fall detection schemes are reported in the

literature that used different types of sensors, e.g. accelerometer, acoustic sensors,

gyroscopes, cardio tachometer, magnetometer and barometric pressure sensors [11]. Some

schemes used multiple sensors in single system for increased accuracy but they have the

disadvantages of being expensive [12]. Some researchers report the use of Doppler Radar

[13] which has high cost and complex method to implement. Some used video based fall

detection which has video limitation [14]. In terms of algorithm, most fall detection

algorithms are based on setting thresholds determined via observational analysis for various

fall types [15, 16]. However, such algorithms resulted in high rates of 'false positive' (FP) and

'false negative' (FN) when evaluated on unseen data sets [17, 18, 19]. Existing solutions do

not provide the detection accuracy required for the technology to gain the trust of medical

professionals. Some schemes used complex data processing algorithms for increased

4

accuracy. Hidden Markov model [20], neural network [21, 22] and fuzzy logic [23, 24],

which have high space and time complexity, are some examples. Some researchers used

image processing which needed more processing time [25, 26, 27].

1.3. Objectives

The objective of this work is to develop an automated and directive fall detection system with

increased accuracy using single accelerometer. To fulfill this objective, the studies have set

the following aims:

1. To implement a wireless fall detector using commercial 3D accelerometer module

SHIMMERTM

2. To collect and analyze fall data to extract important and sensitive statistical features

related to a fall

3. To analyze the accelerometer data for a detected fall to determine the direction of the

fall

4. To utilize machine learning algorithms (e.g. SVM, KNN) to configure the system

with the selected classifiers for fall detection and compare the results.

5. To compare the performance of the proposed system with existing works

1.4. Overview of the Thesis

This thesis aims to develop a fall detection system based on single sensor and machine

learning algorithm with a view to improving the detection accuracy at a reduced cost. For this

purpose, a wireless fall detector using a commercial 3D accelerator module has been

implemented; fall data of human subjects have been collected and analyzed to extract

important and sensitive statistical features related to the fall and its direction; machine

5

learning algorithms, SVM and KNN have been used to configure the system with the selected

classifiers; and, the performance of the resulting automated fall detection system are

compared with the existing works. The feature of determining the direction of the falls is also

included in the study, as it can help determine the locations of joint weakness or post-fall

fracture and help decrease reaction time [11].

1.5. Thesis Organization

The rest of this thesis is organized as follows:

In Chapter 2, a brief overview of fall detection systems and different aspects of fall events are

described. Surveys on existing works or literature review are also carried out in this chapter.

Chapter 3 describes the methodology adopted for the research work and data collection.

Chapter 4 discusses the algorithms and features used for fall detection along with the details

of the classification method. Chapter 5 presents the experimental results including their

discussions. Chapter 6 concludes the thesis with future vision.

6

Chapter 2
Background and Related Work

2.1. Definitions of falls

According to Kellogg International Working Group, falls can be defined as unintentional

coming to ground or a lower level as a result of a sustained blow, loss of consciousness or

health related problems. Moylan and Binder define falls as unintentional position changes

that result in patients coming to rest on the ground, floor or other lower surface [28]. A fall is

an event in which a body’s center of gravity quickly declines, according to Liu and Cheng

[29].

2.2. Falls in the elderly

The above definitions show a general agreement that falls are unintentional and result in a

faller coming to rest on the ground, and may involve causal agents. The following sections

further discuss the circumstances of falls.

2.2.1. Circumstances of falls

As age increases, degeneration of body muscles occurs. This degeneration may result in

weakness of bones and skeletal system thus being unable to adequately support the body.

Trips and slips are also events that can result in falls. Interventions such as clearing obstacles

from paths around the home and administering medical treatments to increase muscle

strength can reduce fall incidence. Continuous monitoring will allow fallers to be identified in

advance before serious falls occur. Incorrect shifting of body weight (which causes the center

of gravity of the body to move from the base of support during walking or standing)

7

accounted for around 40% of falls recorded, followed by tripping or stumbling. Slipping was

considered to cause the least number of falls.

 Overstall et al. considered tripping as the most common cause of falls, but argues that the

proportion of falls due to tripping decline with increasing age [30]. The ADL during which

falls occur most is walking.

2.3. Typical fall scenarios

The most important scenarios of falls are described [1] below in detail:

2.3.1. Fall from standing

1. It lasts for 1 to 2 seconds.

2. In the beginning, the person is standing. At the end, the head is stuck on the floor for a

 certain amount of time.

3. A person falls along one direction and the head and the center of mass move along a

 plane.

4. The height of the head varies from the height while standing to the height of the floor.

5. During the fall the head is in free-fall.

6. During the fall the head traces a virtual circle that is centered in the position of the feet

 before the fall and has a radius equal to the height of the person.

2.3.2. Fall from chair

1. It lasts for 1 to 3 seconds.

2. The height of the head varies from the height of the chair to the height of the floor.

3. During the fall the head is in free-fall.

2.3.3. Fall from bed

1. It lasts for 1 to 3 seconds.

8

2. In the beginning the person is lying.

3. The height of the body varies from the height of the bed to the height of the floor.

4. During the fall the head is in free-fall.

2.4. Fall risk factors

A person can be more or less prone to fall, depending on a number of risk factors and hence a

classification based on only age as a parameter is not enough. In fact, medical studies have

determined a set of so called risk factors: (i) Intrinsic (ii) Extrinsic

2.4.1. Intrinsic risk factors

History of falls: Associated with an increased risk in recurrent falls [31].

Age: Falls increase with age because of a reduced ability to respond rapidly and effectively

compared to younger adults. Moreover, studies of reaction time in old people observed a

decrease in stepping, step initiation, and execution timing and coordination time – which has

also been linked to lower extremity fracture risk – when breaking a fall by outstretching the

hand is also delayed [32].

Gender: For the younger elderly, the rate of falls is similar for both men and women;

however, among the most elderly people, women fall more often than men and are more

likely to suffer from fractures when they fall [33].

Medical conditions: Vascular diseases, chronic obstructive pulmonary disease, depression,

and arthritis are each associated with a 32% increased risk. The frequency of falling increases

with increasing deterioration due to chronic disease. Moreover, the risk increases with thyroid

dysfunction, which leads to an excessive secretion of thyroid hormones, and also with

diabetes and arthritis that leads to loss of peripheral sensation. The incidence of falls relevant

to cardiovascular causes is unknown in the general population, but vertigo is common in

9

people with falls. Depression and incontinence also occur frequently in populations with falls

[34].

Impaired mobility and gait: The reduction of strength and endurance after the age of 30

(10% loss per decade) as well as loss of muscle power (30% loss per decade) lead to a

decrease in physical function below the limit. As a result, daily living activities become

difficult and then impossible – this is the case in early aging in generally sedentary subjects.

When strength, endurance, power, and especially functionality are reduced considerably, it is

not impossible for a false trip or a slip to turn into fall. Muscle weakness is a significant risk

factor in falls, as well as difficulty in gait, imbalance, and the use of walking aids. Any

disability of lower limbs (lack of power, orthopedic disorders, or poor sensation) is associated

with increased risk. Having difficulty in getting up from a chair is also associated with

increased risk [35].

Drugs: The use of benzodiazepines in older people is associated with a 44% increase in risk

of hip fracture and night falls. There is a significantly increased risk of falling when using

drugs such as psychotropic, antiarrhythmic drugs, digoxin, diuretics, and sedatives. The

degree of prescription of medicines has been increased in chronic disease management.

According to almost all studies, the risk increases significantly if more than four medications

are taken, regardless of the type of drug [36].

Solitary lifestyle: It may indicate greater functional capability, but injuries and their

consequences could be even worse, especially if the person cannot get up from the floor. The

fact that someone lives alone seems to be a risk factor in falls, although part of this effect

appears to depend on the type of house in which they reside [34].

10

Race: Evidence from the United Kingdom and the United States suggests that Caucasian

subjects fall more often than African tribes of the Caribbean, Hispanics, or South Asians, but

there are no studies to report national differences in continental Europe [37].

Attenuated vision: Visual acuity, contrast sensitivity, field of vision, cataracts, glaucoma,

and glaucoma plus bifocals or multifocal lenses lead to risk of falls. Multifocal lenses reduce

the depth of perception and impair edge-contrast sensitivity when detecting obstacles in the

environment. The elderly can benefit from wearing non-multifocal glasses when using stairs

and in unfamiliar surroundings outside their home [34, 38].

Foot problems: Calluses on the big toe, long toe defects, ulcers, deformed nails, and general

pain when walking increase the difficulty of balance and the risk of falls. Correctly fitting

shoes are also important [34, 39].

Cognitive disorders: A lack of understanding is clearly associated with increased risk, even

at relatively modest levels. For example, a result of less than 26 or less than 24 on the Mini

Mental State Examination is related to increased risk. Poor memory has been proven to be an

independent risk factor for falls in people over 75 years, according to LASA (Longitudinal

Aging Study Amsterdam). Residents of institutions with dementia fall more than twice as

often as people with normal cognition, but there is no difference in the severity of injury

between the two groups [34].

Deconditioning/immobility: Those who fall tend to be less active and, through disuse, may

cause further irreversible atrophy of the muscle around an unstable joint. Nonactive persons

fall down more often than those who are moderately or very active, but fall down in a safe

environment [34].

Psychological condition/fear of falling: Up to 70% of people who have recently fallen down

and up to 40% of those who have not reported a recent fall confess fears of falling. Reduced

11

physical and functional activity is associated with stress and fear of falling. Up to 50% of

those who fear falling limit or exclude social or physical activities because of this fear. Strong

links were found between fear and poor posture, low-speed walking and muscle weakness,

and poor health self-esteem and reduced quality of life. Women with a history of stroke are at

greater risk of falling and experiencing fear of falling. Having four or more medications is

also implicated in a fall-related phobia. However, many older people do not appreciate

sufficiently the level of danger [31, 34].

Nutritional deficiencies: A low body mass index, which indicates poor nutrition, is

associated with increased risk. Vitamin D deficiency is quite common in elderly people living

in institutions and may lead to wrong gait patterns, muscle weakness, osteomalacia and

osteoporosis [34].

2.4.2. Extrinsic risk factors

The magnitude of the influence of environmental factors on the risk of falls in the elderly is

uncertain. Some studies have indicated that in the elderly living in the community, 30%–50%

of falls are due to environmental cause’s e.g.

o Slipping floors

o Stairs

o Need to reach high objects

o External Environment:

o Damaged roads

o Crowded places

o Dangerous steps

o Poor lighting

o uneven surfaces

12

and approximately 20% of falls are due to significant external factors (i.e., those that would

lead to a fall in any healthy elderly person). A frequent problem that older people encounter

is to slip, trip, or misstep, i.e., a loss of balance where righting mechanisms prevent a fall

[34].

2.5. Causes and Consequences of fall

Among elderly people that live at home, almost half of the falls take place near or inside the

house. Usually women fall in the kitchen whereas men fall in the garden [40].

The rate of falls increases significantly among elderly people living in nursing homes: at least

40% of the patients fall twice or more within 6 months [34, 41]. This rate is five times more

with respect to the rate of fall when people live at home. The most important causes of falls

are described in detail:

2.5.1. Physical causes

The factors that lead to most of the falls in people over 65 are to stumble on obstacles or steps

and to slip on a smooth surface. The fall is usually caused by loss of balance due to dizziness.

Approximately 14% of people do not know why they fall and a smaller number of people

state that the fall is due to the fragility of the lower limbs [42].

2.5.2. Activities

Most of the falls happen during the activities of daily living (ADL) that involve a small loss

of balance such as standing or walking. Fewer falls happen during daily activities that involve

a more significant movement such as sitting on a chair or climbing the stairs. Conversely,

activities usually defined “dangerous”, such as jogging or physical exercises are less likely to

increase the probability of a fall. There are more falls during the day than during the night.

[41]

13

Accidental falls are the main cause of admission in a hospital and the sixth cause of death for

people over 65. For people aged between 65 and 75 accidental falls are the second cause of

death and the first cause in those over 75 [1].

2.5.3. Physical damage

Scratches and bruises are the soft injures due to a fall. In the worst cases the injuries are

concentrated on the lower part of the body, mainly on the hip. On the upper part of the body

the head and the trunk injuries are the most frequent. About 66% of admissions to a hospital

are due to at least one fracture. The fracture of elbow and forearm are more frequent but hip

fracture is the most difficult to recover from. Such a fracture in fact requires a long recovery

period and involves the loss of independence and mobility. Sometimes, when a person falls

and is not able to stand up by himself, he lies down on the floor for long time. This leads to

additional health problems such as hypothermia, confusion, complications and in extreme

cases can cause death [42].

2.5.4. Psychological damage

A fall also involves hidden damages that affect the self-confidence of a person [42].

Common consequences are fear, loss of independence, limited capabilities, low self-esteem

and generally, a lower quality of life.

2.5.5. Economic damage

The direct costs associated with falls are due to the medical examinations, hospital

recoveries, rehabilitation treatments, tools of aid (such as wheelchairs etc.) and caregivers

service cost. Indirect costs concern the death of patients and their consequences. Recent

studies have determined that in the year 2000 alone fall-related expenses was above 19 billion

dollars and it is estimated to reach 54.9 billion in 2020. This shows that year by year, health

costs due to the falls are increasing dramatically [43].

14

2.6. Related Work

2.6.1. Camera based fall detection

Camera based detection systems make decisions on whether an event is a fall or not (Fig 2.1)

by extracting fall patterns from the images captured [44].

 Ozcan et al [45] created an autonomous system that is able to provide quick and accurate

real-time responses to critical events like a fall. The system is not only able to detect falls but

also to classify non-critical events such as sitting and lying down. Their solution is based on a

modified version of the histogram of oriented gradients (HOGs) algorithm. When a fall occur

edge orientations in a frame vary drastically and extremely fast, as a result of this subsequent

frames get blurred. One of the drawbacks of the system is its lack of auto exposure

adjustment in the camera. False alarms may be raised if the scenery changes.

 Crispim-Junior et al. [46] used a video camera in addition to an accelerometer device

(strapped to subject’s chest) for fall detection. They considered that, by combining the

subject’s acceleration with visual information, the detection sensitivity and precision could be

improved compared to using only visual data. In their proposed system, the vision component

Fig: 2.1: Camera based fall detection [87]

detected postures such as standing, sitting, lying and changes in postures. The multisensor

15

approach (vision and acceleration) resulted in a system with a sensitivity of 93.5% and

precision of 63.6%, while the approach based only on vision produced a sensitivity of 77.3%

and a precision of 57.7%.

A major advantage driving the use of camera based systems is that they are non-intrusive

because they do not have to be worn on the body. Nonetheless, they have disadvantages that

make them less attractive to users, including:

1. The addition of cameras around a home may be considered an invasion of privacy by

the occupants due to the fear that images captured on the cameras can be viewed by a

third party. Many falls occur in wash-rooms and patients will generally not accept

cameras to be installed in such a place.

2. Algorithms developed based on camera data are computationally demanding and

require multiple cameras to be installed in and around the house. High specification

microprocessors are necessary to deliver fall decisions in real-time. Also, in situations in

which there are multiple occupants in a room, it becomes difficult to know whom to

track. This increases the computation complexities.

Despite the limitations described, cameras are still in wide use as platforms for fall

detection.

2.6.2. Ambient sensor based fall detection

Ambient solutions use sensors installed in the surroundings (Fig 2.2) of users (for example,

pressure sensors, and acoustic sensors) [47].

 Litvak et al. [48] proposed a system based on floor vibration and acoustic sensing for fall

detection. Their system acquired sound and vibration data using a microphone and

accelerometer, and the algorithm used pattern recognition techniques to differentiate between

ADL, human’s falls, and an object being dropped /falling.

16

Fig 2.2: Ambient sensor based fall detection [88]

A human-like doll was used in fall simulation and objects such as a bag, plastic box and

metal box were used to simulate objects being dropped. The doll was used to simulate 48

forward falls, while the objects were dropped 78 times. An evaluation of the algorithm

showed a sensitivity and specificity of 95%. As pointed out by the authors, the fall detection

system is not sensitive to low impact falls and was only tested for distances between 2 meters

and 5 meters.

 Luo et al. [49] developed a fall detection system using 7 pyro-electric infrared (PIR)

sensors to detect the heat energy emitted by individuals within a room. Each PIR sensor was

sampled at 25 Hz and detected the variance of the thermal heat flux within each section of a

room. Then, a 2-layer Hidden Markov Model (HMM) classifier was used to model the time

varying PIR signal. PIR sensors were used in order to avoid infringing individual’s privacy as

can happen with cameras. Eighty falls were simulated, but only 87% were classified

correctly.

 Khawandi et al. [50] used multiple webcams to perform fall detection. Their algorithm

detects faces and measures the speed with which detected faces move toward the ground.

Based on a set threshold, it determines if a fall has occurred or not.

17

2.6.3. Fall detection by image processing

 Liu and Zuo [51] proposed an algorithm that compares the ratio of the width and height of

a person while standing and lying, the ratio of the area of a person’s figure to the area of the

room and the rate of variation of an image (Fig 2.3) during a fall.

Fig 2.3: Fall detection by images processing [51]

They concluded that by computing the three features on each image frame, their system will

prevent FPs, and thus increase accuracy. However, evaluation results were not presented.

 Olivieri et al. [52] extracted velocity information across video frames and trained a

machine learning algorithm to detect falls. Their system was able to detect 99% of falls, but

the number of FPs recorded was not reported.

2.6.4. Thresholds based fall detection

Most wearable fall detection algorithms are based on thresholds set to discriminate between

falls and ADL. However, majority of the thresholds are set based on observational analysis of

acceleration and angular velocity signals.

 Bashir et al [53] proposed a system based on a wireless body area network. It uses a tri-

axial accelerometer, and a tri-axial gyroscope sensor. Three stages are used to determine

human status namely, fall, ADL, and sleep. The algorithms used are threshold-based and very

simple. It employs the posture angle, angular velocity, and acceleration to determine if a fall

has occurred. The accuracy for ADLs was 100%, while the sensitivity was 81.6%.

18

 Jantaraprim et al. [54] computed vector magnitude (VM) for a 3D accelerometer mounted

on subjects’ trunk region. A threshold was set by observing the VM signal to discriminate

between falls and ADL. Similarly, Ivo et al. (2011) set thresholds manually for VM in their

fall detection algorithm.

 Ojetola et al. [17] showed that VM alone is sufficient to accurately detect falls. Sudden

movements, transitions from one posture to another and walking do generate high VM similar

to falls. Hence, algorithms based on thresholds set for VM alone will trigger false alarms.

 Li et al. [55] proposed an algorithm that used a 3D accelerometer and 3D gyroscope for

fall detection. Their algorithm use thresholds set for acceleration and angular velocity to

determine if transition to a lying position is intentional or not, and it is based on thresholds set

for VM and postures. An unintentional transition to a lying posture was considered a fall.

Basically, their algorithm only detects falls in which fallers end-up in a lying posture.

Conversely, activities which are not falls, but result in lying position will trigger False

Positives (FP).

 Wang et al. [56] proposed a fall detection system based on a 3D accelerometer placed

behind subjects’ ears. Their algorithm was based on simple rules and thresholds set by

observational analysis of acceleration data. VM of acceleration, magnitude of horizontal

acceleration, time from start to end of a fall and velocity were computed as part of their

algorithm. During falls, acceleration signals vary considerably from subject to subject and for

different fall types. Hence, thresholds set for features based on observation of acceleration

signal only will result in high level of FPs and FNs.

 Anania et al. [57] implemented a fall detection algorithm based on 3D acceleration data

sampled at 100 Hz. A Kalman filter was used to separate the signal component due to gravity

from acceleration data and then the trunk inclination angle was computed. Anania et al.

19

defined two thresholds; one for the subject’s tilt angle and the second for the rate of change

of tilt angle. A fall is detected if the subject’s tilt angle is greater than the first threshold and

when the change in the tilt angle over a short period is greater than the second threshold. The

main drawbacks with this algorithm are i) thresholds set manually do not generalize well for

unseen subjects, and ii) only 2 postures are considered as corresponding to falls, however

fallers may end up in other unrecognized postures such as crouching and kneeling.

2.6.5. Smartphones based fall detection

A growing number of wearable fall detection systems are now based on smartphones; this is

due in part to the inclusion of accelerometers in smartphones.

 Sposaro and Tyson [58] used an android-based smartphone as a platform for fall detection.

Their algorithm was based on threshold set for acceleration data. They noted that their

algorithm triggers a false alarm when the phone is dropped to the floor.

 Kaenampornpan et al. [59] in their study assumed that phones are placed in the left breast

pocket and thresholds were set for the minimum and maximum acceleration reading of a

subject’s body during falls and ADL. Before their algorithm is used, it is expected that

subjects will simulate falls first so that appropriate unique thresholds are for each subject.

Two major draw backs exist with this approach.

1) A fall detector should be trained with more than one fall instance from one subject.

2) The elderly, many of whom are frail, will not be able to simulate falls before using the

proposed solution.

Some of the main challenges with the use of smartphones as a platform for fall detection

are:

1) The need to understand how individuals use their phones so that algorithms can adapt

to differences between normal use of phones and falls,

20

2) The need to track orientation of a phone during normal use since fall algorithms often

consider subjects orientations, and

3) The need to differentiate between when a phone is dropped and when a fall actually

occurs.

From the literature reviewed above, it is evident that a major challenge in fall detection is

identifying appropriate thresholds that can discriminate between falls and ADL. Human gait

patterns are complex and vary considerably for different subject set. As a result, thresholds

set manually will not allow for algorithms that generalize well for different subjects and

different fall types to be developed.

2.6.6. Machine Learning Based fall detection

In the previous section, algorithms based on thresholds set by an observational analysis of fall

data were discussed and their limitations are identified. This section reviews the literature

with regard to machine learning algorithms for fall detection. It is to mention again here that

the work in this thesis proposes a machine learning approach for fall detection.

 Zhang et al. [60] proposed one-class support vector machine (SVM) for fall detection, Liu

and Cheng [61] also proposed SVM to discriminate between falls and ADL.

 Decision tree based algorithm was proposed by Zhao et al. [62]. They identified faller’s

locations by using wireless network infrastructure distributed within a building, with

notifications being sent to carers whenever falls were detected. A tree based machine learning

algorithm was implemented for fall detection and features such as mean, standard deviation,

slope, energy and correlation were used as input. Ten subjects (5 for training and 5 for

testing) were recruited for their experimentation and the phones were strapped to subject

waist. No false alarm was recorded and the system had a recall of 75%.

21

 Shi et al [63] developed a fall detection system based on an android-based smartphone. It

integrates an SVM. The proposed technique uses the acceleration data from the phone’s

accelerometer to detect a fall. The fall detection process is divided into five phases namely,

normal, unstable, free fall, adjustment, and motionless. An acceleration threshold is used to

trigger the five-phase feature extraction method. A 16-elements vector is obtained as a result

of the extraction method. This vector is fed into a SVM that is used to differentiate falls from

ADLs. The acquired results were the following: recall 90% and precision 95.7%.

 Liu and Cheng [61] proposed the use of an SVM for fall detection. Features were

developed using 3D acceleration data sampled at 200 Hz. The features extracted include the

VM, the difference between the maximum and minimum acceleration for each axis of

acceleration, the vertical acceleration and the tilt angle.

 Sengto et al [22] proposed a fall detection system algorithm based on a back propagation

neural network (BPNN). The system utilizes a tri-axial accelerometer mounted on the user’s

waist in order to collect his/her acceleration data behavior. Human activities are divided in

three groups: falling activities (forward, backward, right and left), slow motion activities

(walking, getting up from bed, flopping), and sudden motion activities (running, jumping).

An acceleration threshold is set to differentiate between slow motion activities and other

activities. The overall recall of the detection algorithm was 96.25% while the specificity was

99.5%.

 Humenberger et al [64] developed a bio-inspired stereo vision fall detection system. It

utilizes two optical detector chips, a field-programmable gate array (FPGA), a digital signal

processor (DSP) and a wireless communication module. The optical chips capture video

frames. The FPGA creates the input data for the DSP by calculating 3D representations of the

environment. The DSP is loaded with a neural network that is used for classification

purposes. Falls are divided into 4 states or phases pre-fall, critical, post-fall, and recovery

22

phase. To run the experiments the hardware was mounted on the top corners of a room in

order to monitor the subjects of interest. The trial results are 90% of fall detection.

 Takeda et al. [24] developed a foot age assessment system that estimates how likely a

person is to fall based on his/her balance ability and gait condition. The system uses mat type

distribution sensor to gather the SOI’s gait characteristics. Fuzzy logic the system is able to

make educated guesses. The fuzzy membership functions were obtained through a learning

process. The system was not reliable method

 Zhang and Sawchuk [65] proposed a fall detection framework that combines decisions

from a fall detection algorithm with context information using a Bayesian network. The

context information includes physical activity level, personal health record, blood pressure

level, heart rate and location (indoor or outdoor). However, gathering physiological data

such as blood pressure level and heart rate requires additional sensors to be worn by subjects

and thus affect the acceptability of such systems.

 Lan et al. [66] embedded a 3D accelerometer, 3D gyroscope and two pressure sensors in a

walking cane. The two pressure sensors were fixed to the handle and the tip of the cane and

measure the grip and the downward-push force, respectively. The accelerometer and

gyroscope measure the acceleration and angular velocity of the cane. A Decision Tree (DT)

and subsequent matching (a technique in data mining for finding exact or closely matching

segments of a much longer sequence) were used to discriminate between falls and ADL.

Data were sampled at 26 Hz. The main challenge of the system is in differentiating between

whether an individual has fallen or the cane was just dropped or left on the floor.

Furthermore, authors noted that the system gives FNs in cases where the cane hits an obstacle

midway during a fall before coming to rest.

23

 Chen et al [67] developed A human fall detection system using a computer vision

approach is introduced. The solution is capable of detecting fall-related events in real time

using skeleton features and human shape variations. The system is able to extract the human

posture and reduce the computational burden by using a 2D model instead of a complicated

3D one. The skeleton (a spanning tree) is acquired by running the well-known graph traversal

algorithm Depth-first search (DFS) on the center of the triangular meshes. A distance map is

used to calculate the distance between two skeletons. A fall is detected if the user’s motion

does not change within a certain period of time. The system is able to obtain a high detection

accuracy (90.9%) while maintaining a low false alarm rate.

 Gjoreski et al [68] proposed combines posture recognition with thresholds set by

observation analysis to detect falls. Their algorithm uses 3D acceleration data sampled at 6

Hz. The extracted features were VM, tilt angle, mean of accelerometer x-axis, Root Mean

Square (RMS) of VM, standard deviation of VM and change in VM. Postures (such as such

as lying or sitting on the floor) are recognized via a Random Forest machine learning

algorithm. A fall is detected by combining the recognized posture with a threshold set for the

VM. If a subject’s posture is lying or sitting and the VM goes above the threshold, then a fall

is detected.

2.7. Categorization of fall detectors

Wearable fall detectors are generally categorized into three generations, namely, first

generation, second generation and Third generation [69].

2.7.1. First generation

First generation systems rely only on the user interaction. Often known as a pendant around

the neck or wrist bands, the user must push a button to contact the call center or emergency

services. This type of fall detector do not possess any form of intelligence, they rely entirely

24

on the user pushing a button in order to summon help. In circumstances where the user is

unable to push the button (for instance, in case of unconsciousness), help will not be available

and such a case could result in aggravated consequences.

2.7.2. Second generation

Second-generation systems that are based on the first-generation systems have an embedded

level of intelligence. The second generation comprises fall detection devices and life-style

monitoring systems, and includes worn automatic fall detectors that are triggered without the

wearer having to press a button.

2.7.3. Third generation

Third-generation systems use data, often via ambient monitoring systems, to detect changes

(e.g. changes in activity levels) that may increase the risk of falling (or risk factors for other

negative events). The third-generation systems are more preemptive rather than reactive

approach.

2.8. Existing wearable fall detectors

There are many existing fall detection products on the market to assist elderly (Fig 2.4).

a. Wrist-Worn: An integrated health monitoring instrument with a tele-reporting device for

telemedicine and telecare (Fig 2.4: a).

b. MCT-241MD: It is a stylish wireless fall detector that functions both as a standard

manual emergency alert button and as a fall detector, which automatically triggers a call to

the monitoring center for immediate help. The fall detection is enabled by a built-in tilt sensor

that can sense when the detector, which is worn by the user, tilts at more than 600; for more

than a predefined period of time (usually about a minute). This activates an alert transmission

25

to the control panel, which notifies the monitoring station, enabling help to be dispatched

immediately (Fig 2.4: b).

c. Galaxy fall detector: Fall detection system that will immediately detect a fall and get the

help you need on its way. (Fig 2.4: c)

d. iHelp Smart Fall Detector: The device simply clips onto your clothing and is small and

un-obstructive to wear. The iHelp device can also remind a user to take any medicine they

might be taking at specific intervals. GPS coordinates can be queried by relatives and sent in

the event of a fall. These coordinates are also sent to a dedicated care support network. (Fig

2.4: d)

e. Oval Fall Alert: This is the world’s smallest and sensitive fall detector. Designed to rest

easily in the palm of your hand and sized so one can carry it anywhere. It is able to detect a

fall and automatically send a signal to the monitoring station (Fig 2.4: e).

Fig 2.4: Commercial fall detectors

f. The Vigi’ Fall: This solution generates an alert automatically in case of a fall followed

26

by the inability to get up by oneself. It is dedicated to elderly persons living at home, to

geriatric institutions (nursing homes, sheltered homes, etc.) and hospital premises (acute,

rehabilitation, long term care settings) (Fig 2.4: f).

g. Medical Fall Alert: These systems feature sensors (multiple accelerometers and

processors) that can detect between normal activity, and an actual fall. By continuously

measuring the speed of movements in all directions, the fall detector can compare what it

senses to what it considers an actual fall (Fig 2.4: g).

h. SafetyCare: It is an emergency alert system with monitoring service designed for use by

seniors or individuals at risk for falls (Fig 2.4: h)

Table 2.1: Wearable sensors for falls and activity monitoring

Sensor Measurement Products

Goniometer Angles (for example: angle of
joint movement)

Motion Lab Systems Electro
Goniometers

Gyroscope Angular velocity SHIMMER sensors, Xsens
MVN BIOMECH

Accelerometer Acceleration Vigi Fall, Brickhouse Fall
Detector

Actometer Motion Timex Model 108 Motion
Recorder

Pedometer Step counter (counts number of

steps a person takes)

Omron Pedometers

Insole pressure

plantar sensor

Pressure distribution across the sole
of the foot

Pedar System

2.9. Traditional Direction Measurement System

In traditional methods to find out direction, gyroscope (Fig 2.5) or more accelerometers (Fig

2.6) are used.

27

Fig 2.5: Gyroscope [89]

Using the key principles of angular momentum, the gyroscope helps indicate orientation.

Gyroscopes, or gyros, are devices that measure or maintain rotational motion.

Fig 2.6: 3 Accelerometers with cross product [90]

In determining the direction with the help of more than one accelerometer, the cross product

to find the angle between two sensors is used.

In our thesis, there is no gyroscopes sensor or more than one accelerometer. Based on, axis

amplitude we successfully find out the directions.

28

2.10. Issues with existing wearable fall detectors

There are currently numerous commercial fall detection systems available in the market.

Some of the brands are: Vivatec’s wrist care , Tynetec, FALLWATCH (Vigi’ Fall), activPAL

, Philips Lifeline AutoAlert pendant, Brickhouse fall detector , SafeGuard, Task Community

Care fall detectors and Tunstall fall detector (Fig 2.4). Despite numerous commercial and

research based solutions, automatic fall detection has several outstanding challenges. A major

reason for low acceptance of automatic fall detectors is the high level of FPs and FNs [70].

Both FPs and FNs result in lack of trust for the system. For instance, Ward et al. [71]

reported that health and social care staff are not convinced about the benefits of automatic fall

detectors.

29

Chapter 3
Methodology and Data Collection

3.1. System Design

The system consists of two main parts: Body sensor network (BSN) and the monitoring

application (Fig 3.1). The BSN consists of wearable sensor that collects accelerometer data.

Sensor has a wireless Bluetooth to communicate with the user’s server side.

Fig 3.1: Data flow diagram of the direction-sensitive fall detection system

The monitoring application is installed in the user’s server side (patient’s home or health

institute). The server should have the Internet connectivity to send alert to the healthcare

provider or mobile message to relative and send/retrieve data from the medical server.

30

If a patient’s fall occurs, then user server generate the alert by triggering alarm locally as well

as sending notification to healthcare provider via Internet and message to mobile phone.

Patient fall related information will be recorded in the medical server for further requirement.

The patient’s therapist has specific interface for viewing and manipulating the sensory data

and an administration panel is implemented to handle the exceptional data.

3.2. Use of accelerometer

Motion acceleration is widely used to classify the type of executed activity by analyzing the

change of accelerations with respect to time. Therefore, the accelerations are used to assess

postures and motions by calculating a vector of features, such as mean and standard deviation

of the acceleration signal. Attaching an accelerometer to different body segments helps

identify the type of activity and distinguish one activity from another by analyzing the data

and identifying appropriate vector of features.

3.3. Hardware platform

We used the SHIMMER [10] wearable wireless sensor, an acronym for Sensing Health with

Intelligence, Modularity, Mobility and Experimental Reusability. We picked the SHIMMER

(Figure 3.2) due to its low-power consumption, lightweight (27g) and small size (53 x 32 x

19 mm).

Fig 3.2: Shimmer Sensor [79]

31

The SHIMMER sensor holds a lithium-polymer battery, and a TI MSPP430 microprocessor

with 10 KB of RAM and a flash memory of 48 KB of capacity. It supports wireless

communications through its Bluetooth wireless module. The Bluetooth device (Rovering

Network RN-42) has a range exceeding 10 m, a default transmission rate of 115 kbaud, and is

a class 2 Bluetooth module. The battery life of the SHIMMER mainly depends on the type of

application installed on the tiny node platform and the type of selected mode of power

consumption. Figure 3.3 shows SHIMMER block diagram and its integrated devices.

Fig 3.3: Block diagram of the SHIMMER base board interconnections and integrated devices [10].

The sensor node consists of a 3D accelerometer. The tri-axial accelerometer (MMA7260Q)

from Free scale Semiconductor has a range up to ±6g. A Micro-Electro-Mechanical Systems

(MEMS) accelerometer behaves as a mass on a spring which is displaced when it experiences

acceleration. The displacement of the mass is measured to determine the acceleration of the

sensor. An accelerometer measures an acceleration of g = 9.81 m.s-2 (1g).

32

IEEE 802.15.4 compliant wireless communications SHIMMER uses a Chipcon CC2420

radio transceiver and gigaAnt 2.4 GHz Rufa™ antenna. The CC2420 [72] is designed for

low-power and low-current applications (current usage 17.4 mA for transmission and 18.8

mA for reception). The radio may be turned off by the MSP430 for low-power operation. The

CC2420 is controlled by an SPI connection over the USART1. The CC2420 has support for

applications such as packet handling, data transmissions, data encryption, received signal

strength, link quality and packet timing, the work load on the MSP430 controller is reduced.

Lowering the duty cycle of interaction between the radio or microSD card can be used to

extend battery life, however this is not feasible with applications that require high frequency

data capture. SHIMMER2 hardware provides features to simplify application programming

and enhance event driven applications which can be used to improve power management.

A push-button power controller is used to control the board power-on sequence. From an

“off” state, board reset is low and the board power regulator is disabled. When the reset

button is pushed, the regulator is enabled and the processor is brought out of reset after a

short delay. Short subsequent reset button pushes will generate a board reset. A long button

push (preset to 6 s but HW customizable) will shut down the board regulator. When the

battery voltage falls below a preset kill voltage, e.g., 2.5 V, a signal is also generated to

power-off the board.

The accelerometer, microSD card, 802.15.4 radio and Blue- tooth radio module can be

powered off by firmware when not in use. The digital serial number IC component can also

go to auto sleep mode when not in use [73].

3.4. Network Setup

The communication between the BSN (Body Sensor Networks) and the user server side is

carried out using a wireless Bluetooth connection (Fig 3.4). Bluetooth is a low-power

33

consumer and low-cost option, but has short transmission range.

 Fig 3.4: Connection and Data Streaming [79]

We used the 'Multi Shimmer Sync' software for capturing data. A screenshot of the user

interface of the software is shown in Fig. 3.5. The accelerometer sensor captures the change

Fig 3.5: Multi Shimmer sync

of accelerations over the x, y, and z-axis along with the timestamps and sends them back to

the monitoring 'Multi Shimmer Sync’ application. 'Multi Shimmer Sync' is ideal for users

34

looking to develop applications where simultaneous data capture from a number of units is

required and interpretation and analysis require the data to be synchronized with a high level

of accuracy (synchronization error of the order of milliseconds).

3.5. Sampling frequency

Sampling at low frequencies implies a low processor resource requirement and low power

requirements. We use sampling frequencies 50 Hz for fall classification. Other fall detection

also used data sampled at 10-200 Hz. Considering battery life and detection accuracy; we set

50 Hz of sampling frequency. High frequency gives high accuracy but low battery life.

3.6. Placement of Sensors

There are a number of body locations used for sensors in the literature, including: waist,

thigh, hip, trunk, chest, lower back, lower leg, wrist and behind the ear. Some investigation

has been carried out regarding the best location for sensors to provide optimum algorithm

performance. Doughty et al. [74] evaluated a Tunstall fall detector strapped to the chest,

waist, knee, wrist and arm. They concluded that the chest and waist are the most appropriate

locations of the body to place fall detectors.

 Similarly, Gjoreski et al. [75] investigated the placement of sensor nodes on the chest,

waist, thigh and ankle. Results showed that placing a fall detector on the chest provided the

best performance. The literature reviewed suggests that the chest is the best location to place

a sensor node for fall detection. Thus, the work in this thesis compares the performance of a

fall detection algorithm based on sensor node placed on the chest.

Acceleration data (in three dimensions) was gathered from Shimmer sensor nodes placed on

each subject’s chest. Data were sampled at 50 Hz and transmitted via Bluetooth to a PC for

further processing. An overview of the data gathering set-up is shown in Figure 3.6. Subjects

35

were asked to perform various falls and daily activities. The resulting data is collated,

analyzed and used to feed the algorithms presented in this thesis.

Fig 3.6: Data collection set-up

The falls acted in a laboratory environment are similar to those experienced by fallers under

real-life scenarios.

3.7. Participant experimental step

This section describes a set of steps engaged with by subjects during data acquisition.

3.7.1. Subjects recruited for data acquisition

Thirteen subjects were recruited for this work. Before the subjects were recruited, approval

was taken from the Director, IICT, BUET. Participation was completely voluntary.

36

3.7.2. Consent form

Consent form was signed by each participant. Verbal explanations were also provided to each

subject in order to ensure that participants understood what was required of them.

3.7.3. Age and height

The youngest subject was 25 years and oldest 55 years old. The mean for the age, height were

37.47 years and 5.37 feet respectively. The details of the thirteen subjects are shown in Table

3.1.

Table 3.1: Ages and heights of the subjects recruited for the experimental fall data collection

Subjects Age(years) Height (feet) Gender
S1 26 5′6″ M
S2 40 5′4″ M
S3 38 5′5″ M
S4 55 5′1″ M
S5 30 5′5″ M
S6 26 5′5″ M
S7 32 5′4″ M
S8 44 5′6″ M
S9 50 5′ M

S10 52 5′4″ M
S11 38 5′9″ M
S12 26 5′5″ M
S13 30 5′4″ M

3.7.4. Data acquisition

The SHIMMER sensor was worn by subjects during data acquisition. The sensor node

strapped to the chest (Fig 3.7) of subjects was used for data acquisition and transmission from

subjects to a remote PC.

37

Fig 3.7: Placement of SHIMMER sensor nodes

3.8. Falls and Activities of Daily Living

Subjects were directed to (Fig 3.8) fall down in forward, backward, left, right directions and

to do the normal activities ADL, like, idling, lying down ,sitting down, bending down, down,

going down head, knee, walking, jogging, standing up, up, jumping. It was assumed that in

real-life people will normally engage in activities.

38

01.Forward fall

02. Backward fall

03. Left side Fall

04. Right side fall

.
05. Go down head

06. Lying Down

07. Bend down

08. knee

09. Down

10. Up

39

11. Jogging

12 Walking

13. Sit down

14. Stand up

15. Idle

16. Jumping

Fig 3.8: Falls and ADL data gathering

3.9. Analysis of accelerometer signals

The acceleration signals received from the BSN are segmented into window frames where

each window holds 2.56 seconds of data for the three axes. Signal features are then extracted

from each window to characterize the signal being received. As we have discussed earlier, the

sample rate configured for data acquisition is 50 Hz. By default, low pass filter is configured

in SHIMMER sensor. The acceleration values recorded contain positive or negative

40

accelerations as well as null in case there was no change of acceleration recorded at the same

unit of time.

3.10. Feature extraction

Feature extraction is the process by which relevant characteristics or attributes are identified

from the collected data. Identifying optimum number and type of features is an integral part

of fall detection.

Finding the optimal feature subset is as important as selecting an appropriate algorithm.

Feature extraction is also known as dimensionality reduction. Raw data are usually filled with

meaningless information. By selecting only the features that best describe the input data and

discarding redundant features, the size of the dataset is reduced. Feature selection is a key

element in the data analysis process, and has a significant impact on subsequent stages of the

learning.

Falls are events (sudden motion that occurs for a short period of time) and often result in

acceleration signals with higher amplitude (Fig 3.9) than ADL. Primarily, we select the most

popular features, which are called a wrapper technique. The computation and extraction of

 Fig 3.9: Segment of acceleration signal

41

significant features from the motion signals start from calculating the Mean, Standard

deviation, Median, MAX, MIN, Range, Sum, PCA and FFT for each axis (gx, gy and gz) and

their resultant g = (gx2+gy2+gz2)½. Since each window represents 2.56 seconds of the data

and the sample rate used is equal to 50 Hz, then each window consists of 50 x 2.56 = 128

samples/rows of data. The collected data is analyzed offline. The feature components

extracted are based on the computed Vector Magnitude (VM).

The statistical features that we calculated are defined below:

Mean: The mean is the average of the signal- a calculated "central" value of a set of 128

 numbers.

Standard deviation: The standard deviation of a probability distribution is defined as the

 square root of the variance.

Median: The Median is the "middle" of a sorted list of numbers.

MAX: The maximum value of the Vm (Vmmax) over the next 2.56 second window of

data.

MIN: The minimum value of the Vm (Vmmin) over the next 2.56 second window

 of data.

Range: Difference between Max and Min

Sum: Summation of the 128 rows

PCA: Principal component analysis (PCA) is a statistical procedure that uses an orthogonal

 transformation to convert a set of observations of possibly correlated variables into

 a set of values of linearly uncorrelated variables called principal components.

FFT: A fast Fourier transform (FFT) algorithm computes the discrete Fourier transform

 (DFT) of a sequence, or its inverse. Fourier analysis converts a signal from its

42

 original domain (often time or space) to a representation in the frequency domain and

 vice versa.

3.11. The 3-axis graph representation of accelerations
The graph represents the accelerations of x, y, and z axis collected from a sensor attached to

the chest. The blue curve represents the x-axis, the red curve represents the y-axis, and the

green curve represents the z-axis. The horizontal axis of the graph represents the time unit

where each 50 unit represents one second. The vertical axis of the graph represents the

acceleration reading in g unit.

Figure 3.10 illustrates changes in acceleration that occur during a forward fall. The interval of

vertical lines indicates the changes in amplitudes of the accelerometer during this fall. The

accelerations during falling are completely different. gz clearly shows a negative large peak

when the forward fall happened. From the sensor configure the value of -gz should maximum

when forward fall occur. We get the same scenario that we are expected after sensor

configuration.

Fig 3.10: The 3-axis readings for a ‘forward fall down’ recorded using an accelerometer

43

Figure 3.11 illustrates changes in acceleration that occur during a backward fall. The

interval of vertical lines indicates the changes in amplitudes the accelerometer during this

fall. gz clearly shows a positive large peak when the forward fall happened. From the

sensor configure the value of gz should maximum when backward fall occur.

Fig 3.11: The 3-axis readings for a ‘backward fall down’ recorded using an accelerometer

Figure 3.12 illustrates changes in acceleration that occur during a left fall. The interval of

Fig 3.12: The 3-axis readings for a ‘left fall down’ recorded using an accelerometer.

44

vertical lines indicates the changes of amplitudes of the accelerometer during this fall. gy

clearly shows a negative large peak when the forward fall happened. From the sensor

configure the value of -gy should maximum when left fall occur.

Figure 3.13 illustrates changes in acceleration that occur during a right fall. The interval of

vertical lines indicates the changes in amplitudes of the accelerometer during this fall. gy

clearly shows a positive large peak when the forward fall happened. From the sensor

configure the value of -gy should maximum when left fall occur.

Fig 3.13: The 3-axis readings for a ‘right fall down’ recorded using an accelerometer.

Figure 3.14 illustrates changes in acceleration that occur during activities of daily living

(Idle)

45

Fig 3.14: The 3-axis readings for an ‘idle’ activity recorded using an accelerometer.

Figure 3.15 illustrates changes in acceleration that occur when activities of daily living

(Lying Down). The interval of vertical lines indicates that amplitude changes of

accelerometer during Lying Down.

Fig 3.15: The 3-axis readings for a ‘lying down’ activity recorded using an accelerometer.

46

Figure 3.16 illustrates changes in acceleration that occur when activities of daily living (Sit

down). The interval of vertical lines indicates that amplitude changes of accelerometer during

sit down.

Fig 3.16: The 3-axis readings for a ‘sit down’ activity recorded using an accelerometer.

Figure 3.17 illustrates changes in acceleration that occur when activities of daily living (Bend

Fig 3.17: The 3-axis readings for a ‘bend down’ activity recorded using an accelerometer.

47

down). The interval of vertical lines indicates that amplitude changes of accelerometer during

bend down.

Figure 3.18 illustrates changes in acceleration that occur when activities of daily living (Full

Down). The interval of vertical lines indicates that amplitude changes of accelerometer

during full down.

Fig 3.18: The 3-axis readings for a ‘full down’ activity recorded using an accelerometer.

Figure 3.19 illustrates changes in acceleration that occur when activities of daily living (Go

down head). The interval of vertical lines indicates that amplitude changes of accelerometer

during Go down head.

48

Fig 3.19: The 3-axis readings for a ‘go head down’ activity recorded using an accelerometer.

Figure 3.20 illustrates changes in acceleration that occur when activities of daily living

(knee). The interval of vertical lines indicates that amplitude changes of accelerometer during

knee.

Fig 3.20: The 3-axis readings for a ‘knee’ activity recorded using an accelerometer.

49

Figure 3.21 illustrates changes in acceleration that occur when activities of daily living

(Walking).

Fig 3.21: The 3-axis readings for a ‘walking’ activity recorded using an accelerometer

Figure 3.22 illustrates changes in acceleration that occur when activities of daily living

(Jogging).

Fig 3.22: The 3-axis readings for a ‘jogging’ activity recorded using an accelerometer

50

Figure 3.23 illustrates changes in acceleration that occur when activities of daily living (Stand

up).The interval of vertical lines indicates that amplitude changes of accelerometer during up.

Fig 3.23: The 3-axis readings for a ‘stand up’ activity recorded using an accelerometer

Figure 3.24 illustrates changes in acceleration that occur when activities of daily living (Up).

Fig 3.24: The 3-axis readings for an ‘up’ activity recorded using an accelerometer.

51

Figure 3.25 illustrates changes in acceleration that occur when activities of daily living

(Jumping). The interval of vertical lines indicates that amplitude changes of accelerometer

during Jump.

Fig 3.25: The 3-axis readings for a ‘jumping’ activity recorded using an accelerometer.

3.12. Frequency Domains

The amplitude spectrum of g obtained by FFT analysis is shown in Fig. 3.26 to 3.39.

52

Fig 3.26: FFT of acceleration signal
(Forward fall)

Fig 3.27: FFT of acceleration signal
(Backward fall)

Fig 3.28: FFT of acceleration signal
(Left side Fall)

Fig 3.29: FFT of acceleration signal
(Right side fall)

53

Fig 3.30: FFT of acceleration signal

(Lying Down)

Fig 3.31: FFT of acceleration signal

(Sit down)

Fig 3.32: FFT of acceleration signal
(Bend down)

Fig 3.33: FFT of acceleration signal
(Down)

Fig 3.34: FFT of acceleration signal
(Go down head)

Fig 3.35: FFT of acceleration signal

(knee)

54

Fig 3.36: FFT of acceleration signal
(Walk)

Fig 3.37: FFT of acceleration signal
(Jogging)

Fig 3.38: FFT of acceleration signal

(Up)

Fig 3.39: FFT of acceleration signal

(Jumping)

From the FFT analysis, we have not found any significant peck to distinguish from fall and

ADL.

3.13. Calculation of Statistical Features

Four types of falls and twelve types of activities were recorded in dat file. We calculated

every single record using Mean, Standard deviation, Median, MAX, MIN, Range, Sum, PCA

and FFT function for each axis (gx, gy and gz) and their resultant g = (gx2+gy2+gz2)½. Also

we recorded the upper and lower value of each function for each record. Recorded result is

shown in Table 3.2, Table 3.3, Table 3.4 and Table 3.5.

55

 Table 3.2: Calculated features (g)

Features Selection Table

g

 Mean Median Std dev MAX MIN Range sum Count FFT
 Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower

01 Forward fall 11.377 10.06 10.33 9.149 6.35484 4.458 34.33 21.249 4.319 0.287 32.75 19.98 1410 598.4 131 56 1400 600

02 Backward fall 11.867 10.28 10.64 8.698 6.41074 3.829 34.62 25.2929 4.83 0.884 32.51 21.28 1301 583.4 123 51 1200 570

03 Left side Fall 11.271 10 10.26 9.131 4.75733 3.244 29.04 21.0603 5.508 2.277 23.88 16.19 1114 676.3 111 60 1100 670

04 Right side fall 12.296 10.21 11.13 9.17 5.24942 4.319 26.82 23.8978 5.86 3.371 23.24 18.21 757.1 479.5 73 39 750 380

05 Idle 9.64 9.568 9.641 9.544 0.20961 0.128 10.15 9.84566 9.34 9.021 1.134 0.587 771.2 765.5 80 80 770 760

06 Lying Down 11.062 10.2 10.89 10.18 2.33795 0.899 19.23 12.4952 8.384 4.427 13.42 4.565 1294 497.8 122 45 1300 500

07 Sit down 10.169 9.368 9.689 9.171 1.15 0.431 12.95 11.0221 9.255 8.009 3.961 2.323 677.1 374.7 72 40 680 380

08 Bend down 9.7635 9.591 9.722 9.283 0.87691 0.569 11.72 10.8548 8.783 8.285 3.44 2.302 712.7 594.6 73 62 700 590

09 Down 9.9157 9.61 9.735 9.324 2.17455 1.617 16.7 15.0294 7.095 4.363 10.67 8.279 1230 682.3 124 71 1200 590

10 Go down head 9.7534 9.494 9.781 9.4 0.56952 0.389 11.45 10.7487 8.466 8.216 2.986 2.353 1631 579.2 171 61 1600 580

11 knee 10.028 9.817 9.625 9.306 2.3501 1.644 14.97 13.6786 7.108 5.763 9.212 6.571 847.5 621.7 86 62 830 600

12 Walk 10.074 9.584 9.275 9.006 2.68716 2.17 18.43 15.8321 6.384 5.165 12.5 9.673 720.3 562.8 74 57 700 580

13 Jogging 11.643 10.47 11.38 9.46 6.75297 5.83 25.45 22.2236 1.964 1.055 24.3 20.61 477.3 418.9 42 40 480 400

14 Stand up 10.036 9.372 9.867 9.195 1.17522 0.811 12.72 11.7804 8.617 7.652 5.039 3.164 581 500.3 62 50 590 500

15 Up 9.7677 9.397 9.69 9.058 2.22085 1.728 15.82 14.9994 7.62 6.584 8.698 7.57 1065 573.2 109 61 1030 580

16 Jumping 10.155 9.515 8.456 7.275 8.0393 6.887 25.5 22.7507 1.276 0.272 25.23 21.78 838.8 511.7 84 53 830 500

56

 Table 3.3: Calculated features (gx)

gx

 Mean Median
Standard
deviation MAX MIN Range sum Count

 Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower
01 Forward fall -2.216 -5.374 -0.89 -5.186 6.38353 4.084 15.19 4.11 -11.1 -22.16 37.06 19.06 -124 -474.2 131 56

02 Backward fall 0.2459 -5.934 3.188 -6.041 8.09517 5.607 19.87 6.399 -21.9 -22 41.76 28.33 18.44 -456.5 123 51

03 Left side Fall -1.075 -6.111 0.817 -7.648 6.18867 4.313 11.61 0.801 -13 -22.03 28.38 19.87 -64.5 -551.1 111 60

04 Right side fall -1.171 -6.539 -2.78 -6.499 6.44517 3.815 9.912 -0.241 -11.8 -15.48 22.83 15.18 -45.7 -316.7 73 30

05 Idle -9.068 -9.542 -9.04 -9.536 0.2462 0.128 -8.43 -9.075 -9.35 -10.02 1.216 0.641 -725 -763.3 80 80

06 Lying Down 11.062 -6.544 10.89 -7.467 4.29028 0.899 19.23 1.738 8.384 -16.49 18.23 4.565 1294 -798.4 122 45

07 Sit down -8.829 -9.724 -8.76 -9.466 0.71439 0.271 -7.78 -8.97 -9.63 -11.47 2.861 1.288 -361 -635.7 72 40

08 Bend down -7.758 -8.169 -8.5 -8.736 1.70003 0.999 -4.04 -5.29 -9.17 -9.844 5.42 3.881 -500 -587.7 73 62

09 Down -8.826 -9.244 -8.67 -9.071 1.92184 1.211 -4.22 -6.985 -13.3 -14.81 9.288 6.413 -627 -1146 124 71

10 Go down head -5.213 -8.207 -6.77 -8.911 4.23593 1.73 1.743 -2.941 -9.5 -10.08 11.62 7.12 -412 -1403 171 61

11 knee -9.31 -9.657 -8.96 -9.319 2.40455 1.672 -5.32 -6.489 -13.5 -14.36 8.645 7.122 -589 -823.4 86 62

12 Walk -9.076 -9.601 -8.52 -8.794 2.49421 1.954 -5.06 -6.161 -14.7 -17.76 12.09 8.567 -539 -688.9 74 57

13 Jogging -9.066 -9.592 -8.82 -10.85 8.52171 6.553 7.102 3.568 -21.9 -22.05 27.87 25.62 -368 -402.9 42 40

14 Stand up -8.779 -9.603 -8.57 -9.378 1.06161 0.575 -7.53 -8.387 -10.7 -12.41 4.487 2.555 -480 -545.4 62 50

15 Up -8.954 -9.142 -8.73 -9.086 1.90582 1.434 -6.41 -7.454 -13.4 -14.22 7.471 6.319 -546 -987.7 109 61

16 Jumping -8.315 -8.791 -6.79 -7.984 8.97932 7.67 8.035 3.378 -22 -22.01 30 25.34 -457 -733.7 84 53

57

 Table 3.4: Calculated features (gy)

gy

 Mean Median
Standard
deviation MAX MIN Range sum Count

 Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower
01 Forward fall -2.055 -5.42 -0.54 -6.919 5.56881 4.049 16.9 2.039 -12.9 -20.43 34.42 16.09 -123 -510.2 131 56

02 Backward fall 6.7083 -4.239 5.627 -4.373 7.22797 2.573 22.33 1.583 -1.01 -19.59 32.68 13.93 462.9 -360.3 123 51

03 Left side Fall -4.326 -7.999 -1.78 -8.621 7.27736 4.925 8.816 2.161 -16.8 -20.34 29.16 18.99 -322 -497.9 111 60

04 Right side fall 8.4636 3.745 8.795 0.752 8.92874 6.792 22.17 21.89 -4.72 -8.542 30.43 26.82 330.1 170.7 73 30

05 Idle -0.394 -1.129 -0.36 -1.048 0.38572 0.143 -0.07 -0.699 -0.95 -2.611 2.202 0.622 -31.6 -90.33 80 80

06 Lying Down 1.105 -2.948 0.972 -3.232 3.35498 1.211 7.056 3.066 -1.53 -10.71 17.61 5.739 108.3 -263.5 122 45

07 Sit down -0.473 -1.075 -0.43 -1.116 0.4381 0.233 0.221 -0.487 -1.32 -1.67 1.726 1.122 -24.1 -77.37 72 40

08 Bend down -0.462 -0.737 -0.51 -0.769 0.36903 0.217 0.37 -0.079 -1.04 -1.217 1.532 1.089 -33.3 -53.8 73 62

09 Down -1.141 -1.625 -1.13 -1.643 0.80086 0.397 0.7 -0.581 -2.13 -3.159 3.859 1.763 -87.8 -201.5 124 71

10 Go down head 0.4887 0.23 0.484 0.236 0.37937 0.322 1.638 1.002 -0.18 -1.28 2.437 1.444 47.37 20.47 171 61

11 knee -0.345 -1.189 -0.32 -1.256 2.17934 0.598 4.63 1.078 -2.01 -7.293 11.92 3.092 -26.9 -78.38 86 62

12 Walk -0.092 -0.421 -0.11 -0.535 1.41632 1.081 4.846 1.807 -2.3 -3.59 7.559 4.498 -5.72 -26.95 74 57

13 Jogging 0.1844 -0.645 0.275 -0.742 2.88615 2.112 6.537 4.603 -4.38 -9.035 13.47 9.287 7.561 -27.07 42 40

14 Stand up -0.936 -1.198 -0.96 -1.275 0.4783 0.22 0.537 -0.672 -1.51 -1.82 2.357 0.837 -53.7 -73.11 62 50

15 Up -0.922 -1.327 -0.87 -1.372 0.68229 0.372 0.613 -0.515 -2.4 -2.724 3.337 1.948 -80.9 -100.4 109 61

16 Jumping 0.188 -0.645 0.193 -0.696 1.25948 0.72 4.49 1.469 -1.47 -5.595 9.167 3.269 12.03 -41.91 84 53

58

 Table 3.5: Calculated features (gz)

gz

 Mean Median
Standard
deviation MAX MIN Range sum Count

 Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower
01 Forward fall -2.804 -6.223 -0.61 -7.146 7.17958 4.886 16.08 1.284 -16.3 -17.07 32.45 18.08 -227 -667.5 131 56

02 Backward fall 7.4385 1.978 9.171 1.154 6.41005 2.895 25.42 9.68 -0.61 -12.28 37.07 13.7 763.1 134.5 123 51

03 Left side Fall 2.5262 -1.43 3.103 -0.01 4.50593 2.578 11.66 3.431 -5.31 -16.24 20.61 14.74 209.7 -94.4 111 60

04 Right side fall 1.8959 -2.39 1.108 -2.215 3.58025 2.725 11.08 3.065 -5.61 -9.38 18.35 10.82 119.4 -110 73 30

05 Idle 2.9713 1.269 2.964 1.278 0.44683 0.144 3.708 1.923 2.683 0.644 2.057 0.758 237.7 101.5 80 80

06 Lying Down -4.983 -10.11 -3.57 -10.15 4.72263 0.929 5.009 -7.529 -11.8 -16.46 17.44 4.938 -418 -1000 122 45

07 Sit down 0.1899 -2.051 0.793 -1.792 3.06568 2.04 3.916 2.022 -4.33 -6.534 9.239 6.708 13.68 -98.46 72 40

08 Bend down -2.504 -3.962 -1.93 -4.392 4.4929 3.758 3.713 2.017 -9.48 -10.44 14.15 12.31 -155 -285.2 73 62

09 Down -2.202 -3.218 -2.88 -3.869 3.0274 1.694 2.824 1.998 -6.41 -8.293 11.12 8.659 -156 -389.3 124 71

10 Go down head 0.7346 -5.554 3.233 -6.99 4.89896 4.162 4.604 1.617 -10.6 -11.21 15.17 12.82 125.6 -438.7 171 61

11 knee -0.092 -1.262 0.426 -1.615 2.73197 1.653 5.188 3.353 -3.19 -5.344 10.31 6.541 -7.92 -81.77 86 62

12 Walk 2.7867 2.291 2.942 2.293 1.69297 1.252 7.874 5.676 -0.19 -1.054 8.717 5.863 178.3 135 74 57

13 Jogging 1.5676 1.038 1.649 0.788 3.79407 2.844 10.93 6.325 -3.19 -8.445 18.27 12.12 62.7 42.54 42 40

14 Stand up 1.2922 0.093 2.362 0.659 3.20862 2.549 4.853 3.155 -4.67 -6.327 10.65 7.828 74.95 5.697 62 50

15 Up -0.621 -2.735 -0.54 -3.417 3.00662 2.391 3.559 3.236 -6.04 -7.691 11.13 9.276 -38.5 -298.1 109 61

16 Jumping 2.1339 0.89 1.975 0.451 3.1317 2.38 13.2 8.887 -2.6 -6.643 17.69 12.1 148.9 74.73 84 53

59

3.14. Data Analysis / Feature selection

Feature selection is the process of selecting a subset of relevant features for use in model

construction. It eliminates the redundant and meaningless values without losing significant

information. Irrelevant input features induce greater computational cost. Figure 3.39 and

Figure 3.40, show that the Mean and Standard deviation features are the top 2 most

important features in the dataset and median, max, min, range, sum, count features are the

less important. Among the falls, the least value of mean is 10.0047560. If we choose, mean

10.0047560 is threshold than idle, bend down, down, go down head and up can be discarded

(Figure 3.40). Similarly if we choose, Standard deviation 3.244006244 is threshold than

lying down , sit down, knee, walking , stand up can discard (Figure 3.41).

Fig 3.40: Significant feature- fall Mean

60

Fig 3.41: Significant feature- Standard Deviation

3.14.1. Accelerometer Axis configuration

The axes of the accelerometer were configured as shown below (with reference to the Fig

3.42)

Forward = -Z Max

Backward = +Z Max

Left = -Y Max

Right = +Y Max

Up = +X Max

Down = -X Max

61

Fig 3.42: X-Y-Z coordinate system [79]

3.14.2. To Detect Direction

The mainboard of the Shimmer contained within the Shimmer casing. The mechanical design

of the mainboard is such that the direction of the X, Y and Z axis of the accelerometer are

forward direction - Z, backward direction + Z, left direction - Y , right direction + Y, up

direction + X, down direction - X. Figure 3.43 illustrates the hardware co-ordinate system for

the sensor on the Shimmer2r with mainboard. The accelerometer has a right handed

coordinate system.

62

 Fig 3.43: Axis value and direction [91]

Setting up the configuration, we should get direction

Forward Fall = - Z should be max value

Backward Fall = + Z should be max value

Left Fall = - Y should be max value

Right Fall = + Y should be max value

Up = + X should be max value but no effect on Fall Direction

Down = - X should be max value but no effect on Fall Direction

3.14.3. Direction analysis

From our data analysis, we find out some important characteristics of the feature that can be

contributed to the fall direction and this outcome matches with axis value concept (Table

3.6).

63

 Table 3.6: Direction findings

Axis Max value Direction Conclusion
+Z (max) Backward Fall Confirm
-Z (max) Forward Fall Confirm but Rare, -Y problem
+Y (max) Right Fall Confirm
-Y (max) Left or Forward it should be Left Fall

3.14.4. Decision

The important thing is to decide on which statistical features are significant for a

classification of falls. We find the following significant parameters to detect falls with their

directions based on fall characteristics: “Mean, Standard Deviation and Principal component

analysis (PCA)”. The mean is calculated for x, y, and the z component of the acceleration

signal of the 128 (2.56s) samples according to Eq. 3.1:

ഥ ݔ =
1
݊
ݔ −−− −− −− − − 3.1

ୀଵ

The standard deviation is calculated for each axis according to Eq. 3.2:

ߪ = ඩ
1
݊
(ݔ − ଶ(ݔ̅

ୀଵ

−− −− −−− 3.2

Principal component analysis (PCA) is calculated for each axis according to Eq. 3.3:

ܵ = (ݔ − ݔ)(ݔ̅ − ்(̅ݔ −− −− − 3.3

ୀଵ

ഥ ݔ =
1
݊
ݔ −−− − − −− −− 3.4

ୀଵ

64

3.15. Classification

We need to develop an algorithm to be able to classify directive fall by recognizing the signal

patterns and matching a vector of significant statistical features with pre-learned ones.

Thereafter, the resulting computation is fed to the classifier in order to detect the directive

fall. We have used “classificationLearner” [MATLAB R2016a] tool to train and to test. Two

learning classifiers namely support vector machines (SVM) and k-Nearest Neighbors (KNN)

have been used to classify directive fall.

3.16. Training and Testing data

Machine learning based algorithms require an optimum number of subjects to simulate falls

and ADL in order to provide a good performance [76]. On the other hand, training with more

subjects than needed do not necessarily lead to improved performance. Sometimes it can

affect the performance negatively [76]. It is necessary that the optimum number of subjects

required for training is identified during algorithm implementation. In this thesis work,

individual learning classifier was used to learn to distinguish among falls and ADLs. Whole

data are divided in two parts randomly with 50% overlap .One for training (66%) and another

for testing (34%). Summary of the methodology is provided in Table 3.7.

 Table 3.7: Accelerometer, features and algorithm

Sensor Accelerometer

Segmentation Sample frequency 50 Hz

Window Size 2.56 seconds

Window Overlap 50 %

Features Mean, standard deviation, Principal component
analysis (PCA)

Classification SVM and KNN

65

Chapter 4
Algorithms and Feature Implementation

4.1. Introduction

There are two main approaches to detect falls using acceleration signals: thresholding

techniques and machine learning methods. Applications based on the first approach are

simple to implement and their computational work is minimal. They are able to detect when a

fall occurs. However, the rate of false positives is a significant issue due to the complex

nature of human movement. The machine learning approach is more sophisticated and leads

to better detection rates. Machine learning is difficult from implementation point of view (for

example: requirement of high mathematical skills, use of more computation resources etc.)

although they are currently the prevailing trend, since thresholding methods are proved to be

ineffective. In addition to the complexities mentioned above, no single implementation has

been widely accepted and different paper presents different approach among the variety of

machine learning algorithms. This chapter presents the following two fall detection

algorithms in detail:

1. Support vector machines (SVM)

2. K-Nearest Neighbors (KNN)

SVM and KNN both are supervised algorithms. We use supervised algorithms because

supervised algorithms are much more powerful than unsupervised algorithm.

4.2. Support vector machines (SVM)

SVMs are a relatively new type of supervised machine learning algorithms. In a two-class

classification problem, the main goal is to create a model that places every new example in

the correct class. SVMs algorithms try to solve this problem by taking the training examples

66

into a higher dimension where they are linearly separable and can be assigned to a class with

little uncertainty. Binary class datasets that are linearly separable are easy to classify because

the decision boundary of the two classes is just a straight line (Fig 4.1) or plane (Fig 4.2) that

divides the feature space into two regions [77].

 Fig 4.1: A linearly classifiable problem

In SVMs, the input space is transformed into a higher dimensional space using a non-linear

mapping (Fig 4.2).

 Fig 4.2: A non-linearly classifiable problem [93]

The idea is to take the instances from the original feature space where they are not linearly

separable to a new feature space where they are. On this new space, a hyperplane (a straight

67

line in 2 dimensions) is created, and it works as a decision boundary that separates the data;

this boundary is also known as the maximum margin hyperplane.

The training points that are closest to the decision boundary are called support vectors. The

support vectors uniquely define the maximum-margin hyperplane for the learning problem. In

this manner, support vector machines search for a maximum margin hyperplane to separate

the data with the examples on the border called support vectors (Fig: 4.3).

Fig 4.3: Support vectors with margin [94]

Every new entry will be taken to this new space where it will be classified depending on the

region. Figure (Fig 4.3) shows an example of a decision boundary.

 ALGORITHM 1: SVM training pseudocode.
 Input : Training data
 Output : Maximum margin hyperplane, Hmax.
 calculate support vectors a(i)
 calculate maximum-margin hyperplane, Hmax

 return Hmax

68

The math involved in SVMs is extremely complex and therefore difficult to implement. The

steps in order to realize a SVM training algorithm are described in Algorithm 1.

Calculating the maximal margin hyperplane can be achieved by solving the following

equation, Eq. 4.1.

ܺ = ܾ + ∑α ܿܽ(݅).ܽ --- (4.1)

 where
 b = Numeric parameter (i)
 α = Numeric parameter
 ܽ(݅) = Support Vector
 ܽ = Test vector

Finding b, α and the support vectors ܽ(݅) is a type of optimization problem known as

constrained quadratic optimization.

4.2.1. Multiclass SVM

In this work, five classes are to be detected, which is why a multi-class classifier is needed.

Multi-class SVMs handle this problem by combining several binary SVMs, using either one-

versus-one or one-versus-all as training strategy. In this work, one-versus-one strategy is

utilized, where for training purposes one class is considered positive and one other class

negative. To get a classification result, a voting strategy is used, where for all pairs of classes

the current feature vector is assigned to one of the two classes and finally, the class that

receives most votes is considered the correct class.

An illustration of one-versus-one multi-class SVMs is displayed in the following figure (Fig

4.4). In the above figure for each pair of classes, a separating hyperplane is learned. To assign

a new sample to a class, it is classified by all pairs of classes, the votes/wins are counted and

the sample is assigned to the class with most votes/wins. The one-versus-one classification in

this example happens as follows: the first pair of classes is (A, B), the new sample lies on the

69

’B-side’ of the separating hyperplane and therefore B gets one vote. The second pair of

classes is (A, C) and the new sample is classified as A. The last pair is (B, C) classifying the

sample as B. Summing up, A has one vote, B has two votes, C has zero votes; therefore, the

new sample is classified as B.

 Fig 4.4: Example of a multi-class SVM [92]

4.2.2. Implementation

The implement of the fall detection system comprises of a number of stages as explained here

briefly. A 3D accelerometer is attached to chest of human subjects (An overview of the

system implement is shown in Figure 4:5). We use the SHIMMER accelerometer module for

this study. A fixed orientation of this module is maintained to keep the directions of its three

axes the same with respect to bodies for all the subjects. The signals from the accelerometer

are streamed wirelessly to a PC. The signals are segmented into window frames and the

frames are analyzed to extract statistical features (Mean, Std_dev, and PCA) to characterize

the signals related to falls

70

 Initialization

 N
 Network
 Setup?

 Y

 Turn on sensor

 Sensor Input

N New Sample? Y

 Compute acceleration
 (Mean, Std_dev , PCA)

 SVM classifier

N Y

 Check candidate fall

 Alarm

Fig 4.5: Flow chart of our SVM method

71

The segments are resized and the analysis is repeated to cover the probability that an activity

may be divided into one or more windows, overlapping between the previous and next

windows. The resulting statistical features are fed to the SVM classifiers for fall detection.

The classifier SVM algorithm are set to classify directive fall by recognizing the signal

pattern and matching a vector of features with pre-learned ones. SVM algorithm is

implemented using “classificationLearner” of MATLAB R2016a toolkit. The algorithm takes

in features as input attributes and computes information gain for each attribute in order to

determine which attribute leads to the shortest route for a fall or no-fall decision. Sampling

frequency, training size and sensor location have impact on performance. We determine the

efficacy of SVM classifiers using this method and compare the results with KNN classifier.

4.2.3. Results

SVM learning classifier was used to learn to distinguish among falls and ADL. Whole data

Fig 4.6: Learning Classifier SVM

are divided into two parts randomly, one for training (66%) and another for testing (34%). K-

fold cross-validation is used to train and test. Figure 4.6 shows the classification of four types

72

of fall and ADL. Twelve types of activities are considered as one class called ADL. A total of

five classes are classified (Four type falls and ADL). Classifier was successful in scoring 97.2

for the learning rate. In testing, total 110 fall data and 366 ADL are taken. Table 4.1 shows

the detection result of SVM classifier.

Table 4.1.: Detection result of SVM classifier

Algorithm Learning
Rate (%)

Fall detected.
(/110)

Fail to Fall
detected. (/110)

ADL
detected.

(/366)

ADL show in
fall detected.

(/366)

SVM 97.2 104 6 360 6

4.2.4. Data Analysis Interface

We develop a GUI to show the detection result of fall detection for SVM algorithm. Figure

4.7 is the graphical user interface (GUI) of fall detection. 3D accelerometer testing data is

Fig 4.7: Using trained model SVM to predict activity

recorded in dat file. MATLAB is capturing the signals and calculating the value that are

73

previously defined .After calculating the functional value, features vector is fed to KNN

classifier. SVM is applying its classification logic to find out the class of imputed vector.

SVM shows the result after “Algorithm Predicted Result:” string. From the beginning, we

also insert the actual class result in system to show the actual vs. algorithm predicted result.

“Previous Known Record…” string indicates the actual result. If actual and predicted result is

same than background color remain same as blue. If result is mismatch than background

color becomes change as red.

4.3. K-nearest neighbor (KNN)

This algorithm belongs to a subgroup of supervised learning algorithms known as instance-

based classifiers. New and unseen instances are compared with instances that are stored in the

training set. K algorithms are also called lazy classifiers because there is no training involved.

The basic algorithm uses the closest neighbors of the not yet classified new instances to

classify them. Every time that a new example needs to be classified, it is compared with all

the examples in the dataset. Consequently, k-neighbor algorithms use a straightforward

approach to solve classification problems.

Suppose there is a dataset with n classified examples. Each classified example acts as a point

in the feature space. A way to calculate the k-nearest neighbors for unclassified examples

would be to find the k already classified examples that are closest to the unclassified data.

Once the k neighbors have been identified, a majority class vote will take place among them

to classify the new instances. Since the attributes are numeric, distance measurements can be

used to determine which the k closest neighbors (Fig 4.8) are. Euclidean, Manhattan and city-

block distances are commonly used in KNN algorithms.[78]

74

Fig 4.8: KNN algorithms [95]

On KNN algorithms, most of the time, the information or collected data are stored in

matrices. Moreover, since every instance must be checked in order for a new entry to be

classified.

 A basic KNN pseudocode is shown in Algorithm 2.

 ALGORITHM 2: KNN training pseudocode.

 Input : Dataset D= {(x1, c1)... (xN ,cN)}, and unlabeled instance x=(x1,...,xN).
 Output : predicted class Ci.
 for
 each classified example (xi,ci) do
 calculate distance d(xi,x)
 order d(xi,x) from lowest to highest select k nearest neighbors to x
 vote for majority class among k neighbors, Ci
 return Ci

 end

4.3.1. Implementation

The implement of the fall detection system comprises of a number of stages as explained here

briefly. A 3D accelerometer is attached to chest of human subjects (An overview of the

system implement is shown in Figure Fig 4:9).

75

 Initialization

 N
 Network
 Setup?

 Y

 Turn on sensor

 Sensor Input

N New Sample ? Y

 Compute acceleration
 (Mean, Std_dev , PCA)

 KNN classifier

N Y

 Check candidate fall

 Alarm

Fig 4.9: Flow chart of the KNN method

76

We use the SHIMMER accelerometer module for this study. A fixed orientation of this

module is maintained to keep the directions of its three axes the same with respect to bodies

for all the subjects. The signals from the accelerometer are streamed wirelessly to a PC. The

signals are segmented into window frames and the frames are analyzed to extract statistical

features (Mean, Std_dev, and PCA) to characterize the signals related to falls. The segments

are resized and the analysis is repeated to cover the probability that an activity may be

divided into one or more windows, overlapping between the previous and next windows. The

resulting statistical features are fed to the KNN classifiers for fall detection. The classifier

KNN algorithm are set to classify directive fall by recognizing the signal pattern and

matching a vector of features with pre-learned ones. KNN algorithm is implemented using

“classificationLearner” of MATLAB R2016a toolkit. The algorithm takes in features as input

attributes and computes information gain for each attribute in order to determine which

attribute leads to the shortest route for a fall or no-fall decision. Sampling frequency, training

size and sensor location have impact on performance. We determine the efficacy of KNN

classifiers using this method and compare the results with SVM classifier.

4.3.2. Results

KNN learning classifier was used to learn to distinguish among falls and ADL. Whole data

are divided in two parts randomly, one for training (66%) and another for testing (34%). K-

fold cross-validation is used to train and test. Figure 4.6 shows the classification of four types

of fall and ADL. Twelve types of activities are considered as one class called ADL. A total of

five classes are classified (Four type falls and ADL). Classifier was successful in scoring 93.3

77

for the learning rate. In testing, total 110 fall data and 366 ADL are taken.

Fig 4.10: Learning Classifier KNN

Table 4.2 shows the detection result of KNN classifier.

Table 4.2.: Detection result of KNN classifier

Algorithm Learning
Rate (%)

Fall detected.
(/110)

Fail to Fall
detected. (/110)

ADL
detected.

(/366)

ADL show in
fall detected.

(/366)

KNN 93.5 101 9 362 4

4.3.3. Data Analysis Interface

We develop a GUI to show the detection result of fall detection for KNN algorithm. Figure

4.11 is the graphical user interface (GUI) of fall detection. 3D accelerometer testing data is

recorded in dat file. MATLAB is capturing the signals and calculating the value that are

previously defined .After calculating the functional value, features vector is fed to KNN

78

classifier. KNN is applying its classification logic to find out the class of imputed vector.

KNN shows the result after “Algorithm Predicted Result:” string. From the beginning, we

also insert the actual class result in system to show the actual vs. algorithm predicted result.

“Previous Know Record…” string indicates the actual result. If actual and predicted result is

same than background color remain same as blue. If result is mismatch than background

color becomes change as red.

 Fig 4.11: Using trained model KNN to predict activity

4.4. Algorithms Comparison

Table 4.3 shows the algorithms complexity comparison between SVM & KNN

TABLE 4.3: Comparison between SVM and KNN learning algorithms

Algorithm Data Structure Approach Time Complexity

K-nearest Neighbor

Matrices

Brute Force

O(n2)
Support Vector

Machine

Matrices

Optimization

O(n a2 + a3)

79

Chapter 5
Experimental Results

5.1. Introduction

In this work, individual learning classifier was used to learn to distinguish among falls and

ADL. A total of 13 subjects have been recruited to perform for the experiments. The results

of a classifier are stored in an array known as confusion matrix. It visualizes the learning

algorithm’s performance (True Positives (TP), True Negatives (TN), False Positives (FP) and

False Negatives (FN)). Performance is evaluated based on the efficiency of learning

algorithms. The accuracy of the system is the most extensively used performance.

Accuracy =
(TN + TP)

(TP + TN + FP + FN) −− −− −− − − −− −− −−− 5.1

The recall or sensitivity or true positive rate is the ratio of the correctly classified positive

instances over the entire set of positive instances.

Recall =
TP

(TP + FN) −− − − −− −− −−− −− − − −− −− −− −5.2

The precision or positive predicted value is the ratio of the number of correctly classified

positive instances to the entire set of instances classified as positives.

Precision =
TP

(TP + FP)−− −− −− −−− −− −− −− −− −− −− 5.3

Only fall (not considering direction) and ADL testing results for SVM and KNN

classifiers are shown in Table 5.1.

Table 5.1: Test result of different classifiers (only fall & ADL)

Algorithm Learning
Rate (%) True Pos. False Neg. True Neg. False Pos.

SVM 97.2 94.54 5.45 98.36

1.60

KNN
93.5 91.81 8.10 98.90 1.09

80

Only fall (not considering direction) and ADL summary results for SVM and KNN classifiers

are shown in Table 5.2.

Table 5.2: Summary results of SVM & KNN classifiers (only fall & ADL)

Algorithm Accuracy (%) Precision (%) Recall (%)

SVM 96.45 98.28 94.54

KNN
95.36 98.82 91.81

5.2. Classifier 1 (SVM)

Confusion matrix and summary results of directive fall and ADLs of test data, using SVM

classifier are shown in Table 5.3 and Table 5.4, respectively.

Table 5.3: Confusion matrix (SVM)

Tr
ue

 C
la

ss

Task

Right F 22 1

Backward F 2 26 2 1 1

ADL 3 360 3

Left F 1 3 24

Forward F 27

R
ight F

B
ackw

ard F

A
D

L

Left F

Forw
ard F

Predicted Class

81

 Table 5.4: Summary results of SVM

Task Total Accuracy (%) Precision (%) Recall (%)

Right F 23 97.60 99.54 95.65

Backward F 32 90.17 98.90 81.25

ADL 366 96.47 94.79 98.36

Left F 28 92.41 98.96 85.71

Forward F 27 99.88 99.77 100

5.3. Classifier 2 (KNN)

Confusion matrix and summary results of directive fall and ADLs of test data, using KNN

classifier are shown in Table 5.5 and Table 5.6, respectively.

 Table 5.5: Confusion matrix (KNN)

Tr
ue

 C
la

ss

Task

Right F 23

Backward F 2 25 4 1

ADL 3 362 1

Left F 2 2 24

Forward F 1 3 23
 Right F

Backw
ard F

A
D

L

Left F

Forw
ard F

Predicted Class

82

Table 5.6: Summary results of KNN

Task Total Accuracy (%) Precision (%) Recall (%)

Right F 23 99.77 99.56 100

Backward F 32 88.38 98.29 78.125

ADL 366 95.36 92.35 98.90

Left F 28 92.63 99.48 85.71

Forward F 27 92.59 100 85.18

5.4. Result assessment

We assess the misclassification and classification rate over the different variants of

classifiers. The optimal classifier is selected by tuning parameters True Positive (TP), True

Negative (TN), False Negative (FN), False Positive (FP), Accuracy, Precision and Recall.

The vertical axis of the graph (Fig 5.1) represents the True positive and True Negative peck

of SVM and KNN respectively. SVM classifier is providing better results as its classification

True Positive is high. SVM clearly shows a large peak than KNN of True Positive tuning

parameter. True Negative pecks are all most same of SVM and KNN.

 Fig 5.1: Fall detection performance (True Pos. & True Neg.) of SVM & KNN

83

The vertical axis of the graph (Fig 5.2) represents the False Positive and False Negative peck

 Fig 5.2: Fall detection performance (False Neg. & False Pos.) of SVM & KNN

of SVM and KNN respectively. SVM classifier is providing better results as its classification

False Negative is low. SVM clearly shows a small peak than KNN of False Negative tuning

parameter. Though KNN has low rate of False Positive but it has also high rate of False

Negative.

The vertical axis of the graph (Fig 5.3) represents the accuracy peck of SVM and KNN

Fig 5.3: Accuracy of SVM & KNN classifiers

84

respectively. SVM classifier is providing better results as its classification of Forward Fall,

Backward Fall and ADL high. KNN classifier is providing better of Right Fall, Left Fall high.

The vertical axis of the graph (Fig 5.4) represents the precision peck of SVM and KNN

respectively. SVM classifier is providing better results as its classification Backward Fall,

Right Fall and ADL high. KNN classifier is providing better of Forward Fall, Left Fall high.

In forward and left fall, the False Positive (FP) is low rate as a result KNN precision high

than SVM.

Fig 5.4: Precision of SVM & KNN classifiers

The vertical axis of the graph (Fig 5.5) represents the Recall peck of SVM and KNN

respectively. SVM classifier is providing better results as its classification Forward Fall,

Backward Fall and Left Fall high. KNN classifier is providing better of Backward Fall and

ADL high. In forward and backward fall, the False Negative (FN) is low rate as a result

SVM recalls high than KNN.

85

Fig 5.5: Recall of SVM & KNN classifiers

5.4.1. Conclusion

We can conclude that SVM classifier is providing better results as its classification accuracy

is high and error rate is minimal over the investigated classifiers based on tuning parameters.

5.4.2. Discussion

This result describes two machine learning algorithm-based methods for direction-sensitive

fall detection using single 3D accelerometer. Fall data are collected and analyzed to extract

important and sensitive statistical features related to a fall and its direction. After successful

completion of this work, we get the result in optimum classifier for direction-sensitive fall

detection system. Four types of falls were identified with high accuracy, precision and recall

using the optimum classifier, SVM.

5.5. Real time fall detection

As SVM classifier is providing better results based on tuning parameters. So we discard the

KNN algorithm and implement the SVM algorithm in real time. Real time fall detection is

86

developed in MATLAB language to be executed on the SHIMMER MSPP430

microprocessor. Third party software Realterm version 2.0.0.70 is used for PC port scanning

(recommended by SHIMMER [79]). Port is scanned every .256s and data is sent to

MATLAB. MATLAB extracts statistical features (Mean, Std_dev, and PCA) and fed to the

SVM classifier to determine directive fall or ADL decision. SVM algorithm is implemented

using “classificationLearner” of MATLAB R2016a toolkit. After developing the real time

system, again five human subjects who are recruited for this testing work. A total of 52 falls

and 144 ADL have been performed and we get the result (table 5.7 and table 5.8)

 Table 5.7: Confusion matrix (SVM) to detect real time fall

D
ire

ct
iv

e
Fa

ll
C

la
ss

Task

Right F 12 1

Backward F 1 11 1

ADL 2 140 1 1

Left F 2 10 1

Forward F 1 12

 R
ight F

B
ackw

ard F

A
D

L

Left F

Forw
ard F

Real Time Fall Detection Result

87

Table 5.8: Summary results of SVM to detect real time fall

Task Total Accuracy (%) Precision (%) Recall (%)

Right F 13 95.88 99.41 92.30

Backward F 13 91.48 98.09 84.61

ADL 144 94.76 92.66 97.22

Left F 13 88.18 99.29 76.92

Forward F 13 95.60 98.82 92.30

From the table, we compare the simulation result and real time result table 5.2 vs. table 5.6

and table 5.3 vs. 5.7. We point out the performance of the real time is very similar to the

simulation result. In fact, the similar accuracy, precision, recall were obtained. These results

confirm the quality of the real time system to accurately classify fall and ADL events.

Developed real time fall detection system is providing similar result like simulation result

with less technical error rate and high classification accuracy.

5.6. Comparing the performance with existing works

In this thesis, we have used single accelerometer and SVM learning algorithm to detection

direction sensitive fall and found accuracy leads to 96.45%. Table 5.9, presents the

performance with existing works.

Table 5.9: Performance comparison with existing works

SL Authors Hardware
Platform Algorithms Accuracy (%)

01 Beevi et al [16] Accelerometer Linear
prediction 84

88

SL Authors Hardware

Platform Algorithms Accuracy (%)

02 Ojetola et al [17] 2 Accelerometers,
Gyroscopes

C4.5 decision
trees 90

03 Jantaraprim et al.
[54] Accelerometer Threshold based 96.11

04 Anania et al. [57] Accelerometer Threshold based,
Kalman filter 90

05 Zhang et al. [60] Accelerometer

One class
support

vector machine

96.7

06 Zhang et al. [65]
Sun SPOT

Transceiver,
Accelerometer

SVM, Bayesian
network 93

07 Gjoreski et al. [58] 3 Accelerometers
Random Forest,
Threshold set

manually
90

08 Lee et al. [80] Accelerometer - 93.2

09 Noury et al. [82] 2 Accelerometers - 81

10 Noury et al. [83] Accelerometer,
Posture, Vibrator - 85

11 Tapia et al. [84] 5 Accelerometers,
Heart rate sensor

C4.5 Decision
Tree 80.6

12 Hwang et al. [85]
Accelerometer,

Gyroscope,
Tiltsensor

Threshold based 96.7

13 Degen et al. [86] 2 Accelerometers Threshold based 65

89

5.6.1. Our proposed system

Table 5.10 represents our proposed system.

Table 5.10: Our proposed system

SL Authors Hardware
Platform Algorithms Accuracy (%)

01. Farhad et al. Single
Accelerometer

SVM 96.45

5.6.2. Discussion

Four types of falls were simulated by data-set and its performance leads to 96.45 % accuracy

a sampling rate of 50 Hz, exceeding the performance provided by the literature. From the

table 5.8, most of the fall detection algorithms are based on thresholds set. A major challenge

in fall detection is identifying appropriate thresholds. Such algorithms do not generalize well

for unseen data sets. To minimize the false alarm rate of fall detection, some researchers

embedded extra sensor with main sensor like Acoustic sensors, Gyroscopes, Cardio

tachometer, Magnetometer, Barometric Pressure. Existing works can detect only lateral fall

not direction. It shows only fall when forward, backward, left, right fall occur. In addition to

fall detection , it is also important to determine the direction of a fall, which could help in

the location of joint weakness or post-fall fracture and help decrease reaction time. This

work not only shows a machine learning algorithm that provides accuracy beyond the

currently available algorithms but also shows direction-sensitive and cost-effective fall

detection system using single 3D accelerometer.

90

Chapter 6
Conclusions and Future Work

6.1. Summary

In this thesis, we have analyzed sensor accelerometer signal to determine their reliability to

discriminate between falls and ADL. We extract important and sensitive statistical features

related to a fall and its direction. We analyze the accelerometer data for a detected fall to

decide on the fall direction. We have explored the features of fall detection. Based on our

results, the accelerometer appears to be the most reliable sensor. This directive fall detection

system uses single accelerometer which is of low cost. Using the information provided by the

sensor, two algorithms (SVM & KNN) are implemented and tested. The algorithms are

simple and can easily be implemented in MATLAB platforms. In our data-set, its

performance leads to 96.45 % accuracy and 92% precision. The SVM analysis confirms the

good performance of the method. A comparative study with the performance of two machines

learning to fall detection algorithms, shows that the implemented SVM & KNN is very

competitive. We use more advanced pattern recognition and machine learning techniques that

increase the robustness of the fall detection algorithm. We implement the algorithm in real

world environment and found the performance of the real time is very similar to the

simulation that increases the acceptance of the fall detection system. After successful

completion of this thesis, we get the result in optimum classifier for direction-sensitive fall

detection system. Four types of falls are identified with high accuracy, precision and recall

using the optimum classifier, SVM.

6.2. Limitations

The elderly and infirm people are the primary end-users of fall detection solutions. However,

91

due to ethical concerns, the algorithms developed in this thesis were only evaluated using

data from young and healthy subjects. Thus, it is necessary that the proposed SVM based

machine learning algorithm is evaluated on data gathered from the elderly and disabled

subjects.

6.3. Future Work

There are several areas of future work that can serve to improve the system functionality and

provide additional evaluation of its performance.

1. Chest is the best body location for fall detection accuracy but waist is the best

comfortable body locations for placement of sensor according to subjects. In future,

fall detection studies may be done for a sensor placed in the waist while keeping the

accuracy on the same level.

2. Fall pre-impact stage consists of when a fall begins before a faller’s body makes

impact with the floor. This stage is characterized by acceleration of the faller

approaching zero just before the impact. For preventive fall, it is also important to

identify pre-impact stage of fall and alert the user for minimizing risk.

3. Further work may focus on: online monitoring and messaging system to mobile

phone.

92

References:

[1] Abbate, S., Avvenuti, M., Corsini, P., Vecchio, A., and Light, J., “Monitoring of Human

Movements for Fall Detection and Activities Recognition in Elderly Care Using
Wireless Sensor Network : A Survey,” in Yen Kheng Tan (Ed.), Wireless Sensor
Networks: Application-Centric Design, Chap 1, pp. 1-20,InTech, Rijeka, Croatia, 2010.

[2] Jara, A.J., Izquierdo, M.A., and Skarmeta, A.F., "An ambient assisted living system for
telemedicine with detection of symptoms,” International Work conference on the Interplay
between Natural and Artificial Computing, vol.2, pp. 75- 84, 2009.

[3] Scanaill, C.N., Carew, S., Barralon, P., Noury, N., Lyons, D., and Lyons, G.M., “A review of

approaches to mobility telemonitoring of the elderly in their living environment,” Annals of
Biomedical Engineering, vol. 34, pp. 547-563, 2006.

[4] Pigot, H., Mayers, A., and Giroux, S., “The intelligent habitat and everyday life activity
support," International conference on Simulations in Biomedicine, pp. 507-516, 2003.

[5] Baraka, A., Shokry, A., Omar, I., Kamel, S., Fouad, T., El-Nasr, M. A., and Shaban, H., “A
WBAN for Human Movement Kinematics and ECG Measurements,” J. E-Health
Telecommunication Systems and Networks, vol. 1, pp. 19-25, 2012.

[6] Tinetti, M. D., Liu W. L., and Claus E. B., “Predictors and prognosis of inability to get up after
falls among elderly persons,” JAm Med Assoc View ArticleGoogle Scholar vol 269, pp. 65-70
Jan 1993.

[7] http://www.misa.ie/node/936, http://www.trilcentre.org [accessed last on 19 June, 2016]

[8] Stevens J. A., Corso, P. S, Finkelstein E. A., and Miller, T.R., “The costs of fatal and nonfatal

falls among older adults,” Injury Prevention pp.290–295, Dec 2006.

[9] https://www.cdc.gov/homeandrecreationalsafety/falls/fallcost.html [accessed last on 19 June,
2016]

[10] Burns, A., Greene, B. R., McGrath, M. J., O'Shea, T. J. ; Kuris, B., Ayer, S. M. , and
Stroiescu, F., “SHIMMER™ –Wireless Sensor Plat form for Noninvasive Biomedical
Research,” IEEE Sensors Journal, Vol.10, No.9, pp. 1527-1534, Sept. 2010.

[11] Tolkiehn, M., Atallah, L., Lo, B., and Yang, G. Z., "Direction Sensitive Fall Detection Using
A Triaxial Accelerometer and A Barometric Pressure Sensor.", in IEEE Annual International
Conference on Engineering in Medicine and Biology Society (EMBC) , Sept. 2011, pp. 369-
372 (2011)

93

[12] Quoc T. H., Uyen, D. N. , Su V. T., Nabili, A., and Binh Q. T., “ Fall Detection System Using
Combination Accelerometer And Gyroscope”, Institute of Research Engineers and Doctors,
Proc. of the Second Intl. Conf. on Advances in Electronic Devices and Circuits EDC -2013.

[13] Liu, L., Popescu, M., Rantz, M., and Skubic, M., “ Fall Detection Using Doppler Radar And
Classifier Fusion, ” Proceedings of the IEEE-EMBS International Conference on Biomedical
and Health Informatics ,Jan. 2012.

[14] Anderson, D., Luke, R. H., Keller, J. M., Skubic, M., Rantz, M. and Aud, M., “Linguistic
summarization of video for fall detection using voxel person and fuzzy logic,” Computer Vision
and Image Understanding, Vol. 113 No. 1, pp. 80-89, 2009.

[15] Ge, Y., and Xu, B., “Detecting Falls Using Accelerometers By Adaptive Thresholds In Mobile
Devices,” Journal of Computers, Vol.9, No.7, July-2014, pp. 1553-1559.

[16] Beevi, F. H. A., Pedersen C. F., Wagner, S., and Hallerstede, S., “Lateral Fall Detection via
Events in Linear Prediction Residual of Acceleration,” Ambient Intelligence - Software and
Applications, Advances in Intelligent Systems and Computing, Springer International
Publishing Switzerland, June 2014, vol. 291, pp. 201-209.

[17] Ojetola, O., Gaura, E.I., and Brusey, J., "Fall Detection with Wearable Sensors - SAFE
(SmArt Fall dEtection),” in Seventh International Conference on Intelligent Environments, Jul.
2011, pp. 318-321 (2011).

[18] Javed, K., Babri, H. A., and Saeed, M., “Feature Selection Based on Class Dependent
Densities for High Dimen sional Binary Data,” IEEE Transactions on Knowledge and Data
Engineering, vol. 24, No. 3, pp. 465-477, 2012.

[19] Suriani, N. S., and Hussain, A., "Sudden Fall Classification using Motion Features," in
IEEE 8th International Colloquium on Signal Processing and its Applications, March 2012, pp.
519-524 (2012)

[20] Lim, D., Park, C., Kim, N.H., Kim, S. H., and Yu, Y. S., “Fall-Detection Algorithm Using
3-Axis Acceleration: Combination With Simple Threshold And Hidden Markov Model,”
Journal of Applied Mathematics, pp. 1-8, 2014.

[21] Vallejo, M., Isaza, C. V., and Lopez, J. D., " Artificial Neural Networks as an Alternative
to Traditional Fall Detection Methods," in 35th Annual International Conference of the IEEE
EMBS, Jul. 2013, pp. 1648-1651 (2013).

[22] Sengto, A.; and Leauhatong, T., “Human falling detection algorithm using back propagation
neural network,” In Proceedings of the 5th Biomedical Engineering International Conference,
Ubon Ratchathani, IEEE: Ubon Ratchathani, Thailand, 2012; pp. 1–5., Thailand, Dec. 2012 ;

94

[23] Anderson, D., Luke, R. H., Keller, J. M., Skubic, M., Rantz, M., and Aud, M., “Linguistic
Summarization of Video for Fall Detection Using Voxel Person and Fuzzy Logic,” Comput Vis
Image Und, vol. 113, No 1, pp. 80-89, 2009.

[24] Takeda, T.; Sakai, Y.; Kuramoto, K.; Kobashi, S.; Ishikawa, T.; and Hata, Y. , “Foot age
estimation for fall-prevention using sole pressure by fuzzy logic,” In Proceedings of the
International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12; pp.
769–774, Oct. 2011.

[25] Fu, Z., Delbruck, T., Lichtsteiner, P., and Culurciello, E., "An Address-Event Fall Detector
for Assisted Living Applications," in IEEE Transactions on Biomedical Circuits And
Systems, vol. 2, No. 2, pp. 88- 96, June, 2008.

[26] Khawandi, S., Daya, B., and Chauvet, P., “Implementation of a monitoring system for fall
detection in elderly healthcare”, Procedia Computer Science, Vol 3 pp. 216-220, 2011.

[27] Yu, M., Naqvi, S. M., and Chambers, J., "A Robust Fall Detection System for the Elderly
in A Smart Room," in IEEE International Conference on Acoustics Speech and Signal
Processing (ICASSP), March 2010, pp. 1666-1669 (2010).

[28] Moylan, K. C. and Binder, E. F., “Falls in older adults: Risk assessment, management and
prevention,” The American Journal of Medicine, Vol. 120 Issue 6 pp. 493-496, 2007.

[29] Liu and Cheng, W., “Fall detection with the support vector machine during scripted and
continuous unscripted activities,” Sensors, Vol 12 issue 9 pp. 12301-12316, 2012.

[30] Overstall, P. W., Smith, A. N., Imms F. J., and Johnson, A. L., “Falls in the elderly related to
postural imbalance,” British Medical Journal,Vol 1 pp. 261-264, 1977.

[31] Tinetti, M., E., “Speechley M. Prevention of falls among the elderly,” New England journal of

medicine, pp.1055-1059. 1989

[32] Campbell, A. J., Spears, G. F., and Borrie M. J., “Examination by logistic regression modelling
of the variables which increase the relative risk of elderly women falling compared to elderly
men,” Journal of clinical epidemiology, Vol. 43, pp. 1415-1420. 1989

[33] Robbins, A. S., “Predictors of falls among elderly people”, Results of two population-based
studies,” Archives of internal medicine, Vol 149, pp. 1628-1633, 1989.

[34] Todd, C., and Skelton, D., “What are the main risk factors for falls among older people and
what are the most effective interventions to prevent these falls?” Copenhagen, WHO Regional
Office for Europe (Health Evidence Network report; http://www.euro.who.int/document/
E82552. pdf, accessed 21 Dec. 2016).

95

[35] Skelton, D., A., “Effects of physical activity on postural stability,” Age and ageing, Vol. 30,
issue 4 pp. 33-39, 2001

[36] Ray, W., Thapa, P., and Gideon, P., “Benzodiazepines and the risk of falls in nursing home
residents,” Journal of the American Geriatrics Society, Vol. 48, pp. 682-685, 2000.

[37] Dionyssiotis, Y., "Analyzing the problem of falls among older people,” International Journal of
General Medicine, 2012

[38] Jack, C., I., “Prevalence of low vision in elderly patients admitted to an acute geriatric unit in
Liverpool: elderly people who fall are more likely to have low vision,” Gerontology, Vol. 41,
pp. 280-285. 1995.

[39] Lord, S. R., and Bashford, G.M., “Shoe characteristics and balance in older women,” Journal of
the American Geriatrics Society, Vol. 44, pp. 429-433, 1996.

[40] Sturnieks, D. L., George, R. S, and Lord, S. R., “Balance disorders in the elderly,”
Neurophysiologie Clinique/Clinical Neurophysiology, Vol. 38 Issue 6,pp. 467-478, 2008.

[41] Salkeld, G., “Quality of life related to fear of falling and hip fracture in older women: a time
trade off study,” BMJ, Vol. 320, pp.341-346, 2000.

[42] Lord, C. J. and Colvin, D. P., “Falls in the elderly: Detection and assessment,” In Proc. Ann.
Intl. Conf. Engineering in Medicine and Biology Society, pp. 1938-1939, Oct. 1991

[43] http://www.mass.gov/eohhs/gov/departments/dph/ [accessed last on 19 June, 2016]

[44] Khawandi, S., Daya, B., and Chauvet, P., “Implementation of a monitoring system for fall
detection in elderly healthcare,” Procedia Computer Science,Vol. 3 pp. 216-220, 2011.

[45] Ozcan, K.; Mahabalagiri, A.; Casares, M. and Velipasalar, S., “Automatic fall detection and
activity classification by a wearable embedded smart camera,” IEEE J. Emerg. Sel. Top.
Circuits Syst. Vol.3, pp. 125–136, 2013.

[46] Crispim C. F., Bremond, F., and Joumier, V. , “A multi-sensor approach for activity recognition
in older patients,” In The Second International Conference on Ambient Computing,
Applications, Services and Technologies - AMBIENT, September 2012.

[47] Fu, Z., Delbruck, T., Lichtsteiner, P., and Culurciello, E., “An address-event fall detector for
assisted living applications,” Biomedical Circuits and Systems, IEEE Transactions on, Vol. 2,
issue 2, pp. 88-96, June 2008.

96

[48] Litvak, D., Zigel, Y., and Gannot I., “Fall detection of elderly through floor vibrations and
sound,” In Engineering in Medicine and Biology Society, 30th Annual International
Conference of the IEEE, pp. 4632-4635, August 2008.

[49] Luo, X., Liu, T., Liu, J., Guo, X., and Wang, G., “Design and implementation of a distributed
fall detection system based on wireless sensor networks,” EURASIP Journal on Wireless
Communications and Networking, Vol. 1, pp. 1-13, 2012.

[50] Khawandi, S., Daya, B., and Chauvet, P., “Implementation of a monitoring system for fall
detection in elderly healthcare,” Procedia Computer Science, Vol. 3 pp. 216-220, 2011.

[51] Liu, H. and Zuo, C., “An improved algorithm of automatic fall detection,” AASRI Procedia,
Vol. 1, pp. 353-358, 2012.

[52] Olivieri, D. N., Conde, I. G. M., and Sobrino, X. A. V., “Eigenspace-based fall detection and
activity recognition from motion templates and machine learning,” Expert Systems with
Applications, Vol. 39 issue 5, pp. 5935-5945, 2012.

[53] Bashir, F., “Real life applicable fall detection system based on wireless body area network,” In
Proceedings of the 10th Consumer Communications and Networking Conference (CCNC), Las
Vegas, NV, USA, pp. 62–67, 11–14 January 2013.

[54] Jantaraprim, P., Phukpattaranont, P., Limsakul, C., and Wongkittisuksa, B., “Evaluation of
fall detection for the elderly on a variety of subject groups,” In Proceedings of the 3rd
International Convention on Rehabilitation Engineering & Assistive Technology, pp. 11. ACM,
2009.

[55] Li, Q., Stankovic, J. A., Hanson, M. A., Barth, A. T., Lach, J., and Zhou, G., “Accurate, fast
fall detection using gyroscopes and accelerometer-derived posture information,” In BSN ’09:
Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body
Sensor Networks, IEEE Computer Society, pp. 138-143. 2009.

[56] C. Wang, C. Chiang, P. Lin, Y. Chou, I. Kuo, C. Huang, and C. Chan, “ Development of a fall
detecting system for the elderly residents,” In Bioinformatics and Biomedical Engineering,
The 2nd International Conference on, pp. 1359-1362, 2008.

[57] Anania, G., Tognetti, A., Carbonaro, N., Tesconi, M., Cutolo, F., Zupone, G., and Rossi,
D., “Development of a novel algorithm for human fall detection using wearable sensors” In
Sensors, IEEE, pp. 1336-1339, Oct. 2008.

[58] Sposaro, F., and Tyson, G., “ iFall: An android application for fall monitoring and response,”
Engineering in Medicine and Biology Society, Annual International Conference of the IEEE,
pp. 6119-6122, sept., 2009

97

[59] Kaenampornpan, M., Anuchad, T., and Supaluck, P., “Fall detection prototype for thai elderly
in mobile computing era,” In Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology , 8th International Conference on, pages 446-
449, May 2011.

[60] Zhang, T., Wang, J., Xu, L., and Liu, P., “Fall detection by wearable sensor and one-class
svm algorithm,” In Intelligent Computing in Signal Processing and Pattern Recognition, vol.
345, pp. 858-863. 2006

[61] Liu, S.H., and Cheng, W. C., “Fall Detection with the Support Vector Machine during Scripted
and Continuous Unscripted Activities,” Sensors, Vol. 12 issue 9, pp. 12301-12316, 2012

[62] Zhao, Z., Chen, Y., Wang, S., and Chen, Z., “ Fallalarm: Smart phone based fall detecting
and positioning system,” Procedia Computer Science, Vol. 10, pp. 617-624, 2012

[63] Shi, Y.; Shi, Y.C.; and Wang, X. “Fall detection on mobile phones using features from a
five-phase model,” In Proceedings of the 9th International Conference on Ubiquitous
Intelligence and Computing, and Autonomic and Trusted Computing, Fukuoka, Japan, 4–7 pp.
951–956, Sept. 2012;

[64] Humenberger, M.; Schraml, S.; Sulzbachner, C.; Belbachir, A.N.; Srp, A.; and Vajda, F.
“Embedded fall detection with a neural network and bio-inspired stereo vision,” In
Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, Providence, RI, USA, pp. 60–67, June 2012.

[65] Zhang, M., and Sawchuk, A. A., “Context-aware fall detection using a bayesian network,” In
Proceedings of the 5th ACM International Workshop on Context Awareness for Self-Managing
Systems, pp. 10-16, 2011

[66] Lan, M., Nahapetian, A., and Vahdatpour, A., Au, L., Kaiser, W., and Sarrafzadeh, M.,
“Smartfall: an automatic fall detection system based on subsequence matching for the
smartcane,” In Proceedings of the Fourth International Conference on Body Area Networks,
page 8, 2009.

[67] Chen, Y.T.; Lin, Y.C.; and Fang, W.H., “A hybrid human fall detection scheme,” In
Proceedings of the International Conference on Image Processing, Hong Kong, China pp.
3485–3488, Sept. 2010.

[68] Gjoreski, H., Lustrek, M., and Gams, M., “Accelerometer placement for posture recognition
and fall detection,” In Intelligent Environments (IE), 7th International Conference on, pp. 47-
54, July 2011.

[69] Martin T., Majeed B., and Lee B.S., "Nick Clarke Fuzzy Ambient Intelligence for Next
Generation Telecare ," IEEE International Conference on Fuzzy Systems Sheraton Vancouver
Wall Centre Hotel, Vancouver, BC, Canada July, 2006

98

[70] Bagalà, F., Becker, C., Cappello, A., Chiari, L., Aminian, K., Hausdorff, J. M., Zijlstra,
W., and Klenk, J., “ Evaluation of accelerometer-based fall detection algorithms on real-world
falls,” PLoS ONE, Vol 7 issue 5 pp 37062, 2012.

[71] Ward, G., Holliday,N., Fielden, S., and Williams, S., “Fall detectors: a review of the
literature,” Journal of Assistive Technologies, vol. 6 issue 3, pp 202-215, 2012.

[72] Polastre, J., Szewczyk, R., and Culler, D., “Telos: Enabling ultra-low power wireless
research,” in Proc. 4th Int. Symp. Inf. Process. Sens. Networks, Los Angeles, CA, pp. 364–369,
2005.

[73] Lo, B. P. L., Thiemjarus, S., King, R., and Yang, G. Z., “Body sensor network A wireless
sensor platform for pervasive healthcare monitoring,” in Proc. 3rd Int. Conf. Pervasive
Computing, Munich, Ger- many, pp. 77–80, 2005.

[74] Doughty, K., Lewis, R., and McIntosh, A., “The design of a practical and reliable fall detector
for community and institutional telecare,” Journal of Telemedicine and Telecare, vol. 6 issue 1
pp. 150-154, 2000.

[75] Gjoreski, H., Lustrek, M., and Gams, M., “Accelerometer placement for posture recognition
and fall detection” In Intelligent Environments (IE), 7th International Conference on, pp. 47-54,
July 2011.

[76] Ojetola, O., Detection of Human Falls using Wearable Sensors, Phd. Thesis, Faculty of
Engineering and Computing, Coventry University, 2013

[77] https://en.wikipedia.org/wiki/Support_vector_machine [accessed last on 19 June, 2016]

[78] http://www.saedsayad.com/k_nearest_neighbors.htm [accessed last on 19 June, 2016]

[79] http://www.shimmersensing.com/menu/products/matlab-id [accessed last on 11 June, 2014]

[80] Lee, Y., Kim, J.,Son, M., and Lee, M.,"Implementation of accelerometer sensor module and
fall detection monitoring system based on wireless sensor network", Engineering in
Medicineand Biology Society, EMBS 29th Annual International Conference of the IEEE,
pp.2315-2318, 2007

[81] Velasco P., M., Cidoncha, M. G., and Marin, O, R., "The inescapable smart impact detection
system (ISIS): An ubiquitous and personalized fall detector based on a distributed 'divide and
conquer strategy," Engineeringin Medicine and Biology Society, 2008. EMBS 30th Annual
International Conference of the IEEE, pp.3332-3335, 2008

99

[82] Noury, N., Barralon, P., Virone, G., Boissy, P., Hamel, M., and Rumeau, P.,"A smart sensor
based on rules and its evaluation in daily routines", Engineeringin Medicine and Biology
Society , Proceedings of the 25th Annual International Conferenceofthe IEEE,Vol. 4, pp.3286-
3289. 2003.

[83] Noury, N., Herve, T., Rialle, V., Virone, G., Mercier, E., Morey, G., Moro, A. and Porcheron,
T, "Monitoring behavior in home using a smart fall sensor and position sensors,"
Microtechnologies in Medicine and Biology, 1st Annual International,Conference On., pp. 607-
610, 2000

[84] Tapia, E. M., Intille, S. S., Haskell,W., Larson, K.,Wright, J., King, A. and Friedman, R.,
"Real-Time Recognition of Physical Activities and Their Intensities Using Wireless
Accelerometers and a Heart Rate Monitor,” ISWC’07: Proceedings of the 11th IEEE
International Symposiumon Wearable Computers, IEEEComputer Society, Washington, DC,
USA, pp.154, 2007.

[85] Hwang, J., Kang, J., Jang,Y. and Kim, H., “Development of novel algorithm and real-time
monitoring ambulatory system using Bluetooth module for fall detection in the elderly.,”
Engineering in Medicineand Biology Society, IEMBS 304. 26th Annual International
Conference of the IEEE, Vol.1, pp.2204-2207, 2004.

[86] Degen, T., Jaeckel, H., Rufer, M., and Wyss, S., “SPEEDY: A fall detector in a wrist watch,”
Proceedings of the 7th IEEE International Symposium on Wearable Computers, pp. 184-187,
2003.

[87] https://www.academia.edu/11716277/Fall_detection_through_vertical_velocity_thresholding_u
sing_a_tri-axial_accelerometer_characterized_using_an_optical_motion-capture_system
[accessed last on 19 June, 2016]

[88] https://jneuroengrehab.biomedcentral.com /articles/10.1186/1743-0003-9-21 [accessed last on
19 June, 2016]

[89] https://www.shutterstock.com/search/gyroscope+vector [accessed last on 19 June, 2016]

[90] http://stackoverflow.com/questions/35227321/how-to-know-if-a-vector-on-the-right-hand- side
[accessed last on 19 June, 2016]

[91] http://www.instructables.com/id/Accelerometer-Gyro-Tutorial/ [accessed last on 19 June, 2016]

[92] http://courses.media.mit.edu/2006fall/mas622j/Projects/aisen-project/ [accessed last on 19 June,
2016]

[93] http://stackoverflow.com/questions/9480605/what-is-the-relation- between- the-number- of-
support-vectors-and-training-data-and [accessed last on 19 June, 2016]

100

[94] http://7xt8es.com1.z0.glb.clouddn.com/zhimind/ml/margin_sv.png [accessed last on 19 June,
2016]

[95] http://user.it.uu.se/~kostis/Teaching/DM-05/Slides/classification01.pdf [accessed last on 19
June, 2016]

101

Publication

1. Farhad Hossain, Liakot Ali, Zahurul Islam and Hossen A Mustafa, “A Direction-Sensitive

Fall Detection System Using Single 3D Accelerometer and Learning Classifier”, In the

Proceedings of the International Conference on Medical Engineering, Health Informatics and

Technology (MediTec), Dec 2016.

102

Appendix A: SIMULATION OF FALL DETECTION

The following code generates the direction sensitive fall detection as described

in the thesis.
function saveSensorDataAsMATFiles

if exist('rawSensorData_train.mat','file') && exist('rawSensorData_test.mat','file')

 fprintf(1,'rawSensorData_train.mat and rawSensorData_test.mat already exists at

location:\n');

 disp(['* ', which('rawSensorData_train.mat')]);

 disp(['* ', which('rawSensorData_test.mat')]);

 disp(' ')

else

 %% Load training data from files

 activity_labels = {'Forward Fall','WUs','WDs','Backward Fall','Left Fall','Right Fall'};

 trainActivity = categorical(importdata('D:\Fall

Detection\Fall_ADL_DataSet\Train\y_train.txt'),1:6,activity_labels);

 trainActivity = mergecats(trainActivity,{'WUs','WDs'},'Activities of Daily Living');

 trainActivity = reordercats(trainActivity ,{'Right Fall','Backward Fall','Activities of Daily

Living','Left Fall','Forward Fall'});

 filestoload = strcat('D:\Fall Detection\Fall_ADL_DataSet\Train\',{'total*'});

 disp('Loading training data from files:')

 try

 dstrain = datastore(filestoload,'TextscanFormats',repmat({'%f'},1,128),

'ReadVariableNames',false);

 catch err

 if strcmp(err.identifier,'MATLAB:datastoreio:pathlookup:fileNotFound')

 error('File not found. Please make sure that you download and extract the data first

using ''downloadSensorData'' function')

 end

 end

103

 [~,fnames] = cellfun(@fileparts,dstrain.Files,'UniformOutput',false);

 iter = 1;

 while hasdata(dstrain)

 fprintf('Importing: %16s ...',fnames{iter})

 M = table2array(read(dstrain));

 rawSensorDataTrain.(fnames{iter}) = M;

 iter = iter + 1;

 fprintf('Done\n')

 end

 rawSensorDataTrain.trainActivity = trainActivity;

 disp(' ')

 %% Load test data from files

 testActivity = categorical(importdata('D:\Fall

Detection\Fall_ADL_DataSet\Test\y_test.txt'),1:6,activity_labels);

 testActivity = mergecats(testActivity,{'WUs','WDs'},'Activities of Daily Living');

 testActivity = reordercats(testActivity ,{'Right Fall','Backward Fall','Activities of Daily

Living','Left Fall','Forward Fall'});

 filestoload = strcat('D:\Fall Detection\Fall_ADL_DataSet\Test\',{'total*'});

 disp('Loading test data from files:')

 dstest =

datastore(filestoload,'TextscanFormats',repmat({'%f'},1,128),'DatastoreType','tabulartext',...

 'ReadVariableNames',false);

 [~,fnames] = cellfun(@fileparts,dstest.Files,'UniformOutput',false);

 dstest.ReadSize = 'file';

 iter = 1;

 while hasdata(dstest)

 fprintf('Importing: %16s ...',fnames{iter})

 M = table2array(read(dstest));

 rawSensorDataTest.(fnames{iter}) = M;

 iter = iter + 1;

 fprintf('Done\n')

104

 end

 rawSensorDataTest.testActivity = testActivity;

disp(' ')

 %% Saving MAT file with raw data

 fprintf('Saving MAT files: rawSensorData_train.mat ...')

 save rawSensorData_train.mat -struct rawSensorDataTrain

 disp('Done')

 fprintf('Saving MAT files: rawSensorData_test.mat ...')

 save rawSensorData_test.mat -struct rawSensorDataTest

 disp('Done')

end

% A Matlab code for Function Building

function Y = Wmean(X)

 Y = mean(X,2);

end

function Y = Wmedian(X)

 Y = median(X,2);

end

function Y = Wpca1(X)

 [~,Y] = pca(X,'NumComponents',1);

end

function Y = Wstd(X)

105

 Y = std(X,[],2);

end

% GUI of fall simulation

function plotActivityResults(mdl,rawSensorDataTest,humanActivityTest,delay)

if nargin < 4

delay = 0.02;

end

time = linspace(0,2.56,128);

fig = figure('Name','Human Fall Detection','NumberTitle','off','Visible','off');

fig.Position(3:4) = 600;

movegui('center')

fig.Visible = 'on';

 ax1 = subplot(2,1,1,'Parent',fig,'Xgrid','on','Ygrid','on',...

'XLim',[time(1) time(end)],'YLim',[-45 35]);

clr = get(groot,'DefaultAxesColorOrder');

L(1) =

line(time,rawSensorDataTest.total_acc_x_test(1,:),'color',clr(1,:),'Parent',ax1,'LineWidth',1.5,'

DisplayName','Accelerometer X');

L(2) =

line(time,rawSensorDataTest.total_acc_y_test(1,:),'color',clr(2,:),'Parent',ax1,'LineWidth',1.5,'

DisplayName','Accelerometer Y');

L(3) =

line(time,rawSensorDataTest.total_acc_z_test(1,:),'color',clr(5,:),'Parent',ax1,'LineWidth',1.5,'

DisplayName','Accelerometer Z');

xlabel(ax1,'Time (s)')

ylabel(ax1,'(Accelerometer Readings (m \cdot s^{-2})')

106

%legend(ax1,'show')

legend(ax1,'show','Location','northwest','Orientation','horizontal')

title(ax1,['Fall Detection System: ', getClassifierName(mdl)]);

ann1 = annotation(fig,'textbox',[ax1.Position(1:3) 0.04],...

'String','Algorithms Predicted Activity : NA','FontSize',12,'FitBoxToText','off',...

'BackgroundColor',[0 0.7

0.3],'HorizontalAlignment','Center','VerticalAlignment','middle','FaceAlpha',0.5);

ann2 = annotation(fig,'textbox',[ax1.Position(1) ax1.Position(2)+0.04 ax1.Position(3) 0.04],...

'String','Previous Recorded Activity : NA','FontSize',12,'FitBoxToText','off',...

'BackgroundColor',[0 0.7

0.3],'HorizontalAlignment','Center','VerticalAlignment','middle','FaceAlpha',0.5);

%% Loop through the raw data and plot the sensor values

try

for ii = 1:height(humanActivityTest)

mycell1 = fieldnames(mdl);

myclassifier1 = strcat('mdl.',mycell1(3));

activity = predict(eval(myclassifier1{:}),humanActivityTest{ii,1:end-1});

if activity == humanActivityTest.activity(ii)

 predclr = [0 0.7 0.3];

else

predclr = [1 0 0];

end

set(ann1,'String',['Algorithms Predicted Result : ' char(activity)],...

'BackgroundColor',predclr);

set(ann2,'String',['Previous Known Record : ' char(humanActivityTest.activity(ii))],...

'BackgroundColor',[0 0.7 0.3]);

L(1).YData = rawSensorDataTest.total_acc_x_test(ii,:);

107

L(2).YData = rawSensorDataTest.total_acc_y_test(ii,:);

L(3).YData = rawSensorDataTest.total_acc_z_test(ii,:);

drawnow

pause(delay)

end

catch err

end

function cname = getClassifierName(trainedClassifier)

mycell = fieldnames(trainedClassifier);

cname = mycell(3);

%Algorithm learning and export model
function [trainedClassifier, validationAccuracy] = trainClassifier(trainingData)
% trainClassifier(trainingData)
% classifier.
inputTable = trainingData;
predictorNames = {'Wmean_total_acc_x_train', 'Wmean_total_acc_y_train',
'Wmean_total_acc_z_train', 'Wstd_total_acc_x_train', 'Wstd_total_acc_y_train',
'Wstd_total_acc_z_train', 'Wpca1_total_acc_x_train', 'Wpca1_total_acc_y_train',
'Wpca1_total_acc_z_train'};
predictors = inputTable(:, predictorNames);
response = inputTable.activity;
isCategoricalPredictor = [false, false, false, false, false, false, false, false, false];

% Train a classifier
% This code specifies all the classifier options and trains the classifier.
template = templateSVM(...
 'KernelFunction', 'polynomial', ...
 'PolynomialOrder', 2, ...
 'KernelScale', 'auto', ...
 'BoxConstraint', 1, ...
 'Standardize', true);
classificationSVM = fitcecoc(...
 predictors, ...
 response, ...
 'Learners', template, ...
 'Coding', 'onevsone', ...

108

 'ClassNames', categorical({'Right Fall'; 'Backward Fall'; 'Activities of Daily Living'; 'Left
Fall'; 'Forward Fall'}, {'Right Fall' 'Backward Fall' 'Activities of Daily Living' 'Left Fall'
'Forward Fall'}));

% Create the result struct with predict function
predictorExtractionFcn = @(t) t(:, predictorNames);
svmPredictFcn = @(x) predict(classificationSVM, x);
trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));

% Add additional fields to the result struct
trainedClassifier.RequiredVariables = {'Wmean_total_acc_x_train',
'Wmean_total_acc_y_train', 'Wmean_total_acc_z_train', 'Wstd_total_acc_x_train',
'Wstd_total_acc_y_train', 'Wstd_total_acc_z_train', 'Wpca1_total_acc_x_train',
'Wpca1_total_acc_y_train', 'Wpca1_total_acc_z_train'};
trainedClassifier.ClassificationSVM = classificationSVM;
trainedClassifier.About = 'This struct is a trained classifier exported from Classification
Learner R2016a.';
trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n yfit
= c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g.
''trainedClassifier''. \n \nThe table, T, must contain the variables returned by: \n
c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) must match the original
training data. \nAdditional variables are ignored. \n \nFor more information, see <a
href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''),
''appclassification_exportmodeltoworkspace'')">How to predict using an exported
model.');

% classifier.
inputTable = trainingData;
predictorNames = {'Wmean_total_acc_x_train', 'Wmean_total_acc_y_train',
'Wmean_total_acc_z_train', 'Wstd_total_acc_x_train', 'Wstd_total_acc_y_train',
'Wstd_total_acc_z_train', 'Wpca1_total_acc_x_train', 'Wpca1_total_acc_y_train',
'Wpca1_total_acc_z_train'};
predictors = inputTable(:, predictorNames);
response = inputTable.activity;
isCategoricalPredictor = [false, false, false, false, false, false, false, false, false];

% Set up holdout validation
cvp = cvpartition(response, 'Holdout', 0.2);
trainingPredictors = predictors(cvp.training,:);
trainingResponse = response(cvp.training,:);
trainingIsCategoricalPredictor = isCategoricalPredictor;

% Train a classifier
% This code specifies all the classifier options and trains the classifier.

109

template = templateSVM(...
 'KernelFunction', 'polynomial', ...
 'PolynomialOrder', 2, ...
 'KernelScale', 'auto', ...
 'BoxConstraint', 1, ...
 'Standardize', true);
classificationSVM = fitcecoc(...
 trainingPredictors, ...
 trainingResponse, ...
 'Learners', template, ...
 'Coding', 'onevsone', ...
 'ClassNames', categorical({'Right Fall'; 'Backward Fall'; 'Activities of Daily Living'; 'Left
Fall'; 'Forward Fall'}, {'Right Fall' 'Backward Fall' 'Activities of Daily Living' 'Left Fall'
'Forward Fall'}));

% Create the result struct with predict function
svmPredictFcn = @(x) predict(classificationSVM, x);
validationPredictFcn = @(x) svmPredictFcn(x);

% Compute validation accuracy
validationPredictors = predictors(cvp.test,:);
validationResponse = response(cvp.test,:);

[validationPredictions, validationScores] = validationPredictFcn(validationPredictors);
correctPredictions = (validationPredictions == validationResponse);
validationAccuracy = sum(correctPredictions)/length(correctPredictions);

%Computing the features and run program

%Human Fall Detection System as well as Direction

 %% Human Directive Fall Detection Using

%Raw accelerometer sensor data & Learning Algorithm

%Directive Fall (Forward Backward, Left, Right).

%The goal of this thesis is to build a classifier that can automatically

%identify the Fall from ADL as well as Fall Direction.

%% Description of the Data

% The dataset consists of accelerometer data captured at 50Hz.

110

% The raw sensor data contain fixed-width sliding windows of 2.56 sec

% (128 readings/window).

% * |saveSensorDataAsMATFiles| : This will create two MAT files:

% |rawSensorData_train| and |rawSensorData_test| with the raw sensor data

if ~exist('rawSensorData_train.mat','file') && ~exist('rawSensorData_test.mat','file')

 saveSensorDataAsMATFiles;

end

%Load Train Data

load rawSensorData_train

%Display data summary

% 923(Train data) will be changed w.r to data number

plotRawSensorData(total_acc_x_train, total_acc_y_train, ...

 total_acc_z_train,trainActivity,923);

%Create Table variable for train data

rawSensorDataTrain = table(...

 total_acc_x_train, total_acc_y_train, total_acc_z_train);

%Extract features from Train raw sensor data

T_mean = varfun(@Wmean, rawSensorDataTrain);

T_stdv = varfun(@Wstd,rawSensorDataTrain);

T_pca = varfun(@Wpca1,rawSensorDataTrain);

humanActivityData = [T_mean, T_stdv, T_pca];

humanActivityData.activity = trainActivity;

%T_medn = varfun(@Wmedian,rawSensorDataTrain);

%humanActivityData = [T_mean, T_stdv, T_medn];

111

%classificationLearner calling,learning & export model

classificationLearner

%Load Test Data (476 test data)

load rawSensorData_test

% Create Table variable for test data

rawSensorDataTest = table(...

 total_acc_x_test, total_acc_y_test, total_acc_z_test);

% Extract features from Test raw sensor data

T_mean = varfun(@Wmean, rawSensorDataTest);

T_stdv = varfun(@Wstd,rawSensorDataTest);

T_pca = varfun(@Wpca1,rawSensorDataTest);

humanActivityData = [T_mean, T_stdv, T_pca];

humanActivityData.activity = testActivity;

%T_medn = varfun(@Wmedian,rawSensorDataTest);

%humanActivityData = [T_mean, T_stdv, T_medn];

%Using trained model(called trainedClassifier),

%Features and Test raw sensor data

%calling |*plotActivityResults| function & Show the result

plotActivityResults(trainedClassifier,rawSensorDataTest,humanActivityData,0.1)

112

Appendix B: REAL TIME IMPLEMENT

% Human Fall Detection System as well as Direction

if ~exist('rawSensorData_train.mat','file')
 saveSensorDataAsMATFiles;
end

%Load Train Data
load rawSensorData_train

%Create Table variable for train data
rawSensorDataTrain = table(...
 total_acc_x_train, total_acc_y_train, total_acc_z_train);

%Extract features from Train raw sensor data
T_mean = varfun(@Wmean, rawSensorDataTrain);
T_stdv = varfun(@Wstd,rawSensorDataTrain);
T_pca = varfun(@Wpca1,rawSensorDataTrain);

humanActivityData = [T_mean, T_stdv, T_pca];
humanActivityData.activity = trainActivity;

%classificationLearner calling,learning & export model
classificationLearner

% Enable Accelerometer Sensor

classdef SetEnabledSensorsMacrosClass < handle

 properties (Constant = true)
 ACCEL='Accel'; % Accelerometer; for Shimmer3 Low Noise Accelerometer will be
selected.
 LNACCEL='LowNoiseAccel'; % Low Noise Accelerometer for Shimmer3
 WRACCEL='WideRangeAccel'; % Wide Range Accelerometer for Shimmer3
 ALTACCEL='AlternativeAccel'; % MPU9150 Accelerometer for Shimmer3
 GYRO = 'Gyro'; % Gyroscope
 MAG = 'Mag'; % Magnetometer
 ALTMAG = 'AlternativeMag'; % MPU9150 Magnetometer for Shimmer3
 ECG = 'ECG'; % ECG
 ECG24BIT ='ECG 24BIT'; % ECG 24BIT for Shimmer3
 ECG16BIT ='ECG 16BIT'; % ECG 16BIT for Shimmer3
 EMG = 'EMG'; % EMG
 EMG24BIT = 'EMG 24BIT'; % EMG 24BIT for Shimmer3
 EMG16BIT = 'EMG 16BIT'; % EMG 16BIT for Shimmer3
 EXG1 = 'EXG1'; % EXG1 for Shimmer3

113

 EXG124BIT = 'EXG1 24BIT'; % EXG1 24BIT for Shimmer3
 EXG116BIT = 'EXG1 16BIT'; % EXG1 16BIT for Shimmer3
 EXG2 = 'EXG2'; % EXG2 for Shimmer3
 EXG224BIT = 'EXG2 24BIT'; % EXG2 24BIT for Shimmer3
 EXG216BIT = 'EXG2 16BIT'; % EXG2 16BIT for Shimmer3
 GSR = 'GSR'; % GSR
 EXPA0 = 'ExpBoard_A0'; % External Expansion Board A0 for Shimmer2r
 EXPA7 = 'ExpBoard_A7'; % External Expansion Board A7 for Shimmer2r
 EXTA7 = 'EXT A7'; % External ADC A7 for Shimmer3
 EXTA6 = 'EXT A6'; % External ADC A6 for Shimmer3
 EXTA15 = 'EXT A15'; % External ADC A15 for Shimmer3
 STRAIN = 'Strain Gauge'; % Strain Gauge for Shimmer2r
 BRIDGE = 'Bridge Amplifier'; % Bridge Amplifier for Shimmer3
 HEART = 'Heart Rate'; % Heart Rate for Shimmer2r
 BATT = 'BattVolt'; % Battery Voltage
 INTA1 = 'INT A1'; % Internal ADC for Shimmer3
 INTA12 = 'INT A12'; % Internal ADC for Shimmer3
 INTA13 = 'INT A13'; % Internal ADC for Shimmer3
 INTA14 = 'INT A14'; % Internal ADC for Shimmer3
 PRESSURE = 'Pressure'; % BMP180 Pressure (and Temperature) for Shimmer3
 end

 %%%%%%%%%%%%%%%%%%%%%%
 % Constructor Method

 methods

 function theseMacros = SetEnabledSensorsMacrosClass

 end % function SetEnabledSensorsMacrosClass

 end % methods (Constructor)
end

% Real time data streaming and features calculation

function void = plotandwriteexample(mdl, comPort, captureDuration, fileName)

%% EXAMPLE: plotandwriteexample(trainedClassifier, '3', 30, 'testdata.dat')

if nargin < 4
delay = 0.04;
end

shimmer = ShimmerHandleClass(comPort);
SensorMacros = SetEnabledSensorsMacrosClass;

DELAY_PERIOD = 0.2;

114

nn = 1;
M = [1.33 2.33 3.33];
M1 = dlmread('farhad.dat','','B1..D30');
M2 = dlmread('farhad.dat','','B1..D30');
M3 = dlmread('farhad.dat','','B1..D30');
M4 = dlmread('farhad.dat','','B1..D30');
M5 = dlmread('farhad.dat','','B1..D30');

M = vertcat(M1,M2,M3,M4,M5);
M = M(1:128,1:3);
N = M.';
total_acc_x_test = N(1:1,1:128);
total_acc_y_test = N(2:2,1:128);
total_acc_z_test = N(3:3,1:128);

if (shimmer.connect)

 % Define settings for shimmer
 shimmer.setsamplingrate(51.2);
 shimmer.setinternalboard('9DOF');
 shimmer.disableallsensors;
 shimmer.setenabledsensors(SensorMacros.ACCEL,1);
 shimmer.setaccelrange(0); %

 %GUI define
 time = linspace(0,2.56,128);

 fig = figure('Name','Human Fall Detection','NumberTitle','off','Visible','off');
 fig.Position(3:4) = 600;
 movegui('center')
 fig.Visible = 'on';

 ax1 = subplot(2,1,1,'Parent',fig,'Xgrid','on','Ygrid','on',...
 'XLim',[time(1) time(end)],'YLim',[-45 35]);

 clr = get(groot,'DefaultAxesColorOrder');
 L(1) =
line(time,total_acc_x_test(1,:),'color',clr(1,:),'Parent',ax1,'LineWidth',1.5,'DisplayName','Acce
lerometer X');
 L(2) =
line(time,total_acc_y_test(1,:),'color',clr(2,:),'Parent',ax1,'LineWidth',1.5,'DisplayName','Acce
lerometer Y');
 L(3) =
line(time,total_acc_z_test(1,:),'color',clr(5,:),'Parent',ax1,'LineWidth',1.5,'DisplayName','Acce
lerometer Z');

 xlabel(ax1,'Time (s)')
 ylabel(ax1,'(Accelerometer Readings (m \cdot s^{-2})')

115

 legend(ax1,'show','Location','northwest','Orientation','horizontal')
 title(ax1,['Real Time Fall Detection System: ']);

 ann1 = annotation(fig,'textbox',[ax1.Position(1:3) 0.04],...
 'String','Algorithms Predicted Activity : NA','FontSize',12,'FitBoxToText','off',...
 'BackgroundColor',[0 0.7
0.3],'HorizontalAlignment','Center','VerticalAlignment','middle','FaceAlpha',0.5);

 if (shimmer.start)
 elapsedTime = 0;
 tic;

 while (elapsedTime < captureDuration)
 pause(DELAY_PERIOD);
 [newData,signalNameArray,signalFormatArray,signalUnitArray] =
shimmer.getdata('c');

 if ~isempty(newData)

 switch nn

 case 1
 dlmwrite(fileName, newData, 'delimiter', '\t','precision',6);
 M1 = dlmread('testdata.dat', '',0,1);
 M = vertcat(M2,M3,M4,M5,M1);
 nn = 2;

 case 2
 dlmwrite(fileName, newData, 'delimiter', '\t','precision',6);
 M2 = dlmread('testdata.dat','',0,1);
 M = vertcat(M3,M4,M5,M1,M2);
 nn = 3;

 case 3
 dlmwrite(fileName, newData, 'delimiter', '\t','precision',6);
 M3 = dlmread('testdata.dat', '',0,1);
 M = vertcat(M4,M5,M1,M2,M3);
 nn = 4;

 case 4
 dlmwrite(fileName, newData, 'delimiter', '\t','precision',6);
 M4 = dlmread('testdata.dat', '',0,1);
 M = vertcat(M5,M1,M2,M3,M4);
 nn = 5;

 case 5
 dlmwrite(fileName, newData, 'delimiter', '\t','precision',6);
 M5 = dlmread('testdata.dat', '',0,1);
 M = vertcat(M1,M2,M3,M4,M5);

116

 nn = 1;

 end

 MM = size(M,1)

 if (MM > 127)
 M = M(1:128,1:3);
 else
 M = dlmread('farhad.dat','','B1..D128');
 end

 N = M.';
 rawSensorDataTest = table(N);
 T_mean = varfun(@Wmean, rawSensorDataTest);
 T_stdv = varfun(@Wstd, rawSensorDataTest);
 T_pca = varfun(@Wpca1, rawSensorDataTest);

 YourArray = table2array(T_mean);
 YourNewTable1 = array2table(YourArray.');
 YourNewTable1.Properties.VariableNames = {'Wmean_total_acc_x_test'
'Wmean_total_acc_y_test' 'Wmean_total_acc_z_test'};

 YourArray = table2array(T_stdv);
 YourNewTable2 = array2table(YourArray.');
 YourNewTable2.Properties.VariableNames = {'Wstd_total_acc_x_test'
'Wstd_total_acc_y_test' 'Wstd_total_acc_z_test'};

 YourArray = table2array(T_pca);
 YourNewTable3 = array2table(YourArray.');
 YourNewTable3.Properties.VariableNames = {'Wpcal_total_acc_x_test'
'Wpcal_total_acc_y_test' 'Wpcal_total_acc_z_test'};

 C = {'NA'};
 T = cell2table(C,...
 'VariableNames',{'activity'});

 humanActivityTest = [YourNewTable1, YourNewTable2, YourNewTable3, T];

 pause(0.25);

 total_acc_x_test = N(1:1,1:128);
 total_acc_y_test = N(2:2,1:128);
 total_acc_z_test = N(3:3,1:128);

 %% Loop through the raw data and plot the sensor values
 try
 for ii = 1:height(humanActivityTest)
 mycell1 = fieldnames(mdl);
 myclassifier1 = strcat('mdl.',mycell1(3));

117

 activity = predict(eval(myclassifier1{:}),humanActivityTest{ii,1:end-1});

 if activity == 'Forward Fall'
 predclr = [1 0 0];
 pause(1.01);

 elseif activity == 'Backward Fall'
 predclr = [1 0 0];
 pause(1.01);

 elseif activity == 'Left Fall'
 predclr = [1 0 0];
 pause(1.01);

 elseif activity == 'Right Fall'
 predclr = [1 0 0];
 pause(1.01);

 else
 predclr = [0 0.7 0.3];
 end

 set(ann1,'String',['Directive Fall Detection : ' char(activity)],...
 'BackgroundColor',predclr);

 L(1).YData = total_acc_x_test;
 L(2).YData = total_acc_y_test;
 L(3).YData = total_acc_z_test;

 drawnow
 %pause(0.1)
 end

 catch err
 end

 end
 elapsedTime = elapsedTime + toc;
 tic;

 end
 elapsedTime = elapsedTime + toc;
 shimmer.stop;

end
 shimmer.disconnect;

end

118

% Call classifier to detect real time directive fall detection
% Calling the function to detect real-time fall detection system.

plotandwriteexample(trainedClassifier, '3', 30, 'testdata.dat')

%Developed by: Shaikh Farhad Hossain, MSc Engg. (IICT, BUET), Bangladesh

 %Email to: farhadcse05@yahoo.com

