
M.SC. ENGG. THESIS

Efficient Processing of Maximum Visibility
Facility Selection Query in Spatial Databases

by
Md. Ishat - E - Rabban

Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka 1000

June 2017

The thesis titled “Efficient Processing of Maximum Visibility Facility Selection Query in
Spatial Databases”, submitted by Md. Ishat - E - Rabban, Roll No. 1014052029 P, Session
October 2014, to the Department of Computer Science and Engineering, Bangladesh University
of Engineering and Technology, has been accepted as satisfactory in partial fulfillment of the
requirements for the degree of Master of Science in Computer Science and Engineering and ap-
proved as to its style and contents. Examination held on June 21, 2017.

Board of Examiners

1.
Dr. Mohammed Eunus Ali Chairman
Professor (Supervisor)
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

2.
Dr. M. Sohel Rahman Member
Head and Professor (Ex-Officio)
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

3.
Dr. M. Kaykobad Member
Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

4.
Dr. Muhammad Abdullah Adnan Member
Assistant Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology, Dhaka.

5.
Dr. Shazzad Hosain Member
Associate Professor (External)
Department of Electrical and Computer Engineering
North South University, Dhaka.

1

Candidate’s Declaration

This is hereby declared that the work titled “Efficient Processing of Maximum Visibility Facility

Selection Query in Spatial Databases” is the outcome of research carried out by me under the

supervision of Dr. Mohammed Eunus Ali, in the Department of Computer Science and Engi-

neering, Bangladesh University of Engineering and Technology, Dhaka 1000. It is also declared

that this thesis or any part of it has not been submitted elsewhere for the award of any degree or

diploma.

Md. Ishat - E - Rabban

Candidate

2

Acknowledgment

Foremost, I am thankful to the Almighty for his blessings for the successful completion

of my thesis. I would like to express my heartiest gratitude, profound indebtedness, and deep

respect to my supervisor, Dr. Mohammed Eunus Ali, Professor, Dept. of CSE, BUET, Dhaka,

Bangladesh, for his constant supervision, affectionate guidance and great encouragement and

motivation. His keen interest on the topic and valuable advices throughout the study were of

great help in completing this thesis.

I would also want to thank the members of my thesis committee for their valuable sugges-

tions. I thank Dr. M. Sohel Rahman, Dr. M. Kaykobad, Dr. Muhammad Abdullah Adnan, and

specially the external member Dr. Shazzad Hosain.

I am especially grateful to Department of Computer Science and Engineering (CSE) of

Bangladesh University of Engineering and Technology (BUET) for providing their support dur-

ing the thesis work. My sincere thanks goes to CSE Office staffs for providing logistic support

to me to successfully complete the thesis work.

Finally, I would like to thank my family, my friends, and all of those who supported me for

their appreciable assistance, patience, and suggestions during the course of my thesis.

3

Abstract

The widespread availability of realistic 3D models of cities, buildings etc. provides an op-

portunity to answer many real-life queries involving visibility in the presence of 3D obstacles.

For example, ”Where to place security cameras to ensure better surveillance of a building?”, or

”Where to place billboards in a city to maximize visibility from the surrounding space?”, these

applications require measuring and maximizing visibility of the data space in the presence of

obstacles. In this paper, we formulate the above problem of maximizing visibility by introducing

the MVFS query. In the MVFS query, we are given a set of obstacles, a set of n locations where

a facility (i.e., camera, billboard, watch tower etc.) can be established, the visibility range of the

facility, and an integer k, we select k locations from the given n locations to establish facilities

such that the aggregated visibility coverage of the surrounding data space is maximized. We

develop two exact algorithms for the MVFS problem that use various acceleration techniques

to speedup the computation. We also outline a greedy approximation algorithm with proven ap-

proximation ratio of 1− 1
e
. Usually real 3D models consist of a huge number of objects/obstacles.

Consequently we develop several scalable algorithms for the MVFS problem which are suitable

for datasets with huge number of obstacles that do not fit in main memory. To deal with the huge

obstacle set, first we propose a naive disk resident implementation of the above greedy approxi-

mation algorithm and then we develop two improved algorithms that result in less IO overhead

than the naive greedy implementation. We also address several variants of the MVFS problem

so that our proposed algorithms can be applied to more generalized and realistic scenarios. We

conduct comprehensive empirical analysis to investigate the performance of our proposed algo-

rithms. The experimental results show that the greedy approximation algorithm runs orders of

magnitude faster than the exact algorithms and incurs an average approximation error of less than

4

0.1%. In case of disk resident algorithms, the experiments show that the acceleration techniques

used in the improved algorithms considerably reduce the IO overhead in comparison with the

naive greedy implementation.

5

Contents

Board of Examiners 1

Candidate’s Declaration 2

Acknowledgment 3

Abstract 4

Contents 6

List of Figures 9

List of Tables 11

List of Algorithms 12

1 Introduction 1

1.1 Problem and Motivation . 2

1.2 State of the Art . 3

1.3 Overview of Methodology . 4

1.4 Contributions . 5

1.5 Organization . 5

2 Literature Review 7

2.1 Visibility in Visual Sensor Networks . 7

6

2.2 Visibility in Spatial Queries . 9

2.3 Visibility in Computer Graphics . 11

2.4 Visibility in Computational Geometry . 12

3 Problem Formulation 13

4 Background Study 17

4.1 R-tree . 17

4.2 Hierarchical Clustering . 18

5 Main Memory based Algorithms 20

5.1 The Continuous Exact Algorithm . 21

5.1.1 Constructing the Visible Region of a Data Point 21

5.1.2 Constructing the Visibility Triangulation of the Data Space 24

5.1.3 The Algorithm . 29

5.2 The Discrete Exact Algorithm . 35

5.2.1 MVFS in Grid Partitioned Data Space 35

5.2.2 Determining Visibility of Cells using Projection 37

5.2.3 The Algorithm . 39

5.3 The Greedy Approximation Algorithm . 41

5.3.1 Reduction to Weighted Maximum Cover Problem 41

5.3.2 The Algorithm . 42

6 Disk Resident Algorithms 44

6.1 The Naive Greedy Algorithm . 45

6.2 The Best First Algorithm . 46

6.2.1 Preliminaries . 46

6.2.2 The Algorithm . 47

6.3 The Batch Processing Algorithm . 51

7

7 Handling 3D Scenarios 55

7.1 Handling a Continuous 3D Scene . 55

7.2 Handling a Discrete 3D Scene . 56

8 Extensions 57

8.1 Limited FoV MVFS . 57

8.1.1 Optimum Viewing Direction in 2D . 58

8.1.2 Optimum Viewing Direction in 3D . 60

8.1.3 The Algorithm . 64

8.2 Preferential MVFS . 65

8.3 Quantitative MVFS . 66

8.4 Unrestricted MVFS . 67

9 Experimental Evaluation 68

9.1 Experimental Setup . 68

9.2 Empirical Evaluation of Main Memory based Algorithms 69

9.2.1 Effect of Number of Data Points . 69

9.2.2 Effect of Number of Obstacles . 71

9.2.3 Effect of Camera Range and Cell Size 72

9.3 Empirical Evaluation of Disk Resident Algorithms 73

9.3.1 Effect of Number of Obstacles . 73

9.3.2 Effect of Number of Data Points . 75

9.3.3 Effect of k . 76

10 Conclusion 78

Bibliography 80

8

List of Figures

3.1 (a) An instance of the MVFS problem. (b) Visible regions from the data points

and the optimum choice for k=3. 15

4.1 An example of an R-tree storing rectangles. 18

4.2 A dendogram. 19

5.1 Visibility polygon for query point q in a polygon with 3 holes. 22

5.2 Constructing visible region of D3 by reducing to visibility polygon problem. . . . 23

5.3 Boolean intersection and boolean subtraction operation on two triangles. 25

5.4 Construction of visibility triangulation for 3 data points. 28

5.5 Distribution of data points with (a) non-overlapping visible regions and (b) over-

lapping visible regions. 31

5.6 Grid Partitioning into Cells. 36

5.7 Calculating projections on successive sweep line positions. 38

6.1 Simulation of best first greedy approach. 51

8.1 Cell midpoints are cross marked. The initial (final) position is shown in solid

(dashed) arc. The viewing direction is rotated counter-clockwise until the left

line reaches a cell midpoint (light gray). 59

8.2 Part of the unit sphere centered at d. Cell midpoints are shown in dots and their

projection on the unit sphere are cross marked. 61

8.3 Determining the vector creating an angle A
2

with vectors c1.v and c2.v. 63

9

9.1 Number of Data Points vs Execution Time. 70

9.2 Greedy Approximation Error. 70

9.3 Number of Obstacles vs Execution Time. 71

9.4 Area Calculation Error. 72

9.5 Number of Obstacles vs Total Processing Time and IO Time. 74

9.6 Number of Data Points vs Total Processing Time and IO Time. 75

9.7 k vs Total Processing Time and Number of Range Queries. 77

10

List of Tables

3.1 Commonly Used Notations and Their Meanings 16

9.1 Parameters for Main Memory based Algorithms 69

9.2 Parameters for Disk Resident Algorithms . 73

11

List of Algorithms

1 visTriangulation(O,D,r) . 27

2 naiveContinuousExact(O,D,r,k) . 30

3 continuousExact(O,D,r,k) . 34

4 discreteExact(O,D,r,k,G) . 40

5 greedy(O,D,r,k,G) . 43

6 naiveGreedy(T ,D,r,k,G) . 45

7 bestFirst(T ,D,r,k,G,V) . 48

8 batchProcessing(T ,D,r,k,G,V ,csize) . 53

9 optDirection2d(d,C,A) . 60

10 optDirection3d(d,C,A) . 62

12

Chapter 1

Introduction

3D city models are becoming increasingly available through popular mapping services such

as Google Maps, Google Earth, Bing Maps, and OpenStreetMap. These map based services also

allow users to upload 3D models representing buildings of their own cities. With the crowd-

powered data collection of 3D datasets, spatial database community in recent years have wit-

nessed a huge growth of 3D spatial data, which opens a new avenue of research involving 3D

datasets. We envision that these 3D datasets will provide a new platform for answering many

real-life user queries, e.g., visibility queries in the presence of 3D obstacles, that form the basis

of a large class of location based applications.

A number of visibility related problems is currently being investigated by researchers in the

field of visual sensor networks and spatial database. For example, the Optimum Camera Place-

ment (OCP) problem [1] [2] [3], the Maximum Visibility Query (MVQ) [4] [5], the construction

of the Visibility Color Map (VCM) [6] [7] [8] etc. All the above problems involve computing

visibility or visible distance in an obstructed data space. In this thesis work, we introduce a novel

visibility query and propose several main memory based and disk resident solutions to efficiently

process the query.

In this chapter, first we introduce the problem and discuss the motivation behind the problem

formulation. Next we briefly discuss the current visibility related works related to our problem.

Then we provide a high level overview of the methodology we have developed to solve the

problem. Next we list the contributions of this thesis work. Finally we provide an outline of the

1

CHAPTER 1. INTRODUCTION 2

organization of this thesis.

1.1 Problem and Motivation

In this work, we focus on a new type of query that we name Maximum Visibility Facility

Selection (MVFS) query for facility placement in the presence of obstacles. Given a set of obsta-

cles in the data space, a set of n potential locations in the data-space, D, where a new facility can

be placed, and the visibility range of the facilities, we select k locations from the set of potential

locations for placing new facilities such that the combined visibility coverage is maximized. We

also address several extensions of the aforementioned problem so that our proposed techniques

can be applied to more generalized and realistic scenarios.

In the MVFS problem formulation, we use a closed set of candidate locations, D, where we

can place a facility. This is because in a practical scenario, it might be infeasible to establish a

facility anywhere in the data space. Consequently, we restrict the positions where a facility can

be established by introducing the set of data points, D, from which we chose k positions that

maximizes the aggregated visibility coverage.

The motivation of the MVFS query comes from the following applications. A corporate office

may want to place security cameras (i.e., facilities) to keep the office area under surveillance; now

they may need to choose a set of locations to place the security cameras from a set of potential

locations where a camera can be placed, so that the overall surveillance of the office through

the security cameras is maximized. Similarly, an advertisement company may want to select

locations to place a set of new billboards so that the area from which a billboard is visible is

maximized. A tourism office may want to establish a set of new decks to watch a beautiful

sea-beach where the goal is to maximize the visibility coverage of the sea-beach through all the

decks. Our proposed methodologies can be used to serve all these queries efficiently.

CHAPTER 1. INTRODUCTION 3

1.2 State of the Art

Researchers in the fields of visual sensor networks and spatial databases are working on

several visibility related problems currently. Examples include the Optimum Camera Placement

(OCP) problem [1] [2] [3], the Maximum Visibility Query (MVQ) [4] [5], the construction of the

Visibility Color Map (VCM) [6] [7] [8] etc.

In the OCP problem, we determine the minimum number of cameras required to cover a given

area of interest. The OCP problem is similar to the MVFS problem. The existing exact solutions

of the OCP problem are based on binary integer programming techniques. The exact algorithms

perform poorly and consequently can not be used to solve a large scale practical scenario. In

the current literature, the data space is discretized by representing the area of interest as a set

of control points. There is no existing solution that calculates the actual area/volume of the

visibility coverage. Besides, currently there is no methodology to handle a disk resident large set

of obstacles. In this thesis work, we address these limitations of the existing works on the OCP

problem and introduce novel techniques to overcome them.

In the MVQ, we select a query point q from a set of given query points Q, such that q provides

the maximum visibility of a given extended target object. In the VCM problem, we construct a

visibility map of the data space, where each point p in the data space is given a color value indi-

cating the visibility of a given extended target object from p. In both problems, visibility of the

extended target object T is measured by the visible surface area of T . Note that, the objective of

the MVFS query is to select a subset of data points that maximizes aggregated visibility coverage,

which is intrinsically different from the objectives of the MVQ problem and the VCM problem.

Consequently the ideas used in these problems can not be directly applied to solve the MVFS

problem.

We use original ideas and novel techniques to solve the MVFS problem. However, we adopt a

projection based method from computer graphics [9] and borrow some ideas from computational

geometry [10] to solve some subproblems which are used as building blocks of our solution to

the MVFS problem.

CHAPTER 1. INTRODUCTION 4

1.3 Overview of Methodology

In practice, the model of a city or a building contain a large number of objects or obstacles.

If the number of obstacles in the dataset is too large to fit in main memory, performing MVFS

query will be prohibitively costly because of high IO overhead. Consequently we propose both

main memory based and disk resident algorithms for the MVFS problem.

We discuss the main memory based algorithms as follows. First we propose an exact solution

of the MVFS problem, namely, the continuous exact algorithm. The continuous exact algorithm

considers the k element subsets of D, calculates the visible area/volume for the subsets, and

reports the optimum choice. It uses several acceleration techniques to speedup the computa-

tion. The continuous exact algorithm constructs a triangulation of the data space to calculate

the visible area/volume from data points. Next we present the discrete exact algorithm. Instead

of calculating the visible area/volume from data points accurately, the discrete exact algorithm

partitions the data space into equal sized cells and uses cell counts to approximate the area of

a region. It computes the optimum solution of the MVFS query in a data space discretized into

cells by using the idea of projection. Both the continuous and discrete exact algorithm require

exponential time with respect to n, as they consider all length k subsets of D in the worst case.

Consequently, we develop a greedy approximation algorithm that runs in time polynomial to

n. The greedy algorithm, at each step, chooses the data point that maximizes the visibility of

the still uncovered region and reports the first k such choices. This algorithm has theoretically

proven approximation ratio and generates near optimal results in practice.

We discuss the disk resident algorithms as follows. In the scalable solutions, we index the

obstacles in a persistent data structure, R-tree, and perform range queries on the R-tree to re-

trieve the obstacles located within the visibility range of the data points. First we present the

disk resident version of the above greedy approximation algorithm, which issues n range queries

on the R-tree, one for each data point in D. Issuing a range query is IO expensive as it requires

several disk accesses. Hence, we propose the best first algorithm, which reduces the number

of range queries by performing some preprocessing. In the preprocessing step, it calculates a

heuristic that guides the best first search and thus reduces the number of range queries. Finally

CHAPTER 1. INTRODUCTION 5

we propose the batch processing algorithm, which gains farther performance acceleration by or-

ganizing closely situated data points into clusters. In the batch processing algorithm, we process

each cluster of data points as a whole instead of processing each data point separately.

1.4 Contributions

We make the following contributions as listed below:

• We introduce the MVFS query to select k out of n data points to place facilities that maxi-

mizes aggregated visibility coverage in the presence of obstacles.

• We propose efficient exact algorithms to solve the MVFS problem. We use several accel-

eration techniques to reduce the computational cost.

• We develop main memory based solutions to the MVFS problem for continuous data space.

We introduce novel techniques to calculate the area/volume of the aggregated visibility

coverage.

• We propose several disk resident algorithms for the MVFS problem which are suitable for

large datasets. We use pruning and clustering techniques to reduce the IO overhead.

• We conduct extensive experimentation to evaluate the effectiveness and efficiency of our

proposed algorithms.

1.5 Organization

We outline the organization of this paper below. First we discuss some previous works related

to the MVFS problem in Chapter 2. Next, we formally define the MVFS problem (Chapter 3).

In Chapter 4, we present some background knowledge necessary for an uninitiated reader. As

discussed above, we propose both main memory based and disk resident solutions to the MVFS

problem. In Chapter 5, we describe the in memory solutions of the MVFS problem. The disk

resident solutions of the MVFS problem are discussed in Chapter 6. The algorithms proposed

CHAPTER 1. INTRODUCTION 6

in Chapter 5 and Chapter 6 are described for 2D scenario. In Chapter 7, we discuss how

the algorithms for 2D space can be modified to solve the MVFS problem for a 3D scenario.

In Chapter 8, we address and solve some variants of the basic MVFS query. In Chapter 9,

we present the empirical results to evaluate the effectiveness and efficiency of our proposed

algorithms. Finally we make some concluding remarks in Chapter 10.

Chapter 2

Literature Review

A huge amount of research regarding visibility has been conducted in different domains [11].

In this chapter, we discuss previous research works that involve computing visibility in the pres-

ence of obstacles. We explore the visibility related works in several fields, i.e., visual sensor

networks, spatial databases, computer graphics, computational geometry etc. In Section 2.1, we

present the research works related to the MVFS problem in the domain of visual sensor networks.

In Section 2.2, we discuss the visibility queries investigated in the field of spatial databases as

this is the main focus of our research work. In Section 2.3 and Section 2.4, we present the

visibility related works in computer graphics and computational geometry respectively.

2.1 Visibility in Visual Sensor Networks

Several visibility related problems are studied in the field of wireless network of visual sen-

sors, i.e., Visual Sensor Networks (VSN). The Optimum Camera Placement (OCP) problem is

very closely related to the MVFS problem, which is extensively studied by researchers in the

field of VSN.

In the OCP problem, an area of interest is provided that is to be observed by visual sensors,

i.e., cameras. The area of interest is represented discretely by a set of control points. The camera

parameters, i.e., the viewing range, the field of view etc. are also provided. The OCP problem is

to determine the minimum number of cameras required to cover the area of interest along with

7

CHAPTER 2. LITERATURE REVIEW 8

the corresponding camera positions and their viewing directions.

The existing solutions to the OCP problem can be categorized into exact algorithms and

approximate solutions. The exact solutions to the OCP problem are based on binary integer

programming (BIP) techniques [12] [1] [13] [2]. In the BIP formulation of the OCP problem,

the number of binary variables equals the sum of the number of data points and the number of

control points. As a result, the performance of the exact solutions of the OCP problem is poor

even for small instances. It is assumed in the literature that finding the exact solution of the

OCP problem is infeasible for a practical large scale scenario. Consequently the contemporary

works on the OCP problem focus on finding approximate solutions. The approximate solutions

of the OCP problem are based on techniques used in artificial intelligence, such as, evolutionary

algorithms [14] [15], particle swarm optimization [16] [17], and simulated annealing [3].

Observe that the OCP problem and the MVFS problem are related to each other in a simi-

lar way to the set cover problem and the maximum coverage problem. Consequently the BIP

formulations of the OCP problem and the MVFS problem are similar to each other. Several vari-

ants of the MVFS problem are addressed in [1] [2] that use BIP formulation to find the exact

solution. Horster et al. [1] presents an exact solution to the MVFS problem without considering

the presence of obstacles. Debaque et al. [2] proposed an exact solution to the MVFS problem

that performs visibility analysis offline, i.e., assumes that the occlusion effect of the obstacles

is precalculated. As mentioned above, the performance of the exact solutions are poor because

of large number of binary variables in the BIP formulation. For example, the BIP based exact

algorithm proposed by Debaque et al. in [2] takes 2205 seconds on average to solve an MVFS

instance with 6 data points. In the current literature, there is no efficient exact algorithm to solve

the MVFS problem.

Note that, the existing solutions to the OCP problem and its variants assume a discretized

data space. They sample the area of interest to form a set of control points and measure the visi-

bility coverage in terms of the number of visible control points, instead of calculating the actual

area/volume of the visibility coverage. Besides, there is no existing solution that can handle a

set of obstacles too large to fit in main memory. In this work, we address these limitations of the

state of the art and propose novel techniques to overcome these limitations.

CHAPTER 2. LITERATURE REVIEW 9

2.2 Visibility in Spatial Queries

Widespread availability of large scale 3D models has stimulated research works in visibil-

ity related spatial queries. The spatial database community is currently working with several

queries that involve calculating the visibility of an object in the presence of obstacles. Exam-

ples include the maximum visibility query (MVQ), visibility color map (VCM) construction, and

visible nearest neighbor (VNN) query. We discuss each problem as follows.

Recently the concept of Maximum Visibility Query (MVQ) is tossed in a work of Sarah et

al. [4] that considers the effect of obstacles to quantify the visibility of an extended target object.

Given a target object T , a set O of m obstacles, and a set Q of n candidate locations (i.e., query

points), the MVQ finds the query point in Q that provides the maximum visibility of T . They

generalize this query through k-Maximum Visibility Query (kMVQ), that finds the k query points

that maximize the visibility of T . They measure the visibility of the target object T by the area

on the surface of T that is visible from the query points. Haider et al. [5] address the problem of

answering the MVQ for a moving target object. To answer the MVQ, the obstacles are retrieved

according to their distance from the target object, and the surface area of T visible from the query

points is calculated. They use several techniques to accelerate the query processing.

The construction of the Visibility Color Map (VCM) is a highly studied problem [6] [7] [8] in

the field of spatial databases. In the VCM problem proposed by Choudhury et al. [6], an extended

target object T , and a set of obstacle O are given. The problem is to construct a color map that

assigns a color to each point p in the data space that indicates the visibility of T from p. To

assign a visibility color to a point, they consider the distance, visual angle, and obstruction by the

obstacles. Rabban et al. [7] consider partial visibility of the target object while constructing the

VCM and also propose a method to construct the VCM for a moving target object. To construct

the VCM, they retrieve the obstacles in increasing order of distance from the target object and

determine the region in the data space obstructed by the obstacles. Thus the visibility color

values are assigned to the points in the data space.

Note that, both MVQ and VCM problem deal with calculating what portion of an extended

target object is visible from a point in the data space. In the MVQ problem, they do not construct

CHAPTER 2. LITERATURE REVIEW 10

and/or aggregate the visibility coverage of the query points. In the VCM problem, if we consider

the target object to be a point, their proposed methodology can be used to construct the region in

the data space visible from a data point. We mention the ideas we adopt from the work of Rabban

et al. [7] in Chapter 5.2.2. For the subsequent steps in the MVFS problem, that aggregates the

visibility coverage of separate data points, we use original ideas that are out of the scope the

VCM problem.

Other queries related to visibility studied in spatial databases involve finding nearest neigh-

bors, such as, Visible Nearest Neighbor (VNN) query [18] [19] [20], Continuous Obstructed

Nearest Neighbor (CONN) query [21], and Continuous Visible Nearest Neighbor (CVNN) query

[22], and Visible Reverse Nearest Neighbor (VRNN) [23] query. In general the nearest neighbor

query finds the k nearest data points with respect to a query point based on a given distance

measure. Nutanong et al. introduce the visible nearest neighbor (VNN) problem where they find

the nearest neighbor that is visible to a query point in the presence of obstacles. The basic idea

is to perform nearest neighbor search and check its visibility condition incrementally.

There are several variants of the nearest neighbor problem that consider visibility between

the query point and the data points in the presence of obstacles. The Continuous Visible Nearest

Neighbor (CVNN) query finds the nearest neighbor results for a moving query point [22]. Given

a set of data points, a set of obstacles, and a line segment, the CVNN query returns a set of (point,

interval) tuples, such that the point is the nearest neighbor of all points in the corresponding inter-

val of the segment. Gao et al. studied a variation of nearest neighbor query namely Continuous

Obstructed Nearest Neighbor (CONN) query [21]. Given a set of data points, a set of obstacles,

and a query line segment q in a 2D space, a CONN query retrieves the nearest neighbor of each

point on q according to the obstructed distance, i.e., the length of the shortest path that avoids the

obstacles. Another variant of the nearest neighbor query is the Visible Reverse Nearest Neighbor

(VRNN) [23]. Given a set of data points P , a set of obstacles, and a query point q, the VRNN

query retrieves the points in P that have q as their nearest neighbor and are visible to q.

The problem of finding the nearest neighbor is fundamentally different from the MVFS prob-

lem. In the aforementioned nearest neighbor queries, they find the nearest object in an obstructed

space from a given query point where query results are ranked according to the distances or visi-

CHAPTER 2. LITERATURE REVIEW 11

ble distances from the query point. Whereas in the MVFS problem, we determine and aggregate

the visibility coverage of a set of data points in the space. Thus the methodology used to deter-

mine the nearest neighbor can not be applied to answer the MVFS query.

2.3 Visibility in Computer Graphics

The idea of visibility is central to the field of computer graphics, as computer graphics deals

with generating realistic image of a virtual model from a given viewpoint. A number of prob-

lems regarding visibility is actively studied by graphics researchers, including hidden surface

removal, occlusion culling, global illumination, ray tracing, radiosity etc. [24] [25] In this sec-

tion, we focus on the hidden surface removal and occlusion culling problem. The other problems

mentioned above are used to simulate light realistically and are dealt in an image-precision man-

ner. Consequently they are out of the scope of our work.

Hidden surface removal and occlusion culling methods determine the surfaces in the model

that are visible from the viewpoint. We discuss the object-precision solutions of these problems,

as the image-precision solutions are irrelevant to the MVFS problem. The state of the art method

to determine the visible surfaces from a moving viewpoint computes the Potentially Visible Set

(PVS) [26]. The PVS is usually a small subset of the model that contains all visible surfaces.

The PVS is calculated by fusing obstacles to form large virtual obstacles that facilitate occlusion

culling [27] [28] [29]. Durand et al. [9] propose a projection based method to accelerate the PVS

computation. Koltun et al. [30] introduce a hardware assisted method that farther improves the

performance for a 2.5D scene. We use the projection based idea proposed by Durand et al. in

[9] to determine the visible region of a data point in a discretized data space.

Note that, the hidden surface removal and occlusion culling techniques used in computer

graphics focus on determining the visible surfaces from a single viewpoint in the data space.

We can not apply these methods to compute and/or maximize the combined visibility coverage

of multiple data points. Thus the methodologies used in computer graphics can not be directly

applied to solve the MVFS problem.

CHAPTER 2. LITERATURE REVIEW 12

2.4 Visibility in Computational Geometry

The problems in computational geometry that involve visibility computation include visi-

bility polygon construction [10] [31] [32] [33], visibility graph construction [34] [35], and art

gallery problems [36] [37] and its variants. We discuss each as follows.

The visibility polygon of a point q inside a polygon P consists of all points in P that are

visible from q. Suri et al. and Asano [10] [31] addressed the problem of computing the visibility

polygon of a query point inside a non-simple polygon with holes. Their approach performs a

rotational plane sweep around q and determine the visible edges of P to construct the visibility

polygon. Zarei et al. [32] [33] propose a method where they add new edges and vertices to the

non-simple polygon to unfold it along those edges and convert it into a simple polygon.

In the visibility graph problem, we are given a set P of n points inside a polygon Q. The

objective is to construct a graph whose nodes are the points in P and there exists an edge between

two nodes/points p and q, if the p and q are visible from each other, i.e., the line segment pq is

not intersected by any edge of the polygon Q. Ben et al. [34] proposed near optimal solutions to

the problem of constructing the visibility graph for simple and non-simple polygons with holes.

The art gallery problem asks to determine the number of guards necessary to cover an art

gallery. The art gallery is modeled as a simple polygon and each guard is considered to be a

point in the polygon. A set of guards S is said to cover the art gallery if, for every point p in the

polygon, there is some guard q ∈ S such that the line segment between p and q does not leave

the polygon. The art gallery problem is a highly studied problem in computational geometry

[36] [37] and there are several variants. The solution of the basic art gallery problem involves

constructing triangulation of the art gallery/polygon.

As part of the solution to MVFS problem, we require to determine the region visible from

a data point. We reduce the problem of constructing the visible region of a data point to the

problem of constructing the visibility polygon as discussed in Chapter 5.1.1. We adopt the

methodology proposed by Asano [10] to construct the visibility polygon. The other works in

computational geometry regarding visibility discussed above are not related to the MVFS prob-

lem.

Chapter 3

Problem Formulation

In this chapter, first we define some terms regarding visibility that are necessary for our

formulation. Next we provide the formal definition of our problem. Then we discuss some

assumptions on which our solution is built upon. Finally we present an illustrative example to

clearly explain the MVFS problem.

We define the visibility of a point in the data space to/from a data point and the visible region

of a set of data points as follows.

Definition 1 Visibility between a Point and a Data Point: Given the set of obstacles, O, and

the viewing range of a facility, r, a point p in the data-space is defined as visible to/from a data

point, d, if the line segment joining p and d intersects no obstacle in O and the distance between

p and d, dis(p, d), is less than or equal to r. Otherwise, p is defined as non-visible to/from d.

Definition 2 Visible Region of a Set of Data Points: Given the set of obstacles, the viewing

range of a facility, and a set of data points, D, the visible region of D comprises all points p in

the data space, such that, p is visible to/from at least one data point d ∈ D.

We formally define our problem as follows.

The MVFS Problem: Given an m-dimensional data-space Rm (m=2 or 3), the set of ob-

stacles in the data-space, the set of n data points where a facility can be placed, D, the viewing

range of a facility, and an integer k (1 ≤ k ≤ n), the problem is to determine a subset S of D,

13

CHAPTER 3. PROBLEM FORMULATION 14

S ⊆ D, of size k, |S| = k, to establish k facilities, such that, the area (or volume, in 3D) of the

visible region of S is maximized. Here the notation |.| stands for the cardinality of a set.

However, we also address several other variations of the MVFS problem that generalize the

above primary formulation. We discuss those extensions in Chapter 8.

We adopt a distance metric other than the commonly used euclidean distance metric to mea-

sure the distance between two points in the data-space. Let the cartesian coordinate of a point, p,

in the data space be denoted by (px,py,pz), where pz=0, if the data-space is 2D, and the distance

between two points, p and q, be denoted by dis(p,q). Then,

dis(p,q)=max(|px-qx|,|py-qy|,|pz-qz|)

Here, the notation |.| stands for absolute value of a number. The distance between two points

defined by the above equation is called the supremum distance. According to supremum distance

metric, the region that a facility with visibility range r covers is an axis aligned square (in 2D)

or cube (in 3D) with side length 2r centered at the facility location. We adopt the supremum

distance metric for the purpose of ease of implementation and explanation. Our solution can be

easily adjusted to work for a more conventional distance metric, i.e., euclidean distance metric.

Now we clarify the ideas established thus far with an illustrative example. Figure 3.1(a)

shows a simple 2D instance of the MVFS problem. In the scene, there are 5 data points (d0 to d4,

cross marked), and 9 obstacles (o0 to o8). The viewing range of the camera is shown as r and it

is given that k = 3. Under the supremum distance metric, the viewing range of each data point

is a square (shown as dotted squares in Figure 3.1(a)). In Figure 3.1(b), the visible regions of

each data point is shown separately with bold boundaries. The three element subset of D having

visible region of maximum area is {d0,d2,d4}. The visible region of {d0,d2,d4} is shown in light

grey in Figure 3.1(b). d3 is not selected because the area of its visible region is small due to

occlusion by obstacles. d1 is not selected because its obstructed by the obstacles and also its

visible region highly overlaps with the visible regions of d0 and d2. Table 3.1 lists the commonly

used notations and their meanings.

CHAPTER 3. PROBLEM FORMULATION 15

o
1

o
0

o
2

o
3

o
4

o
5

o
8

o
7

d
0
x

d
1

d
2

d
3

d
4

x

x

x

x

o
1

o
0

o
2

o
3

o
4

o
5

o
8

o
7

x
x

x

x

x

r

(a)

(b)

o
6

o
6

k=3

Figure 3.1: (a) An instance of the MVFS problem. (b) Visible regions from the data points and
the optimum choice for k=3.

CHAPTER 3. PROBLEM FORMULATION 16

Table 3.1: Commonly Used Notations and Their Meanings

Notation Meaning

n Number of data points

D Set of data points

di ith data point in D

O Set of obstacles

G Grid partitioning of the data space

T R-tree indexing the obstacles

V Visibility matrix

csize Cluster radius

r Viewing range of a facility

ps Visibility Status of point p

cs Visibility Status of cell c

ts Visibility Status of triangle t

ta Area of triangle t

Chapter 4

Background Study

In this chapter, we provide some background knowledge on some topics used in our solution.

First we briefly discuss R-tree, a persistent spatial data structure extensively used in our disk

resident algorithms for the MVFS problem (Section 4.1). Then we provide an introduction to

hierarchical clustering algorithms (Section 4.2). We use a distance based hierarchical clustering

algorithm in one of our disk resident algorithms.

4.1 R-tree

R-tree is a tree data structure that stores spatial objects and can process spatial queries on the

objects efficiently. The R-tree was proposed by Antonin Guttman in 1984 [38]. The key idea

of the R-tree is to group nearby objects together and form their minimum bounding rectangle

(MBR). R-tree stores a hierarchy of minimum bounding rectangles where the spatial objects are

situated at the leaf nodes. All leaf nodes are stored in the same height. Thus R-tree is a balanced

tree (Figure 4.1).

The basic queries on the R-tree, i.e., intersection, containment, nearest neighbor search etc.,

are simple. The bounding boxes are used to decide whether or not to search inside a subtree.

Thus a lot of nodes are pruned out and never read during a query. This characteristics of R-tree

makes it suitable for large data sets and databases. R-tree is designed for storage on disk. It

assumes that the whole data cannot be stored in main memory and data is cached to memory

17

CHAPTER 4. BACKGROUND STUDY 18

R1

R3

R4

R9

R11

R13

R10

R12

R16

R15

R14

R8

R2

R6

R7

R17

R18

R19

R5

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

Figure 4.1: An example of an R-tree storing rectangles.

when it is required.

To build an efficient R-tree, one has to ensure that the tree remains balanced and also the

rectangles do not cover too much empty space and do not overlap too much. For example,

during the insertion operation, to obtain an efficient tree, the element is inserted into the subtree

that requires least enlargement of its bounding box. Once a page is full, the data is split into two

sets such that each cover minimal area. Different heuristics are used to reduce the empty space

covered by the rectangles and the overlap between rectangles. These heuristics result in several

variants of the R-tree, namely, R∗-tree [39], R+-tree [40], and X-tree [41].

4.2 Hierarchical Clustering

Clustering is the task of organizing a set of objects into separate groups or clusters such that

objects in the same cluster are more similar to each other than to objects in another cluster. In

CHAPTER 4. BACKGROUND STUDY 19

clustering, similarity can be assessed by different metrics. A specific class of clustering algo-

rithms, called Hierarchical Clustering [42] [43] [44], uses distance as the metric to determine

similarity between objects and connect objects to form clusters based on their distance. Hierar-

chical clustering methods differ by the distance function.

d
0

d
1

d
2

d
3

d
4

d
5

d
6

d
7

Figure 4.2: A dendogram.

A cluster can be defined by the maximum distance needed to connect parts of the cluster. At

different cutoff values, different set of clusters form. This idea is represented by a dendrogram

(Figure 4.2). In a dendrogram, the vertical axis marks the distance at which the clusters merge,

while the objects are placed along the horizontal axis such that the clusters do not mix. The

hierarchy can be formed in an agglomerative way (starting with single elements and aggregating

them into clusters) or in a divisive way (starting with the complete data set and dividing it into

partitions).

Note that, hierarchical clustering algorithms do not provide a specific partitioning of the data

set. Instead it provides a hierarchy of clusters that merge with each other at certain distances

as shown in the dendogram. Thus the user gets to choose the cutoff distance and obtains the

appropriate set of clusters.

Chapter 5

Main Memory based Algorithms

In this chapter, we present three main memory based solutions to the MVFS problem. In

these three main memory based algorithms, it is assumed that the number of obstacles in O or

the dataset is small enough to fit in main memory. First, in Section 5.1, we describe the contin-

uous exact algorithm for the MVFS problem. The continuous exact algorithm uses the idea of

triangulation to compute the area of visible regions and reports the optimum result of the MVFS

problem. The discrete exact algorithm, discussed in Section 5.2, discretizes the data space into

small equal sized cells and determines the optimum solution to the MVFS problem in a data

space partitioned into cells. The discrete exact algorithm achieves considerable speedup over

the continuous exact algorithm by considering the cells as the building blocks of the data space

and thus avoiding actual area computations. Both the continuous and discrete exact algorithms

find the optimum solution of the MVFS problem and take exponential time with respect to n,

the number of data points, in the worst case. Finally, in Section 5.3, we present a greedy ap-

proximation algorithm, that, at each step, makes a greedy choice by selecting the data point that

maximizes the area of the still uncovered region and determines an approximate solution to the

MVFS problem. The greedy approximation algorithm has theoretically proven approximation

error bound and practically generates outputs very close to the optimum results.

20

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 21

5.1 The Continuous Exact Algorithm

In this section, we discuss the continuous exact algorithm that determines the optimum output

of the MVFS problem. The key idea of the continuous exact algorithm is to partition the data

space into disjoint triangles such that all points within a triangle are visible from the same subset

of data points in D. After the triangulation is constructed, we can calculate the area of the region

visible from a subset of D by adding up the area of appropriate triangles. A straightforward

solution of the MVFS problem is to generate all subsets of size k of the set of n data points,

compute the visible area for each such subset, and report the subset resulting in the visible region

with maximum area. But we use several acceleration techniques to avoid processing all subsets

of size k and thus speed up the computation.

We discuss the organization of this section as follows. First, in Section 5.1.1, we discuss

the process of determining the visible region from a data point in the presence of obstacles and

the triangulation of the visible region. Next, in Section 5.1.2, we describe the methodology to

construct the triangulation of the data space with respect to the n data points in D. Finally, in

Section 5.1.3, we present the continuous exact algorithm in details.

5.1.1 Constructing the Visible Region of a Data Point

In this section, we discuss the process of constructing the visible region of a data point,

given the obstacles within its range. We also describe how to triangulate the visible region. The

problem of constructing the visible region of a data point is similar to the problem of constructing

the visibility polygon with respect to a query point in a polygon with holes. We will refer to this

problem as the visibility polygon problem. The visibility polygon problem is a well studied

problem in computational geometry. We adopt the work of Asano [10] on the visibility polygon

problem to construct and triangulate the visible region of a data point.

First we define the visibility polygon problem. Then we state the correspondence between

the visibility polygon problem and our problem of determining the visible region of a data point

in the presence of obstacles. Next we provide a brief outline of the process of constructing the

visible region according to the work of Asano and discuss some implementation issues. Finally

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 22

we discuss the process of triangulating the visible region of a data point.

x
q

Figure 5.1: Visibility polygon for query point q in a polygon with 3 holes.

The Visibility Polygon Problem: Let P be a polygon containing m vertices and h holes.

Let q be a query point in P that is not inside any hole. Then, the visibility polygon with respect

to q, V , is the set of points, such that for every point p ∈ V , the segment pq does not intersect

any edge of the polygon P .

Figure 5.1 explains the visibility polygon problem. The figure shows a polygon with 17

vertices and 3 holes. The visibility polygon for query point q (cross marked) is shown in grey.

Note that, the problem of constructing the visible region of a data point is reducible to the

visibility polygon problem. Given a data point d and a set of obstacles within the range of d,

Od, we can construct a polygon P , whose exterior is an axis aligned square S of side length 2r

centered at d. Here r is the camera range. For each obstacle in Od, we add a hole in P . If the

obstacle spans outside S, we clip off the portion of the obstacle outside S. Thus, the holes will

stay inside S. Finally the data point d corresponds to the query point q in the visibility polygon

problem. The output of the visibility polygon problem is the sequence of vertices bordering

the visible region from q. Thus we can reduce an instance of the problem of determining the

visible region of a data point in the presence of obstacles to an instance of the visibility polygon

problem.

Refer to Figure 5.2 for better understanding of the process of constructing visible region of a

data point by reducing to visibility polygon problem. Here we simulate the process of construct-

ing the visible region of data point d3 in Figure 3.1. There are 3 obstacles inside the visibility

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 23

(a) (c)

o
5

o
8

d
3

x

o
6

xq
x

q

(b)

Figure 5.2: Constructing visible region of D3 by reducing to visibility polygon problem.

range of d3 as shown in Figure 5.2(a). We reduce this scenario to an instance of visibility poly-

gon problem, where the polygon has 16 vertices and 3 holes (Figure 5.2(b)). The data point d3

becomes the query point q. Finally Figure 5.2(c) shows the visible region of d3.

We briefly outline the procedure of determining the visibility polygon as proposed by Asano

in [10] as follows. The idea is based on angular sweep or rotational line sweep around the query

point q. First we sort all the hole segment endpoints by their respective polar angle around

q and iterate over the endpoints in that order. During the rotational sweep, we maintain the

segments intersecting with the sweep line in a balanced binary search tree T based on their order

of intersections with the sweep line. As the sweep proceeds, T is updated and a new output

vertex is generated each time the smallest element (segment closest to q) in T changes. This

implementation has a time complexity of O(n log n), where n is the number of vertices in the

polygon.

Now we describe the process of triangulating the visible region of the data point. From

Figure 5.2(c), notice that connecting the data point with each pair of adjacent vertices of the

visibility polygon creates a triangulation of the visible region. In some of these triangles, all

three vertices lie in a straight line resulting in an area of 0. These triangles are degenerate, and

hence are ignored.

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 24

5.1.2 Constructing the Visibility Triangulation of the Data Space

In this section, we describe the process of partitioning the data space into disjoint triangles

such that all points within a triangle are visible from the same subset of data points in D. We

call this triangulation the Visibility Triangulation of the data space. First we discuss some basic

definitions and notations useful for the construction of the visibility triangulation. Then we

present the algorithm that creates the visibility triangulation of the data space.

We define the visibility status of a point in the data space and the visibility triangulation of

the data space as follows.

Definition 3 Visibility Status of a Point: Given a set of n data points D, and a set of obstacles

O, the visibility status of a point p in the data space is defined to be a bitmap of length n, where,

for 0 ≤ i < n, the ith bit is set if p is visible from the ith data point in D, and off otherwise.

Definition 4 Visibility Triangulation: Given a set of data points D, and a set of obstacles O,

the visibility triangulation, Tv, of the data space is a partitioning of the visible region of D into

disjoint triangles, such that for each triangle t ∈ Tv, every point inside t has the same visibility

status.

If every point inside a triangle t has the same visibility status, we define the Visibility Status

of t to be the visibility status of a point inside t. We denote the visibility status of a point p by ps

and the visibility status of a triangle t in the visibility triangulation by ts.

We define two boolean operations on triangles as listed below.

• Given two triangles, ta and tb, the boolean intersection operation on ta and tb returns the

region common to both ta and tb. We denote the boolean intersection operation on two

triangles ta and tb by ta ∩ tb.

• Given two triangles, ta and tb, the boolean subtraction operation on ta and tb returns the

region of ta not inside tb. We denote the boolean subtraction operation on two triangles ta

and tb by ta/tb.

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 25

ta

ta

ta

ta

ta

ta

ta

ta

b
t

b
t

b
t

b
t

b
t

b
t

b
t

b
t

Figure 5.3: Boolean intersection and boolean subtraction operation on two triangles.

Figure 5.3 illustrates the idea of boolean intersection and subtraction operation on two trian-

gles. The white region is the boolean intersection of ta and tb. ta/tb is shown in light grey and

tb/ta is shown in dark grey.

To construct the visibility triangulation of the data space, we implement routines to calculate

the boolean intersection and subtraction region of triangles and also triangulate the intersection

and subtraction regions. Now we briefly discuss how to determine and triangulate intersection

and subtraction region of two triangles.

Determining Boolean Intersection of Triangles: We observe that, clipping one triangle

with respect to another triangle is similar to finding the boolean intersection of the two triangles.

We use the Sutherland-Hodgeman polygon clipping algorithm [45] to determine the boolean

intersection of two triangles. Triangulating the boolean intersection region is a trivial task as, if

nonempty, the common region of two triangles is always a convex polygon.

Determining Boolean Subtraction of Triangles: Given two triangles, ta and tb, to deter-

mine the boolean subtraction region, ta/tb, first we find all intersecting points of the two triangles.

Next we list the vertices of ta and the intersecting points in order they appear on the boundary

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 26

of ta. Then we traverse the list and keep track of whether the points are inside or outside tb. We

discard the region which is inside tb and thus subtract tb from ta. To triangulate the subtraction

region, we add cords to the region as long as the cord does not go outside the region and does

not intersect any existing cord.

We present the algorithm visTriangulation that constructs the visibility triangulation of the

data space below. First we discuss the function of the routines and variables used in the algo-

rithm.

rangeQuery: The rangeQuery routine takes a data point, the set of obstacles, and the visi-

bility range as input parameters and returns the subset of obstacles that intersect or falls within

the visibility range of a facility placed at the data point. As it is assumed that the set of obstacles

is small, we naively implement the rangeQuery routine by checking the query box against all

obstacles sent as the parameter. This routine is necessary to set appropriate input parameter of

the visRegion routine.

visRegion: The visRegion routine takes a data point, the set of obstacles within the visibility

range of the data point, and the visibility range as input parameters and returns a set of triangles

defining the visible region of the data point. We have discussed the process of constructing

and triangulating the visible region of a data point in Section 5.1.1. The routine visRegion is

implemented accordingly.

triangulate: The triangulate routine takes a polygonal region as input parameter and re-

turns a list of triangles defining a triangulation of the region. This routine is used to triangulate

the boolean intersection and subtraction region of two triangles. The routine triangulation is

implemented as discussed earlier in this chapter.

In the algorithm visTriangulation, di denotes the ith data point in D, ts denotes the visibility

status of triangle t, and subscripted L’s denote lists of triangles. Now we describe the algorithm

visTriangulation in details.

The algorithm visTriangulation constructs the visibility triangulation of the data space incre-

mentally, including one data point at a time. Initially, in Lines 2-5, we construct the visibility

triangulation for the first data point. Then, in the for loop spanning from Lines 6-30, we add

one data point at each iteration and incrementally reconstruct the visibility triangulation. At the

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 27

Algorithm 1: visTriangulation(O,D,r)
input : O,D,r
output: Visibility Triangulation of the Data Space

1 begin
2 Orq ←− rangeQuery(d0, O, r)
3 Lold ←− visRegion(d0, Orq, r)
4 for each triangle t in Lold do
5 ts ←− 1

6 for i←− 1 to n− 1 do
7 Orq ←− rangeQuery(di, O, r)
8 Lnew ←− visRegion(di, Orq, r)
9 Lcommon ←− ∅

10 for each triangle told in Lold do
11 for each triangle tnew in Lnew do
12 L1 ←− triangulate(told ∩ tnew)
13 if L1 = ∅ then
14 continue
15 L2 ←− triangulate(told/tnew)
16 L3 ←− triangulate(tnew/told)
17 for each triangle t in L1 do
18 ts ←− ts + 2i

19 Lcommon.insert(t)

20 Lold.remove(told)
21 for each triangle t in L2 do
22 Lold.insert(t)

23 Lnew.remove(tnew)
24 for each triangle t in L3 do
25 Lnew.insert(t)

26 for each triangle t in Lnew do
27 ts ←− 2i

28 Lold.insert(t)

29 for each triangle t in Lcommon do
30 Lold.insert(t)

31 return Lold

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 28

o
1

o
0

o
2

o
3

o
4

o
5

x

o
1

o
0

o
2

o
3

o
4

o
5

x

x

o
1

o
0

o
2

o
3

o
4

o
5

x

x

x

(a) (b)

(c)

d 0

d 1

d 2

d 1

d 0d 0

Figure 5.4: Construction of visibility triangulation for 3 data points.

beginning of each iteration of the for loop, the list Lold holds the visibility triangulation of the

first i data points. In Lines 7-8, we construct the visibility triangulation for the (i + 1)st data

point and put it in the list Lnew. In Lines 10-25, we consider all possible pair of triangles, (told,

tnew), where told ∈ Lold and tnew ∈ Lnew. We create three lists of triangles L1, L2, and L3,

where L1 contains the triangulation of the boolean intersection of told and tnew (Line 12), L2

contains the triangulation of the boolean subtraction of tnew from told (Line 15), and L3 contains

the triangulation of the boolean subtraction of told from tnew (Line 16). We put the triangles in

L1, i.e., the common region of told and tnew, in the list Lcommon (Lines 17-19). Note that, the

regions told/tnew and tnew/told may intersect with other triangles in Lnew and Lold respectively.

Consequently, we remove told from Lold and insert the triangulation of told/tnew in Lold (Lines

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 29

20-22), and we remove tnew from Lnew and insert the triangulation of tnew/told in Lold (Lines

23-25). After the termination of the outer loop spanning Lines 10-25, Lold holds the triangles

that are not in the visible region of the (i + 1)st data point, Lnew holds the triangles that are

not in the visible region of the first i data points, and Lcommon holds the triangles that are in the

common visible region of the first i data points and the (i + 1)st data point. In Lines 26-30, we

update Lold to construct the visibility triangulation of the first i+ 1 data points. Lines 5, 18, and

27 are added to maintain the visibility status of the triangles correctly.

Figure 5.4 shows the construction of visibility triangulation for the first 3 data points of the

scenario depicted in Figure 3.1. Initially the visibility triangulation holds the triangulation of

the visible region of d0 (Figure 5.4(a)). In the next two iteration, data points d1 and d2 are

added and the visibility triangulation is constructed incrementally as shown in Figure 5.4(b) and

Figure 5.4(c).

5.1.3 The Algorithm

In this section, we propose the continuous exact algorithm for the MVFS problem. First we

present a straightforward solution to the MVFS problem using the visibility triangulation of the

data space. Then we address the bottlenecks of the straightforward solution. Finally we present

an improved algorithm that removes the drawbacks of the naive solution.

We present the algorithm naiveContinuousExact that provides a straightforward solution to

the MVFS problem. Here, ta denotes the area of triangle t, ∼ and | denote the bitwise not and

bitwise or operators respectively. In this algorithm, first we construct the visibility triangulation

of the data space. Then we generate all possible subsets of size k of the n data points and

determine the visible area from each subset by adding up the area of the appropriate triangles

from the visibility triangulation. Finally we report the subset with maximum area.

The algorithm naiveContinuousExact has two major performance bottlenecks as listed below.

• To calculate the visible area of a subset of data points, we traverse all triangles in the

visibility triangulation.

• We consider all length k subsets of the n data points.

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 30

Algorithm 2: naiveContinuousExact(O,D,r,k)
input : O,D,r,k
output: Optimum Choice of k Data Points

1 begin
2 L←− visTriangulation(O,D, r)
3 maxArea←− −1
4 maxChoice←− 0
5 for each bitmap m of length n with k set bits do
6 area←− 0
7 for each triangle t ∈ L do
8 if ∼ m|ts = 0 then
9 area←− area+ ta

10 if area > maxArea then
11 maxArea←− area
12 maxChoice←− m

13 return maxChoice

We propose some acceleration techniques to remove these bottlenecks. To address the first

bottleneck mentioned above, we observe that in the visibility triangulation, the number of unique

visibility status values is far less than the number of triangles in the visibility triangulation. Con-

sequently, for each unique visibility status value, we create an element. Each element has a key

and a value. The value of an element with key s equals the sum of areas of all triangles in the

visibility triangulation having visibility status s. To speed up the algorithm naiveContinuousEx-

act, we execute a preprocessing step after the visibility triangulation is constructed, where we

create a list of elements as described above. While calculating the visible area for a subset of

data points, instead of searching all triangles in the visibility triangulation, we traverse the list of

elements. Thus we remove the first bottleneck mentioned above. For example, in Figure 5.4(c),

there are 68 triangles but only 7 distinct visibility status values.

We present the idea to avoid calculating the visible area for all length k subsets of the n

data points below. First consider the scenario in Figure 5.5(a). The visible regions of the 5 data

points are shown in grey. Suppose we want to generate the optimum output for k=3. Note that

the visible regions of the data points do not overlap. As the visible regions do not overlap, a

greedy approach where at each step the data point having maximum visible area is chosen works

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 31

o
1

o
0

o
2

o
3

o
4

o
5

o
8

o
7

x

x

x
x

x

o
1

o
0

o
2

o
3

o
4

o
5

o
8

o
7

x
x

x

x

x

(a)

(b)

o
6

o
6

d
0

d
1

d
1

d
2

d
2

d
4

d
4

d
3

d
3

d
0

Figure 5.5: Distribution of data points with (a) non-overlapping visible regions and (b) overlap-
ping visible regions.

optimally. Consequently there is no need to calculate the visible area for all three element subsets

of the 5 data points. Instead we calculate the visible areas of the 5 data points and sort the data

points in non-increasing order of visible area, < d2,d4,d0,d1,d3 >, and we report the first 3 data

points < d2,d4,d0 >, which is the optimum result.

Consider the MVFS instance illustrated in Figure 5.5(b). Notice that, here the data points are

separated in 2 connected components, c1 and c2, where c1 contains d0, d1, and d2 and c2 contains

d3, and d4. No point in the data space is visible simultaneously from one data point in c1 and

one data point in c2. Consequently, calculating visible area for subsets having data points from

both c1 and c2 is unnecessary, as there is no such triangles or elements. Instead, we calculate

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 32

visible areas for all subsets of the data points in c1 and all subsets of the data points in c2. Then

we make 3 (= k) greedy choices, where at each step, we select the connected component that

results in the maximum increment of the visible area and increase that component’s count. The

process terminates when the sum of the counts of the components reaches 3 (= k). Let the count

of a component c is denoted by cc. Then for each component c, we choose the subset of length

cc with maximum visible area to construct the optimum solution.

In the scenario depicted in Figure 5.5(b), for component c1, the one, two, and three element

subsets having maximum area visible region are {d2}, {d0, d2}, and {d0, d1, d2} respectively.

The area of the visible regions of the three subsets are 32, 61, 78 respectively. In component

c2, the one, and two element subsets having maximum area visible region are {d4}, and {d3, d4}

respectively. The area of the visible regions of the two subsets are 30, and 44 respectively. Now

we make 3 greedy choices as follows. Initially the counts of both components are 0, i.e., cc1 = 0

and cc2 = 0. In the first greedy step, we select component c1 because it increases the visible area

by 32, greater than that of c2, which is 30. After the first greedy selection, cc1 = 1 and cc2 = 0.

In the second greedy step, we select c2 because it increases the visible area by 30, greater than

the increment of c1, which is 29 (=61-32). After the second greedy iteration, cc1 = 1 and cc2 = 1.

In the third greedy step, we choose c1, as the area increment of c1 (61-32=29) is greater than that

of c2 (44-30=14). After the third greedy step, we have cc1 = 2 and cc2 = 1, and the greedy loop

terminates. Finally to generate the optimum solution, we select the two element subset of c1 with

maximum area, i.e., {d0, d2} and the one element subset of c1 with maximum area, i.e., {d4}.

Thus the optimum solution is < d0,d2,d4 >.

Now we present the algorithm continuousExact for the MVFS problem that incorporates the

above discussed acceleration techniques to eradicate the bottlenecks of the naive solution. First

we describe the routines used in the algorithm.

connectedComponent: The connectedComponent routine takes a set of data points, a set of

obstacles, and the visibility range as input parameters and returns the overlapping components

as illustrated in the Figure 5.5(b). To determine the components, first we construct a graph G.

The data points in D are the nodes of G. There exists and edge between two data points if their

visible regions overlap. We use the visRegion routine used in the algorithm visTriangulation

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 33

to determine the visible region of each data point. To determine whether there exists an edge

between two data points, di and dj , we calculate boolean intersection of all pair of triangle (ti,tj),

where ti ∈ visRegion(di) and tj ∈ visRegion(dj). There is an edge between di and dj , if there

exists at least one pair of triangles whose boolean intersection is not null. After constructing the

graph G, we perform Depth First Search (DFS) on G to find the connected components.

bitmask: The bitmask routine takes a connected component c of data points as input param-

eter and returns a bitmap of length n whose ith bit is set if di ∈ c, and off otherwise.

generateResult: The generateResult routine takes list of tuples as input and generates the

optimum result of the MVFS problem. The routine processes the tuples as simulated in Fig-

ure 5.5(b). The routine makes k greedy choices to generate the solution. At each step, the

routine considers each component and selects the component that results in maximum increase

in visible area.

We explain the algorithm continuousExact as follows. In Lines 3-8, we create the list of

elements M to remove the first bottleneck discussed previously. M is implemented as a balanced

binary search tree storing (key, value) pairs. Thus we can search an element in M by its key in

logarithmic time. Here, the M [s] notation denotes the value of the element having key s. We

construct the connected components of D (Line 9). For each component, we consider all subsets

of length less than or equal to k (Lines 11-23) and populate the list of tuples R (Line 24). Finally

we call the generateResult routine to produce the optimum solution of the MVFS problem.

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 34

Algorithm 3: continuousExact(O,D,r,k)
input : O,D,r,k
output: Optimum Choice of k Data Points

1 begin
2 L←− visTriangulation(O,D, r)
3 M ←− ∅
4 for each triangle t ∈ L do
5 if ts ∈M then
6 M [ts]←−M [ts] + ta

7 else
8 M.insert(ts, ta)

9 C ←− connectedComponent(D,O, r)
10 R←− ∅
11 for each component c ∈ C do
12 l←− min(c.size(), k)
13 for i←− 1 to l do
14 maxArea←− −1
15 maxChoice←− 0
16 for each bitmap m with i set bits in bitmask(c) do
17 area←− 0
18 for each element e ∈M do
19 if ∼ m|e.key = 0 then
20 area←− area+ e.value

21 if area > maxArea then
22 maxArea←− area
23 maxChoice←− m

24 R.insert(tuple(c, i,maxArea,maxChoice))

25 generateResult(R)
26 return

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 35

5.2 The Discrete Exact Algorithm

In this section, we propose the discrete exact algorithm for the MVFS problem, which par-

titions the data space into a grid of equal sized cells and considers the notion of visibility of

the data space in terms of the grid cells. First we reformulate the MVFS problem for a grid

partitioned data space (Section 5.2.1). Next we describe a projection based idea to determine

visibility of cells to/from a data point (Section 5.2.2). Finally we present the discrete exact

algorithm (Section 5.2.3).

5.2.1 MVFS in Grid Partitioned Data Space

In this section, first we describe grid partitioning and introduce the notion of visibility in a

grid partitioned data space by providing some necessary definitions. Next we reformulate the

MVFS problem according to the new idea of visibility in a discretized data space. Finally we

discuss the motivation behind this formulation

We discuss grid partitioning of data space into cells as follows. In grid partitioning, we

visualize the data space to be homogeneously partitioned into equal sized cells as in a grid. We

consider the midpoint of each cell as its representative. Now we define the visibility of a cell

to/from a data point in a grid partitioned data space.

Definition 5 Visibility between a Cell and a Data Point: Given a set of obstacles, and the

visibility range of a facility, a cell c is defined as visible to/from a data point d, if the midpoint of

c is visible to/from d. Otherwise, c is defined as non-visible to/from d.

Figure 5.6 illustrates the idea of cell visibility by showing a sample grid partitioning around

the vicinity of the data point d3 from Figure 3.1. In the figure, the visibility range of d3 is shown

in dashed lines, the visible region of d3 is shown in bold lines, and the visible cells from d3 are

shown in grey. According to the above definition of visibility between a cell and a data point,

the cells whose midpoints are visible from d3 are declared visible from d3. Now we redefine the

MVFS problem for a data space partitioned into cells.

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 36

o
5

o
8

o
6

d
3

x
r

Figure 5.6: Grid Partitioning into Cells.

The Discrete MVFS Problem: Given an m-dimensional data-space Rm (m=2 or 3), the set

of obstacles in the data-space, the set of n data points where a facility can be placed, D, the

viewing range of a facility, an integer k (1 ≤ k ≤ n), and a grid partitioning of the data space

into cells, the problem is to determine a subset S of D, S ⊆ D, of size k, |S| = k, to establish

k facilities, such that, the number of cells visible from at least one data point in S is maximized.

Here the notation |.| stands for the cardinality of a set. We call this version the discrete MVFS

problem.

We discuss the motivation behind this new formulation of the MVFS problem as follows. The

continuous exact algorithm, discussed in the previous section, accurately determines the area of

the visible region of data points by summing the area of the triangles in the visibility triangu-

lation according to their visibility status. If the data points are closely located, the visibility

triangulation consists of a huge number of small triangles. Consequently the construction of vis-

ibility triangulation becomes computationally expensive and the performance of the continuous

exact algorithm deteriorates. Now, in Figure 5.6, notice that, the area of the visible (grey) cells

is a close estimation of the area of the visible region of d3. According to the modified problem

definition, the discrete exact algorithm does not calculate the area of the visible regions. Instead,

it counts the number of visible cells which serves as an estimation of the visible area of a data

point. Thus the discrete exact algorithm achieves considerable speedup over the continuous exact

algorithm by avoiding actual area computations. Also the number of cells within the visibility

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 37

range of a data point remains fixed irrespective of the density of the data points in the surround-

ing space. Thus the discrete exact algorithm performs steadily regardless of the distribution of

the data points in the data space.

5.2.2 Determining Visibility of Cells using Projection

In the discrete exact algorithm, the visible region of a data point d is estimated by counting

the number of cells visible from d. In this section, we describe the process of determining the set

of cells visible from a data point. We outline a routine, namely visibleCells, that takes as input

a data point d, the set of obstacles located within the visibility range of d, the visibility range

of a facility, and a grid partitioning of the data space, that determines the set of cells in the grid

which are visible from d. We use a projection based idea [7] [9] and perform plane sweep in each

principal axis direction to determine the set of visible cells from a data point. Now we outline

the methodology used in the routine visibleCells in brief.

To determine the set of visible cells of a data point, we need to determine the occlusion effect

of obstacles around it. We perform line sweep along each principal axis direction and calculate

the projections of the obstacles on each sweep line position within the visibility range to evaluate

the occlusion effect. The projection of obstacles on sweep lines can be determined according to

the following rules:

• Projection is calculated at each sweep line position where the midpoints of the cells are

situated.

• Initially the projection is null.

• Projection at the current sweep line position is obtained by aggregating the projection of

the obstacles situated between the previous and current sweep line positions and the re-

projection of the previous sweep line projection on the current sweep line.

For example, consider the 2D scenario depicted in Figure 5.7, where we demonstrate the

process of calculating projection of obstacles on sweep lines around data point d. Here, we sim-

ulate the line sweep along the +X direction only, because line sweep along the other 3 directions

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 38

can be performed in a similar manner. Along the +X direction, the projection of obstacles is

calculated at 5 successive vertical sweep line position where the midpoints of the cells are sit-

uated, i.e., L1 to L5. There is no obstacle between d and L2. Thus projections on L1 and L2

are null. Obstacle o2 starts between L2 and L3. So projection on L3 is AB (shown as bold line

segment). Projection on L4 is created by re-projecting the projection on L3 (AB) on L4, which is

CD. Obstacle o3 starts between L4 and L5. Thus the projection on L5 is obtained by aggregating

EF (the re-projection of CD on L5) and GH (the projection of o3 on L5), which is EH. A detailed

description of the process of calculating aggregated projections of obstacles on successive sweep

line positions can be found in [9] and [7].

d
x

A

B

C

D

E

F

G

H

L L L L L
1 2 3 4 5

o
2

o
3

Figure 5.7: Calculating projections on successive sweep line positions.

The cells whose midpoints lie on the projections are occluded by the obstacles (gray cells in

Figure 5.7) and thus not visible from d. Line sweep is performed along the other 3 principal axes

to find all occluded cells around d. Finally the set of cells visible from d are the cells which are

situated inside a distance r from d and which are not occluded. Thus the set of visible cells from

a data point can be determined by performing line sweep and calculating aggregated projections.

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 39

5.2.3 The Algorithm

In this section, we formally present the discrete exact algorithm, which determines the op-

timum solution of the MVFS problem in a grid partitioned data space. First we define visibility

status of cell c, denoted by cs, an idea which is necessary for the development of the discrete

exact algorithm.

Definition 6 Visibility Status of a Cell: Given a set of n data points D, and a set of obstacles,

the visibility status of a cell c in the grid partitioning is defined to be a bitmap of length n, where,

for 0 ≤ i < n, the ith bit is set if c is visible from the ith data point in D, and off otherwise.

We briefly define the basic idea underlying the discrete exact algorithm below. The discrete

exact algorithm is similar to the continuous exact algorithm in the sense that in the discrete

version, cells serve the same purpose as triangles do in the continuous version. Notice that, in

the continuous exact algorithm, we partitioned the visible region of the data space into disjoint

triangles. Triangles were the building block of the data space and all points within each triangle

had the same visibility status. In the discrete exact algorithm, we partition the data space into

disjoint cells. Each cell has a visibility status which equals the visible status of its midpoint.

Thus cells serve as the building block of the data space in the discrete exact algorithm.

We explain the algorithm discreteExact briefly as follows. This algorithm takes as input the

grid partitioning of the data space, G, which indicates cells size, extent of the data space etc.

In Lines 2-4, we use the routine visibleCells outlined in Section 5.2.2 to construct the visibility

status of the cells in the grid partitioning. Notice that, in the continuous exact algorithm, a call to

visTriangulation served similar purpose by assigning visibility status to triangles. The rest of the

algorithm discreteExact is similar to that of the algorithm continuousExact, with the exception

that in the discrete version we calculate the count of cells, whereas in the continuous version we

determine area of the triangles.

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 40

Algorithm 4: discreteExact(O,D,r,k,G)
input : O,D,r,k,G
output: Optimum Choice of k Data Points

1 begin
2 for i←− 0 to n− 1 do
3 Orq ←− rangeQuery(Di, O, r)
4 visibleCells(Di, Orq, r, G)

5 M ←− ∅
6 for each cell c with cs 6= 0 do
7 if cs ∈M then
8 M [cs]←−M [cs] + 1

9 else
10 M.insert(cs, 1)

11 C ←− connectedComponent(D,O, r)
12 R←− ∅
13 for each component c ∈ C do
14 l←− min(c.size(), k)
15 for i←− 1 to l do
16 maxCount←− −1
17 maxChoice←− 0
18 for each bitmap m with i set bits in bitmask(c) do
19 count←− 0
20 for each element e ∈M do
21 if ∼ m|e.key = 0 then
22 count←− count+ e.value

23 if area > maxCount then
24 maxCount←− count
25 maxChoice←− m

26 R.insert(tuple(c, i,maxCount,maxChoice))

27 generateResult(R)
28 return

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 41

5.3 The Greedy Approximation Algorithm

The continuous exact algorithm and the discrete exact algorithm both determines the opti-

mum solution of the MVFS problem in continuous and discrete data space respectively. But in the

worst case, their time complexity is exponential to the number of data points n, as they consider

all possible subsets of the n data points. Consequently, in this section, we propose a polynomial

time greedy approximation algorithm for the MVFS problem. We reduce the MVFS problem to

the well known weighted maximum coverage (WMC) problem. The WMC problem is known to

be NP-hard. There is a greedy solution to the WMC problem with proven approximation ratio of

1 − 1
e
. First we state the WMC problem and describe the process of reducing an instance of the

discrete MVFS problem to an instance of the WMC problem (Section 5.3.1). Finally we outline

the greedy approximation approach to the WMC problem and propose a greedy approximation

algorithm for the discrete MVFS problem by adopting the greedy approach (Section 5.3.2).

5.3.1 Reduction to Weighted Maximum Cover Problem

First we state the well known weighted maximum coverage problem.

The Weighted Maximum Coverage Problem: In the weighted maximum coverage prob-

lem, an integer k and a collection of n sets S=S0, S1, ...Sn−1 are given. Each element of the set

has an associated weight. The objective is to find a subset S ′ ⊆ S, such that |S ′| ≤ k and sum

of the weights of the elements covered by S ′ is maximized. Here, the notation |.| stands for the

cardinality of a set.

We describe the process of reduction from the discrete MVFS problem to the WMC problem

as follows. Consider an instance of the discrete MVFS problem. The set of cells visible from the

n data points can be denoted by S0, S1, ...Sn−1. The weight of each cell is 1. The objective is to

maximize the weighted coverage of k sets among the n sets.

We describe another way of reducing the discrete MVFS problem to the WMC problem be-

low. Consider the contents of the map of elements M in the algorithm discreteExact after the

execution of Line 10. M contains (key,value) pairs, where the key s is a distinct visibility status

and the corresponding value is the number of cells having the visibility status s. Now, given an

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 42

instance of the discrete MVFS problem, for each (key,value) pair in M , we create an element e

in the WMC instance, where e.key is the identifier of an element and e.value is the weight of the

element. For each element e, if the ith bit of e.key is set, we place e in the ith subset Si. Thus we

populate S0 through Sn−1.

5.3.2 The Algorithm

First we discuss a greedy approach to the WMC problem. The WMC problem is known to be

NP-hard. The best known approximation algorithm for the WMC problem is a greedy algorithm

that at each step chooses the set that maximizes the sum of the weights of the uncovered elements.

This greedy algorithm has been proved to be the best-possible polynomial time approximation

algorithm for the weighted maximum coverage problem [46] [47] and has an approximation ratio

of 1− 1
e
.

A similar greedy approach for the discrete MVFS problem is to select, at each step, the data

point that turns the maximum number of cells from still non-visible to visible. Now we present

the greedy approximation algorithm greedy which implements the above strategy to generate an

approximate solution of the discrete MVFS problem. In this algorithm, after constructing the

map of elements M , in Lines 11-14, we populate the subsets S0 through Sn−1. Here, e.key[i]

denotes the ith bit of e.key. The loop in Lines 16-23, makes a greedy choices at each of the k

iterations. At each iteration, the findMaxS routine in Line 17 returns the index of the subset with

maximum sum of weight of the elements. In Lines 19-22, we remove the elements of the newly

found subset from all the subsets so that the subsets only contain the still uncovered elements at

the beginning of the next iteration.

CHAPTER 5. MAIN MEMORY BASED ALGORITHMS 43

Algorithm 5: greedy(O,D,r,k,G)
input : O,D,r,k,G
output: Greedy Choice of k Data Points

1 begin
2 for i←− 0 to n− 1 do
3 Orq ←− rangeQuery(Di, O, r)
4 visibleCells(Di, Orq, r, G)

5 M ←− ∅
6 for each cell c with cs 6= 0 do
7 if cs ∈M then
8 M [cs]←−M [cs] + 1

9 else
10 M.insert(cs, 1)

11 for each element e ∈M do
12 for i←− 0 to n− 1 do
13 if e.key[i] 6= 0 then
14 Si.insert(e)

15 R←− ∅
16 while k 6= 0 do
17 index←− findMaxS()
18 R.insert(index)
19 for i←− 0 to Sindex.size− 1 do
20 for j ←− 0 to n− 1 do
21 if Sj.isFound(Sindex[i]) then
22 Sj.remove(Sindex[i])

23 k ←− k − 1

24 return R

Chapter 6

Disk Resident Algorithms

A real dataset modeling a building complex or a city area usually contains a huge number of

obstacles. If the size of the dataset is too large to fit in main memory, the main memory based

algorithms issue disk access requests to fetch data from the persistent storage. This results in high

IO overhead and consequently the performance of the main memory based algorithms degrades.

To reduce the IO overhead in case of large datasets, in this chapter, we propose several disk

resident algorithm for the discrete MVFS problem. The disk resident algorithms use a persistent

spatial data structure, R-tree, where the obstacles are stored. The R-tree reduces the number of

disk accesses by indexing the obstacles according to their spatial properties, such that closely

situated objects in the model are located close to each other in the disk.

We discuss the organization of this chapter as follows. In Section 6.1, we present a straight-

forward disk resident version of the algorithm greedy described in Chapter 5.3. In Section 6.2,

we propose a heuristic driven best first search based technique that reduces the IO cost by avoid-

ing redundant issues of range query. To farther improve the performance of the best first strategy,

in Section 6.3, we formulate an approach based on batch processing, where we group the data

points that are in close proximity of each other into clusters and process each cluster of data

points together instead of processing each data point individually.

44

CHAPTER 6. DISK RESIDENT ALGORITHMS 45

6.1 The Naive Greedy Algorithm

In this section, we present a naive disk resident algorithm for the discrete MVFS problem.

First we identify the bottleneck of the main memory based greedy algorithm that causes high IO

overhead. Then we present the disk resident straightforward greedy algorithm.

Consider Line 3 of the algorithm greedy of Chapter 5.3. Here a range query is issued for each

data point d to retrieve the obstacles situated within the visibility range of d. The rangeQuery

routine traverses the obstacle set and returns the obstacles intersecting or falling within the vis-

ibility range of d. For a huge obstacle set, which is too large to fit in main memory, the range

query routine causes disk access requests to retrieve all the obstacles from the disk. Thus the n

calls to the routine rangeQuery incurs huge IO overhead for a large disk resident obstacle set.

This is the bottleneck of the main memory based greedy algorithm.

We present the algorithm naiveGreedy below, that reduces the IO overhead by speeding up

the range query routine. In this algorithm, we assume that the obstacles in O are indexed in an

R-tree, T , a persistent spatial data structure, that can process spatial queries quickly on large

set of spatial objects. It is not required to build T each time an MVFS query arrives as T is

persistent. In the algorithm naiveGreedy, we perform one range query for each data point and

store the results in an auxiliary data structure Z (Lines 3-5). Z contains (data point, obstacle set)

pairs, (d,O), where O is the result of a range query on d. We assume that the size of Z is small

enough to fit in main memory. We pass Z as a parameter to the algorithm greedy instead of the

obstacle set O (Line 6). During the execution of greedy, we skip the routine rangeQuery as the

results are already available in Z.

Algorithm 6: naiveGreedy(T ,D,r,k,G)
input : T ,D,r,k,G
output: Greedy Choice of k Data Points

1 begin
2 Z ←− ∅
3 for each data point d ∈ D do
4 Orq ←− T.rangeQuery(d, r)
5 Z.insert(d,Orq)

6 return greedy(Z,D, r, k,G)

CHAPTER 6. DISK RESIDENT ALGORITHMS 46

6.2 The Best First Algorithm

The main drawback of the naive greedy approach discussed in the previous section is that it

issues n range queries, one for each data point, on the R-tree irrespective of the value of k. In this

section, we propose a heuristic driven method based on best first search technique that enables

us to make the k greedy choices without issuing range queries for all data points in D. First, we

discuss some preliminary ideas necessary for the development of the algorithm (Section 6.2.1).

Finally, we present the algorithm bestFirst, which issues less range queries than the naive greedy

algorithm (Section 6.2.2).

6.2.1 Preliminaries

In this section, we introduce an auxiliary data structure, provide necessary definitions, and

describe the heuristic. In the algorithm bestFirst, we use a matrix, which stores one boolean

value for each cell in the grid partitioning. The boolean value corresponding to a cell c indicates

whether c visible from any previously chosen data point, as we make the greedy choices of data

points. For a cell which is visible from any previously selected data point, the boolean value

stored in the matrix is 0, and otherwise the value is 1. We call this matrix of boolean values, the

Visibility Matrix. The visibility matrix is denoted by V . The value in V corresponding to a cell

c is denoted by V [c].

We define the event of transition as follows. Consider the event in which a cell, c, that is

visible from no previously chosen data point, becomes visible after a greedy choice (i.e., the

placement of a new facility). In this event, V [c] changes from 1 to 0. We call this event a

transition. Note that, during each of the k iterations of a greedy algorithm, we choose the data

point that causes maximum number of transitions.

We describe the heuristic which drives the best first search below. Each data point in D has a

heuristic value. While making the greedy choices, we expand the data points according to their

heuristic values. The heuristic value of a data point d is the sum of the visibility matrix values of

all cells having midpoints within the visibility range of d. The heuristic value of a data point d is

denoted by dh. Note that, according to the above definition, the heuristic value of a data point d

CHAPTER 6. DISK RESIDENT ALGORITHMS 47

indicates the number of still non-visible cells within the visibility range of d.

6.2.2 The Algorithm

In this section, we present the algorithm bestFirst, which uses greedy best first search tech-

nique to make k greedy choices. At each of the k iterations, we select the data point that results

in maximum number of transitions. First we describe the functions of the routines and data struc-

tures used in the algorithm bestFirst. Then we explain the algorithm. Finally we simulate the

algorithm with an illustrative example.

Routines and Data Structures

calculateHeuristic: The calculateHeuristic routine takes a data point, the visibility range of

a facility, and the visibility matrix as input parameter and returns the heuristic value of the data

point. The routine calculates the sum of the visibility matrix values of all cells situated within

the visibility range of the data point and returns the sum.

transitionCount: The transitionCount routine takes a data point, the set of obstacles situated

within the range of the data point, and the visibility matrix as input and returns the number of

transitions that occur if a facility is placed at the data point. In other words, it returns the number

of those cells, which are visible from the data point and whose visibility matrix value is 1. The

transitionCount routine uses the projection based idea described in Chapter 5.2.2 to determine

the set of cells C that visible from the data point and returns the number of cells in C that

have visibility matrix value of 1. Note that, the routine transitionCount is similar to the routine

visibleCells used in the discrete exact algorithm.

updateV: The updateV routine takes a data point, and the set of obstacles within the visibility

range of the data point as input and updates the visibility matrix as follows. The visibility matrix

value of all cells that are visible from the data point is set to 0. Thus we maintain whether a cell

is visible from any greedily chosen data point. The implementation of this routine is similar to

the implementation of the routine visibleCells or transitionCount.

V : V is the visibility matrix discussed in the previous section. It is implemented as a 2D

CHAPTER 6. DISK RESIDENT ALGORITHMS 48

Algorithm 7: bestFirst(T ,D,r,k,G,V)
input : T ,D,r,k,G,V
output: Greedy Choice of k Data Points

1 begin
2 R←− ∅
3 Z ←− ∅
4 while k 6= 0 do
5 Q←− ∅
6 for each data point d ∈ D do
7 d.key ←− calculateHeuristic(d, r, V)
8 d.state←− OPEN
9 Q.push(d)

10 while true do
11 d←− Q.pop()
12 if d.state = CLOSED then
13 R.insert(d)
14 Q.remove(d)
15 updateV (d, Z[d])
16 break
17 if !Z.find(d) then
18 Orq ←− T.rangeQuery(d, r)
19 Z.insert(d,Orq)

20 else
21 Orq ←− Z[d]

22 d.key ←− transitionCount(d,Orq, V)
23 d.state←− CLOSED
24 Q.push(d)

25 k ←− k − 1

26 return R

CHAPTER 6. DISK RESIDENT ALGORITHMS 49

matrix. In the algorithm bestFirst, we assume that V can fit in main memory and V is cached

while MVFS queries are being processed. Consequently, V is passed as a parameter to the

algorithm bestFirst. When V is passed as parameter to an MVFS query, it stores 0 for all the

cells whose midpoints lie inside an obstacle. This is because those cells can not be visible from

any data point. The cells whose midpoints do not lie inside any obstacle, have a visibility matrix

value of 1.

Z: Z is a map that contains (key, value) pairs, (d,O), where O is the set of obstacles situated

within the visibility range of d. The notation Z[d] indicates the obstacle set corresponding to

data point d.

Q: Q is a max priority queue that stores data points according to their heuristic value. In a

pop operation, Q returns the data point with maximum key or heuristic value.

Explanation

We explain the algorithm bestFirst as follows. First we make two key observations as follows:

• Placing a facility at a data point having high heuristic value is more likely to cause more

transitions than placing a facility at a data point having low heuristic value.

• The number of transitions caused by placing a facility at a data point d is upper bounded

by the heuristic value of d, dh.

At each iteration of the greedy loop spanning from Line 4 to 25, we select the data point that

causes maximum number of transitions. According to the above two observations, we expand

the data points in non-decreasing order of their heuristic value. At the start of each iteration,

we calculate the heuristic value of each data point and put all the data points in a max priority

queue Q according to their heuristic value (Lines 6-9). All the data points are divided into two

disjoint sets, the OPEN set and the CLOSED set. The data points for which range query is yet not

issued belong to the OPEN set. On the other hand, the data points whose range query is already

issued belong to the CLOSED set and their key values are set to their respective transition counts.

Initially all the data points are in the OPEN set.

CHAPTER 6. DISK RESIDENT ALGORITHMS 50

For each data d point being popped from Q, we search the map Z to check whether range

query result of d is available. If not, we issue a range query on T to determine the set of obstacles

located within the visibility range of d and save the results in Z (Lines 17-21). Note that, we use

Z to avoid redundant issues of range query. We update the key value of d by its transition count

and add it to the CLOSED set (Lines 22-23). As soon as a data point d belonging to the CLOSED

set is retrieved from Q, the algorithm select d as the greedy choice, updates the visibility matrix

accordingly, and proceeds to the next iteration (Lines 12-16).

Note that, the algorithm bestFirst never issues range query for a data point d, if the heuristic

value of d is less than or equal to the transition count of any data point belonging to the CLOSED

set. Thus the greedy best first technique avoids issuing range queries for all the data points in D

and achieves better performance than the naive greedy approach.

Simulation

Figure 6.1 provides an illustrative example simulating the algorithm bestFirst for a scene

with 3 data points, 5 obstacles, and k = 2. The visibility range of the data points are shown in

dashed lines. The visible region from the data points are shown in bold lines. The cells having

visibility matrix value of 0 and 1 are shown in white and grey respectively. Initially the cells

having midpoints within an obstacle are white and all other cells are grey (Figure 6.1(a)). At the

beginning of the first iteration, the heuristic values of the data points are as follows: d0h = 21,

d1h = 15, and d2h = 23. The algorithm bestFirst expands the data point with maximum heuristic

value, d2, issues a range query for d2, and determines its transition count to be 22. As the

transition count of d2 is greater than the heuristic value of d0 and d1, the first greedy choice d2

is made without issuing range query for d0 and d1. Then the algorithm updates V for d2. The

state of the visibility matrix after the end of the first iteration is shown in Figure 6.1(b). At the

beginning of the second iteration, the heuristic values of the data points are as follows: d0h = 17,

and d1h = 7. Thus the algorithm expands d0 and determine its transition count to be 17. As

the transition count of d0 is greater than the heuristic value of d1, the second greedy choice d0

is made without issuing range query for d1 and the algorithm terminates. The final state of V is

shown in Figure 6.1(c).

CHAPTER 6. DISK RESIDENT ALGORITHMS 51

(a) (b)

(c)

o
1

o
0

o
2

o
3

o
4

o
5

x

x

x

d
0

d
2

d
1

o
1

o
0

o
2

o
3

o
4

o
5

x

x

x

o
1

o
0

o
2

o
3

o
4

o
5

x

x

x

Figure 6.1: Simulation of best first greedy approach.

6.3 The Batch Processing Algorithm

In this section, we present the algorithm batchProcessing, that uses the idea of clustering to

gain farther speedup over the best first search based algorithm discussed in the previous section.

First we identify a drawback of the algorithm bestFirst. Then we briefly outline the clustering

technique we have adopted in this algorithm. Finally we propose the algorithm batchProcessing.

Although the best first search based algorithm reduces the IO overhead considerably in com-

parison with the naive greedy algorithm for small values of k, there is an issue that the algorithm

bestFirst fails to address. Consider two closely situated facilities. The region covered by the

two facilities in the data space may overlap each other. Consequently issuing range queries for

the data points is redundant, as their combined coverage is close to their individual coverage.

CHAPTER 6. DISK RESIDENT ALGORITHMS 52

To address the above discussed issue, we adopt the idea of batch processing. Instead of issuing

separate range queries for each data points, we group data points situated spatially close to each

other into clusters and process each cluster of data points together as a batch.

We discuss the clustering algorithm we have used to group spatially closely located data

points together as follows. We adopt a simplified version of the widely used distance based

hierarchical clustering method to cluster the data points of D in the data space. A hierarchi-

cal clustering method is usually dependent on some parameters and use some cutoff value of

the parameter as the terminating condition. We provide a cutoff value of the cluster radius to

the clustering algorithm. The value is denoted by csize. Consequently we limit the maximum

distance between two data points located within the same cluster component. Note that higher

values of csize results in fewer number of components and thus the size/extent of the components

is larger. So we can adjust the size and number of components by varying the cluster radius

parameter, csize. We do not describe the implementation details of the clustering algorithm here

for brevity.

We present the algorithm batchProcessing as follows. This algorithm is similar to the algo-

rithm bestFirst to a great extent except for some differences as we mention now. First we call

the routine hierarchicalClustering to determine the cluster components (Line 1). In the algo-

rithm batchProcessing, instead of storing one tuple for each data point, we store one tuple for

each cluster in the priority queue Q (Lines 7-11). The key value for each cluster c in the OPEN

(CLOSED) set is set to the maximum heuristic value (transition count) of all the data points be-

longing to c. The clusters are retrieved from Q in non-increasing order of the key values. For

each retrieved cluster c, we issue one range query for c (Lines 19-23). Then the routine max-

TransitionCount is called to determine the optimum data point within c and the corresponding

transition count (Line 24). We add an additional field named point in the tuple to store the data

point in a cluster that causes the maximum transition count. The implementation of maxTran-

sitionCount is trickier than that of transitionCount, as all the data points belonging to a cluster

are to be considered. The detailed process of implementing maxTransitionCount efficiently is

discussed later in this section.

Note that, the algorithm batchProcessing, range queries are issued per cluster, instead of per

CHAPTER 6. DISK RESIDENT ALGORITHMS 53

Algorithm 8: batchProcessing(T ,D,r,k,G,V ,csize)
input : T ,D,r,k,G,V ,csize
output: Greedy Choice of k Data Points

1 begin
2 C ←− hierarchicalClustering(D, csize)
3 R←− ∅
4 Z ←− ∅
5 while k 6= 0 do
6 Q←− ∅
7 for each cluster c ∈ C do
8 c.key ←− heuristic(c, r, V)
9 c.point←− NULL

10 c.status←− OPEN
11 Q.push(c)

12 while true do
13 c←− Q.pop()
14 if c.status = CLOSED then
15 R.insert(c.point)
16 c.remove(c.point)
17 updateV (c.point, Z[c])
18 break
19 if !Z.find(c) then
20 Orq ←− T.rangeQuery(c, r)
21 Z.insert(c, Orq)

22 else
23 Orq ←− Z[c]

24 (c.key, c.point)← maxTransitionCount(c, Orq, V)
25 c.status←− CLOSED
26 Q.push(c)

27 k ←− k − 1

28 return R

CHAPTER 6. DISK RESIDENT ALGORITHMS 54

data point as in the algorithm bestFirst. Thus if the data points are located in closely knitted

groups, the IO cost reduces. Also observe that the size of the priority queue Q is also smaller

in comparison with the algorithm bestFirst. Consequently the algorithm batchProcessing gains

computational speedup.

We discuss the efficient implementation of the routine maxTransitionCount below. The pro-

cess of determining transition count of one data point described in the previous section (the

routine transitionCount) can be adopted to find the data point in a cluster that causes the max-

imum transition count within a cluster component of data points. We make the following two

observations:

• For all data points in a cluster, there is a finite number of sweep line positions where the

projections are calculated.

• The same set of obstacles is used for all the data points in a cluster.

Consequently, we perform one line sweep in each principal axis direction, and maintain a list

of projections (one for each data point), which are updated at each sweep line position. Thus,

the transition count of all the data points are calculated by performing 4 line sweeps (6 plane

sweeps, in case of 3D) and hence the data point causing the maximum transition count.

Chapter 7

Handling 3D Scenarios

The methodology we have presented thus far applies to 2D scenarios. But the ideas used in

our solution are transferrable to 3D data space. In this chapter, we discuss how the 2D techniques

described earlier can be modified to handle 3D scenarios. The methodology we have used to

solve the MVFS problem are fundamentally different for continuous and discrete data space. We

discuss both separately as follows.

7.1 Handling a Continuous 3D Scene

First we discuss how to answer the 3D MVFS qeury in a continuous space. To represent

the visible region of a data point in 3D space, we use a set of tetrahedrons, as opposed to a

set of triangles in 2D space. Thus tetrahedrons are the building block of the visible region in

a continuous 3D scene. The set of tetrahedrons representing the visible region of a data point

can be determined by performing plane sweep along principal axes, similar to the rotational

line sweep in 2D scenario described in Chapter 5.1.1. To form a partition of the space using

tetrahedrons, we implement the boolean intersection and subtraction of tetrahedrons, and use

an incremental algorithm similar to the algorithm visTriangulation described in Chapter 5.1.2.

Thus the region visible from the set of data points D is partitioned into disjoint tetrahedrons. To

determine the volume of visible region from a set of data points, we take the sum of volumes of

tetrahedrons according to their visibility status.

55

CHAPTER 7. HANDLING 3D SCENARIOS 56

7.2 Handling a Discrete 3D Scene

We discuss how to solve the 3D MVFS problem in a discretized data space as follows. We

use a 3D grid to partition the data space. Thus the cells are cube shaped. The main difference

between the solution for discrete 2D and discrete 3D scenarios lies at the implementation of

the routine visibleCells (or the routine transitionCount). The routine uses a projection based

strategy as depicted in Figure 5.7 to determine the set of cells (or number of cells in the routine

transitionCount) visible from a data point in the presence of obstacles. In the routine we perform

line sweep and calculate projections of the obstacles as line segments on the sweep lines. In case

of a 3D scenario, plane sweep is performed and projections of the obstacles are planar regions

which are calculated on sweep planes. We adopt research works by Durand et al. [9] and Rabban

et al. [7], which explain in details how projection of 3D obstacles can be calculated efficiently

on successive sweep planes.

Chapter 8

Extensions

In this chapter, we propose farther generalizations to the discrete MVFS problem and discuss

how our techniques can be modified to provide solutions for these variants. Thus far we have

assumed that the facilities have a 360 degree field of view. In Section 8.1, we solve the MVFS

problem assuming that the facilities have limited field of view. In Section 8.2, we address the

case in which each cell in the grid partitioning has a value specifying its visibility preference

and propose solutions for this case. Throughout this work, we have adopted a binary notion

of visibility. A point in the data space is either visible or non-visible from a data point. In

Section 8.3, we discuss how our solution can be modified to work for quantitative notion of

visibility. Finally, in Section 8.4 we solve the MVFS variant, where the set of data points D is

not provided and thus we are free to establish k facilities anywhere in the data space.

8.1 Limited FoV MVFS

In our work thus far, we have assumed that each facility has a field of view of 360 degree. This

assumption is quite unrealistic because generally a facility (i.e., a camera) has a limited field of

view. In this section, we consider a variant of the MVFS problem, where we are provided with the

field of view of each facility, denoted by an angle A, in the problem definition and along with the

set of k data points, we also determine the viewing directions of the facilities positioned at the k

data points that maximizes the number of cells visible from the k data points. We call this variant

57

CHAPTER 8. EXTENSIONS 58

the limitedFovMVFS problem. In this section, first we illustrate the methodology to determine

the optimum viewing direction from a given facility location separately for 2D (Section 8.1.1)

and 3D (Section 8.1.2) scenarios. Next we describe how our solution to the MVFS problem can

be adjusted to solve the above defined limitedFovMVFS problem (Section 8.1.3).

To solve the limitedFovMVFS problem, first we consider the problem where we are given

a data point d, a set of cells C situated within the visibility range d, and the field of view of

the facility A, and the goal is to determine the optimum viewing direction of the facility, i.e.

the viewing direction for which the number of cells in C falling within the field of view of

a facility located at d is maximized. This subproblem works as a building block to solve the

limitedFovMVFS problem. Note that, in this subproblem, C does not necessarily contain all the

cells within the viewing range of a facility positioned at d, which will be clarified in Section 8.1.3.

Our proposed techniques to solve this subproblem are fundamentally different for 2D and 3D

scenarios. We describe both in the following sections.

8.1.1 Optimum Viewing Direction in 2D

In this section, we describe the process of determining the optimum viewing direction from

a data point in a 2D scenario. Note that, for a given data point, there are infinitely many potential

viewing directions along which the facility can be oriented. Considering all possible viewing

directions is not feasible. Now we develop an idea to limit the number of potential viewing

directions that we consider. First we provide some necessary definitions.

For a cell c to be visible from a facility f placed at data point d, under the assumption that

f has a limited field of view, A, the angle between the line joining d and the midpoint of c, and

the viewing direction of f must be less than or equal to A
2

. Also, we denote the most clockwise

(counter-clockwise) ray within the field of view of a facility to be the left line (right line) of the

facility (Figure 8.1). Now we present the following proposition.

Proposition 1: Given a facility f placed at data point d and set of cells C within the viewing

range of f in a 2D scenario, there exists an optimum viewing direction of f for which at least

one cell in C has its midpoint on the left line of f .

CHAPTER 8. EXTENSIONS 59

Proof: Suppose, there is an optimum viewing direction of f such that midpoint of no cell in

C lies on the left line of f . Now, we rotate the viewing direction of f counter-clockwise, until its

left line reaches the midpoint of some cell in C (Figure 8.1). This change in the viewing direction

does not sacrifice the optimality, because no cell that was previously visible becomes non-visible

during the rotation. Also, no cell becomes visible from non-visible during the process because it

will contradict the assumption that the initial viewing direction was optimum. Consequently the

final viewing direction of f retains the optimality and has a cell midpoint on its left line. �

x

x

x
x

x

x

x

x

d

left	line

ri
gh
t	l
in
e

A

Figure 8.1: Cell midpoints are cross marked. The initial (final) position is shown in solid (dashed)
arc. The viewing direction is rotated counter-clockwise until the left line reaches a cell midpoint
(light gray).

Proposition 1 allows us to restrict the size of the set of potential viewing directions from in-

finity to the number of cells in C. Now we present the algorithm optDirection2D that determines

the optimum viewing direction from a data point in a 2D scene. Here the routine angle used in

Line 5 and Line 8, takes as input two vectors in 2D and returns the angle between the two vectors.

In the algorithm optDirection2D, for cell c, the midpoint of c is denoted by c.m. For each cell c

in C, we consider a viewing direction dir such that the midpoint of c lies on the left line of the

facility (Line 5) and determine the number of cells falling inside the field of view (Lines 7-9).

According to Proposition 1, the viewing direction resulting in the maximum number of cells will

be an optimum direction.

Note that, the asymptotic time complexity of the algorithm optDirection2D is O(|C|2), where

CHAPTER 8. EXTENSIONS 60

Algorithm 9: optDirection2d(d,C,A)
input : d,C,A
output: optimum viewing direction

1 begin
2 optDir ←− NULL
3 maxCount←− 0
4 for c ∈ C do
5 dir ←− angle(c.m− d,+Xaxis) + A

2

6 count←− 0
7 for c ∈ C do
8 if angle(c.m− d, dir) ≤ A

2
then

9 count←− count+ 1

10 if maxCount < count then
11 maxCount←− count
12 optDir ←− dir

13 return optDir

|C| denotes the cardinality of the set C. There are several ways to improve the performance

of optDirection2D. Sorting the cell midpoints angularly and preprocessing the number of cells

falling inside increasing intervals or using the rotating callipers method will yield a time com-

plexity of O(|C|lg|C|).

8.1.2 Optimum Viewing Direction in 3D

In this section, we present the process of determining the optimum viewing direction from

a facility f in a 3D scenario, given the data point d where the facility is located, a set of cells

C within the viewing range of f , and the field of view of f , A. First we describe how the 3D

scene is visualized and provide some necessary definitions and notations. Then we develop a

proposition that allows us to restrict the set of potential viewing directions. Finally we present

the algorithm that determines the optimum viewing direction from a facility location in 3D.

We consider a sphere of unit radius centered at the d and construct rays joining d and the

midpoints of the cells in C to project each cell midpoint on the unit sphere (Figure 8.2). Thus the

field of view of a f can be modeled as a circle on the surface of the unit sphere, where the circle

CHAPTER 8. EXTENSIONS 61

d

A

p

q

Figure 8.2: Part of the unit sphere centered at d. Cell midpoints are shown in dots and their
projection on the unit sphere are cross marked.

is centered at the point of intersection of the unit sphere and the ray from d along the viewing

direction of f . We call this circle the viewing circle of f . The projection of the midpoints of the

cells which fall inside the field of view of f , will be inside the or on the perimeter of the viewing

circle of f . If the projection of the midpoint of a cell c lies on the perimeter of the viewing circle

of facility f , we call c to be on the perimeter of f . The unit vector from d to the midpoint of a

cell c is denoted by c.v.

Similar to the 2D case, there are infinitely many potential viewing directions along which the

facility can be oriented in a 3D scenario. We use the following proposition to limit the number

of viewing directions that we consider while finding the optimum viewing direction.

Proposition 2: Given a facility f placed at data point d and set of cells C within the viewing

range of f in a 3D scenario, there exists an optimum viewing direction of f for which at least

two cells in C are on the perimeter of f .

Proof: Suppose, there is an optimum viewing direction of f such that no cell in C is on the

perimeter of f (the solid circle on the sphere in Figure 8.2). First, we move the viewing circle of

f in any arbitrary direction, until its perimeter reaches the projection m of the midpoint of some

CHAPTER 8. EXTENSIONS 62

cell in C (the solid circle is moved until it reaches point p in Figure 8.2; the long dashed circle

is the new position of the viewing circle). Now, we rotate the viewing circle with respect to m,

until a second cell midpoint is on the perimeter (the long dashed circle is rotated around p until it

reaches point q in Figure 8.2; the short dashed circle is the resultant viewing circle). This change

in the position of the viewing circle does not sacrifice the optimality, because projection of no

cell midpoint goes out of the viewing circle during the movement and rotation. Also projection

of no cell midpoint enters the viewing circle during this process, because it will contradict the

assumption that the initial position of the viewing circle was optimum. Consequently the final

position of the viewing circle defines a viewing direction of f through its center that retains the

optimality and has at least two cells on its perimeter. �

Algorithm 10: optDirection3d(d,C,A)
input : d,C,A
output: optimum viewing direction

1 begin
2 optDir ←− NULL
3 maxCount←− 0
4 for each pair (c1, c2) from C do
5 if angle(c1.v, c2.v) > A then
6 continue
7 v(t)←− n(c1.v + c2.v).cost+ n(c1.vXc2.v).sint

8 (t1, t2)←− solve[v(t).(c1.v) = cos(A
2
)]

9 count1 ←− 0
10 count2 ←− 0
11 for c ∈ C do
12 if angle(v(t1), c.v) ≤ A

2
then

13 count1 ←− count1 + 1

14 if angle(v(t2), c.v) ≤ A
2

then
15 count2 ←− count2 + 1

16 if maxCount < count1 then
17 (maxCount, optDir)←− (count1, v(t1))

18 if maxCount < count2 then
19 (maxCount, optDir)←− (count2, v(t2))

20 return optDir

CHAPTER 8. EXTENSIONS 63

We present the algorithm optDirection3D that determines the optimum viewing direction

from a facility located in a 3D scene. In optDirection3D, it is assumed that the cell midpoints

are projected on different points on the surface of the unit sphere, which might not be the case.

If projections of two or more cell midpoints coincide, we can treat them as one cell whose count

equals the number of cells that coincide. According to Proposition 2, we consider all possible

pair of cells and construct viewing directions (Lines 4-8) such that both cells lie on the perimeter

of the viewing circle. We choose the viewing direction for which the number of cells whose

midpoint is projected within the viewing circle is maximized (Lines 11-19).

c	.v

2

1

+

c	.v

c	.v
1 2

c	.v

Xc	.v
1 2

c	.v

+n(c	.v
1 2

c	.v)

t

X+n(c	.v
1 2

c	.v).sint+n(c	.v
1 2

c	.v).cost

A/2

Figure 8.3: Determining the vector creating an angle A
2

with vectors c1.v and c2.v.

Now we elaborate on the process of constructing a viewing direction defined by unit vector v,

such that two given cells c1 and c2 lie on the perimeter. Such a viewing direction has the property

that both c1.v and c2.v creates the same angle A
2

with v. Thus v is on a plane halfway between

c1.v and c2.v. This halfway plane is spanned by the vectors n(c1.v+c2.v) and n(c1.vXc2.v) as

both create the same angle with v and perpendicular to each other. Here n(v) denote the unit

vector along the vector v and the X operator indicates vector cross product. Any vector on this

midway plane can be represented by the following parametric equation:

v(t) = n(c1.v + c2.v).cost+ (c1.vXc2.v).sint, 0
◦ ≤ t < 360◦

The value(s) of t for which v(t) creates an angle of A
2

◦ with c1.v (and c2.v) can be determined by

CHAPTER 8. EXTENSIONS 64

solving the following equation:

v(t).(c1.v) = cos(
A

2
)

Here, the first . stands for vector dot product. Refer to Figure 8.3 for a better understanding.

Note that, the asymptotic time complexity of the algorithm optDirection3D is O(|C|3). We

can improve the performance by precalculating the angles the unit vectors create with the 3

principal axes and using those angles to reduce the search space while finding the cells having

projection inside the viewing circle.

8.1.3 The Algorithm

We discuss how our solution to the basic MVFS problem can be modified to answer the lim-

itedFovMVFS query as follows. The algorithm limitedFovMVFS is very similar to the algorithm

bestFirst. We can solve the limitedFovMVFS problem by making two adjustments in the algo-

rithm bestFirst. So, instead of stating the algorithm, we mention the adjustments we make in the

algorithm bestFirst as follows:

• In Line 7 of the algorithm bestFirst, we calculate the heuristic value of each data point.

In the limitedFovMVFS, we modify the heuristic calculation as follows. To determine the

heuristic value of a data point d in limitedFovMVFS, we pass a set of cells C to the calcu-

lateHeuristic routine instead of V , where C contains all cells within the viewing range of

a facility placed at d that have visibility matrix value of 1, i.e., the cells whose midpoints

are not inside any obstacle and which are not visible from any previously selected data

point. Then we determine the optimum viewing direction using the above algorithm (opt-

Direction2D or optDirection3D) and find the corresponding number of cells, s. s is set as

the heuristic value of d, as it provides an upper bound on the transition count that a facility

placed at d can achieve.

• In Line 22 of the algorithm bestFirst, we calculate the transition count of a data point.

In the limitedFovMVFS, we modify the process of counting the number of transitions as

follows. To determine the transition count of a data point d in limitedFovMVFS, we pass

CHAPTER 8. EXTENSIONS 65

a set of cells C to the transitionCount routine instead of V , where C contains all cells

visible from d that have a visibility matrix value of 1, i.e., the cells which can undergo

transition. Then we determine the optimum viewing direction using the above algorithm

(optDirection2D or optDirection3D) and find the corresponding number of cells, s. s is

set as the transition count of d.

8.2 Preferential MVFS

In our primary formulation of the discrete MVFS problem, we treated all cells in the grid

partition in the same manner, i.e., we assigned unit weight to each cell and counted the number

of cells to determine the visibility coverage. But in a practical scenario, the data space may have

different visibility preferences at different locations. For example, some spots in the data space

might require more rigorous surveillance than others. Consequently, in this section, we address

a variant of the discrete MVFS problem, where each cell in the grid partitioning has a preference

value specifying its priority. Higher preference value refers to higher visibility preference of the

corresponding cell and vice versa. We call this version the preferential MVFS problem. The

preferential MVFS problem is defined below:

The Preferential MVFS Problem: Given an m-dimensional data-space Rm (m=2 or 3), the

set of obstacles in the data-space, the set of n data points where a facility can be placed, D,

the viewing range of a facility, a grid partitioning of the data space G, a matrix P storing the

preference values of the cells in G, and an integer k (1 ≤ k ≤ n), the problem is to determine

a subset S of D, S ⊆ D, of size k, |S| = k, to establish k facilities, such that, the sum of the

preference values of the cells visible from at least one data point in S is maximized. Here the

notation |.| stands for the cardinality of a set.

We describe how the algorithm bestFirst can be modified to solve the preferentialMVFS

problem below. We make the following two modifications. In the preferentialMVFS problem,

the heuristic value of a data point equals the sum of preference values of the cells having visibility

matrix value 1. The transition count of a data point d in the preferentialMVFS problem returns the

sum of the preference values of the cells that undergo transition because of the greedy selection

CHAPTER 8. EXTENSIONS 66

of d. Given the matrix P containing preference values, the two modifications can be incorporated

in the algorithm bestFirst.

8.3 Quantitative MVFS

Throughout this work, we have assumed binary notion of visibility, i.e., a cell is either visible

or non-visible. But usually the visibility of a point is inversely proportional to the distance of the

point and the facility, i.e., a camera. Quantitative approach to visibility addresses this important

issue and assigns a real value to each cell considering the cell’s distance from the facility rather

than assigning either 1 or 0 indicating visibility and non-visibility. In this section we describe

how we incorporate the notion of quantitative visibility in our solution. We extend the idea

of preferential MVFS described in the previous section to build the solution that assumes the

quantitative notion of visibility.

In the binary model of visibility, as in the previous section, we treated the preference value

of each cell as a whole, and added the preference values of the cells to determine the heuristic

value or the transition count. To incorporate the idea of quantitative visibility, while calculating

the heuristic value or the transition count, we multiply the preference value of a cell with a factor

inversely proportional to the distance between the cell and the data point. Consider a cell c

having midpoint m and preference value cp. Let, the viewing range of a facility located at d be r.

Then, the quantitative preference value of c with respect to the facility at d equals cp∗max(0, 1−
dis(m,d)

r
). Thus the preference value of a cell is multiplied by a factor inversely proportional to

distance to calculate its contribution to the heuristic value or the transition count. The visibility

of a cell is determined by the quantitative preference value of the closest facility from which its

visible. Thus, in the greedy algorithm, the selection of a new facility can increase the quantitative

preference value of a cell, if it is situated closer to the cell than any other previously established

facilities. This is how we incorporate the notion of quantitative visibility in our solution.

CHAPTER 8. EXTENSIONS 67

8.4 Unrestricted MVFS

In this section, we consider a variant of the basic MVFS problem, where no set of data points

is provided and we are free to establish a new facility anywhere in the data-space. The goal is to

find k optimum locations that maximize the visibility coverage.

In this variation, there are infinitely many candidate locations where a facility can be placed.

We limit the set of potential locations where a facility can be established to the set of lattice

points of the grid partitioning. Thus if the grid has m ∗ n cells, there are (m + 1) ∗ (n + 1)

lattice points which constitute the set of data points. Instead of using distance based hierarchical

clustering method to determine the cluster components, we treat contiguous l ∗ l blocks of lattice

points as the cluster components. Thus the algorithm batchProcessing can be modified to solve

the unrestricted MVFS problem.

Chapter 9

Experimental Evaluation

In this chapter, we present and analyze the experimental results. The values of the parame-

ters used to evaluate the performance of our proposed solution vary noticeably for main memory

based algorithms and disk resident algorithms. Consequently we describe the experimental re-

sults for main memory based algorithms and disk resident algorithms separately. In Section 9.1,

we describe the experimental setup. In Section 9.2, we will discuss the empirical results of the

three main memory based algorithms proposed in Chapter 5. In Section 9.3,we will describe the

experimental results of the three disk resident algorithms described in Chapter 6.

9.1 Experimental Setup

Our experiments are based on synthetic 2D datasets. In the datasets, we generate obstacles of

varying size uniformly all over the extent of the data space. The obstacles are non-overlapping

axis aligned 2D rectangles. All obstacles are indexed in an R-tree, with the disk page size fixed

at 1KB. We generate separate datasets with sparse and dense distribution of data points. The

data points do not lie inside the obstacles. In the sparse distribution, data points are generated

uniformly all over the data space. In the dense distribution, the data points are generated in a

closely knitted group such that their visible regions overlap with each other. Each experiment

is performed for sparse and dense distribution of data points. For each experiment, we have

evaluated the results for 20 randomly generated positions of the data points and reported the

68

CHAPTER 9. EXPERIMENTAL EVALUATION 69

average. The algorithms are implemented in C++ and the experiments are conducted on a core

i5 2.40 GHz PC with 3GB RAM, running Microsoft Windows 7.

9.2 Empirical Evaluation of Main Memory based Algorithms

We propose three main memory based solutions to the MVFS problem, namely, the contin-

uous exact algorithm (Chapter 5.1), the discrete exact algorithm (Chapter 5.2), and the greedy

approximation algorithm (Chapter 5.3). We investigate the performance of the three proposed al-

gorithms by varying the number of data points, the number of obstacles, the range of the camera,

and the cell size. The ranges and default values of the relevant parameters are listed in Table 9.1.

The default values of the parameters are set to their median values.

Table 9.1: Parameters for Main Memory based Algorithms

Parameter Range Default Value

Number of Obstacles 500, 1000, 1500, 2000, 2500,3000 1500

Number of Data Points 8, 12, 16, 20, 24, 32 16

Distribution of Data Points Sparse, Dense

Camera Range 10, 15, 20, 25, 30 20

Length of Cell Edge 0.5, 1, 2, 4, 8 2

Data-Space Size 1000*1000

9.2.1 Effect of Number of Data Points

The effect of the number of data points on the total processing time of the three algorithms is

shown in Figure 9.1. Here the value of k is not mentioned, because for each n, the output for all

possible ks are generated, i.e., 1 ≤ k ≤ n, and the total time is reported.

The results show that the greedy algorithms run much faster that the continuous and discrete

algorithms. The continuous and the discrete algorithm are exact algorithms that consider all

subsets of data points in the worst case, thus their time complexity is exponential to n. But the

CHAPTER 9. EXPERIMENTAL EVALUATION 70

0

10

20

30

40

8 12 16 20 24

E
x
e
c
u

ti
o

n
 T

im
e

 (
s
e

c
)

n (Number of Data Points)

Dense Distribution

Continuous

Discrete

Greedy

0

2

4

6

8

8 16 24 32

E
x
e
c
u

ti
o

n
 T

im
e

 (
s
e

c
)

n (Number of Data Points)

Sparse Distribution

Continuous

Discrete

Greedy

Figure 9.1: Number of Data Points vs Execution Time.

greedy algorithms takes time polynomial to n. Thus it achieves significant speedup over the two

exact algorithms.

0

0.1

0.2

8 12 16 20 24

A
p

p
ro

x
im

a
ti
o

n
 E

rr
o
r

(%
)

n (Number of Data Points)

Approximation Error for Dense Distribution

error percentage

Figure 9.2: Greedy Approximation Error.

As discussed earlier, the exact algorithms perform better for sparse distribution of the data

points than dense distribution of the data points. Because a dense distribution of data points

results in more overlaps between the visible regions of nearby facilities. For sparse distribution

there is hardly any overlap between the visible regions of the data points. Thus with an increase in

the number of data points, the processing time does not increase as fast as for a dense distribution

of data points. On the other hand, the processing time for dense distribution of data points

increases exponentially with increasing n for the exact algorithm.

CHAPTER 9. EXPERIMENTAL EVALUATION 71

In the experiments for the sparse distribution, the greedy algorithm always finds the optimum

result due to little or no overlap between visible regions of data points. Thus the greedy approx-

imation ratio is 0. The greedy approximation ratio for dense distributions of data points with

varying n is shown in Figure 9.2. Note that, the maximum average approximation error is less

than 0.1%. Consequently we conclude that the greedy approximation algorithm generates near

optimal solution for the MVFS problem and also performs much faster than the exact algorithms.

9.2.2 Effect of Number of Obstacles

0

1

2

3

4

500 1000 1500 2000 2500 3000

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e

c
)

Number of Obstacles

Sparse Distribution

Continuous

Discrete

Greedy

0

4

8

12

500 1000 1500 2000 2500 3000

E
x
e
c
u

ti
o
n

 T
im

e
 (

s
e

c
)

Number of Obstacles

Dense Distribution

Continuous

Discrete

Greedy

Figure 9.3: Number of Obstacles vs Execution Time.

Figure 9.3 shows the effect of number of obstacles on processing time. In general, the pro-

cessing the for the continuous algorithms grows rapidly with an increase in the number of obsta-

cles. Because if there are more obstacles in the data space, the visible region from a data point

will be represented by more triangles. Performing intersection between these triangles to gener-

ate all possible bitmap areas results in a lot of small triangles. Thus it increases the processing

time of the continuous algorithm.

CHAPTER 9. EXPERIMENTAL EVALUATION 72

9.2.3 Effect of Camera Range and Cell Size

0

1

2

5 10 15 20 25

E
rr

o
r

(%
)

Ratio of Camera Range and Cell Size

Error in Area Calculation

error percentage

Figure 9.4: Area Calculation Error.

From Figure 5.6, note that the area of the cells visible from d3 is a close estimation of the area

of the visible region of d3. When we use the discrete MVFS formulation, we avoid actual area

calculation and use the number of visible cells as an estimation of the actual area. If we reduce

the size of the cells, we get a closer approximation of the actual area. But using smaller cells

has a drawback. If the cells grow smaller, the number of cells increases, which in turn increases

the processing time of discrete and greedy algorithms. Consequently we settle for a cell size

such that it is not too big to give poor approximation of the visible area and it is not too small

to increase the computational overhead of the discrete and greedy algorithms. We consider the

cell size with respect to the camera range. Figure 9.4 describes how the area calculation error

changes with varying ratio of camera range and cell size. Note that the average error is less than

1% for a ratio of 10. As a result, we set the default value of the cell size to 2 and default value of

camera range to 20. Thus the area error for the discrete MVFS formulation is expected to be less

than 1%.

CHAPTER 9. EXPERIMENTAL EVALUATION 73

9.3 Empirical Evaluation of Disk Resident Algorithms

We propose three disk resident algorithms for the MVFS problem, namely, the naive greedy

algorithm (Chapter 6.1), the best first algorithm (Chapter 6.2), and the batch processing algo-

rithm (Chapter 6.3). We investigate the performance of the three proposed algorithms by varying

the number of obstacles, number of data points, and k. The ranges and default values of the

relevant parameters are listed in Table 9.2. In the disk resident algorithms, the obstacles are

indexed in an R-tree. As R-tree is a persistent data structure, the range query operation on the

R-tree issues IO requests on the disk. Disk accesses are usually slow and consequently incur

considerable IO overhead. So we report the IO processing time along with the total processing

time to compare the computational cost and the IO cost.

Table 9.2: Parameters for Disk Resident Algorithms

Parameter Range Default Value

Number of Obstacles 20K, 40K, 60K, 80K, 100K 50K

Number of Data Points 32, 64, 96, 128, 160, 212, 256 256

k 1, 2, 4, 8, 16, 32, 64, 128, 256 256(=n)

Distribution of Data Points Sparse, Dense

Camera Range 40

Length of Cell Edge 4

Data Space Size 10000*10000

9.3.1 Effect of Number of Obstacles

Figure 9.5 shows the effect of the number of obstacles on total processing time and IO time

for both sparse and dense distribution of data points. The number of obstacles are varied from

20K to 100K, with 20K increments. The experiments conducted for n = 256 and k = 256.

The results show that the total processing time increases with increasing number of obstacles.

As the number of obstacles increases, the processing time of a range query increases. Conse-

CHAPTER 9. EXPERIMENTAL EVALUATION 74

0

5

10

15

20

20 40 60 80 100

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

 (
s
e
c
)

Number of Obstacles (K)

Dense Distribution

Naive Greedy

Best First

Batch Processing

0

5

10

15

20

25

20 40 60 80 100

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e

 (
s
e

c
)

Number of Obstacles (K)

Sparse Distribution

Naive Greedy

Best First

Batch Processing

0

3

6

9

12

20 40 60 80 100

IO
 T

im
e

 (
s
e

c
)

Number of Obstacles (K)

Sparse Distribution

Naive Greedy

Best First

Batch Processing

0

3

6

9

12

20 40 60 80 100

IO
 T

im
e

 (
s
e

c
)

Number of Obstacles (K)

Dense Distribution

Naive Greedy

Best First

Batch Processing

Figure 9.5: Number of Obstacles vs Total Processing Time and IO Time.

quently the IO time increases. With an increase in the number of obstacles, the complexity of the

calculating the heuristic value and the transition count of a data point increases. Consequently

the computational cost also increases. The figure demonstrate that the total processing time is

dominated by the IO time. The computational cost does not affect the total processing time

much.

The difference in total processing time in the three algorithms is largely due to the difference

in IO time. The number of range queries issued by both naive greedy and best first algorithm

is equal to the number of data points, i.e., 256, while the number of range queries issued by the

batch processing algorithm is equal to the number of cluster components. The computational

cost of the three algorithms are almost the same.

CHAPTER 9. EXPERIMENTAL EVALUATION 75

Also note that the computational cost is greater in sparse distribution of data points in com-

parison to dense distributions. This is because the visible region of all data points spans less

number of cells in dense distribution than sparse distribution. The IO cost does not vary with the

distribution of data points because the number of range queries issued remains fixed irrespective

of the distribution of data points.

9.3.2 Effect of Number of Data Points

Figure 9.6 shows the effect of the number of data points on total processing time and IO time

for both sparse and dense distribution of data points. The number of data points are varied from

32 to 256, with an increment of 32 data points. The value of k is set to be equal to n.

0

2

4

6

32 64 96 128 160 192 224 256

IO
 T

im
e

 (
s
e

c
)

n (Number of Data Points)

Sparse Distribution

Naive Greedy

Best First

Batch Processing

0

2

4

6

32 64 96 128 160 192 224 256

IO
 T

im
e

 (
s
e

c
)

n (Number of Data Points)

Dense Distribution

Naive Greedy

Best First

Batch Processing

0

3

6

9

12

15

32 64 96 128 160 192 224 256

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e
 (

s
e

c
)

n (Number of Data Points)

Sparse Distribution

Naive Greedy

Best First

Batch Processing

0

2

4

6

8

10

12

32 64 96 128 160 192 224 256

T
o

ta
l
P

ro
c
e

s
s
in

g
 T

im
e
 (

s
e

c
)

n (Number of Data Points)

Dense Distribution

Naive Greedy

Best First

Batch Processing

Figure 9.6: Number of Data Points vs Total Processing Time and IO Time.

CHAPTER 9. EXPERIMENTAL EVALUATION 76

The graphs show that the total processing time increases with increasing number of data

points. As the number of data points n increases, the number of greedy iterations and the num-

ber of cells in the visible region of data points increase. Consequently the computational cost

increases. With increasing n, the number of range query issues increases, which accounts for the

increase in IO time. Note that the IO time varies linearly with the number of data points in the

naive greedy and the best first algorithm, because the number of range queries issued in these al-

gorithms is equal to the number of data points. In the batch processing algorithm, the number of

range queries is proportional to the number of cluster components, which increases with increas-

ing number of data points. Thus the total processing time is dominated by the computational

cost.

The difference in the total processing time in the three algorithms is explained by the reasons

stated in the previous section. Also the effect of distribution of data point on total processing

time and IO time with varying n is similar to that of the previous section for similar reasons.

9.3.3 Effect of k

Figure 9.7 shows the effect of k on total processing time and the number of range queries

issued for both sparse and dense distribution of data points. For this experiment, we set n = 256

and vary k exponentially from 1 to 256.

The experimental results show that the total processing time increases with the value of k.

As K increases, the number of greedy iterations increases which is responsible for an increase

in the computational cost. But the difference in total processing time of the three algorithms

with increasing k is largely dependent on the number of range queries, i.e., IO time. In the naive

greedy algorithm the number of range queries does not depend on k. It always issues n (=256)

range queries. Thus the total processing time of the naive greedy algorithm is dominated by the

computational cost. In the best first algorithm, the number of range queries increases with k

and reaches a maximum of 256. In the batch processing algorithm, the number of range queries

increases with k and reaches a maximum value equal to the number of cluster components.

This is explained by the fact that the best first algorithm (the batch processing algorithm) uses

CHAPTER 9. EXPERIMENTAL EVALUATION 77

0

3

6

9

12

1 2 4 8 16 32 64 128 256

T
im

e
 (

s
e
c
)

k (n=256)

Dense Distribution

Naive Greedy

Best First

Batch Processing

0

3

6

9

12

15

1 2 4 8 16 32 64 128 256

T
im

e
 (

s
e
c
)

k (n=256)

Sparse Distribution

Naive Greedy

Best First

Batch Processing

0

100

200

300

400

1 2 4 8 16 32 64 128 256

N
u

m
b

e
r

o
f
R

a
n
g

e
 Q

u
e

ri
e
s

k (n=256)

Dense Distribution

Naive Greedy

Best First

Batch Processing

0

100

200

300

400

1 2 4 8 16 32 64 128 256

N
u

m
b
e

r
o

f
R

a
n

g
e
 Q

u
e
ri

e
s

k (n=256)

Sparse Distribution

Naive Greedy

Best First

Batch Processing

Figure 9.7: k vs Total Processing Time and Number of Range Queries.

a heuristic to avoid issuing range query for all the data points (cluster components) for small

values of k.

Chapter 10

Conclusion

With the increasing availability of 3D model of cities, buildings etc., a new sector of research

involving visibility queries in the presence of obstacles is on the rise. In this work, we have

introduced a visibility query, named the Maximum Visibility Facility Selection MVFS query.

In the MVFS query, we are given a set of obstacles, a set of n locations where a facility can

be placed, the visibility range of the facility, and an integer k, we select k locations from the

given n locations to establish facilities that maximizes the aggregated visibility coverage of the

surrounding data space.

We have proposed exact algorithms for the MVFS problem for both continuous and discrete

data space. For a continuous data space, we have developed a triangulation based method to

compute the actual area/volume covered by any subset of the data points and determined the

subset that results in maximum coverage by using some acceleration techniques. For the discrete

MVFS problem, we have partitioned the data space into a grid and estimated the area/volume

visible from any subset of data points by counting grid cells. We have also outlined a greedy

approximation algorithm for the MVFS problem that at each greedy step selects the data point

that results in maximum increase of the visible region.

To deal with datasets containing a large number of obstacles, we have developed several disk

resident algorithms for the MVFS problem which can be applied in case the set of obstacles is too

large to fit in main memory. To deal with the huge obstacle set, we have indexed the obstacles in

a spatial data structure, R-tree, that can efficiently process spatial queries. We have used heuristic

78

CHAPTER 10. CONCLUSION 79

driven best first search and clustering techniques to farther improve the performance of the disk

resident algorithms. We have also addressed several variants of the MVFS problem so that our

proposed algorithms can be applied to more generalized and realistic scenarios.

We have conducted extensive empirical studies to analyze the performance of our proposed

algorithms. The experimental results have demonstrated that the error in area/volume in a dis-

cretized data space is less than 1% for a camera range to cell size ratio of 10, and thus can be

ignored. The empirical analysis has also demonstrated that the greedy algorithm runs orders of

magnitude faster that the exact algorithms and the approximation error of the greedy algorithm is

on average less than 0.1%. In case of the disk resident algorithms, the experiments have shown

that the acceleration techniques considerably reduce the IO overhead in comparison with a naive

algorithm.

Bibliography

[1] E. Hörster and R. Lienhart, “On the optimal placement of multiple visual sensors,” in

Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor

Networks, ser. VSSN ’06. New York, NY, USA: ACM, 2006, pp. 111–120. [Online].

Available: http://doi.acm.org/10.1145/1178782.1178800

[2] B. Debaque, R. Jedidi, and D. Prevost, “Optimal video camera network deployment to sup-

port security monitoring,” in 2009 12th International Conference on Information Fusion,

July 2009, pp. 1730–1736.

[3] S. Hanoun, A. Bhatti, D. Creighton, S. Nahavandi, P. Crothers, and C. G.

Esparza, “Target coverage in camera networks for manufacturing workplaces,” J.

Intell. Manuf., vol. 27, no. 6, pp. 1221–1235, Dec. 2016. [Online]. Available:

https://doi.org/10.1007/s10845-014-0946-z

[4] S. Masud, F. M. Choudhury, M. E. Ali, and S. Nutanong, “Maximum visibility queries in

spatial databases,” in 29th IEEE International Conference on Data Engineering, ICDE

2013, Brisbane, Australia, April 8-12, 2013, 2013, pp. 637–648. [Online]. Available:

https://doi.org/10.1109/ICDE.2013.6544862

[5] C. M. R. Haider, A. Arman, M. E. Ali, and F. M. Choudhury, “Continuous

maximum visibility query for a moving target,” in Databases Theory and Applications

- 27th Australasian Database Conference, ADC 2016, Sydney, NSW, September 28-29,

2016, Proceedings, 2016, pp. 82–94. [Online]. Available: https://doi.org/10.1007/

978-3-319-46922-5 7

80

http://doi.acm.org/10.1145/1178782.1178800
https://doi.org/10.1007/s10845-014-0946-z
https://doi.org/10.1109/ICDE.2013.6544862
https://doi.org/10.1007/978-3-319-46922-5_7
https://doi.org/10.1007/978-3-319-46922-5_7

BIBLIOGRAPHY 81

[6] F. M. Choudhury, M. E. Ali, S. Masud, S. Nath, and I. E. Rabban, “Scalable visibility

color map construction in spatial databases,” Inf. Syst., vol. 42, pp. 89–106, 2014. [Online].

Available: https://doi.org/10.1016/j.is.2013.12.002

[7] I. E. Rabban, K. Abdullah, M. E. Ali, and M. A. Cheema, “Visibility color

map for a fixed or moving target in spatial databases,” in Advances in Spatial

and Temporal Databases - 14th International Symposium, SSTD 2015, Hong Kong,

China, August 26-28, 2015. Proceedings, 2015, pp. 197–215. [Online]. Available:

https://doi.org/10.1007/978-3-319-22363-6 11

[8] A. Arman, K. Abdullah, I. E. Rabban, and M. E. Ali, “Indvizcmap: Visibility color map

in an indoor 3d space,” in Proceedings of the Eighth ACM SIGSPATIAL International

Workshop on Indoor Spatial Awareness, ser. ISA ’16. New York, NY, USA: ACM, 2016,

pp. 47–50. [Online]. Available: http://doi.acm.org/10.1145/3005422.3005430

[9] F. Durand, G. Drettakis, J. Thollot, and C. Puech, “Conservative visibility preprocessing

using extended projections,” in Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques. New York, NY, USA: ACM Press/Addison-Wesley

Publishing Co., 2000, pp. 239–248.

[10] T. Asano, “An efficient algorithm for finding the visibility polygon for a polygonal region

with holes,” IEICE Transactions, vol. 68, no. 9, pp. 557–559, 1985.

[11] F. Durand, “A multidisciplinary survey of visibility,” 2000.

[12] E. Horster and R. Lienhart, “Approximating optimal visual sensor placement,” in 2006

IEEE International Conference on Multimedia and Expo, July 2006, pp. 1257–1260.

[13] U. M. Erdem and S. Sclaroff, “Automated camera layout to satisfy task-specific and floor

plan-specific coverage requirements,” Comput. Vis. Image Underst., vol. 103, no. 3, pp.

156–169, Sep. 2006. [Online]. Available: http://dx.doi.org/10.1016/j.cviu.2006.06.005

https://doi.org/10.1016/j.is.2013.12.002
https://doi.org/10.1007/978-3-319-22363-6_11
http://doi.acm.org/10.1145/3005422.3005430
http://dx.doi.org/10.1016/j.cviu.2006.06.005

BIBLIOGRAPHY 82

[14] A. van den Hengel, R. Hill, B. Ward, A. Cichowski, H. Detmold, C. Madden, A. Dick, and

J. Bastian, “Automatic camera placement for large scale surveillance networks,” in 2009

Workshop on Applications of Computer Vision (WACV), Dec 2009, pp. 1–6.

[15] B. Dieber, C. Micheloni, and B. Rinner, “Resource-aware coverage and task assignment in

visual sensor networks,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 21, no. 10, pp. 1424–1437, Oct 2011.

[16] Y.-G. Fu, J. Zhou, and L. Deng, “Surveillance of a 2d plane area with 3d

deployed cameras,” Sensors, vol. 14, no. 2, pp. 1988–2011, 2014. [Online]. Available:

http://www.mdpi.com/1424-8220/14/2/1988

[17] Y.-C. Xu, B. Lei, and E. A. Hendriks, “Camera network coverage improving by particle

swarm optimization,” EURASIP Journal on Image and Video Processing, vol. 2011, no. 1,

p. 458283, 2010. [Online]. Available: http://dx.doi.org/10.1155/2011/458283

[18] S. Nutanong, E. Tanin, and R. Zhang, “Visible nearest neighbor queries,” in

Advances in Databases: Concepts, Systems and Applications, 12th International

Conference on Database Systems for Advanced Applications, DASFAA 2007, Bangkok,

Thailand, April 9-12, 2007, Proceedings, 2007, pp. 876–883. [Online]. Available:

https://doi.org/10.1007/978-3-540-71703-4 73

[19] ——, “Incremental evaluation of visible nearest neighbor queries,” IEEE Trans.

Knowl. Data Eng., vol. 22, no. 5, pp. 665–681, 2010. [Online]. Available:

https://doi.org/10.1109/TKDE.2009.158

[20] Y. Wang, Y. Gao, L. Chen, G. Chen, and Q. Li, “All-visible-k-nearest-neighbor queries,” in

Database and Expert Systems Applications - 23rd International Conference, DEXA 2012,

Vienna, Austria, September 3-6, 2012. Proceedings, Part II, 2012, pp. 392–407. [Online].

Available: https://doi.org/10.1007/978-3-642-32597-7 34

[21] Y. Gao and B. Zheng, “Continuous obstructed nearest neighbor queries in spatial

databases,” in Proceedings of the ACM SIGMOD International Conference on Management

http://www.mdpi.com/1424-8220/14/2/1988
http://dx.doi.org/10.1155/2011/458283
https://doi.org/10.1007/978-3-540-71703-4_73
https://doi.org/10.1109/TKDE.2009.158
https://doi.org/10.1007/978-3-642-32597-7_34

BIBLIOGRAPHY 83

of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, 2009, pp.

577–590. [Online]. Available: http://doi.acm.org/10.1145/1559845.1559906

[22] Y. Gao, B. Zheng, G. Chen, Q. Li, and X. Guo, “Continuous visible nearest neighbor query

processing in spatial databases,” VLDB J., vol. 20, no. 3, pp. 371–396, 2011. [Online].

Available: https://doi.org/10.1007/s00778-010-0200-z

[23] Y. Gao, B. Zheng, G. Chen, W. Lee, K. C. K. Lee, and Q. Li, “Visible reverse

k-nearest neighbor queries,” in Proceedings of the 25th International Conference on Data

Engineering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, 2009, pp.

1203–1206. [Online]. Available: https://doi.org/10.1109/ICDE.2009.201

[24] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand, “A survey of visibility for

walkthrough applications,” IEEE Transactions on Visualization and Computer Graphics,

vol. 9, no. 3, pp. 412–431, July 2003.

[25] J. Bittner and P. Wonka, “Visibility in computer graphics,” Environment and Planning

B: Planning and Design, vol. 30, no. 5, pp. 729–755, 2003. [Online]. Available:

http://dx.doi.org/10.1068/b2957

[26] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr., “Towards image realism with interactive

update rates in complex virtual building environments,” in Proceedings of the 1990

Symposium on Interactive 3D Graphics, ser. I3D ’90. New York, NY, USA: ACM, 1990,

pp. 41–50. [Online]. Available: http://doi.acm.org/10.1145/91385.91416

[27] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion, “Conservative volumetric visibility

with occluder fusion,” in Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques, ser. SIGGRAPH ’00. New York, NY, USA:

ACM Press/Addison-Wesley Publishing Co., 2000, pp. 229–238. [Online]. Available:

http://dx.doi.org/10.1145/344779.344886

[28] P. Wonka, M. Wimmer, and D. Schmalstieg, “Visibility preprocessing with occluder fusion

for urban walkthroughs,” in Proceedings of the Eurographics Workshop on Rendering

http://doi.acm.org/10.1145/1559845.1559906
https://doi.org/10.1007/s00778-010-0200-z
https://doi.org/10.1109/ICDE.2009.201
http://dx.doi.org/10.1068/b2957
http://doi.acm.org/10.1145/91385.91416
http://dx.doi.org/10.1145/344779.344886

BIBLIOGRAPHY 84

Techniques 2000. London, UK, UK: Springer-Verlag, 2000, pp. 71–82. [Online].

Available: http://dl.acm.org/citation.cfm?id=647652.760610

[29] V. Koltun, Y. Chrysanthou, and D. Cohen-Or, “Virtual occluders: An efficient intermediate

pvs representation,” in Proceedings of the Eurographics Workshop on Rendering

Techniques 2000. London, UK, UK: Springer-Verlag, 2000, pp. 59–70. [Online].

Available: http://dl.acm.org/citation.cfm?id=647652.732124

[30] ——, “Hardware-accelerated from-region visibility using a dual ray space,” in

Proceedings of the 12th Eurographics Workshop on Rendering Techniques. London, UK,

UK: Springer-Verlag, 2001, pp. 205–216. [Online]. Available: http://dl.acm.org/citation.

cfm?id=647653.760611

[31] S. Suri and J. O’Rourke, “Worst-case optimal algorithms for constructing visibility

polygons with holes,” in Proceedings of the Second Annual Symposium on Computational

Geometry, ser. SCG ’86. New York, NY, USA: ACM, 1986, pp. 14–23. [Online].

Available: http://doi.acm.org/10.1145/10515.10517

[32] A. Zarei and M. Ghodsi, “Query point visibility computation in polygons with holes,”

Computational Geometry, vol. 39, no. 2, pp. 78 – 90, 2008. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S092577210700034X

[33] ——, “Efficient computation of query point visibility in polygons with holes,” in

Proceedings of the Twenty-first Annual Symposium on Computational Geometry, ser.

SCG ’05. New York, NY, USA: ACM, 2005, pp. 314–320. [Online]. Available:

http://doi.acm.org/10.1145/1064092.1064140

[34] B. Ben-Moshe, O. Hall-Holt, M. J. Katz, and J. S. B. Mitchell, “Computing the visibility

graph of points within a polygon,” in Proceedings of the Twentieth Annual Symposium on

Computational Geometry, ser. SCG ’04. New York, NY, USA: ACM, 2004, pp. 27–35.

[Online]. Available: http://doi.acm.org/10.1145/997817.997825

http://dl.acm.org/citation.cfm?id=647652.760610
http://dl.acm.org/citation.cfm?id=647652.732124
http://dl.acm.org/citation.cfm?id=647653.760611
http://dl.acm.org/citation.cfm?id=647653.760611
http://doi.acm.org/10.1145/10515.10517
http://www.sciencedirect.com/science/article/pii/S092577210700034X
http://doi.acm.org/10.1145/1064092.1064140
http://doi.acm.org/10.1145/997817.997825

BIBLIOGRAPHY 85

[35] S. K. Ghosh, “On recognizing and characterizing visibility graphs of simple polygons,”

Discrete & Computational Geometry, vol. 17, no. 2, pp. 143–162, 1997. [Online].

Available: http://dx.doi.org/10.1007/BF02770871

[36] V. Chvtal, “A combinatorial theorem in plane geometry,” Journal of Combinatorial

Theory, Series B, vol. 18, no. 1, pp. 39 – 41, 1975. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/0095895675900611

[37] S. Fisk, “A short proof of chvtal’s watchman theorem,” Journal of Combinatorial

Theory, Series B, vol. 24, no. 3, p. 374, 1978. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/009589567890059X

[38] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in SIGMOD. New

York, NY, USA: ACM, 1984, pp. 47–57.

[39] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An

efficient and robust access method for points and rectangles,” in Proceedings of

the 1990 ACM SIGMOD International Conference on Management of Data, ser.

SIGMOD ’90. New York, NY, USA: ACM, 1990, pp. 322–331. [Online]. Available:

http://doi.acm.org/10.1145/93597.98741

[40] T. K. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A dynamic index for multi-

dimensional objects,” in Proceedings of the 13th International Conference on Very Large

Data Bases, ser. VLDB ’87. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1987, pp. 507–518. [Online]. Available: http://dl.acm.org/citation.cfm?id=645914.671636

[41] S. Berchtold, D. A. Keim, and H.-P. Kriegel, “The x-tree: An index structure for

high-dimensional data,” in Proceedings of the 22th International Conference on Very Large

Data Bases, ser. VLDB ’96. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1996, pp. 28–39. [Online]. Available: http://dl.acm.org/citation.cfm?id=645922.673502

[42] O. Maimon and L. Rokach, Data Mining and Knowledge Discovery Handbook. Secaucus,

NJ, USA: Springer-Verlag New York, Inc., 2005.

http://dx.doi.org/10.1007/BF02770871
http://www.sciencedirect.com/science/article/pii/0095895675900611
http://www.sciencedirect.com/science/article/pii/009589567890059X
http://www.sciencedirect.com/science/article/pii/009589567890059X
http://doi.acm.org/10.1145/93597.98741
http://dl.acm.org/citation.cfm?id=645914.671636
http://dl.acm.org/citation.cfm?id=645922.673502

BIBLIOGRAPHY 86

[43] D. Defays, “An efficient algorithm for a complete link method,” The Computer Journal,

vol. 20, no. 4, p. 364, 1977. [Online]. Available: +http://dx.doi.org/10.1093/comjnl/20.4.

364

[44] R. Sibson, “Slink: An optimally efficient algorithm for the single-link cluster

method,” The Computer Journal, vol. 16, no. 1, p. 30, 1973. [Online]. Available:

+http://dx.doi.org/10.1093/comjnl/16.1.30

[45] I. E. Sutherland and G. W. Hodgman, “Reentrant polygon clipping,” Commun. ACM,

vol. 17, no. 1, pp. 32–42, Jan. 1974. [Online]. Available: http://doi.acm.org/10.1145/

360767.360802

[46] D. S. Hochbaum and A. Pathria, “Analysis of the greedy approach in problems

of maximum k-coverage,” Naval Research Logistics, vol. 45, no. 6, pp. 615–

627, 1998. [Online]. Available: http://dx.doi.org/10.1002/(sici)1520-6750(199809)45:

6%3C615::aid-nav5%3E3.0.co;2-5

[47] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for

maximizing submodular set functions—i,” Mathematical Programming, vol. 14, no. 1, pp.

265–294, 1978. [Online]. Available: http://dx.doi.org/10.1007/BF01588971

+ http://dx.doi.org/10.1093/comjnl/20.4.364
+ http://dx.doi.org/10.1093/comjnl/20.4.364
+ http://dx.doi.org/10.1093/comjnl/16.1.30
http://doi.acm.org/10.1145/360767.360802
http://doi.acm.org/10.1145/360767.360802
http://dx.doi.org/10.1002/(sici)1520-6750(199809)45:6%3C615::aid-nav5%3E3.0.co;2-5
http://dx.doi.org/10.1002/(sici)1520-6750(199809)45:6%3C615::aid-nav5%3E3.0.co;2-5
http://dx.doi.org/10.1007/BF01588971

	Board of Examiners
	Candidate's Declaration
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem and Motivation
	State of the Art
	Overview of Methodology
	Contributions
	Organization

	Literature Review
	Visibility in Visual Sensor Networks
	Visibility in Spatial Queries
	Visibility in Computer Graphics
	Visibility in Computational Geometry

	Problem Formulation
	Background Study
	R-tree
	Hierarchical Clustering

	Main Memory based Algorithms
	The Continuous Exact Algorithm
	Constructing the Visible Region of a Data Point
	Constructing the Visibility Triangulation of the Data Space
	The Algorithm

	The Discrete Exact Algorithm
	MVFS in Grid Partitioned Data Space
	Determining Visibility of Cells using Projection
	The Algorithm

	The Greedy Approximation Algorithm
	Reduction to Weighted Maximum Cover Problem
	The Algorithm

	Disk Resident Algorithms
	The Naive Greedy Algorithm
	The Best First Algorithm
	Preliminaries
	The Algorithm

	The Batch Processing Algorithm

	Handling 3D Scenarios
	Handling a Continuous 3D Scene
	Handling a Discrete 3D Scene

	Extensions
	Limited FoV MVFS
	Optimum Viewing Direction in 2D
	Optimum Viewing Direction in 3D
	The Algorithm

	Preferential MVFS
	Quantitative MVFS
	Unrestricted MVFS

	Experimental Evaluation
	Experimental Setup
	Empirical Evaluation of Main Memory based Algorithms
	Effect of Number of Data Points
	Effect of Number of Obstacles
	Effect of Camera Range and Cell Size

	Empirical Evaluation of Disk Resident Algorithms
	Effect of Number of Obstacles
	Effect of Number of Data Points
	Effect of k

	Conclusion
	Bibliography

