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Abstract of the Thesis

This thesis presents a method of underwater surveillance of ferromagnetic

objects based on Magnetic Anomaly Detection. A numerical method of calculating

electromagnetic fields produced by the elementary dipole sources in a stratified

media is built. The method is useful in estimating magnetic signature at the air

generated by the ferromagnetic objects submerged in the ocean. Mathematical

modifications to match the same method for a means of measuring magnetic

noise signals where noise sources are modeled as multiple equivalent electric and

magnetic dipoles distributed at the environment are developed. After developing the

simulation environment which is aimed at mimicking the real ocean environment,

Empirical Mode decomposition technique is used to anlyse the noisy magnetic signals

recorded by Tri-axial magnetometer from Unmanned Aerial Vehicle. It decomposes

the obtained signals into Intrinsic Mode Functions and Residue, and responds to any

anomaly found in the denoised signals. A Triangular geometry of sensor positions

is proposed with combined Particle Filter and Unscented Kalman Filter as signal

processing algorithms for the classification, localization and tracking of the target

in this study.
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Chapter 1

INTRODUCTION

1.1 Motivation

The exploration of the ocean is far from being complete, and it enables research

and applications in many different areas with scientific, cultural or industrial

interest, such as unexploded ordnance (UXO) detection, underwater buried mine

hunting, underwater vessel detection, archeologic survey, geologic prospecting, or

biomedical applications, to name but a few. Again many of these tasks that were

originally achieved with towed arrays or manned vehicles are being completely

automated, as a result of advancements in the efficiency, size, and memory capacity

of computers with the help of Autonomous Underwater Vehicle (AUV), Remotely

Operated Vehicle (ROV), Unmanned Underwater Vehicle (UUV).

Due to the necessity of the recent defense strategies, the monitoring, control

and navigation of these unmanned vehicles are of great interests in underwater

surveillance system. Methods of detecting targets include sonar, radar, electronic

support measures, and magnetic anomaly detection. It has predominantly been

performed by sonar technologies i.e. forward-scan sonar, sonar imagery, multi

beam forward-looking sonar images, MIMO sonar [1, 2, 3], and in few cases by

optical method i.e. laser and optical imaging [4, 5, 6]. But some shortcomings

such as limitations at the signal transmission due to small bandwidth and low data
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rate, high latency and variable sound speed due to fluctuating water temperature

and salinity, signal corruption and scattering due to reverberation, multi-path

propagation, and complex flow pattern of the water coupled with the presence of

an upper (free surface) and lower (sea bottom) boundary, made the performances

of the acoustics based system unreliable. Similarly, limited on-site accessibility,

poor signal acquisition control, insufficient illumination and wavelength-dependent

light absorption, modification of the intrinsic parameters due to air-water interface,

scattering and light diffusion, cause the unsatisfactory results of optical systems.

Light, radar, or sound energy cannot pass from air into water and return to the air

in usable level for airborne detection. The lines of force in a magnetic field are able

to make this transition almost undisturbed, however, because magnetic lines of force

pass through both water and air in similar manners. Owing to these advantages, use

of electromagnetic (EM) waves is on rise. One of the several techniques is Magnetic

Anomaly Detection (MAD) system which senses the anomaly in earth magnetic field

produced by the ferromagnetic objects. In recent years, the latest magnetic sensors

have already achieved a very high accuracy, for instance, the optically pumped

magnetometer and the superconducting quantum interference magnetometer have

reached an accuracy level of pT and even fT. This actually provides a new chance

to realize the high-accuracy real-time surveillance based on EM techniques. So,

working on MAD system is interesting, challenging and worth to explore.

1.2 Challenge of Designing MAD System

The challenges of designing a MAD system are:

• The air-water interface makes the computation of EM fields is a complex
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problem for airborne surveillance of underwater ferromagnetic objects like

Unmanned Aerial Vehicle (UAV) based MAD system.

• The suppression of environmental electromagnetic noise or the mitigation of

its effects from myriad of interfering sources on the measured signals is a major

concern.

• Magnetic signal varies with target magnetization related to the target size,

properties of the medium and the distance between the target and the sensor

position. So, simultaneous optimization between target magnetization and

distance is a great challenge.

• For a good surveillance system, low False Alarm Rate (FAR) and large

operating area, along with physical parameters, kinematic parameters are also

important. So, state vector should include velocity, which has to be determined

for continuous tracking of the target.

1.3 Contribution of the Thesis

This thesis deals with problem of the performance of the MAD system which

is governed by the complexity of underlying electromagnetic processes. Due to

high attenuation of EM signal, as complex permittivity and conductivity of the

seawater are high, the signal to noise ratio (SNR) of the recorded signal is low. Our

contribution in this study are:

• We develop an environment which is aimed at mimicking the salient magnetic

features of the ocean environment encountered by the MAD sensor for a
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specified location and for a set of realizable ocean conditions and geographical

topologies.

– We propose an elegant computational technique for measuring the EM

fields in three layered stratified media.

– After developing a simple model to calculate the induced magnetization

of the ferromagnetic target due to external earth’s magnetic field, this

technique can be used for observing the magnetic anomaly produced by

the target.

– A volumetric distribution of isolated elementary multiple dipoles having

random magnetic moments, orientations and frequencies are considered

as sources of magnetic noise for MAD system. A generic mathematical

model is developed to generate the ocean induced low frequency

electromagnetic noises for practical ocean environment.

• Tri-axial magnetometers are incorporated in an UAV based MAD sensor to

obtain the signals. Empirical Mode Decomposition (EMD) method is used to

decompose the signal into Intrinsic Mode Functions (IMFs) and Residue, and

to response to the anomalies if found.

• We propose combined Particle Filter (PF) and Unscented Kalman Filter

(UKF) in Triangular 3-sensor geometry for simultaneous target classification,

localisation and tracking.

1.4 Outline of the Thesis

The rests of the thesis are organised as follow:
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Chapter 2 describes the working principle of a MAD system and previous works

on related underwater surveillance using magnetic field measurement. Different

techniques has been proposed to monitor the ocean activities for many years but

the problem still requires more demonstrations.

Chapter 3 presents a generic mathematical model which is used to design the

signal generation system considering air-ocean environment as a three layered (air,

seawater, seabed) stratified media. Section 3.1 includes model for calculating EM

fields due to a single dipole in a stratified media, Section 3.2 shows the model for

measuring target magnetization in earth’s magnetic field and Section 3.3 shows the

modification of the model of Section 3.1 for calculating EM fields for multiple isolated

elementary dipoles.

Chapter 4 describes the Empirical Mode Decomposition (EMD) techniques for

decomposing the signal into Intrinsic Mode Functions (IMFs) and Residue. A MAD

sensor moving in the air, equipped with a three-axis magnetometer, is used to denoise

the signals from IMFs, and to response to any anomaly found in the observed low

frequency noisy magnetic fields. It also includes the system modeling as state space

dynamics, and brief description of Unscented Kalman Filter (UKF) and Particle

Filter (PF) which are used to estimate the target’s magnetic moment, and target’s

motion parameter i.e. position and velocity of the target. A Triangular 3-sensors

and Pyramid 5-sensors system are used for the investigation of better estimation of

the target parameters instead of conventional Linear 2-sensors system.

Chapter 5 presents performance evaluation of the proposed MAD system. Few

representative numerical results are shown as magnetic noise signals for a few

realizations out of an ensemble of possible realizations of elementary dipole source

distributions. After that EMD techniques are used to detect hidden anomaly
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produced by the target. Then filtering techniques are used for target classification,

localization and tracking. Some simulations are shown for known magnetic moment

as it has some specific applications also.

Finally, some concluding remarks of our task and also the scopes of future works

are included in Chapter 6.
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Chapter 2

WORKING PRINCIPLE OF A

MAD SYSTEM AND

LITERATURE REVIEW

2.1 Working Principle of a MAD System

A MAD system, usually mounted on an UAV, is able to confirm the detection,

and accomplish classification, localization and tracking of large ferromagnetic

objects submerged in an ocean environment. MAD system uses the principle that

ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of

force are able to pass through both water and air in a similar manners. Distortion

of the earth magnetic field due to ferromagnetic body is shown in Figure 2.1. View

A, shows the angular direction at which natural lines of magnetic forces enter and

leave the surface of the earth. View B represents an area of undisturbed natural

magnetic field. In views C and D, target’s magnetic field distorts the natural field.

The density of the natural field is decreased in view C, and increased in view D.

This distortion can be used to detect the underwater objects.
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Figure 2.1: Distortion of the Magnetic Field

A MAD sensor in a MAD-equipped UAV responds to temporally- and spatially-

varying earth’s magnetic field, magnetic noise generated by the UAV, ocean-

induced magnetic noise, geomagnetic noise, magnetic noise caused by local geological

features, magnetic signals generated by ferromagnetic wreckage on the ocean

floor, and the magnetic signal produced by the ferromagnetic target.Among these,

the desired signal is the target signal or the target signature.It depends on

target’s altitude and size, shape, internal structure, material composition, depth,

instantaneous velocity, motion-induced eddy currents, and corrosion-related sources

[7]. Figure 2.2 illustrates the myriad of sources of magnetic fields that contribute to

the total signal received by the MAD sensor. The list of sources is not exhaustive,

but is intended to demonstrate the complex structure of magnetic signals.
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Figure 2.2: Schematic of Sources of Magnetic Fields

The physical and kinematic components of the ferromagnetic body that impact

the target signature will be collectively referred to as target parameters. The process

of separating the unwanted components termed as noise, from the signal of interest

is known as denoising. From the denoised signals detection of the target can be

done based on the presence of any magnetic anomaly. Estimation of the magnetic

moment of the target is called classification while localisation means estimating

the initial position of the target. The tracking is the determination of velocity for

continuous monitoring of the moving target along the trajectory. Our task will be

to detect small target signals in the midst of interfering magnetic signals, as well as

to estimate the target parameters for target classification, localisation and tracking.
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2.2 Literature Review

2.2.1 Brief Description of Dominant Noises Sources

Environmental noise can be a major limitation on the performance of the magnetic

sensor. EM fields and their gradients in electrically conductive seawater are distorted

by myriad of interfering signals produce from different noise sources in the ocean

environment. The power spectra of some of these components are affected by

the search speed via Doppler shift. Such shifts are sometimes advantageous since

they could elevate certain noise-power to frequencies greater than those relevant

for detection. But in this documents Doppler effects are not considered. Here

the sources and nature of dominant magnetic signals that contribute to the signal

received by the MAD system are highlighted.

Ocean-induced magnetic noise

The ocean is an electrically conducting fluid that generates secondary magnetic

fields as it flows through the earth’s main magnetic field [8]. Additionally, the

electromagnetic field generated by a progressive ocean wave contains a transverse

magnetic type field due to seawater velocity components found in the vertical plane

containing the direction of wave propagation [9, 10]. At sea level, magnetic signal

strength due to ocean current and eddies can each be as large as few nT [11].

Geomagnetic noise

One of the major magnetic noises is the geomagnetic noise in the 0.0001 −

2Hz frequency band. It originates from the currents in the ionosphere, caused
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by the interaction of solar wind particles with the earths magnetic field.Such

geomagnetic noise has a Gaussian distribution with a root-mean-square (rms) value

of approximately 0.3nT .

Magnetic noise due to local geological features

Besides the earth’s magnetic field, the most important magnetic field in the sea is

the field created by remnant and induced magnetization in the rocks and sediments

of the sea bottom. The field arising from magnetic materials in the earth’s crust

varies on all spatial scales and is often referred to as the anomaly field [12].

Magnetic noise from UAV

Magnetic detection from a UAV becomes an even more challenging task because

of interfering magnetic signals originating from the UAV platform. The insulating

materials that enclose the sensors and their associated electronics, which must be

taken into account so that underwater measurements by sensors that have been

calibrated in air can be corrected. Classic sources of magnetic noise include the fields

produced by the UAV’s permanent, induced, and eddy current magnetic moments.

Electronic sources of noise include those produced by the UAV’s avionics, wiring,

and power generation/supply. UAV noise may at times overwhelm typical MAD

signals if left uncompensated. The static part of the noise can be easily calibrated

and subtracted from sensor readings. However, it is more difficult to characterize

the dynamic magnetic effects of actions, such as the changing engine RPM.
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Temporal variation of earth’s magnetic field

The intensity and structure of the earth’s magnetic field are constantly changing,

slowly but erratically, reflecting the influence of the flow of thermal currents within

the iron core. This variation is reflected in part by the wandering of the North and

South Geomagnetic Poles. However, given the roughly five-year cycle of variation

in the earths magnetic field, we can safely ignore its negligible effects.

So, the mapping of the magnetic noise is an essential part of the MAD system

design. A model is necessary to generate the magnetic noise field considering the

specific ocean nature. In this study we present an elegant computational technique

which is developed to produce magnetic noise fields for a set of realizable ocean

conditions due to different noise sources modeled as equivalent electric and magnetic

dipoles. Noise generated by this model can be used to test the effectiveness of any

system at different noisy environments.

2.2.2 Recent Trend in Surveillance Systems

Present defense strategy requires the continuous monitoring of the activities

of surface and underwater objects in a certain area. This surveillance is waged

by surface, airborne, undersea, and shore-based forces, each with its own unique

capabilities. In this study the surveillance system that allows target detection,

classification, localization and trajectory tracking based on magnetic data has been

exploited.

Generally two main kinds of magnetic sensors are used to measure the

magnetic fields in the MAD sensor platforms: magnetometers and gradiometers.

Magnetometers measure the local magnetic field while some of them only measure

13



the magnitude of the magnetic field (scaler magnetometers), other measure the field

components (vector/tri-axial magnetometers). Gradiometers measure the gradient

of the magnetic field and are therefore less sensitive to slowly varying magnetic field

(geologic or geomagnetic noise) than magnetometers.

As extremely low frequency components are dominant in both target signal

and ocean induced EM noise signal, Fourier and spectral analysis are not

adequate for exploring the hidden desired signals from recorded noisy signals. A

representative three layered (air-seawater-seabed) geometry having moving magnetic

sensor platform in air, a large ferromagnetic target in water, myriad of noise sources

modeled as equivalent electric and magnetic dipoles is shown in Fig. 2.3, which is

used in UAV based MAD system for searching the magnetic anomaly produced by

the target.

Y

d -1
d 0-

1S1S 1S 1S
Target

Water

Seabed

Air

Moving Sensor Platform

Noise Source

B

t

Figure 2.3: Schematic View of a Detection System

Some methods have been reported in different studies to detect the target from
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observed noisy magnetic anomaly signals. The detection of a moving ferromagnetic

target using a static three-axis referenced magnetometer can be done where the

signal is decomposed into a set of orthonormal basis functions, out of which the

dominant basis function is chosen as the detector. The recorded signals of magnetic

sensors are transformed into energy signals to improve SNR as a part of target

detection by using the set of orthogonal basis functions [13, 14]. Here detection

is done for small magnetic dipole (1Am2) at a very close distance (7m) from

the observation point using Z-fluxgate which contain bell shaped signal. Whereas

practically the signal can be any shape and target may be of small to large magnetic

dipole at a large distance from the MAD sensor depending on the mission. Wavelet

thresholding is another signal estimation technique that exploits the capabilities of

wavelet transformation for signal denoising. It removes noise by killing coefficients

that are insignificant relative to some data dependent threshold, and turns out to

be very simple and effective. But use of magnetic maps in Automated Wavelet

Detection (AWD) where accurate estimation of sensor location is essential for non-

linear inversion method. The errors propagate from one step to the next resulted in

a highly fluctuating estimation in the presence of noise [15, 16]. Another common

way to detect a magnetic target is to look at the maxima of the magnitude of the

magnetic field gradient (sometimes called 3D analytic signal amplitude). Most of

the time, the maximum of this quantity is located approximately above the target

[17, 18]. This signal exhibits maxima over magnetization contrasts, independent of

the ambient magnetic field and source magnetization directions. So only under the

assumption that the anomalies are caused by vertical contacts, the analytic signal is

used to estimate depth which is not true in every case. A linear Euler deconvolution

technique is also used in some studies to detect a dipole source where deconvolution
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is done to the measured fields of three-axis gradiometers. It does not require grid

interpolation, and any initial estimation of the parameters [19, 20]. But detection

is highly depended on the structural index which is related to the geometry of

the source. Incorrect choice of structural index leads to errors in estimated source

depths. So, a successful detection system should detect objects having different

shapes and sizes, from small to large magnetic moment at small to large distance,

and most importantly in a highly noisy environment.

When detection is done, it is necessary to classify, localise and track the

the target.Different approaches such as optimization algorithms namely Genetic

Algorithm (GA) [13, 14], Particle Swarm Optimization (PSO) [21], numerical

methods like potential field inversion method [22], linearization of non-linear

functions [23], successive filtering window [24], magnetic maps, superconducting

quantum interference devices(SQUIDs) [25] etc., are investigated for this purposes.

GA and PSO are used to find the most possible solution of the search space.

But some problems of these optimization techniques as they do not guarantee an

optimal solution, the stop criterion is not clear, they do not use the gradient of the

problem being optimized, make the use of them limited. Ginzburg used statistical

mean of 100 executions of GA to have the desired result close to true parameters

[13, 14]. Fan conducted a simulation experiments using scalar magnetometer array

and particle swarm optimization (PSO) algorithm where the quality of the solution

calculated is not too high as PSO algorithm can’t jump out from the local optima

when trapping in it [21].The performance of SQUIDs depends on having a ”clean”,

isolated dipole signature [25], while only the background of smooth geomagnetic

field and geomagnetic anomalies are considered by Jun [23]. The second-horizontal

derivative anomalies obtained from magnetic data with filters of successive window
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lengths used for classification and depth measurement but the data produced by

simple geological structures and with a sensor array designed scan routine (scan

along several lines) [24].

As the magnetic field measurement in this task is the non-linear function of the

different target parameters, simultaneous classification, localisation and tracking is

a complex problem. It requires iterative simulations of the parameters.
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Chapter 3

MATHEMATICAL MODEL

DEVELOPED FOR SIGNAL

GENERATION

The environment for UAV based MAD system is considered as a three layered

isotropic media (air-seawater-seabed) in this study, where UAV moves in air to

measure the magnetic field produced by magnetic objects submerged in seawater.

The geometric configuration of that method for three different regions are described

in Fig. 3.1. Here for sea-water environment region (1) is air, region (0) is seawater

and region (−1) is seabed plane. Point P is the observation point at air, and the

target is located in seawater at the origin of the coordinate. d0 − d−1 represents

width of the seawater region, where d0 is the distance from the target to the air-

seawater interface and d−1 is the distance from the target to the seawater-seabed

interface. In the following parts of this chapter, mathematical models are developed

to generate the signals received by the MAD sensor.
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Figure 3.1: Geometric Representation of a Three Layered Media

3.1 COMPUTATION OF MAGNETIC FIELD

IN A LAYERED MEDIA

For a magnetic dipole having moment vector m̃, magnetic flux density B̃ in an

uniform medium is given as,

B̃mdip (r, ω) =
µ

4π

[
k2 (r̂ × m̃)× r̂

r
+ {3r̂ (r̂ · m̃)− m̃}

{
1

r3
− ik

r2

}]
eikr (3.1)

Here, Time dependence e−iωt is assumed. Position vector of the observation point

with respect to dipole position is r, unit vector along the direction of r is r̂, magnetic

permeability of the medium is µ, wave number which denotes phase change per meter

for a wave is k = ω
√
µε′ , complex permittivity of the medium which depends on
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the frequency and electric conductivity of the medium is ε′ = ε+ iσ
ω

.

In case of a stratified anisotropic media, a method is presented for calculating

EM fields by Tang in Ref. [26]. A ferromagnetic target can be adequately modeled

at a distance by an equivalent magnetic dipole moment. The dipole source can be

horizontal electric dipole, horizontal magnetic dipole, vertical magnetic dipole, or

vertical electric dipole. The magnetic field intensity is expressed in TE (Transverse

Electric) and TM (Transverse Magnetic) modes as,

H̃ = H̃TM + H̃TE (3.2)

In region (j) the general solutions for waves outgoing in the r̂ direction and

travelling in the ẑ direction for a single dipole placed at the origin of the coordinate

are listed below. TM components are:

H̃TM
j = H

TM

j (r) êr +H
TM

j (φ) êφ +H
TM

j (z) êz

H̃TM
j


r

φ

z

=


∫ +∞
−∞ dλ

(
−iωε′j
λ2r

α+
j (λ, z) H

(1)
n (rλ)STM

′
n (φ)

)
∫ +∞
−∞ dλ

(
iωε′j
λ
α+
j (λ, z)H

(1)′
n (rλ)STMn (φ)

)
0

(3.3)

Whereas TE components are:

H̃TE
j = H

TE

j (r) êr +H
TE

j (φ) êφ +H
TE

j (z) êz

H̃TE
j


r

φ

z

=


∫ +∞
−∞ dλ

(
−γj(m)

λ
β−j (λ, z)H

(1)′
n (rλ)STEn (φ)

)
∫ +∞
−∞ dλ

(
−γj(m)

λ2r
β−j (λ, z)H

(1)
n (rλ)STE

′
n (φ)

)
∫ +∞
−∞ dλ

(
β+
j (λ, z)H

(1)
n (rλ)STEn (φ)

) (3.4)

Here,

γj
(e) =

√
λ2aj − k2

j , aj = εj
′
/εz,j

′
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γj
(m) =

√
λ2bj − k2

j , bj = µj/µz,j

αj
± (λ, z) = ±Aj (λ) eγj

(e)z +Bj (λ) e−γj
(e)z

β±j (λ, z) = ±Cj (λ) eγj
(m)z +Dj (λ) e−γj

(m)z
(3.5)

From Equations (3.3) and (3.4), the first, second and third elements of the

column matrices are the r̂, φ̂ and ẑ components of the field in cylindrical coordinate

system respectively. Primes on any term denotes differentiation with respect to the

arguments. For isotropic media, aj = 1, bj = 1. H
(1)
n is the Hankel function of the

first kind of the order n. For small argument rλ,

lim
λ→0

H
(1)
1 (rλ) = lim

λ→0

[
−2i

πrλ
+

{
1

2

i (−1 + 2Γ− 2 ln 2 + 2 ln (rλ))

2π

}
rλ+O

(
rλ3
)]
(3.6)

and the first derivative is,

H(1)′

n (rλ) = nH
(1)
n (rλ)

/
(rλ)−H

(1)
n+1 (rλ) (3.7)

A, B, C, D depend on λ and have determined by solving boundary conditions.

For region (0),

A0 (λ) = ζ
(e)
1 (λ) e−2γ0

(e)d0 (B0 (λ) + E+
s )

B0 (λ) = e2γ0
(e)d−1

ζ
(e)
1 (λ)e−2γ0

(e)d0E+
s +E−s

1−ζ(e)
1 (λ)ζ

(e)
−1(λ)e2γ0

(e)(d−1−d0)
ζ

(e)
−1 (λ)

C0 (λ) = ζ
(m)
1 (λ) e−2γ0

(m)d0 (D0 (λ) +H+
s )

D0 (λ) = e2γ0
(m)d−1

ζ
(m)
1 (λ)e−2γ0

(m)d0H+
s +H−s

1−ζ(m)
1 (λ)ζ

(m)
−1 (λ)e2γ0

(m)(d−1−d0)
ζ

(m)
−1 (λ)

(3.8)

For region (1),
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A1 (λ) = B1 (λ)QTM

B1 (λ) =
2(B0(λ)+Es+)e−γ0

(e)d0

ε1,0+e−γ1
(e)d0+ε1,0−e−γ1

(e)d0QTM

C1 (λ) = D1 (λ)QTE

D1 (λ) =
2(D0(λ)+Hs+)e−γ0

(m)d0

µ1,0
+e−γ1

(m)d0+µ1,0
−e−γ1

(m)d0QTE

(3.9)

As for physical reasons, A1 = C1 = B−1 = D−1 = 0, that confirms no reflection

of the outward directed propagating wave at the boundary. Which leads to QTM =

QTE = RTM = RTE = 0. So, four simultaneous equations are solved for TM waves

with B1, A0, B0, A−1 as unknowns to be solved and for TE waves D1, C0, D0, C−1

as unknowns to be solved for three layered media. In our case of measuring magnetic

fields from air we need B1, A0, B0 and D1, C0, D0.

Here,

ζ
(e)
1 (λ) = ε̇1,0+e2γ1

(e)d0QTM

1+ε̇1,0e2γ1
(e)d0QTM

= ε̇1,0 =
ε−1,0
ε+1,0

=

ε′1
ε′0
− γ1

(e)

γ0
(e)

ε′1
ε′0

+
γ1

(e)

γ0
(e)

ζ
(e)
−1 (λ) = ε̇−1,0+e−2γ−1

(e)d−1RTM

1+ε̇−1,0e
−2γ−1

(e)d−1RTM
= ε̇−1,0 =

ε−−1,0

ε+−1,0

=

ε′−1
ε′0
− γ−1

(e)

γ0
(e)

ε′−1
ε′0

+
γ−1

(e)

γ0
(e)

ζ
(m)
1 (λ) = µ̇1,0+e2γ1

(m)d0QTE

1+µ̇1,0e2γ1
(m)d0QTE

= µ̇1,0 =
µ1,0−

µ1,0+
=

µ1
µ0
− γ1

(m)

γ0
(m)

µ1
µ0

+
γ1

(m)

γ0
(m)

ζ
(m)
−1 (λ) = µ̇−1,0+e−2γ−1

(m)d−1RTE

1+µ̇−1,0e
−2γ−1

(m)d−1RTE
= µ̇−1,0 =

µ−1,0−

µ−1,0+
=

µ−1
µ0
− γ−1

(m)

γ0
(m)

µ−1
µ0

+
γ−1

(m)

γ0
(m)

(3.10)

For the elementary dipoles under consideration, source values derived by Kong

in Ref. [27] are used. Numerical computation techniques of Eqs. (3.3) and (3.4) are

described in below:
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3.1.1 For Horizontal Magnetic Dipole

For horizontal magnetic dipole along x-direction (HMDx):

n = 1

S1
TE (φ) = cosφ

S1
TM (φ) = − sinφ

H±s = ±
(
− m̃λ2

8π

)
E+
s = E−s = im̃ωµ0λ2

8πγ
(e)
0

(3.11)

So,
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B0 (λ) = e2γ0
(e)d−1

ζ
(e)
1 (λ)e−2γ0

(e)d0E+
s +E−s

1−ζ(e)
1 (λ)ζ

(e)
−1(λ)e2γ0

(e)(d−1−d0)
ζ

(e)
−1 (λ)

B0 (λ) =e2γ0
(e)d−1

ζ
(e)
1 (λ)e−2γ0

(e)d0

(
im̃ωµ0λ

2

8πγ
(e)
0

)
+

(
im̃ωµ0λ

2

8πγ
(e)
0

)
1−ζ(e)

1 (λ)ζ
(e)
−1(λ)e2γ0

(e)(d−1−d0)
ζ

(e)
−1 (λ)

B0 (λ) = B0 (λ) /λ2 = e2
√
λ2−k2

0d−1

ζ
(e)
1 (λ)e

−2
√

λ2−k2
0d0

(
im̃ωµ0

8π
√

λ2−k2
0

)
+

(
im̃ωµ0

8π
√

λ2−k2
0

)

1−ζ(e)
1 (λ)ζ

(e)
−1(λ)e

2
√

λ2−k2
0(d−1−d0)

ζ
(e)
−1 (λ)

A0 (λ) = ζ
(e)
1 (λ) e−2γ0

(e)d0 (B0 (λ) + E+
s )

A0 (λ) =ζ
(e)
1 (λ) e−2

√
λ2−k2

0d0

(
λ2B0 (λ) + im̄ωµ0λ2

8π
√
λ2−k2

0

)
A0 (λ) = A0 (λ) /λ2 = ζ

(e)
1 (λ) e−2

√
λ2−k2

0d0

(
B0 (λ) + im̄ωµ0

8π
√
λ2−k2

0

)

D0 (λ) = e2γ0
(m)d−1

ζ
(m)
1 (λ)e−2γ0

(m)d0H+
s +H−s

1−ζ(m)
1 (λ)ζ

(m)
−1 (λ)e2γ0

(m)(d−1−d0)
ζ

(m)
−1 (λ)

D0 (λ) =e2γ0
(m)d−1

ζ
(m)
1 (λ)e−2γ0

(m)d0

(
− m̃λ

2

8π

)
+
(
m̃λ2

8π

)
1−ζ(m)

1 (λ)ζ
(m)
−1 (λ)e2γ0

(m)(d−1−d0)
ζ

(m)
−1 (λ)

D0 (λ) = D0 (λ) /λ2=e2
√
λ2−k2

0d−1
ζ

(m)
1 (λ)e

−2
√

λ2−k2
0d0(− m̃

8π )+( m̃8π )

1−ζ(m)
1 (λ)ζ

(m)
−1 (λ)e

2
√

λ2−k2
0(d−1−d0)

ζ
(m)
−1 (λ)

C0 (λ) = ζ
(m)
1 (λ) e−2γ0

(m)d0 (D0 (λ) +H+
s )

C0 (λ) =ζ
(m)
1 (λ) e−2γ0

(m)d0

(
λ2D0 (λ)− m̃λ2

8π

)
C0 (λ) = C0 (λ) /λ2=ζ

(m)
1 (λ) e−2

√
λ2−k2

0d0

(
D0 (λ)− m̃

8π

)
(3.12)
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B1 (λ) =
2(B0(λ)+Es+)e−2γ0

(e)d0

ε1,0+e−2γ1
(e)d0

B1 (λ) =
2

(
λ2B0(λ)+

im̄ωµ0λ
2

8π
√

λ2−k2
0

)
e−2γ0

(e)d0

ε1,0+e−2γ1
(e)d0

B1 (λ) = B1 (λ) /λ2 =
2

(
B0(λ)+

im̄ωµ0

8π
√

λ2−k2
0

)
e
−2
√

λ2−k2
0d0

ε1,0+e
−2
√

λ2−k2
1d0

D1 (λ) =
2(D0(λ)+Hs+)e−2γ0

(m)d0

µ1,0+e−2γ1
(m)d0+µ1,0−e

−2γ1
(m)d0QTE

D1 (λ) =
2
(
λ2D0(λ)− m̃λ

2

8π

)
e−2γ0

(m)d0

µ1,0+e−2γ1
(m)d0

D1 (λ) = D1 (λ) /λ2 =
2
(
D0(λ)− m̃

8π

)
e
−2
√

λ2−k2
0d0

µ1,0+e
−2
√

λ2−k2
1d0

(3.13)

From A0 (λ), B0 (λ) and B1 (λ), it is clear that there are two branch cuts at

λ = ±k0. As k0 is complex in our case, we can avoid these points if we integrate

Eqs. (3.3) and (3.4) along real line of integration path. Besides H
(1)
1 (rλ) is a singular

function with singularity at λ = 0, which can be ignored by taking a small contour

around the singular point. Figure 3.2 shows the integration path and according to

which our integration should take the form as:

∫ +∞
−∞ () dλ =

[∫ 0−

−∞+
∫
cε

+
∫ +∞

0+

]
() dλ∫ +∞

−∞ () dλ =
[∫ 0−

−∞+
∫ +∞

0+

]
() dλ+

∫
cε

()dλ∫ +∞
−∞ () dλ = I1 + I2

(3.14)
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Figure 3.2: Integration Path

Along
[∫ 0−

−∞+
∫ +∞

0+

]
, let λ = λrhence,dλ = dλr. So, γj

(e) =
√
λr

2 − k2
j and

γj
(m) =

√
λr

2 − k2
j .

Along
∫
cε

, let λ = Reiθ hence dλ = iReiθdθ, where π ≤ θ ≤ 0.

So,

γj
(e) = lim

R→0

√
(Reiθ)2 − k2

j

= lim
R→0

ikj

√
1−

(
Reiθ

kj

)2

≈ lim
R→0

ikj

(
1− 1

2

(
Reiθ

kj

)2
) (3.15)

After binomial expansion and taking the first two terms only, we can obtain the

following expressions:
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lim
R→0

γj
(e) ≈ ikj

lim
R→0

γj
(m) ≈ ikj

lim
R→0

ζ
(e)
1

(
Reiθ

)
≈ ζ

(e)
1 =

ε′1
ε′0
− k1

(e)

k0
(e)

ε′1
ε′0

+
k1

(e)

k0
(e)

lim
R→0

ζ
(e)
−1

(
Reiθ

)
≈ ζ

(e)
−1 =

ε′−1
ε′0
− k−1

(e)

k0
(e)

ε′−1
ε′0

+
k−1

(e)

k0
(e)

lim
R→0

ζ
(m)
1

(
Reiθ

)
≈ ζ

(m)
1 =

µ1
µ0
− ik1
ik0

µ1
µ0

+
ik1
ik0

lim
R→0

ζ
(m)
−1

(
Reiθ

)
≈ ζ

(m)
−1 =

µ−1
µ0
− ik−1

ik0
µ−1
µ0

+
ik−1
ik0

lim
R→0

B0

(
Reiθ

)
≈ B0 = e2ik0d−1

ζ
(e)
1 e−2ik0d02

(
im̄ωµ0
8πik0

)
1−ζ(e)

1 ζ
(e)
−1e

2ik0(d−1−d0) ζ
(e)
−1

lim
R→0

B1

(
Reiθ

)
≈ B1 =

2
(
B0+

im̄ωµ0
8πik0

)
e−2ik0d0

ε1,0+e−2ik1d0

lim
R→0

D0

(
Reiθ

)
≈ D0 = e2ik0d−1

ζ
(m)
1 e−2ik0d0(− m̃

8π )+( m̃8π )
1−ζ(m)

1 ζ
(m)
−1 e2ik0(d−1−d0) ζ

(m)
−1

lim
R→0

D1

(
Reiθ

)
≈ D1 =

2
(
D0− m̃

8π

)
e−2ik0d0

µ1,0+e−2ik1d0

lim
R→0

H
(1)
1

(
rReiθ

)
= lim

R→0
ReiθH

(1)
1

(
rReiθ

)
≈ lim

R→0

[
−2i
πr

+

{
1
2

+
i(−1+2Γ−2 ln 2+2 ln(rReiθ))

2π

}
r
(
Reiθ

)2
+O

(
r3
(
Reiθ

)4
)]

= −2i
πr

(3.16)
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Transverse Magnetic Mode

H̄TM
1 (r) =

∫ +∞
−∞ dλ

(
−iωε′1
λ2r

α+
1 (λ, z)H

(1)
1 (rλ)STM

′
1 (φ)

)
=
∫ +∞
−∞

−iωε′1
λ2r

[
A1 (λ) eγ

(e)
1 z +B1 (λ) e−γ

(e)
1 z
]
H

(1)
1 (rλ) (− cosφ) dλ

=
∫ +∞
−∞

iωε′1
r

[
A1 (λ) eγ

(e)
1 z +B1 (λ) e−γ

(e)
1 z
]
H

(1)
1 (rλ) (cosφ) dλ

I1
H̄TM

1 (r)
=
[∫ 0−

−∞+
∫ +∞

0+

]
iωε′1
r

[
A1 (λr) e

√
λr

2−k2
1z +B1 (λr) e

−
√
λr

2−k2
1z
]
H

(1)
1 (rλr) (cosφ) dλr

I2
H̄TM

1 (r)
= lim

R→0

∫ 0

π
iωε′1
r

[
A1

(
Reiθ

)
eγ1

(e)z +B1

(
Reiθ

)
e−γ1

(e)z
]
H

(1)
1

(
rReiθ

)
(cosφ)

(
iReiθdθ

)
= lim

R→0

∫ 0

π
−ωε′1
r

(cosφ)
[
A1

(
Reiθ

)
eγ1

(e)z +B1

(
Reiθ

)
e−γ1

(e)z
] (
ReiθH

(1)
1

(
rReiθ

))
dθ

=
0∫
π

−ωε′1
r

(cosφ)
[
A1e

ik1z +B1e
−ik1z

]
× −2i

πr
dθ

=
0∫
π

i2ωε′1
πr2 (cosφ)

[
A1e

ik1z +B1e
−ik1z

]
dθ

(3.17)
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H̄TM
1 (φ) =

∫ +∞
−∞

iωε′1
λ

[
A1 (λ) eγ

(e)
1 z +B1 (λ) e−γ

(e)
1 z
]
H

(1)′

1 (rλ) (− sinφ)dλ

=
∫ +∞
−∞ −

iωε′1
λ

[
λ2A1 (λ) eγ

(e)
1 z + λ2B1 (λ) e−γ

(e)
1 z
](

H
(1)
1 (rλ)

rλ
−H(1)

2 (rλ)

)
(sinφ)dλ

=
∫ +∞
−∞ −iωε

′
1

[
A1 (λ) eγ

(e)
1 z +B1 (λ) e−γ

(e)
1 z
](

H
(1)
1 (rλ)

r
− λH(1)

2 (rλ)

)
(sinφ)dλ

I1
H̄TM

1 (φ)
= −

[∫ 0−

−∞+
∫ +∞

0+

]
iωε′1

[
A1 (λr) e

√
λr

2−k2
1z +B1 (λr) e

−
√
λr

2−k2
1z
](

H
(1)
1 (rλr)

r
− λrH(1)

2 (rλr)

)
(sinφ) dλr

I2
H̄TM

1 (φ)
= lim

R→0

∫ 0

π
−iωε′1

[
A1

(
Reiθ

)
eγ1

(e)z +B1

(
Reiθ

)
e−γ1

(e)z
]

(
H

(1)
1 (rReiθ)

r
−ReiθH(1)

2

(
rReiθ

))
(sinφ)

(
iReiθdθ

)
= lim

R→0

∫ 0

π
ωε′1

[
A1

(
Reiθ

)
eγ1

(e)z +B1

(
Reiθ

)
e−γ1

(e)z
]

((
ReiθH

(1)
1 (rReiθ)

)
r

−
(
Reiθ

)2
H

(1)
2

(
rReiθ

))
(sinφ) dθ

=
∫ 0

π
ωε′1

[
A1e

ik1z +B1e
−ik1z

]
× −2i

πr2 (sinφ)dθ

=
∫ 0

π
−2iωε′1
πr2 (sinφ)

[
A1e

ik1z +B1e
−ik1z

]
dθ

(3.18)

H
TM

1 (z) = 0 (3.19)
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Transverse Electric Mode

H̄TE
1 (r) =

∫ +∞
−∞ dλ

(
−γ1

(m)

λ
β−1 (λ, z) H

(1)′

1 (rλ)STE1 (φ)
)

=
∫ +∞
−∞

−γ1
(m)

λ

[
−C1 (λ) eγ1

(m)z +D1 (λ) e−γ1
(m)z
](

H
(1)
1 (rλ)

rλ
−H(1)

2 (rλ)

)
(cosφ) dλ

=
∫ +∞
−∞ −γ1

(m)
[
−C1 (λ) eγ1

(m)z +D1 (λ) e−γ1
(m)z
](

H
(1)
1 (rλ)

r
− λH(1)

2 (rλ)

)
(cosφ) dλ

∴ I1
H̄TE

1 (r)
= −

[∫ 0−

−∞+
∫ +∞

0+

]√
λr

2 − k2
1 (cosφ)

[
−C1 (λr) e

√
λr

2−k2
1z +D1 (λr) e

−
√
λr

2−k2
1z
](

H
(1)
1 (rλr)

r
− λrH(1)

2 (rλr)

)
dλr

I2
H̄TE

1 (r)
= lim

R→0

∫ 0

π
−γ1

(m)
[
−C1

(
Reiθ

)
eγ1
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(3.20)
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H̄TE
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H̄TE
1 (z) =
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−∞ dλ

(
β+

1 (λ, z) H
(1)
1 (rλ)STE1 (φ)

)
=
∫ +∞
−∞

[
C1 (λ) eγ1

(m)z +D1 (λ) e−γ1
(m)z
]
H

(1)
1 (rλ) (cosφ) dλ

=
∫ +∞
−∞

[
C1 (λ) eγ1

(m)z +D1 (λ) e−γ1
(m)z
]
λ2H

(1)
1 (rλ) (cosφ) dλ

∴ I1
H̄TE

1 (z)
=
[∫ 0−

−∞+
∫ +∞

0+

]
λr

2
[
C1 (λr) e

√
λr

2−k2
1z +D1 (λr) e

−
√
λr

2−k2
1z
]
H

(1)
1 (rλr) (cosφ) dλr

I2
H̄TE

1 (z)
= lim

R→0

∫ 0

π

[
C1

(
Reiθ

)
eγ1

(m)z +D1

(
Reiθ

)
e−γ1

(m)z
] (
Reiθ

)2
H

(1)
1

(
rReiθ

)
(cosφ)

(
iReiθdθ

)
= lim

R→0

∫ 0

π
i
(
Reiθ

)2
(cosφ)

[
C1

(
Reiθ

)
eγ1

(m)z +D1

(
Reiθ

)
e−γ1

(m)z
] (
ReiθH

(1)
1

(
rReiθ

))
dθ

= 0

(3.22)

Finally, for horizontal magnetic dipole
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(3.23)

3.1.2 For Vertical Magnetic Dipole

n = 0

So
TE (φ) = 1

H+
s = H−s = − m̃λ3

8πγ
(m)
0

E+
s = E−s = 0

(3.24)

So,
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A = B = 0
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(3.26)

Following the similar integration procedure of Fig. 3.2 developed in Section 3.1.1

for horizontal magnetic dipole we can obtain the expressions for vertical magnetic

dipole also.

Transverse Magnetic Mode

As A = B = 0, for vertical magnetic dipole source:
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(3.27)

Transverse Electric Mode
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Finally, for vertical magnetic dipole,
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(3.31)

These final equations are solved numerically using Legendre-Gauss Quadrature

Weights and Nodes [28]. The integrands in each of the cases have significant values
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within [−3, 3], and 5000 points are used to evaluate nodes and weights within this

limit.

3.2 MODELING MAGNETIZATION OF

TARGET

The main source of the static magnetic field of a target is the ferromagnetic

material (used for its fabrication), which is magnetized due to its external magnetic

field. The instantaneous magnetization of a body depends not only on the presence

of a magnetic field, but also on the history of the field. Additionally, stress and

ambient temperature influence magnetization. The complicated interrelationship

between the magnetic field, history, stress and magnetization can be demonstrated

by magneto-mechanical models. When a ship or submarine hull is being fabricated,

it is subjected to heat (welding) and to impact (riveting). Ferrous metal contains

groups of iron molecules called ”domains.” Each domain is a tiny magnet, and has its

own magnetic field with a north and south pole. When the domains are not aligned

along any axis, but point in different directions at random, there is a negligible

magnetic pattern. However, if the metal is put into a constant magnetic field and

its particles are agitated, as they would be by hammering or by heating, the domains

tend to orient themselves so that their north poles point toward the south pole of

the field, and their south poles point toward the north pole of the field. All the fields

of the domains then have an additive effect, and a piece of ferrous metal so treated

has a magnetic field of its own. Although the earth’s magnetic field is not strong,

a ship’s hull contains so much steel that it acquires a significant and permanent

magnetic field during construction. The steel in a ship also has the effect of causing
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earth’s lines of force (flux) to move out of their normal positions and be concentrated

at the ship. This is called the ”induced field,” and varies with the heading of the

ship. A magnetized body also produces a secondary magnetic field that can be

measured externally. This field is a major contributor to its magnetic signature.

Given the distribution of a targets magnetization, its signature can be calculated

which is expressed in static magnetic dipole (DC Dipole). Since the distribution of

earths magnetic field over the oceans has been mapped extensively and modeled,

magnetostatics models can be used to predict a targets magnetic signature as a

function of its position and heading [29]. An example of a modeled DC Dipole-like

magnetic signature of a submarine for a given target depth is shown in Fig. 3.3.

Figure 3.3: Magnetic Signature of a Submarine (Submarine: Image courtesy of

Kockums AB.)

Additionally, when an electrically conductive object moves through the earths

magnetic field, it generates an ELF magnetic field that can be externally measured.

Thus, the target signal contains both a DC Dipole-like signal (due to the
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magnetization of the target) and an ELF magnetic field (induced by its motion

through the earths magnetic field).

The static magnetization of a ferromagnetic body due to it’s external earth’s

magnetic field can be calculated by

~m =
∑Nd

i=1

−→
Mi =

∑Nd

i=1
χv
−→
H i

∣∣∣∆~Vi

∣∣∣ (3.32)

Where, the whole target is divided into Nd number of small volumetric elements.

small volume element,

∆~Vi = ∆ ~Ai ∗ td = {(~p1 − ~p0)× (~p2 − ~p0)}i ∗ td

Here, volume magnetic susceptibility of the material, χv = µr − 1, magnetic

moment due to ∆~Vi is ~Mi, total magnetization of the ship is ~m, two adjacent sides

of any rectangle are (~p1 − ~p0) and (~p2 − ~p0), small area element is ∆ ~Ai, thickness of

the steel is td, external earth’s magnetic field intensity at ith element is
−→
H i.

The resulted equivalent magnetic moment from Eq. (3.32) will be used as a

dipole sources, m̃ (= IA) in Eqs. (3.2) using the computation techniques developed

in Secs. 3.1.1 and 3.1.2 to generate target signature. So, target signal is

Btarget (x, y, z, t) = µ1H̃target (x, y, z) e−i(wtargett+ψtarget) (3.33)

Here, ψtarget is the initial phase of the target.

3.3 MODELING SOURCES OF NOISE

To consider the effect of distributed noise in the ocean environment, the noise

sources can be modeled as small electric and magnetic dipoles which generate low
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frequency electromagnetic induced noise signals. Equations (3.3) and (3.4) are

developed for calculating magnetic field intensity due to a single dipole embedded

in a stratified media. But for noise modelling, concept of multiple dipole sources

come into consideration, and global coordinate system is developed. A geometrical

representation is presented to illustrate the hypothetical concept of multiple sources

in Fig. 3.4.
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Figure 3.4: Geometric Representation of Multiple Dipole Sources Placement

Dipoles are placed at position (xl, yl, zl) with their orientation θl and initial

phases ψl, where l identifies dipole number. Global coordinate is at air-water

interface and each dipole is considered to be in the origin of respective local

coordinates to match the equations developed in Sec. 3.1 for single dipole. For

convenience all the values are converted into Cartesian coordinate system. So a

transformation matrix governing the translation and rotation can be used in order
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to map the global coordinates to local frame of references, so that identical equations

can be used to determine the field values. Therefore time-varying noise signal can

be obtained by:

Bnoise (x, y, z, t) =
Nm∑
l=1

µjH̃j (x′l, y
′
l, z
′
l) e
−i(ωlt+ψl) (3.34)

Here Nm is the total number of dipoles and Re {} represents real value of the

argument. The position of observation point with reference to local coordinate

system is obtained for individual dipoles using the following transformation:


x′l

y′l

z′l

 = [Rz′ (θl)]
−1


x− xl

y − yl

z − zl

 (3.35)

Where, the rotation matrix with respect to z′ axis is

Rz′ (θl) =


cos θl − sin θl 0

sin θl cos θl 0

0 0 1


It is noted that prime coordinates refer to positions with respect to local frame of

reference.

3.4 SIGNAL RECEIVED BY MAD SENSOR

The noisy magnetic signal observed by MAD sensor is composed of unwanted

noise signal and desired target signal. So, the noisy magnetic signal is,

Bnoisy (x, y, z, t) = Btarget (x, y, z, t) + Bnoise (x, y, z, t) (3.36)
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This signal will be the observed/measured signal for detection, classification,

localisation and tracking system.
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Chapter 4

PROPOSED DETECTION,

CLASSIFICATION,

LOCALISATION AND

TRACKING SYSTEM

The type of surveillance system used is highly dependent on the type of operation

or mission, and that in many cases different systems can be combined to yield

increased performance. The most important considerations are the size of the region

of interest and the desired accuracy. In this chapter we describe the proposed method

and mathematical foundation of the determination of the target, and estimation

of the magnetic moment and motion parameters of the body from the magnetic

signature.

4.1 DETECTION METHOD

EMD is a noise reduction algorithm which is intuitive and adaptive, with basic

functions derived fully from the data. Compared to other denoising methods such

as; filtering, independent and principle component analysis, neural networks, and
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adaptive filtering, EMD is found more effective in the reduction of noise from the

MAD signals. The computation of EMD does not require any previously known

value of the signal. The key task here is to identify the intrinsic oscillatory modes by

their characteristic time scales in the signal empirically, and accordingly, decompose

the signal into intrinsic mode functions (IMFs). As a result, EMD is especially

applicable for nonlinear and non-stationary signals, such as MAD signals.

A function is considered to be an IMF if it satisfies two conditions; First, In the

whole data set, the number of local extrema and that of zero crossings must be equal

to each other or different by at most one and second, at any point, the mean value

of the envelope defined by the local maxima and that defined by the local minima

should be zero. The systematic way to decompose the data into IMFs, known as

the ”sifting” process, is described as follows,

• All the local maxima of the data Bnoisy [n] are determined and joined by cubic

spline line as the upper envelope.

• All the local minima of the data Bnoisy [n] are found and connected by cubic

spline line as the lower envelope.

• In the first sifting process, the mean m1 of the upper and lower envelops is first

determined, and then, subtracted from the original data Bnoisy [n] to obtain

the first component h1 [n] as,

h1 [n] = Bnoisy [n]−m1 (4.1)

If h1 [n] satisfies the conditions to be an IMF as mentioned above, it is

considered as the first IMF c1 [n].
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• If h1 [n] dissatisfies the conditions to be an IMF, it is treated as the data in the

second sifting process, where steps 1, 2 and 3 are repeated on h1 [n] to derive

the second component h2 [n] as,

h2 [n] = h1 [n]−m2 (4.2)

where, m2 is the mean value determined from h1 [n] with a view to determine

c1 [n] from h2 [n], the conditions to be satisfied to be an IMF is checked for

h2 [n]. If h2 [n] does not satisfy the conditions, a standard difference (SD) is

calculated from the two consecutive sifting results, namely hi−1 [n] and hi [n]

as

SD =
N∑
n=0

|hi−1 [n]− hi [n]|2

h2
i−1 [n]

(4.3)

When the value of SD resides within a predefined range, the sifting process is

terminated, and hi [n] is termed as c1 [n].

• once c1 [n] is obtained, it is then subtracted from the original data to get a

residue r1 [n],

r1 [n] = Bnoisy [n]− c1 [n] (4.4)

The residue r1 [n] is treated as a new signal, and sifting process as described

above is carried out on r1 [n] to obtain the next residue signal r2 [n]. Therefore,

the residue signal thus obtained can be expressed in general as,

rj [n] = rj−1 [n]− cj [n] (4.5)
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If r1 [n] becomes a constant or monotonic function, the process of decomposing

the signal into IMFs is terminated. So, the stopping criterion is,

Amean = abs (Λmax + Λmin) /2

Aenv = abs (Λmax − Λmin) /2

Amean
Aenv

< τ2

Amean
Aenv>τ

< tol

(4.6)

To this end, for a L level decomposition, the original signal x[n] can be

represented as the sum of the decomposed IMFs and resulting residue rL [n] as

given by,

Bnoisy [n] =
L−1∑
i=1

ci [n] + rL [n] (4.7)

4.2 CLASSIFICATION, LOCALISATION AND

TRACKING METHOD

After the detection, the monitoring of ocean activities requires the localisation,

classification and trajectory of enemy targets. Sometimes classification is known,

only current status of the target (Position and velocity) are necessary like for ROV,

AUV. So, the state parameters are magnetic moment, position and velocity of the

target. These state parameters which change over time need to be determined using

a sequence of noisy measurements (observations) made on the UAV based MAD

system.
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4.2.1 Dynamic state-space model

We wish to estimate the states of a non-linear dynamic system of the form:

xk+1 = f (xk,uk,vk) (4.8)

Bnoisyk = h (xk,uk) + wk (4.9)

Equation (4.8) represents the process model, while Eq. (4.9) represents the

measurement (observation) model. Here, xk is the nx-dimensional state vector of

the system at time step k, uk is the input vector, Bnoisyk is the nz-dimensional

observation vector, and vk and wk are vectors representing the process and

measurement noise, with dimensions nv and nw respectively. It is assumed that the

noise vectors are independent of current and past states, and identically distributed.

First, the filter updates the state of the system given a state estimate x̂k|k. The

covariance of this estimate is Pk+1|k.

xk+1|k = E
[
f [xk,uk,vk] |Bnoisyk

]
(4.10)

Pk+1|k = E
[(

xk+1 − x̂k+1|k
) (

xk+1 − x̂k+1|k
)T |Bnoisyk

]
(4.11)

The problem of tracking a magnetic dipole does not satisfy the original

Kalman filter requirements because the system observation h (•) is non-linear.

In order to deal with non-linear systems, two categories of techniques have been

developed: parametric and non-parametric. The parametric techniques are based

on improvements in linearizing the equations of the Kalman filter that is Unscented

Kalman filter (UKF) and the non-parametric techniques are based on Monte Carlo

simulations that is Particle Filter (PF).
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4.2.2 Magnetic dipole dynamics and measurements

The target is fully characterised by its motion parameters (position and velocity)

and the value of the magnetic dipole moment. When all these parameters are known

the target may be classified as a certain mass or length, which can be appreciated

after the amount of ferromagnetic material contained. Ship motion is rather slow

and could be described using a constant velocity model. This mathematical model

is sufficient to provide satisfactory estimation accuracy under the condition that

the target does not accelerate during the observation time. During this period it is

less probable that the target undergoes abrupt maneuvers. Also the magnetic mass

of the target remains constant during the passage and can be estimated from the

values of the equivalent magnetic dipole moment.

Let consider that the time increment between the data samples is ∆t in sec, m

is the magnetic moment of the dipole, V [VX , VY , VZ = 0] is the velocity vector in

m/sec, and r [rX , rY , rZ ] is the position vector from the global coordinate to the

dipole in m. For a full characterization of the target, the entire system at time step

k can be represented by the state vector:

xk = (rX , rY , rZ , VX , VY , m)T (4.12)

The discrete equations of target motion are obtained using the piece-wise
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approximation:

rX (k) = rX (k − 1) + ∆t VX

rY (k) = rY (k − 1) + ∆t VY

rZ (k) = rZ (k − 1)

VX (k) = VX (k − 1)

VY (k) = VY (k − 1)

m (k) = m (k − 1)

(4.13)

These are the process equations. Tri-axial magnetic sensors measure the

observation data Bnoisy at a given point due to a magnetic dipole by measurement

equations developed in Chapter 3. So, the process function f (•) in Eq. (4.8) is

linear, but the measurement function h (•) in Eq. (4.9) is highly non-linear. For one

sensor, the measurement vector at time k has the form:

Bnoisyk = (Bx, By, Bz)
T (4.14)

4.2.3 State Vector Estimation

Unscented Kalman Filter

The Kalman filter assumes a linear relationship for both system dynamics and

observation equations, and a Gaussian distribution of the state vector. A Gaussian

distribution can be represented by a mean and a covariance matrix. The Kalman

filter propagates the first two moments of the distribution of the state vector

recursively and has a distinctive predictor-corrector structure. The advantage of
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a UKF over a traditional Extended Kalman Filter (EKF) is that the UKF can

be more accurate when the propagation/measurement functions are not zero-mean

w.r.t., the error (that is, they are significantly nonlinear in terms of their errors).

Further, since a UKF doesn’t require Jacobians, it’s often easier to use a UKF than

an EKF. By linearizing the non-linear function around the predicted state values,

UKF can be used to solve the highly non-linear magnetic dipole tracking problem.

UKF represents a method to calculate the first two moments (mean and covariance)

of a random variable following the unscented transformation. These estimates of the

mean and covariance are accurate to the second order of the Taylor series expansion.

Errors are introduced in the third and higher order moments, but are scaled by the

choice of a scaling parameter.

Particle Filter

Particle filter (PF) or Sequential Monte Carlo (SMC) methodology uses a genetic

type mutation-selection sampling approach, with a set of particles (also called

individuals, or samples) to represent the posterior distribution of some stochastic

process given some noisy and/or partial observations. The state-space model can

be non-linear, and the initial state and noise distributions can take any form

required. Each particle has a likelihood weight assigned to it that represents the

probability of that particle being sampled from the probability density function.

Weight disparity leading to weight collapse is a common issue encountered in these

filtering algorithms; however it can be mitigated by including a resampling step

before the weights become too uneven.

From the Bayesian perspective, it is required to estimate p
(
xk|Bnoisy1:k

)
assuming that the pdf at time (k-1), p

(
xk−1|Bnoisy1:k−1

)
is available. The first

49



step in this process is called prediction and makes use of equation (4.8), which is

assumed to describe a Markov process of order one:

p
(
xk|Bnoisy1:k−1

)
=

∫
p (xk|xk−1)p

(
xk−1|Bnoisy1:k−1

)
dxk−1 (4.15)

The second step, the measurement update, uses the most recent observation to

produce the desired pdf via Bayes rule:

p
(
xk|Bnoisy1:k

)
=

p(Bnoisyk|xk)p(xk|Bnoisy1:k−1)
p(Bnoisyk|Bnoisy1:k−1)

p
(
Bnoisyk|Bnoisy1:k−1

)
=
∫
p
(
Bnoisyk|xk

)
p
(
xk|Bnoisy1:k−1

)
dxk

(4.16)

Once the posterior pdf is determined, it is straightforward conceptually to

produce any desired statistic of xk.
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Chapter 5

PERFORMANCE EVALUATION

OF THE PROPOSED MAD

SYSTEM

This chapter includes details simulation results to depicts the outcomes of our

study. First we shall present an ocean environment which includes simulation

parameters of the medium and induced magnetization of the ferromagnetic target

due to earth’s magnetic field in Sec. 5.1. Then we shall show the contribution of

magnetic noise signals from different layer of the ocean which is the MAD signals

in absence of the target in that area of search in Sec. 5.2. After that detection

performance of the EMD method using tri-axial magnetometer will be presented in

Sec. 5.3. Finally we will give simulation results of the classification, localisation and

tracking performance of our proposed combined PF and UKF method in Sec. 5.4.

5.1 SIMULATION ENVIRONMENT

We have considered the underwater surveillance environment as a three layered

medium (air-seawater-seafloor). The parameters for air medium (region 1) are:

σ = 0f, µ = 1µ0, ε = 1ε0, for seawater medium (region 0) are: σ = 4f, µ = 1µ0,
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ε = 78ε0, and for seabed medium (region −1) are: σ = 0.1f, µ = 1µ0, ε = 12ε0.

Depth of the water region is 200m.

Table 5.1: Equivalent Magnetic Moment of the Ferromagnetic Body due to the

Magnetization in Earth’s Magnetic Field

Ship Ship Tower Tower Equivalent
Length Diameter Height Diameter Magnetic

Moment
L (m) D (m) h (m) d (m) m (Am2)

100 10 2 2 ' 10000

55 10 2 2 ' 5000

70 6 2 2 ' 4000

28 6 No tower No tower ' 1500

In this study, the classification means the determination of the magnetic moment

produced by the ferromagnetic target which leads to the determination of the target’s

size. To obtain the distribution of target’s magnetization due to the external earth’s

magnetic filed, a ship built with a representative high strength steel is considered.

For simplicity, the total body is assumed to be made of same material where the

main body is of cylindrical shape and two hemisphere on two ends. The ship also has

a tower on top, which is also cylindrical. Some numerical calculations are presented

to depict a possible view of the induced magnetization of the ferromagnetic target in

Table 5.1. Here, volume magnetic susceptibility of the steel, χv = 2.7, thickness of

the steel, td = 4cm, number of small volume element, n ' 40000, external magnetic

field, |~B| = 55 uT are used for calculating induced magnetization.
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5.2 ANALYSIS OF NOISE SIGNALS

A volumetric distribution of isolated elementary magnetic dipoles is considered

to estimate the magnetic noise encountered by a MAD system. Time varying noise

signals are generated by using the mathematical models developed in Sec. 3.1 to

measure the magnetic fields due to a single magnetic dipole in the stratified media,

and in Sec. 3.3 to measure the fields due to multiple dipoles considering dipole

moments m, dipole frequencies f , orientations θ and initial phases ψ are random

in nature. Two types of dipoles−horizontal magnetic dipole along-x direction

and vertical magnetic dipole are considered as noise sources. Observation point

P is at 10m above the air-water interface, and total number of dipoles is 50,

which are distributed in the seawater within (X, Y ) = ([−10, 10], [−10, 10])m

of the target following random distribution. Signals are observed within a time

frame of [0, 120]sec. The parameter for dipoles are: magnetic moments, m =

rand[0.1, 1]Am2, frequency, f = rand[0.1, 3]Hz, orientation of the dipole with

respect to x axis, θ = rand[0, 3600] and initial phase, ψ = rand[0, 2π].

Figure 5.1 shows the noise signals for the Noise Source Layer (NSL) [0.01, 0.1]m,

which means the dipole sources are distributed 0.01m to 0.1m below the air-seawater

interface. The magnetic fields are plotted along three axes to correspond with the

detection technique of Three-Axis Magnetometer.

Attenuation of EM fields is very high due to the large electric conductivity (σ =

4 to 5f) and electric permittivity (ε ' 80ε0) of the seawater. Magnetic fields due to

the dipoles distributed at near the interface are of high values, and fields contribution

gradually diminishes with the increase of NSL from the interface. Considerable

decreases in field strength are seen from Fig. 5.2 (NSL = [9, 12]m), and Fig. 5.3
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(NSL = [35, 40]m). So, noise sources distributed at [0.01, 40m from the air-seawater

interface are of interest.

By inspecting the histogram chart and probability density of noise signals from

Fig. 5.4 we can see the distribution as Gaussian distribution. So, we can assume the

background environmental magnetic noise in ocean as Gaussian additive noise.
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Figure 5.1: Magnetic Noise Signals due to NSL ([0.01, 0.1])m
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Figure 5.2: Magnetic Noise Signals due to NSL ([9, 12])m
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Figure 5.3: Magnetic Noise Signals due to NSL ([35, 40])m
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5.3 DETECTION PERFORMANCES

EMD and hurst analysis [30] techniques are exploited to process the received

EM signals of MAD sensor for detection purpose in this study. As using EMD in

denoising is to decompose the noisy signal into the IMFs and Residue, and some

IMFs contain useful signal information while others carry signal plus noise, the

selection of proper number of IMFs is an important factor. Here, maximum number
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of sifting iterations for the computation of each mode is 2000, and maximum number

of IMFs extracted is infinite. Vector of stopping parameters is, [τ, τ2, tol] =

[0.05, 0.5, 0.05]. After decomposing the signal into IMFs and residue, it is seen

that only first 4 to 5 IMFs are necessary for reconstructing the denoised signals.

The threshold condition for successful detection from the figure is: the highest peak

must be 20% greater than the mean peak value and 35% greater than the third peak

value.

Figure 5.5 shows the x, y, z components of the observed magnetic fields and their

corresponding magnetic anomaly detected by EMD technique, where a horizontal

magnetic dipole along-x direction having magnetic moment of 3 kAm2 is present

as a target, and 100 elementary small dipoles are present as noise sources. Target

signals are of 3 Hz frequency, velocity is constant at 2 m/s, sampling frequency is 60

Hz and data analysis window is 30 seconds. The target follows the trajectory along

the x direction of the search path with no heading to y axis at a constant depth of

70m below the air water interface, and there is no field due to the target at y axis

magnetometer, only noise contribution, which is depicted in Figs. 5.1b and 5.5d. On

the otherhand large anomalies are visible in observed magnetic fields of both x and

z axis magnetometers, and target is easily detected from denoised signal after EMD

analysis.
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0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8
x 10

−10

time t (sec)

O
bs

er
ve

d 
M

ag
ne

tic
 F

ie
ld

 B
z (T

)

(e) Noisy Magnetic Field: z−component
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(f) Denoised Magnetic Field: z−component

Figure 5.5: Magnetic Anomaly When Target Has No Heading to y axis
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Figure 5.6, shows the x, y, z components of the observed magnetic fields and

their corresponding magnetic anomaly detected by EMD technique for the same

target having magnetic dipole moment of 3 kAm2 moving at a constant depth of 70

m below the air-water interface. But the target follows the trajectory keeping 30

degree heading with x direction of the search path. So, we get the field contribution

due to target in y axis magnetometer, which is also detected after denoising.

Signal strength depends on size of the target and on distance of the target which

are the important factors for detection system. If the target is very small or the

depth is very high then the system fails to detect the target. Figures 5.7a, 5.7c,

5.7e are for a small target of 500Am2 moment following the same trajectory at a

constant depth of 70m like Fig. 5.6. Similarly, Figs. 5.7b, 5.7d, 5.7f are for the same

target of 3kAm2 like Fig. 5.6 following the trajectory at a large constant depth of

120m. In both of the cases, system fails to detect the target.

But the target can be detected if it’s trajectory is near to the surface for small

target or if it’s size is large enough for long distance from the surface. Figures 5.8a,

5.8c, 5.8e are for the small target of 500Am2 moment following the trajectory at

a constant depth of 30m while Figs. 5.8b, 5.8d, 5.8f are for the large target of

8kAm2 following the trajectory at the constant depth of 120m. In both of the cases,

performances of the system improve.

Sometimes, the target’s trajectory crosses the search path of the sensor for small

period of time. Our system can detect the target in that case also shown in Fig. 5.9.
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(a) Noisy Magnetic Field: x− component
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(e) Noisy Magnetic Field: z−component
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(f) Denoised Magnetic Field: z−component

Figure 5.6: Magnetic Anomaly When Target Follows 30 degree Heading to y axis
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(a) Small Target: denoised x− component
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(b) Large Depth: denoised x−component
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(c) Small Target: denoised y−component
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(d) Large Depth: denoised y−component
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(e) Small Target: denoised z−component
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(f) Large Depth: denoised z−component

Figure 5.7: Detection Failure Due to Small Target or Large Depth
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(a) Small Depth: denoised x− component
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(b) Large Target: denoised x−component
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(c) Small Depth: denoised y−component
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(d) Large Target: denoised y−component
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(e) Small Depth: denoised z−component
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(f) Large Target: denoised z−component

Figure 5.8: Successful Detection If Trajectory is Near the Surface or Target is Large
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(a) Noisy Magnetic Field: x−component
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(b) Denoised Magnetic Field: x−component
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(c) Noisy Magnetic Field: y−component

0 5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

x 10
−10

time t (sec)

A
no

m
al

y 
D

et
ec

tio
n 

B
y (T

)

 

 
B

target

B
EMD

(d) Denoised Magnetic Field: y−component
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(e) Noisy Magnetic Field: z−component
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(f) Denoised Magnetic Field: z−component

Figure 5.9: Magnetic Anomaly Presented for a Small Period of Time
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5.4 CLASSIFICATION, LOCALISATION AND

TRACKING PERFORMANCES

A triangular (Fig. 5.10) and a pyramid (Fig. 5.11) geometry of sensors position

in air, moving target in water region, distributed myriad of noise sources are used to

perform the tracking simulations. Observer sensor’s positions are S1(0, 2, 5), S2(0,

-2, 5), S3(2
√

3, 0, 5), S4(-2
√

3, 0, 5) and S5(0, 0, 9). That means observers are 5 m

above the air-water interface except S5, which is 9 m above the interface, assuming

the coordinate is at the interface. In triangular geometry sensors S1, S2 and S5 are

used, and in pyramid geometry all the sensors are used. Some measurements are

also shown for linear sensor geometry (S1 ans S2 sensors in 2-sensors system).

X
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(0, 0, 0)

d -1
d 0-
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(0, 0, 9)
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Figure 5.10: Schematic of a 3-sensors Tracking System

66



X

Y

Z

(0, 0, 0)

d -1
d 0-

(0, 2, 5)

(0, -2, 5)

(3.46, 0, 5)

(0, 0, 9)

(-3.46, 0, 5)

S1

1S1S 1S 1S

S2
S5

S3

S4

Moving Target

Air

Water

Seabed

Noise Source

Figure 5.11: Schematic of a 5-sensors Tracking System

UKF depends largely on initialising of the parameters. So, simultaneous

optimization of magnetic moment and dipole position are not satisfactory. In

this thesis, Particle filter [31] is used to estimate the initial value of the target’s

parameters such as magnetic moment and initial localisation of the position of the

target. After that UKF [32] is used for tracking the trajectory of moving dipole

as UKF is the best suited algorithm for non-linear dynamic system. In Particle

Filter, Five particles are generated around initial values of each of the position states

X, Y, and Z, which results 53 = 125 particles after permutation among themselves.

The fourth and fifth states are velocity states VX , VY , which are assumed from the

position states. For sixth state, which is the magnetic moment of the target, 15

random numbers are generated from the normal distribution. Observation are done

for these magnetic moments at each of the position states, which means total number

of particles are 1875. After the single iteration of the Particle Filter, the output is

used as the initial states for the UKF. It updates state vector and covariance matrix
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in every iteration. As signal strength depends strongly on the distance between

the sensors position and the target, for continuous tracking of the trajectory sensor

platform is moving at updated estimated velocity after 20secs following the search

path.

In applying the filtering to the system, the initial conditions and the noise

covariance matrixes need to be specified. As detection is done previously, we may

guess horizontal position roughly. For the vertical position, an initial estimate

between zero and the approximate water depth can be given. Because no information

is available about the magnitude of velocity and magnetic dipole moments, a good

initial estimate of these vectors are merely the null vectors. So, the initial state

vector is:

x0 = [' rX , ' rY , 0 ∼ rZ , 0, 0, 0]

The initial estimates of the variance affect the transient performance of the

algorithm and the choice of the appropriate values will prevent filter divergence.

Small values for initial variances give large values of filter gain meaning that

the initial observations are heavily weighted and the model is ignored. On the

other hand, too large variance values make the filter gain extremely small and the

algorithm diverges. The initial covariance matrix, P(0|0) is assumed that initially

all the states are un-correlated, so that the matrix is diagonal. So, the diagonal

components of variance matrix is:

Pdiag = [0.252, 0.252, 0.52, 22, 22, 102]

The measurement noise covariance matrix can be estimated directly from the

actual data and the process noise covariance is assumed small (10−4). In UKF,

68



higher order error scaling parameter is 2, and sigma points scaling for weighting

unscented transformation is 10−3.

To generate the true trajectory of a target, a horizontal magnetic dipole along x

direction is assumed. The target is moving at different constant velocity to different

directions at constant depth assuming the trajectory is linear and there is no vertical

velocity. Both simple white Gaussian noise (SNR = 20dB), and our proposed noise

model (50 elementary small dipoles) are used to generate the noise signals which

ensembles the practical ocean environment. Discrete observations are taken at a

sampling period of one second for total travel time of 2 minutes. Table ?? presents

the summary of the simulation results for different cases.

Figures 5.12 and 5.13 depicts the localisation and tracking performances of 2,

3 and 5 sensors systems using UKF filtering technique when magnetic moment is

known that is no need for classification. From Fig.5.12a, it is seen that every system

can satisfactory track the x trajectory of the moving target. In tracking y trajectory

3 sensors system is closest than other sensor systems and 2 sensor system has largest

offset from true trajectory.
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Figure 5.12: Performances in Trajectory Tracking of 2, 3 and 5 Sensors Systems

When m is Known

Figure 5.13a shows that all the systems have small error in velocity estimation.

5 sensor system is successful in localising depth of the target while 3 sensor system
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performs in acceptable level depicted in Fig. 5.13b.
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Figure 5.13: Performances in Velocity Tracking and Depth Localisation of 2, 3 and

5 Sensors Systems When m is Known

Figures 5.14, 5.15 and 5.16 are the performances comparison of 2, 3 and 5 sensor
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systems using UKF filtering technique when classification is also necessary. From

Figs. 5.14a and 5.14b, it is seen that 5 sensor system tracks the trajectory in

acceptable limit while others fail.
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Figure 5.14: Performances in Trajectory Tracking of 2, 3 and 5 Sensors Systems

When m is Unknown
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Figure 5.15a shows that velocity error is small for 5 sensor system while large

velocity errors are occurred in y axis of 2 and 3 sensor systems. No system can

perform localisation of depth of the target in acceptable level shown in Fig. 5.15b.
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Figure 5.15: Performances in Velocity Tracking and Depth Localisation of 2, 3 and

5 Sensors Systems When m is Unknown
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Figure 5.16 depicts that all system fail in estimating the target’s magnetic

moment.
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Figure 5.16: Performances in Classification of 2, 3 and 5 Sensors Systems When m

is Unknown

So, new filtering technique is necessary for satisfactory performances. Figures

5.17, 5.18 and 5.19 show the performance comparison of different filtering techniques

such as only PF, only UKF and combined PF and UKF.

Figure 5.17a and 5.17b show that in tracking the trajectory only UKF fails, only

PF gives acceptable result while combined PF and UKF performs satisfactorily.
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Figure 5.17: Performances in Trajectory Tracking of Different Filtering Techniques

From Fig. 5.18a it is seen that only UKF fails in velocity tracking. In localising

the depth of the target combined PF and UKF is successful shown in Fig. 5.18b.
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Figure 5.18: Performances in Velocity Tracking and Depth Localisation of Different

Filtering Techniques

Figure 5.19 shows that only UKF performs in acceptable level while combined PF

and UKF performs satisfactorily in estimating the target’s magnetic moment. So,
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the proposed combined PF and UKF filtering technique is successful in classification,

localisation and tracking the target.
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Figure 5.19: Performances in Classification of Different Filtering Techniques

Range of the localization of a MAD system depends on signal’s strength. The

signal strength will be small if the target is not large enough but depth is very large

and system will fail. But if the target’s size is large enough to produce signal in

good strength, then the proposed method still perform the task. From Figs. 5.20,

5.21 and 5.22, it is seen that when a medium sized target having magnetic moment

5kAm2 moves 100m below the interface then system fails in trajectory and velocity

tracking although depth localisation and classification are in acceptable level. But

if target is large having magnetic moment 10kAm2 then the proposed system can

perform total classification, localisation and tracking.
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Figure 5.20: Performances in Trajectory Tracking Considering Range of Detection
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Figure 5.21: Performances in Velocity Tracking and Depth Localisation Considering

Range of Detection
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Figure 5.22: Performances in Classification Considering Range of Detection
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Chapter 6

CONCLUSION AND FUTURE

WORKS

This study presents a method for underwater surveillance system which requires

detection, classification, localization and tracking of a ferromagnetic object from

noisy magnetic field measurements involving the modeling of a non-linear system.

The fields computation model in a stratified media along with modeling of target

magnetization and multiple noise sources placement in global coordinate system are

very elegant techniques for designing a magnetic signals measurement system. A

MAD system observes noisy magnetic signals, and responds to any anomaly found

in the recorded signals. EMD method is used to decompose the noisy signals into

IMFs and residue, and detect the anomaly produced by the target from dominant

IMFs ignoring the noise contributions.

We also investigated the possibility of using combined PF and UKF for

classification, localisation and tracking of a target modeled as an equivalent magnetic

dipole of arbitrary size, velocity and trajectory. The problem is formulated in state-

space form where the state parameters are the magnetic moment, position and

velocity of the target. Because of the non-linearity of the observation equation, to

solve this problem it is necessary to use various approximations. UKF is best suited

for non-linear dynamic systems but the unknown arrival directions and arbitrary
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initial state values make unsatisfactory results. On the other hand PF requires

several times longer execution period, and ignores most recent measurement, which

also not acceptable for continuous monitoring phenomena of this problem. So,

Triangular 3-sensors and Pyramid 5-sensors systems used for this application are

to cover the possible directions of arrival, and the use of PF is for the flexibility in

selecting the initial state parameters which updates the states for the UKF. All the

target parameters like the position, velocity, and equivalent magnetic moments are

estimated with a good level of accuracy by the proposed method.

The topics studied in this thesis are very challenging in recent time. The following

parts of the problem are still open for future works:

• More details modeling of each of noise sources like modeling of ocean internal

and surface waves, solar irradiation, complex flow pattern of water, sea floor

wreckages etc., are necessary for measuring magnetic noise for more real like

air-ocean environments.

• Improvement and modifications are required for detecting two or more targets

simultaneously from low SNR signals.

• More investigations are required for optimal sensor geometry for very small to

very large target classification, and for velocity having acceleration (turnover

maneuver).

• Doppler effects must be in consideration for observations of MAD systems that

involves Doppler shifts due to relative motions of noise sources, target, and

UAV.

• Real Field tests are necessary for determining both the Range of Detection (the
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distance between the magnetic sensor and the target) and the Probability of

Detection (Pd).
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