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ABSTRACT 
 
The unpredictable nature and global impact of natural and man-made disasters 

enforce governments of disaster-prone regions to provide practical response plans to 

minimize damage, ecological disruption and loss of human life. Humanitarian 

logistics management is one of the key issues that should be considered for an 

appropriate response, in particular, the planning of the transport of commodities 

required during response and the evacuation of injured people. This study proposes a 

multi-objective stochastic programming model for relief chain logistics planning that 

integrates location, inventory, and routing decisions considering logistics flow of both 

commodities and injured people. The model features five objectives: minimizing 

weighted sum of unserved demand and unserved injury, minimizing travel time for 

flow of commodities and injured people and minimizing total costs associated with 

flow of commodities. The first two objectives pursue fairness – expending the best 

effort to ensure delivery of relief commodities and evacuation of injured people. The 

other objectives pursue the efficiency goal. The proposed model is solved as a mixed-

integer programming model applying the augmented ε-constraint method. A case 

study is presented to illustrate the potential applicability of this model for disaster 

planning. The findings demonstrate that the proposed model can benefit making 

decisions on facility location, resource allocation, and routing decisions in cases of 

disaster relief and evacuation efforts. 
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Chapter 1 

INTRODUCTION 

The World Health Organization defines a disaster as any occurrence that causes 

damage, destruction, ecological disruption, loss of human life, human suffering, 

deterioration of health and health services on a scale sufficient to warrant an 

extraordinary response from outside the affected community or area. Earthquakes, 

hurricanes, tornadoes, volcanic eruptions, fire, floods, blizzard, drought, terrorism, 

chemical spills, nuclear accidents are included among the causes of disasters, and all 

have significant devastating effects in terms of human injuries and property damage.  

The rapid growth in world population and increased human concentrations in 

dangerous environment have led to rises in both the frequency and severity of natural 

disasters; consequently, the number of people affected by natural disasters continues 

to rise. For example, between 2000 and 2007, the number of reported natural disasters 

was approximately 460 disasters per year, indicating a dramatic increase, and also the 

number of victims is generally between 100 million and 400 million per year around 

the world [1]. 

The enormous scale of these disasters has called attention to the need for effective 

management of the relief supply chains. Emergency management is a discipline that 

involves preparing for disaster before it occurs, responding to disasters immediately, 

as well as supporting and rebuilding societies after the disasters have struck [2]. In a 

world where resources are stretched to the limit and the question of humanitarian 

relief seems too often to be tied with economical consideration, better designs and 

operations are urgently needed to help safe thousands of lives and millions of dollars.  

Well-planned logistical support operations contribute significantly in reducing losses 

and damages and in sustaining survivors in the aftermath of a disaster [3]. 

Response is defined as the set of actions conducted during the initial impact of these 

emergency situations, including those to save lives and prevent further property 

damage providing emergency relief to victims of natural or manmade disasters [4]. 

Immediately after a disaster has struck, efforts are mainly focused on searching for 

and rescuing survivors. This requires logistics support by means of transporting 

injured people from affected areas to hospitals or other emergency medical centers. It 

is furthermore necessary to dispatch commodities (such as food or tents) and 
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equipment to the affected areas. These commodities may either come from designated 

warehouses or directly from suppliers. The timely and effective mobilization of 

resources is essential in aiding people who are made vulnerable by natural disasters. 

The supply shortage may render emergency response ineffective and result in 

increased suffering [5, 6]. 

Under circumstances of considerable uncertainty in conditions, dispatching and 

transporting commodities from a variety of places to a variety of areas can lead to 

considerable complexities in planning. 

Since it is almost impossible to speculate the timing and the intensity of any disaster, 

it is highly demanding to exactly estimate the impact, damage, and the resource needs 

in advance. Thus, the planning problem should be naturally addressed as a stochastic 

problem where randomness arises not only from demand but also from supply, cost, 

and travel time.  

In real humanitarian operations, it is often seen that demand, supply, and cost are 

uncertain during the first stage of disaster response [7].Uncertainty in supply is caused 

by the variability brought about by how the supplier operates because of the faults or 

delays in the supplier’s deliveries. It is often unknown which resources are available, 

and even the involvement and contribution of suppliers is unpredictable [8]. On the 

other hand, per-positioned assets can be destroyed by a disaster. Uncertainty in the 

cost of the operations generally happens because of the uncertainty associated with 

routes, suppliers, etc. Travel times between two locations can be uncertain due to the 

damaged infrastructure and unreliable information regarding the road conditions. 

Finally, demand uncertainty, according to Davis [9], is the most important of the three 

and is presented as demand volatility or inaccurate assessments. 

The motivation behind this study that differentiates this paper from the existing ones 

in the related literature can be summarized as follows:  

 Achieving a model which integrates strategic, tactical, and operational decisions. 

Although there is a strong relation between the locations of facilities; the 

allocation of suppliers, vehicles, and customers to the facilities; and the design of 

routes around the facilities, the interrelations between those are often ignored. 

Separating different level decisions will lead to suboptimal outcomes.  
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 Considering both the uncertain and dynamic features of disaster relief operation. 

Most of the available location–routing problem (LRP) literature focuses on the 

development of purely deterministic models. For real-world applications, 

however, various sources of uncertainty (demand, cost, travel times, etc.) have to 

be considered. It would thus be of high practical and academic relevance to 

consider stochastic to a greater extent with respect to LRP models. 

 Applying the model to a real-world disaster relief chain. Actually applying LRP 

models to real-world decision problems not only broadens the spectrum of 

considered location–routing options but also provides evidence of their efficacy 

and practicality. While LRPs are generally a very well-researched class of 

decision problems, the academic contributions to this stream of research are too 

rarely applied and adapted to actual real-world problem settings. Closing the gap 

between theory and practice offers many appealing research opportunities. 

1.1 Rationale of the Study 

Humanitarian logistics is a branch of logistics which specializes in organizing the 

warehousing and delivery of supplies to the affected area, and transportation of the 

injured person from the affected area during or after natural disasters or complex 

emergencies. With a focus on disaster-related issues, humanitarian logistics research 

is becoming a key factor in devising improved ways of managing multi-stakeholder 

relief operations. Based on recent papers calling for more research in humanitarian 

logistics and a number of literature reviews, several authors (e.g. Wassenhove 2006; 

Chandraprakaikul 2010; Tatham and Pettit 2010; Caunhye, Nie, and Pokharel 2012; 

Celik et al. 2012; Galindo and Batta 2013; Day 2014) suggest that there is a need for 

operations research and management science (OR/MS) specialists to transfer more 

techniques from commercial SCM into humanitarian logistics research [10-16]. 

Beamon and Balcik [17] have compared commercial and humanitarian SCM and 

suggested that the ultimate goal to deliver the right supplies in the right quantities to 

the right locations at the right time is similar. They also discuss the differences based 

on revenue sources, goals, stakeholders and performance measurement between the 

two. Additionally, while high market incentive and low risk are associated with 

commercial SCM, low market incentive and high risk can be observed in 

humanitarian logistics [18]. 
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Performance measurement in humanitarian logistics is not necessarily similar to 

commercial logistics [14, 17-18]. Celik et al. [14] point that not only effectiveness, 

but also efficiency of post-disaster logistics activities are needed to capture 

performance. Christopher and Tatham [18] also discuss the need for developing 

appropriate performance metrics for humanitarian operations that capture the aid 

recipient’s viewpoint. Performance in humanitarian relief chains is very difficult to 

measure because of some distinct characteristics that humanitarian operations have, 

such as very unpredictable demand, difficulty to obtain data from operations, 

unpredictable working environment, impact of unknown variables, like geography, 

political situations or weather etc. This research attempts to measure and optimize the 

performance of relief network considering the uncertainty that a disastrous event 

poses. 

A relief supply chain has three echelons or levels where decision making is required: 

supplier level, regional distribution center level and finally at the affected areas. So 

far very few works have considered the decision making in all three echelons of 

humanitarian logistics network including logistics flow of both commodities and 

injured people. Again, none of them considered multi-objective model to minimize 

weighted sum of unserved demand and unserved injury, travel time for flow of 

commodities and injured people, and total costs associated with flow of commodities. 

So, developing a multi-objective model considering supply of commodities and 

service of injured people is still an open problem and thereby yields the scope of this 

thesis. 

1.2 Objectives of the Study 

The specific objectives of this research are: 

 To develop a constrained Mixed Integer Programming (MIP) model for relief 

chain logistics planning that integrates location, inventory, and routing 

decisions considering logistics flow of both commodities and injured people. 

 To optimize the formulated multi-objective MIP model by minimizing 

weighted sum of unserved demand and unserved injury, travel time for flow of 

commodities and injured people and total costs associated with flow of 

commodities.   
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So, in short the research will benefit making decisions on facility location, resource 

allocation, and routing decisions in case of disaster relief efforts. 

There are some limitations associated with this study. In this research, augmented ε-

constraint method has been used to solve the multi-objective MIP model. Augmented 

ε-constraint method can efficiently solve any small scale model with two or three 

objective functions. But, it is not very efficient and cannot produce pareto optimal 

solutions in large scale model like the one discussed in this research. Heuristic 

algorithms can be used instead of ε-constraint method to obtain satisfactory result. 

Moreover, most data used in numerical example to validate the model are 

hypothetical data collected from published papers. Actual data could produce more 

realistic result in this case. 

1.3 Outline of the Methodology 

The research methodology is outlined below: 

 Appropriate locations for establishing Emergency Medical Centers (EMC) and 

Regional Distribution Centers (RDC) has been selected by using binary 

variables. 

 Appropriate routes for dispatching injured person and relief commodities are 

determined. 

 Optimal number of injured person dispatched from affected areas (AA) has 

been determined based on the capacity of EMCs and optimal quantity of relief 

commodities dispatched from RDCs are determined based on demand. 

 To deal with the uncertainty on demand, supply and cost parameters; a 

scenario based approach is used considering multiple disaster scenarios. 

 The objective functions are developed for unserved demand, unserved injury, 

travel time and cost. 

 The model has been optimized and illustrated for an example problem. 
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Chapter 2 

LITERATURE REVIEW 

The operation research community has been investigating the field of humanitarian 

logistics since the 1990s; however, recent disasters have called for increased attention 

to these kinds of logistical problems. The related academic literature in this context 

falls into five streams: facility location, vehicle routing, inventory management, 

network flow, and combination of them (location–routing, location–allocation, 

allocation–routing, network flow routing, etc.). In this section, the literature on 

disaster relief logistics problems is reviewed. This review is divided into two 

contrasting categories: literature on facility location, inventory management, vehicle 

routing, and location–routing deterministic problems in disaster relief logistics and the 

one on the management of uncertainties in disaster relief logistics. Some of the key 

studies are discussed in each category. 

2.1 Facility Location, Inventory Management, Vehicle Routing, and LRPs 

Facility location decisions affect the performance of relief operations since the 

number and locations of the distribution centers directly influence the response time 

and costs incurred throughout the relief chain [19]. The classical FLP selects the best 

p sites among a range of possible locations with the objective of minimizing total 

demand-weighted travel distance between demand nodes and facilities (p-median 

problem) while other objectives considered for FLP are minimizing fixed costs of 

selected facilities (set covering problem), maximizing the coverage of demand 

(maximal covering problem), and minimizing maximum distance between demand-

facility pairs (p-center problem) [20-25].  

In FLP, facilities might have fixed capacities or their sizes might have to be optimized 

[26]. Extensions to FLP also include the allocation problem where facilities are 

located simultaneously with the flows between demand nodes and facilities (location–

allocation problem). Salhi and Rand [27] show that when tours are not explicitly 

considered in this model, distribution costs may increase. Owen and Daskin [28] 

provide an extensive survey on FLP and its extensions.  
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Ray [29] presented a single-commodity, multi-modal network flow model for a 

capacitated network over a multi-period planning horizon. In this model the sum of 

incurred costs for the transportation and storage of food in West Africa is minimized. 

Parentela and Nambisan [30] developed emergency response plans that combined all 

the information in connection with the location and capacities of resource suppliers, 

the spatial distribution of the victims, the environment and the economy. Brotcorne et 

al. [31] classified the location and relocation models of ambulances and other 

emergency vehicles into three categories: deterministic models, probabilistic queuing 

models, and dynamic models. 

Akkihal [32] considered optimal locations for warehousing non-consumable 

inventories required for the initial aid deployment. Tzeng et al. [33] developed a 

multi-objective relief-distribution model for designing relief delivery systems using a 

real-life case. The model featured three objectives including minimization of total 

costs, minimization of the total travel time, and maximization of the minimal 

satisfaction of fairness during the planning horizon.  

Ukkusuri and Yushimito [34] developed a model for selecting the optimal locations 

for the pre-positioning of supplies in such a way to maximize the probability that 

demand points can be reached from a single supply facility in the presence of 

transportation network disruptions. 

Tofighi et al. [35] addressed a two-echelon humanitarian logistics network design 

problem for joint stock prepositioning and relief distribution involving multiple 

central warehouses (CWs) and local distribution centers (LDCs) and developed a 

novel two-stage scenario-based possibilistic-stochastic programming (SBPSP) 

approach. Golabi et al. [36] investigated a combined mobile and immobile pre-

earthquake facility location problem. They developed a mathematical model which 

minimizes the aggregate traveling time for both people and UAVs over a set of 

feasible scenarios. 

Research on inventory management focuses on determining the item quantities 

required at various RDCs along the relief chain, procurement quantities, and order 

frequency; it also identifies the appropriate amount of safety stock to maintain. 

Whybark [37] argued that disaster planning is centered on disaster inventories and, 
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therefore, acquisition, storage, and the distribution of products are significant. 

However, little research is known on the inventory in disaster relief logistics. Ozbay 

and Ozguven [38] developed a time-dependent inventory control model for safety 

stock levels that could be used for the development of efficient pre- and post-disaster 

plans. Beamon and Kotleba [39] formulated a stochastic inventory control model that 

determined optimal order quantities and reorder points for a pre-positioned warehouse 

during the course of a long-term emergency relief response. Peng et al. [40] proposed 

a system dynamics disruption analysis approach for inventory and logistics planning 

and developed model which will analyze the behaviors of disrupted disaster relief 

supply chain by simulating the uncertainties associated with predicting post-seismic 

road network and delayed information. Toyasaki et al. [41] focused on horizontal 

cooperation in inventory management which is currently implemented in the United 

Nations Humanitarian Response Depot (UNHRD) network. Their work follows a 

two-step research approach, which involves collection of empirical data and 

quantitative modeling to examine and overcome the coordination challenges of the 

network. 

Similar to FLP, VRP has posed a challenge to researchers and practitioners for a long 

time. The classical standard vehicle routing problem (VRP) generates a set of routes 

which visit each customer exactly once. It aims at minimizing the total travel time 

and/or the operational cost. The problem was first introduced by Dantzig and Ramser 

[42] to solve a real-world application concerning the delivery of gasoline to service 

stations. A comprehensive overview of the VRP can be noticed in Toth and Vigo [43], 

and other general surveys on the deterministic VRP also can be found in Laporte [44]. 

Balcik et al. considered a vehicle-based last mile distribution system, in which an 

LDC stores and distributes emergency relief supplies to a number of demand 

locations. They proposed a mixed integer programming model that determines 

delivery schedules for vehicles and equitably allocates resources, based on supply, 

vehicle capacity, and delivery time restrictions, with the objectives of minimizing 

transportation costs and maximizing benefits to aid recipients [45]. Afsar et al. [46] 

developed exact and heuristic algorithms for solving the generalized vehicle routing 

problem with flexible fleet size. The problem aims at minimizing the total cost for a 

set of routes, such that each cluster is visited exactly once and its total demand is 

delivered to one of its nodes. 



9 
 

Mosterman et al. [47] presented an automated emergency response system and an 

experimental framework for its design and validation. The system consists of a high-

level mission optimization and a fleet of heterogeneous autonomous vehicles. 

LRP models have been investigated in detail resulting in an abundant literature. These 

models integrate the discrete facility location (FLP) and vehicle routing problems 

(VRP). Both FLP and VRP are NP-Hard, however, VRP is usually considered to be 

more inhibiting for exact methods. As for modeling techniques, Haghani and Oh [19] 

proposed a formulation and solution of a multi-commodity, multi-modal network flow 

model for disaster relief operations. Their model could determine detailed routing and 

scheduling plans for multiple transportation modes carrying various relief 

commodities from multiple supply points to demand points in a disaster area. They 

formulated the multi-depot mixed pickup and delivery vehicle routing problem with 

time windows as a special network flow model over a time-space network. The 

objective was minimizing the sum of the vehicular flow costs, commodity flow cost, 

supply/demand storage cost and inter-modal transfer costs over all time periods. They 

developed two heuristic solution algorithms; the first was a Lagrangian relaxation 

approach and the second was an iterative fix-and-run process. Their work is one of the 

few studies that can be implemented at the operational level. 

Barbarosoglu et al. [48] proposed a bi-level modeling framework to address the crew 

assignment, routing, and transportation issues during the initial response phase of 

disaster management in a static manner. Ozdamar et al. [49] addressed an emergency 

logistics problem for distributing multiple commodities from a number of supply 

centers to distribution centers near the affected areas. They formulated a multi-period 

multi-commodity network flow model to determine pickup and delivery schedules for 

vehicles as well as the quantities of loads delivered on these routes, with the objective 

of minimizing the amount of unsatisfied demand over time. The structure of the 

proposed formulation enabled them to regenerate plans based on changing demand, 

supply quantities, and fleet size. They developed an iterative Lagrangian relaxation 

algorithm and a greedy heuristic to solve the problem. 

Lin et al. [50] designed a logistics model for delivery of prioritized items for logistics 

operations that is applicable to a disaster relief effort. Their model considered multi-

items, multi-vehicles, multi-periods, soft time windows, and split delivery strategy 
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scenario and is formulated as a multiobjective programming model. Najafi et al. [51] 

devised a dynamic model for dispatching and routing vehicles in response to an 

earthquake. They considered two hierarchical objective functions that are concerned 

with minimizing transit times for both goods and the injured people. 

LRP models integrate the discrete FLP and VRP and optimize the locations and 

capacities of facilities as well as vehicle routes and schedules. A classification of LRP 

models is presented by Min et al. [52]. 

Yi and Ozdamar [3] proposed a model that integrated the supply delivery with 

evacuation of wounded people in disaster response activities. They considered 

establishment of temporary emergency facilities in disaster area to serve the medical 

needs of victims immediately after disaster. They used the capacity of vehicles to 

move wounded people as well as relief commodities. Their model considered vehicle 

routing problem in conjunction with facility location problem. The proposed model is 

a mixed integer multi-commodity network flow model that treats vehicles as integer 

commodity flows rather than binary variables. That resulted in a more compact 

formulation but post processing was needed to extract detailed vehicle routing and 

pick up or delivery schedule. They reported that post processing algorithm was 

pseudo-polynomial in terms of the number of vehicles utilized. 

Rath and Gutjahr [53] developed a three-objective warehouse location–routing 

problem in disaster relief. The problem encompasses strategic costs, operative costs, 

and uncovered demand as objectives. The authors recommended an exact solution 

method as well as a meta-heuristic technique building on an MILP formulation with a 

heuristically generated constraint pool. Lin et al. [54] proposed the location of 

temporary depots around the disaster-affected area identifying tours for vehicles to 

deliver items from each located temporary depot. They set forth a two-phase heuristic 

approach. It locates temporary depots and allocates covered demand areas to an open 

depot in phase I and explores the best logistics performance under the given solution 

from phase I in phase II. 

Barzinpour and Esmaeili [55] developed a multi-objective location allocation model 

for preparation planning phase of disaster management. Rezaei-Malek et al. [56] 

aimed at developing a new integrated model in order to determine the optimum 

location-allocation and distribution plan, along with the best ordering policy for 
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renewing the stocked perishable commodities at the pre-disaster phase. Caunhye et al. 

[57] proposed a two-stage location-routing model with recourse for integrated 

preparedness and response planning under uncertainty. The model is used for risk 

management in disaster situations where there are uncertainties in demand and the 

state of the infrastructure. 

The literatures mentioned above are based on the hypothesis that disaster information 

is deterministic. Since disaster response needs are not known with certainty at the 

moment of making a plan, a stochastic approach is thus needed to be applied in which 

uncertain data are used for planning the response. 

2.2 Stochastic optimization approach for disaster relief logistics 

The significance of uncertainty has motivated a number of researchers to address 

stochastic optimization in disaster relief planning involving the distribution of 

emergency commodities and necessity items by probabilistic scenarios representing 

disasters and their outcomes (e.g., Cormican et al. 1998; Barbarosoglu and Arda 2004; 

Beraldi et al. 2004; Chang et al. 2007; Beraldi and Bruni 2009; Mete and Zabinsky 

2010; Rawls and Turnsquist 2010) [4, 58-63]. Research addressing the design of 

disaster planning is limited to those that modeled the stochastic situation under 

demand uncertainty and those that modeled it under demand and supply uncertainty 

(or demand/cost uncertainty). 

Barbarosoglu and Arda [4] developed a two-stage stochastic programming model for 

transportation planning in disaster response. Their study expanded on the multi-

commodity, multi-modal network flow problem of Haghani and Oh [19] by including 

uncertainties in supply, route capacities, and demand requirements. The inclusion of 

uncertainties is a prominent advance in the analysis.  Chang et al. [60] modeled 

locating and distributing rescue resources in a flood emergency under possible flood 

scenarios using two-stage stochastic programming; the model could serve as a 

decision-making tool for the government agencies in the planning of flood emergency 

logistics under demand uncertainty. Salmeron and Apte [64] developed a two-stage 

stochastic optimization model for planning the allocation of budget for acquiring and 

positioning relief assets; in this model, the first-stage decisions represented the “aid 

pre-positioning” by the expansion of resources such as warehouses, medical facilities, 

ramp spaces, and shelters, whereas the second stage concerned the logistics of the 
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problem under demand/cost uncertainty. Rawls and Turnquist [63] proposed a model 

for immediate post-disaster response under uncertainty in physical damage caused by 

the disaster. Here they included pre-disaster first stage decisions of locating and 

stocking warehouses which can be damaged by the disaster. In the second stage, 

routes are constructed after obtaining information about demand and remaining 

supply. Demand, transportation network and surviving stock of various commodities 

after an event are all subject to uncertainty. In a similar manner, Rawls and Turnquist 

[65] treat demand and infrastructure as stochastic elements, yet omitting potential 

deterioration of pre-positioned supply. Mete and Zabinsky [62] developed a stochastic 

programming model for the storage and distribution of medical supplies during the 

disasters while capturing the disaster specific information and possible effect of 

disasters through the use of disaster scenarios. With this methodology, they stated that 

balancing the risk and preparedness was possible in spite of the stochasticities 

associated with the disasters. They applied the model for possible earthquake 

scenarios in Seattle, Washington, USA. Bozorgi-Amiri et al. [66] designed a robust, 

stochastic programming model to simultaneously optimize the humanitarian relief 

operations in both the preparedness and response phases. Their model is composed of 

two stages; the first stage determines the location of RDCs and the required inventory 

quantities for each type of relief items under storage, and the second stage determines 

the amount of transportation from RDCs to affected areas (AAs). Their model is 

based on the hypothesis that disaster information is not time-variant and did not 

address routing of vehicles. To integrate strategic, tactical, and operational decisions, 

Bozorgi-Amiri and Khorsi [67] proposed a multi-objective dynamic stochastic 

programming model for a humanitarian relief logistics problem where decisions are 

reached for pre- and post-disaster. The model features three objectives: minimizing 

the maximum amount of shortages among the affected areas in all periods, the total 

travel time, and sum pre- and post-disaster costs. The proposed model is solved as a 

single-objective mixed-integer programming model applying the ε-constraint method. 

They did not address logistics flow of injured person in their model.  

Najafi et al. [68] proposed a multi-objective, multi-modal, multi-commodity, multi-

period stochastic model to manage the logistics of both commodities and injured 

people in the earthquake response and represented the data of uncertainty by interval 

data. The proposed stochastic model enjoys three hierarchical objective functions 
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which, respectively, are as follows: minimization of total waiting time of unserved 

injured persons, minimization of total lead time of meeting the commodity needs, and 

minimization of total vehicles utilized in the response. It does not address the problem 

of determining the response facility locations and inventory levels of the relief 

supplies at each facility. 

Rennemo et al. [69] presented a three-stage mixed-integer stochastic programming 

model for disaster response planning, considering the opening of local distribution 

facilities, initial allocation of supplies, and last mile distribution of aid. The vehicles 

available for transportation, the state of the infrastructure and the demand of the 

potential beneficiaries are considered as stochastic elements. Ahmadi et al. [70] 

proposed a two-stage stochastic programming multi-depot location-routing model 

considering network failure, multiple uses of vehicles, and standard relief time. The 

model determines the locations of local depots and routing for last mile distribution 

after an earthquake. 

Safeer et al. [71] proposed a response planning stochastic model for humanitarian 

transportation operations. The objective of the proposed model is to minimize total 

transportation duration during emergency situations. The model aims to maximize 

satisfaction levels through attaining quick response which can help in making 

decisions on disaster relief logistics. Moreno et al. [72] developed a two-stage 

stochastic network flow model to help decide how to rapidly supply humanitarian aid 

to victims of a disaster considering factors such as budget allocation, fleet sizing of 

multiple types of vehicles, procurement, and varying lead times over a dynamic 

multiperiod horizon. Manopiniwes and Irohara [73] proposed a stochastic linear 

mixed-integer programming model for integrated decisions in the preparedness and 

response stages that considers three key areas of emergency logistics: facility and 

stock prepositioning, evacuation planning and relief vehicle planning. 

Though these efforts have provided us different concepts for handling disaster relief 

operations efficiently, there is a paucity of research on integrating strategic, tactical, 

and operational decisions in the literature. 

In the current study, a model is presented that integrates location, inventory, and 

routing decisions. To this end, a supply chain is considered including multiple 

suppliers, RDCs, EMCs, hospitals and demand points and addressing a multi-period, 
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multi-modal transportation of relief commodity and injured person under uncertainty. 

Environmental uncertainty is described by discrete scenarios. 
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Chapter 3 

COMPUTATIONAL OPTIMIZATION 

Operations research approaches used in natural disasters management can be of 

various types. Mathematical programming, heuristic methods, probability theory and 

statistics, and simulations are some of them. Mathematical programming is entirely 

applied for problem formulation, such as mixed or pure integer programming, linear 

or non-linear programming, stochastic programming, etc. 

As for deterministic problems, exact methods or heuristics are most commonly used. 

The branch and bound algorithm was used by Gkonis et al. [74] to solve linear mixed 

integer programming with oil spill response problem. Similarly, Sebbah et al. [75] 

presented this exact method to maximize the utility function of the relief plans of 

military logistics planning in humanitarian relief operations. Jia et al. [76] applied and 

evaluated three heuristic algorithms to solve maximal covering problem which are 

genetic algorithm, locate-allocate and Lagrangian relaxation. Lagrangian relaxation 

was also found in Ozdamar et al. [49] to compute linear and integer multi-period 

multi-commodity network flow problem. Yi and Ozdamar [3] gave suggestions on 

how to select the most appropriate heuristic to solve different location problem 

instances. 

In Multi-Objective Mathematical Programming (MOMP) there are more than one 

objective functions and, in general, there is no single optimal solution that 

simultaneously optimizes all the objective functions. In these cases the decision 

makers are looking for the ‘‘most preferred” solution, in contrast to the optimal 

solution. In MOMP the concept of optimality is replaced with that of Pareto 

optimality or efficiency. The Pareto optimal (or efficient, non-dominated, non-

inferior) solutions are the solutions that cannot be improved in one objective function 

without deteriorating their performance in at least one of the rest. 

According to Hwang and Masud [77], the methods for solving MOMP problems can 

be classified into three categories, based on the phase in which the decision maker 

involves in the decision making process expressing his/her preferences: The a priori 

methods, the interactive methods and the a posteriori or generation methods. In a 

priori methods the decision maker expresses his/her preferences before the solution 
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process (e.g. setting goals or weights to the objective functions). The criticism about 

the a priori methods is that it is very difficult for the decision maker to know 

beforehand and to be able to accurately quantify (either by means of goals or weights) 

his/her preferences. In the interactive methods phases of dialogue with the decision 

maker are interchanged with phases of calculation and the process usually converges, 

after a few iterations, to the most preferred solution. The decision maker progressively 

drives the search with his answers towards the most preferred solution. The drawback 

is that he/she never sees the whole picture (the Pareto set) or an approximation of it. 

Hence, the most preferred solution is ‘‘most preferred” in relation to what he/she has 

seen and compare so far. In the a posteriori methods the efficient solutions of the 

problem (all of them or a sufficient representation) are generated and then the 

decision maker involves, in order to select among them, the most preferred one. In 

general, the most widely used, generation methods are the weighting method and the 

ε-constraint method. These methods can provide a representative subset of the Pareto 

set which in most cases is adequate. 

3.1 The ε-constraint method 

Assume the following MOMP problem: 

max  1 2( ( ), ( ),..., ( ))pf x f x f x   

st ,x S   

Where x is the vector of decision variables, 1( ),..., ( )pf x f x  are the p objective 

functions and S is the feasible region. 

In the ε-constraint method we optimize one of the objective functions using the other 

objective functions as constraints, incorporating them in the constraint part of the 

model as shown below [78, 79]. 

max  1( )f x  

st 

2 2( ) ,f x e  

3 3( ) ,f x e  

 . . . 

( ) ,p pf x e  

   .x S  
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By parametrical variation in the RHS of the constrained objective functions (
ie ) the 

efficient solutions of the problem are obtained. 

The ε-constraint method has several advantages over the weighting method. 

1. For linear problems, the weighting method is applied to the original feasible 

region and results to a corner solution (extreme solution), thus generating only 

efficient extreme solutions. On the contrary, the ε-constraint method alters the 

original feasible region and is able to produce non-extreme efficient solutions. As 

a consequence, with the weighting method we may spend a lot of runs that are 

redundant in the sense that there can be a lot of combination of weights that result 

in the same efficient extreme solution. On the other hand, with the ε-constraint we 

can exploit almost every run to produce a different efficient solution, thus 

obtaining a more rich representation of the efficient set. 

2. The weighting method cannot produce unsupported efficient solutions in multi-

objective integer and mixed integer programming problems, while the ε-constraint 

method does not suffer from this pitfall [80, 81]. 

3. In the weighting method the scaling of the objective functions has strong influence 

in the obtained results. Therefore, we need to scale the objective functions to a 

common scale before forming the weighted sum. In the e-constrained method this 

is not necessary. 

4. An additional advantage of the ε-constraint method is that we can control the 

number of the generated efficient solutions by properly adjusting the number of 

grid points in each one of the objective function ranges. This is not so easy with 

the weighting method. 

However, despite its advantages over the weighting method, the ε-constraint method 

has three points that need attention in its implementation: (a) the calculation of the 

range of the objective functions over the efficient set, (b) the guarantee of efficiency 

of the obtained solution and (c) the increased solution time for problems with several 

(more than two) objective functions. Mavrotas G. [82] tried to address these three 

issues with a novel version of the ε-constraint method named augmented ε-constraint 

method (AUGMECON). 
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3.2 The augmented ε-constraint method (AUGMECON) 

In order to properly apply the ε-constraint method we must have the range of every 

objective function, at least for the 1p   objective functions that will be used as 

constraints. The calculation of the range of the objective functions over the efficient 

set is not a trivial task. While the best value is easily attainable as the optimal of the 

individual optimization, the worst value over the efficient set (nadir value) is not. The 

most common approach is to calculate these ranges from the payoff table (the table 

with the results from the individual optimization of the p objective functions). The 

nadir value is usually approximated with the minimum of the corresponding column. 

However, even in this case, we must be sure that the obtained solutions from the 

individual optimization of the objective functions are indeed Pareto optimal solutions. 

In the presence of alternative optima that are obtained by a commercial software 

optimal solution is not a guaranteed Pareto optimal solution. In order to overcome this 

ambiguity, lexicographic optimization for every objective function is used in order to 

construct the payoff table with only Pareto optimal solutions. A simple remedy in 

order to bypass the difficulty of estimating the nadir values of the objective functions 

is to define reservation values for the objective functions. The reservation value acts 

like a lower (or upper for minimization objective functions) bound. Values worse than 

the reservation value are not allowed. 

In general, the lexicographic optimization of a series of objective functions is to 

optimize the first objective function and then among the possible alternative optima 

optimize for the second objective function and so on. Practically, the lexicographic 

optimization is performed as follows: we optimize the first objective function (of 

higher priority), obtaining max 1 1f z . Then we optimize the second objective 

function by adding the constraint 1 1f z  in order to keep the optimal solution of the 

first optimization. Assume that we obtain max 2 2f z . Subsequently, we optimize the 

third objective function by adding the constraints 1 1f z and 2 2f z in order to keep 

the previous optimal solutions and so on, until we finish with the objective functions. 

The second point of attention is that the optimal solution of is guaranteed to be an 

efficient solution only if all the ( 1p  ) objective functions’ constraints are binding [81, 

83]. Otherwise, if there are alternative optima (that may improve one of the non-

binding constraints that correspond to an objective function), the obtained optimal 
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solution of is not in fact efficient, but it is a weakly efficient solution. In order to 

overcome this ambiguity, it is required to transform the objective function constraints 

to equalities by explicitly incorporating the appropriate slack or surplus variables. In 

the same time, these slack or surplus variables are used as a second term (with lower 

priority in a lexicographic manner) in the objective function, forcing the program to 

produce only efficient solutions. The new problem becomes: 

max  1 2 3( ( ) ( ... ))pf x eps s s s      

st 

2 2 2( ) ,f x s e   

3 3 3( ) ,f x s e   

 . . . 

( ) ,p p pf x s e   

  x S and ,is R   

Where eps is an adequately small number (usually between 310  and 610 ). 

In order to avoid any scaling problems it is recommended to replace the is  in the 

second term of the objective function by ,i is r where 
ir  is the range of the ith 

objective function (as calculated from the payoff table). Thus, the objective function 

of the ε-constraint method becomes: 

max 1 2 2 3 3( ( ) ( ... )).p pf x eps s r s r s r      

Practically, the ε-constraint method is applied as follows: From the payoff table we 

obtain the range of each one of the 1p   objective functions that are going to be used 

as constraints. Then we divide the range of the ith objective function to 
iq equal 

intervals using ( 1iq  ) intermediate equidistant grid points. Thus we have in total (

1iq  ) grid points that are used to vary parametrically the RHS ( ie ) of the ith 

objective function. The total number of runs becomes 2 3( 1) ( 1) ... ( 1)pq q q      ). 

A desirable characteristic of the ε-constraint method is that we can control the density 

of the efficient set representation by properly assigning the values to the iq . The 

higher the number of grid points the more dense is the representation of the efficient 

set but with the cost of higher computation time. A tradeoff between the density of the 

efficient set and the computation time is always advisable. The flowchart of the 

algorithm is as follows: 
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Figure 3.1: Flowchart of the AUGMECON method 
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Chapter 4 

MODEL DEVELOPMENT 

4.1 Problem Definition 

In case of disaster response, efficient planning can reduce both the human suffering 

and economical expenses caused by the disastrous event. As a part of designing an 

efficient relief distribution network we must keep in mind that, there is a strong 

relation between the locations of facilities; the allocation of suppliers, vehicles, and 

customers to the facilities; and in the design of routes around the facilities. Thus, the 

need of an integrated logistic system has become a primary objective. In the current 

study, a constrained Mixed Integer Programming (MIP) model for relief chain 

logistics planning that integrates location, inventory, and routing decisions 

considering logistics flow of both commodities and injured people. In this model, the 

optimal number, the capacity, the location, and inventory levels of facilities are 

determined, and the optimal set of vehicle routes from each facility is sought as well. 

The proposed research will develop a mathematical model to facilitate decision 

making process on facility location, resource allocation, and effective routing in 

disaster relief efforts. The proposed research methodology is outlined below: 

 Appropriate locations for establishing Emergency Medical Centers (EMC) and 

Relief distribution centers (RDC) will be selected by using binary variables. 

 Appropriate routes for dispatching injured person and relief commodities will 

be determined. 

 Optimal number of injured person dispatched from affected areas (AA) will be 

determined based on the capacity of EMCs and optimal quantity of relief 

commodities dispatched from RDCs will be determined based on demand. 

 To deal with the uncertainty on demand, supply and cost parameters; a 

scenario based approach will be used considering multiple disaster scenarios. 

So, the model has five objectives- 

 To minimize the weighted sum of unserved injured person waiting at affected 

area 

 To minimize the travel time required to dispatch injured persons to medical 

facilities 

 To minimize the weighted sum of unsatisfied demand over all commodities 
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 To minimize the travel time to ship items to demand points 

 To minimize the total cost associated with commodity transportation to 

demand points 

From the general supply chain concept we know that if the weighted sum of unserved 

injury and the weighted sum of unsatisfied demand decreases, the distribution cost 

will increase due to more frequent movement among EMCs, RDCs and demand 

nodes. Again while trying to minimize travel time of logistics flow, the inventories at 

distribution centers and shortage at affected areas might increase significantly. This is 

undesirable because increasing shortage or unmet demand means increase in human 

suffering. So we can see these objectives are conflicting in nature and must be 

minimized simultaneously. Hence the multi-objective problem will generate trade off 

solutions or Pareto optimal solutions, which will enable the decision makers to choose 

out of a set of diverse solutions according to their preferences. A number of constraint 

equations were also developed to ensure the model operates within acceptable 

boundaries. 

4.2 Assumptions of the study 

The following assumptions are made for the model: 

 Demand nodes, supply nodes, emergency medical centers, hospitals and the 

distance among them are known during planning phase. 

 There are several types of injured people with different priorities. These types 

of injured people and their priorities may be categorized dependent on factors 

such as the condition of the affected area or the strategies of the disaster 

coordination center. 

 There are several types of commodities with different priorities. These types 

as well as their priorities can be defined dependent on several factors such as 

strategies of the disaster coordination center or the condition of the affected 

area. 

 The level of demand for the AA, the cost, and travel time parameters are 

uncertain and depend on multiple factors including the disaster scenario and 

the impact of the disaster. To represent uncertain parameters, discrete 

scenarios are singled out from a set S of possible disaster situations. It is 
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assumed that the probability distribution of scenarios can be devised by 

subject matter experts or disaster planners. 

 Demand and available supplier capacity will be obtained from historical data. 

In case of absence of historical data reasonable assumptions will be made to 

estimate those values. 

 The logistics plan involves a planning time horizon consisting of a given 

number of time periods since it is concerned with time-variant demand, 

supply, and travel time. 

 An RDC or EMC can be opened in only one of three possible configurations 

with distinct capacity (small, medium, or large), subject to the associated setup 

cost. 

 A heterogeneous fleet that incorporates manifold transportation modes is 

utilized. Some vehicles are intended to carry injured people and some are 

intended to transport commodities. 

 No vehicle can carry both commodities and injured people simultaneously. 

 The transport capacity in both weight and volume of each vehicle carrying 

commodities as well as the transport capacity of a vehicle carrying injured 

people are known. 

 Vehicles’ routes begin and end at one of many designed centers. A route is 

defined as an ordered list of a subset of RDCs, EMCs or AAs with an initial 

center. 

 Each vehicle can complete multiple deliveries in a single planning period, and 

each demand location can be visited multiple times with the same or different 

vehicles in the same planning period. 

 An injured person is only considered served when he/she has been delivered to 

a hospital or an emergency medical center. 

4.3 Model Development 

In this study, a hypothetical relief logistics network has been considered which 

involves relief suppliers, relief distribution centers (RDCs), emergency medical 

centers (EMCs), hospitals and affected areas (AAs), forming a complete relief supply 

chain. 



24 
 

Each RDC has capacity for sending, receiving, and storing commodities. Similarly, 

each EMC and hospital has limited capacity for serving injured person. The demand is 

multi-commodity and usually overwhelms the capacity of the distribution network. 

Similar to the demand, the supply is multi-commodity and might be obtained from 

various sources. In order to model the complicated routing and delivery operations in 

disaster response, a method is proposed that utilizes a set of predetermined routes at 

the expense of a pre-processing effort. 

Set 

I Set of suppliers indexed by i ∈ I 

J Set of candidate Relief Distribution Centers (RDCs) indexed by j ∈ J 

H Set of hospital indexed by h ∈ H 

G Set of candidate Emergency Medical Center (EMCs) indexed by g ∈ G 

K Set of Affected Areas (AAs) by disaster indexed by k ∈ K 

M Set of size of RDCs indexed by m ∈ M 

N Set of size of EMCs indexed by n ∈ N 

S Set of possible scenarios indexed by s ∈ S 

C Set of commodities indexed by c ∈ C 

L Set of injured people indexed by l ∈ L 

V Set of transportation modes indexed by v ∈ V 

T Set of periods indexed by t ∈ T 

,u u  Denotes a specific node containing either a supplier or a RDC, 

,q q  Denotes a specific node containing either a RDC or an AA, 

Deterministic Parameters 

All volume /capacity parameters are given in cubic meter ( 3m ) and all money 

amounts are in unit of 1000$ 

jmf    Fixed cost for opening a RDC of size m at location j 

gnf   Fixed cost for opening a EMC of size n at location g 

ct   Inventory shortage cost for a unit commodity c in period t 

ch   Inventory holding cost for a unit commodity c  

cv   Unit volume of commodity c 
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vCapV  Volume capacity of vehicle type v 

vCapP   Person capacity of vehicle type v 

cPR   Priority of satisfying demand of commodity type c 

lPR   Priority of servicing injury of injured person type l 

FixedRDC   Primary budget for RDC setup 

FixedEMC  Primary budget for EMC setup 

M   A very large number 

vcAC    1 if vehicle type v is able to carry commodity type c, 0 otherwise 

vlAW   1 if vehicle type v is able to carry injured person of type l, 0 otherwise 

vVehicleLimit  Maximum number of available vehicle of type v 

MinServiceLevel  Minimum acceptable service level 

Stochastic Parameters 

sp  Occurrence probability of scenario s 

cist  Procuring cost of a unit commodity c from supplier i under scenario s, in 

period t 

cvstC  Transportation cost of dispatching a unit commodity c using vehicle v under 

scenario s, in period t 

ckstd  Amount of demand for commodity c at AA k under scenario s, in period t 

lkstd  Number of injured people of type l at AA k under scenario s, in period t 

uu vstT    Travel time of tour from node u  to node u  by mode v under scenario s, in 

period t  

qq vstT    Travel time of tour from node j  to node j  by mode v under scenario s, in 

period t  

kgvstT  Travel time of tour from AA k by mode v under scenario s, in period t 

ghvstT  Travel time of tour from EMC g by mode v under scenario s, in period t 

cistCapSup  Capacity of supplier i for commodity type c under scenario s, in period t 

cjstCapRDC   Capacity of RDC j for commodity type c under scenario s, in period t  

lg stCapEMC   Capacity of EMC g for injury type l under scenario s, in period t  

lhstCapHos   Capacity of hospital h for injury type l under scenario s, in period t   
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Deterministic Variables 

jmZ  1 if RDC with capacity category m is located at candidate RDC j; 0 if 

otherwise 

gnZ  1 if EMC with capacity category n is located at candidate EMC g; 0 if 

otherwise 

Stochastic Variables 

cijvstX  Amount of commodity c dispatched from tour r that is initiated from supplier i 

by mode v to RDC j in scenario s and period t 

cjkvstX  Amount of commodity c dispatched from tour r that is initiated from RDC j by 

mode v to AA k in scenario s and period t 

lkgvstX  Number of injured person type l dispatched from tour r that is initiated from 

AA k by mode v to EMC g in scenario s and period t 

lghvstX  Number of injured person type l dispatched from tour r that is initiated from 

EMC g by mode v to hospital h in scenario s and period t 

cjstI  Amount of inventory of commodity c held at RDC j in scenario s and period t 

ckstI  Amount of inventory of commodity c held at AA k in scenario s and period t 

lg stI   Number of injured person of type l being served at EMC g in scenario s and 

period t 

lhstI  Total injured person of type l being served at hospital h in scenario s and 

period t 

ckstdev  Amount of unsatisfied demand of commodity c at AA k in scenario s and 

period t 

lkstdev  Number of unserved injured person of type l at AA k in scenario s and period t 

uu vstPrec   Whether u  precedes u  in a designated route or not 

qq vstPrec   Whether  q   precedes q   in a designated route or not 

ijvstY  1 when tour r is initiated from supplier i and assigned to vehicle v in scenario s 

and period t; 0 if otherwise 

jkvstY  1 when tour r is initiated from RDC j and assigned to vehicle v in scenario s 

and period t; 0 if otherwise 
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kgvstY  1 when tour r is initiated from AA k and assigned to vehicle v in scenario s 

and period t; 0 if otherwise 

ghvstY  1 when tour r is initiated from EMC g and assigned to vehicle v in scenario s 

and period t; 0 if otherwise   

 

To minimize the weighted sum of unserved injured person waiting at affected area 

1 . .s l lksts l k t
Min p PR devZ     

To minimize the travel time required to dispatch injured persons to medical facilities 

 2 . . .s kgvst kgvst ghvst ghvsts k g v t g h v t
Min p T Y T YZ          

 
To minimize the weighted sum of unsatisfied demand over all commodities 

3 . .s c cksts c k t
Min p PR devZ      
To minimize the travel time to ship items to demand points 

 4 .s uu vst uu vst qq vst qq vsts u u v t q q v t
Min p T Prec T PrecZ     

           

        
(s.t. , ;  , )u u I J q q J K    

 
To minimize the total cost associated with commodity transportation to demand 

points 
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Control Balance equation  

Balance equation for logistics flow of injured person from affected areas (AAs) 

llkst kgvst lkstg v
d X dev      , , , l k K s SL t T      

The number of injured person of type l dispatched from AA k cannot exceed the 

number of injured person at AA k in scenario s and period t 

lkgvst lkstg v
X d      , , , l k K s SL t T      

Balance equation of logistics flow of injured person from Emergency Medical Center 

(EMCs) at time period t = 1
 

 

  , , 1 ,l g G s S tL      

Balance equation of logistics flow of injured person from Emergency Medical Center 

(EMCs) at time period t > 1 

 , , 1 ,l g G s S tL      
Balance equation of logistics flow of injured person at Hospitals 

l lghst hvstg v
I X      , , , l h H s SL t T      

Balance Equation for logistics flow of commodity to affected areas (AAs) 

( 1)cks t cjkvst ckst ckst ckstj v
I X d I dev        , , , c k K s SC t T      

The amount of commodity c dispatched to AA k cannot exceed the demand for 

commodity c at AA k in scenario s and period t 

cjkvst ckstk v
X d      , , , c j J s SC t T      

  

lg lst kgvstk v
I X 

lg l lgst kgvst hvstk v h v
I X X    
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Balance equation of logistics flow of commodity c for Relief distribution center 

(RDCs) at time period t = 1 

cijvst cjkvst cjsti v k v
X X I      , , 1 ,c j J s S tC      

Balance equation of logistics flow of commodity c for Relief distribution center 

(RDCs) at time period t > 1 

( 1)cijvst cjs t cjkvst cjsti v k v
X I X I      , , 1 ,c j J s S tC      

Capacity Constraints 

Capacity of EMC g for injury type l in scenario s in period t = 1 

l lgkgvst stk v
X CapEMC     , , 1 ,l g G s S tL      

Capacity of EMC g for injury type l in scenario s in period t > 1 

l lg lgkgvst hvst stk v h v
X X CapEMC      , , 1 ,l g G s S tL      

Capacity of Hospital h for injury type l in scenario s in period t  

lg lhvst hstg v
X CapHos      , , , l h H s SL t T      

Capacity of RDC j for commodity c in scenario s and period t = 1 

cijvst cjsti v
X CapRDC    , , 1 ,c j J s S tC      

Capacity of RDC j for commodity c in scenario s and period t >1 

( 1)cijvst cjs t cjsti v
X I CapRDC    , , 1 ,c j J s S tC      

Capacity of supplier i for commodity c in scenario s and period t 

cijvst cistj v
X CapSup     , , , c i I s SC t T      
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Vehicles capacity is larger or equal to the total number of injured person transported 

from AAs to EMCs and EMCs to Hospitals respectively 

l .kgvst kgvst vl
X Y CapP  , , , ,k g G v V s S tK T       

lg .hvst ghvst vl
X Y CapP  , , , ,g G h v V s tH S T       

The amount of commodity dispatched from suppliers and RDCs must not exceed 

vehicle capacity 

cijvst c vj c
X v CapV    , , ,i I v V s S t T      

cjkvst c vk c
X v CapV    , , ,j J v V s S t T      

Maximum total number of tour should not exceed total number of available vehicle 

kgvst ghvst vk g g h
Y Y VehicleLimit        , ,v V s S t T     

Inventory Constraints 

Upper bound of number of injured person of type l being served at EMC g in scenario 

s and period t 

lg lgst stI CapEMC      , , , l g G s SL t T      

Lower bound of number of injured person of type l being served at EMC g in scenario 

s and period t 

lg l lgst kgvst hvstk v h v
I X X        , , , l g G s SL t T      

Upper bound of number of injured person of type l being served at hospital h in 

scenario s and period t 

l lhst hstI CapHos      , , , l h H s SL t T      
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Upper bound of amount of commodity c being stored at RDC j in scenario s and 

period t 

cjst cjstI CapRDC      , , , c j J s SC t T      

Lower bound of amount of commodity c being stored at RDC j in scenario s and 

period t 

cjst cijvst cjkvsti v k v
I X X       , , , c j J s SC t T      

Facility location and budgetary constraints 

Facility setup cost must stay within initial budgetary limit for EMCs and RDCs 

.gn gng n
f Z FixedEMC   

jm jmj m
f Z FixedRDC    

At most one facility of a certain capacity can be built in a certain location 

1gnn
Z    g G   

1jmm
Z    j J   

Logistics Flow Constraints 

Logistics flow of injured person of type l from AA k to EMC g is possible if an EMC 

is established at that location. 

l .kgvst gnn
X M Z   , , , , ,l g G k K v V s S t TL        

Logistics flow of injured person of type l from EMC g to Hospital h is possible if an 

EMC is established at that location. 

lg .hvst gnn
X M Z   , , , , ,l g G h H v V s S t TL        
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Logistics flow of commodity c from supplier i to RDC j is possible if an RDC is 

established at that location. 

.cijvst jmm
X M Z   , , , , ,c i I j J v V s S t TC        

Logistics flow of commodity c from RDC j to AA k is possible if an RDC is 

established at that location. 

.cjkvst jmm
X M Z   , , , , ,c j J k K v V s S t TC        

Enter and leave every RDC and AA only once in scenario s and period t 

1u uvstu
Prec 

  (s.t. )u I J      , , ,u J v V s S t T      

1uu vstu
Prec 

 (s.t. )u I J     , , ,u J v V s S t T      

1q qvstq
Prec 

 (s.t. )q J K     , , ,q K v V s S t T      

1qq vstq
Prec 

 (s.t. )q J K     , , ,q K v V s S t T      

A particular tour must end at the node from where it started 

0uu vst u uvstu u
Prec Prec  

   (s.t. )u J   , , ,u I v V s S t T      

0qq vst q qvstq q
Prec Prec  

   (s.t. )q K   , , ,q J v V s S t T      

Prevent dispatching injured person to EMCs or Hospitals where no tour is authorized 

lkgvst kgvstl
Y X  , , , ,k g G v V s S tK T       

lgghvst hvstl
Y X  , , , ,g G h v V s tH S T       
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Prevent dispatching commodities to RDCs or AAs where no tour is authorized 

.cijvst ijvstc
X M Y   , , , ,i j J v V s S tI T       

.cjkvst jkvstc
X M Y   , , , ,j J k K v V s S t T       

All commodities and injured people must be transported by authorized vehicles 

.cijvst cjkvst vci j j k
X X M AC      , , , c v V s SC t T      

lg lg .kvst hvst vlg k g h
X X M AW      , , , l v V s SL t T      

Service Level Constraints 

.lkst lkstdev d MinServiceLevel   , , , l k K s SL t T      

lg lg .hvst sth v
X I MinServiceLevel   , , , l g G s SL t T      

Feasible regions for variables 

l lg lg l, , , , , , , , , , , {0,1,2, , }cijvst cjkvst cjst ckst ckst kgvst hvst st hst lkst kgvst ghvstX X I I dev X X I I dev Y Y n  

    , , , , , , , , ,i I j J k g h c C l L v V t T s SK G H          

 
, , , , , {0,1}jm gn uu vst qq vst ijvst jkvstZ Z Prec Prec Y Y    

, , , , , , , , ,  , , ,
,

 i I j J k g h m M n N v V t T s S u I J u I J

q J K q J

K

K

G H               

     
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Chapter 5 

RESULTS AND DISCUSSIONS  

The model proposed here aims to coordinate the transportation of commodities from 

major supply centers to distribution centers in affected areas and the transport of 

wounded people from affected areas to temporary and permanent emergency units. 

Both wounded people and commodities are categorized into a priority hierarchy, 

where different types of vehicles are utilized to serve priority transportation needs. 

The model involves a network flow formulation, where wounded people and vehicles 

are treated as integer valued commodities. This results in an efficient formulation 

where vehicles are not tracked individually. Once solved, routes and pick up/delivery 

instructions of vehicles are constructed from model solution. The proposed modeling 

framework is designed as a flexible dynamic (multi-period) coordination instrument 

that can adjust to frequent information updates, vehicle re-routing and re-allocation of 

service capacities. The planning horizon under consideration is short (in days or even 

hours) due to the fact that information flow is continuous after disasters and initial 

screening cannot capture the attrition numbers accurately, specially, in earthquakes 

where many people are under the debris. Continuity of commodity logistics is 

achieved by incorporating anticipated commodity demand for future periods. 

5.1 Numerical Example 

To illustrate the effectiveness of proposed mathematical model, a hypothetical case 

study is presented considering the scenario based on the perspective of Bangladesh 

where the Sylhet district of Bangladesh is selected as the subject area [84].  

Some parameter values were estimated according to Tzeng et. al., Esmaeili and 

Barzinpour, Bozorgi-Amiri and Khorsi, and Najafi et al. [55, 67, 68, 85]. Tzeng et. al. 

performed their research for an incident in USA, while others performed their 

researches for different incidents occurred in Iran. So the parameters used in this 

numerical example have been modified according to the socio-economic situation in 

Bangladesh. Rest of the parameter values used in this study are based on rough 

estimation due to unavailability of actual data. 
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In this research multi-echelon logistics flow network of both relief commodities and 

injured person has been considered. Logistics flow of relief commodities involves 

transportation of commodities from supplier to relief distribution center (RDC) and 

from relief distribution center to affected area. Similarly, logistics flow of injured 

person involves transportation of injured person from affected area to emergency 

medical center (EMC) and from emergency medical center to hospitals. In this case 

study, the sets and parameter values of mathematical model are considered in 

following means: 

Number of Suppliers: 2 

Number of Affected Area Location: 5 

Candidate RDC Location: 4 

Sizes of RDC: (Small, Medium & Large) 

Candidate EMC Location: 4 

Sizes of EMC: (Small, Medium & Large) 

Number of Hospitals: 3 

Disaster Scenarios: 3 

Time Periods: 3 

Types of Commodities: 2 (Food and Water) 

Types of Injury: 2 (Moderate and Severe injury) 

Types of Vehicle: 4 (2 for commodity, 2 for injured person) 

Locations of suppliers and hospitals are known in the preparedness phase. Tentative 

locations of affected areas, EMCs and RDCs are also known and provided in the 

following page.  
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Four tentative locations has been selected for constructing Relief Distribution Centers 

(RDCs) which are 

Table 5.1: Tentative RDC locations 

RDC Location no. Tentative Location 
1 Rajaganj, Kanaighat, Sylhet 
2 Shaheber Bazar, Sylhet Sadar, Sylhet 
3 Tultikar, Sylhet Sadar, Sylhet 
4 Deokalas, Biswanath, Sylhet 

Four tentative locations has been selected for constructing Emergency Medical 

Centers (EMCs) which are 

Table 5.2: Tentative EMC locations 

EMC Location no. Tentative Location 
1 Paschim Dighirpar, Kanaighat, Sylhet 
2 Gowainghat Bazar, Gowainghat, Sylhet 
3 Telikhal, Companyganj, Sylhet 
4 Amura, Golapganj, Sylhet 

 

 

Figure 5.1: Sylhet District Map  
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Five tentative locations has been identified as Affected Areas (AAs) which are 

Table 5.3: Tentative Affected Area (AA) locations 

Affected Area no. Tentative Location 
1 Purba Dighirpar, Kanaighat, Sylhet 
2 Alirgaon, Gowainghat, Sylhet 
3 Telikhal, Companyganj, Sylhet 
4 Budbari Bazar, Golapganj, Sylhet 
5 Daudpur, Dakshin Surma, Sylhet 

For the case study, the author assumes that the relative probabilities of scenario 

occurrence are 0.237, 0.352 and 0.411 respectively. Note that these scenarios and 

their associated probabilities are devised by the subject matter experts or disaster 

planners on the basis of historical data.   

There are two types of injured person - moderately injured (Type L1) with service 

priority value of 0.4 and severely injured (Type L2) with service priority value of 0.6. 

There are two types of relief commodities - food and water. The following table 

demonstrates the data for the volume occupied by each unit of commodity, the unit 

holding cost per unit time and priority of each type of relief commodity. 

Table 5.4: Holding cost, unit volume and demand priority of commodities 

Commodity 
No. 

Commodity 
Type 

Holding Cost, 
ch  

($/unit/year) 

Unit Volume, 
cv   

( 3m /unit )  

Priority 

C1 Water 0.2 0.02 0.35 
C2 Food 0.1 0.01 0.65 

In this study, it is assumed that initial demand for relief commodities will be higher 

than the later time periods. So, the procurement cost of relief goods will also be 

higher in first period. Procurement costs of per unit relief commodities are given 

below: 

Table 5.5: Procurement cost,   ($/unit) of commodities 

 Time period 
Commodity Type 

T1 T2 T3 

C1 2 1.75 1.5 
C2 1 1 0.75 
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The penalty cost for unmet demand is estimated to be 50, 40 and 30 times, 

respectively, for the first, second, and third time period. 

The transportation cost between nodes is assessed on the basis of distance. Under each 

scenario, per unit transportation cost for each type of relief goods are as follows: 

Table 5.6: Transportation cost, 
cvstC  ($/unit/unit distance) of commodities 

 Scenario 
Commodity Type 

S1 S2 S3 

C1 0.5 0.75 0.6 
C2 0.25 0.4 0.3 

Two types of transportation modes are considered in this case study. Some vehicles 

are intended to carry injured people and some are intended to transport commodities. 

The following table demonstrates the data for the vehicle capacity for commodity and 

injured people. This table also shows maximum available number of vehicles. 

Table 5.7: Volume capacity, person capacity and max. no. of available vehicles 

Vehicle Volume Capacity  
(in m3), 

vCapV  
Person 
capacity, 

vCapP  

Max. no. of vehicle, 
vVehicleLimit  

V1 24 N/A N/A 
V2 18 N/A N/A 
V3 N/A 4 28 
V4 N/A 6 30 

Estimates of injured people in each affected areas are as follows: 

Table 5.8: Estimates of injured people in each affected areas 

Scenario →  S1 S2 S3 
Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 
AA ↓ Injury ↓    K1 L1 25 30 23 23 28 21 20 24 18 

L2 40 48 36 38 46 34 30 36 27 
K2 L1 20 24 18 21 25 19 17 20 15 

L2 30 36 27 32 38 29 20 24 18 
K3 L1 18 22 16 17 20 15 22 26 20 

L2 20 24 18 20 24 18 28 34 25 
K4 L1 12 14 11 12 14 11 14 17 13 

L2 25 30 23 22 26 20 16 19 14 
K5 L1 14 17 13 14 17 13 10 12 9 

L2 14 17 13 16 19 14 12 14 11 
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The demand data for each type of relief commodities in each affected areas are as 

follows: 

Table 5.9: Demand data of relief commodities in each affected areas 

Scenario → S1 S2 S3 
Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 

AA ↓ Commodity ↓    K1 C1 50 40 60 46 50 40 30 36 40 
C2 25 20 30 23 25 20 15 18 20 

K2 C1 40 50 40 44 40 56 80 70 84 
C2 20 25 20 22 20 28 40 35 42 

K3 C1 80 70 76 70 50 60 30 36 40 
C2 40 35 38 35 25 30 15 18 20 

K4 C1 50 50 36 30 24 36 50 30 36 
C2 25 25 18 15 12 18 25 15 18 

K5 C1 30 36 36 46 50 56 50 60 36 
C2 15 18 18 23 25 28 25 30 18 

Capacity data for the Emergency Medical Center (EMC) for each type of injured 
people are as follows: 

Table 5.10: Capacity data for Emergency Medical Centers (EMCs) 

Scenario →  S1 S2 S3 
Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 
EMC ↓ Injury ↓    G1 L1 24 22 22 22 21 20 26 21 23 

L2 30 35 28 24 32 31 22 20 21 
G2 L1 20 25 18 18 24 26 24 19 22 

L2 35 28 25 30 28 26 24 28 29 
G3 L1 24 24 22 24 23 22 20 24 18 

L2 28 37 32 25 32 32 32 27 27 
G4 L1 12 20 11 16 18 13 15 18 15 

L2 20 20 15 20 28 27 18 22 12 
 

Capacity data for the hospitals for each type of injured people are as follows: 

Table 5.11: Capacity data for the hospitals 

Scenario →  S1 S2 S3 
Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 
Hospital ↓ Injury ↓       

H1 L1 30 26 27 30 28 29 32 22 21 
L2 35 38 35 30 44 33 26 28 20 

H2 L1 35 35 25 22 27 21 30 28 29 
L2 40 48 38 44 39 44 38 34 36 

H3 L1 15 36 20 36 32 28 28 30 27 
L2 38 38 28 20 36 38 34 36 33 
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Capacity data for the Relief Distribution Centers (RDCs) for each type of relief 
commodities are as follows: 

Table 5.12: Capacity data for Relief Distribution Centers (RDCs) 

Scenario →  S1 S2 S3 
Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 
RDC ↓ Commodity ↓       
J1 C1 60 46 50 60 56 50 44 76 56 

C2 30 23 25 30 28 25 22 38 28 
J2 C1 30 48 60 50 36 48 40 30 36 

C2 15 24 30 25 18 24 20 15 18 
J3 C1 90 60 70 80 64 70 62 80 64 

C2 45 30 35 40 32 35 31 40 32 
J4 C1 50 36 40 20 40 36 60 56 56 

C2 25 18 20 10 20 18 30 28 28 

Capacity data for the suppliers for each type of relief commodities are as follows: 

Table 5.13: Capacity data for suppliers 

Scenario →  S1 S2 S3 
Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 
Supplier ↓ Commodity ↓       

I1 C1 110 120 108 130 100 100 120 120 100 
C2 55 60 54 65 50 50 60 60 50 

I2 C1 120 136 120 120 110 100 100 120 120 
C2 60 68 60 60 55 50 50 60 60 

Travel times (in minute) of tours from affected areas to Emergency Medical Centers 
are as follows: 

Table 5.14: Travel time of tours from affected areas to Emergency Medical Centers

Vehicle → V3 
 EMC 

AA 
G1 G2 G3 G4 

K1 1 19 30 22 
K2 17 1 18 27 
K3 20 18 2 18 
K4 25 32 24 2 
K5 28 40 38 22 

Vehicle → V4 
 EMC 

AA 
G1 G1 G1 G1 

K1 1 21 33 24 
K2 19 1 20 30 
K3 22 20 2 20 
K4 28 35 26 2 
K5 31 44 42 42 
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Travel times (in minute) of tours from Emergency Medical Centers to hospitals are as 
follows: 

Table 5.15: Travel time of tours from Emergency Medical Centers to hospitals

Vehicle → V3 
 Hospital 

EMC 
H1 H2 H3 

G1 27 28 16 
G2 19 21 6 
G3 22 24 19 
G4 24 26 35 

Vehicle → V4 
 Hospital 

EMC 
H1 H2 H3 

G1 30 31 18 
G2 21 23 7 
G3 24 26 21 
G4 26 29 39 

 

In this study, the initial budget for opening required number of EMCs has been 

assumed to be $410,000. Facility setup costs at different tentative Emergency Medical 

Center locations for three different capacity types are as follows. All costs are given 

in terms of $1000. 

Table 5.16: Facility setup costs for Emergency Medical Centers

 Capacity type 

EMC location 

1 2 3 

Paschim Dighirpar, Kanaighat 92 113 128 

Gowainghat Bazar, Gowainghat 89 109 123 

Telikhal, Companyganj 84 101 116 

Amura, Golapganj 87 104 121 

The initial budget for opening required number of RDCs has been assumed to be 

$570,000.Facility setup costs at different tentative Relief Distribution Center locations 

for three different capacity types are as follows. All costs are given in terms of $1000. 

Table 5.17: Facility setup costs for Relief Distribution Centers

 Capacity type 

RDC location 

1 2 3 

Rajaganj, Kanaighat 125 148 167 

Shaheber Bazar, Sylhet Sadar 132 145 164 

Tultikar, Sylhet Sadar 128 155 170 

Deokalas, Biswanath 122 152 168 
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Travel times (in minute) of tours from suppliers to Relief Distribution Centers are as 
follows: 

Table 5.18: Travel time of tours from suppliers to Relief Distribution Centers

Vehicle  V1 
Scenario  S1 
  I1 I2 J1 J2 J3 J4 

I1 - - 25 50 35 45 
I2 - - - 30 70 80 
J1 25 - - - - 60 
J2 50 30 - - 60 75 
J3 35 70 - 60 - 10 
J4 45 80 60 75 10 - 

  
Scenario  S2 
  I1 I2 J1 J2 J3 J4 

I1 - - 25 50 35 45 
I2 - - - 30 70 80 
J1 25 - - - 60 60 
J2 50 30 - - - 75 
J3 35 70 60 - - 10 
J4 45 80 60 75 10 - 

  
Scenario  S3 
  I1 I2 J1 J2 J3 J4 

I1 - - 25 50 35 45 
I2 - - 40 30 70 80 
J1 25 40 - - 60 60 
J2 50 30 - - - 70 
J3 35 70 60 - - 10 
J4 45 80 60 70 10 - 

 

Vehicle  V2 
Scenario  S1 
  I1 I2 J1 J2 J3 J4 

I1 - - 20 40 28 36 
I2 - - - 24 56 64 
J1 20 - - - - 48 
J2 40 24 - - 48 60 
J3 28 56 - 48 - 8 
J4 36 64 48 60 8 - 

  
Scenario  S2 
  I1 I2 J1 J2 J3 J4 

I1 - - 20 40 28 36 
I2 - - - 24 56 64 
J1 20 - - - 48 48 
J2 40 24 - - - 60 
J3 28 56 48 - - 8 
J4 36 64 48 60 8 - 

  
Scenario  S3 
  I1 I2 J1 J2 J3 J4 

I1 - - 20 40 28 36 
I2 - - 32 24 56 64 
J1 20 32 - - 48 48 
J2 40 24 - - - 56 
J3 28 56 48 - - 8 
J4 36 64 48 56 8 - 
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Travel times (in minute) of tours from Relief Distribution Centers to affected areas 

are as follows: 

Table 5.19: Travel time of tours from Relief Distribution Centers to affected areas 

Vehicle V1 
Scenario S1 
  J1 J2 J3 J4 K1 K2 K3 K4 K5 
J1 - - - - 30 45 95 35 60 
J2 - - - - 60 30 25 90 70 
J3 - - - - 60 70 30 25 45 
J4 - - - - 45 80 40 65 20 
K1 30 60 60 45 - 20 45 30 35 
K2 45 30 70 80 20 - 40 - 25 
K3 95 25 30 40 45 40 - 20 50 
K4 35 90 25 65 30 - 20 - 30 
K5 60 70 45 20 25 25 50 30 - 
  
Scenario S2 
  J1 J2 J3 J4 K1 K2 K3 K4 K5 
J1 - - - - 30 45 95 35 60 
J2 - - - - 60 30 25 90 70 
J3 - - - - 60 70 30 25 45 
J4 - - - - 45 80 40 65 20 
K1 30 60 60 45 - 20 - 30 35 
K2 45 30 70 80 20 - 40 45 25 
K3 95 25 30 40 - 40 - 20 50 
K4 35 90 25 65 30 45 20 - 30 
K5 60 70 45 20 25 25 50 30 - 
  
Scenario S3 
  J1 J2 J3 J4 K1 K2 K3 K4 K5 
J1 - - - - 30 45 95 35 60 
J2 - - - - 60 30 - 90 70 
J3 - - - - 60 70 30 25 45 
J4 - - - - 45 80 40 65 20 
K1 30 60 60 45 - 20 45 30 35 
K2 45 30 70 80 20 - 40 25 25 
K3 95 - 30 40 45 40 - 20 50 
K4 35 90 25 65 30 25 20 - 30 
K5 60 70 45 20 25 25 50 30 - 
 

 

Vehicle V2 
Scenario S1 
  J1 J2 J3 J4 K1 K2 K3 K4 K5 
J1 - - - - 24 36 76 28 48 
J2 - - - - 48 24 20 72 56 
J3 - - - - 48 56 24 20 36 
J4 - - - - 36 64 32 52 16 
K1 24 48 48 36 - 16 36 24 28 
K2 36 24 56 64 16 - 32 - 20 
K3 76 20 24 32 36 32 - 16 40 
K4 28 72 20 52 24 - 16 - 24 
K5 48 56 36 16 20 20 40 24 - 
  
Scenario S2 
  J1 J2 J3 J4 K1 K2 K3 K4 K5 
J1 - - - - 24 36 76 28 48 
J2 - - - - 48 24 20 72 56 
J3 - - - - 48 56 24 20 36 
J4 - - - - 36 64 32 52 16 
K1 24 48 48 36 - 16 - 24 28 
K2 36 24 56 64 16 - 32 36 20 
K3 76 20 24 32 - 32 - 16 40 
K4 28 72 20 52 24 36 16 - 24 
K5 48 56 36 16 20 20 40 24 - 
  
Scenario S3 
  J1 J2 J3 J4 K1 K2 K3 K4 K5 
J1 - - - - 24 36 76 28 48 
J2 - - - - 48 24 - 72 56 
J3 - - - - 48 56 24 20 36 
J4 - - - - 36 64 32 52 16 
K1 24 48 48 36 - 16 36 24 28 
K2 36 24 56 64 16 - 32 20 20 
K3 76 - 24 32 36 32 - 16 40 
K4 28 72 20 52 24 20 16 - 24 
K5 48 56 36 16 20 20 40 24 - 
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Routes initiating from suppliers, visited RDCs, and transportation times (in minute) 
are as follows: 

Table 5.20: Routes initiating from suppliers, visited RDCs, and transportation time 

Supplier Route Transportation  
Time (Min) 

I1 I1-J1-I1 40 
I1 I1-J1-J4-I1 104 
I1 I1-J1-J4-J3-I1 104 
I1 I1-J3-I1 56 
I1 I1-J3-J4-I1 72 
I1 I1-J4-I1 72 
I1 I1-J4-J1-I1 104 
I1 I1-J4-J3-I1 72 
I2 I2-J2-I2 48 

Routes initiating from RDCs, visited AAs, and transportation times (in minute) are as 
follows: 

Table 5.21: Routes initiating from RDCs, visited AAs, and transportation time 

RDC Route Transportation  
Time (Min) 

J1 J1-K1-K2-J1 76 
J1 J1-K1-K4-K3-J1 140 
J1 J1-K2-K1-J1 76 
J1 J1-K2-K3-K4-J1 112 
J1 J1-K2-K5-J1 104 
J1 J1-K4-K1-K2-J1 104 
J1 J1-K4-K3-J1 120 
J2 J2-K1-K2-J2 88 
J2 J2-K2-J2 48 
J2 J2-K2-K1-J2 88 
J2 J2-K3-J2 40 
J2 J2-K3-K4-J2 108 
J3 J3-K3-K4-J3 60 
J3 J3-K3-K4-K5-K1-J3 140 
J3 J3-K4-J3 40 
J3 J3-K4-K1-J3 92 
J3 J3-K4-K3-J3 60 
J3 J3-K5-K1-J3 112 
J3 J3-K5-K1-K2-J3 136 
J3 J3-K5-K2-K1-J3 120 
J4 J4-K1-K2-K5-J4 88 
J4 J4-K5-J4 32 
J4 J4-K5-K1-K2-J4 124 
J4 J4-K5-K2-J4 100 
J4 J4-K5-K2-K1-J4 88 
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5.2 Result Analysis 

In this section, the computational results are presented and the behavior of the 

proposed model is analyzed. The results reported below were obtained using 

GAMS/Cplex on a 3.1 GHz desktop computer with 4 GB of RAM under Windows 10 

operating system [86, 87]. 

In a multi-objective optimization problem (MOOP), there can never exist a single 

absolute solution that can satisfy all the objectives to their best. For two or more 

objectives, each objective corresponds to a different optimal solution, but none of the 

tradeoff solutions is optimal with respect to all objectives. Though an optimal solution 

may have minimum total combined objective function value, it may not be the best 

solution with respect to all the objectives simultaneously. Because of the nature of 

MOOP, solution may be optimal with respect to one objective or the total fitness may 

be minimum by best satisfying all the objectives but may be a poor candidate for a 

particular objective. Hence, it is desirable to generate many optimal solutions 

considering all the objectives. Some of the unique solutions developed using 

augmented ε-constraint method are shown in the table below: 

Table 5.22: Unique solutions 

Solution 
Number 

Objective 1 
Weighted 
Sum of 

Unserved 
Injury 

Objective 2 
Travel Time 
to Dispatch 

Injured 
Person 

Objective 3 
Weighted 
Sum of 

Unsatisfied 
Demand 

Objective 4 
Travel Time 
to Dispatch 

Relief 
Commodity 

Objective 5 
Total Cost of 
Commodity 

Transportation 

1 19.70 2796.30 16.00 2977.4 3399.7 
2 20.03 2494.70 15.90 2495.6 3408.7 
3 19.69 1990.90 15.96 2299.1 3408.7 
4 20.10 1499.87 16.00 2242.6 3395.7 
5 92.60 922.85 15.98 2248.8 3344.5 
6 79.90 924.20 16.00 2245.5 3317.5 
7 59.50 951.00 16.05 2249.7 3298.5 
8 54.00 962.20 16.00 2214.6 3395.6 
9 52.00 966.80 15.94 2210.8 3298.5 
10 51.00 976.50 16.31 2218.9 3298.5 

 

It can be noted that, augmented ε-constraint method failed to produce pareto optimal 

solution for this case study. To obtain non-optimal efficient solutions, the model has 
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been divided into two segments and solved individually. The first segment consists of 

parameters, constraint equations and objective functions associated with dispatching 

injured person. Results obtained from this model has been utilized to solve the second 

segment which consists of parameters, constraint equations and objective functions 

associated with transportation of relief commodities. To prove the validity of the 

proposed entire model, two small scale example problems have been solved using 

augmented ε-constraint method which have been explained in the later portion of this 

chapter. 

The relationship among the objective functions are depicted in Figure 5.2, 5.3, 5.4, 

5.5, and 5.6, where objective 1 aims to minimize the weighted sum of unserved 

injury, objective 2 attempts to minimize the travel time required to dispatch injured 

persons to medical facilities, objective 3 aims to minimize the weighted sum of 

unsatisfied demand over all commodities, objective 4 attempts to minimize the travel 

time to ship relief goods to demand points, and objective 5 seeks to minimize the total 

cost associated with commodity transportation to demand points. They are obtained 

by using augmented ε-constraint method. In figure 5.2, the y-axis represents Obj1, 

which is the weighted sum of unserved injury for all AAs, and the x-axis signifies the 

travel time required to dispatch injured person. In figures, the line represents the 

relationship between two objectives when all other objectives are fixed. As the 

weighted sum of unserved injury increases, the travel time required to dispatch 

injured person decreases. 

 

Figure 5.2: Relationship between Objective 1 and Objective 2 
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In figure 5.3, the y-axis represents Obj3, which is the weighted sum of unsatisfied 

demand for all AAs, and the x-axis signifies the travel time required to dispatch relief 

commodity. 

 

Figure 5.3: Relationship between Objective 3 and Objective 4 

In figure 5.4, the y-axis represents Obj3, which is the weighted sum of unsatisfied 

demand for all AAs, and the x-axis signifies Obj5, which is the total cost associated 

with commodity transportation to demand points. As the unsatisfied demand 

increases, the total cost decreases. 

 

Figure 5.4: Relationship between Objective 3 and Objective 5 
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In figure 5.5, the y-axis represents Obj4, which is the travel time required to dispatch 

relief commodity, and the x-axis signifies Obj5, which is the total cost associated with 

commodity transportation to demand points. As the travel time increases, the total 

cost increases as well. 

 

Figure 5.5: Relationship between Objective 4 and Objective 5 

 

Figure 5.6: Pareto front surface 
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Moreover, if all three objectives associated with commodity transportation are 

considered concurrently, Figure 5.6 shows the approximate Pareto front surface by the 

augmented ε-constraint method. Based on the figure, the total cost does not affect too 

much unsatisfied demand under the same level of travel time, whereas the weighted 

sum of unsatisfied demand is significantly influenced by the travel time. 

To solve our multi-objective model with the augmented ε-constraint method, 

Objective 1 is regarded as the foremost objective function that aims to minimize the 

weighted sum of unserved injury. Table 5.23 to Table 5.32 provide an insight into the 

output data characteristics. 

The model opened three medium size EMC in first three locations and one small size 

EMC in fourth location. The result also suggests to open three small size RDCs in 

first three locations and one large size RDC in fourth location. Selected capacity types 

of EMCs and RDCs for constructing facilities at different locations are as follows: 

Table 5.23: Selected locations for constructing EMCs and RDCs 

EMC Location 1 2 3 4 
Capacity Type 2 2 2 1 

 
RDC Location 1 2 3 4 
Capacity Type 1 1 1 3 

Table 5.24 displays number of unserved injured person at different affected areas 

under different scenario and time period. The result shows that, number of unserved 

injured person significantly decreases after each time period which confirms the 

validity of the model. 

Table 5.24: Data of unserved injured person at different affected areas 

 

Scenario →  S1 S2 S3 
Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 
AA ↓ Injury ↓ 

   
K1 L1 7 9 0 0 8 0 0 0 0 

L2 10 1 0 11 0 0 1 0 0 
K2 L1 0 6 0 0 7 0 0 2 0 

L2 0 0 0 6 4 0 6 0 0 
K3 L1 0 6 0 3 1 0 0 0 0 

L2 6 0 0 6 0 0 0 0 0 
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K4 L1 0 0 0 3 0 0 0 2 0 
L2 0 2 0 2 0 0 0 0 0 

K5 L1 2 5 0 1 2 0 0 0 0 
L2 0 3 0 4 0 0 3 0 0 

Table 5.25 shows the inventory data of injured person at different Emergency Medical 

Centers under different scenario and time period. 

Table 5.25: Inventory data of injured person at different Emergency Medical Centers 

Scenario →  S1 S2 S3 

Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 

EMC ↓ Injury ↓ 
   

G1 L1 24 14 12 22 16 18 26 20 0 

L2 30 34 28 24 30 12 22 20 20 

G2 L1 20 23 0 18 20 26 24 14 14 

L2 35 26 25 30 26 17 24 28 14 

G3 L1 24 8 22 24 16 9 20 16 16 

L2 28 36 17 25 32 10 32 27 18 

G4 L1 12 16 11 16 13 6 13 18 2 

L2 20 16 15 20 26 21 18 20 0 

Next table shows the inventory data of injured person at different hospitals. For 

example, under scenario two in the third day, hospital 1 has 10 patients with minor 

injury and 4 patients with severe injury. 

Table 5.26: Inventory data of injured person at different hospitals 

Scenario →  S1 S2 S3 

Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 

Hospital ↓ Injury ↓       

H1 L1 8 3 23 13 4 10 6 7 11 

L2 9 3 9 8 4 4 13 2 4 

H2 L1 10 8 13 0 8 2 12 15 5 

L2 6 16 7 8 16 33 0 12 12 

H3 L1 8 9 0 13 9 8 8 5 27 

L2 21 18 16 17 15 18 18 18 27 
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Next table shows data of unsatisfied needs of commodities at different affected areas 

under different scenario and time period. This model attempts to minimize unsatisfied 

needs of commodities at affected areas. Result demonstrates that the model has 

succeeded to eradicate shortage of commodities from affected area K1 and K2. 

Table 5.27: Data of unsatisfied needs of commodities at different affected areas 

Scenario → S1 S2 S3 
Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 

AA ↓ Commodity ↓ 
   

K1 C1 0 0 0 0 0 0 0 0 0 
C2 0 0 0 0 0 0 0 0 0 

K2 C1 0 0 0 0 0 0 0 0 0 
C2 0 0 0 0 0 0 0 0 0 

K3 C1 5 0 0 0 0 0 0 0 0 
C2 0 0 0 0 0 0 0 0 0 

K4 C1 5 0 0 11 0 0 10 0 0 
C2 10 2 0 15 4 0 10 0 0 

K5 C1 0 0 5 8 0 0 0 0 4 
C2 0 0 3 0 0 0 0 0 4 

Table 5.28 demonstrates inventory data of commodities at different Relief 

Distribution Centers under different scenario and time period. 

Table 5.28: Inventory data of commodities at different Relief Distribution Centers 

Scenario →  S1 S2 S3 

Period → T1 T2 T3 T1 T2 T3 T1 T2 T3 

RDC ↓ Commodity ↓       

J1 C1 0 5 0 26 0 0 0 4 0 

C2 0 7 0 0 24 0 0 4 0 

J2 C1 0 0 0 0 0 0 0 0 0 

C2 0 0 0 0 0 0 0 0 0 

J3 C1 0 0 0 0 24 0 0 0 0 

C2 0 0 0 0 0 0 0 0 0 

J4 C1 0 0 0 0 0 0 0 0 0 

C2 0 0 0 22 0 0 0 0 0 
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Next table represents data of injured person dispatched from affected areas to EMCs 

by vehicle type V3 under different scenario and time period. For example, under 

scenario one in the second time period, 12 person with minor injury and 18 person 

with severe injury has been transferred from affected area K3 to EMC G1. 

Table 5.29: Data of injured person dispatched from affected areas to EMCs by vehicle 
type V3 

Scenario → S1 

Period → T1 T2 T3 

 EMC 

AA 
G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

K1       

L1 0 0 0 0 0 0 0 4 0 0 0 0 

L2 23 7 0 0 0 0 0 4 0 0 0 20 

K2       

L1 0 0 0 0 0 0 0 7 0 0 0 0 

L2 7 0 23 0 0 16 0 1 0 0 0 0 

K3       

L1 0 0 0 0 12 0 0 0 0 0 0 0 

L2 0 14 0 0 18 4 0 0 12 0 0 0 

K4       

L1 0 0 0 0 1 0 0 0 0 0 0 11 

L2 0 0 0 0 11 0 0 0 0 0 23 0 

K5       

L1 12 0 0 0 0 0 2 3 0 0 0 4 

L2 0 0 0 0 0 2 2 5 3 10 0 0 
 

Scenario → S2 

Period → T1 T2 T3 

 EMC 

AA 
G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

K1    

L1 0 0 12 0 0 12 0 6 0 19 0 0 

L2 0 0 11 0 0 0 4 2 0 5 14 0 
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K2    

L1 0 0 0 0 0 12 0 1 0 0 0 0 

L2 0 0 0 0 0 0 0 3 0 0 0 0 

K3    

L1 0 0 0 0 0 0 3 0 0 0 0 0 

L2 0 0 14 0 0 0 1 4 0 0 0 0 

K4    

L1 0 0 0 0 0 0 4 0 0 0 0 0 

L2 0 0 0 20 0 0 0 0 20 0 0 0 

K5    

L1 8 0 0 4 0 0 15 0 12 0 0 0 

L2 0 0 0 0 0 0 13 0 14 0 0 0 

 

Scenario → S3 

Period → T1 T2 T3 

 EMC 

AA 
G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

K1    

L1 0 20 0 0 0 0 0 0 0 0 0 0 

L2 21 0 0 0 0 0 0 0 0 0 0 0 

K2    

L1 0 0 0 0 0 8 0 0 0 0 15 0 

L2 0 0 0 14 8 0 8 0 0 0 5 0 

K3    

L1 0 0 0 0 26 0 0 0 0 0 0 0 

L2 0 0 0 0 18 0 0 0 25 0 0 0 

K4    

L1 0 0 0 0 0 0 4 0 0 0 0 12 

L2 0 0 0 0 0 0 4 0 0 8 0 0 

K5    

L1 0 0 0 0 0 0 0 8 0 0 0 0 

L2 0 0 0 0 0 0 0 0 0 11 0 0 
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Next table represents data of injured person dispatched from affected areas to EMCs 

by vehicle type V4 under different scenario and time period. For example, under 

scenario one in the second time period, 6 person with minor injury has been 

transferred from affected area K1 to EMC G2 and 18 person with severe injury has 

been transferred from affected area K2 to EMC G1 using vehicle type V4. 

Table 5.30: Data of injured person dispatched from affected areas to EMCs by vehicle 
type V4 

Scenario → S1 
Period → T1 T2 T3 

 EMC 
AA 

G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

K1    
L1 12 2 4 0 6 6 5 0 0 0 23 0 
L2 0 0 0 0 0 0 43 0 16 0 0 0 

K2    
L1 0 0 20 0 0 11 0 0 0 0 18 0 
L2 0 0 0 0 18 1 0 0 0 27 0 0 

K3    
L1 0 18 0 0 0 0 4 0 16 0 0 0 
L2 0 0 0 0 0 0 2 0 6 0 0 0 

K4    
L1 0 0 0 12 0 13 0 0 0 0 0 0 
L2 0 0 5 20 0 11 0 6 0 0 0 0 

K5    
L1 0 0 0 0 0 0 0 7 0 0 0 9 
L2 0 14 0 0 0 0 0 5 0 0 0 0 
 

Scenario → S2 
Period → T1 T2 T3 

 EMC 
AA 

G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

K1    
L1 0 0 0 11 0 2 0 0 0 0 0 2 
L2 16 0 0 0 0 34 0 6 5 0 0 10 

K2    
L1 0 9 12 0 5 0 0 0 0 0 12 7 
L2 0 26 0 0 31 0 0 0 0 0 0 29 

K3    
L1 14 0 0 0 6 0 0 10 0 15 0 0 
L2 0 0 0 0 0 0 0 19 0 18 0 0 
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K4    
L1 0 9 0 0 10 0 0 0 11 0 0 0 
L2 0 0 0 0 8 0 18 0 0 0 0 0 

K5    
L1 0 0 0 1 0 0 0 0 1 0 0 0 
L2 8 4 0 0 0 0 6 0 0 0 0 0 
 

Scenario → S3 
Period → T1 T2 T3 

 EMC 
AA 

G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

K1    
L1 0 0 0 0 0 1 6 17 0 0 18 0 
L2 0 0 8 0 0 23 0 13 0 0 27 0 

K2    
L1 0 0 17 0 0 0 7 3 0 0 0 0 
L2 0 0 0 0 0 0 5 3 0 0 0 13 

K3    
L1 6 0 3 13 0 0 0 0 0 20 0 0 
L2 0 0 24 4 0 5 0 11 0 0 0 0 

K4    
L1 10 4 0 0 0 11 0 0 0 0 0 1 
L2 1 15 0 0 0 9 6 0 6 0 0 0 

K5    
L1 10 0 0 0 0 0 4 0 0 0 9 0 
L2 0 9 0 0 0 0 14 0 0 0 0 0 

 

Data of injured person dispatched from EMC to hospital by vehicle type V3 and V4 

has been demonstrated in Table 5.31 and 5.32 respectively. Only those injured person 

have been transferred to hospitals who cannot be treated in EMCs. So, the number of 

dispatched injured person decreased significantly than the number of injured person 

dispatched from affected areas to EMCs. 
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Table 5.31: Injured person dispatched from EMC to hospital by vehicle type V3 

Scenario → S1 
Period → T1 T2 T3 

 Hospital 
EMC H1 H2 H3 H1 H2 H3 H1 H2 H3 

G1       
L1 0 0 0 0 0 0 3 0 0 
L2 0 0 0 0 0 0 0 0 0 

G2       
L1 0 6 0 0 0 4 0 0 0 
L2 0 0 0 0 0 0 0 0 12 

G3       
L1 0 0 0 0 0 0 0 0 0 
L2 0 0 0 0 0 8 0 3 0 

G4       
L1 4 0 0 0 0 2 0 0 0 
L2 0 6 0 0 0 2 1 0 0 

 
Scenario → S2 

 Hospital 
EMC H1 H2 H3 H1 H2 H3 H1 H2 H3 

G1    
L1 7 0 0 0 0 5 4 0 0 
L2 0 0 0 0 0 3 0 0 0 

G2    
L1 6 0 0 0 6 0 0 0 8 
L2 0 0 0 0 2 0 0 0 0 

G3    
L1 0 0 0 0 0 4 3 0 0 
L2 0 8 0 0 0 0 4 0 0 

G4    
L1 0 0 0 4 0 0 3 0 0 
L2 0 0 8 4 4 0 0 0 0 

 
Scenario → S3 

 Hospital 
EMC H1 H2 H3 H1 H2 H3 H1 H2 H3 

G1       
L1 0 0 8 0 4 2 0 0 0 
L2 7 0 0 0 0 6 3 0 8 

G2    
L1 0 0 0 0 0 0 0 0 0 
L2 0 0 8 0 0 0 0 0 0 

G3    
L1 6 0 0 1 4 0 0 0 0 
L2 0 0 0 2 8 0 0 0 0 

G4    
L1 0 0 0 0 0 0 0 0 0 
L2 0 0 0 0 0 0 0 12 0 
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Table 5.32: Injured person dispatched from EMC to hospital by vehicle type V4 

Scenario → S1 
Period → T1 T2 T3 

 Hospital 
EMC H1 H2 H3 H1 H2 H3 H1 H2 H3 

G1       
L1 4 4 0 0 5 0 1 0 0 
L2 9 0 0 0 13 0 5 0 4 

G2    
L1 0 0 0 0 0 3 0 0 0 
L2 0 0 11 0 0 8 0 0 0 

G3    
L1 0 0 8 3 0 0 19 0 0 
L2 0 0 10 3 0 0 3 0 0 

G4    
L1 0 0 0 0 3 0 0 13 0 
L2 0 0 0 0 3 0 0 4 0 

 

Scenario → S2 
 Hospital 

EMC H1 H2 H3 H1 H2 H3 H1 H2 H3 

G1    
L1 0 0 0 0 0 0 0 2 0 
L2 8 0 0 0 0 6 0 27 0 

G2    
L1 0 0 0 0 0 0 0 0 0 
L2 0 0 9 0 0 6 0 6 0 

G3    
L1 0 0 8 0 2 0 0 0 0 
L2 0 0 0 0 10 0 0 0 0 

G4    
L1 0 0 5 0 0 0 0 0 0 
L2 0 0 0 0 0 0 0 0 18 

 

Scenario → S3 
 Hospital 

EMC H1 H2 H3 H1 H2 H3 H1 H2 H3 

G1       
L1 0 0 0 0 0 0 0 0 0 
L2 0 0 0 0 0 0 0 0 0 

G2    
L1 0 8 0 0 6 0 0 5 1 
L2 0 0 0 0 0 9 0 0 5 

G3    
L1 0 0 0 0 0 0 0 0 26 
L2 0 0 10 0 0 0 0 0 14 

G4    
L1 0 4 0 6 1 3 11 0 0 
L2 6 0 0 0 4 3 1 0 0 
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Table 5.33 represents selected routes and amount of relief commodities transported 

from suppliers to RDCs. For example, under scenario two in first time period, a trip 

has been initiated from supplier 1 which transported 65 units of food to RDC 1, 37 

units of food to RDC 4 and 37 units of water to RDC 3. 

Table 5.33: Selected routes and amount of relief commodities transported from 
suppliers to RDCs 

        Vehicle V1 Vehicle V2 
Scenario Supplier Route Period Com1 Com2 Com1 Com2 
S1 I1 I1-J1-I1 T1   30     

    T2     60 42 
  I1-J1-J4-J3-I1 T2   0-18-0     
    T3 60-0 60-8     
  I1-J3-I1 T1       60 
  I1-J3-J4-I1 T1 60-0 0-25     
    T3     0-54 46-0 
I2 I2-J2-I2 T1 55       
    T2   68 68   
I1 I1-J1-I1 T1     65   

S2   I1-J1-J4-J3-I1 T1 0-0-37 65-37-0     

    T2 18-0-0 24-31-0     
    T3 0-0-50       

  I1-J4-J3-I1 T1     23-0 0-23 

    T2     1-49   
    T3       0-50 
I2 I2-J2-I2 T2 37 50     
    T3 50 50     
I1 I1-J1-I1 T1 25 40     
    T2 60     60 

S3     T3       50 

  I1-J4-J3-I1 T1 0-60 40-20     

  I1-J3-I1 T1     10 10 
    T2     60 60 

  I1-J4-J1-I1 T1     15-0   

I2 I2-J2-I2 T3 50   60 60 
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Next table shows the selected routes and amount of commodities transported from 

RDCs to AAs under different scenario and time period. 

Table 5.34: Selected routes and amount of relief commodities transported from RDCs 
to AAs 

        Vehicle V1 Vehicle V2 
Scenario RDC Route Period Com1 Com2 Com1 Com2 
S1 J1 J1-K2-K5-J1 T2     25-0 0-18 

  J1-K4-K3-J1 T3     18-0   

J2 J2-K2-K1-J2 T3     20-9 20-0 

  J2-K3-J2 T2       35 

  J2-K3-K4-J2 T2 35-0 0-23     

J3 J3-K4-J3 T1     20   

  J3-K4-K1-J3 T2     25-0 0-20 

  J3-K4-K3-J3 T1 0-35 15-40     

    T3 0-38 18-38     

  J3-K5-K1-K2-J3 T2 18-20-0 0-0-25     

J4 J4-K1-K2-K5-J4 T1 0-0-15 25-0-15     

  J4-K5-J4 T3     13   

  J4-K5-K1-K2-J4 T1     0-25-20 0-0-20 

  J4-K5-K2-K1-J4 T3 0-0-21 15-0-30     

S2 J1 J1-K4-K1-K2-J1 T1     0-23-22 0-8-22 

    T2     12-0-20 8-0-20 

  J1-K4-K3-J1 T3     0-30   

J2 J2-K1-K2-J2 T3     0-28 0-24 

  J2-K3-J2 T1     35   

    T2     25   

  J2-K3-K4-J2 T3 0-18 30-18     

J3 J3-K3-K4-J3 T1 0-4 35-0     

    T2   25-0     

  J3-K5-K2-K1-J3 T3 28-0-20 0-4-20     

J4 J4-K1-K2-K5-J4 T1 0-0-15 15-0-23     

    T2 25-0-25 25-0-25     

  J4-K5-J4 T3       28 
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S3 J1 J1-K1-K2-J1 T1     15-0 15-40 

  J1-K1-K4-K3-J1 T3     0-0-4   

  J1-K2-K1-J1 T2     27-0 35-18 

  J1-K2-K3-K4-J1 T2 8-18-0 0-0-15     

J2 J2-K2-J2 T1 40       

J3 J3-K3-K4-J3 T1     0-15 0-15 

  J3-K3-K4-K5-K1-J3 T1 15-0-0-0 15-0-0-0     

  J3-K4-K3-J3 T2     15-0 0-18 

    T3 18-16 18-20     

  J3-K5-K1-J3 T2 0-18 30-0     

J4 J4-K5-J4 T1     25 25 

    T2     30   

  J4-K5-K2-J4 T3     14-0 0-34 

  J4-K5-K2-K1-J4 T3 0-42-20 14-8-20     

Two small scale version of the previous numerical example have been considered and 

solved to proof the validity of the proposed method. The parameters of these small 

version example problems are compared in the following table: 

Table 5.35: Parameter values for small scale example problems 

Parameters Example 1 Example 2 
Number of Suppliers 1 1 
Number of Affected Area Location 3 3 
Candidate RDC Location 2 2 
Sizes of RDC Small, Medium & Large 
Candidate EMC Location 2 2 
Sizes of EMC Small, Medium & Large 
Number of Hospitals 2 1 
Disaster Scenarios 2 2 
Time Periods 2 2 
Types of Commodities 2 (Food and Water) 
Types of Injury 2 (Moderate and Severe injury) 
Types of Vehicle 4 (2 for commodity, 2 for injured person) 

Pareto optimal solutions and pareto front between objective 1 and other objectives for 

the two example problems are showcased in the next page.  



61 
 

Table 5.36: Pareto optimal solutions for example 1 

Solution 
Number 

Objective 1 
Weighted 
Sum of 

Unserved 
Injury 

Objective 2 
Travel Time 
to Dispatch 

Injured 
Person 

Objective 3 
Weighted 
Sum of 

Unsatisfied 
Demand 

Objective 4 
Travel Time 
to Dispatch 

Relief 
Commodity 

Objective 5 
Total Cost of 
Commodity 

Transportation 

1 61.98 349.74 36.82 278.19 3855.11 
2 173.58 0 36.82 278.19 3790.47 
3 61.98 349.74 36.82 278.19 3790.47 
4 61.98 804.35 43.81 265.86 4297.83 
5 61.98 349.74 36.82 278.19 3790.47 

 

 

 

Figure 5.7: Pareto front between objective functions (Example 1) 
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Table 5.37: Pareto optimal solutions for example 2 

Solution 
Number 

Objective 1 
Weighted 
Sum of 

Unserved 
Injury 

Objective 2 
Travel Time 
to Dispatch 

Injured 
Person 

Objective 3 
Weighted 
Sum of 

Unsatisfied 
Demand 

Objective 4 
Travel Time 
to Dispatch 

Relief 
Commodity 

Objective 5 
Total Cost of 
Commodity 

Transportation 

1 66.25 315.41 36.82 278.19 3790.47 
2 173.58 0 36.82 278.19 3790.47 
3 66.25 315.41 36.82 278.19 3790.47 
4 66.25 315.41 43.81 265.86 4297.83 
5 66.25 315.41 36.82 278.19 3790.47 

 

 

 

Figure 5.8: Pareto front between objective functions (Example 2)  
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This study aimed to present an integrated location-routing model for coordinating 

logistics support and evacuation operations in response to emergencies and natural 

disasters. To integrate strategic and operational decisions, a multi-objective dynamic 

stochastic programming model is proposed. The aim is maximizing response service 

level by enabling fast relief access to affected areas and locating temporary 

emergency units in appropriate sites. This model is composed of two stages; the first 

one determines the location of RDCs and EMCs as well as the required inventory 

quantities for each type of relief items under storage, and the second stage determines 

the routes and amount of transportation from suppliers to RDCs and RDCs to AAs as 

well as routes and number of transported injured person from AAs to EMCs and 

EMCs to Hospitals. This multi-objective model minimizes weighted sum of unserved 

demand and unserved injury, travel time for flow of commodities and injured people, 

and total costs associated with flow of commodities. In this model, the travel time 

parameters as well as the demand, supply, and cost are subject to uncertainty. To deal 

with these uncertain components of the humanitarian logistics network a scenario 

based approach was used to develop a stochastic model. Finally, this model is solved 

by applying the augmented ε-constraint method. To demonstrate the effectiveness of 

the proposed model, a case study has been presented. Computational analysis has 

been done to demonstrate the relationship among the objective functions. 

6.2 Recommendations 

There are some possible directions to which this research can be extended.  

1. A set of solution techniques and heuristic algorithms can be introduced to 

solve the MIP problem for large cases in short times. For relatively small data 

instances, the problem can be solved using a commercial mixed-integer solver; 

however, this solution approach does not scale well to large problem 

instances.  

2. Reliability concept can be incorporated in the model to minimize associated 

risk in the logistics network.  
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3. The robustness of this model can be investigated with respect to uncertainty in 

demand, supply, cost, and travel time values.  

4. A new approach base can be developed, for example, on fuzzy logic, to 

determine the probability of occurrence behind real scenarios since the model 

results are highly dependent on them. 
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