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Abstract

In this thesis under the title ” Efficient Solution of Lyapunov Equation for De-

scriptor System and Application to Model Order Reduction ”, an efficient solution

of Lyapunov equation will be derived and the application of model order reduction

to reduce the large system to lower dimensional system will be shown.

Mathematical models of physical systems are extending in engineering fields which

can be used for simulation, optimization or control. Structured descriptor systems

play important roles in many applications. Such systems are used to analyze

properties of the system or simulate the system. However, many of these models

are too complex, large and sometime impossible to handle for standard analysis

or control system design. Hence, there is a need to reduce the complexity of

models preserving the input-output behavior of the original complex model as far

as possible. The existing techniques produce complexity for large dimensional

state space systems.

In this thesis, the projection based techniques are considered to compute the low

rank solutions of the state space systems. Recently, balanced truncation is being

considered as a prominent technique for model reduction of linear time invariant

systems. The most expensive part of the technique is the numerical solution of two

Lyapunov matrix equations. Rational Krylov subspace method is one of the effi-

cient methods for solving the Lyapunov equations of large-scale sparse dynamical

systems. The method is well established to compute the low rank solution of the

Lyapunov equations for standard state space systems. The main advantage of this

solution technique is that the projected Lyapunov equations can be handled easily.

We develop algorithms to solve the Lyapunov equations for large sparse structured

index-1 descriptor system. The accuracy and suitability of the proposed method

is demonstrated through different examples of different orders and the results are

compared and discussed. Then resulting Lyapunov solutions have been applied

for the balancing based model reduction.

Finally, numerical results are shown to illustrate the efficiency and accuracy of the

proposed methods.

v
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Chapter 1

Introduction

1.1 Motivation and Overview

Mathematical modeling plays an important role in many applications e.g., control

theory, system analysis, optimization, signal processing, large space flexible struc-

tures, game theory and design of physical systems. Various complicated systems

arise in many engineering applications (microelectronics, micro-electro-mechanical

systems, aerospace, computer control of industrial processes, chemical processes,

communication systems, etc.) are composed of large numbers of separate devices

and they are described by very large mathematical models consisting of more and

more mathematical systems with very large dimensions.

However, when a physical model is converted into a mathematical model, in many

cases its dimension becomes extremely large [1, 2, 3, 4]. These large-scale models

can make unsuitable to analyze the system. In large-scale settings, the system

dimension makes the computation infeasible due to memory limitations, time lim-

itations as well as ill-conditioning. Again, simulations of such systems can be

unacceptably expensive and time consuming due to limited computer memory.

Although, the computational speed and performance of the modern computers

are increasing, simulation, optimization or real time controller design for such

large scale systems is still difficult due to extra memory requirements and addi-

tional computational complexity. Therefore, it is suggested to replace the higher

dimensional model by a substantially lower dimensional model. The process of

1
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converting a large-scale model into small-scale model is called Model Order Reduc-

tion (MOR), e.g, [5, 6], for motivations, applications, restrictions and techniques

of MOR.

Model reduction is concerned with replacing a large complex model by a much

smaller one which can be fast and efficiently simulated and which has nearly the

same response characteristics compare to the original large model. As the math-

ematical model of a device gets more detailed and the model is composed of a

large system of Ordinary Differential Equations (ODEs), or a set of Partial Dif-

ferential Equations (PDEs). It is quite common that the concerned mathematical

model may consist a vast amount of redundant information that have very little

importance in the input output characterization of the device. Model reduction

is an efficient tool to eliminate those redundant parts from the original model so

that the size of the reduced model becomes smaller compare to the original one

and it is then amenable for simulation and analysis. The general idea of MOR

is to approximate a large-scale model by a reduced model of lower state space

dimension, while their input-output behavior is preserved to the largest possible

extent.

In the literature, there exist many MOR techniques such as Balanced Truncation

(BT) [7], pade approximation [8], moment matching approximation [9], modal

truncation [10] and rational interpolation [11]. Among several methods, recently,

the system theoretic method BT is prominent for the model of large-scale sparse

dynamical system. Besides, the stability preservation, the method also guarantees

the global error bound. These essentially make the method superior to some other

existing method.

But, the only disadvantage of this method is to solve two continuous-time Lya-

punov equations. Over the last decades, several iterative methods were proposed

to solve large scale Lyapunov equation, e.g., LRCF-ADI (Low-Rank Cholesky Fac-

tor Alternating Direction Implicit) iterations [12, 13, 14], cyclic low-rank Smith

methods [15, 16], projection methods [17, 18, 19, 20] and sign function meth-

ods [21, 22, 23]. Although, most of the methods are shown to be applicable for

large scale sparse dynamical systems. Currently, LRCF-ADI method and Krylov

subspace method are two frequently used methods for the solution of Lyapunov

equations of large-scale sparse systems. Both the method can compute low-rank

factors of the approximate solutions of the Lyapunov equations. The approaches

have been developed that allow to exploit the sparsity of the matrices. Moreover,
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Figure. 1.1. Block diagram for a work strategies

both the methods have low-rank version for computing the low-rank gramian fac-

tors. This is important since the gramians can be approximated by therein low-

rank factors if the number of inputs and outputs are very smaller than the number

of Degree of Freedoms (DOFs). Therefore, instead of computing the full gramian

factor, low-rank gramian factors are computationally cheap.

In [24], the author discussed a balancing based method for the model reduction

of index-1 descriptor system. They applied the LRCF-ADI to solve the Lyapunov

equations. It is clear that LRCF-ADI can only be applied to the asymptotically

stable systems. But, in many mathematical simulation, the system is often asymp-

totically unstable. In this thesis, we proposed an algorithm [25, 26] in projection

technique so called Rational Krylov Subspace Method (RKSM) to solve the large

scale Lyapunov equations. The main advantage of the proposed technique is that

it can be applied in both stable and unstable systems.

In [27], the author discussed a method for standard cases. We extend the method

for index-1 descriptor system. For better convergence, an efficient strategy is ap-

plied to compute the shift parameters such that the shift parameters are computed

automatically [28, 29]. We apply the computed low-rank gramian factors to the
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balancing based model reduction. The graph in figure 1.1 indicates the purpose

of working procedure of the thesis.

1.2 Chapter Outline

The thesis is organized as follows.

In Chapter 2, one of the main work of this research is discussed. The low rank

efficient solution of large scale algebraic Lyapunov equations are shown here. Also

a review and short derivation of the RKSM for generalized system are given and

have introduced in details the RKSM for index-1 descriptor systems with large

sparse Lyapunov matrix equation. The related issues such as computation of

shift parameters and stopping criteria of the algorithm are introduced here. The

benefits of preserving the sparsity pattern are also shown by graphical illustration.

The efficiency of the proposed algorithms are illustrated by numerical results at

the end of the chapter.

Chapter 3 provides another main part of this thesis. The solution of the Lyapunov

equations are applied for model order reduction. The introductory idea of model

reduction is given in first part. The system theoretical background of model re-

duction approach via the BT method are considered and then extend the idea of

BT for index-1 descriptor systems, which requires exact system gramians. The

numerical experiments are discussed elaborately at the end of this chapter.

Chapter 4 shows conclusions and briefly discusses possibilities for improvements

and future research of the work.

1.3 System and Control Theory

This section describes the concepts from system and control theory that are needed

in this thesis. Here we only give a very brief introduction on the most important

properties and results for theory of LTI finite dimensional control systems. The

author in [5] provides a good introduction that is easily readable and gives a

more information to system theory from the view point of model reduction and

numerical linear algebra.
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Figure. 1.2. Block diagram for a state equation

1.3.1 State Space Systems

The concept of the state of a dynamic system refers to a minimum set of variables,

known as state variables, that describe the system and its response to any given

set of inputs. The dynamic behavior of a state system is completely characterized

by the response of the set of n variables xi(t), where the numbers n is the order

of the system. The system in figure 1.2 has inputs u(t) and output y(t).

In general case, the form of the n state equations are as follows:

ẋ1(t) = f1(x, u, t)

ẋ2(t) = f2(x, u, t)

... =
...

ẋn(t) = fn(x, u, t)

In vector notation, the set of n equations may be written as:

ẋ = f(x, u, t).

For restriction, the systems are LTI, i.e. the system is described by the linear

differential equation with constant coefficients. This can be written compactly in

the following matrix form:
ẋ1

ẋ2
...

ẋn


︸ ︷︷ ︸

ẋ

=


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


︸ ︷︷ ︸

A


x1

x2
...

xn


︸ ︷︷ ︸

x

+


b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
. . .

...

bn1 bn2 · · · bnp


︸ ︷︷ ︸

B


u1

u2
...

up


︸ ︷︷ ︸

u

(1.1)



Chapter 1.Introduction 6

which can be expressed as

ẋ = Ax + Bu

Again, consider a system of order n with an arbitrary output variable m with r

input. In matrix form, the output m equations can be written as:
y1

y2
...

ym


︸ ︷︷ ︸

y

=


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...

cm1 cm2 · · · cmn


︸ ︷︷ ︸

C


x1

x2
...

xn


︸ ︷︷ ︸

x

+


d11 d12 · · · d1p

d21 d22 · · · d2p
...

...
. . .

...

dm1 dm2 · · · dmp


︸ ︷︷ ︸

D


u1

u2
...

up


︸ ︷︷ ︸

u

(1.2)

which can be expressed as

y = Cx + Du

Therefore, the complete system model for a LTI system consists of a set of n state

equations and a set of output equations.

Consider a LTI dynamical system in state-space of the form:

dx(t)

dt
= Ax(t) +Bu(t); x(t0) = x0, t ≥ t0

y(t) = Cx(t) +Du(t).

(1.3)

Here, the functions x(t) : R 7→ Rn is the state, u(t) : R 7→ Rp be the input or

control, y(t) : R 7→ Rq be the output at time variable t and x(t0) is the initial

condition of the system. Further, The system matrices A ∈ Rn×n, B ∈ Rn×p,

C ∈ Rq×n are called respectively, the system matrix, the input coefficient matrix,

and the output coefficient matrix, and D ∈ Rq×p is the direct transmission map.

Moreover, we have D = 0 in most of our applications. The first equation is also

referred to as state equation whereas the second is called the output equation.

If p = q = 1, i.e. the input u(.) and the output y(.) are both scalar functions,

the system (1.3) is called a Single-Input Single-Output (SISO) system. On the

otherhand the system is called a Multi-Input Multi-Output (MIMO) system if

p, q > 1. For MIMO systems, the number of state variables n may be very large

than the number of input p and the number of output m (i.e. p, q � n).

The components in x(t) have physical meaning from discretized while the com-

ponents in inputs u(t) and outputs y(t) have also physical meaning of the device
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being modeled. Relation between the inputs and outputs are determined by the

coefficient matrices B and C.

Usually, the LTI system appears from the modeling of an applications process.

The mathematical model describes the behavior of physical system or device in

terms of a set of mathematical equations, with schematic diagram of the device

connection. The system matrices may depend on time as well. If the system

matrices are depending on the state x or the control u as well the system is said

to be nonlinear. We will concentrate on the LTI case here.

The following theorem gives the solution of first order LTI system.

Theorem 1.1. The solution of the continuous time dynamical system (1.3) is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds, (1.4a)

and y(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−s)Bu(s)ds+Du(t) (1.4b)

Proof. The continuous time dynamical system (1.3) can be written as

ẋ(t)− Ax(t) = Bu(t) (1.5)

Multiplying this equation by eA(t−s), and then integrating both sides, we get∫ t

t0

d

ds
[eA(t−s)x(s)]ds =

∫ t

t0

eA(t−s)Bu(s)ds

⇒ [eA(t−s)x(s)]tt0 =

∫ t

t0

eA(t−s)Bu(s)ds

⇒ x(t)− eA(t−t0)x0 =

∫ t

t0

eA(t−s)Bu(s)ds

⇒ x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)Bu(s)ds

By substituting the value of x(t) in y(t) = Cx(t) +Du(t) we get

y(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−s)Bu(s)ds+Du(t)
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For the continuous-time system (1.3), the dynamical system responses x(t) and

y(t) for t ≥ t0 can be determined from the formulas in (1.4). In order to study the

behavior of a dynamical system, it is customary to determine the responses of the

system due to different inputs.

Definition 1.2. The matrix exponential eAt is defined as

eAt =
∞∑
m=0

(At)m

m!
(1.6)

The matrix exponential is an important tool in system theory. Some properties of

the matrix eAt are given below:

1. eA(t+s) = eAteAs

2. e(A+B)t) = eAteBt iff AB = BA

3. eAt is non singular and (eAt)−1 = e−At

4. eU
−1AUt = U−1eAtU

1.3.2 Generalized Systems

Eventually, the system (1.3) appears the special form, known as generalized state

space form as:

Σ :

{
Ex(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t)
⇔ Σ :=

(
A|B
C|D

)
(1.7)

where E,A,B,C,D are of appropriate dimensions. Here, E is invertible and sym-

metric positive definite, known as mass matrix. If E = I, the system is same

as the standard system (1.3). Again, since E is invertible, one can convert the

differential part of the system (1.7) into the standard system of the form

ẋ(t) = Āx(t) + B̄u(t);

y(t) = Cx(t) +Du(t),

where Ā = E−1A and B̄ = E−1B.
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1.3.3 Descriptor Systems

Recently, many model application arises the special form of the generalized system

(1.7), where as E is singular, i.e., det(E) = 0. Such system appears in the process

of modeling electrical circuits in chip design, power systems, chemical engineering,

piezo-mechanical systems and so on (see [2, 30]). The system is then known

as descriptor systems. Sometimes, it is known as Differential Algebraic Equations

(DAEs) or singular systems. A descriptor system can be solved if the corresponding

matrix pencil is regular i.e.,

(λE − A) 6= 0 (1.8)

In terms of this assumption, there exists nonsingular matrices S and T such that

the pencil has the following Weierstrass canonical form

E = S

[
I 0

0 N

]
T and A = S

[
J1 0

0 In

]
T (1.9)

where N is nilpotent matrix so that Np−1 6= 0 but Np = 0. The nilpotency p

indicates the index of the descriptor system. The case of DAEs and their derivation

is discussed in [31].

In this thesis we focus on the special structured descriptor system of the form[
E1 E2

0 0

]
︸ ︷︷ ︸

E

[
ẋ1(t)

ẋ2(t)

]
︸ ︷︷ ︸

ẋ(t)

=

[
J1 J2

J3 J4

]
︸ ︷︷ ︸

A

[
x1(t)

x2(t)

]
︸ ︷︷ ︸

x(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B

u(t) (1.10a)

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C

[
x1(t)

x2(t)

]
+Dau(t), (1.10b)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 (n = n1 + n2) and J1, J2, J3, J4 are block matrices

of A.

The descriptor system (1.10) is called

1. index-1 if det(J4) 6= 0

2. index-2 if J4 = 0 and det(J3J2) 6= 0 and

3. index 3 if J4 = 0 and det(J3J2) = 0.
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1.3.4 Input and Output Relation

In the time domain analysis, two most common inputs are the step response and

the frequency response. The generalized dynamical system (1.7) can be expressed

in frequency domain. Applying Laplace transformation 1, the linear system yields,

sEX(s)− x0 = AX(s) +BU(s) (1.11a)

and Y (s) = CX(s) +DU(s), (1.11b)

where X(s), U(s) and Y (s) are the Laplace transformation of x(t), u(t) and y(t)

respectively.

Put x0 = 0 in (1.11a) and inserting X(s) into (1.11b), we obtain

X(s) = (sE − A)−1BU(s), (1.12a)

and Y (s) = (C(sE − A)−1B +D)U(s) (1.12b)

or Y (s) = G(s)U(s) (1.12c)

where

G(s) = C(sE − A)−1B +D (1.13)

is called the transfer function of the system (1.7). In MIMO systems, G(s) is the

p× q matrix, can be defined as

G(s) =


G11(s) G12(s) · · · G1q(s)

G21(s) G22(s) · · · G2q(s)

...
... · · ·

...

Gp1(s) Gp2(s) · · · Gpq(s)

 (1.14)

where Gmn = C(m, :)(sE − A)B(:, n) + Da(m,n) with n = 1, 2, · · · , p and m =

1, 2, · · · , q. In fact, the transfer function is the input-output relation of the dy-

namical systems. In system and control theory, the error bound of the reduced

model is established through the transfer function.

Definition 1.3. The transfer function G(s) is called proper if limx→∞G(s) <∞,

and strictly proper if limx→∞G(s) = 0. Otherwise G(s) is called improper. The

points p at which G(p) =∞ are called the poles of the system.

1The Laplace transformation of a function f(t), is defined by F (s) = L[f(t)] =
∫∞
0

f(t)e−stdt
where t ≥ 0, s ∈ C.
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1.3.5 Gramians

Controllability and observability are two major concepts in modern control system

theory. The ideas of controllability and observability of a system play crucial roles

in the MOR methods. The gramian based MOR methods are mainly emerged on

the system controllability gramian and observability gramian [32].

Definition 1.4. The dynamical system (1.3) is said to be controllable if for any

initial state x(0) = x0, tf > 0 and final state xf , there exists a input u(t) such

that the solution (1.4) satisfies x(tf ) = xf . Otherwise, the system is known as

uncontrollable.

Alternatively, if a linear system (A,B,C,D) is controllable to the zero state if

there exists an input function u(t) and a time t1 < ∞, such that the solution of

the linear system vanishes at time t1, i.e., φ(u;x; t1) = 0. The system is completely

controllable if Xcontr = Rn, where Xcontr is the set of all controllable states.

The following theorem shows that the controllability of a system can be verified

through some algebraic criteria.

Theorem 1.5. The following are equivalent for the matrix pair (A,B) of the

system (1.3):

1. (A,B) is controllable.

2. The controllability matrix C(A,B) = [B, AB, A2B, · · · , An−1B] has full

rank.

3. The controllability gramian

P =

∫ tf

0

eAιBBT eA
T ιdι,

is positive definite for any t > 0.

4. The matrix [A− sI, B] has full rank n for all s ∈ C.

5. The pair (Ã, B̃) is controllable, where Ã = TAT−1 and B̃ = TB for any non

singular T ∈ Rn×n.

A proof of this theorem is available in [5, 32].

Observability is the dual concept of the controllability.
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Definition 1.6. The dynamical system (1.3) is said to be observable if for any

tf > 0, initial state x(0) = x0 can be uniquely determined from the time of the

input u(t) and the output y(t) in the interval of [0, tf ]. Otherwise, the system is

said to be uncontrollable.

Alternatively, a linear system (A,B,C,D) is unobservable if y(t) = 0 for all t ≥ 0.

The system is completely observable if Xunobs = 0, where Xunobs is the set of all

unobservable states of the system.

Theorem 1.7. The following are equivalent for the matrix pair (A,B) of the

system (1.3):

1. (C,A) is observable.

2. The observability matrix O(A,C) =



C

CA

CA2

...

CAn−1


has full rank.

3. The controllability gramian

Q =

∫ tf

0

eA
T ιCTCeAιdι,

is positive definite for any t > 0.

4. The matrix

[
A− sI
C

]
has full rank n, for all s ∈ C.

5. There exists a similarity transformation T , such that TAT−1 =

[
Ã11 0

Ã12 Ã22

]
and CT−1 =

[
C̃1 0

]
, where (C̃1, Ã11) is observable.

A proof of this theorem is available in [5, 32].

We now show that controllability and observability are characterized by the con-

trollable matrix and observable matrix.
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For details, let x(0) = x0 = 0. Then the solution (1.4) yields,

x(t) =

∫ t

0

eA(t−ι)Bu(ι)dι

=

∫ t

0

{I + A(t− ι) +
A2

2
(t− ι)2 + · · · }Bu(ι)dι

= B

∫ t

0

u(ι)dι+ AB

∫ t

0

(t− ι)u(ι)dι+ A2B

∫ t

0

(t− ι)2

2
u(ι)dι+ · · · .

But the expression is the linear combination of the matricesB,AB,A2B, · · · , An−1B.

Therefore, the system (1.3) is controllable if every state of the system is control-

lable i.e., C(A,B) has full rank.

Dually, the system (1.3) is observable if the observable matrix O(A,C) has full

rank. A system is called complete if it is both controllable and observable.

1.3.6 Stability

Stability is an important properties of dynamical systems. Some basic concept of

the stability of a system are discussed below.

Definition 1.8. The matrix A is called stable or Hurwitz-stable if all its eigenval-

ues are located in the open left half of the complex plane, i.e., λ ∈ C−. Like wise,

the system is unstable if any eigenvalues of A lies in C+ (right complex plane).

The LTI system (1.3) is called stabilizable if there exists a matrix L ∈ Rm×n such

that A−BL is stable.

In control theory, following theorem known as Lyapunov stability, is the most

useful criteria in the analysis to measure the stability of a system.

Theorem 1.9 (Lyapunov Stability Theorem). The system (1.3) is asymptotically

stable if and only if for any symmetric positive definite matrix M , there exists a

unique symmetric positive definite matrix X satisfying the Lyapunov equation:

AX +XAT = −M (1.15)

The proof is given in [5, 32].
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The controllability and observability gramians of the system can also be examined

through the infinite gramians P and Q, defined as

P =

∫ ∞
0

eAtBBT eA
T tdt, (1.16)

and Q =

∫ ∞
0

eA
T tCTCeAtdt (1.17)

Now, we show an important theorem for this thesis. The following theorem shows

the relation of the stability, controllability and observability of a system.

Theorem 1.10. The controllability gramian P and observability gramian Q is the

solution of the continuous-time algebraic Lyapunov equations of the form

AP + PAT +BBT = 0, (1.18)

ATQ+QA+ CTC = 0 (1.19)

Proof. Putting the value of controllability gramian P =
∫∞
0
eAtBBT eA

T tdt in the

Lyapunov equation (1.18), we get

AP + PAT +BBT = A

∫ ∞
0

eAtBBT eA
T tdt+

∫ ∞
0

eAtBBT eA
T tdtAT +BBT

=

∫ ∞
0

AeAtBBT eA
T t + eAtBBT eA

T tAT︸ ︷︷ ︸
= d

dt
eAtBBT eAT t

dt+BBT

= lim
t→∞

eAtBBT eA
T t − eA.0BBT eA

T .0 +BBT

= −BBT +BBT

= 0

In a similar way, the prove can be shown for the observability gramian.

Again, it can easily be shown that the controllability gramian P and the observabil-

ity gramian Q, are also the solution of the continuous-time generalized Lyapunov

equations

APET + EPAT +BBT = 0, (1.20)

ATQE + ETQA+ CTC = 0 (1.21)

For stable systems, the both gramians can be interpreted in the following way:
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(i) for controllability gramian the minimum energy

J(u) =

∫ 0

−∞
u∗(t)u(t)dt, x(0) = x0, t ≤ 0, (1.22)

of the input is equivalent to J(u) = x∗0P
−1x0. Thus, states in the span of the

eigenvectors corresponding to small eigenvalues of P are difficult to reach.

(ii) for observability gramian a system emerged from x(0) = x0 with u(t) = 0, t ≥ 0

has ∫ ∞
0

y∗(t)y(t)dt = x∗0Qx0 (1.23)

It follows that the state in the span of the eigenvectors corresponding to small

eigenvalues of Q are difficult to observe.

1.3.7 Hankel Singular Values

In control theory, Hankel Singular Values (HSVs) are considered as a measure of

energy for each state in a system. The HSVs play a crucial role in the balancing

based model reduction. The HSVs are the basis of balanced model reduction, in

which low energy states are discarded while high energy states are preserved.

The Hankel operator maps inputs u(t), t < 0 to output y(t), t > 0:

H : u(t) −→
∫ 0

−∞Ce
A(t−s)Bu(s)ds.

The fact that the Hankel operator has a finite number of singular values, which

are a good useful in control theory and model reduction.

It can be shown that for stable complete system, the HSVs are the positive square

roots of the eigenvalues of the product of the controllability and observability

gramians, i.e.,

σi =
√
λi(PQ) =

√
λi(QP ), i = 1, 2, · · · , n, (1.24)

where λi denotes the eigenvalues.

Since the controllability gramian and the observability gramian are symmetric

positive definite, they have always Cholesky decomposition:

P = RcRT
c and Q = LcLTc (1.25)
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Therefore,

σi(PQ) =
√
λi(PQ)

=
√
λi(RcRT

c LcLTc )

=
√
λi((RT

c Lc)T )(RT
c Lc)

= σi(RT
c Lc) for i = 1, 2, · · · , n,

(1.26)

where σi represents the singular values of RT
c Lc. Therefore, one can use the

gramian factors replaced by full gramian to compute the system HSVs.

The HSVs for a system and its transfer function are defined to be the same. HSVs

are invariant under state space transformations, since similarity of PQ is preserved

under state-space transformations and are so called input-output invariants.

1.3.8 Realizations

We know that the transfer function matrix is

G(s) = C(sE − A)−1B +D

The state space representation Σ in (1.7) have a realization if the matrices E,A,B,C,D

satisfy the transfer function G(s).

It can be shown that the transfer function G(s) is invariant of an LTI system (1.7)

under the following coordinate transformations

T :

{
x → Tx,

(E,A,B,C,D)→ (T ET −1, T AT −1, T B,CT −1, D),
(1.27)

where T is nonsingular. Then the transfer function can be replaced by the non

singular transformation matrix T .

For a transfer function G̃(s), we get

G̃(s) = (CT −1)(sT ET −1 − T AT −1)−1(T B) +D

= C(sE − A)−1B +D

= G(s)
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Therefore, the new generalized state space system is

T ET −1T x(t) = T AT −1T x(t) + T Bu(t) (1.28)

y(t) = CT −1T x(t) +Du(t). (1.29)

Definition 1.11. A state space realization of a transfer function G(s) is minimal

if and only if the system is controllable and observable.

Definition 1.12. A realization (E,A,B,C,D) of a stable linear system Σ is called

balanced if its controllability gramian P and observability gramian Q such that

P = Q = diag{σ1, · · · , σn}, whereσj ≥ σj+1, j = 1, · · · , (n− 1).

Theorem 1.13. The HSVs of a stable minimal linear systems are invariant.

Proof. We know that the HSVs of a system are the positive square roots of the

eigenvalues of the product of the gramians P and Q.

Let (Â, B̂, Ĉ,D) = (TAT−1, TB,CT−1, D) be a transformation, then the associa-

tive controllability Lyapunov equation becomes

0 = ÂP̂ + P̂ ÂT + B̂B̂T

= TAT−1P̂ + P̂ T−TATT T + TBBTT T

= A(T−1P̂ T−T ) + (T−1P̂ T−T )AT +BBT

= AP + PAT +BBT

Then, P = T−1P̂ T−T gives P̂ = TPT T .

Similarly, for observability Lyapunov equation, one can yields Q̂ = T−TQT−1.

Therefore, P̂ Q̂ = (TPT T )(T−TQT−1) = TPQT−1.

This shows that Λ(P̂ Q̂) = Λ(PQ) = {σ2
1, σ

2
2, · · · , σ2

n}.

For non-minimal systems Λ(P̂ Q̂) = {σ2
1, σ

2
2, · · · , σ2

n, 0, · · · , 0}.

However, such realizations are not unique. In particular, we want to find a minimal

realization in this thesis.
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1.4 Background in Linear Algebra

1.4.1 Eigenvalue Problem

The eigenvalue problem is to find λ ∈ C and x ∈ Cn that satisfy

Ax = λx, x 6= 0,

where A ∈ Cn×n is a complex matrix. The scalar λ ∈ C is called an eigenvalue of

A that is, det(A− λI)x = 0. The vector x is called an eigenvector for λ. The pair

(λ, x) is also referred to as an eigenpair of A.

Any Hermitian matrix A = AT ∈ Rn×n has real eigenvalues and an orthonormal

basis of real eigenvectors.

Definition 1.14. The set of all eigenvalues of A is called the spectrum of A,

denoted by Λ(A). The maximum modulus of the eigenvalues is called spectral

radius and is denoted by ρ(A), i.e. ρ(A) = maxλ∈ρ(A)|λ|.

The trace of a matrix is equal to the sum of all its diagonal elements. It can be

easily shown that the trace of A is also equal to the sum of the eigenvalues of A.

Also the set of eigenvalues of a triangular matrix are its diagonal entries.

If λ is an eigenvalue of a matrix A then λ̄ is an eigenvalue of AH . An eigenvector

v of AH associated with the eigenvalue λ̄ is called a left eigenvector of A. If (λ, x)

is an eigenpair of A, then (λ− s, x) is an eigenpair of (A− sI) where s is a scalar.

Lemma 1.15. A matrix A is diagonalizable if and only if there exists a nonsingular

X ∈ Cn×n such that X−1AX = diag(λ1, · · · , λn), where λi (i = 1, · · · , n) are the

eigenvalues of A and the columns of X are eigenvectors of A.

If all λi are distinct, then there are n independent eigenvectors. The generalized

eigenvalue problem is of the form Ax = λBx, x 6= 0, where A and B are n× n
complex matrix.

The scalar λ ∈ C is called an eigenvalue of the pair (A,B) if det(A − λB)x = 0.

The set of all eigenvalues of (A,B) is called the spectrum of (A,B), denoted by

Λ(A,B).
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If A and B are Hermitian and B is positive definite, then all eigenvalues of

(A,B) are real and there exists a nonsingular X ∈ Cn×n such that X∗AX =

diag(λ1, · · · , λn) and X∗BX = I, where λi(i = 1, · · · , n) are the eigenvalues of

(A,B).

Definition 1.16. A square symmetric matrix A is said to be positive definite if

x∗Ax > 0 for every non-zero column vector x of real numbers. Similarly, a square

Hermitian matrix A is said to be positive definite (semidefinte) if x∗Ax > 0 for

every non-zero column vector x of complex numbers.

For a given linear transformation T : Cn 7→ Cn, a subspace S ⊂ Cn is said to be

invariant if Ax ∈ S for every x ∈ S. For example: 0,Cn, KerT and ImT are all

T -invariant subspaces.

1.4.2 Sparse and Dense Matrices

In many application, there exists some matrix with special structure that has a

small number of nonzero entries.

Definition 1.17. Let A be a matrix such that most of the elements are zero,

called sparse matrix. On the otherhand, A is called dense matrix if most of the

elements are nonzero.

The number of zero-valued elements divided by the total number of elements is

called the sparsity of the matrix. For example: Consider a matrix M10×9 contains

only 18 nonzero elements and 72 zero elements. Then, its sparsity is 80 and density

is 20.

Large sparse matrices often appear in scientific or engineering applications when

solving partial differential equations. It is favorable and often necessary to use

specialized algorithms and data structures. Other hand, dense matrix structures

and algorithms are slow and inefficient for large scale system.

Definition 1.18. A projector matrix P is a square matrix such that P = P 2, also

known as idempotent matrix.

Now (I − P )2 = I − 2P + P 2 = I − 2P + P = I − P , then I − P is called

complementary projector to P .



Chapter 1.Introduction 20

Definition 1.19. If a projector projects onto a subspace S1 along a subspace S2

then it is called orthogonal projector.

1.4.3 Matrix Decompositions

Matrix decomposition or matrix factorization is a factorization of a matrix into a

product of matrices. Now, we introduce some important decomposition which are

used in many applications.

1.4.3.1 Eigenvalue Decomposition

Eigenvalue decomposition is the factorization of a matrix into a canonical form,

whereas the matrix is represented in terms of its eigenvalues and eigenvectors.

Let A ∈ Cn×n be a square matrix with n linearly independent vectors. The

eigenvalue decomposition of A is defined as

A = V ΛV −1

where Λ ∈ Cn×n is an diagonal matrix whose entries are the eigenvalues of A and

the columns of V ∈ Cn×n is the eigenvectors of A.

1.4.3.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the most useful matrix decomposi-

tion used in linear control systems and model reduction techniques.

Let A ∈ Cm×n be a matrix, the SVD of A is a factorization

A = UΣV ∗

where U ∈ Cm×m, V ∈ Cn×n are unitary matrices and the diagonal entries σj of

Σ ∈ Rm×n are called singular values of A, which are non-negative and in decreasing

order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, k = min(m,n).

The thin SVD of A is obtained by taking only the first m singular values. This

decomposition gives the following properties:



Chapter 1.Introduction 21

1. The singular values σj are the square roots of the eigenvalues of the sym-

metric positive semi-definite matrix ATA.

2. If l be the number of singular values, rank(A) = l.

3. For A = A∗, σj = ‖λ(A)‖.

4. For A ∈ Cm×m,
∏m

j=1 σj = det(A).

5. ‖A‖2 = σ1 and ‖A‖F =
√

(σ2
1 + σ2

2 + · · ·+ σ2
r).

MATLAB Commands: [U,Σ, V ] = svd(A).

1.4.3.3 Schur Decomposition

Given a square matrix A ∈ Cm×n, the Schur decomposition is defined as

A = UTU∗

where U ∈ Cm×m is unitary matrix and T is upper triangular matrix. Since T is

similar to A and triangular, the eigenvalues of A are the diagonal entries of T .

MATLAB Commands: [T ] = schur(A).

1.4.3.4 QR Decomposition

Let A ∈ Cm×n be a matrix, this decomposition is defined by

A = QR

where Q is an orthogonal matrix and R is an upper triangular matrix.

In general, QR decomposition is used to solve the eigenvalue problem and least

squares problem. There are several methods for computing the QR decomposition,

such as modified Gram-Schmidt process, Householder transformations.

MATLAB Commands: [Q,R] = qr(A).
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1.4.3.5 Cholesky Decomposition

The Cholesky decomposition is a factorization of a Hermitian, positive-definite

matrix into the product of a lower triangular matrix and its conjugate transpose.

Let A ∈ Cm×n be a Hermitian and positive-definite matrix. The Cholesky decom-

position of A is defined as

A = LL∗

where L is a lower triangular matrix with real and positive diagonal entries and L∗

its conjugate transpose. Cholesky Decomposition can be used to solve the system

of linear equation Ax = b, where A is real symmetric and positive definite matrix.

MATLAB Commands: [L] = chol(A).

Lemma 1.20. Every Hermitian positive-definite matrix has a unique Cholesky

decomposition.

Now we discuss the popular way, so called Krylov-based Arnoldi process, to com-

pute the eigenvalues for large sparse matrices.

1.4.3.6 Arnoldi Decomposition

The Arnoldi decomposition is the classical iterative solvers and an important ex-

ample of iterative methods. We will now study a different class of iterative solvers

based on optimization. The Arnoldi iteration method to be derived will be appli-

cable to both linear systems and eigenvalue problems. It is a typical large sparse

matrix algorithm which does not access the elements of the matrix directly, but

rather makes the matrix map vectors. One of the main ingredients in all of the

following methods are Krylov subspaces.

Definition 1.21. Consider A ∈ Rn×n and V ∈ Rn×p. Then the mth Krylov

matrix associated with A and V is defined by

Km(A, V ) = [V,AV, · · · , Am−1V ]. (1.30)

Clearly, matrix-vector products play a crucial role in generating this sequence

since each subsequent vector in the sequence is obtain from the previous one by

multiplication by A.
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Algorithm 1: Arnoldi algorithm using modified Gram-Schimdt

Input : A,B, orthogonal matrix Vm.
Output: Matrix Rm ∈ Rn×m such that Xm = RmR

T
m.

1 Set u1 = B
‖B‖2 , U1 = u1

2 for j = 1, 2, · · · ,m do
3 Compute wj = Auj;
4 for i = 1 : j do
5 hij = uTi wj ;
6 wj = wj − hijui;
7 end for
8 Compute hj+1,j = ‖wj‖2 and uj+1 =

wj

hj+1,j
;

9 Hj =

[
Hj−1 hj

0 hj+1,j

]
;

10 Uj+1 = [Uj, uj+1];

11 Partition Hm =

[
Hm

hm+1,me
T
m

]
;

12 end for

Theorem 1.22. Let the column of Vm+1 = [Vm, vm+1] form an orthogonal basis

then there exists an upper Hessenberg matrix Ĥm ∈ Rm+1×m, defined as

Ĥm =



h11 h12 · · · · · · h1m

h21 h22 · · · · · · h2m

0 h32 · · · · · · h3m

...
. . .

. . .
. . .

...

0 0 · · · hm,m−1 hmm

0 0 · · · 0 hm+1,m


(1.31)

such that

AVm = Vm+1Ĥm. (1.32)

Conversely, if a matrix Vm+1 of orthogonal columns satisfies (1.32) then the columns

of Vm+1 form a basis for the Krylov subspace Km.

An important property is given below for Hessenberg matrix:

AVm =
[
Vm vm+1

] [ Hm

hm+1,m, e
T
m

]
= VmHm + hm+1,mvm+1e

T
m, (1.33)

where Hm can be found by removing the last row from Ĥm and em is a matrix of

the last p columns of the mp identity matrix.
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After m steps hm+1,m will be vanishes. Thus after some iteration, the second term

of the right side of (1.33) converge to zero. Therefore, we can rewrite (1.33) as

Hm = V T
mAVm. (1.34)

Hence, it is clear that Hm represents the projection A onto the subspace Km(A, V ).

Definition 1.23. The eigenvalues λi of Hm is called a Ritz values and if v̄ is an

eigenvector of Hm associate with λ, then Vmv̄ is called a Ritz vector belong to λ.

1.4.4 System Norms

This subsection presents the norm of vectors and matrices, because these are useful

in the discussion of stability of the algorithm, the stopping criteria and convergence

analysis of the iterative methods. We refer to [3] and [2] for motivation.

1.4.4.1 Vector Norms

Let X be a vector space. The norm on X is a real valued function on X if for any

x ∈ X and y ∈ Y , it satisfies the following properties:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0,

2. ‖x+ y‖ ≥ ‖x‖+ ‖y‖,

3. ‖αx‖ = |α|‖x‖, for any α ∈ R

The p norm of x ∈ C is defined as

‖x‖p := (
n∑
i=1

‖xi‖p)1/p, for 1 ≤ p <∞

When p = 1, 2, · · · ,∞, the norm can be defined as:

‖x‖1 :=
n∑
i=1

|xi|,

‖x‖2 :=

√√√√ n∑
i=1

|xi|2 =
√
xTx,

‖x‖∞ := max
1≤i≤n

|xi|.
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1.4.4.2 Matrix Norms

Let A = [aij] ∈ Rn×n be a matrix, then the matrix norm of A denoted by ‖A‖, is

a mapping from Rn×n to R satisfies the following properties:

1. ‖A‖ ≥ 0, if A 6= 0.

2. ‖αA‖ = |α|‖A‖, for any α ∈ R.

3. ‖A+B‖ ≤ |A|+ ‖B‖.

We usually prefer matrix norms of a matrix A = [aij] ∈ Cn×n induced by a vector

p-norm is defined as

‖A‖p := sup
x 6=0

‖Ax‖p
‖x‖p

.

In particular, the induced matrix 1-norm and 2-norm can be computed as

‖A‖1 : = max‖aj‖1, aj is the jth column of A

‖A‖2 : =
√
λmax(A∗A).

Another important matrix norm is so called Frobenius norm.

Definition 1.24. The Frobenius norm ‖.‖F of a matrix A = [aij] ∈ Rn×n is defined

as

‖A‖F : =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√

tr(AA∗) =
√

tr(A∗A)

It can be shown that

‖AB‖F ≤ ‖A‖F .‖B‖F ,√
ρ(AA∗) ≤ ‖A‖F ≤

√
n
√
ρ(AA∗)

Definition 1.25. H∞ is a closed subspace of scalar valued functions and the norm

is defined as
‖G‖∞ = sup

Re(s)>0

σ|G(s)|

= sup
w∈R

σ|G(jw)|
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1.5 Existing Methods

Lyapunov equation has fundamental role in many applications areas such as sys-

tem and control theory [12]. In this section, we introduce some standard methods

which solve small dense Lyapunov equation, e.g., Bartels-Stewart methods, Ham-

marling methods and sign function methods. The first two are based on the Schur

decomposition.

Later, iterative methods are very useful for large scale sparse problems because

they are more suitable than direct methods and often do not destroy sparsity. In

this section, we briefly review some iterative methods for generalized Lyapunov

equations, e.g., Krylov subspace methods and LRCF-ADI iterations methods.

Most of the methods use Galerkin projection technique to produce low-dimensional

Lyapunov equations that are solved by using direct methods.

1.5.1 Bartels-Stewart’s Method

The Bartels-Stewart method [33, 34] provided the first numerically standard tech-

nique to solve the dense small-to-medium scale (n ≤ 50) Lyapunov equations. The

main idea of the Bartels-Stewart algorithm is to transforms A into a real Schur

decomposition H = UTAU where U is orthogonal and H is quasi upper-triangular,

while in the Hessenberg-Schur algorithm, A is reduced only to upper Hessenberg

form. Then lyapunov equation (1.15) can be written as

HP̃ + P̃HT + UTBBTU = 0. (1.35)

This equation can be solved efficiently by backward substitutions so that P̃ =

UTPU .

By Schur’s lemma every matrix is unitarily similar to a triangular matrix such that

A = URUT , B = V SV T , where U, V are unitary matrices, R is upper triangular

matrix and S is lower triangular matrix.

It transforms the system matrix A to real Schur form, and then back solves for the

solution of the transformed Lyapunov equation. The solution X is then obtained

by a congruence transformation. Reducing a general, possibly sparse matrix to
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real Schur form requires work, as does the congruence transformation to produce

X.

Unfortunately, this methods is not suitable for solving large Lyapunov equations,

since the computation time and storage requirements are prohibitive. The Schur

decompositions of sparse matrices are dense as for orthogonal transformation. Be-

sides, the respective solution will be dense. To remedy this situation, we presents

some well established methods in the next subsection.

1.5.2 Hammarling’s Method

The Hammarling method [35] is merely another exact method, applies to Lya-

punov equations (1.15) in which the right side (M = BBT ) is symmetric positive

semidefinite.

The algorithm first transforms A to lower triangular form. It calculates recursively

for the lower triangular matrix Cholesky factor of the solution X rather than X

itself, i.e., X = RRT . It requires O(n3) complexity.

Penzl in [36] generalized exactly the same technique to the generalized Lyapunov

equation. All methods require Schur decomposition of A or Hessenberg decompo-

sition of B, which requires 25n3 flops for Schur decomposition. Therefore, these

methods are not feasible for large-scale problems with n > 10000.

1.5.3 Matrix Sign Function Method

One of the most popular approaches to solve large scale dense Lyapunov equations

is the matrix sign function method.

The matrix sign function of A is defined as follows:

sign(A) = V DV −1, (1.36)

where D = diag(d1, d2, · · · , dn) and

d =

{
1 Re(λi) >0

-1 Re(λi) <0
(1.37)
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If X is a solution of the Lyapunov equation[
In −X
0 In

][
A BBT

0 AT

][
In X

0 In

]
=

[
A 0

0 −AT

]

Hence, if A is asymptotically stable, then

sign(H) = T sign(

[
A 0

0 −AT

]
)T−1 =

[
−In 2X

0 In

]

The matrix sign function is compute by the following formula:

Z0 = A =

[
A BBT

0 AT

]
, Zk+1 = (Zk + Z−1k )/2, k = 0, 1, 2, · · · (1.38)

It can be shown that Zk → sign(A) as k →∞.

Comparison of the matrix sign function method [37] to the generalized Bartels-

Stewart and Hammarling methods with respect to the accuracy and computational

cost can be found in [38].

The author in [39] applied this method with low rank approximation of the right

side. There, it has been observed that the matrix sign function method is about as

expensive as the Bartels-Stewart method and both methods require approximately

the same amount of work space.

However, the matrix sign function method is more appropriate for parallelization

than the generalized Bartels-Stewart method and is currently the only practicable

approach to solve regular generalized Lyapunov equations with large scale dense

coefficient matrices.

A disadvantage of the matrix sign function method is that a matrix inversion is

required in every iteration step which may lead to significant roundoff errors for ill

conditioned Zk. Such difficulties may arise when eigenvalues of the pencil λE−A
lie close to the imaginary axis or λE − A is nearly singular.

Note that if the matrix E is singular, then Zk diverges for the pencil λE − A of

index greater than two and converges to a singular matrix. Thus, the matrix sign

function method cannot be directly utilized for projected generalized Lyapunov

equations.
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Algorithm 2: G-LRCF-ADI iteration

Input : E,A,B,C, µi.
Output: R, such that P ≈ RR∗.

1 while ‖W T
i−1Wi‖ ≥ tol or i ≤ imax do

2 Compute Vi = (A+ E)−1Wi−1;
3 if Im(µi)=0 then
4 Zi = [Zi−1

√
−2µiVi] ;

5 Wi = Wi−1 − 2µiEVi;

6 else

7 γ = −2Re(µi), δ = Re(µi)
Im(µi)

;

8 Zi+1 = [Zi−1
√

2γ(Re(Vi) + δIm(Vi))
√

2γ(δ2 + 1)Im(Vi)];
9 Wi+1 = Wi−1 + 2γE(Re(Vi) + δIm(Vi));

10 i = i+ 1;

11 end if
12 i = i+ 1;

13 end while

1.5.4 Low Rank Cholesky Factor-Alternating Direction Im-

plicit Method

The Alternating Direction Implicit (ADI) methods are powerful techniques that

arise from the solution methods for elliptic and parabolic partial differential equa-

tions, this method is competitive with the Bartels-Srewart and Hammarling meth-

ods. The low rank smith method [15] gives the same approximation as the ADI

method and exploits the low rank of the right-hand side of the Lyapunov equation.

The ADI iteration in [40] was first introduced for solving elliptic and parabolic dif-

ference equations.

Consider the continuous time Lyapunov equation

AX +XAT = −BBT . (1.39)

Then the ADI iteration can be written as

(A+ µkI)Xk−1/2 = −BBT −Xk−1(A
T − µkI), (1.40)

(A+ µkI)Xk = −BBT −XT
k−1/2(A

T − µkI), (1.41)

with X0 = 0 and the shift parameters µ1, µ2, · · · , µk ∈ C−.
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The authors in [41] extend this idea, known as Cholesky Factor-Alternating Di-

rection Implicit (CF-ADI) iterations and showed that this method produces the

same approximation as ADI method, but is much more efficient. Recently, LRCF-

ADI iteration performs another efficient method which can be found in [9]. This

iterative method is also extended in [30] for solving the generalized projected Lya-

punov equations for descriptor systems. In [42], the authors explained an efficient

technique to compute real low-rank gramian factors by cleverly handling the com-

plex shift parameters. The most recent developments were performed in [28], the

author concentrates the updated version of Generalized Sparse (GS)-LRCF-ADI

iteration.

On the other hand, a computationally cheap approach and a low-rank residual

based stopping criterion of the LRCF-ADI iteration is introduced in [43]. For

convenience, we present an Algorithm 2 for the updated version of the generalized

(G-)LRCF-ADI iteration.

1.5.5 Krylov Subspace Method

In this subsection, we review some basic idea of projection based low rank itera-

tive methods for the solution of large scale matrix Lyapunov equations. Projection

strategies reduce the problem dimension so that the reduced problem can be nu-

merically solved by a method. In [20], the author seemed to propose the idea of

projecting the Lyapunov equation to a smaller space.

A prominent iterative techniques for Lyapunov equations are Krylov subspace

method [17, 18] which become competitive with ADI iteration due to recent de-

velopments on extended and rational Krylov subspace. Such projection method

is based on the Krylov subspaces techniques via the block Arnoldi or Lanczos

process, introduced first by [20], in case of p = 1. Next, in [17], Jaimoukha and

Kasenally extended this method for large scale Lyapunov equations.

In Krylov subspace methods, an approximate solution to the Lyapunov equation

is determined in the form X ≈ V PV T . First, we need to determine the columns

of Vm ∈ Rn×l, which span an orthonormal basis for the mp-dimensional Krylov

subspace defined by

Km(A,B) := span(B,AB,A2B, · · · , Am−1B).
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Using Algorithm 1, one can compute an orthonormal basis Vm = [u1, u2, · · · , um]

from the Krylov subspace Km.

The main problem is to ensure that each of the reduced order equation

HmYm + YmH
T
m + V T

mBB
TVm = 0

has a unique solution Ym.

If H is real matrix, then Lyapunov equation has a unique solution iff λi + λj 6= 0

for every pair of eigenvalues λi and λj for Hm.

We are aware of some distinct extensions. The Galerkin type method of Jbilou

and Riquet [18] relied on their global Arnoldi process. This method claims the

solution of certain reduced order equations, which may or may not have unique

solutions. If A is sparse, then the most expensive part of the method is to compute

the orthogonal column of Vm by modified Gram-Schmidt process.

The convergence of the Arnoldi-Lyapunov method has been studied in [44]. The

residual corresponding to Ym is given by

Rm = AVmYmV
T
m + VmYmV

T
mA

T +BBT . (1.42)

This method computes Ym such that it is satisfied the Galerkin condition

V T
mRmVm = 0.

Theorem 1.26. Let the Arnoldi process have been taken to m steps then an ap-

proximation Xm = VmYmV
T
m satisfies the Galerkin condition V T

mRmVm = 0 if and

only if Ym is a solution of

HmYm + YmH
T
m + V T

mBB
TVm = 0.

In [19], Simoncini has developed a variant of the Arnoldi method which requires

the solution of linear systems with coefficient matrix A. Again authors in [45], use

a two pass version of the Lanczos algorithm to reduce memory consumption. The

convergence of the Arnoldi method has been studied in [44].
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1.6 Model Examples

In this section, we introduce some real problems of standard and descriptor LTI

system. But we consider only the descriptor system for our numerical tests.

1.6.1 Earth Atmospheric Model

This is a model of an atmospheric storm track. In order to simulate the lack of

coherence of the cyclone waves around the Earth’s atmosphere, linear damping at

the storm track’s entry and exit region is introduced. The perturbation variable is

the perturbation geopotential height. The mean flow is taken to be in a periodic

channel in the zonal x-direction, 0 < x < 12π, the channel is taken to be bounded

with walls in the meridional y-direction located at y = ±π
2

and at the ground,

z = 0, and the tropopause, z = 1. The mean velocity is varying only with height

and it is U(z) = 0.2 + z. Zonal and meridional lengths are nondimensionalized by

L = 1000km, vertical scales by H = 10km, velocity by U0 = 30ms−1 and time is

nondimensionalized advectively, i.e. T = L
U0

, so that a time unit is about 9h.

The model can be represented by stable LTI system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t > 0

y(t) = Cx(t), t ≥ 0
(1.43)

where A ∈ R598×598, C = [1, 1, 1, 1, · · · , 1]1×598 and B = CT .

1.6.2 Transmission Line Model

A transmission line is a circuit model modeling the impedence of interconnect

structures accounting for both the charge accumulation on the surface of conduc-

tors and the current traveling along conductors.

The LTI system is defined as

Eẋ(t) = Ax(t) +Bu(t), x(0) = x0, t > 0

y(t) = Cx(t), t ≥ 0
(1.44)

where E,A ∈ R256×256, B ∈ R256×2 and C ∈ R2×256.
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1.6.3 CD Player Model

The CD player control task is to achieve track following, which basically amounts

to pointing the laser spot to the track of pits on the CD that is rotating. The

mechanism treated here, consists of a swing arm on which a lens is mounted by

means of two horizontal leaf springs. The rotation of the arm in the horizontal

plane enables reading of the spiral shaped disc-tracks, and the suspended lens is

used to focus the spot on the disc. Due to the fact that the disc is not perfectly

flat, and due to irregularities in the spiral of pits on the disc, the challenge is to

find a low-cost controller that can make the servo-system faster and less sensitive

to external shocks. This is a sparse model like as the system 1.43.

1.6.4 Power System Model

Power system simulation involves power system modeling and network simulation

in order to analyze electrical power systems using design or real-time data. It can

be used in a wide range of planning and operational situations such as Electric

power generation (Nuclear, Conventional, Renewable), Commercial facilities, Util-

ity transmission, Utility distribution, Railway power systems and Industrial power

systems.

Key elements of power systems that are modeled include:

1. Load flow (power flow study),

2. Short circuit or fault analysis,

3. Protective device coordination, discrimination or selectivity,

4. Transient or dynamic stability,

5. Harmonic or power quality analysis and

6. Optimal power flow.

The power system model can be represented by a number of differential-algebraic

equations. The Brazilian Interconnected Power System (BIPS) models, introduced
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in [24] provide a number of differential-algebraic systems which can be represented

by [
I 0

0 0

]
︸ ︷︷ ︸

Ẽ

[
ẋ(t)

ż(t)

]
︸ ︷︷ ︸

˙̃x(t)

=

[
A1 A2

A3 A4

]
︸ ︷︷ ︸

Ã

[
x(t)

z(t)

]
︸ ︷︷ ︸
x̃(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B̃

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C̃

[
x(t)

z(t)

]
+Dau(t).

(1.45)

where A4 is nonsingular and other sub matrices are highly sparse with appropriate

dimensions. Since E is singular, the formulation is not as straightforward. Such

systems are known as index-1 descriptor system.

Eliminating the algebraic variables from (1.45), one can reduce the system into

standard state space form as

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Dau(t),
(1.46)

where A := A1 − A2A
−1
4 A3 ∈ Rnd×nd , B := B1 − A2A

−1
4 B2 ∈ Rnd×p, C := C1 −

C2A
−1
4 A3 ∈ Rnd×p and Da := Da − C2A

−1
4 B2 ∈ Rnd×p.

We refer bips2 models for motivation of power systems.

2Available at http://sites.google.com/site/rommes/software
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Solution of Lyapunov Equation

by Rational Krylov Subspace

method

This chapter introduces the most integral part of this thesis for computing the

low-rank solution of large-scale Lyapunov equations. During the last decades,

several iterative mathods have been developed to solve the large scale Lyapunov

equation, e.g., LRCF-ADI iterations, cyclic low-rank Smith methods, projection

methods and sign function methods. A brief discussion of some methods are given

in section 1.5. Although, most of the methods can be applied for large scale sparse

dynamical systems LRCF-ADI iteration [12] and Krylov subspace based projection

method [19] are attractive. In this thesis, we concentrate our attention on RKSM

[25] for generalized system which is well established in [27] for standard system.

This technique is attractive since it is assumed to be cheap in computation and

need not be required the stability of the system.

In first section, a short summary of the origin of RKSM is given for general-

ized system. Then RKSM is extended for index-1 descriptor system in Section

2.1.2. Another two major contributions are discussed in the next two sections.

Section 2.2 discusses shift parameter selection to build the Krylov subspace and

suitable termination criteria of the algorithm is given in Section 2.3. Finally, some

numerical results are performed for the proposed methods.

35
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2.1 Rational Krylov Subspace Method

This section presents the major contribution of this thesis to develop the RKSM.

Among several projection methods, RKSM has some advantage in simplicity. Sub-

section 1.5.5 gives a brief overview of Krylov subspace method. In first subsection,

the solution of the Lyapunov equation is discussed for generalized state space sys-

tem. And next we formulate the index-1 descriptor system to generalized system

so that the Lyapunov equation can be solved efficiently.

2.1.1 Generalized System

Consider a LTI continuous-time system of the form

Eẋ(t) = Ax(t) +Bu(t), x(t0) = x0, t ≥ t0

y(t) = Cx(t) +Du(t),
(2.1)

where E,A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, D ∈ Rm×p. The vector valued functions

x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rm are prescribed to as the state, input and output

of the system respectively, together with an initial condition x(t0) = x0. Here, n is

called the order of the system and is assumed to be very large. If E = I, then (2.1)

is known as standard state space system. Otherwise, (2.1) is called generalized or

descriptor system, or differential-algebraic system.

In Section 1.3 we discussed some theorem which are shown that the system (2.1) is

asymptotically stable if all eigen values of (A,E) lie in C−, while the controllability

Gramian P ∈ Rng×ng and the observability Gramian Q ∈ Rng×ng are unique and

symmetric positive definite. But, it can be shown that these two gramians are the

solution of two continuous-time algebraic Lyapunov equations (CALE)

APET + EPAT +BBT = 0, (2.2)

and ATQE + ETQA+ CTC = 0, (2.3)

where the matrices A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, (p� n).

Consider in all cases, λi(A)+λ̄j(A) 6= 0, for all i, j = 1, 2, · · · , n, which ensure that

the solution P of the equation (2.2) exists and is unique. Note that, controllability

Lyapunov equation (2.2) and observability Lyapunov equation (2.3) are dual of
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each other. Therefore, the solution of the controllability Lyapunov equations is

the main stream entirely in this chapter.

For large n, it is impossible to store the original solution P of the controllability

Lyapunov equation (2.2). Thus a low rank approximate solution is investigated

such that

P ≈ V P̃aV
∗, V ∈ Rn×r, P̃a ∈ Rr×r.

RKSM computes the low-rank factor R to the approximate solution Pa of the

Lyapunov equation (2.2) so that

P ≈ Pa = RR∗.

The method is carried out by projecting the system onto the lower-dimensional

Rational Krylov Subspace which can be generated iteratively.

Consider the m dimensional Rational Krylov Subspace defined as

Km :=
m∏
i=1

(A− µiE)−1B,

for a set of given shift parameters µi ∈ C; i = 1, 2, · · · ,m.

We construct a projector V in such way that

Rang(V ) = span

(
m∏
i=1

(A− µiE)−1B

)
.

Then the Galerkin condition is satisfied as

V ∗(APET + EPAT +BBT )V = 0

(V ∗AV )(V ∗PV )(V ∗EV )T + (V ∗EV )(V ∗PV )(V ∗AV )T + V ∗B(V ∗B)T = 0.

Consider P̃ = V ∗PV , Ẽ = V ∗EV , Ã = V ∗AV and B̃ = V ∗B. Then the projected

Lyapunov equation (??) can be written as

ÃP̃ ẼT + ẼP̃ ÃT = −B̃B̃T . (2.4)



Chapter 2.Solution of Lyapunov Equation by RKSM 38

Algorithm 3: Proposed method for generalized Lyapunov equation

Input : E, A, B, imax (number of iterations), µ1 (initial shift).
Output: R such that P ≈ RR∗.

1 Compute v = (A− µ1E)−1B, V1 = v
‖v‖ ;

2 while (not converged) or m ≤ imax do
3 Find v = (A− µm+1E)−1Vm and compute adaptive shifts if store is empty as

[29];
4 Orthogonalize v against Vm to obtain vm+1,Vm+1 = [Vm, vm+1];
5 Solve the small Lyapunov equation

Am+1PE
T
m+1 + Em+1PA

T
m+1 = −Bm+1B

∗
m+1,

for P where Am+1 = V ∗m+1AVm+1, Em+1 = V ∗m+1EVm+1 and Bm+1 = V ∗m+1B;
6 Compute the norm of the residual as defined in (2.23)

7 Compute eigen value decomposition Y = TΛT ∗ =
[
T1 T2

] [Λ1 0
0 Λ2

] [
T ∗1
T ∗2

]
;

8 Truncate Λ2 if the eigenvalues are sufficiently small and construct R = Vm+1T1Λ
1
2
1

The equation (2.4) is a small Lyapunov equation and can be solved by an existing

methods, e.g., Bartels-Stewart method.

The solution P̃ is symmetric and positive definite, so it can be factorized as

P̃ = SS∗.

Using back substitution, the original solution can be computed as

P = V P̃V ∗.

Applying eigenvalue decomposition to the matrix P̃ and truncating the negligible

eigenvalues. This ensure that the computed low rank factor R has smallest possible

number of columns. Then

P = V P̃V ∗

= V SS∗V ∗ = (V S)(V S)∗ = RR∗.

Finally, we store

R = V S,

which is the required low rank solution of the Lyapunov equation. The whole

procedure is summarized in Algorithm 3.
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2.1.2 Formulation and Solution of Index-1 Descriptor Sys-

tem

Now, we formulate the index-1 descriptor system into generalized system and apply

RKSM to find the low rank solution of the Lyapunov equation, arises from index-

1 descriptor system. We also show how to overcome the complexity of index-1

descriptor system such that it can be solved efficiently.

In matrix vector form, a LTI continuous time (semi explicit) index-1 descriptor

system can be represented as[
E1 E2

0 0

]
︸ ︷︷ ︸

Ẽ

[
ẋa(t)

ẋb(t)

]
︸ ︷︷ ︸

˙̃x(t)

=

[
J1 J2

J3 J4

]
︸ ︷︷ ︸

Ã

[
xa(t)

xb(t)

]
︸ ︷︷ ︸

x̃(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B̃

u(t),

and y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C̃

[
xa(t)

xb(t)

]
+Dau(t).

(2.5)

This equations are equivalent to the following differential-algebraic equations

E1ẋa(t) + E2ẋb(t) = J1xa(t) + J2xb(t) +B1u(t), (2.6a)

0 = J3xa(t) + J4xb(t) +B2u(t), (2.6b)

and y(t) = C1xa(t) + C2xb(t) +Dau(t). (2.6c)

Here, xa(t) ∈ Rna and xb(t) ∈ Rnb are state vectors. The vector xb(t) is known as

algebraic variables. The sub-matrices E1, E2, J1, J2, J3, J4, B1, B2, C1, C2 and

Da are sparse in appropriate dimensions.

Since J4 is nonsingular block matrix, the systems (2.5) is claimed as index-1 de-

scriptor system. Again in [46] authors called it semi explicit descriptor system of

index-1 since the block matrix E2 of E is non zero.

From the algebraic equation (2.6b), we obtain

xb(t) = −J−14 J3xa(t)− J−14 B2u(t). (2.7)
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Substituting the value of xb(t) in (2.6a) and (2.6c), respectively, we obtain

(E1 − E2J
−1
4 J3)ẋa(t) = (J1 − J2J−14 J3)xa(t) + (B1 − J2J−14 B2)u(t)

+ E2J
−1
4 B2u̇(t)

= (J1 − J2J−14 J3)xa(t) + [B1 − J2J−14 B2, E2J
−1
4 B2]

[uT (t), u̇T (t)]T ,

and y(t) = (C1 − C2J
−1
4 J3)xa(t)− C2J

−1
4 B2u(t) +Dau(t)

= (C1 − C2J
−1
4 J3)xa(t) + [Da − C2J

−1
4 B2, 0][uT (t), u̇T (t)]T

Define the following relations:

E := E1 − E2J
−1
4 J3, A := J1 − J2J−14 J3, B := [B1 − J2J−14 B2, E2J

−1
4 B2],

C := C1 − C2J
−1
4 J3, D := [Da − C2J

−1
4 B2, 0], ū(t) = [uT (t), u̇T (t)]T .

Then the converted generalized systems can be written as

Eẋa(t) = Axa(t) +Bū(t)(t),

y(t) = Cxa(t) +Dū(t)(t).
(2.8)

Therefore, the descriptor system (2.5) can be converted to the generalized system

(2.1) by the above relations. Note that the system matrices in (2.8) are formed in

dense formulation.

The following proposition shows that the converted dynamical systems (2.8) and

original system (2.5) are equivalent in a sense that their transfer functions and the

finite spectrums are same [46].

The mapping from inputs to outputs are described by the transfer function matrix,

so it is essential for the input-output relations of any system. In frequency domain,

the transfer function matrix G(µ) ∈ Cm×p of a system is defined by

G(µ) = C(µE − A)−1 B +D, µ ∈ C. (2.9)

Proposition 2.1. Let G̃(µ) be a transfer function of the (semi explicit) index-1

descriptor system (2.5) and let G(µ) = C(µE − A)−1B + D be obtained for the

system (2.8). Then G̃(µ) and G(µ) are same.
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Proof. The transfer function of the semi explicit descriptor system (2.5) can be

written as

G̃(µ) = C̃(sẼ − Ã)−1B̃ +Da,=
[
C1 C2

] [F1

F2

]
+Da (2.10)

where [
F1

F2

]
= (sẼ − Ã)−1B̃,

or,

[
µE1 − J1 µE2 − J2
−J3 −J4

][
F1

F2

]
=

[
B1

B2

]

This implies that

(µE1 − J1)F1 + (µE2 − J2)F2 = B1, (2.11)

and

−J3F1 − J4F2 = B2

or, −J4F2 = (B2 + J3F1)

or, F2 = −J−14 (B2 + J3F1)

Putting the value of F2 in (2.11), we get

(µE1 − J1)F1 + (µE2 − J2)(−J−14 (B2 + J3F1)) = B1

or, [(µE1 − J1)− (µE2 − J2)J−14 J3]F1 = B1 + (µE2 − J2)J−14 B2

or, F1 = [µ(E1 − E2J
−1
4 J3)− (J1 − J2J−14 J3)]

−1[B1 − J2)J−14 B2 + µE2J
−1
4 B2]

= (µE − A)−1B.

Then equation (2.10) gives

G̃(µ) = C1F1 + C2F2 +Da

= C1F1 − C2J
−1
4 (B2 + J3F1) +Da

= (C1 − C2J
−1
4 J3)F1 +Da − C2J

−1
4 B2

= C(µE − A)−1B +D = G(µ).
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The main computational cost in RKSM is the solution of linear systems with

matrices of the form (A− µE)−1V (i.e., steps 1 and 3 in Algorithm 3).

The matrix A in system (2.8) is not sparse or a poor sparsity pattern so it becomes

a most expensive operations, i.e, the converted system claimed large and dense

system matrices A and E.

At each iteration we have to solve a shifted linear system like

(A− µiE)vi = Vi−1 (2.12)

or, ((J1 − J2J−14 J3)− µiE1)vi = Vi−1. (2.13)

To overcome the complexity, we can use the sparsity pattern of A instead of its

dense form so that the operation can be solved efficiently by suitable direct or

iterative solvers [4, 47].

Therefore, we solve the linear system as[
J1 − µiE1 J2 − µiE2

J3 J4

][
vi

?

]
=

[
Vi−1

0

]
(2.14)

Similarly, the observability Lyapunov equation (2.3) can be solved by the above

procedure. In that case, input (E, A, B) is changed to (ET , AT , CT ).

For observability gramian, we can be handled the system (AT − µET )w = CT by

the following linear system[
JT1 − µET

1 JT3

JT2 − µET
2 JT4

][
wi

?

]
=

[
Vi−1

0

]
(2.15)

Special case I:

When E2 = 0 in system (2.5), the index-1 descriptor system can be represented

by [
E1 0

0 0

]
︸ ︷︷ ︸

Ẽ

[
ẋa(t)

ẋb(t)

]
︸ ︷︷ ︸

˙̃x(t)

=

[
J1 J2

J3 J4

]
︸ ︷︷ ︸

Ã

[
xa(t)

xb(t)

]
︸ ︷︷ ︸
x̃(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B̃

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C̃

[
xa(t)

xb(t)

]
+ Dau(t).

(2.16)
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This is equivalent to the following differential-algebraic equations of system

E1ẋa(t) = J1xa(t) + J2xb(t) +B1u(t), (2.17)

0 = J3xa(t) + J4xb(t) +B2u(t), (2.18)

y(t) = C1xa(t) + C2xb(t) +Dau(t). (2.19)

In the similar way, the descriptor system (2.16) can be converted to the system

(2.8) with the following relations

E := E1, A := J1 − J2J4−1J3, B := B1 − J2J4−1B2,

C := C1 − C2J4
−1J3, D := Da − C2J4

−1B2.

To over come the complexity, we solve the linear system[
J1 − µiE1 J2

J3 J4

][
vi

?

]
=

[
Vi−1

0

]
(2.20)

For observability Lyapunov equation, we solve the linear system[
JT1 − µET

1 JT3

JT2 JT4

][
wi

?

]
=

[
Vi−1

0

]
(2.21)

Special case II:

When J2 = 0 in (2.16), the system (2.16) becomes[
E1 0

0 0

]
︸ ︷︷ ︸

Ẽ

[
ẋa(t)

ẋb(t)

]
︸ ︷︷ ︸

˙̃x(t)

=

[
J1 0

J3 J4

]
︸ ︷︷ ︸

Ã

[
xa(t)

xb(t)

]
︸ ︷︷ ︸
x̃(t)

+

[
B1

B2

]
︸ ︷︷ ︸
B̃

u(t),

y(t) =
[
C1 C2

]
︸ ︷︷ ︸

C̃

[
xa(t)

xb(t)

]
+ Dau(t).

(2.22)

Then the new converted system can be generated by the relations:

E := E1, A := J1, B := B1, C := C1 − C2J4
−1J3, D := Da − C2J4

−1B2.

For controllability gramian, the linear system can be solved by (J1−µE1)
−1v = B1.

For observability gramian, we can use the linear system (JT1 − µET
1 )−1v = CT .
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2.2 Shift Parameter Selection

It is mentioned that at each iteration of RKSM, a linear system has to be solved

with shifted matrix. Proper shift computation is another important task to fast

convergence of the RKSM. There are many way to compute the shift parameter in

the research. In this section, we present a simple and efficient technique, so called

adaptive shift selection approach.

In [29], the authors are shown that a set of optimal shift parameters µi can be

computed by solving the so called min-max problem

min
µ1,··· ,µj⊂C−

(
max
1≤l≤n

J∏
i=1

| zi − λ |
| zi + λ |

)
, λ ∈ Λ(A,E).

Recently, this technique is extended for the descriptor system. In this approach,

an adaptive shift parameters are generated automatically by itself. Here, we apply

the modified version of adaptive shift selection, available in [28]. The approximate

solutions of Lyapunov equation in (2.2) converge to exact solutions if the projected

system is asymptotically stable. Sometimes the projected eigenvalue cannot be in

the negative real part. Then we convert in C−.

For a given orthogonal matrix v ∈ Rn×k, k � n, one can compute the k eigenvalues

of the projected matrix pencil

(λvTEv − vTAv), λ ∈ C.

The computed eigenvalues are used as shift parameters. There, the shifts are

initialized by the eigenvalues of the pencil projected by the subspace. Whenever,

the current set has been used, then choose the next set of shifts following by the

current subspace.

If any eigenvalues will be in C+, we project them in negative real part of the

complex plane. Note that in this case, the problem does not exist the infinite

eigenvalues.
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2.3 Stopping Criteria

One way to stop Algorithm 3 is to compute the changes in the approximation,

i.e., when ‖Pa − P̃‖ < tolerance. A relative change can also be used by scaling

‖P‖. However, the computation of the norm of approximate solution might be

expensive in large dimensions. A similar stopping criterion is based on the relative

change in the low-rank factors [19, 27] measured in the Frobenius norm.

The method can be stopped at the m-th iteration efficiently, if

‖R(Pa)‖F
‖BBT‖F + ‖A‖F‖P‖F

≤ tol,

where ‖.‖F denotes Frobenius norm and the residual at mth iteration step is

R(Pa) = AP̃mE
T + EP̃mA

T +BBT (2.23)

We focus on terminating Algorithm 3 based on the norm of the Lyapunov residual

R(Pa), which is the most expensive to evaluate. The F -norms of ‖BBT‖ and ‖A‖
are computed explicitly at the beginning of the process. Other hand, ‖P‖F has to

be computed in each iteration step.

For large scale Lyapunov equations, R(Pa) is difficult to compute, since R(Pa) is a

large and dense matrix. Hence, the residual norm can be computed cheaply using

the following observation [27, Proposition 4.1].

Theorem 2.2. Let Vm be the orthogonal basis of the Rational Krylov Subspace

Km and P = VmY V
∗
m be the approximate solution of the Lyapunov equation. Then

the residual Rm can be computed as

‖Rm‖F = ‖SJST ‖F , J =


0 1 0

1 0 1

0 1 0


where S is the upper triangular matrix in the QR factorization of

U = [vm+1µm+1, EVmY H
−T
m emhm+1,m − (I − VmV T

m )Avm+1],

where Hm is a block upper Hessenberg matrix and em be the matrix formed by the

last p columns of the mp×mp identity matrix.
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Proof. Applying Arnoldi algorithm, we can write

(A− µj+1E)−1vj = Vj+1H1:j+1,j, j = 1, · · · ,m.

We can obtain

AVm = [VmTm + vm+1hm+1,me
T
mDmH

−1
m ,−(I − VmV T

m )Avm+1hm+1e
T
mH

−1
m ].

Therefore,

R = AP̃ET + EP̃AT +BBT

= AVmPmV
T
mE

T + EVmPmV
T
mA

T +BBT

= (VmTm + vm+1hm+1,me
T
mDmH

−1
m − (I − VmV T

m )Avm+1hm+1e
T
mH

−1
m )PmV

T
mE

T

+ EVmPm(VmTm + vm+1hm+1,me
T
mDmH

−1
m − (I − VmV T

m )Avm+1hm+1e
T
mH

−1
m )T

+BBT

= vm+1hm+1,me
T
mDmH

−1
m PmV

T
mE

T − fhm+1,me
T
mH

−1
m PmV

T
mE

T+

+ EVmPmH
−1
m emh

T
m+1,mDmv

T
m+1 − EVmPmH−1m emh

T
m+1,mf

T + VmTmPmV
T
mE

T

+ EVmPmVmTm +BBT

= vm+1µm+1h
T
m+1,me

T
mH

−1
m P T

mV
T
mE

T − fhTm+1,me
T
mH

−1
m P T

mV
T
mE

T+

+ EVmPmH
−1
m emh

T
m+1,mµm+1v

T
m+1 − EVmPmH−1m emh

T
m+1,mf

T

= EVmPmH
−1
m emhm+1,mµm+1v

T
m+1 + (vm+1µm+1 − f)hTm+1,me

T
mH

−1
m P T

mV
T
mE

T

− EVmPmH−1m emh
T
m+1,mf

T

=
[
EVmPmH

−1
m emhm+1,m µm+1vm+1 − f EVmPmH

−1
m emhm+1,m

]


µm+1v
T
m+1

hTm+1,me
T
mH

−1
m P T

mV
T
mE

T

−fT



=
[
µm+1vm+1 − f EVmPmH

−1
m emhm+1,m −f

]
0 1 0

1 0 1

0 1 0




µm+1v
T
m+1

hTm+1,me
T
mH

−1
m P T

mV
T
mE

T

−fT


= SJST .
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2.4 Numerical Results

To assess the performance of the proposed method, some results of numerical

experiments are presented in this section. First consider an artificial data so that

one can construct different sizes of models to test the proposed method. Although,

we found some real power system data for second type descriptor system.

All of the following results were carried out using MATLAB (R2013b) on an Intel

Core i5 @ 1.70 GHz clock, RAM 8GB with machine precision ε = 1.7× 10−16.

2.4.1 Artificial Data

A set of artificial data is considered for the index-1 descriptor system by the

following ways:

2n=number of state differential variables;

m=number of algebraic variables;

inp=number of input;

outp=number of output;

N=spdiags (-5*ones(n,1),0,n,n)+ spdiags (-1*ones(n,1),2,n,n)+ spdiags (-1*ones(n,1),-2,n,n)

+spdiags (2* ones(n,1),4,n,n)+ spdiags (2* ones(n,1),-4,n,n);

L=spdiags (10* ones(m,1),0,m,m)+ spdiags(ones(m,1),2,m,m)+ spdiags(ones(m,1),-2,m,m)

+spdiags (-2*ones(n,1),4,m,m)+ spdiags (-2*ones(n,1),-4,m,m);

Q=sprand(n,m ,0.001);

E1=speye (2*n);

E2=spdiags (-.5* ones (2*n,1),0,2*n,m); % for E2 is not zero

E2=spalloc(size(J2 ,1),size(J2 ,2) ,0); % for E2=0

E=[E1 E2;spalloc(size(J3 ,1),size(J3 ,2),0) spalloc(size(J4 ,1),size(J4 ,2) ,0)];

J1=[-2* speye(n) speye(n);-N -5*speye(n)];

J2=[ spalloc(n,m,0);-Q];

J3=J2 ’;

J4=-L;

By changing the value of n and m, one can constructed the different sizes of

artificial models for index-1 descriptor system. Also the number of input and

output can be fixed by replacing the values of ’inp’ and ’outp’, and ’den’ denotes

the number of nonzero entries.

Assume the formulation of E2, we can construct two different models as for case-1,

E2 6= 0 and for case-2, E2 = 0. For our numerical test, we consider den = 0.001,

inp = outp = 1 (SISO). Also different types data can be constructed by replacing

the block matrices of each system matrix.
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Table. 2.1. Computational time for different dimensional systems by exact solver
and RKSM (sparse and dense linear system)

Dimension Exact solver(sec) RKSM sparse(sec) RKSM dense(sec)

1600 23 1.43 2.7
1800 34 1.61 3.08
2200 67 1.93 4.68
2600 117 2.3 6.47
3000 177 2.68 7.74
4000 398 3.47 8.72
6000 1501 7.13 19.8

Compute the controllability gramian factor for different systems, table 2.1 shows

the computational time between exact solver (matlab: lyap) and proposed methods

(consider 50 iterations). This shows that RKSM is more efficient than the exact

solver.

Figure 2.1 represents the sparsity patterns of the system matrix E and matrix A,

for 5000 dimensional artificial data. Figure 2.2a shows the convergence history

for the controllability Lyapunov equation and figure 2.2b is for the observability

Lyapunov equation of artificial data. One can notice that the convergence is very

fast with the iteration steps 35, in both cases.

(a) Matrix E (b) Matrix A

Figure. 2.1. Sparsity patterns of the artificial data
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(a) Controllability gramian
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(b) Observability gramian

Figure. 2.2. Convergence histories of RKSM for artificial data.

Figure 2.3 shows the accuracy of the RKSM. In figure 2.3b, it can easily be shown

that the largest singular values of the controllability gramian match accurate for

both exact solver and RKSM, respectively. The same histories for observability

gramian are showed in figure 2.3b for exact solver and RKSM, respectively.
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Figure. 2.3. Singular values of the gramians computed by exact solver and
RKSM for artificial data.
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Figure. 2.4. Computational time of controllability gramian of artificial model
for different system by RKSM and exact solver

Bar chart of figure 2.4 shows the computational time of controllability gramian for

different systems by RKSM and exact solver.

2.4.2 Power System Data

In Subsection 1.6.4, some real data are discussed, the power systems are generated

from BIPS [24]. Three models are considered for our numerical test which are all

index-1 descriptor system (case-2).

Table 2.2 shows a summary of some power system data. The number of differential

and algebraic variables, and large eigenvalue of the pair (−A,E) for different sizes

of the models are shown in table 2.3.

Table. 2.2. Dimensions of system matrices of BIPS models.

Model A B C D
Mod-1 7 135 (7135, 4) (4, 7135) (4, 4)
Mod-2 9 735 (9735, 4) (4, 9735) (4, 4)
Mod-3 21 128 (21128, 4) (4, 21128) (4, 4)
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Table. 2.3. Number of differential & algebraic variables and largest eigenvalue
of (−A,E) for different models.

Model Dim. of differential Dim. of algebraic Inputs/outputs

Mod-1(small) 606 6 529 4/4
Mod-2(medium) 1 142 8 593 4/4
Mod-3(large) 3 078 18 050 4/4

For Mod-1, the sparsity patterns of the matrix A and its dense form are shown in

figure 2.5. After dense formulation the model reduces low sparsity pattern.

We compute the controllability gramian and observability gramian by exact solver

and RKSM, respectively. The relative error for controllability gramian is ‖Xc−P‖2
‖Xc‖22

=

1.95× 10−8 and for observability gramian is ‖Xo−Q‖2
‖Xo‖22

= 9.6× 10−9, where Xc and

P are the controllability gramian for the exact solver and RKSM, respectively and

Xo and Q are same history for observability gramian.

Figure 2.6a shows the convergence history for the controllability Lyapunov equa-

tion and figure 2.6b is for the observability Lyapunov equation, for Mod-1. We

observe that the convergence is very fast with the 60 iteration steps for both cases.

Figure 2.7 shows the accuracy of the RKSM method for Mod-1. In figure 2.7a, it

can easily be shown that the largest singular values of the controllability gramians

(a) Matrix A in sparse form (b) Matrix A in dense form

Figure. 2.5. Sparsity patterns of the matrix A and its dense form for Mod-1
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Figure. 2.6. Convergence histories of RKSM for Mod-1.

by exact solvers and RKSM, respectively, match accurately. The same histories

for observability gramians are depicted in figure 2.7b.

For Mod-2, the convergence history for controllability gramian and observability

gramians are shown in figure 2.8. One can notice that very fast convergence is

obtained with the iteration steps 80 and 65, respectively in both cases.
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Figure. 2.7. Singular values of the gramians computed by exact solver and
RKSM for Mod-1.
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Figure. 2.8. Convergence histories of RKSM for Mod-2.

Figure 2.9 shows the accuracy of the RKSM method for Mod-2. The largest

singular values of the controllability gramian are depicted in figure 2.9a by exact

solver and RKSM, respectively. The same histories for observability gramian are

also shown in figure 2.9b. Both figures show that the 200 singular values match

accurately in both cases.
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Figure. 2.9. Singular values of the gramians computed by exact solver and
RKSM for Mod-2.
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(a) Matrix A in sparse form (b) Matrix A in dense form

Figure. 2.10. Sparsity patterns of the matrix A and its dense form for Mod-3

For Mod-3, the sparsity patterns of the matrix A and its dense form are shown in

figure 2.10. The dense formulation yields low sparsity for this large model.

We compute the controllability gramian and observability gramian by exact solver

and RKSM respectively. Figure 2.11 shows the convergence histories for both the

gramians and the convergence is very fast. After 60 iterations it goes to 10−11

which shows that RKSM gives a good approximate solution.
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Figure. 2.11. Convergence histories of RKSM for Mod-3.
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The singular values of the controllability and observability gramians depict in

same figure 2.12. It is very expensive to compute the exact gramian for Mod-3.

Computational time comparison for sparse and dense linear system are depicted

in the bar chart of figure 2.13.
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Figure. 2.13. Computational time for dense system and sparse system at differ-
ent iteration by RKSM (n = 21, 128)
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(a) Matrix E1 (b) Matrix A

Figure. 2.14. Sparsity patterns of the matrix E1 and the matrix A of thermo-
elastic system

2.4.3 Thermo-Elastic System

In matrix vector form, the coupled thermo-elastic system [48] can represent as[
E1 0

0 0

][
ẋa(t)

ẋb(t)

]
=

[
J1 0

J3 J4

][
xa(t)

xb(t)

]
+

[
B1

0

]
u(t)

y(t) =
[
C1 C2

] [xa(t)
xb(t)

]
.

(2.24)

where xa(t) ∈ R16626 and xb(t) ∈ R49878 are state vectors. The input matrix

B ∈ R20×66504 and the output matrix C ∈ R66504×27. The sparsity patterns of

matrix E and A are shown in figure 2.14 which shows low sparsity for the large

model.

Applying RKSM (algorithm 3), we compute the low rank solution of the Lyapunov

equations. After 70 iterations we get the low rank factor R ∈ R16626×726 for

controllability gramian and L ∈ R16626×429 for observability gramian.



Chapter 3

Application of Lyapunov

Equation for Model Order

Reduction

This chapter presents the model reduction of index-1 descriptor system. There

exist various model reduction techniques for standard state space systems such as

pade approximation, rational interpolation, balanced truncation, moment match-

ing approximation, modal truncation. Last few years, BT is used as a suitable

method for MOR. This method produces a reduced models with good global ac-

curacy. However, it requires the solution of two Lyapunov equations as well as

matrix factorization and products. Chapter 2 has been already discussed the low-

rank approximate solutions for large-scale continuous-time algebraic Lyapunov

equations.

A basic concepts of MOR have presented in the first section. Section 3.2 repre-

sents the MOR of index-1 descriptor system. Last section shows some numerical

examples that illustrate the application to model reduction.

3.1 Concepts of Model Order Reduction

The purpose of MOR is to replace a large model by a smaller one, which preserves

the essential properties of the original model. This smaller system must approxi-

mate the larger system, in a sense that the input-output behavior of this system

57
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is comparable to the original within a certain accuracy. Hence, it is desirable to

have a method which is automatic.

Originally, MOR was developed in the area of systems and control theory for

reducing the complexity of dynamical systems. Nowadays, MOR is a flourishing

field of research both in systems and control theory.

For convenience, consider the large-scale generalized LTI continuous time system

Σ :

{
Ex(t) = Ax(t) +Bu(t); x(t0) = x0, t ≥ t0

y(t) = Cx(t) +Du(t),
⇔ Σ :=

(
A|B
C|D

)
(3.1)

where E,A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p.

The LTI system (3.1) is widely used for simulation in different applications of

science and engineering such as signal processing, microelectronics, fluid dynamics,

control theory, multibody dynamics with constraints, electrical circuit simulations,

VLSI chip design or mechanical systems simulation. For studying complex physical

phenomena, it is easy to make direct numerical simulation. Then resulting system

converts to large dimension so it make difficulty to analyze the system. Hence,

there is a demand for smaller models that can describe large complex systems fairly.

These smaller system, called reduced order model, enable more cost efficient.

The main idea of MOR is based on projection technique. Let the trajectory of x

in (3.1) is contained in a low dimensional subspace U and V⊥ is a complementary

subspace of U . Let the column of U ∈ Rn×r form the basis of U and the column

of V ∈ Rn×r be the basis of the subspace V .

Then V TU = I and UV T is a projector, which projects x onto U along V ⊥. The

ROM is obtained by approximating x by its projector x ≈ UV Tx.

Replacing x with the approximation x ≈ Ux̂ =: x̃ so that

V T r = 0,

where r = E ˙̃x− Ax̃−Bu.

Therefore, one can replace the system (3.1) into the reduced-order model

Σ̂ :

{
Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
⇔ Σ̂ :=

(
Â|B̂
Ĉ|D̂

)
(3.2)
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where x̂(t) = V Tx(t) ∈ Rr, Ê = V TEU ∈ Rr×r, Â = V TAU ∈ Rr×r, B̂ = V TB ∈
Rr×p, Ĉ = CU ∈ Rq×r and D̂ = D ∈ Rq×p (r � n).

The number of inputs and outputs are same as for the original system and the

corresponding TFM is

Ĝ(s) = Ĉ(sÊ − Â)−1B̂ + D̂, (3.3)

which approximates the original TFM

G(s) = C(sE − A)−1B +D. (3.4)

The reduced model (3.2) should be satisfied some of the following requirements:

1. The approximation error must be small i.e., r � n, and the output error

‖y(t)− ŷ(t)‖ should be minimized for all inputs u(t) in an appropriate norm.

2. Physical or numerical properties of the original system such as stability and

passivity should be preserved during the MOR process.

3. The procedure should be computed a global error bound for the reduced

model.

4. The procedure must be computationally stable and efficient.

5. The reduced-order model should preserve the structure of the original model.

Applying Laplace transformation, the system (3.1) yields, Ŷ (s) = Ĝ(s)U(s) and

Y (s) = G(s)U(s).

Then the error bound of the reduced model can be represented as

‖Y − Ŷ ‖L2 = ‖GU − ĜU‖L2 ≤ ‖G− Ĝ‖H∞‖U‖L2 ,

where H∞ norm is defined as

‖G‖H∞ = sup
w∈R

σ|G(jw)|.

It is clear that ‖Y − Ŷ ‖H2 will be minimized if ‖G− Ĝ‖H∞ can be minimized.
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3.2 Model Order Reduction of Index-1 Descrip-

tor System

Balanced Truncation is one of the most commonly used model-reduction schemes.

The motivation of BT is that the HSVs are the invariant of the system. If a

system is balanced, the smallest HSVs can be easily separated from the gramians.

Therefore, one can truncate the smallest HSVs, i.e., the unimportant states from

the system which are difficult to observe, and to control, so that only important

information of the original system is retained in the reduced model.

To obtain a reduced order model as (3.2), one needs to perform the following steps:

Firstly, the controllability gramian P ∈ Rng×ng and the observability gramian

Q ∈ Rng×ng are computed by solving the Lyapunov equations

APET + EPAT = −BBT (3.5)

and ATQE + ETQA = −CTC, (3.6)

respectively. Since the gramian factors P and Q are symmetric and positive semi-

definite, so they have symmetric decomposition P ≈ RR∗ and Q ≈ LL∗, where R

and L are the Choleski factors.

Using the low-rank gramian factors R and L, compute the SVD of their product

as follows:

RTEL = UΣV T =
[
U1, U2

] [Σ1

Σ2

][
V T
1

V T
2

]
, (3.7)

where Σ = diag(σ1, σ2, . . . , σk, . . . σn) and σi > σi+1 ≥ 0, (i = 1, 2, . . . , n) are the

HSVs and Σ1 be the first k × k block.

Finally, construct left and right balancing and truncating transformations as

TL := RU1Σ
− 1

2
1 , TR := LV1Σ

− 1
2

1 . (3.8)

Applying transformations TL and TR, one can approximates the original system

Σ into lower k(� n) dimensional reduced order LTI system with the relations

Ê = T TLETR, Â = T TLATR, B̂ = T TLB, Ĉ = CTR.
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Algorithm 4: Balanced Truncation for generalized systems

input : System matrices E,A,B,C,Da; a tolerance τ for reduced-order model.
output: Matrices Ê, Â, B̂, Ĉ of stable reduced-order model.

1 Compute low-rank solution factors R, L of the system Gramians;
2 Compute and partition a (thin) SVD

svd(RTEL) =: UΣV T =
[
U1 U2

] [Σ1

Σ2

] [
V1 V2

]T
;

3 Construct TL := RU1Σ
− 1

2
1 and TR := LV1Σ

− 1
2

1 ;
4 Compute the reduced order model,

Ê := T TLE TR, Â := T TLATR, B̂ := T TLB, Ĉ := CTR and the error bound
δ = 2

∑n
i=k+1 σi ≤ τ ;

It can easily verified that T TL TR = I, hence BT is known as Petrov-Galerkin

projection method.

Preserving the k dominant HSVs by truncating the rest yields the ROM

Σ̂ :

{
Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t)
⇔ Σ̂ :=

(
Â|B̂
Ĉ|D̂

)
(3.9)

This model is stable with the HSVs σ1, σ2, . . . , σk. The above procedure is fruitful

if it satisfies the global error bound

‖G(.)− Ĝ(.)‖H∞ ≤ 2
n∑

i=k+1

σi, (3.10)

where G(s) and Ĝ(s) are called the transfer functions of the full and reduced model,

respectively, and ‖.‖H∞ denotes the H∞-norm. The relation (3.10) is indeed a

priori error bound. Hence, the reduced model can be automatically obtained by

choosing k according to the desired accuracy.

Given a error tolerance, one can easily truncate the required HSVs and determine

the reduced order model. That means for a given system, the method can generate

a best approximate system and preserves the stability of the original systems,

i.e., if the given system is stable, the method ensures a stable reduced system.

The algorithm is often referred to as the Square-Root (SR) method for balanced

truncation. The resulting algorithm is summarized in Algorithm 4.

The algorithm outlined above is applicable for a generalized system to find a

reduced order model. However, the idea is extended for a index-1 descriptor system
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Algorithm 5: Balanced Truncation for index-1 descriptor systems

Input : E1, E2, J1, J2, J3, J4, B1, B2, C1, C2, Da; a tolerance τ for reduced-order
model.

Output: Matrices Ê, Â, B̂, Ĉ, D̂ of the reduced system.
1 Compute low-rank solution factors R, L, by solving Lyapunov equations via

Algorithm 3;
2 L = E1L;
3 Compute and partition a (thin) singular value decomposition
4 UΣV T = svd(LTR);
5 Truncate after kth largest singular values and compute
6 U1 = U(:, 1 : k), Σ1 = Σ(:, 1 : k), and V1 = V (:, 1 : k);
7 Construct the transformation matrix TL and TR as follows:

TL := RU1Σ
− 1

2
1 and TR := LV1Σ

− 1
2

1 ;
8 Compute

Ê1 = T TLE1TR,

Ê2 = T TLE2,

Ĵ1 = T TL J1TR,

Ĵ2 = T TL J2,

Ĵ3 = J3TR,

B̂1 = T TLB1,

Ĉ1 = C1TR

;
9 Generate reduced order model

Ê = Ê1 − Ê2J
−1
4 Ĵ3,

Â = Ĵ1 − Ĵ2J−14 Ĵ3,

B̂ = [B̂1 − Ĵ2J−14 B2, Ê2J
−1
4 B2],

Ĉ = Ĉ1 − C2J
−1
4 Ĵ3,

D̂ = Da − C2J
−1
4 B2

as follows:

• step-1 : Applying RKSM (algorithm 3), we compute the controllability

Gramian P and the observability Gramian Q by solving the two Lyapunov equa-

tions (3.5) and (3.6), arises from the index-1 descriptor system. Then, compute

the Choleski decomposition P ≈ RR∗ and Q ≈ LL∗. The low rank approximation

of the gramians may be complex due to complex shifts. But, the Cholesky factors

should be real.
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• step-2 : Following Algorithm 4, compute the SVD, and then left transfor-

mation and right transformation.

• step-3 : Finally, construct the reduced order coefficient matrices, using these

transformation matrices.

Thus, by choosing an appropriate error tolerance, we can construct the ROM for

index-1 descriptor system. The resulting procedure is summarized in Algorithm

5.

3.3 Numerical Results

This section presents numerical results to illustrate the reliability of the proposed

model reduction methods for descriptor systems. We apply the method to several

selected test, introduced in Section 1.6 .

All of the following results were carried out using MATLAB (R2013b) on an Intel

Core i3@1.70 GHz clock, RAM 8GB with relative machine precision ε = 1.7×10−16.

3.3.1 Model Reduction of Artificial Data

According to Section 2.4, we consider an artificial model of order 10500 for index-

1 (semi-explicit) descriptor system. By eliminating the algebraic variables the

system has 10000 states and the system matrices become in dense formation.

We apply RKSM (algorithm 3) to solve Lyapunov equations. We get the low rank

gramian factor R ∈ C3078×315 for controllability gramian and L ∈ C3078×300 for ob-

servability gramian. And then applying BT the system reduces to 19 dimensional

reduced model.

Figure 3.1a shows the frequency response of the full system and its 19 order reduced

system. Both the systems have same largest singular values in frequency domain

10−4 to 104. The absolute errors and relative errors are shown in figure 3.1b and

figure 3.1c, respectively. The errors show better accuracy of RKSM.
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Figure. 3.1. The frequency responses of original system and 19 reduced-order
systems in frequency domain and its errors.

3.3.2 Model Reduction of Power System Data

In this section, we discuss the model reduction of power system models. Section 2.4

(in table 2.2) shows the summary of them. Since the numerical results of all data

sets are same, we only explain the results for largest model Mod-3.

Applying RKSM (Algorithm 3), we compute the low rank controllability and ob-

servability gramian factors for all the models by solving their respective Lyapunov
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Table. 3.1. Comparisons of original and reduced models for all data.

Model Dimension Error

Original Reduced Absolute Relative
Mod-1 7 135 72 2× 10−2 1.1× 10−3

Mod-2 9 735 70 9× 10−3 3× 10−3

Mod-3 21 128 70 3.4× 10−2 5.4× 10−2

equations. Then, the reduced models are computed for all data by BT method.

Table. 3.2. BT tolerances and dimensions of reduced model Mod-3.

Model Tolerance Dimension of ROM

10−4 143
10−3 118

Mod-3 10−2 94
10−1 70
100 48

The comparisons of original and reduced models are depicted in table 3.1 with

their absolute and relative deviations. The truncation tolerance for all data set

is considered by 10−1. However, the dimension of the ROM can be decreased or

increased by changing the tolerance if desired or required.

To compute the low rank controllability and observability gramian factors, we solve

two Lyapunov equations. We apply RKSM (algorithm 3) with shifted linear system

in sparse form. We get the solution of low rank gramian factor R ∈ C3078×315 for

controllability gramian and L ∈ C3078×300 for observability gramian. 6 proper shift

parameters are considered in each cycle.

For the initial shift, we compute the largest eigen value of the pair (−A,E), using

MATLAB eigs, which is 10778. Note that each shifted linear system (A − µiE)

is solved using a sparse direct solver (backslash in MATLAB). To compute R and

L the GRKSM is performed with normalized residual norm tolerance 10−13. The

computed gramians are applied to MOR (Algorithm 5) with BT tolerance 10−1.

Using the 70 HSVs, we are formed the transformation matrices TL ∈ C3078×70 and

TR ∈ C3078×70. Finally, we construct the reduced system of 70 order, by computing

the reduced system matrices.
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Figure. 3.2. Comparisons of Hankel singular values of original system and re-
duced system.

Table 3.2 shows the different ROM for Mod-3 by changing BT tolerance. For Mod-

3, figure 3.2 shows that the largest HSVs of 3078 state system and 70 order reduced

model are approximately same. In figure 3.3, one can observe that the reduced

system is asymptotically stable i.e., all the eigenvalues lie in the left complex half

plane and the eigenvalues are closed to the imaginary axis.
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Figure. 3.3. Eigenvalues of the original system and reduced model.
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Figure. 3.4. Errors between the original model, 70 and 55 dimensional reduced
systems computed by RKSM using the system Mod-3.

The comparisons of largest singular values for original model, 70 state and 55 state

reduced systems are shown in figure 3.4 in frequency domain over the frequency

(ω) range 10−4 to 104. Figure 3.4a shows the frequency responses of full system,

70 order and 55 order reduced systems. The absolute errors and the relative errors

of the frequency responses of full and reduced systems are depicted in figure 3.4b

and figure 3.4c, respectively, which shows that these are below to the truncation

tolerance 10−4. One can also compute lower dimensional ROMs if they are required

or desired. We see that the model below 55 dimension plays a little bit worse match

in high and low frequency.
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Figure. 3.5. Time domain responses for full system and reduced model, and
their absolute deviations.

For time response, we use an implicit Euler method with fixed time step size 10−2.

Figure 3.5a shows the step response from 1st input to 1st output in time domain

for the original system and 70 state reduced order models, respectively and the

absolute deviations are depicted in figure 3.5b. and the of the frequency responses

for the individual component of the transfer function.

On the other hand, frequency responses and their relative deviations are shown

in figure 3.6 for the individual component of the transfer function. For example

figure 3.6a shows the SISO relation (i.e.,1st input to 1st output) of original and
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Ĝ
(j
ω
))

σ
m
a
x
(G

(j
ω
))

(f) Relative errors

Figure. 3.6. Each rows shows the relation of 1st input to 1st output, 4th input to
1st output and 2nd input to 4th output between full and reduced order models

with respective relative errors.

70 order reduced model. The relative errors between original and reduced model

of the respective relation are also shown in the same figure.

From these figures we can notice that the generated ROM ensures good quality

and hence they can be used for controller design, simulation or optimization.
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3.3.3 Reduced Order Model for Mod-1 and Mod-2

The ROM for Mod-1 and Mod-2 are computed analogously. We only show major

results for these two models. Table 3.3 shows the different ROM for Mod-1 with

different tolerances. Similarly, the different ROM of Mod-2 are shown in table 3.4

with different tolerances.

Table. 3.3. BT tolerances and dimensions of reduced model Mod-1.

Model Tolerance Dimension of ROM

10−4 121
10−3 102

Mod-1 10−2 87
10−1 72
100 54

Table. 3.4. BT tolerances and dimensions of reduced model Mod-2.

Model Tolerance Dimension of ROM

10−4 136
10−3 111

Mod-2 10−2 89
10−1 70
100 48

3.3.4 Model Reduction of Thermo-Elastic System

In subsection 2.4.3 we have computed the low rank gramian factors of Thermo-

Elastic System. Applying BT method, we get 65 order reduce model. Figure 3.7a

shows the frequency responses of full system and 65 order reduced system. The

absolute errors and the relative errors of the frequency responses of original and

reduced system are depicted in figure 3.7b and figure 3.7c, respectively.
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Figure. 3.7. Frequency responses of original system and 65 reduced-order sys-
tems in frequency domain and its errors.

3.4 Comparison with LRCF-ADI

In this section, we briefly discuss the comparison of our proposed method with the

existing LRCF-ADI method. In [24], authors have discussed a balancing based

method for the model reduction of index-1 descriptor system. They have applied

the LRCF-ADI method to solve the Lyapunov equation. We know that LRCF-

ADI can only be applied to the asymptotically stable system. Note that the

power system models are an asymptotically unstable. To circumvent the problem,

authors used so called α-shift approach to stabilize the system. That is, the matrix

A is replaced by the shifted matrix Ã = A − αI, where I is an identity matrix
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Table. 3.5. Comparisons of SLRCF-ADI method and RKSM

Model SLRCF-ADI RKSM

Iterations ROM Iterations(P+Q) ROM
Mod-1 100 92 (35 + 35) 72
Mod-2 - - (40 + 40) 70
Mod-3 150 106 (60 + 60) 70
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Figure. 3.8. Comparisons between full model, 67 order ADI and 67 order RKSM.

and α be a positive real number. In the case of ROM, Â = T TL ÃTR + αI, where

I = T TL TR.

But, RKSM do not require to stabilize the system. In addition, we are used

efficient technique to compute the shift parameters for better convergence of the

RKSM. Table 3.5 shows that our proposed method is better than the LRCF-ADI.

To compare the RKSM with the LRCF-ADI method, we compute 67 dimensional

reduced model using the algorithm LRCF-ADI for Mod-1. The frequency re-

sponses of original system, 67-order system by RKSM and 67-order system by

LRCF-ADI are depicted in figure 3.8. This shows that the LRCF-ADI gives worst

match with the original model but in this case RKSM shows good accuracy.



Chapter 4

Conclusions and Future Work

4.1 Summary

Two important issues have been presented in this thesis. Krylov subspace based

projection technique has been discussed for the solution of Lyapunov equations in

Chapter 2. And in Chapter 3 the low rank solution has been applied for balancing

based model reduction .

A projection technique to compute the solution of Lyapunov equation has been

developed. The proposed algorithm has been applied for the large-scale index-

1 descriptor systems. The method was closely related to the well established

technique based for standard system. The idea for structured descriptor system

has been discussed in Chapter 2. It is observed that the technique is efficient for

highly sparse, large systems and also the computational cost is cheap. A recycling

technique has been implemented to produce the columns of the projection matrix.

A new shift computation strategy has been performed to construct rational Krylov

subspace. It was shown that this new version has been making a satisfactory to

compute rational Krylov subspace iteratively. A normalized residual technique is

used to stop the proposed methods.

On the other hand, the balancing based projection technique has been constructed

for model reduction of descriptor systems. But, the most expensive part of the

proposed MOR approach was to solve two Generalized Continuous-time Algebraic

Lyapunov Equations (GCALE). RKSM has been applied to find the low rank

solution of GCALE efficiently.

73
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Finally, the accuracy of the proposed method is discussed by Hankel singular

values, frequency responses and time domain responses for several test-systems. It

is observed that the proposed method produces a very good approximation of the

original system. A global error bound is also applied for the approximate system.

4.2 Future Work

The work may be extended for future research possibilities. This thesis opens

the path to a wide range of system and control theory. Some of them are rather

theoretic whereas others lie more in the range of computational scientific aspects.

The technique can be used to solve many problems as well as for higher index

DAEs. We have observed that the relative changes in the low-rank factors are

very slow for the supersonic inlet flow model and need to be investigated further.

In RKSM algorithm, at each iteration we used direct sparse solvers to solve the

linear system. Future research would be conducted to find the better way for the

solution of the linear systems. In this case we can exploit the shift computation

strategy.

In future research, this techniques would be used to solve the algebraic Riccati

equations. This work has unlocked some new aspects to stabilize the unstable

large-scale dynamical systems. But the fact of preserving the cyclic structure of

system matrices in the iteration is again the key issue that should be investigated.
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