
HIGH PRECISION COMPUTATION OF DECIMAL LOGARITHM

by-

Riaz-ul-Haque Mian

MASTER OF ENGINEERING

IN

INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
2017

 1

The project titled “High Precision Computation of Decimal Logarithms” submitted by Riaz-

ul-haque Mian, Roll No. 0411312027, and Session April-2011 has been accepted as

satisfactory in partial fulfillment of the requirement for the degree of Master of Engineering in

Information and Communication Technology (ICT) at 29/04/2017

BOARD OF EXAMINERS

 Chairman

1. Dr. Md. Liakot Ali

Professor

Institute of Information and Communication Technology

BUET, Dhaka-1000.

 Member

2. Dr. A. B. M. Harun-Ur-Rashid

Professor

Dept. of Electrical and Electronic Engineering

BUET, Dhaka-1000.

 Member

3. Dr. Md. Rubaiyat Hossain Mondal

Associate Professor

Institute of Information and Communication Technology

BUET, Dhaka-1000.

 2

Candidate’s Declaration

It is hereby declared that this project or any part of it has not been submitted elsewhere for the

award of any degree or diploma.

Riaz-ul-haque Mian

 3

Dedicated

to

My beloved son and his mother

 4

Contents

ACKNOWLEDGEMENT ... 8

ABSTRACT .. 9

CHAPTER 1 ... 10

Introduction .. 10

1.1 Introduction .. 10

1.2 Objectives ... 11

1.3 Organization of the Project .. 11

CHAPTER 2 ... 12

Decimal Logarithmic Technique .. 12

2.1 Introduction .. 12

2.3 Needs of Decimal Logarithm ... 14

2.4 Floating-Point Arithmetic .. 15

2.6 FPGA ... 15

2.5 Advantages of FPGAs .. 17

CHAPTER 3 ... 19

Design, Implementation and simulation of the Algorithm ... 19

3.1 Introduction .. 19

3.2 Functional Block Diagram ... 19

4. Precision Unit ... 22

3.3 Summary of Compiling Result .. 23

3.3 Pseudo-code with flowchart ... 23

3.4 Example Step by Step with Simulation .. 25

3.7 Simulation and FPGA Implementation .. 36

 5

Brief description of all tools and software are given bellow ... 36

3.7.1 Verilog HDL (Hardware Definition Language) .. 36

3.7.2 QuartusII Compiler ... 37

3.7.3 Modelsim Simulator .. 39

3.7.4 Simulation Mode ... 40

CHAPTER 4 ... 44

Results and Performance Analysis ... 44

4.1 Introduction .. 44

4.2 Summary of proposed algorithm design .. 44

4.3 Power Analysis .. 44

4.3 Hardware Comparisons .. 45

4.4 Speed and Accuracy ... 45

CHAPTER 5 .. 48

Conclusion ... 48

5.1 Conclusion ... 48

5.2 Suggestions for Further Works ... 48

REFERENCES .. 50

OUTCOME OF THE PROJECT ... 52

TABLE OF FIGURE

FIGURE 1 : A GRAPH OF THE COMMON LOGARITHM FUNCTION FOR POSITIVE REAL NUMBERS ... 13

FIGURE 2: BASIC HARDWARE BLOCK DIAGRAM .. 19

FIGURE 3 : PRECISION UNIT OPERATION .. 22

FIGURE 4 COMPILATION RESULT IN QUARTUS II ... 23

 6

FIGURE 5 : FLOWCHART FOR LOGARITHM CALCULATION .. 24

FIGURE 6 : CALCULATING LOG VALUE (SIMULATOR RESULT) STEP1 .. 27

FIGURE 7 : SIMULATOR RESULT IN STEP 2 .. 28

FIGURE 8 : SIMULATOR RESULT AT STEP 3 ... 29

FIGURE 9 : RESULT IN SIMULATOR (FINAL RESULT) WITH PRECISION 20 31

FIGURE 10 : RESULT OF ALGORITHM WITH PRECISION 20 .. 35

FIGURE 11 MODELSIM START WINDOW ... 41

FIGURE 12 : WINDOW FOR ADDING ITEMS .. 42

FIGURE 13 SELECTING LANGUAGE TYPE ... 42

FIGURE 14 : SELECTING TEST BENCH ... 43

FIGURE 15 : ADDING WAVE FOR RESULT .. 43

FIGURE 16: SIMULATION RESULT(QSIM) LOG10 (62.68) ... 46

FIGURE 17: RESULT OF LOG10(21) = 1.322221929 ... 46

LIST OF TABLE

TABLE 1: INPUT UNIT VARIABLE .. 20
TABLE 2: SUMMARY OF TOOLS .. 36
TABLE 3: (POWER COMPARISON) ... 45

TABLE 4: TABLE 1(HARDWARE COMPARISON) .. 45
TABLE 5: (ACCURACY ASSESSMENT) .. 46

 7

LIST OF ABBREVIATIONS OF TECHNICAL SYMBOLS AND TERMS

ASIC Application Specific Integrated Circuit

CLB Configurable Logic Block

DPA Differential Power Analysis

DSP Digital Signal Processor

e.g. For example

EDA Electronic Design Automation

Eq. Equation

FIPS Federal Information Processing Standards

FIPS PUB Federal Information Processing Standards Publications

FPGA Field Programmable Gate Array

FPL Field Programmable Logic

Gbps Giga bits per second

HDL Hardware Description Language

ISCAS International Symposium of Circuits And Systems

LAB Logic Array Block – a physically grouped set of logic cells

LC Logic Cell

LPM Library of Parameterized Module

LUT Look-Up Table

M4K Memory block of 4096 bits

M512 Memory block of 512 bits

M-RAM Mega RAM

NIST National Institute of Standards and Technology

PDA Personal Digital Assistant

PLD Programmable Logic Device

RAM Random Access Memory

ROM Read Only memory

VHDL Very High Speed Integrated Circuit Hardware Description Language

Word A group of 32 bits

javascript:showHelp('ms-its:reference.chm::/glossary/def_vhdl.htm%3e$global_glosspop')

 8

Acknowledgement

During the time I was performing my master’s project, I came across many people who have

supported and assisted me. First of all, I would like to thank the almighty Allah for giving me

the opportunity to conduct this project. I would like to express my heartiest thanks to my

supervisor, Professor Dr. Md. Liakot Ali, for giving me the opportunity to do my master’s

project under his supervision. I am also grateful to him for all his support, advice and

encouragement throughout this project.

I gratefully acknowledge the valuable advice and support from Professor and Director Dr. Md

Saiful Islam, and all other faculty members of IICT, BUET.

I also express my gratitude to Bangladesh University of Engineering and Technology for

allowing me to conduct the research project using its all kinds of facilities.

Finally, I want to thank all my friends and family members for their continuous support and

inspirations, making this work a nice experience.

 9

Abstract

This report presents the design of an efficient low power decimal logarithmic converter. The

technique is based on shift operation along with a precision unit which is used to prevent

unnecessary scan of full memory table. Precision level is user programmable. It does not

require multiplication or division circuitry which in turn makes it low power. Proposed

decimal logarithmic converter has been designed using Verilog HDL and then compiled and

simulated using Altera provided Quartus II compiler and Modelsim simulator. The synthesis

results show that the proposed design outperforms all the existing proposed decimal

logarithmic converters by other researchers.

The calculation is based on memory. Some predefined value and there log value are stored in

memory and by using that value we calculate the logarithm of any value. Another feature

which is called precision unit is used for controlling unnecessary scan of memory table.

According to input of precision value the algorithm calculates logarithm value. Thus by

increasing of precision value we can increase accuracy of the result.

This algorithm does not need multiplication circuitry and required very low memory thus it

makes the algorithm very low power.

Synthesis results show that the proposed technique costs 6002 logic element and consuming

power only 49.37mW. Although the logic element is little bit higher but the power is

extremely lower than those of proposed by other researchers. The logarithmic converter can

be used in many embedded applications where low power is a concern.

 10

Chapter 1
Introduction

1.1 Introduction

In all computer system, elementary functions like logarithm plays a vital role. It has many

applications, both within and outside mathematics. It is very useful in many applications such

as tax calculations, financial analysis, internet based applications etc. [1]. Because the

logarithmic function log(x) grows very slowly for large x, logarithmic scales are used to

compress large-scale scientific data [1-2]. Logarithms also occur in numerous scientific

formulas, such as the Tsiolkovsky rocket equation, the Fenske equation, or the Nernst

equation. It is due to the fact that there are many applications which needs direct computation

of decimal logarithm, such as measurement of PH, earthquake intensity, optical density in

spectrometry and optics, brightness of stars in astronomy, ratio of voltage and power (called

bel) in telecommunications, electronics and acoustics [1]. Researches have been conducted to

find radix-10 logarithmic converters where decimal input is first converted to binary and then

base-2 logarithm operations are performed and again results are converted back to decimal

radix [3]. It causes errors due to the back and forth conversations of the bases. To overcome

this problem, a lot of researches are going on for developing algorithms in various technique

[2-3] iterative technique, using multiplication [3-5], using lookup table [6-8]. Recently,

IEEE754-1985 binary standard has been revised to IEEE754-2008 standard where decimal

floating point operation is included because it is more human friendly [9]. There are some

other research regarding decimal multiplication [10-16] where multiplication approach is used

and thereby power consumption is very high.

In all proposed algorithm there is a common scope of improvement which is power

consumption. In every proposed algorithm either there is a power consuming multiplication

circuitry or there is large memory size which is also power consuming. Thus if we calculate

logarithm without large memory and/or multiplication circuit the power consumption will

automatically reduce. In proposed algorithm multiplication circuit is fully avoid and also use

very few memory which make the algorithm low power.

 11

The research was supposed to conduct for developing 64 bit high precision high decimal

logarithmic converter but during the course of this research it is already proposed by other

researcher which in turn necessitate another scope for computing decimal logarithm is

explored low power computation of decimal logarithm. It is because low power has emerged

as a principal theme in today’s electronics industry. The need for low power has caused a

major paradigm shift where power dissipation has become as important a consideration as

performance and area [17]. In the past, the major concerns of the ASIC designer were area,

performance, cost and reliability; power consideration was mostly of only secondary

importance. In recent years, however, this has begun to change and, increasingly, power is

being given comparable weight to area and speed considerations. [3][5][6][17]

1.2 Objectives
The aim of this project is to develop a low power decimal logarithmic converter. To fulfill this

aim, we have the following objectives:

• To develop an algorithm for computing base-10 logarithm where low power is a

concern

• To design the logarithmic converter using Verilog HDL

• To simulate design in FPGA environment

1.3 Organization of the Project
Chapter 1 of this report starts with the importance of elementary function followed by a brief

background of latest research work in this area.

Chapter 2 of this report describes the details of Decimal Logarithm and its needs, IEEE

Standards floating point number systems.

Chapter 3 of this report describes main Algorithm with Pseudo-code, flowchart and

Complete Example with simulation result it also describe Precision unit with example. All

other modules are also described in this chapter. Simulation using compiler (Quartus II) and

Simulator (ModelSim)of decimal logarithm technique step by step with proper example are

also describe in this chapter

Chapter 4 Describes results and performance analysis of proposed logarithmic converter with

various aspects.

Chapter 5 of this report describes conclusion and future work of the research.

 12

Chapter 2
Decimal Logarithmic Technique

2.1 Introduction

This chapter describes foundations and principles of decimal logarithm. The common

logarithm is the logarithm with base 10. It is also known as the decimal logarithm, named

after its base. The needs of decimal logarithm will be a part of this chapter. This chapter also

introduce with floating point number as proposed algorithm of calculating decimal logarithm

is design for floating point number. FPGA (Field-programmable gate array) and its

advantages will be also presented at end of this chapter.

2.2 Decimal logarithm

The common logarithm is the logarithm with base 10. It is also known as the decimal

logarithm, named after its base. The fractional part of a logarithm is usually written as a

decimal. The whole number part of a logarithm and its decimal part have been given separate

names because each plays a special part in relation to the number which the logarithm

represents. The whole number part of a logarithm is called the CHARACTERISTIC. This part

of the logarithm shows the position of the decimal point in the associated number. The

decimal part of a logarithm is called the MANTISSA.

For a particular sequence of digits making up a number, the mantissa of a common logarithm

is always the same regardless of the position of the decimal point in that number. For

example, log 5270 = 3.72181; the mantissa is 0.72181 and the characteristic is 3.

In mathematics, the common logarithm is the logarithm with base 10. It is also known the

decimal logarithm, named after its base, an English mathematician who pioneered its use, as

well as "standard logarithm". It is indicated by log10(x), or sometimes Log(x) with a capital L

[15].

 13

Figure 1 : A graph of the common logarithm function for positive real numbers

Figure 1shows the value of Log10(x) is slowly increases with the increased value of x. It

shows that if X =100i.e.102 then Log10(x) = Log10 (100) = 2. Similarly if x= 10000000 i.e.

107then Log10(x) = Log10(10000000) = 7thus it is clear from logarithm scale that it can use to

compress large-scale scientific data .

An important property of base-10 logarithm which makes it so useful in calculation is that the

logarithms of numbers greater than one which differ by a factor of a power of ten all have the

same fractional part. The fractional part is known as the mantissa. The integer part, called the

characteristic, can be computed by simply counting how many places the decimal point must

be moved so that it is just to the right of the first significant digit. For example, the logarithm

of 120 is given by:

log10 120 = log10(10 ² ∗ 1.2) = 2 + log10 1.2 ≈ 2 + .07928

The last number (0.07918)—the fractional part or the mantissa of the common logarithm of

120. The location of the decimal point in 120 tells us that the integer part of the common

logarithm of 120, the characteristic, is 2.

Numbers greater than 0 and less than 1 have negative logarithms. For example,

log10. 120 = log10(10 − ² ∗ 1.2) = −2 + log10 1.2 ≈ −2 + .07928

An important feature of logarithms is that they reduce multiplication to addition, by the
formula:

 14

That is, the logarithm of the product of two numbers is the sum of the logarithms of those

numbers.

Similarly, logarithms reduce division to subtraction by the formula:

2.3 Needs of Decimal Logarithm

Decimal Logarithm plays a vital role in finance and astronomy. Logarithms are used in

measuring many physical quantities. The scale that is used to measure earthquakes, the

Richter scale, involves a logarithm. Likewise the scale that is used to measure the loudness of

sound in decibels involves a logarithm. They are often used in studying population growth

and radioactive decay. Logarithms also arise in some financial calculations, for example those

involving interest rates. Logarithms are useful in solving equations in which exponents are

unknown. They have simple derivatives, so they are often used in the solution of integrals. In

hyperbolic geometry the logarithm is used in measuring the distances between points

To convert multiplications to additions, Logarithms can be useful. For example, calculating

loan with continuous interest and calculating how long it will take to pay it back, you need to

use logarithms.

Anything with exponential growth, like biologists studying populations, physicists studying

nuclear reactions, chemists studying chain reactions; or a banker calculating how long it will

take for investments to reach certain levels at given interest rates, its need to use logarithms.

In physiology looking at how the eye reacts to light or the ear to sound, both are so-called

"logarithmic devices", i.e., if someone double the light or the sound, the reaction of the eye or

ear is to signal not a double strength, but rather an increase by a fixed step. That way anyone

can see light or hear sound in a huge range without having a complex signaling system.

 15

Electrical engineers use logarithms to work on signal decay. Computer scientists looking at

how fast programs run with respect to the size of the inputs use logarithms often. For

example, most good sorting programs take time proportional to n*log(n) to sort a list of n

items.

2.4 Floating-Point Arithmetic

IEEE Standard for Floating-Point Arithmetic (IEEE 754) is the most widely-used standard for

floating-point computation, and is followed by many hardware (CPU- Central Processing

Units and FPU- floating point unit) and software implementations. Many computer languages

allow or require that some or all arithmetic be carried out using IEEE 754 formats and

operations. The current version is IEEE 754-2008, which was published in August 2008; it

includes nearly all of the original IEEE 754-1985 (which was published in 1985) and the

IEEE Standard for Radix-Independent Floating-Point Arithmetic (IEEE 854-1987).

 For example in Bangladeshi currency 100 paisa makes one taka thus the presentation of Taka

in number is fixed point like 2.50 means 2 taka 50 paisa. Here position of decimal point is

fixed and always after two digit form right side which is known as fixed point number. One

the other hand pi = 3.14159265... e = 2.71828 which are real number where position of

decimal point is not fixed form its right most position, Computer arithmetic that supports

such numbers is called Floating Point.

A detail section regarding floating point standard and arithmetic has been discussed in

annexure 4.

2.6 FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

the customer or designer after manufacturing—hence "field-programmable". The FPGA

configuration is generally specified using a hardware description language (HDL), similar to

that used for an application-specific integrated circuit (ASIC). FPGAs can be used to

implement any logical function that an ASIC could perform. The ability to update the

functionality after shipping, partial re-configuration of the portion of the design and the low

non-recurring engineering costs relative to an ASIC offer advantages for many applications.

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Partial_re-configuration

 16

FPGAs contain programmable logic components called "logic blocks", and a hierarchy of

reconfigurable interconnects that allow the blocks to be "wired together"—somewhat like a

one-chip programmable breadboard. Logic blocks can be configured to perform complex

combinational functions, or merely simple logic gates like ANDandXOR. In most FPGAs, the

logic blocks also include memory elements, which may be simple flip-flops or more complete

blocks of memory.

FPGA is a semiconductor device containing programmable logic components and

programmable interconnects. It contains up to thousands of gates. The programmable logic

components can be programmed to duplicate the functionality of basic logic gates such as

AND, OR, XOR, NOT or more complex combinational functions such as decoders or simple

math functions. In most FPGAs, these programmable logic components (or logic blocks, in

FPGA parlance) also include memory elements, which may be simple flip-flops or more

complete blocks of memories. These logic blocks and interconnects can be programmed after

the manufacturing process by the customer/designer (hence the term "field programmable",

i.e. programmable in the field) so that the FPGA can perform whatever logical function is

needed.

There are various vendor manufacturers for different types of FPGA chip such as Altera,

Xilinx, Lattice Semiconductor, Actel, Quick Logic, Cypress Semiconductor, Atmel,

Achronix Semiconductor etc. Among them Altera and Xilinx are the most famous FPGA

companies since both of the companies have lot of varieties of FPGA device from small

number of gate counts to higher number of gate counts. However Altera devices offer the

general benefits of PLDs as innovative architectures, advanced process technologies, state-of-

the-art development tools, and a wide selection of mega function. The common advantages of

Altera devices include: High performance, High-density logic integration, Cost-effectiveness,

Short development cycles with the Quartus II software, Mega Core functions, Benefits of in-

system programming. In this work the FPGA device used is Altera provided EP2C35F672C6

from Cyclone II family.

http://en.wikipedia.org/wiki/Programmable_logic_device
http://en.wikipedia.org/wiki/Breadboard
http://en.wikipedia.org/wiki/Combinational_logic
http://en.wikipedia.org/wiki/Logic_gate
http://en.wikipedia.org/wiki/AND_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
http://en.wikipedia.org/wiki/Altera
http://en.wikipedia.org/wiki/Xilinx
http://en.wikipedia.org/wiki/Lattice_Semiconductor
http://www.actel.com/
http://www.quicklogic.com/
http://en.wikipedia.org/wiki/Cypress_Semiconductor
http://en.wikipedia.org/wiki/Atmel
http://www.achronix.com/

 17

2.5 Advantages of FPGAs

The main advantage is everything is programmable in FPGA. Here we collect 20 top

advantages form various source form internet (books and website) including Altera website.

1. It is possible to customize the process fully without wasting the resources as what we

do in controllers; also that FPGA has ability to carry out very big and complex

process.

2. FPGA is a customized IC. It can implement most digital logic. BUT CPU perform an

operation by instructions. FPGA is more powerful. For instance, you can implement a

PCI bridge by FPGA . CPU cannot.

3. FPGA is excellent to implement the glue logic of the system of different chips. It

really glues all of them together.

4. FPGAs can be very powerful, much more powerful than any microcontroller.

5. The real advantage of FPGA's are the ease of prototyping, time to market and no NRE

and Low volume to use.

6. A micro-controller won't have enough processing power in most tele-com

applications, especially the data path. In those applications, one needs direct hardwired

logic to process the packets. The only choices are FPGA or ASIC

7. It is reconfigurable and strongly flexible. The limitation of microcontroller is not

existed.

8. It is possible to make a processor a special purpose processor not a general purpose

processor. Also it can operate at very high clock speeds than to controllers.

9. It is not necessary to think about layout design, it is enough to repair the code only.

10. It is a matter of time: when the micro is not fast enough, we have to go with hardware.

ie super-fast filtering, sub-microsecond timing, fast counters, video signals. And here

comes the FPGA's: hardware that we can configure to do exactly what we need.

11. FPGA can be field programmed. But if the power is turn off, the logic will be lost. If

we need change some logic in our product we can easily change it.

12. We can work with micro's in any applications, it is true. But mcu cannot meet to

everything. Many field need high speed parallel processing.

13. The project on high speed communication protocol can't be implemented only using

 18

microcontroller. In such case, FPGA and ASIC are needed.

14. FPGA is parallel processing. So it is widely used in high-speed and real-time

processing field. That means speed can be very fast, and multiple control loops can

run on a single FPGA device at different rates.

15. Speed. Parallel operations. Flexibility. Those are just several of many advantages.

16. FPGA design tools are increasingly available, allowing embedded control system

designers to more quickly create and adapt FPGA hardware.

17. Because the processing paths are parallel, different operations do not have to compete

for the same processing resources.

18. The configurability of FPGAs can provide designers with almost limitless flexibility.

19. In manufacturing and automation contexts, FPGAs are well-suited for use in robotics

and machine tool applications, as well as for fan, pump, compressor and conveyor

control.

20. Unlike processors, FPGAs use dedicated hardware for processing logic and do not

have an operating system.

 19

Chapter 3
Design, Implementation and simulation of the Algorithm

3.1 Introduction

In previous chapter the brief description of the logarithm technique is provided. In this

chapter, design procedure of the proposed technique for calculating Decimal Log value will

be described. Functional block diagram, detail discussion of each individual module with a

flowchart and complete mathematical example will also be described in this chapter. Finally

complete simulation process using various tools with proper examples and discussion

regarding various tools with their using procedure will also describe at the end of the chapter.

3.2 Functional Block Diagram

A functional block diagram of decimal logarithmic converter is shown in figure 2. The main

module is controller which is responsible for all arithmetic calculation. It picks necessary

value from memory. Control unit maintains user defined precision level during scanning of

memory table for calculating logarithm value. Control unit is also responsible for managing

input/output and does necessary shift and counting operation.

Figure 2: Basic Functional Block Diagram

Input

Counter
Operator

Controller

Memory (lookup)

Output

Shift
Operator

Precision unit

 20

Short description of each individual module is given bellow:

1. Input Module

The main task of this module is storing user provided value into memory. This unit contains

three registers. One is for which value we want to calculate logarithm, as we calculate floating

point number we must have to have a decimal point locator and another is precision value.

The name and size of register is shown in bellow table:

Table 1: Input Unit Variable

SL Name Type Size (bit)
1 Data input [31:0]

2 D_Point input [4:0]

3 Precision input [4:0]

2. Shift Operator Module

This operator is used for multiplication and division operation. In this algorithm we avoid

multiplication and do all multiplication operation by shift operation. To know how we

perform multiplication and division operation by using shift operation consider the bellow

example :

0000111 = 7 in decimal. Now implement <<1 (i.e. left shift by 1digit) the digit became

0001110 = 14 now if we again do <<2 (i.e. left shift by 2 digit) then the digit become

0011100 = 7*22 = 28 now similarly once again if we do <<2 (i.e. left shift by 2 digit) the

binary number became 0111000 = 7*2*2*2 = 28*2 = 56

Now it is clear that we can do any multiplication with number 2,4,16,256 etc. by shift

operation .

Now consider reversely

0111000= 56 in decimal now implement >>2 (i.e. right shift by 2digit) then it became

0001110 = (56/22) =14 = 0001110 again if we right shift by 1digit then it became

0001110>>1 = 0000111= 14/2 = 7. This is the way to avoid multiplication and division

operation through shift operation

 21

3. Memory Module

Most important unit that basically stores 32 bit predefined logarithm value by using which we

can calculate any log value. It it’s a register array of 32 bit. Each array element contains a log

value. A sample of the memory unit is shown by the table 2 bellow

Table: 2 Memory Table of logarithm value

K 65536 256 16 4 2 3/2 5/4 9/8 17/16

Log10(K) 4.81647993 2.4082 1.2041 .6020 .30102 0.1760 0.0969 0.0511 0.0263

We stored in memory table at binary format. Consider log10(2) =

0.30102999566398119521373889472449. If we take first 10 digit then the digit became

log10(2) = 0.3010299957 here we make last digit 7 as because of the immediately right digit

after 10th digit is higher than 5. Now if we convert the digit to binary we get 1011 0011 0110

1101 1000 1000 0011 0101 in memory. This is the way we store log value in memory.

 22

4. Precision Unit

This strategy makes system computation faster. We make a precision unit for avoiding

unnecessary scan of all memory Array. Detail discussions with example of precision unit are

shown in section 3.6. Precision unit compare user provided precision value with zero and

maintains down counter. After each iteration the precision value is decreased by one. Once

the value is equal to zero, we stop fetching memory table from start to end thus we did not

require scan all lookup table. Figure 3 bellow shows the precision unit flow diagram.

Figure 3 : Precision Unit Operation

5. Controller Module

Main module that basically connects with all other units/modules is Controller module. Like

CPU control module takes value form input and calculate logarithm value using other

modules and finally sends result in output module.

1

2

3

4

.

.
 L

Compare
with
Precision

Memory Array

1ST
Value

LastVa
lue

Is Zero?

Stop Scan Memory and
pass the result

X<= X-
1

Yes

No

 23

6. Counter Module

This module is used by precision unit. The main component of the module is a down counter.
When user put precision value through input unit it reduces the precision value by 1 at each
iteration. Once the value becomes zero it stopped the iteration and the result is passed through
output.

3.3 Summary of Compiling Result

The overall project design, developed and compile in Altera provided Quarts II compiler and

using EP2C20F484C7 device from Cyclone II family. After compiling successfully the

compilation result is shown in figure 4

Figure 4 Compilation Result in QUARTUS II

3.4 Pseudo-code with flowchart

In this algorithm we focus high speed and low power. Accuracy depends on precision unit. It

can be increased as expected. Precision unit prevents unnecessary scan to Memory. This

algorithm is perfect where power, time and hardware cost is essential rather precision.

 24

Table 3: Memory table (Predefine K value &log10(K) value which is used for calculation)

Flowchart
The pseudo-code of the proposed algorithm is summarized below and

illustrated in Fig. 5

1. Read input of decimal number, decimal point position of that
number and precision level from user.

2. Initialize X, DP, Y and Precision register. X, DP = Input given by
user; Y= 0; Precision = value assign by user.

3. The algorithm generates a sequence of values for X and Y.
Condition

i) For first time, as all the K values in the memory
are greater than 1. [K value is predefine log value
of some number which is used to calculate log
value see memory table above see Table 3]

ii) We will have to start with X less than 1, Thus we
need a value of K which immediately larger then
X

iii) Begin to multiply X by 1/K which we called
(Kmax) and, to maintain the function, keeping
log(Kmax)= (predefine stored value in memory)
to Y. This is only for initial X and Y register
assign value for calculation.

4. The algorithm now check the maximum value of K which is called
Kpx. Kpx is the biggest K we can multiply by X and the result is
below 1 (keeping X<1).

5. Once we get the value of X using Kpx now we need to fix
corresponding Y value form the memory by Y= Y-log(Kpx). The
value of K and corresponding log(K) is already stored in memory if
we know the value of K we can easily extract the value of log(K) thus
we can calculate the Y value by using Y=Y-log(K).

6. Each iteration Precision unit decreases the value by one. This
process is preventing further scanning memory table.

7. Compare the value of precision with 0 if it is equal to zero the
result is Y otherwise step 4, 5 and 6 will repeat until the value of
precision unit zero. End

Figure 5 : Flowchart for logarithm calculation

K 65536 256 16 4 2 3/2 5/4 9/8 17/16

Log10(K) 4.81647993 2.4082 1.2041 .6020 .30102 0.1760 0.0969 0.0511 0.0263

Precisio
n = 0 ?

No

Input

X <=X÷Kmax
Y <= log (Kmax)

X <= X*Kpx
Y <= Y-log(Kpx)

X <= X*Kpx
Y <= Y- log (Kpx)
Precision = Precision-1;

Y=
Result

Yes

X, DP <=input
Y <= 0 ,
Precision <= Value

 25

3.5 Example Step by Step with Simulation

In the proposed algorithm logarithm calculation follows three basic steps.

1. Input the decimal floating point number and precision level.

2. Iterative calculation according to algorithm up to precision level

3. Output the result of decimal logarithm

Let’s explore the algorithm with a very easy example, First we store decimal logarithm value

of some standard number starting from 65536 and corresponding log value like table 4 below:

Table 4: Memory table (Predefine K value & log10 (K) value which is used for calculation)

K 65536 256 16 4 2 3/2 5/4 9/8 17/16 33/32 .

Log10(K) 4.8164799 2.4082 1.204 .602 .30102 0.1760 0.0969 0.0511 0.0263 0.0133 .

The value 65536 is square of 256 and also 256 is square of 16 similarly 16 is square of 4 and

4 is square of 2. We can start with value form 4,294,967,296 which is square of 65536 in

calculation , that case we can calculate logarithm value of any number which is smaller than

4,294,967,296 so the range it is dependable. If we start form 65536 then we can calculate any

log value which is smaller than 65536.

Now we calculate Y= log(X) and to explore the example consider the value of X=123 then

the algorithm technique generates a sequence of values for X and Y.

Initial value according to algorithm is as follows:

Name of Register Value Comment

X (Input) 123 We wants to calculate the log10(123)

DP(Decimal point) NA As we calculate integer value we does not require

decimal point location

Y(result) 0 Initially result is assign to zero

P (Precision value) 3 This value is set by user for accuracy level

 26

All the stored K values in the memory table are greater than 1 (see table 4) bellow. We will
have to start with X less than 1, so we begin to divide X by 256 and, to maintain the function,
put the log10(256) = 2.4082 to Y; this is really just a scaling of the input and an initialization

of Y.

Table 4: Memory table (Predefine K value & log10 (K) value which is used for calculation)
K 65536 256 16 4 2 3/2 5/4 9/8 17/16 33/32

Log10(K) 4.81647993 2.4082 1.2041 .6020 .30102 0.1760 0.0969 0.0511 0.0263 0.0133

After this preparatory step the value of all register is as follows in table 5

Table 5: After first step (division) the register value

Name of Register Value Comment

X (input) 123/256 = .4805 The immediate higher value of 123 in

memory table is 256. According to

algorithm we need to divide by 256

DP(decimal point) NA As we calculate integer value we does

not require decimal point location

Y(result) Log(256) = 2.4082 We assign Y = log10(k) where k = 256

and log (256) = 2.4082

P (precision value) 3 This value is remain same as iterative

calculation is not start yet

Here note that the input 123 is smaller than both 65536 and 256, as 123 is nearest smaller than

256 thus according to algorithm we need to divide by 256.

In this state if we simulate, the following output (figure 6) will show according to algorithm

logic

 27

Figure 6 : Calculating log value (simulator result) step1

Step 2: Algorithm now start iterative calculation with multiplication. Now X=0.4805, the

maximum K we can multiply by X is 2 (keeping X<1) if we multiply with next bigger number

which is 4 then the value of X (0.4805) is become 0.4805 *4 = 1.922 which is greater than 1

, in case of 16 also the value of X will be greater than 1 thus we need to select 2 from

memory table for multiply and then the value of X will 0.4805 *2 = .961 then we will

calculate Y by to subtracting Log value of K with Y . Here log value of K i.e. 2 is 0.3010

need to subtract form Y. In this way 16 and 4 are not use in memory table which is yellow

background color and strikethrough. Now the new value of X became 0.961 and Y will

2.4082-0.3010 = 2.1672.

In this step we decrease precision value by 1 which is provide by user and say it is 3 then in

this stage precision value will 2.

Table 4: Memory table (Predefine K value & log10 (K) value which is used for calculation)
K 65536 256 16 4 2 3/2 5/4 9/8 17/16 33/32

Log10(K) 4.81647993 2.4082 1.2041 .6020 .30102 0.1760 0.0969 0.0511 0.0263 0.0133

Summary of calculation is shown in bellow table 6

Table 6: After second step (multiplication) the register value

Name of Register Value Comment

X (input) 1. 123/256 = .4805

2. .4805 * 2 = .961

The highest value of K that we can

multiply with X by keeping result

bellow one is 2

DP(decimal point) NA As we calculate integer value we does

not require decimal point location

Y(result) 1. Log(256) = 2.4082

2. 2.4082 – log(2) = 2.4082 -

0.3010 = 2.1672

We assign Y = Y- log10(k) where k = 2

and log10(2) = . 3010

P (precision value) 3-1 = 2 The value of precision will reduce by 1

 28

 In this state simulator result show as follows in figure 7

Figure 7 : Simulator result in step 2

Step 3: Step 3 is repetitive step of 2. Similarly as step 2 by keeping X value bellow 1 the

biggest K in memory is 33/32 then the value of X= .961 *33/32=0.9916 and Y = 2.1672-

.0133=2.0931. Precision unit again decrease precision value by 1 and it will 2-1 = 1.

Table 4: Memory table (Predefine K value & log10 (K) value which is used for calculation)
K 65536 256 16 4 2 3/2 5/4 9/8 17/16 33/32

Log10(K) 4.81647993 2.4082 1.2041 .6020 .30102 0.1760 0.0969 0.0511 0.0263 0.0133

Summary of calculation is shown in bellow table 7

Table 7: After third step (multiplication) the register value

Name of Register Value Comment

X (input) 1. 123/256 = .4805

2. .4805 * 2 = .961

3. .961 *33/32=0.9916

The highest value of K that we can

multiply with X by keeping result

bellow one is 33/32

DP(decimal point) NA As we calculate integer value we does

not require decimal point location

Y(result) 1. Log(256) = 2.4082

2. 2.4082 – log(2) = 2.4082

- 0.3010 = 2.1672

3. 2.1672 – log (33/32) =

.996 - -.0133 =2.0931

We assign Y = Y- log10(k) where k =

33/32

P (precision value) 2-1 = 1 The value of precision will reduce by 1

 29

In this stage simulator result is as follows:

Figure 8 : simulator result at step 3

Step 4: We will continue until precision value became zero. To do that by keeping X value

bellow 1 we can multiply X by (128/127) and then the value of X will (.9925) and also Y=

2.0904 and the value of precision unit is now 0. Thus the result is 2.0904 which can also

make more accurate by running the loop more by increasing precision value more than 3.

Now although the memory table may have 100 or more number of K value but as precision

unit stop iteration and we will get the result only after 4 steps. By this way the system works

very faster in low precision.

 30

Table 4: Memory table (Predefine K value & log10 (K) value which is used for calculation)
K 6553

6

256 16 4 2 3/2 5/4 9/8 17/1

6

33/3

2

65/

64

128/12

7

Log10(K

)

4.816

47

2.408

2

1.20

41

.602

0

.30

1

0.1760 0.096

9

0.05

11

0.026

3
0.013

3

.006

733

.0034

Summary of calculation is shown in bellow table 8

Table 8: After forth step (multiplication) the register value

Name of Register Value Comment

X (input) 1. 123/256 = .4805

2. .4805 * 2 = .961

3. .961 *33/32=0.9916

4. .9916 * 128/127

The highest value of K that we can

multiply with X by keeping result

bellow one is128/127

DP(decimal point) NA As we calculate integer value we does

not require decimal point location

Y(result) 1. Log(256) = 2.4082

2. 2.4082 – log(2) = 2.4082

- 0.3010 = 2.1672

3. 2.1672 – log (33/32) =

2.1672 -.0133 =2.0931

4. 2.0931 – log (128/127) =

2. 2.0931 - .0034 = 2.0904

We assign Y = Y- log10(k) where k =

128/127

P (precision value) 1-1 = 0 The value of precision will reduce by 1

Similarly as we increase the precision value results will more accurate bellow is the result

with precision value 20 which is accurate:

 31

Figure 9 : Result in simulator (final result) with precision 20

3.6 Example Precision Unit

To understand the activity of the precision unit module here we explore another example.

Let we calculate log10(999.99) using proposed algorithm .

LogValue = 999999

Decimal Point in log value = 2

Precision is = 3, 4, 5 (to make the example understandable here we consider very low value of

precision)

We calculate

a. Log OUT =?

b. Decimal Point in LogOUT value =?

We calculate the value of log with three precision levels 3, 4, and 5

For first value test bench is as follows

module sim;
 reg [31:0] Data;
 reg [4:0] D_Point,precision;
 wire [31:0] Log10_Out;
 wire [4:0] C_out;

Log10Function a1(Data, D_Point,precision, Log10_Out, C_out);
initial
begin
 Data = 32'd999999;
D_Point = 5'd2;
precision = 5'd3;

end
endmodule

 32

According to our algorithm first we calculate 9999.99/65536 and the result is 0.15259 now

the value of X, Y and P is as follows

X= 0.15259

Y = 4.81647993 [log10(65536) =4.81647993]

And precision value is 3

Now we calculate logarithm and according to algorithm we update the X, Y, Precision

register value

So

KPX = 4 because highest value of memory by which we can multiply by keeping X bellow 1 is

4

X= X* KPX = .15259*4 = .61036

Y = Y- Log10(KPX) = 4.81648-.6020 = 4.21448

P = 2 (reduce by one is each cycle)

Now again we calculate logarithm and according to algorithm we update the X, Y, Precision

register value

So

KPX = 2 because highest value of memory by which we can multiply by keeping X bellow 1 is

2

X= X* KPX = .15259*2 = .61036

Y = Y- Log10(KPX) = 4.211448 -.3010 = 3.91342

P = 1 (reduce by one is each cycle)

Now again we calculate logarithm and according to algorithm we update the X,Y, Precision

register value

So

KPX = 17/16 = 1.0625 because highest value of memory by which we can multiply by keeping

X bellow 1 is 1.0625

X= X* KPX = .15259*1.0625 = .972761

Y = Y- Log10(KPX) = .91342 -.0263 = 3.8871

P = 0 (reduce by one is each cycle)

 33

Now for precision 3 the answer is log10(9999.99) = 3.8871 which is close to actual answer

3.9999 again we calculate by considering precision level value is 4

According to our algorithm first we calculate 9999.99/65536 and the result is 0.15259 now

the value of X Y and P is as follows

X= 0.15259

Y = 4.81647993 [log10(65536) =4.81647993]

And precision value is 4

Now we calculate logarithm and according to algorithm we update the X, Y, Precision

register value

So

KPX = 4 because highest value of memory by which we can multiply by keeping X bellow 1 is

4

X= X* KPX = .15259*4 = .61036

Y = Y- Log10(KPX) = 4.81648-.6020 = 4.21448

P = 3 (reduce by one is each cycle)

Now again we calculate logarithm and according to algorithm we update the X,Y, Precision

register value

So

KPX = 2 because highest value of memory by which we can multiply by keeping X bellow 1 is

2

X= X* KPX = .15259*2 = .61036

Y = Y- Log10(KPX) = 4.211448 -.3010 = 3.91342

P = 2 (reduce by one is each cycle)

 34

Now again we calculate logarithm and according to algorithm we update the X,Y, Precision

register value

So

KPX = 17/16 = 1.0625 because highest value of memory by which we can multiply by keeping

X bellow 1 is 1.0625

X= X* KPX = .15259*1.0625 = .972761

Y = Y- Log10(KPX) = 3.91342-.0263 = 3.8871

P = 1 (reduce by one is each cycle)

Now again we calculate logarithm and according to algorithm we update the X,Y, Precision

register value

So

KPX = 65/64 = 1.0625 because highest value of memory by which we can multiply by keeping

X bellow 1 is 1.01562

X= X* KPX = .972761*1.01562= .9887959

Y = Y- Log10(KPX) = 3.8871-.0069 = 3.9065

P = 0 (reduce by one is each cycle)

Now for precision 4 the answer is log10(9999.99) = 3.9065 which is more accurate then

precision level 3 i.e. (3.8871) close to actual answer 3.9999 again we calculate by considering

precision level value is 4

Again if we compute against precision level 5 the last step will as follows

KPX = 129/128 = 1.007815 because highest value of memory by which we can multiply by

keeping X bellow 1 is 1.00781

X= X* KPX = .972761*1.01562= .99652

Y = Y- Log10(KPX) = 3.9065-.0.0034 = 3.9065

P = 0 (reduce by one is each cycle)

Simulation result after putting precision value 20

 35

Figure 10 : Result of Algorithm with precision 20

 36

3.7 Simulation and FPGA Implementation

To compile, simulate and implement the algorithm we use various tools are summarized as

follows in table 2:

SL Name/Type Example

1 Programming HDL language Verilog

2 Compiler Quartus II 12.0sp2 Web Edition (32-Bit)

3 Simulator ModelSim-Altera 10.1b (Quartus II 12.1)

4 Device Cyclone II

5 FPGA EP2C35F672C6

Table 2: Summary of tools

Brief description of all tools and software are given bellow

3.7.1 Verilog HDL (Hardware Definition Language)

In the earlier, the conventional approach such as hand-draw and schematic based design

technique was the only choice to the designer to design a digital system. But now millions of

transistors are being integrated on a single chip integrated circuit (IC) where the conventional

design technique is insufficient to be used. It points towards having a new approach for

designing today’s complex digital system and that is hardware description language (HDL).

HDL based design technique has been emerged as the most efficient solution. It offers the

following advantages over conventional based design approaches.

 It is technology independent. If a particular IC fabrication process becomes outdated,

it is possible to synthesize a new level design by only changing the technology file but

using the same HDL code.

 HDL shortens the design cycle of a chip by efficiently describing and simulating the

behavior of the chip. A complex circuit can be designed using a few lines of HDL

code.

 It lowers the cost of design of an IC.

 It improves design quality of a chip. Area and timing of the chip can be optimized and

analyzed in different stages of design.

 37

There are different types of HDL available in the market. Some of these are vendor dependent

where the HDL code is only useable under the software provided by the specific vendor. For

example, Altera hardware description language (AHDL) from Altera company, Lola (Logic

Language) from European Silicon Structure (ES2) company etc. However Verilog and VHDL

(very high speed IC hardware description language) are the two vendor independent HDL

which are now widely accepted industry standard electronic design automation (EDA) tool for

designing digital system. Verilog HDL is introduced by Cadence Data Systems, Inc. and later

its control is transferred to a consortium of companies and universities known as open Verilog

international (OVI) whereas VHDL is used primarily by defense contractors. Currently

Verilog is widely used by IC designers. Verilog HDL is IEEE standard and easier than

VHDL. It is less error prone. It has many pre-defined features very specific to IC design. For

this reason Verilog is chosen to design and implement of the proposed system.

3.7.2QuartusII Compiler

Altera Quartus II is programmable logic device design software produced by Altera. Quartus

II enables analysis and synthesis of HDL designs, which enables the developer to compile

their designs, perform timing analysis, examine RTL diagrams, simulate a design's reaction to

different stimuli, and configure the target device with the programmer. Quartus includes an

implementation of VHDL and Verilog for hardware description, visual editing of logic

circuits, and vector waveform simulation.

Features
Quartus II software features include:

SOPC Builder, a tool in Quartus II software that eliminates manual system integration tasks

by automatically generating interconnect logic and creating a testbench to verify functionality

Qsys, a system-integration tool that is the next generation of SOPC Builder. It uses an FPGA-

optimized network-on-chip architecture that doubles the fMAX performance vs. SOPC

Builder.

 38

SoCEDS, a set of development tools, utility programs, run-time software, and application

examples to help you develop software for SoC FPGA embedded systems.

DSP Builder, a tool that creates a seamless bridge between the MATLAB/Simulink tool and

Quartus II software, so FPGA designers have the algorithm development, simulation, and

verification capabilities of MATLAB/Simulink system-level design tools

External memory interface toolkit, which identifies calibration issues and measures the

margins for each DQS signal.

Generation of JAM/STAPL files for JTAG in-circuit device programmers.

Editions

Web Edition

The Web Edition is a free version of Quartus II that can be downloaded or delivered by mail

for free. This edition provided compilation and programming for a limited number of Altera

devices.

The low-cost Cyclone family of FPGAs is fully supported by this edition, as well as the MAX

family of CPLDs, meaning small developers and educational institutions have no overheads

from the cost of development software.

License registration is required to use the Web Edition of Quartus II, which is free and can be

renewed an unlimited number of times.

Subscription Edition

The Subscription Edition is also available for free download, but a DRMed license must be

paid for to use the full functionality in the software. The free Web Edition license can be used

on this software, restricting the devices that can be used.

 39

The supported operating systems are:

Microsoft Windows Vista (32-bit and 64-bit)

Microsoft Windows XP (32-bit and 64-bit)

Microsoft Windows 2000

Solaris 8 and 9 (32-bit and 64-bit)

SUSE Linux Enterprise 9 (32-bit and 64-bit)

Red Hat Enterprise Linux 5 (32-bit and 64-bit)

Red Hat Enterprise Linux 4 (32-bit and 64-bit)

Red Hat Enterprise Linux 3 (32-bit and 64-bit)

3.7.3Modelsim Simulator

ModelSim is a multi-language HDL simulation environment by Mentor Graphics, for

simulation of hardware description languages such as VHDL, Verilog and SystemC, and

includes a built-in C debugger. ModelSim can be used independently, or in conjunction with

Altera Quartus or Xilinx ISE.Simulation is performed using the graphical user interface

(GUI), or automatically using scripts.

ModelSim is offered in multiple editions, such as ModelSim PE, ModelSim SE, and

ModelSimXE.

ModelSim SE offers high-performance and advanced debugging capabilities, while

ModelSim PE is the entry-level simulator for hobbyists and students. ModelSim SE is used in

large multi-million gate designs, and is supported on Microsoft Windows and Linux, in 32-bit

and 64-bit architectures.

ModelSimXE stands for Xilinx Edition, and is specially designed for integration with Xilinx

ISE.[5] ModelSimXE enables testing of HDL programs written for Xilinx Virtex/Spartan

series FPGA's without needed physical hardware.

ModelSim can also be used with MATLAB/Simulink, using Link for ModelSim. Link for

ModelSim is a fast bidirectional co-simulation interface between Simulink and ModelSim.

For such designs, MATLAB provides a numerical simulation toolset, while ModelSim

provides tools to verify the hardware implementation & timing characteristics of the design.

 40

Language support

ModelSim uses a unified kernel for simulation of all supported languages, and the method of

debugging embedded C code is the same as VHDL or Verilog.

ModelSim enables simulation, verification and debugging for the following languages:

 VHDL

 Verilog

 Verilog 2001

 SystemVerilog

 PSL

3.7.4Simulation Mode

Simulation allows testing a design thoroughly to ensure that it responds correctly in every

possible situation before configuring a device. Depending on the type of information need,

functional or timing simulation can be performed with the simulator. Functional simulation

tests only the logical operation of a design by simulating the behavior of flattened netlist

extracted from the design files, while timing simulation uses a fully compiled netlist

containing timing information to test both the logical operation and the worst-case timing for

the design in the target device. Before running a simulation, it is necessary to specify input

vectors as the stimuli for the Quartus II Simulator. The simulator uses these input vectors to

simulate the output signals that a programmed device would produce under the same

conditions. The simulator supports input vector stimuli in the form of a vector waveform file

(.vwf), vector table output file (.tbl), power input file (.pwf), or a Quartus II generated vector

file (.vec) or simulator channel file (.scf).

Quartus II is a software tool produced by Altera for analysis and synthesis of HDL designs,

which enables the developer to compile their designs, perform timing analysis, examine RTL

 41

diagrams, simulate a design's reaction to different stimuli, and configure the target device

with the programmer.

Quartus II Web Edition is a free version of Quartus II that can be downloaded or delivered by

mail for free. This edition provided compilation and programming for a limited number of

Altera devices. The low-cost Cyclone family of FPGAs is fully supported by this edition, as

well as the MAX family of CPLDs, meaning small developers and educational institutions

have no overheads from the cost of development software. License registration is required to

use the Web Edition of Quartus II, which is free and can be renewed an unlimited number of

times.

Modelsimanother simulator tools which is use two simulate the algorithm. First make two

files test bench and source conde(.v) file. Then make a new project and browse project

location

Figure 11Modelsim start window

In next step following window appear

 42

Figure 12 : window for adding Items

Then need to click add existing file and browsing both test bench and source file. One

important thing is you must select Language during uploading existing file on bellow screen

Figure 13 Selecting language type

Once all file are upload completely then first compile and then simulate and then run to get

output

 43

During simulate chose the test bench for start form bellow window here sim.v is the test

bench

Figure 14 : Selecting test bench

After run you need to add web form by right click on source file.Find the bellow window for

how to add web form

Figure 15 : Adding Wave for result

Finally click run and the result will show in window.

 44

Chapter 4
Results and Performance Analysis

4.1 Introduction

In this chapter we will compare proposed algorithm with similar related research/algorithm in

various aspect like power, accuracy, number of logic cell used, speed etc. Performance with

various facets will also discuss in this chapter.

4.2 Summary of proposed algorithm design

The proposed logarithmic converter is designed using Verilog HDL and synthesized by

Quartus II 32-bit Version 12.0 Build 263 08/02/2012 SP 2 SJ Web Edition with Cyclone II,

Device EP2C20F484C7.

Proposed system require 6002 logic elements, 79 PIN, LUT Flip Flop 40 , Input and output

delay are 7 and 43ns, Power consumption is 49.60mW. A comparative evaluation in various

expects are shown below:

4.3 Power Analysis

Our aim is to develop a system with very low power thus we emphasize our algorithm for

very low power logic and found the lowest than any other system. Comparison table show

various algorithms with our proposed Algorithms.

To calculate power we use power Play power analyzer tool provided by Altera Quartus II

Total Thermal Power Dissipation: 49.60mW

Core dynamic Thermal Power Dissipation: 0 mW

Core static Thermal Power Dissipation: 25.61 mW

I/O Thermal Power Dissipation: 23.98 mW

 45

Table 3: (power comparison)

Ref, Model Power (mW)
[7] D. Chen Curve fitting 108
[3] Ramin T. Shift and Multiplication 125
[6] Dongdong
et al.

Iterative 79

[4]Dongdong C.· Polynomial Approximation ------
Proposed Shift whit precision unit 49.60

4.3 Hardware Comparisons

Beside power another important aspect is cost. Our proposed system costs6002 logic cell

although it is high but it is due to our precision unit which costs 988 and in lookup table it

cost only 40 latches which is also lower than any other LUT based algorithm. In iterative

system proposed in [6] and high precision system proposed in [3] is much higher logic cell

than our proposed system

We use Compilation Result summery report in QUARTUS II for counting total logic cell in
the project

Table 4: Table (Hardware comparison)

 Logic Gates LUT FF
[1] Haohuan F ------ 48
[6] Dongdong Chen 9602 -----
[7]Younhee Choi 5,684 -----
[3] Ramin T., 6752 ----
Proposed 6002 40

4.4 Speed and Accuracy

After develop the system we manually calculate 165 random sample number among them 60

are integer and rest 105 are floating point. During our assessment we also monitor the

performance of our accuracy unit with minimum and maximum cycle of precision.

 46

Table 5: (Accuracy Assessment)

Decimal

point
Precision unit

cycle
Accuracy (%)

4 Min 10 Max 19 99.99
6 Min 10 Max 22 99.04
8 Min 11 Max 29 97.02

We use Altera U.P. simulator both Qsim and Modelsim to simulate our algorism Figure 5 is a

sample decimal output web form shown bellow

Figure 16: Simulation Result(Qsim) log10 (62.68)

Simulation of Algorithm using ModelSim provided by Altera is shown in the figure 17

bellow. All the cases the result is accurate up to 5-8 decimal points.

Figure 17: Result of log10 (21) = 1.322221929

 47

There is a Speed-Accuracy Trade-Off: in the proposed algorithm more iteration is required to

get more accurate result in that case memory (ROM) size need to larger only if the lookup

table is reach the value of X is possible to more near to one. Table III shows the accuracy of

our algorithm. Up to three decimal point it work very fast and almost error free. In our

proposed algorithm we mention earlier that the accuracy is depend on user requirement and

our accuracy can be more increase by updating lookup table and then of course the speed will

also decrease.

 48

Chapter 5
Conclusion

5.1 Conclusion

Low power has emerged as a principal theme in today’s electronics industry. The need for

low power has caused a major paradigm shift where power dissipation has become as

important a consideration as performance and area. In the past, the major concerns of the

ASIC designer were area, performance, cost and reliability; power consideration was mostly

of only secondary importance. In recent years, however, this has begun to change and,

increasingly, power is being given comparable weight to area and speed considerations.

A low power decimal logarithmic converter has been presented in this paper. The design of

the converter is performed using Verilog HDL which is compiled and simulated in the

Cyclone 2 FPGA platform. The simulation results show that the proposed converter is

working properly with respect to different user defined precision requirement. The hardware

requirements and power consumption of the design have been compared with that of other

researchers which show its superiority over all the existing design in the said area. In terms of

power 49.37 mW which is lowest and logic cell 6002 is also les as compared with other

similar research. Beside those the accuracy is depends on memory which is possible to

increase as per requirement.

5.2 Suggestions for Further Works

This project was focused on achieving low power computation of decimal logarithm that was

targeted to ASIC. However various aspects such as area cost optimization, Precision were not

addressed. Future work will focus on the development of a resource efficient technique for the

logarithm in different bases. Here two major suggestions for future work is given

 49

I. Overall performance can be developed by optimum combination of standard number (128,

64 etc.), which used in shift operation avoiding multiplication by keeping power very low.

II. The area cost may be reduced by resource sharing, minimizing the size of memory

required. Optimize the precision unit by keeping memory low.

 50

References

[1] Haohuan F., Oskar M., Wayne L. “Optimizing Logarithmic Arithmetic on FPGAs,”

Department of Computing, Imperial College London, United Kingdom. IEEE Transaction on

Computers , Vol. 59 (7), pp 1000-1006, July 2010

[2] Alachiotis N., Stamatakis A. “Efficient Floating-Point Logarithm Unit for FPGA”,

TheExelixis Lab Dept. of Computer Science Technische University at Germany. Symposium

on Parallel Distributed Processing, pp.1-8, 19-13 April 2010

[3] Ramin T., Ashraful I., and Khan A. W. “Fast Algorithm of A 64-bit Decimal

Logarithmic Converter “JOURNAL OF COMPUTERS, VOL. 5, NO. 12, DECEMBER 2010

[4] Dongdong C.·Seok-Bum K. “Novel Decimal Logarithmic Converter Based

on First-Order Polynomial Approximation” Circuits Syst Signal Process (2012)

[5] Tajallipour R., Teng D., Seok-Bum K., and Wahid K.“On the Fast Computation of

Decimal Logarithm”, Proceedings of the International Conference on Computer and

Information Technology (ICCIT), 21-23 December, 2009, Dhaka, Bangladesh

[6] Dongdong C., Zhang Y., Younhee C., Moon L.,Seok-Bum K., “A 32-bit Decimal

Floating-Point Logarithmic Converter,” Proc. of the IEEE Symposium on Computer

Arithmetic, pp. 195-203, 2009.

[7] ChenD., ChoiY., Chen L., TengD., WahidK., “A Novel Decimal-to-decimal

Logarithmic Converter”, Proc. of the IEEE Int. Symposium on Circuits and Systems, pp.688-

691, 2008.

[8] Salvador E., “FPGA Implementation of base-N logarithm”,

lectrónicaeInformáticauenos Aires, Argentin

[9] Hough, D., “Applications of the Proposed IEEE 754 Standard for Floating–Point

Arithmetin.”, Computer, vol.14, (3), pp. 70-74, 2006.

[10] Lzzeldin M. ,Chay F. “32 bit NXN Matrix Multiplication : Performance Evaluation for

Altera FPGA” International Journal of Computer Application, Vol. 52(11), August 2012

[11] Cornea, M., Crawford, J., “ IEEE 754R Decimal Floating-PointArithmetic: Reliable

and Efficient Implementation for Intel Architecture Platforms.”, Intel Technology Journal,

Designing Technology with People in Mind, vol. 11(1), 2007.

 51

[12] Thakarea L.P., Deshmukh Y. “Area Efficient Complex Floating Point Multiplier for

Reconfigurable FFT/IFFT Processor Based on Vedic Algorithm” Procedia Computer Science

79 (2016) 434 – 440

[13] Purna, A., Venkata N. T., Mallikarjuna P. A. “An FPGA Based High Speed IEEE -

754 Double Precision Floating Point Adder/Subtractor and Multiplier Using Verilog” Vol. 52,

March, 2013

[14] Mitchell, N. “Computer Multiplication and Division Using Binary Logarithms”, IRE

Trans. Electron.Computer, pp. 512-517, 1962.

[15] http://en.wikipedia.org/wiki/Logarithm; last access on 03-09-2016

[16] ZhuM., “On High-Performance Parallel Fixed-Point Decimal Multiplier Designs,”

Computers & Electrical Engineering, Volume 40, Issue 7, October 2014, Pages 2126–2138

[17] Pedram M., “Design Technologies for Low Power VLSI”, To appear in Encyclopedia of

Computer Science and Technology, 2005 , Department of EE-Systems University of Southern

California Los Angeles , CA 90089

 52

Outcome of the Project

A conference paper has been published from the part of the research as proposed in this
project.

Mian R, Ali L. “Design of Low Power Decimal Logarithmic Converter” International
Conference on Electrical, Computer and Communication Engineering (ECCE), February 16-
18, 2017, Cox’s Bazar, Bangladesh, Page 153-157

