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Abstract

Recently, with the advancement of the GPS-enabled cellular technologies, the location-based

services (LBS) have gained in popularity. Nowadays, an increasingly larger number of map-

based applications enable users to ask a wider variety of queries. Researchers have studied the

ride-sharing, the carpooling, the vehicle routing, and the collective travel planning problems

extensively in recent years. Collective traveling has the benefit of being environment-friendly

by reducing the global travel cost, the greenhouse gas emission, and the energy consumption. In

this thesis, we introduce several optimization problems to recommend a suitable route and stops

of a vehicle, in a road network, for a group of users intending to travel collectively. The goal of

each problem is to minimize the aggregate cost of the individual travelers’ paths and the shared

route under various constraints. First, we formulate the problem of determining the optimal pair

of end-stops, given a set of queries that originate and terminate near the two prospective end

regions. We outline a baseline polynomial-time algorithm and propose a new faster solution -

both calculating an exact answer. In our approach, we utilize the path-coherence property of

road networks to develop an efficient algorithm. Second, we define the problem of calculating

the optimal route and intermediate stops of a vehicle that picks up and drops off passengers en-

route, given its start and end stoppages, and a set of path queries from users. We outline an exact

solution of both time and space complexities exponential in the number of queries. Then, we

propose a novel polynomial-time-and-space heuristic algorithm that performs reasonably well in

practice. We also analyze several variants of this problem under different constraints. Last, we

perform extensive experiments that demonstrate the efficiency and accuracy of our algorithms.
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Chapter 1

Introduction

The proliferation of the GPS-equipped cellular devices and the map-based applications have

enabled people to obtain their location data and other spatial information instantly. The location-

based services (LBS) use this information to solve a variety of queries. Nowadays, everyone

expects to find a suitable LBS to answer any travel related query s/he may feel the need to

ask. In this thesis, we formulate and investigate a range of new queries that facilitate collective

traveling of a group of users using a single vehicle.

1.1 Problems and Motivation

In our first problem, we determine the optimal start-and-end-stops of a vehicle, given path

queries from co-located sources to co-located destinations; the vehicle picks all passengers up

from its start-stop and drops them off at its end-stop. We name this problem as the optimal

end-stops (OES) query. In Figure 1.1, the source nodes are co-located in a region, while the

destination nodes are co-located in a distant region. The goal is to determine an optimal pair of

end-stops (st, en), which minimizes the summation of the shortest path cost between st and en,

the travel costs from sis to st, and the costs from en to dis.

A demand-based transportation agency that provides vehicles to carry passengers across a

city/state and assigns a group of passengers to a particular vehicle may use the OES query to

determine the vehicle’s optimal end points. Vehicular service for tourists traveling from one hot-

1
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Figure 1.1: The OES Query.

spot to another or friends planning a picnic may also benefit from this query by help determining

the optimal meeting location. Any group of people desiring to travel collectively may decide

upon the gathering, and the disperse points by using this query.

Our second problem is to determine the optimal route and the intermediate pick-up and drop-

off locations along the path of a vehicle, given its two end-stops and query sources and destina-

tions near its potential route. We call this problem as the optimal route and intermediate stops

(ORIS) query. In Figure 1.2, the query nodes are in locations that make sense. The objective is

to compute an optimal route P from st to en, which minimizes the summation of the cost of P ,

the costs from sis to P , and the costs from P to dis.

An off-campus bus service for an educational institution may ask our ORIS query to de-

termine its route and the locations to pick up and drop off students. A transportation service

s1

s2

s3

s4 d3
d1

d4
d2

st
en

P

Figure 1.2: The ORIS Query.
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for office staffs may similarly benefit from this query. A person may want to pick friends up

along the way to a restaurant, or a theater; s/he would also require determining her/his travel

route and pick-up locations. In general, any vehicle with advance passenger-reservations, or any

group of people planning to travel collectively by sharing a vehicle may ask this query to plan

the optimally shared route in advance. Similarly, a ride-sharing system [1], after matching its

passengers to a fleet of vehicles, may use this query to determine the optimal route and stops of

each vehicle in the system. Again, a cargo transportation system with one heavy carrier shipping

across cities, and several light carriers loading from/to the main vehicle may also use this kind

of query to determine the transaction locations. The motivation behind our second query is to

reduce the global travel cost of the main vehicle and the individual travelers’ transportation to

and from it; this reduction results in the diminution of the net energy consumption and an overall

greener transport.

We introduce several variants of the ORIS problem under different constraints. First, a user

may not want to travel too far to get on/off the vehicle. S/He usually prefers the entry (resp.

exit) point within walking distance of her/his source (resp. destination). Therefore in a variant,

we constrain the maximum allowable path length of a user to or from the vehicle. Second, the

vehicle’s agency may want to limit its path length. For a reasonably large number of passengers,

the optimal route - as calculated by our algorithm - tends to loop again and again to pick everyone

from home and drop him/her at the destination. Such a looping path is unrealistic under practical

considerations. Again, the driver does not want to run out of gas. Thus, limiting the maximum

allowable path-length of the vehicle to formulate another variant is pragmatic. Third, for a large

number of users, a driver may not want to stop to pick or drop a single person. If a large vehicle

stops too often, it may inconvenience onboard passengers. To address this issue, we propose

two variants - one by restricting the minimum number of people required to get on/off at a

stopping point, another by directly limiting the allowable number of stops of the vehicle. Last,

the vehicle’s agency may need to assign unequal weights to the cost of the vehicle’s route, and

the total cost of the solo travel by the passengers. For a small number of queries, it is pragmatic

to pick each user up from his/her source and drop him/her off at his/her destination; placing a

small weight on the vehicle’s path cost ensures the computation of such a route. On the other
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hand, a larger weight on the cost of the vehicle prevents a looping of its path and forces it to

travel in a shorter route; this becomes practical, when the number of users increases. Besides

these variants, we consider the possibility of deriving additional ones by adding more than one

constraint at a time.

The path queries input to our problems and variants may come from two different types of

LBSs. One treats each of our queries as a standalone application. It depends on either advanced

booking of passengers, or joint planning by users to produce the query source-destination pairs.

Then, it executes our algorithm offline on the generated set of path queries. The other type

pipes the output of an existing clustering algorithm such as [2], or a vehicle-passenger matching

algorithm of a ride-sharing system, e.g., [3], [4], [5], and [6], as input to each of our problems.

Then, each run of our algorithm computes the best route of a vehicle for the passengers assigned

to it. Ride-sharing has the benefit of saving time, money, and the environment [7], [8], [9],

[10], [11]. Our techniques have the potential to perform as the last stage in the pipeline of a

ride-sharing system [1].

Besides ride-sharing [1], our novel queries relate to several other fascinating problems in

the literature. The OES problem is similar to, yet different from, the optimal meeting point

(OMP ) query [12], [13]. Given a set of query points, the OMP query finds a gathering location

that minimizes the aggregate travel cost of the users. This query does not take into account

the location and orientation of two distant clusters of query nodes. Thus, the techniques to

solve the OMP problem cannot answer our OES query. The other associated problems are

the group nearest neighbor (GNN) [14], the group k-nearest neighbors (GKNN) [15], the k-

optimal meeting points (k−OMP ) [16], and the optimal location (OL) [17] queries in the road

network. However, the solution methodologies for these problems are not applicable in solving

the OES query.

TheORIS problem is a generalization of the traveling salesman path problem (TSPP ) [18].

Our ORIS query also relates to the trip planning (TP ) [19], [20], the optimal sequenced route

(OSR) [21], [22], [23], [24], [25], the keyword-aware optimal route (KOR) [26], the carpool-

ing [27], [28], [29], the vehicle routing (V RP ) [30], [31], [32], [33], the collective travel plan-

ning (CTP ) [34], and the Steiner diagram [35], [36], [37] problems. Detour ride-sharing is
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another related, yet different, problem [38], [39]. Be that as it may, none of these approaches are

adequate in solving theORIS query. The optimal multi-meeting-point route search (OMMPR)

query [40] is very similar to our ORIS problem. However, it only solves a variant of our prob-

lem that we introduce in Section 2.2.5 - it aims at minimizing a weighted sum of the vehicle’s

route cost and the users’ query-node-to-route costs. Furthermore, it provides four dynamic pro-

gramming algorithms, each of which has time and space complexities exponential in the number

of queries. We develop a novel polynomial-time-and-space heuristic solution that computes an

answer instantly, incurring a very low error. Unlike the algorithms in [40], which work for a

maximum of five users, our technique scales well for a large number of, like fifty, queries. We

also introduce several variants, including the weighted version [40], and propose modifications

of our approach to solve those versions.

The shortest path computation problems, e.g., [41], [42], [43], [44], [45], and [46], do not

apply in our context. Yet, we benefit from the intuition behind the Dijkstra’s algorithm [42],

[47], the bidirectional search [48], and the group shortest path approach [49] in solving both the

OES and the ORIS queries.

1.2 An Overview of Solutions

Below, we provide the intuition, and a high-level overview of our solution strategies for the

OES and the ORIS problems.

To solve theOES problem, at first, we outline a baseline brute-force technique. The straight-

forward solution approach does not exploit the properties of road networks; thus, it is slow and

inefficient. Then, we provide a more efficient algorithm. We adopt a simultaneous search tech-

nique that utilizes the path coherence property of road networks to improve the expected time

complexity of our algorithm. In practical scenarios, our approach is many times faster than the

baseline solution.

For the ORIS problem, we first provide an exact solution of both time and space com-

plexities exponential in the number of sources-and-destinations. The algorithm to compute an

optimal answer works for only a small number of users. For practical purpose, we require a
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solution approach, which is scalable for a large number of passengers. To that end, we propose a

polynomial-time-and-space heuristic algorithm that works well in practice. In this approach, in-

stead of exploring an exponential number of sub-problems, we make greedy choices to keep the

size of our search space within polynomial bound. Thus, we achieve an algorithm of polynomial

time and space complexities; however, this gain in scalability comes at the price of a little accu-

racy. Our heuristic efficiently calculates a near-optimal answer for a large group of people with

a reasonably small error. To solve each variant of our ORIS query, we propose modifications of

the above algorithms.

We perform extensive experiments on a real road network dataset, [50], using synthetic query

pairs. Our experimental results demonstrate the efficiency and effectiveness of our solutions. Our

first algorithm is an order of magnitude faster than the straightforward solution and still, produces

an exact answer. Our approaches to the second problem and its variants incur an average relative

error of less than 5%; however, contrary to the exponential-time theoretical approaches, they

produce an answer within a second. Our algorithms also save space as they have polynomial

space complexities.

1.3 Contributions

Below, we list the contributions of our thesis.

• We propose a novel type of query to determine the optimal end-stops of a vehicle for a

group of users sharing it between co-located sources and co-located destinations.

• We provide a fast and exact solution to compute the end-stops, which outperforms the

straightforward solution in practice.

• We introduce another query to determine the optimal route and intermediate stops of a ve-

hicle for a batch of passengers entering/exiting the vehicle en-route; we formulate several

variants of this problem under different constraints.

• We propose novel polynomial-time heuristics for the optimal-route-and-intermediate-stops
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problem and its variants; our heuristics are far more efficient than exponential-time exact

solutions and produce near-optimal answers.

• We conduct extensive experiments to investigate the efficiency and effectiveness of the

developed algorithms.

1.4 Organization

We organize the thesis as follows. First, in Chapter 2, we formally define our problems.

Then, we review the existing literature in Chapter 3. In Chapter 4, we provide algorithms to

solve the optimal end-stops problem. We demonstrate the straightforward baseline technique

in Section 4.1 and present our more efficient approach in Section 4.2. After that, in Chapter 5,

we investigate the optimal route and intermediate stops problem and its variants. We provide

the exact solution approach in Section 5.1, and the heuristic solution in Section 5.2. Then, in

Section 5.3, we discuss the solutions of the variants; in Section 5.4, we demonstrate the relation

of our second problem to the traveling salesman path problem (TSPP ) [18]. We show the

results of our experiments in Chapter 6. Finally, we conclude our thesis in Chapter 7.



Chapter 2

Problem Formulation

In this chapter, we formulate our problems of determining the optimal route and the stops of

a vehicle in a road network. In each problem, we are given a road network graph G = (V,E),

and a set Q = {(s1, d1), (s2, d2), ..., (sq, dq)} of trip queries in the form of source-destination

pairs, where |V | = n, |E| = m, |Q| = q, Q.S = {s1, s2, ..., sq}, Q.D = {d1, d2, ..., dq}, and

∀i ∈ [1, q] (si, di ∈ V ). First, we define the problem of finding an optimal pair of end-stops.

Second, we formulate the problem of determining the optimal route and the intermediate stops.

Last, we suggest several variants of the second task. In the discussion below, let SPC(u, v)

denote the shortest path cost to a node v from a node u in the road network graph. For the

purpose of presenting each problem, without loss of generality, we may assume that all roads are

bi-directional and have the same cost in either direction.

2.1 The Optimal End-Stops

In this problem, the input sources (resp. destinations) are co-located. Our goal is to determine

a start-stop st ∈ V , and an end-stop en ∈ V of a vehicle such that the following aggregate cost

function is minimized:

C1(st, en) = SPC(st, en) +

q∑
i=1

(SPC(si, st) + SPC(en, di))

8
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2.2 The Optimal Route and Intermediate Stops

In this problem, in addition to G, and Q, we are given a start-stop st ∈ V , and an end-

stop en ∈ V . Our task is to find an ordered sequence of stops P = [P (1), P (2), ..., P (t)] of a

vehicle, where len P = t, and (P (1) = st) ∧ (P (t) = en) ∧ (∀i ∈ [1, t] (P (i) ∈ V )). The

vehicle’s route is the collection of shortest paths among consecutive stops in P . Let us define

the functions fs : {(Q.S, V )} → {True, False}, and fd : {(V,Q.D)} → {True, False}.

fs(si, P (j)) is True when the i′th passenger starting from si enters the vehicle at P (j), False

otherwise. Similarly, fd(P (k), di) is True only when the i′th passenger going to di exits the

vehicle at P (k). A passenger gets on (resp. off) at a unique stop, where the entry point precedes

the exit point in the sequence P . We need to compute P in such a way that minimizes the

following aggregate cost function:

C2(P ) =
t−1∑
i=1

SPC(P (i), P (i+ 1)) +

q∑
i=1

t∑
j=1

t∑
k=1

(SPC(si, P (j)) ∗ [fs(si, P (j))] + SPC(P (k), di) ∗ [fd(P (k), di)]),

where ∀i ∈ [1, q] ((∃!j ∈ [1, t] ([fs(si, P (j))] = 1))∧

(∃!k ∈ [1, t] ([fd(P (k), di)] = 1)) ∧ (j <= k))

Here, ∃! denotes uniqueness quantification. For any boolean statement S, [S] equals 1 when S is

True, 0 otherwise.

Below we recommend several variants under a number of different constraints.
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2.2.1 Constraint on Each User’s Lone Path Length Before Entering or Af-

ter Exiting

In the cost function C2, we may add the following constraint to check the maximum length a

user may travel before getting on, or after getting off the vehicle:

q
max
i=1

t
max
j=1

t
max
k=1

(SPC(si, P (j)) ∗ [fs(si, P (j))], SPC(P (k), di) ∗ [fd(P (k), di)]) <= R1,

where R1 ∈ [0,∞)

The limit R1 → ∞ technically means that there is no restriction on a user’s path; while, with

R1 = 0, the problem becomes identical to the traveling salesman path problem (TSPP ) [18].

2.2.2 Constraint on the Vehicle’s Route Length

The following constraint on C2 limits the vehicle’s length of travel:

t−1∑
i=1

SPC(P (i), P (i+ 1)) <= R2 ∗ SPC(st, en), where R2 ∈ [1,∞)

When R2 = 1, the vehicle travels in its shortest path. Contrarily, when R2 → ∞, the task

essentially remains the same as the original problem.

2.2.3 Constraint on the Entering/Exiting Passenger-Cardinality at a Stop

Requiring a minimum number of passengers to get on-or-off the vehicle at an intermediate

stop may be one way to limit the total number of stops. The following constraint imposes this

limitation:

t−1
max
i=2

(

q∑
j=1

([fs(sj, P (i))] + [fd(P (i), dj)])) >= R3, where R3 ∈ [0, 2 ∗ q]

At one extreme, R3 = 0, or R3 = 1 is equivalent to there being no constraint. At the other

extreme, R3 = 2 ∗ q means that 2 <= t <= 3, i.e., there is at most one intermediate stop.
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2.2.4 Constraint on the Total Number of Stops

We may limit the total number of stops by adopting a more straightforward constraint:

2 <= t <= R4, where R4 ∈ [2, 2 ∗ q + 2]

R4 = 2 means that the vehicle does not stop midway at all; while R4 = 2 ∗ q + 2 suggests that

the driver can always freely stop to pick up/drop off a single passenger.

2.2.5 The Weighted Version

Instead of assigning equal weights to the route cost of the vehicle, and the total lone travel

cost of the passengers, we may discriminate as follows:

C2(P ) = R5 ∗ (
t−1∑
i=1

SPC(P (i), P (i+ 1))) + (1−R5) ∗ (
q∑

i=1

t∑
j=1

t∑
k=1

(SPC(si, P (j)) ∗ [fs(si, P (j))] + SPC(P (k), di) ∗ [fd(P (k), di)])),

where R5 ∈ [0.3, 1] ∧ ∀i ∈ [1, q] ((∃!j ∈ [1, t] ([fs(si, P (j))] = 1))∧

(∃!k ∈ [1, t] ([fd(P (k), di)] = 1)) ∧ (j <= k))

When R5 = 0.3, the weighted version reduces to the TSPP problem (see [40] for a proof).

Contrarily, when R5 = 1, the shortest path between the end-stops is the optimal route of the

vehicle.

As discussed in Chapter 1, each constraint serves a specific purpose. We may easily formulate

more variants by imposing more than one of the above four constraints at once.

2.3 Assumptions

In this thesis, we assume that each algorithm takes as input, a reduced road network graph

that makes sense, i.e., beyond which, neither the vehicle nor the passengers require traveling. The
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reduced graph may be a reasonably large elliptical section of the original graph, or a sub-graph

with a region-specific boundary, e.g., the road network graph of the San Francisco city [50]. We

also take for granted that the path queries input to our problems meet the assumptions mentioned

in Chapter 1. We consider city scale graphs, rather than continent scale ones, since they are more

practical for the scope of our queries.



Chapter 3

Background Study

In this thesis, we have introduced two types of problems - the optimal end-stops (OES)

query, and the optimal route and intermediate stops (ORIS) query. In the existing literature, our

OES and ORIS problems are closely related to the ride-sharing problem in road networks [1].

In recent years, several studies, [8], [9], [10], [11], have demonstrated the benefits of ride-sharing

in reducing the traffic congestion [8], [9], the number of DWI fatalities [10], and the greenhouse

gas emission [11]. [7] shows how a ride-sharing system may save time, money and the environ-

ment. Our techniques complement the existing ride-sharing approaches, [1], by computing the

optimal route and stops of a vehicle for a group of assigned passengers.

The challenges in the ride-sharing system come from two directions. First, to dynamically

match the passengers, requesting shared rides, to appropriate vehicles. Second, to compute the

best route of each vehicle and its pick-up and drop-off locations for the passengers assigned to

it. Neither task is trivial. Several works in the existing literature address the first problem [3],

[4], [5]. [3] presents an efficient algorithm based on the kinetic tree, which finds the appropriate

assignment with a service guarantee. In [5], a system, named T-share, performs dynamic vehicle-

passenger matching for the purpose of Taxi ride-sharing. [4] introduces a Spatio-temporal index

structure, which facilitates taxi searching under a set of constraints such as the time-window

constraints, and the monetary constraints. These algorithms concentrate on efficiently assigning

the passengers to the vehicles in the system in real-time. In this thesis, we mainly focus on

overcoming the second challenge of determining the optimal route and stops of a vehicle through

13
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solving the OES and the ORIS problems.

A general class of NP-hard problems, namely, the vehicle routing problem (V RP ) [30],

[31], [32], [33], is somewhat related to both the OES and the ORIS problems. To detail the

myriad problems under the heading of V RP is beyond the scope of our discussion. The general

objective of these studies is to minimize the global cost of delivery of commodities or passengers,

meeting a myriad of constraints, by using a fleet of vehicles. Remember that the goal of our

problems is to reduce the total cost of travel by letting the passengers share a single vehicle;

each passenger journeys alone before entering and after leaving the vehicle. Of course, sharing

a common large vehicle in a highway helps in reducing the global cost to some extent. However,

subsets of the passengers also share other common paths in the suburbs. If, whenever more

than one passenger shared a path in common, they had traveled collectively, the global travel

cost would be the minimum; the V RP problem aims to achieve this objective, usually for the

delivery of goods. Another related problem, with a similar goal, is the collective travel planning

(CTP ) query [34]. The CTP problem aims at finding the lowest cost route connecting multiple

sources and a destination, via at most k meeting points from a set of prospective locations.

The motivation behind the V RP and the CTP queries are to achieve an environment-and-cost-

friendly transportation that reduces traffic congestion, energy consumption, and greenhouse gas

emission. Mathematically, these are similar to the Steiner diagram problems [35], [36], [37],

which would find an optimal acyclic sub-graph of the road network, connecting the query nodes

of our problems. In general, all these problems have integer programming, or integer network

flow formulations; a myriad of approximations and heuristics are available to cope with practical

scenarios. However, our problems are fundamentally different from these in that we expect the

passengers to travel collectively, only in the most major shared route, using a single vehicle.

Again, unlike the V RP and the CTP problems, our queries do not require that the vehicle

passes through any node(s) specified in the input. Therefore, the techniques in [30], [31], [32],

[33], [34], [35], [36], and [37] do not help in solving our problems. The V RP and the CTP

queries fare better in addressing the first challenge of the ride-sharing system than in dealing

with the second one. A ride-sharing system may utilize these queries to assign the passengers

to different vehicles - possibly recommending each passenger to travel by using more than one
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vehicle en-route. Once the assignments are complete, our OES and ORIS queries may help in

finding the optimal route for each vehicle.

In the OES problem, given a cluster of co-located sources, and another of co-located desti-

nations, we are to find an optimal pair of end-stops for a vehicle, which will carry the passengers

from the source cluster to the destination cluster. Users demanding a vehicle, using a location-

based service, do not automatically form clusters. The initial task is to group them in a way that

satisfies our input requirements. In this thesis, we do not provide an algorithm for grouping pas-

sengers. Instead, we assume that an existing clustering algorithm such as [2], which partitions

the queries into batches, has already performed the grouping. [2] divides the path queries into

groups, where each group comprises the queries from a source cluster to a destination cluster.

We take each output query group of [2] as input to our algorithm and focus on determining the

optimal end-stoppages for the corresponding vehicle.

To the best of our knowledge, our OES problem is new in the literature. A related problem

is the optimal meeting point (OMP ) query in road networks [12], [13]. In the OMP , the query

is a set of nodes; the target is to determine a meeting location such that the aggregate cost of

travel from the query nodes to that location is the minimum. The OMP query is fundamentally

different from our OES query. In the former, the objective cost is a function of the distances

of the query nodes to the meeting point. Contrarily, in the latter, the cost function depends on

both the individual path costs of the users and the route cost of the vehicle. If we provide the

co-located sources (resp. destinations) of our problem as input to the OMP query [12], it may

find an approximation to our optimal start-stop st (resp. end-stop en). However, since the OMP

query does not take into account the location and orientation of the other distant cluster, it will

fail to compute a reasonable answer to our query, in most instances. Therefore, we cannot use

the existing solutions for the OMP query to solve the OES problem.

Other problems, related to, yet, very different from the OES, are the group nearest neighbor

(GNN) [14], the group k-nearest neighbors (GKNN) [15], the k-optimal meeting points (k −

OMP ) [16], and the optimal location (OL) [17] queries in the road network. Unlike the OES,

and like the OMP , none of these queries take a pair of clusters (the source cluster and the

destination cluster) as input. Thus, the techniques in [14], [15], [16], and [17] do not apply in the
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context of the OES problem.

Our OES query is different from the point-to-point shortest path query in two aspects. First,

it takes multiple source-destination pairs as input. Second, it aims to optimize a different cost

function, which is a summation of the vehicle’s path cost and the passenger’s solo travel costs.

Therefore, the traditional shortest path algorithms such as the Dijkstra [42], [47], and the A∗

[43] cannot answer our query. Similarly, we cannot use faster hierarchy based approaches like

[44], [45], and [46] either. However, we benefit from the Dijkstra’s algorithm [42], [47], the

bidirectional search [48], and the group shortest path approach [49]. [49] introduces a technique

to process a batch of shortest path queries simultaneously, based on the path-coherence property

of road networks. Although [49] cannot solve our problem, we borrow the intuition behind its

simultaneous search to develop an efficient algorithm in Section 4.2 that answers theOES query.

In the ORIS problem, given the end-stoppages and a set of path queries from a group of

users, we are to compute an optimal route for a vehicle, as a sequence of intermediate stops.

Usually, in a ride-sharing system, there is a fleet of vehicles for providing the passengers with

shared rides. The first task is to divide the passengers into groups and assign each group to a

vehicle; we assume that a vehicle-passenger matching algorithm, e.g., [3], [4], [5], and [6], has

already done that. In this thesis, we center upon the task of determining the optimal route for a

single vehicle serving a group of passengers.

In Section 5.4, we demonstrate theORIS query’s relation to the well-known NP-hard travel-

ing salesman path problem (TSPP ) [18]. We show that the TSPP is a fixed-parameter version

of the ORIS problem. In particular, we prove that any algorithm, which solves a variant of

our problem for any arbitrary value of a parameter, also solves the TSPP . Be that as it may,

we cannot use the solution techniques of [18] to answer the ORIS query. Our ORIS query

is also closely related to the trip planning (TP ) problem [19], [20], and the optimal sequenced

route (OSR) problem [21], [22], [23], [24], [25]. The TP query aims at finding the optimal trip

schedule that starts from a source location, goes through several points of interests (POI) such

as restaurants, theaters, zoos, etc., and ends at a destination node; the TP calculates a schedule

for either a single user [19], or a group [20]. Similarly, the OSR problem, introduced in [21], is

to determine a minimum-cost route from a source to a destination, passing through several typed
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POIs in a sequence, specified on the types, in the road network. Our ORIS query is different

from both the TP and the OSR queries in the following aspects. First, unlike in the other two

problems, in the ORIS query, the optimal route of the vehicle does not necessarily pass through

a set of POIs. Indeed, in our problem, most passengers may travel some distance individually

before getting on (resp. after getting off) the vehicle. The pick-up and the drop-off locations,

through which our vehicle travels, are not query points; they are the output of our algorithms.

Second, in the ORIS problem, the nodes do not have a type information. The query nodes are

simply the source and the target locations of the passengers. Last, our ORIS query does not

require to meet any sequence constraint; rather, it is the objective of our algorithms to report the

intermediate stops in an optimal sequence along the vehicle’s optimal route. As a result of these

differences, the solution approaches to [19], [20], [21], [22], [23], [24], and [25] are not appli-

cable in solving the ORIS problem. Another query, which is somewhat related to ours, is the

keyword-aware optimal route (KOR) problem [26]. The KOR query searches for the optimal

route that goes through a set of nodes covering an input set of keywords. This problem is also

dramatically different from our ORIS query; hence, we cannot apply the techniques presented

in [26] either.

Several ride-sharing path-planning approaches, such as [38], and [39], also relates to our

ORIS query. However, these require that the optimal detour route, from the source s to the

destination t, includes a sub-route between two nodes - s′ and t′ - specified in the query. Hence,

the route returned by these ride-sharing queries obligatorily passes through two query nodes.

Contrarily, in our ORIS problem, the vehicle’s route does not need to include any query node

other than the end-stoppages. This difference renders us unable to use the algorithms in [38]

and [39] to answer our query.

Another interesting approach, related to our ORIS, is the carpooling problem [27], [28],

[29]. The coRide system, presented in [28], comprises a mobile app for passenger clients, on-

board hardware devices in each taxi dedicated for notifications and data gathering, and a cloud

dispatching server. The cloud server performs the vehicle-passenger matching, recommends

routes, and estimates fare of each passenger. [28] proposes a win-win fare model that benefits

both the passengers and the drivers economically. [28] tackles the passenger assignment and the
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route recommendation problems simultaneously; it provides an integer programming formula-

tion with constraints such as the number of available taxicabs, the capacity of each taxicab, and

time-window requirement of each passenger. Besides an exponential-time optimal solution, [28]

proposes a fast 2-approximation algorithm for practical purposes. The route calculation in our

ORIS query is significantly different from that in the coRide problem as follows. First, in the

coRide, a vehicle picks a passenger up (resp. drops him/her off) at his/her query node. Contrar-

ily, in the ORIS, the vehicle does not necessarily travel through each query node. Second, the

coRide system requires that some vehicle, from among the fleet, picks a particular passenger up

within a specified time window. This constraint limits the matching possibilities and the order

in which a vehicle may pick its passengers up. Our ORIS does not handle any time-window

constraint; thus, it has more choices for its route. Due to these factors, even a coRide system

with a single vehicle is different from the ORIS query. Therefore, we cannot use the technique

in [28] to solve the ORIS.

Like our ORIS, the optimal multi-meeting-point route (OMMPR) search problem also

tackles the second challenge of the ride-sharing, namely, determining a vehicle’s route for a

group of matched passengers [40]. However, [40] solves only the fifth variant of our problem

(Section 2.2.5). It provides two straightforward dynamic programming solutions - the basic and

the grow methods, and two optimized ones - the bidirectional and the bidirectional− bounded

techniques; all four algorithms compute the exact answers. However, even the most optimized

of these four approaches, namely, the bidirectional− bounded method, has both time and space

complexities exponential in the number of query nodes. Therefore, the techniques presented

in [40] do not scale well for a reasonably large number of users. In other words, the algorithms in

[40] are only suitable for a small 5/6-seated taxi-ride-sharing. Contrarily, the heuristic technique,

which we have developed in Section 5.2, returns an answer instantly for even a large number of

queries, like fifty or more queries. Thus, our approach is more suitable for ride-sharing using a

larger vehicle such as a mini-bus, or a bus. Our experiments, in Chapter 6, illustrates that the

gain in execution time and memory is worth the little loss of accuracy by our technique. To

the best of our knowledge, our heuristic algorithm in Section 5.2 is the first of its kind, which

efficiently tackles the second challenge of ride-sharing for a large number of passengers per
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vehicle. Another contribution of our thesis is that we have formulated some useful variants in

Section 2.2 and proposed their solutions in Section 5.3.

Notice that the shortest path from the start-stop st to the end-stop en is obviously not the an-

swer to the ORIS query. Therefore, we cannot directly apply the shortest path computation al-

gorithms, e.g., [42], [43], [44], [45], and [46], to solve our problem. Be that as it may, we develop

our exponential-time exact method in Section 5.1 by modifying the Dijkstra’s algorithm [42];

we define each sub-problem state as a node-set-of-queries pair. We also base the intuition for

our near-optimal polynomial-time heuristic search procedure, presented in Section 5.2, on the

greedy strategies of the Dijkstra’s [42], [47], and the Bellman-Ford-Moore’s [41] single-

source shortest path algorithms.



Chapter 4

The Optimal End-Stops

In this chapter, we analyze the problem of finding the optimal end-stops of a vehicle, given

path queries from a group of users from co-located sources to co-located destinations. First, we

outline the straightforward slow solution. Last, we propose our fast and exact solution.

4.1 Baseline Solution

The baseline algorithm is pretty straightforward. Initially, we compute the shortest path

costs from the query sources to all nodes in the reduced road network graph (as discussed in

Section 2.3), and from all nodes to the query destinations. At each node, we store the sum of the

shortest path costs from the sources and the sum of the shortest path costs to the destinations.

Then, from each node of the graph, we compute the shortest path costs to all nodes. We consider

each pair of nodes as a candidate solution whose cost is determined by the cost function C1.

Among all candidate solutions, we choose a pair of nodes that minimizes C1, as the optimal

end points. To compute single-source shortest paths, we use the Dijkstra’s algorithm with

Fibonacci Heap [42], which suffices for the purpose of comparing with our proposed solution.

Algorithm 1 illustrates the pseudo-code for the baseline approach. Line 1 computes the

transpose graph of G, namely GT = (V,ET ), where ET = {(u, v) : (v, u) ∈ E}, i.e., ET

consists of the edges ofGwith their directions reversed; it also computes the transpose of the cost

function w, namely wT , which stores the cost of the edges in ET . Lines 2-4 calculate the shortest

20
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Algorithm 1: BASELINE-END-STOPS (G,w,Q)

Input: A graph G, a cost function for edges w, and a set of queries Q
Output: An optimal pair of end-points (st, en)

1.1 Compute GT , and wT

1.2 for each query (si, di) ∈ Q do
1.3 SPC(si, G.V )←DIJKSTRA (G,w, si)
1.4 SPCT (di, G.V )←DIJKSTRA (GT , wT , di)

1.5 for each node v ∈ G.V do

1.6 Sv ←
q∑

i=1
SPC(si, v)

1.7 Dv ←
q∑

i=1
SPCT (di, v)

1.8 opt←∞, (st, en)← (NIL,NIL)
1.9 for each node u ∈ G.V do

1.10 SPC(u,G.V )←DIJKSTRA (G,w, u)
1.11 for each node v ∈ G.V do
1.12 if SPC(u, v) + Su +Dv < opt then
1.13 opt← SPC(u, v) + Su +Dv

1.14 (st, en)← (u, v)

1.15 return (st, en)

path costs to all nodes from the query nodes. From each source node (resp. destination node),

the DIJKSTRA routine computes the single-source shortest paths on the graph G (resp. GT ).

Lines 5-7 calculate the summation of the shortest path costs Sv (resp. Dv) to each node v ∈ V

(resp. the destinations) from the sources (resp. each node v ∈ V ). Line 8 initializes the potential

optimal value opt for the cost function C1 to∞, and the answers (st, en) to (NIL,NIL). The

for loop in lines 9-14 considers each node u ∈ V as a potential start-stop and calculates single-

source shortest paths from it in line 10. Then, the for loop in lines 11-14 regards each node

v ∈ V as a potential end-stop, computes C1(u, v) as a candidate solution cost, and finds the

optimal solution from among all candidate solutions. Finally, line 15 returns the optimal answers

(st, en).
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4.1.1 Complexity Analysis

In Algorithm 1, line 1 needs O(n + m) to compute GT . Computing single-source shortest

paths using the Dijkstra’s algorithm with Fibonacci Heap takes O(n lg n + m). Thus, lines

2-4 require O(q(n lg n + m)); usually, q << n. To calculate the summations in lines 5-7,

O(nq) is needed. The initialization in line 8 is in O(1). In each iteration of the for loop in

lines 9-14, line 10 takes O(n lg n+m) and lines 11-14 demand O(n). Hence, lines 9-14 involve

O(n2 lg n + nm) computation which is the dominating term in this complexity analysis. In a

dense graph, m = cn2, c being a constant; however, in sparse road network graphs, m = cn.

Therefore, the overall complexity of the baseline solution is O(n2 lg n).

We know that an implementation of the Dijkstra’s algorithm with Fibonacci Heap and

Adjacency List representation of the graph requires O(n + m) space. In a sound implementa-

tion of Algorithm 1, besides the space required by the Dijkstra’s algorithm, we need only the

following space - the summation of costs to each node from the sources, and the summation of

costs to the destinations from each node. Thus, additional space needed is O(n); overall space

complexity is O(n+m).

4.1.2 Discussion

We may improve the baseline algorithm by replacing each Dijkstra-based shortest path

computation with a faster approach, e.g., a method based on the contraction hierarchies [45],

and another using the arterial hierarchies [46]. However, no matter which method we use to

compute the shortest paths, we still need to regard each pair of nodes in the graph as possible

end-stoppages. Hence, calculating the all pair shortest paths is a must in the baseline technique.

Thus, even using the state-of-the-art in the shortest path computation [46], which answers a query

in constant time, cannot improve the complexity of the brute-force technique beyond O(n2).

Besides, although [46] has a constant time complexity per point-to-point path query, it depends

on massive pre-computation. As we show shortly, our proposed solution works many times faster

than the O(n2) bound. Therefore, we judge that implementing [45] or [46] is not worth a mere

O(lg n)-factor gain in the complexity of the baseline method, which we only use for comparing
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with our much faster solution approach.

4.2 Fast Solution

In this section, we present a novel algorithm to compute the optimal end-stoppages. The

baseline approach computes path cost between each pair of nodes in the reduced graph. It does

not exploit the fact that the query sources (resp. destinations) are co-located or any property of

the underlying road network. Hence, the brute-force solution is inefficient. In our new algorithm,

we develop a search technique that utilizes the path coherence property of road networks. Our

approach performs a simultaneous search from all the sources and another from all the destina-

tions. In this method, the existence of shared routes among queries helps reduce the expected

execution time. In practice, our algorithm is an order of magnitude faster than the baseline

technique.

As mentioned above, we perform a search involving the query sources and another including

the query destinations. In the former, we compute the minimum total cost of travel to each

node v ∈ V in the reduced road network (as discussed in Section 2.3), when the passengers

travel alone to some node, say st, and the vehicle carries them from st to v. In the latter, we

calculate a similar minimum traveling cost from each node v ∈ V , when the vehicle conveys the

passengers from v to some node, say en, and each passenger journeys individually from en to

his/her respective destination.

Since both searches are similar, we detail only the search from the query sources. Throughout

the search procedure, we maintain a frontier using a priority queue PQ. We define the search

frontier as a set of nodes, from each of which, we are yet to branch some queries to its adjacent

nodes. Initially, PQ comprises each query source node with the respective query waiting to

be branched from that node. We relatively order each node in the search frontier PQ by a

cost associated with that node; we term this cost as the node’s key cost. We shall outline the

computation of a node’s key cost shortly. Each time, we extend the search space by picking a

node from PQ with the minimum key cost and branch the queries waiting at that node to its

adjacent nodes. It is easier to visualize our search technique as individual searches from the
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query nodes, running in parallel threads. The difference is that ours is single search, where more

than one query may wait at a node simultaneously; when a node’s turn arrives, we branch the

queries waiting at it to each neighbor at once. We term the process of branching queries to an

adjacent node as relaxation. Notice, at any moment during our search, each query likely reaches a

different subset of nodes in the reduced road network graph. Hence, at a particular time, for each

node in the graph, we can find a subset of queries, whose individual search space has reached

that node; we term this subset as the node’s currently-reaching-queries. We maintain and update

the following at each node:

• The node’s key cost, which we use for relatively ordering it in the search frontier PQ.

• The node’s parent, which is its predecessor on the vehicle’s route; the parent isNIL, when

the node is not on the vehicle’s path or is the start-stop.

• Each currently-reaching-query and the shortest path from the corresponding source node;

we let this information persist even after we relax the queries waiting at it.

Let us delineate the relaxation of the queries waiting at a node u, to a node v. First, for

each query qi waiting at u, we determine the shortest path cost from its source node si to v by

considering the path through u as an option. We may need to update the costs of some already-

reaching-queries if the paths through u turn out a better option. Again, we may require inserting

some new queries at v, if they reach v for the first time during this relaxation. Second, we

compute the key cost of v as the minimum of the below three options:

1. Summation of the costs of the queries currently reaching v, in case we have updated/inserted

some query cost at v through u.

2. Key cost of u + edge cost between u and v, in case all the queries were waiting at u.

3. Previous key cost of v, in case no new query has reached v through u.

Option 1 represents the situation when each passenger is still traveling alone; if all the

queries are currently reaching v, then it means that they have just boarded the bus. Hence, we
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set the parent of v to NIL if option 1 is the minimum. Option 2 indicates that the vehicle has

carried all the passengers from u to v; we, therefore, count the edge cost between u and v only

once as part of the vehicle’s routing cost, not for the individual passengers, since they are already

onboard. If this option is the minimum, we set the parent of v to u. Option 3 simply tells that no

new query has reached v and that its previous key cost is better than the other options; thus, we

keep its key cost and parent unchanged. Notice that this option does not necessarily mean that

we have not performed any update during the relaxation. Indeed, we may have updated some

query cost at v through u; however, the former key cost may still be the minimum due to a better

route of the vehicle through some other node. Last, in the scenario that we have performed any

update in the first or the second step, we consider v as a frontier node in the search space. Even

when option 3 is the minimum, we push v to the frontier PQ as long as we have updated at

least one query cost at v, since propagating this update may help obtain better key costs in future

relaxations. Recall, we expand the search space by each time picking the minimum-cost-node

from PQ and relaxing to its neighbors. We execute the search exhaustively until PQ becomes

empty.

We illustrate our search technique with an example in Figure 4.1. In this figure, we show

several relaxations by our algorithm in a sample graph with synthetic queries. Nodes a and b are

the query sources s1 and s2. In the initialization phase, step (i), we set the key cost of node a

(resp. node b) to 0, with query 1 (resp. query 2) waiting at that node. For the remainder nodes,

we set their key costs to∞, with no waiting queries. We set all parents to NIL. Nodes a and b

are in the search frontier PQ. In step (ii), we remove a from PQ and relax query 1 from a to b,

and c. After these relaxations, the key cost of b becomes 20, with both queries waiting, and the

key cost of c becomes 5, with only query 1 waiting; option 1 prevails in each case. In the figure,

for each node, we show its individual query costs and key cost, e.g., {20, 0}|20 for node b. In

step (ii), we push c to PQ and update the position of b. In the next four steps that we do not

illustrate for brevity, we relax from c, e, f , and d respectively. In step (vii), we relax from b to

a, c, and d; again, option 1 dominates in each case. In the omitted step (viii), we relax from g.

In step (ix), we relax from c to its neighbors. Option 1 reigns at a, option 3 at b, and option 2

at e, and f . Node c becomes the parent of e, and f each. We push e, and f to PQ and update
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Figure 4.1: Example Relaxations of Algorithm 2 - Steps (i), (ii), (vii), (ix), (xi), and (xv).

the status of a. As we have performed no updates at b, we keep its frontier status unchanged.

Then, after relaxing from a in step (x), in step (xi), we relax from d to its adjacent nodes. Node

b remains unchanged. Option 1 prevails at node f , and we reset its parent back to NIL. In

step (xii) that we leave out, upon relaxations from f , f becomes g’s parent, and we update the

status of e, even when option 3 dominates. After two more steps, step (xv) illustrates the final

standing of each node. For example, node g has the cost values {10, 7}|14, and its parent is node

f . Apparently, passenger 1 (resp. passenger 2) travels on the path a− c− f (resp. b− d− f ) to

get on the vehicle at f ; then, the vehicle carries them to g.
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Notice that we may carry out the search from the query destinations easily by running a

similar search as above in the transpose of the road network graph. After both searches terminate,

for each node v ∈ V in the road network, we calculate the summation of the two key costs at v

computed by the searches as a candidate solution cost. The minimum among all such candidates

is our answer cost. Finally, we utilize the parent information, stored during the searches, to

determine the optimal end-stops, which we return as the outcome of our algorithm.

Algorithm 2: FAST -END-STOPS (G,w,Q)

Input: A graph G, a cost function for edges w, and a set of queries Q
Output: An optimal pair of end-points (st, en)

2.1 Compute GT , and wT

2.2 (ds, πs, Ts)←GROUP -QUERY -SEARCH (G,w,Q.S)

2.3 (dd, πd, Td)←GROUP -QUERY -SEARCH (GT , wT , Q.D)
2.4 opt←∞, mid← NIL
2.5 for each node v ∈ G.V do
2.6 if (|Ts(v)| = q) ∧ (|Td(v)| = q) ∧ (ds(v) + dd(v) < opt) then
2.7 opt← ds(v) + dd(v)
2.8 mid← v

2.9 (st, en)←COMPUTE-END-STOPS (mid, πs, πd)
2.10 return (st, en)

Algorithm 2 outlines the pseudo-code for our novel solution approach. Line 1 computes the

transpose graph GT of G, and the transpose cost function wT of w. Line 2 calls the GROUP -

QUERY -SEARCH routine that performs the search from the query source nodes. By a similar call to

the same procedure, line 3 runs the search from the query destinations in the transpose graph GT .

Lines 11-27 demonstrate the GROUP -QUERY -SEARCH function. Line 12 initializes the search

by calling INIT -GROUP -QUERIES, shown in lines 35-43. For each node v ∈ V , the for loop in

lines 36-39 sets its key cost d(v) to∞, its parent π(v) to NIL, and the list of currently-reaching-queries

T (v) to ∅. The for loop in lines 40-42 initializes the cost d(u) of each query node u to 0, and the list of

currently-reaching-queries at u to the corresponding query with cost 0. After returning from the routine at

line 43, line 13 builds the priory queue PQ with all the nodes in the graph. Each time through the while

loop of lines 14-26, line 15 extracts a vertex u of the minimum key cost from PQ. Then, the for loop

in lines 16-26 performs the relaxation to each node v adjacent to u and updates d(v), π(v), and T (v) if

required.

First, the call to the MERGE procedure in line 17 updates the shortest path costs from the individual
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Algorithm 2: FAST -END-STOPS (G,w,Q) cont.
2.11 Function GROUP-QUERY -SEARCH (G,w,N):
2.12 (d, π, T )← INIT -GROUP -QUERIES (G,N)
2.13 PQ← G.V
2.14 while PQ 6= ∅ do
2.15 u← EXTRACT -MIN (PQ)
2.16 for each node v ∈ G.Adj[u] do
2.17 (upd, d, π, T )←MERGE (u, v, w(u, v), d, π, T )
2.18 if (|T (u)| = q) ∧ (d(u) + w(u, v) < d(v)) then
2.19 upd← True
2.20 d(v)← d(u) + w(u, v)
2.21 π(v)← u

2.22 if upd = True then
2.23 if EXISTS (PQ, v) then

2.24 UPDATE-KEY (PQ, v, d(v))

2.25 else
2.26 INSERT (PQ, v)

2.27 return (d, π, T )

Algorithm 2: FAST -END-STOPS (G,w,Q) cont.
2.28 Function COMPUTE-END-STOPS (mid, πs, πd):
2.29 (st, en)← (mid,mid)
2.30 while πs(st) 6= NIL do
2.31 st← πs(st)

2.32 while πd(en) 6= NIL do
2.33 en← πd(en)

2.34 return (st, en)

query nodes. Lines 44-60 depict the MERGE routine. Line 45 initializes the variable upd, which denotes

whether the function updates any query cost. Line 46 stores the number of queries currently reaching at

v before any update. Lines 47-54 update the query costs in T (v) by considering a path through u as

an option; they also insert the newly-reaching-queries in T (v). Second, we consider the options 1 3 as

described above in computing the key cost of v, which determines its relative position in PQ. Lines 55-59

inside the MERGE function regard option 1, and option 3. After returning from the function in line

60, lines 18-21 deliberate option 2. Last, 22-26 update the search frontier represented by PQ. Line 27

returns the information acquired by the search.
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Algorithm 2: FAST -END-STOPS (G,w,Q) cont.
2.35 Function INIT-GROUP-QUERIES (G,N):
2.36 for each node v ∈ G.V do
2.37 d(v)←∞
2.38 π(v)← NIL
2.39 T (v)← ∅
2.40 for each node u ∈ N do
2.41 d(u)← 0
2.42 T (u)← T (u) ∪ {(u, 0)}
2.43 return (d, π, T )

Algorithm 2: FAST -END-STOPS (G,w,Q) cont.
2.44 Function MERGE (u, v, c, d, π, T):
2.45 upd← False
2.46 qprev(v)← |T (v)|
2.47 for each query-cost pair (pu, lu) ∈ T (u) do
2.48 if ∃query-cost pair(pv, lv) ∈ T (v) (pv = pu) then
2.49 if lu + c < lv then
2.50 upd← True
2.51 lv ← lu + c

2.52 else
2.53 upd← True
2.54 T (v)← T (v) ∪ {(pu, lu + c)}

2.55 if upd = True then
2.56 dtemp(v)←

∑
(pv ,lv)∈T (v)

lv

2.57 if (|T (v)| > qprev(v)) ∨ (dtemp(v) < d(v)) then
2.58 d(v)← dtemp(v)
2.59 π(v)← NIL

2.60 return (upd, d, π, T )

The first search computes the key costs ds, the parents πs, and the individual query costs Ts. Similarly,

The second search calculates the key costs dd, the parents πd, and the individual query costs Td. After both

searches terminate, lines 4-8 determine the optimal solution cost opt by considering each node v ∈ V .

They compute the candidate solution costs ds(v) + dd(v), provided that both Ts(v), and Td(v) contain all

the queries, and find the best middle point mid such that opt = ds(mid) + dd(mid) is the optimal cost.

Through a call to COMPUTE-END-STOPS function, illustrated in lines 28-34, line 9 computes the
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optimal pair of end-stops (st, en). Starting at mid, the function traverses the parent list πs (resp. πd) until

reaching NIL to determine the start stop st (resp. the end-stop en). Finally, line 10 returns the computed

end-stops.

4.2.1 Complexity Analysis

In Algorithm 2, line 1 requires O(n+m) time to compute the transpose graph. Lines 2-3 make calls

to the GROUP -QUERY -SEARCH routine. We will discuss the time complexity of this procedure

shortly. Lines 4-8 need O(n) time to determine the optimal cost. The function call in line 9 requires

another O(n) time to compute the optimal end-stops.

Inside the GROUP -QUERY -SEARCH function, lines 12-13 take O(n + q) time to initialize

the search and the priority queue. Determining the execution time of the while loop of lines 14-26

demand some rigorous analysis. We use Fibonacci Heap to implement the min-priority queue PQ.

Hence, the amortized time complexity of each EXTRACT -MIN operation is O(lg n), and that of each

UPDATE-KEY or INSERT operation isO(1). The call to the MERGE function in line 17 requires

O(q) time. Thus, each relaxation from a node u to a node v, in lines 17-26, takesO(q) time. The difficulty

of this complexity analysis is in determining the number of EXTRACT -MIN operations and the num-

ber of edge relaxations. Consider a relaxation from a node u to a node v. For some queries waiting at u,

we may find smaller costs of reaching v through u, while for the other queries, the former costs of reaching

v may remain unchanged. Until all queries reach the node v, we compute its key cost as the summation

of the costs of the currently-reaching-queries. Notice that after one of these unconventional relaxations,

it is possible that the key cost of v may become less than the key cost of u. However, for any particular

query, we either improve or keep its cost, each time we relax that query along an edge. Nevertheless, the

order of relaxation for any individual query may not be optimal, since we determine the relative order of

a node in PQ by its key cost, not by any query cost. Hence, our search procedure may not only insert a

newly-reaching-query at a node v ∈ V but also update the cost of a formerly-reaching-query, even after

it extracts v from PQ. Thus, we may insert and extract a node again and again. Be that as it may, after

we relax a query at most n − 1 times along each edge of the graph, further relaxations do not update its

individual cost any more, like in theBellman-Ford’s algorithm [42]. There are q queries in total. Hence,

we may need to extract a node at most O(nq) times, giving O(n2q) number of EXTRACT -MIN op-

erations. Similarly, the maximum number of edge relaxations is O(nmq). Therefore, the execution time
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of the search procedure is O(n2q lg n+ nmq2).

As the run time of the GROUP -QUERY -SEARCH routine dominates the complexity of our

algorithm, the worst-case time complexity of our approach is O(n2q lg n + nmq2). Apparently, this

bound is even worse that the O(n2 lg n) of the baseline algorithm. However, the expected performance of

our technique outsmarts the baseline approach for the following reasons.

1. Since the sources (resp. the destinations) are co-located, the path-coherence property of the un-

derlying road network ensures the existence of shared routes among the queries. Hence, we may

usually relax multiple queries at once along an edge.

2. Although our search procedure does not guarantee the optimal relaxation order for any individ-

ual query, it provides a ’good order’ for each query. Thus, in practice, the required number of

relaxations is nearer to the best case of the Bellman-Ford’s algorithm than the worst case.

Therefore, the number of relaxations along each edge is θ(q), rather than O(nq), in practical circum-

stances. Thus, the expected time complexity of our algorithm is O(nq lg n +mq2), when executed on a

road network with co-located sources, and destinations.

The adjacency list representations of edges in G and GT need O(n+m) space. For each node v ∈ V ,

our algorithm takes O(1) space to store d(v), π(v), and a position in PQ; it requires another O(q) space

to store T (v). Therefore, the overall space complexity of our approach is O(m+ nq).

4.2.2 Improvement

We have achieved further improvement upon Algorithm 2 by adopting the following pruning strategy.

Instead of executing the two searches, in lines 2-3, separately, we run them in parallel. Unlike the original

algorithm, we initialize opt and mid before the searches; we also move the for loop of lines 5-8 inside

each search. During the searches, we continually obtain candidate values of opt. We terminate the first

search after extracting a node u from PQ, if ds(u) >= opt. Similarly, we end the second search at an

extracted node u, when dd(u) >= opt.



Chapter 5

The Optimal Route and Intermediate Stops

In this chapter, we study the problem of finding the optimal route and the intermediate stops of a

vehicle. First, we provide an optimal solution of exponential time and space complexities. Second, we

propose our heuristic algorithm that achieves a near-optimal solution and requires polynomial time and

space. Third, we analyze several variants of this problem and offer modifications of our original algorithm

that solve the variants with similar efficiency and accuracy. Last, we show that the problem of finding the

route-and-stops is a generalization of the traveling salesman path problem (TSPP ).

5.1 Exact Solution

We compute the exact answer using the Dijkstra’s algorithm with bit-masking. We define each

sub-problem (i.e., each state of the Dijkstra’s search) by a node and a subset of the query sources-and-

destinations served by the vehicle along its path from the start-stop. In the accompanying subset of query

nodes, which we represent using bit-masking in our implementation, a source stands for a passenger who

has already entered the vehicle, while a destination corresponds to a user already dropped off on the path

from the start-stop to the current node. During the progress of our algorithm, the search space comprises

a collection of node-bitmask pairs, i.e., sub-problems, as defined above.

First, we initialize our algorithm by computing and storing the shortest path costs from the query

sources (resp. all nodes) to all nodes (resp. the query destinations). By all nodes, we mean the nodes

in the reduced graph (as discussed in Section 2.3). Second, we compute the optimal solution cost by

performing the Dijkstra’s search technique. At each iteration of our search, we expand the search space

32
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Figure 5.1: An Example Relaxation Step of Algorithm 3.

by choosing a node-bitmask pair of the minimum cost and relaxing from that pair. We perform two types

of relaxation. One is to branch to each neighbor node keeping the associated subset of sources-and-

destinations fixed. The other is to grow the subset bitmask while remaining on the same node. We grow

the subset of queries by adding either a new source, i.e., take a passenger onboard, or a new appropriate

destination, i.e., drop one user off the vehicle. We use the edge costs and the costs between graph vertices

and query nodes in the relaxation methods. Once a search-path reaches the end-stop with a full bitmask,

it symbolizes that the vehicle has served all the users, and reached the final stoppage. By the end of the

search, we have computed the optimal cost and the parent information for each state. Last, we calculate

the optimal route and the intermediate stops en-route from the parent information computed during the

search procedure.

Figure 5.1 demonstrates an example relaxation step of the optimal algorithm; we show only the in-

formation necessary for our discussion. Node a is 3 units away from s1, and 6 units from d1. Before

relaxation, the cost at node a, with only s1 served, is 15; node b (resp. c) has similar cost 17 (resp. 20).

Also, the cost at node a, with both s1 and d1 served, is 23 before relaxation. After relaxation from a, with

s1, b remains unchanged (15+ 5 > 17). We update the cost at c, with s1, to 18 (15+ 3 < 20); a, with s1,

becomes the parent of c, with s1. We also update the cost at a, with both s1 and d1, to 21 (15 + 6 < 23)

and make a, with s1 its parent. We update the search frontier PQ accordingly.

Algorithm 3 demonstrates the pseudo-code for the optimal solution approach. Lines 1-4 compute

and store the shortest path costs between the query nodes and the graph vertices. Line 5 calls INIT -
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Algorithm 3: OPT -STOPS (G,w,Q, st, en)

Input: A graph G, a cost function for edges w, a set of queries Q, the start-stop st, and the
end-stop en

Output: An optimal sequence of stopping points P = [P (1) = st, P (2), ..., P (t− 1), P (t) = en]
3.1 Compute GT , and wT

3.2 for each query (si, di) ∈ Q do
3.3 SPC(si, G.V )←DIJKSTRA (G,w, si)
3.4 SPCT (di, G.V )←DIJKSTRA (GT , wT , di)

3.5 (d, π)← INIT -SINGLE-SOURCE (G.V × P(Q.S ∪Q.D), (st, ∅))
3.6 PQ← G.V × P(Q.S ∪Q.D)
3.7 while PQ 6= ∅ do
3.8 (u,A)← EXTRACT -MIN (PQ)
3.9 for each source or destination node

r ∈ (Q.S \A) ∪ {di : ((si, di) ∈ Q) ∧ (si ∈ A) ∧ (di /∈ A)} do
3.10 Let D = SPC(r, u) (resp. D = SPCT (r, u)), when r ∈ Q.S (resp. r ∈ Q.D)
3.11 B ← A ∪ {r}
3.12 (d, π, PQ)← RELAX ((u,A), (u,B), D, d, π, PQ)

3.13 for each node v ∈ G.Adj[u] do
3.14 (d, π, PQ)← RELAX ((u,A), (v,A), w(u, v), d, π, PQ)

3.15 P ←COMPUTE-STOPS (st, en, π,Q)
3.16 return P

Algorithm 3: OPT -STOPS (G,w,Q, st, en) cont.
3.17 Function INIT-SINGLE-SOURCE (S, u):
3.18 for each state s ∈ S do
3.19 d(s)←∞
3.20 π(s)← NIL

3.21 d(u)← 0
3.22 return (d, π)

Algorithm 3: OPT -STOPS (G,w,Q, st, en) cont.
3.23 Function RELAX (u, v, c, d, π, PQ):
3.24 if d(u) + c < d(v) then
3.25 d(v)← d(u) + c
3.26 π(v)← u

3.27 DECREASE-KEY (PQ, v, d(v))

3.28 return (d, π, PQ)
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Algorithm 3: OPT -STOPS (G,w,Q, st, en) cont.
3.29 Function COMPUTE-STOPS (st, en, π,Q):
3.30 P ← [en], v ← en, B ← Q.S ∪Q.D
3.31 while v 6= st do
3.32 (u,A)← π(v,B)
3.33 if (u = v) ∧ (v /∈ elems P ) then
3.34 P ← [v] + P

3.35 (v,B)← (u,A)

3.36 if st /∈ elems P then
3.37 P ← [st] + P

3.38 return P

SINGLE-SOURCE to initialize the search. Lines 17-22 show the function, which sets the parents to

NIL and the costs to ∞, except that of the start state, which it initializes to 0. Each state is a node-

bitmask pair from the cartesian product G.V × P(Q.S ∪Q.D). Line 6 initializes the min-priority queue

PQ to contain all the states in the product. In each iteration of the while loop of lines 7-14, line 8 extracts

the state (u,A) of minimum cost from among the states in PQ. Then, lines 9-12 choose each suitable

query node r such that r /∈ A and compute the cost D between r and u, and the set B = A ∪ {r};

then, relax to (u,B) from (u,A) with cost D. Subsequently, the for loop of lines 13-14 considers each

adjacent node v of u and relaxes to (v,A) from (u,A) with costw(u, v). Lines 23-28 depict the RELAX
procedure, which minimizes the cost of the destination state and updates the parent, and the priority queue

if necessary. Finally, line 15 calls the COMPUTE-STOPS function, which we show in lines 29-38; it

computes the optimal sequence of intermediate stops P using the parent information π. Line 16 returns

P , and the algorithm terminates.

5.1.1 Complexity Analysis

In Algorithm 3, time complexity of lines 1-4 is O(q(n lg n +m)). After that, line 5 requires a time

of O(total number of states), which amounts to O(n|P(Q.S ∪ Q.D)|). At first glance, the size of

the power set seems to be O(22q). However, not all subsets of query sources-and-destinations are valid.

Clearly, the subsets that contain a query destination without its corresponding source are not reachable

from the start position. A nice implementation would consider only the valid bitmasks and reduce the

total number of subsets to O(3q). Therefore, line 5 requires O(n3q). Inside the while loop of lines 7-14,
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we extract a node-bitmask pair exactly once. Thus, the total number of EXTRACT -MIN operations

performed in line 8 is O(n3q). Similarly line 12 calls the RELAX routine O(n3q) times. However,

line 14 executes O(m3q) times throughout the while loop, since for each subset, our algorithm relaxes

along an edge exactly once. Hence, the total number of DECREASE-KEY operations performed

is O((n + m)3q). When we use Fibonacci Heap, the amortized cost of each EXTRACT -MIN

operation is O(lg(n3q)), i.e., O(q lg n) and each DECREASE-KEY operation is O(1). Therefore, the

time complexity of the while loop is O((n+m)3q +nq3q lg n). Finally, line 15 executes in O(n3q) time.

The complexity of the while loop dominates in the analysis. Usually, nq lg n >> m. Consequently, the

overall time complexity of Algorithm 3 is O(nq3q lg n).

The Adjacency List representation of the road network requires O(n +m) space. The search space

takes O(n3q). Therefore, the overall space complexity of the optimal algorithm is O(m+ n3q).

5.1.2 Improvement

Instead of waiting for PQ to be empty, we may terminate the search early, after extracting the pair

(en,Q.S ∪ Q.D) from PQ. We may achieve further improvement by pruning the search space with a

heuristic estimate such as the one in Section 5.2.

5.2 Heuristic Solution

The exact solution approach, presented in Section 5.1, has both time and space complexities exponen-

tial in the number of queries. Therefore, it works for only a small group of users. What we need is a more

scalable algorithm that can expeditiously produce a solution for a large number of passengers. In this

section, we present a novel heuristic algorithm that efficiently computes a near-optimal answer. In this

approach, unlike the optimal method, we do not explore an exponential number of sub-problems. Rather,

we make greedy selections to keep the size of our search space within a polynomial bound; this results

in an algorithm with polynomial time and space complexities. However, we lose a little accuracy in the

process. Our approach provides a near-optimal solution with a reasonably small error and works well in

practice.

In our heuristic, for each node v ∈ V in the reduced road network graph (as discussed in Section 2.3),

we aim at finding a route of the vehicle from the start-stop st, which minimizes the cost function C2.
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For many a node, we only manage to reach a sub-optimal solution by our greedy technique. Throughout

our search, we keep a frontier of nodes, from where we are yet to branch to their adjacent nodes. We

maintain the search frontier using a priority queue PQ; we order the nodes in PQ by their costs. In

the beginning, PQ contains only the start-stop st, with each passenger both entering and exiting the

vehicle at st. Then, we gradually expand our search space by each time extracting a node with the

minimum cost from PQ and greedily relaxing to its adjacent nodes. By relaxation, we mean the process

of branching the search to a neighbor node. The route of the vehicle to a node u is a sequence of stops,

P = [P (1) = st, P (2), ..., P (t − 1), P (t) = u]; each passenger gets on at some stop P (i), and off at

another stop P (j), with i <= j. The cost of such a node u is C2(P ), i.e., a summation of the vehicle’s

route cost to u and the passengers’ solo travel costs to or from the vehicle. Suppose, at one point of our

algorithm, the node u is the frontier node of the least cost. We extend the search by relaxing from u to

each of its neighbor nodes v ∈ G.Adj[u]. During the relaxation to a node v from a node u, we consider

the following options for each passenger:

1. S/he may get on and off the vehicle on the path from the start-stop to u.

2. S/he may enter at or before u and exit at v.

3. S/he may both enter and exit at v.

We determine the cost C2(P ), P = [P (1) = st, P (2), ..., P (t − 1) = u, P (t) = v], by taking the

minimum of the above three choices for each passenger. If C2(P ) is less than the current best at v, we

assign v’s new cost to C2(P ) and its parent to u; we also update the passengers’ lone travel costs outside

the vehicle accordingly. We will illustrate the details with an example shortly.

Remember, we grow the search space by each time picking the frontier node of the minimum cost

and relaxing to its neighbors. Notice that two factors are affecting the cost of a relaxation to a node v

from a node u. One is the positive edge cost w(u, v) between u and v. The other is a possible decrease

in cost as a result of the availability of better location options for stops, with v as an additional choice,

as described above. Due to a balance between these two opposing factors, the cost of a relaxation may

be either positive or negative. Suppose, at one time, we have relaxed from a node u. Later, due to

the existence of negatively weighted relaxations, we may find a better route to reach u. Depending on

whether or not we allow relaxing to such a node u, we may implement two versions of our algorithm. In

one version, we allow relaxing to a node, already extracted from the search frontier. In this version, we
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may even encounter negative weighted cycles. However, we do not require traversing a cycle more than

twice; we do not gain any new information when traversing for the third time, and the cost of the vehicle’s

route keeps increasing after each relaxation. In the other version, like the Dijkstra’s algorithm, we do

not permit relaxing to an already extracted node. The former version is slightly more accurate and less

efficient than the latter. Shortly, we will illustrate with an example that both versions fail to compute the

optimal solution. For simplicity, we will present only the latter version in Algorithm 4. We execute the

search exhaustively until the search frontier PQ becomes empty. Then, we compute our answer sequence

of stops between the start-stop st and the end-stop en from the stored parent information and report as the

outcome of our algorithm.

We illustrate our heuristic search procedure with an example in Figure 5.2. In this figure, we show

several steps of our algorithm in a sample graph with artificial queries. Query 1 is from node b to node f ,

while query 2 is from node c to node g. Node a (resp. node h) is the vehicle’s start-stop (resp. end-stop).

a=st

c=s2 e

f=d1db=s1

g=d2

h=en

1

3

5

2

7

5 6 1

4

8

3

4

2

{(1,7),(3,10)}

{(0,6),(4,9)}

{(4,8),(0,11)}

{(2,4),(5,7)}

{(7,1),(7,4)}

{(6,0),(8,3)}

{(9,3),(11,0)}

{(10,4),(12,2)}

a

c e

fdb

g

h

1

3

5

2

7

5 6 1

4

8

3

4

2

0|{(1,7),(3,10)}|21

1|{(0,6),(3,9)}|19

3|{(1,7),(0,11)}|22

a

c e

fdb

g

h

1

3

5

2

7

5 6 1

4

8

3

4

2

0|{(1,7),(3,10)}|21

1|{(0,6),(3,9)}|19

3|{(1,7),(0,11)}|22

3|{(0,4),(3,7)}|17

(iii)

a

c e

fdb

g

h

1

3

5

2

7

5 6 1

4

8

3

4

2

0|{(1,7),(3,10)}|21

1|{(0,6),(3,9)}|19

3|{(1,7),(0,11)}|22

3|{(0,4),(3,7)}|17

8|{(0,0),(3,3)}|14

7|{(0,0),(3,3)}|13

10|{(0,0),(3,0)}|13

11|{(0,0),(3,2)}|16

a

c e

fdb

g

h

1

3

5

2

7

5 6 1

4

8

3

4

2

0|{(1,7),(3,10)}|21

1|{(0,6),(3,9)}|19

3|{(1,7),(0,11)}|22

3|{(0,4),(3,7)}|17

8|{(0,0),(3,3)}|14

7|{(0,0),(3,3)}|13

10|{(0,0),(3,0)}|13

12|{(0,0),(3,0)}|15

a

c e

fdb

g

h

1

3

5

2

7

5 6 1

4

8

3

4

2

0|{(1,7),(3,10)}|21

1|{(0,6),(3,9)}|19

15|{(0,0),(3,3)}|21

3|{(0,4),(3,7)}|17

8|{(0,0),(3,3)}|14

7|{(0,0),(3,3)}|13

10|{(0,0),(3,0)}|13

12|{(0,0),(3,0)}|15

(i)

(iv) (vi)

(vii) (xi)

Figure 5.2: Example Phases of Algorithm 4 - Steps (i), (iii), (iv), (vi), (vii), and (xi).
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In the initialization phase, step (i), we compute the shortest path cost between each node and each query

node. For example, the four numbers in the entry {(2, 4), (5, 7)} at node d indicate the smallest travel

costs between d and the query nodes - s1, d1, s2, and d2 respectively. We omit step (ii) from the figure

for brevity, where node a is the sole member of the search frontier PQ. In step (iii), we relax from a

to b, and c. Let us clarify the entry beside each node; consider 0|{(1, 7), (3, 10)}|21 at node a. The first

number, 0, designates the cost of the vehicle’s route from st to a. The second number, 1, shows the cost

of travel of the passenger in Query 1 before entering the vehicle, while the third number, 7, demonstrates

the path cost of the same passenger after exiting the vehicle. Similarly, the fourth and the fifth numbers,

3 and 10, depict the solo travel costs of the passenger in Query 2 outside the vehicle. The last number,

21, indicates the total cost, which is a summation of the first five numbers. The vehicle moves to b (resp.

c) with cost 1 (resp. 3). At b, for query 1, the cost-pair (0, 6) dominates over the pair (1, 7), i.e., the first

passenger both enters and exits at b; for query 2, the second passenger gets on at a and off at b, ensuring

the cost-pair (3, 9) to prevail. At c, (1, 7) triumphs over (4, 8) for query 1, i.e., passenger 1 both boards

and leaves at a; for query 2, (0, 11) persists. Note that (3, 10), (0, 11), and (3, 11) are the valid choices for

the second passenger, among which (0, 11) is the minimum; (0, 10) is invalid, since a passenger cannot

leave a vehicle before entering. Node a becomes the parent of each b, and c. We push b and c to PQ

and mark a’s costs as final. Then, in step (iv), we relax from b to its neighbors, except a. Node c’s costs

and status remain unchanged. Node d enters the search frontier PQ, b being its parent. In step (v) that

we leave out, we relax from d to its adjacent nodes. After that in step (vi), we relax from f ; it becomes

the parent of e, g, and h. Notice again, once we have relaxed from a node, such as d, we never relax

to it throughout the remainder of our search. In step (vii), after relaxing from g, it becomes h’s parent,

replacing f . We exclude the next three steps. Finally, step (xi) depicts the outcome of our algorithm. We

determine the vehicle’s route as a− b− d− f − g − h from the parent information. Each passenger gets

on the vehicle at a node in its route, nearest from her/his source; similarly, s/he gets off at a node nearest

to her/his destination. We report a node in the vehicle’s route as a stoppage if at least one user enters or

exits at that node. In our example, user 1 gets on at b and off at f ; user 2 boards at the start-stop a and

leaves at g. Therefore, b, f , and g are our vehicle’s intermediate stops.

In the above instance, our heuristic search produces the optimal solution. The next example in Fig-

ure 5.3 illustrates that our algorithm does not always produce the optimal answer. For brevity, we leave

out any destination and consider only two source nodes, s1 and s2, in this example. In the figure, we have

also omitted any node, edge, or path irrelevant to our discussion. a is the start-stop, and e is the end-stop.
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a-b-d-e => 5+4+5|{3,8}|25
a-c-d-e => 4+8+5|{4,2}|23

Figure 5.3: An Example Demonstrating the Sub-optimality of Algorithm 4.

The entry at each node shows its distances from the two sources, e.g., {11, 2} at node c means that c is 11

units distant from s1, and 2 units from s2. First, consider the paths a−b−d and a−c−d. The former costs

20 (5 + 4|{3, 8}|20), while the latter costs 21 (4 + 8|{7, 2}|21). Hence, our algorithm keeps the former

path and forgets the latter. Then, it greedily proceeds to calculate the path a−b−d−e ending at e, whose

cost is 25 (5 + 4+ 5|{3, 8}|25). Our search technique never considers the path a− c− d− e ending at e,

whose cost is 23 (4+8+5|{4, 2}|23). Thus, the greedy choice made at node d has prevented our heuristic

from computing the optimal answer, and we have only managed to reach a sub-optimal solution. Be that

as it may, while at node d, we had no other choice than to forget the more expensive path. Of course, we

would succeed in computing the optimal answer by remembering every path; however, such an algorithm

would have exponential time complexity. We have chosen to provide a polynomial-time algorithm at the

price of a little accuracy.

Algorithm 4 provides the pseudo-code for our heuristic search algorithm. Lines 1-4 pre-compute the

shortest path costs between the query nodes and the graph vertices. Line 5 calls INIT -VEHICLE; the

function, shown in lines 15-26, initializes the search. The for loop of lines 16-21 sets the cost d(v) of each

node v ∈ V to∞, the parent π(v) to NIL, the initial list of passengers T (v), served en-route from st to

v, to ∅, the relaxation status mark(v) to False, and the stoppage track stop(v) to False. Lines 22-25

initialize d(st) and T (st), assuming all the passengers both entering and exiting at st. After returning

from the function at line 26, line 6 initializes the min-priority queue PQ to contain all the vertices in V .

Each time through the while loop of lines 7-12, lines 8-9 extract a vertex u of the minimum cost from

PQ and mark it as extracted. Then, lines 10-12 relax each edge (u, v) leaving u, except when v is already

extracted; thus, updating d(v), π(v), and T (v), if we can improve the best sequence of stops ending at v
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Algorithm 4: HEUR-STOPS (G,w,Q, st, en)

Input: A graph G, a cost function for edges w, a set of queries Q, the start-stop st, and the
end-stop en

Output: An optimal sequence of stopping points P = [P (1) = st, P (2), ..., P (t− 1), P (t) = en]
4.1 Compute GT , and wT

4.2 for each query (si, di) ∈ Q do
4.3 SPC(si, G.V )←DIJKSTRA (G,w, si)
4.4 SPCT (di, G.V )←DIJKSTRA (GT , wT , di)

4.5 (d, π, T )← INIT -VEHICLE (G,Q, st, SPC, SPCT )
4.6 PQ← G.V
4.7 while PQ 6= ∅ do
4.8 u← EXTRACT -MIN (PQ)
4.9 mark(u)← True

4.10 for each node v ∈ G.Adj[u] do
4.11 if mark(v) = False then
4.12 (d, π, T, PQ)← RELAX-VEHICLE

(u, v, w(u, v), st,Q, SPC, SPCT , d, π, T, PQ)

4.13 P ← VEHICLE-STOPS (st, en, π, T )
4.14 return P

Algorithm 4: HEUR-STOPS (G,w,Q, st, en) cont.
4.15 Function INIT-VEHICLE (G,Q, st, C, CT):
4.16 for each node v ∈ G.V do
4.17 d(v)←∞
4.18 π(v)← NIL
4.19 T (v)← ∅
4.20 mark(v)← False
4.21 stop(v)← False

4.22 d(st)←
q∑

i=1
(C(si, st) + CT (di, st))

4.23 T (st)← T (st) ∪ {(st, 0)}
4.24 for each query (si, di) ∈ Q do
4.25 T (st)← T (st) ∪ {(si, C(si, st)), (di, CT (di, st))}
4.26 return (d, π, T )

by going through u.

Lines 27-47 show the RELAX-VEHICLE routine. Lines 28-38 calculate the candidate cost up-

date dtemp(v) and passenger info update Ttemp(v). Lines 28-30 consider the vehicle going to v from u,

update the route cost by the edge cost, and insert an entry for the vehicle in Ttemp(v). For each user, lines
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Algorithm 4: HEUR-STOPS (G,w,Q, st, en) cont.
4.27 Function RELAX-VEHICLE (u, v, c, st, Q, C,CT , d, π, T, PQ):
4.28 Let the vehicle-cost pair (st, cv) ∈ T (u)
4.29 dtemp(v)← cv + c
4.30 Ttemp(v)← {(st, cv + c)}
4.31 for each query (si, di) ∈ Q do
4.32 Let the query-cost pairs (si, cs), (di, cd) ∈ T (u)
4.33 if cs +min(cd, C

T (di, v)) < C(si, v) + CT (di, v) then
4.34 dtemp(v)← dtemp(v) + cs +min(cd, C

T (di, v))
4.35 Ttemp(v)← Ttemp(v) ∪ {(si, cs), (di,min(cd, C

T (di, v)))}
4.36 else
4.37 dtemp(v)← dtemp(v) + C(si, v) + CT (di, v)
4.38 Ttemp(v)← Ttemp(v) ∪ {(si, C(si, v)), (di, CT (di, v))}

4.39 if dtemp(v) < d(v) then
4.40 d(v)← dtemp(v)
4.41 π(v)← u
4.42 T (v)← Ttemp(v)
4.43 if EXISTS (PQ, v) then

4.44 DECREASE-KEY (PQ, v, d(v))

4.45 else
4.46 INSERT (PQ, v)

4.47 return (d, π, T, PQ)

Algorithm 4: HEUR-STOPS (G,w,Q, st, en) cont.
4.48 Function VEHICLE-STOPS (st, en, π, T):
4.49 Let V P be the set of nodes in the vehicle’s route from st to en
4.50 for each query (si, di) ∈ Q do
4.51 Let a (resp. b) be the nearest node to si (resp. di) in V P ; in case of ties, it is the closest

node to st
4.52 stop(a)← True, stop(b)← True

4.53 P ← [en], v ← π(en)
4.54 while v 6= st do
4.55 if stop(v) = True then
4.56 P ← [v] + P

4.57 v ← π(v)

4.58 P ← [st] + P
4.59 return P
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31-38 regard v as a potential stop, check whether exiting or both entering and exiting at v is less costly

than the former choices, and update dtemp(v) and Ttemp(v) accordingly. If dtemp(v) is better than the

current best estimate d(v) of v, lines 39-46 set d(v) to dtemp(v), π(v) to u, and T (v) to Ttemp(v) and

update the priority queue PQ accordingly. We return from the procedure at line 47. After the search ex-

hausts, line 13 computes the answer sequence of stops P by calling VEHICLE-STOPS. The function

VEHICLE-STOPS, shown in lines 48-59, marks the nearest node to each query node in the vehicle’s

route as a stoppage. Then, it traverses the parent list π backwards starting from en and builds the answer

sequence of stops P . Finally, line 14 returns P , as computed by VEHICLE-STOPS, as the answer of

our algorithm.

5.2.1 Complexity Analysis

In Algorithm 4, lines 1-4 requireO(q(n lg n+m)) time. The procedure INIT -VEHICLE called in

line 5 takes O(n+ q) time. Line 6 needs O(n) time to initialize the min-priority queue PQ, implemented

with a Fibonacci Heap. The VEHICLE-STOPS routine call in line 13 requires O(nq) time to

compute the answer sequence of stops from parent information.

Let us analyze the time complexity of the while loop of lines 7-12. In the version that we have

presented in Algorithm 4, we do not countenance relaxation to an already extracted vertex; lines 9 and 11

guarantee that. Hence, line 8 extracts each vertex u ∈ V from PQ exactly once. Similarly, we relax along

each edge exactly once; a call to the RELAX-VEHICLE routine incurs O(q) time. Again, we know

that a Fibonacci Heap implementation of PQ requires O(lg n) time per EXTRACT -MIN operation

andO(1) time per INSERT or DECREASE-KEY operation. Thus, the time complexity of the while

loop isO(n lg n+mq). The overall time complexity of this version of our algorithm isO(q(n lg n+m)).

In the other version, we permit relaxation to a previously extracted vertex, i.e., lines 9 and 11 are

absent. In it, the complexity analysis of the while loop is a bit involved. Due to the existence of negatively

weighted relaxations, unlike the Dijkstra’s algorithm, it is no longer guaranteed that line 8 extracts each

vertex u ∈ V from PQ exactly once. We may, in fact, insert and extract a vertex again and again. We

may even encounter negatively weighted cycles; however, such a cycle does not remain negative after

traversing it twice. Hence, like the Bellman-Ford-Moore’s algorithm, we may require relaxing an edge

at most O(n) times. Similarly, we may extract a node at most O(n) times. Therefore, the worst-case time

complexity of this version of our algorithm is O(n2 lg n+nmq). However, when we use a priority queue



CHAPTER 5. THE OPTIMAL ROUTE AND INTERMEDIATE STOPS 44

to order the nodes in the search frontier, it reduces the total number of relaxations by greedily choosing

a vertex of the least cost first. Besides, despite the presence of negatively weighted relaxations, the path

cost of the vehicle increases in each relaxation. Thus, in practice, we relax each edge only a constant

times on average. Therefore, the expected time complexity of this version reduces to O(n lg n+mq). In

a road network, which is usually sparse, m = O(n). Again, usually, q = ω(lg n). Hence, the average

computation time is only O(nq).

The adjacency list representations of edges in G and GT require O(n + m) space. At each node

v ∈ V , our algorithm requires O(1) space to store d(v), π(v), mark(v), and stop(v), O(q) to store T (v),

and another O(q) for the shortest path costs SPC(Q.S, v) and SPCT (Q.D, v). As a result, the overall

space complexity of our heuristic solution approach is O(m+ nq).

5.2.2 Improvement

We have adopted the following pruning technique to improve upon Algorithm 4. After we extract

a node u from PQ in line 8, we check whether the vehicle’s route cost from st to u exceeds d(en); if

positive, we simply terminate the search rather than waiting for PQ to be empty.

5.3 Variants

In this section, we analyze the variants introduced in Section 2.2. We propose modifications of our

algorithms to solve each variant.

5.3.1 Constraint on Each User’s Lone Path Length Before Entering or Af-

ter Exiting

In this variant, we limit the maximum length a user may travel before entering, or after exiting the

vehicle to R1. To solve this variant, in both Algorithm 3 and Algorithm 4, we replace each SPC(si, v) >

R1, and SPCT (di, v) > R1 with a very large number LN →∞. The other large number that we use in

our implementations to represent∞ should be at least (2q + 1)LN . We keep each SPC(si, v) <= R1,

and SPCT (di, v) <= R1 as is. This way, we prevent our algorithms to compute a path for the vehicle,

which does not meet the constraint, by increasing its cost. Our searches find the best possible routes

conforming to the limitation; the complexities remain the same.
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5.3.2 Constraint on the Vehicle’s Route Length

In our second variant, we restrict the vehicle’s path cost to R2 ∗ SPC(st, en). In both algorithms,

when relaxing from a node u to an adjacent node v, if the vehicle’s route becomes more costly than

R2 ∗ SPC(st, en), we do not update the cost of v. Thus, each algorithm eventually calculates an answer,

where the vehicle’s path cost remains within the limit. The complexities remain the same as of the original

algorithms.

5.3.3 Constraint on the Entering/Exiting Passenger-Cardinality at a Stop

Here, we require that at least R3 passengers get on-or-off the vehicle at each intermediate stop. In

Algorithm 3, notice that from a state (u,A), we perform two types of relaxations. One to a state (u,B),

i.e., we grow the set of queries waiting at u by an additional source or destination node; another to a

state (v,A), where v is a neighbor of u. In the former type, we adopt the following modification. If the

parent of (u,A) is (u′, A), where u 6= en, we grow the set A by R3 new sources or destinations to form

B and relax to (u,B); otherwise, we proceed as in our original algorithm. Doing this ensures that each

intermediate stop serves at least R3 passengers. The time and space complexities remain exponential in

the number of queries.

In Algorithm 4, recall that we keep the parent of each node, which facilitates the computation of our

final sequence of stops, later on. To solve this variant, storing the parent information is not sufficient. At

each node v, we maintain the vehicle’s route from st to v as a sequence of stops P ; we also keep a list

of passengers entering/exiting at each stop. If upon a prospective relaxation to a node v, the passenger-

cardinality of an intermediate stop is to drop below R3, we greedily eliminate that stoppage and distribute

each of its passengers to another stop, where his/her lone travel cost is the lowest. If this new relaxation to

v succeeds, we update its cost and other information accordingly. Our approach provides a near-optimal

solution; the worst-case time and space complexities remain the same as of Algorithm 4.

5.3.4 Constraint on the Total Number of Stops

In the fourth variant, we directly restrict the total number of stops by demanding that it is less than

or equal to R4. There is no easy modification of Algorithm 3 that solves this version. We require an

additional parameter in the state representation, namely, the number of stops. Therefore, we represent
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each state by a triplet (u,A, t); u is a node, A is the set of passengers served by the vehicle in its path

from st to u, and t is the number of stops in its route including st and u. From (u,A, t), we first relax

to (u,B, t). Then, for each neighbor v of u, we relax to (v,A, t) if (u,A, t)’s parent is (u′, A, t) or

(u′, A, t−1); we relax to (v,A, t+1) when (u,A′, t) is the parent of (u,A, t). After the search terminates,

the minimum among d(en, U, 2), d(en, U, 3), ..., d(en, U,R4) is the cost of our solution. Finally, we build

the result sequence of stops from the parent information. The overall time complexity of this approach is

O(nq23q lg(nq)); the space complexity is O(m+ nq3q).

Like in the modification of Algorithm 4 for the third variant, at each node v, we keep a sequence

of stops P representing the vehicle’s route and a list of passengers served at each stop. We consider

each potential relaxation to see whether it causes the number of stops to become larger than R4. In

that circumstance, we greedily get rid of a stoppage of the lowest passenger-cardinality (or the lowest

total passenger-costs, in the case of ties) and distribute each concerned passenger to another stop, where

his/her individual travel cost is the least. If the new relaxation becomes successful, we update the costs

and other information accordingly. Our approach finds a near-optimal sequence of stops conforming to

the constraint and has the same worst-case complexities as of the original algorithm.

5.3.5 The Weighted Version

In our last variant, we discriminate between the route cost of the vehicle and the total lone travel cost

of the passengers by assigning them unequal weights, specifically, R5 and (1−R5) respectively. To solve

this variant, in both algorithms, we compute the objective cost as defined in Section 2.2.5; the time and

the space complexities remain the same.

The nature of our solution approach to each variant permits the possibility of merging more than one

of the above techniques to solve additional variants with multiple constraints.

5.4 Relation with TSPP

Notice that in the first variant of our second problem, introduced in Section 2.2.1, we require that each

passenger’s individual path cost before entering or after exiting the vehicle is less than or equal to R1. In

our original problem, R1 → ∞. Contrarily, when we set R1 to 0, we force our algorithms to compute a

route of the vehicle that passes through each query node. Therefore, with R1 = 0, our problem becomes
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the standard TSPP . Although this analysis does not rigorously prove the NP-hardness of the ORIS

problem, we may safely say that the TSPP is a special case of the first variant of our ORIS query. In

other words, ours is more general than the TSPP . If we succeed in solving the first variant optimally in

polynomial time for any R1, we will have solved both the ORIS and the TSPP .

Similarly, as [40] proves, the weighted version of our problem (Section 2.2.5) reduces to the TSPP ,

when R5 = 0.3.



Chapter 6

Experimental Results

In this chapter, we evaluate the performance of our algorithms by demonstrating the results of our

extensive experiments. First, we compare the efficiency of our FAST -END-STOPS approach with

that of the BASELINE-END-STOPS algorithm for our OES query. Second, we provide a similar

comparative analysis between the OPT -STOPS and the HEUR-STOPS algorithms for the ORIS

query. Last, we show the accuracy and scalability of our HEUR-STOPS approach.

We have conducted our experiments in PowerEdge R820 rack server with 6-core Intel Xeon processor,

E5-4600 product family, and 64 GB of main memory (RAM). We have compiled our implementations by

GNU G + + with −O3 command line option in UNIX OS. In the experiments, we have used a road

network graph of San Francisco, CA, USA [50], with 174956 nodes and 223001 bi-directional edges. We

have loaded the map data and all the necessary data structures into the main memory.

6.1 The Optimal End-Stops

We have artificially generated a set of queries for ourOES problem as follows. First, we calculate the

maximum node-to-node Euclidean distance, ED. Then, we find a pair of nodes, the Euclidean distance

between which is approximately a variable percentage of ED. We consider these two nodes as rough

estimates of the source-and-destination-cluster-centers. Next, we choose a square window - centered on

each estimated cluster center - with its area being a variable percentage of an approximate total area of the

graph. Finally, we generate each query by randomly picking two nodes - one from each cluster window.

We show a list of the parameters along with their ranges, step sizes, and default values in Table 6.1.
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Table 6.1: A List of Parameters for the Optimal End-Stops Problem.

Parameter Range Step Size Default Value

Cluster Distance (% of Max Distance) 30%-90% 15% 60%

Cluster Area (% of Total Area) 1%-13% 3% 7%

Number of Queries 10-50 10 30

We vary each parameter within its range by its step size, keeping the others at their default values.

For each combination of parameter values, we perform 10 experiments and take an average of the results

of these experiments for each of our performance measures, namely, the execution time, and the memory

space. We illustrate our findings in Figure 6.1. From the figure, it is apparent that our approach performs

much better than the baseline brute-force technique in terms of both time and space. Below, we discuss

the effect of varying each parameter separately.

6.1.1 Varying the Cluster Distance

We vary the Euclidean distance between the approximate cluster centers as a variable percentage of

the maximum node-to-node Euclidean distance in the graph. This parameter does not affect the execution

time of the baseline algorithm. Contrarily, our fast solution method shows a negative correlation to the

cluster distance. This correlation is a consequence of the path-coherence property of road networks. With

a fixed cluster area, an increase in the cluster distance results in a larger amount of shared paths among

the passengers. When the users share more route in common, our solution technique relaxes the queries

along those routes simultaneously. This triggers a boost in the efficiency. The memory space measure

does not correlate to the cluster distance parameter.

6.1.2 Varying the Cluster Area

We vary the area of each cluster window as a variable percentage of the total area of the road network.

Like our analysis in Section 6.1.1, with a fixed cluster distance, a larger cluster area causes a decrease

in the amount of shared routes among the users. Therefore, the execution time of our fast algorithm

demonstrates a positive correlation with the cluster area parameter. On the contrary, the execution time

of the baseline method remains fixed. This parameter does not affect the memory space requirement of
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Figure 6.1: Time, and Space - BASELINE-END-STOPS vs. FAST -END-STOPS.

either algorithm.

6.1.3 Varying the Number of Queries

As the complexity analysis in Section 4.2.1 suggests, both the execution time and the memory space

of our fast solution approach increase linearly in the number of queries. However, the measures for the

baseline approach remain almost constant, as its complexity analysis in Section 4.1.1 indicates.

6.2 The Optimal Route and Intermediate Stops

We have produced a set of synthetic queries for the ORIS problem as follows. First, we find a pair

of nodes, whose Euclidean distance is a variable percentage of the maximum node-to-node Euclidean
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distance in the road network. We regard these two nodes as the end-stoppages of the vehicle. Then, we

compute an ellipse as our query space, with the start-and-end-stops of the vehicle as the foci, and an area,

a variable percentage of the total area of the graph. Finally, we randomly select the query nodes, for our

second problem, from within that space. In Table 6.2, we present a list of the parameters along with their

ranges, step sizes, and default values.

Table 6.2: A List of Parameters for the Optimal Route and Intermediate Stops Problem.

Parameter Range Step Size Default Value

Euclidean Distance (% of Max Distance) 30%-90% 15% 75%

Query Space (% of Total Area) 10%-90% 20% 50%

Number of Queries 10-50 10 30

R1 (% of Shortest Route Cost) .001%-10% 10 (Multiply) ∞

R5 0.4-0.8 0.1 0.5

We produce combinations of parameter values by varying each within its range by its step size, keep-

ing the other parameters at their default values. We carry out 10 experiments for each collection of param-

eter values. For the execution time and the memory space measures, we take an average of the results of

these experiments. We show the results in Figure 6.2. We also measure the minimum, the maximum, and

the average errors of our heuristic algorithm, which we plot in Figure 6.3. This figure also demonstrates

the scalability of the heuristic for a large number of queries. Below, we separately investigate the effects

of varying each parameter.

6.2.1 Varying the Euclidean Distance

We vary the Euclidean distance between the end-stoppages of the vehicle as a variable percentage of

the maximum node-to-node Euclidean distance. The execution time of the exact method raises slightly

with an increase in this parameter; the pruning method in Section 5.1.2 can prune more search space,

when this parameter is small. However, the execution time of the heuristic remains almost the same. This

parameter does not affect the memory space much. Notice that in Figure 6.3, the error curve fluctuates

randomly. This variation is a result of the random orientation of the query nodes and not related to the

Euclidean distance parameter.
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6.2.2 Varying the Query Space

We vary the area of the query space as a variable percentage of the total area of the graph. As the plots

in Figure 6.2 and Figure 6.3 show, none of our performance measures correlates to this parameter. The
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complexity analyses of our algorithms also support this fact. Like in Section 6.2.1, the sway in the error

curve results from a randomness in the query distribution.

6.2.3 Varying the Number of Queries

Figure 6.2 and Figure 6.3 verify our complexity analyses in that the time and the space complexities

of the exact algorithm are exponential, while those of our heuristic are linear in the number of queries.

In figure 6.3, we have established that the heuristic technique computes an answer within a few seconds,

even for a large number of queries. The error curve heightens only slightly with an increase in the number

of queries. However, the average error remains quite low. Thus, the gain in efficiency and scalability is

worth the little loss of accuracy.

6.2.4 Varying the Constraint R1

We vary our first constraint R1 (Section 2.2.1) as a variable percentage of the shortest path cost

between the end-stops. The execution times, and the memory spaces do not show any correlation to this

parameter. The error fluctuates randomly as a result of the stochasticity in the location of the query nodes.

6.2.5 Varying the Constraint R5

The execution times, and the memory spaces do not vary significantly with a change in the value of

our fifth constraint (Section 2.2.5). The error falls logarithmically, when we increase the weight of the

vehicle’s route cost in the objective function. Notice that this behavior is desirable since placing a larger

weight in the vehicle’s cost prevents looping of its route. For a pragmatic value of R5, like 0.75, the error

of our heuristic becomes close to zero. Conversely, when R5 is close to 0.3, the TSPP case, the error of

our fifth variant is quite high. However, another way to solve the TSPP is to use our first variant with

R1 = 0. Luckily, the error of our first variant is quite low for a small value of R1. Hence, for a small

number of passengers, when approximating the TSPP is more practical, we may use our first variant.

When the number of queries is large, we may switch to our fifth variant with a large value of R5. This

way, we may always compute a pragmatic route with a very low error.

We do not show the experimental results on the second, third, and fourth variants as they would

produce results similar to that of the first variant.
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Conclusions

We have introduced a new problem of determining the optimal end-stoppages of a vehicle for a group

of users. To solve this task, we have proposed a novel algorithm that exploits the path-coherence property

of road networks and is many times faster than the baseline brute-force solution. Later, we have presented

another new problem of finding the optimal sequence of intermediate stops, given path queries from users

and a pair of end-stops. For this, we have outlined an exponential-time-and-space exact algorithm and

provided a new polynomial heuristic that efficiently computes a near-optimal solution with a very low

error. We have also formulated several variants of this problem and suggested modifications of our algo-

rithms to solve those versions. We have illustrated our techniques with examples and provided detailed

complexity analyses.

We have performed extensive experiments, which empirically demonstrate the efficiency and effec-

tiveness of our approaches. In a sample road network with 174956 nodes and 223001 bi-directional edges,

for a reasonable number of queries, our efficient solution approach for the OES problem is nearly a thou-

sand times faster than the straightforward baseline technique. For the ORIS problem, our experiments

visibly demonstrate the polynomial complexity of our heuristic compared to an exponential growth of

the exact algorithm. The exact method is intractable for even six or seven queries. For five queries, our

heuristic incurs an average relative error of only 5%. The experiments show that our approach instantly

computes a solution for even fifty queries.

As future work, we intend to extend our simultaneous search methodology to solve a variety of new

problems. For example, we plan to figure out solutions for the k-optimal pair of end-stops, and the k-

optimal sequence of intermediate stops queries, given the same input as in our problems. The motivation
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behind these new queries is to provide a driver with more choices. Restricting his/her option to a single

optimal sequence of stops is often not pragmatic. Certain unpredictable conditions may appear on a road

network that may render an optimal route unusable. Again, the optimal path may be loopy, which is

impractical. Given some alternatives, a driver may choose the route that best suits him/her.
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