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Abstract

Many-objective optimization is very important for numerous practical applications. It, how-

ever, poses a great challenge to the Pareto dominance based evolutionary algorithms. In this

thesis, a fuzzy dominance based evolutionary algorithm is proposed for many-objective opti-

mization. The essence of the proposed algorithm is that it adaptively determines the fuzzy

membership function for each objective of a given many-objective optimization problem. Fur-

thermore, it emphasizes both convergence and diversity of all the evolved solutions in the

same way by using one selection criterion. This is why our algorithm employs the reference

points for clustering the evolved solutions and selects the best ones from different clusters in

a round-robin fashion. The proposed algorithm has been tested extensively on a number of

benchmark problems in evolutionary computing, including eight Waking-Fish-Group (WFG),

three Deb-Thiele-Laumanns-Zitzler (DTLZ) problems having 2 to 25 objectives and three in-

stances of Rectangle problem. The experimental results show that the proposed algorithm is

able to solve many-objective optimization problems efficiently, and it is compared favorably

with the other evolutionary algorithms devised for such problems. A parametric study is also

provided to understand the influence of a key parameter of the proposed algorithm.
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Chapter 1

Introduction

1.1 Many Objective Optimization Problem

Multi-objective Optimization problems (MOPs) usually have more than one conflicting ob-

jectives and these objectives are needed to be optimized simultaneously under several con-

straints [4, 5]. MOPs can be formally defined as following,

minimize, f(x) = [f1(x), f2(x), f3(x), ..., fm(x)]

constrainted by, pj(x) ≥ 0, j = 1, ..., P

qk(x) = 0, k = 1, ..., Q

xLi ≤ xi ≤ xUi , i = 1, ..., n

Here a solution x = [x1, x2, x3, ..., xn] contains n decision variables bounded by xi = [xLi , x
U
i ],

m objective functions, and defined by P,Q constraints.

For a MOPs having conflicting objective functions, no single solution exists that simultane-

1



CHAPTER 1. INTRODUCTION 2

ously optimizes each objective. In such cases there exists potentially infinite number of Pareto

optimal solutions. A solution is called Pareto optimal, if none of the objective functions can

be improved in value without degrading some of the other objective values. In absence of ad-

ditional subjective preference information, all Pareto optimal solutions are considered equally

good as they cannot be ordered properly. Researchers study MOPs from different viewpoints

and there exist different solution philosophies and goals when setting and solving them. The

goal may be to find a well distributed representative set of Pareto optimal solutions (Pareto

Front) or finding a single solution that satisfies the subjective preferences of a human decision

maker (DM).

These sets of problems and their solution strategies have been applied in many fields of

science, including engineering, economics and logistics where optimal decisions need to be

taken in the presence of trade-offs between multiple conflicting objectives. Minimizing cost

and maximizing comfort while buying a car, maximizing performance while simultaneously

minimizing fuel consumption and emission of pollutants of a vehicle are examples of MOPs

involving two and three objectives, respectively. Among the solution approaches Evolutionary

Algorithms (EAs), as a class of population based search heuristics, are able to obtain a set

of solutions in a single run. Thanks to this attractive property Multi-Objective Evolutionary

Algorithms (MOEAs) have shown significant progress in the past two decades. This property

is very popular among DMs as it requires little to no domain knowledge beforehand.

Although approaches, proven to be effective for solving MOPs, have been developed through-

out the years but they face substantial challenges when number of objective increases. Ad-

ditionally, in practical problems, there can be many number of objectives [6–8]). Currently

MOPs having more than three objective functions to be optimized are commonly referred

as Many-Objective Optimization Problem (MaOPs). Due to their challenges MaOPs have

attracted increasing attention in the Evolutionary Multi-objective (EMO) research commu-

nity [9]. One major reason behind the failure of most conventional MOEAs for solving MaOPs

is the reduction of selection pressure i.e., the pressure for the population to converge toward

the Pareto Front. This happens when a selection scheme fails to discriminate solutions due
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to the increase non-dominated solutions. Another prominent problem is the conflict between

convergence and diversity, which also aggravates with the increase of objectives [10]. Normally,

Pareto Dominance relation is used as a primary criterion to provide selection pressure and di-

versity maintenance procedure as secondary criterion [1]. But since for MaOPs Pareto relation

is ineffective, only diversity promotion mechanism remains active. To handle this issue many

modified dominance relation based MOEAs have haven devised. Since these dominance rela-

tion offers comparability on non-dominated solutions, bias toward different objective regions

seemed evident in MaOPs and lacks diversity among solutions. Some MOEAs depends on

data-structure which rely on exponential growth of size in relation with objective space. These

algorithms often falls into the curse of dimensionality and compromise it with lack of diversity

or increasing solution numbers [10]. Furthermore, visualization of the objective space become

difficult for MaOPs. This is very important to a decision maker since in any real-world applica-

tion, a final solution must be chosen from the obtained non-dominated solution set. Although

several multidimensional visualization techniques have been studied in the literature [11], of

which Parallel Coordinate Plot [12] has been used extensively to visualize and interpret Pareto

Front interactively. Many Objective Visualization is currently a promising research area for

application to MOPs.

Thus designing effective algorithms for solving MaOPs has been one of the major research

topics in recent years.

1.2 Solution Approaches for Multi-Objective Optimiza-

tion Problems

There are many methods that convert original problem with multiple objectives into a single-

objective optimization problem using some form of aggregation procedure. This is called scalar-

ized problem. If scalarization is done properly Pareto optimal solution can be achieved. The

major problem of these approaches is that they require several parameters to tune by decision
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maker (DM) which is very difficult.

The target of solving multi-objective optimization problem is to support decision maker

in finding the most preferred Pareto optimal solution. The underlying assumption is that

one solution to the problem must be identified to be implemented in practice. Hence to

support decision maker finding the most preferred results, many algorithmic frameworks have

been developed following different philosophies. Typically these Multi-objective optimization

methods can be divided into four classes. In so-called no preference methods, no decision

makers is expected to be available, but a neutral compromised solution is identified without

preference information. The other classes are so-called a priori, a posteriori and interactive

methods and they all involve preference information from the DM in different ways.

� No Preference Methods : Here decision maker (DM) does not provide any preference

information and the multi-objective optimization problem are typically converted into a

scalarized problem. An well known example is the method of global criterion [13]. This

method is sensitive to the scaling of the objective functions, and it is recommended that

the objectives are normalized into a uniform, dimensionless scale.

� Priori Methods : In a priori methods, preference information is first asked from the DM

and then a solution best satisfying these preferences is found. Some well known priori

methods are utility function method, lexicographic method and goal programming. In

utility function method, custom utility function is defined by decision maker where in

lexicographic method objective functions are ranked by their order or importance.

� Posteriori Methods : In a posteriori methods, a representative set of Pareto optimal

solutions is first found and then the DM must choose one of them. Most a posteriori

methods fall into either one of the following two classes: mathematical programming-

based a posteriori methods, where an algorithm is repeated and each run of the algorithm

produces one Pareto optimal solution, and evolutionary algorithms where one run of the

algorithm produces a set of Pareto optimal solutions.
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Well-known examples of mathematical programming-based a posteriori methods are the

Normal Boundary Intersection (NBI) [14], Normal Constraint (NC) [15] and Successive

Pareto Optimization (SPO) [16] methods that solve the multi-objective optimization

problem by constructing several scalarizations. The solution to each scalarization yields a

single Pareto optimal solution, whether locally or globally. The scalarizations of the NBI,

NC and SPO methods are constructed with the target of obtaining evenly distributed

Pareto points that give a good evenly distributed approximation of the real set of Pareto

points.

Evolutionary algorithms are popular approaches to generating Pareto optimal solutions

to a multi-objective optimization problem. Currently, most evolutionary multi-objective

optimization (EMO) algorithms apply Pareto-based ranking schemes. Evolutionary al-

gorithms such as the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [1] and

Strength Pareto Evolutionary Algorithm 2 (SPEA-2) [17] have become standard ap-

proaches, although some schemes based on particle swarm optimization and simulated

annealing are significant. The main advantage of evolutionary algorithms, when applied

to solve multi-objective optimization problems, is the fact that they typically generate

sets of solutions, allowing computation of an approximation of the entire Pareto front.

The main disadvantage of evolutionary algorithms is their lower speed and the Pareto

optimality of the solutions cannot be guaranteed.

� Interactive Methods : In interactive methods, the decision maker is allowed to iteratively

search for the most preferred solution. In each iteration of the interactive method, the

DM is shown Pareto optimal solutions and describes how the solutions could be improved.

The information given by the decision maker is then taken into account while generating

new Pareto optimal solutions for the DM to study in the next iteration. In this way, the

DM learns about the feasibility of his/her wishes and can concentrate on solutions that

are interesting to him/her. The DM may stop the search whenever he/she wants to.

Among these approaches Evolutionary algorithm based MOPs are particularly popular

among decision makers primarily because they can generate several Pareto Optimal solutions
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in a single run. Also the posteriori approaches trivially doesn’t require any preference or domain

specific knowledge beforehand which helps researcher to develop a framework that can work on

broad range of problems. Keeping this in mind, in this thesis we have proposed a Evolutionary

Algorithm based framework for solving Many Objective optimization problem.

1.3 Evolutionary Algorithms for Solving MaOPs

Since early nineties, Multi-objective Evolutionary Algorithms (MOEAs) have gained popularity

in solving such complex MOPs. The popularity of such algorithms is due to their ability of

providing several candidate solutions in a single run. As it is impractical to find all Pareto

optimal solutions, the evolutionary algorithm tries to approximate the Pareto optimal front

constituted by the best trade-off solutions.

MOEAs primarily focus on genetic variations and selection mechanism phase. Algorithms

could incorporate primary and secondary selection scheme or a single selection scheme. Some

of the primary selection schemes are Pareto Dominance, weighted aggregation and secondary

schemes are crowding distance, density Estimation, reference point based clustering etc. Based

on the selection schemes MOEAs can be classified into four groups: modified Pareto dominance,

active diversity promotion, decomposition and indicator based approaches.

Pareto based EMO algorithms usually employ Pareto dominance relation as a primary

selection criterion and the solutions’ density in the objective space as a secondary selection

criterion [1]. The former criterion favors non-dominated solutions over dominated ones but the

later one encourages diversity among solutions. Thus the selection pressure of these algorithms

can be improved by modifying dominance concept and/or diversity maintenance mechanism.

A good number of modified dominance concepts and different ranking schemes have been

introduced to improve selection pressure. Some of these concepts are subspace dominance

comparison [18], dominance area control [19], path control strategy [20], grid dominance [10],



CHAPTER 1. INTRODUCTION 7

θ-dominance [21], fuzzy dominance [22].

There are several studies that deal with improving diversity maintenance. These mecha-

nisms are called active diversity promotion [23]. For example, Adra and Fleming [24] employ a

diversity management operator to adjust diversity requirement in the mating and environmen-

tal selection of an EMO algorithm. In [25], Li et al. develop a general modification of density

estimation, termed shift-based density estimation (SDE), to make Pareto-based algorithms

suitable for MaOPs. Unlike traditional density estimation, SDE considers both distribution

and convergence information of solutions. A knee point driven approach [26], on the other

hand, prefers knee point among non-dominated solutions for maintaining diversity. The grow-

ing interests stemmed from the issues that some approaches (e.g. crowding distance [1]) prefer

dominance resistant solutions (solutions having higher improvement in at least one objective

but poor in others) and some approaches can maintain diversity well in objective space but

with poor proximity to global Pareto front. Deb and Jain proposed NSGA-III [27], an improved

version of established NSGA-II [1], where they replaced the Crowding Distance operator with

clustering approach using a set of well-distributed Reference Points to guide individuals search-

ing for different directions. In [28], Mario et al. use hierarchical clustering in decision space

for diversity management.

As an alternative, non-Pareto based approaches are also used in solving MaOPs. Two types

of such approaches have been found to be promising in the EMO literature. They are decompo-

sition based approaches and indicator based approaches. The former approach first decomposes

an MOP into a number of single objective optimization sub-problems and then solves them

simultaneously by evolving a population of solutions. The objective of each sub-problem can be

a linear or nonlinear weighted aggregation of all the individual objectives of the MOP. Multi-

objective evolutionary algorithm based on decomposition (MOEA/D) [2] is the most typical

implementation of this class. This algorithm and its variants [29,30] have been quite successful

in solving various MaOPs. Another decomposition based algorithm RVEA (reference vector

guided evolutionary algorithm) [31] uses reference vectors to decompose solutions into different

sub-problems. The salient feature of RVEA is that it dynamically adjusts the distribution of
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the reference vectors according to the scales of the objective functions. In [3], a preference

inspired co-evolutionary algorithms, PICEAg, is proposed based on a concept of co-evolving a

population of candidate solutions with a set of goals.

The main idea of indicator based approaches is to use a single performance indicator to

optimize a desired property of an evolving population. Among the different indicators, hyper-

volume [32] or S-metric is the only quality measure known to be Pareto-compliant and is ever

used in multi-objective search. It has been known that maximizing the hypervolume indicator is

equivalent to finding the Pareto front. However, one prominent problem of hypervolume based

algorithms is their extreme computational overhead. Bader and Zitzler [33] proposed a hyper-

volume estimation algorithm for multi-objective optimization (HypE) to reduce computational

burden. Recently, a two-archive algorithm (Two Arch) for many-objective optimization [34]

has been proposed which combines the indicator and Pareto based approaches in one algorithm.

1.4 Objective of the Thesis

Despite the recent advancements in solving MaOPs, more effective EMOs are still needed to

tackle these challenges. Among the non-Pareto based approaches, the notion of fuzzy concept

has proven to be effective for MaOPs. Its strength comes from the fact that fuzzy concept can

continuously differentiate solutions into different degrees of optimality beyond the classification

of the original Pareto dominance which is beneficial for MaOPs because solutions which were

previously incomparable can be now compared and complete or partial order of solutions can be

found. Moreover given the membership functions, the fuzzy procedure does not usually require

any extra computational overhead even for a very large number of objectives. The simplicity

inherent within the fuzzy dominance computation makes it an appealing candidate for solving

MaOPs. But fuzzy concepts have the issues of diversity loss and selection of appropriate

parameters in different fuzzy steps. There are a few studies [22,35–38] that utilize this concept

in solving MaOPs using evolutionary algorithms and the field is still under-explored.
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The main objective of our study are follows.

1. To propose a fuzzy dominance based evolutionary algorithm (F -DEA) for efficiently solv-

ing complex MaOPs on par with the state of the art approaches. The algorithm will be

able to obtain Pareto Optimal solutions in the targeted regions given decision makers

preference beforehand while in absence of any preference, will achieve uniform diverse

solutions throughout the entire Pareto front.

2. To propose a reference points based clustering technique for active diversity promotion.

The mechanism will be robust in high dimensional objective spaces, compatible with

fuzzy dominance procedure ensuring convergence and be effective for degenerate, decep-

tive, disconnected problems. The diversity of solutions can be controlled by changing

default parameter with the trade off for more converged solutions within the algorithms’

termination criteria.

3. To propose adaptive fuzzy parameter settings that requires no domain knowledge before-

hand and can effectively handle differently scaled objective spaces. The proposed method

will be robust to handle impact of isolated solutions.

4. To evaluate and compare the performance of F -DEA with other state-of-the-art algo-

rithms using benchmark problem suites. We will also investigate the contribution of

different components of F -DEA.

1.5 Thesis Organization

The reminder of the thesis is organized as follows.

In Chapter 2 we briefly discuss the concepts that are necessary to understand the idea of

the thesis. Here the basic concepts of fuzzy in relation with EMO algorithms, issues arises

therein and related works are also introduced.
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Chapter 3 presents the major contribution of this thesis. We introduce our proposed F -

DEA at length. We present the different components of the framework and discuss why each

component is necessary and important in handling the problem.

In Chapter 4, the experimental analysis, comparisons, and discussions regarding the per-

formance of the proposed F -DEA is presented.

Finally, Chapter 5 concludes the thesis with a brief summary and a few remarks.



Chapter 2

Background

2.1 Introduction

This chapter begins by explaining general Multi-objective Evolutionary Algorithm (MOEA)

framework and definition of different terminology. Then, in the following sections we broadly

discussed about fuzzy notions, preliminaries and related fuzzy based works.

2.2 Evolutionary Algorithm framework

Mechanisms of Evolutionary Algorithm are inspired by biological evolution. For solving Multi

or Many objective optimization problem, the algorithms starts with N candidate solutions, then

various genetic variations (eg. crossover, mutation etc.) are applied for generating offspring

solutions. Solutions are evaluated based on the objective functions definition and among the

parent and offspring solutions best N solutions are selected. The whole process is repeated

until the stopping criteria meets. As the best solutions are selected throughout each iteration,

candidate solutions are ensured to be more optimized than previous iteration. The general flow

11
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of the evolutionary algorithms are shown in Fig. 2.1.

start

initialization variation

evaluation

selection
meet

termination
criteria?

end

no

yes

Figure 2.1: Flow chart of Evolutionary Algorithm for solving Multi-objective Optimization Problem

While solving Many-objective optimization problems (MaOPs), different algorithmic frame-

works primarily focus on two things namely genetic variations and selection mechanism. Based

on these two factors researchers have proposed myriads of techniques in the last few decades [1,

17,32,39] have gained popularity among the researchers.
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2.3 Common definitions

2.3.1 Targets of MOEA

In the absence of any preference information, all Pareto optimal solutions are equally important.

Hence it is important to find as many as Pareto optimal solutions. The two goals of multi-

objective optimization can be summarized as follows

1. Convergence : To find a set of solutions as close as possible to the Pareto-optimal front.

2. Diversity : To find a set of solutions as diverse as possible.

Fig. 2.2 shows the goals of multi-objective optimization problems in case of minimization

problem.

f1

f2

convergence

diversity

Figure 2.2: Convergence and diversity goal

Ensuring convergence is mandatory in any optimization task. Converging to a set of so-

lutions which are not close to the true optimal set is not desirable. On the other hand, only

with a diverse set of solutions we can get a good trade-off solutions. MOP deals with decision

space and objective space. Two solutions said to be diverse if their Euclidean distance is large.
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It is the decision makers choice to select which space for maintaining diversity. Following the

similar existing state of the art approaches [4, 5, 10, 21, 27], in this study we have worked on

maintaining diversity on objective space.

2.3.2 Special Solutions

Ideal Objective Vector

For each objective there can be individual optimal value and together they constituted an

objective array called the ideal objective vector. In general ideal vector is a non-existent

solution and can be defined formally as follows:

Definition 2.3.1 Ideal objective vector: For m objective problem, the ideal objective vector

will have m elements.

z∗ = f ∗ = (f ∗1 , f
∗
2 , ..., f

∗
M) (2.1)

Here the ith element is subjected to minimum objective value of the constrained minimum

solution of following problem for ith objective.

Minimize, fi(x)

subject to ,x ∈ N

(2.2)

Nadir Objective vector

Unlike the ideal objective vector which represents the lower bound of each objective in the

entire feasible search space, the nadir objective vector, znad, represents the upper bound of

each objective in the entire Pareto-optimal set and not the entire search space. This is different
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and not to be confused with worst feasible objective function vectors.

Fig. 2.3 shows the ideal vector z∗ and nadir vector znad for a minimization problem.

f1

f2

z
*

z
nad

Figure 2.3: Ideal and Nadir vector in the feasible objective space

2.3.3 Concepts of domination

Pareto Dominance

Most multi-objective algorithms use the concept of domination. In these algorithms, two

solutions are compared on the basis of whether one dominates the other solution or not.

Definition 2.3.2 Pareto Dominance: For a minimization problem, a solution xa with objec-

tive vector f(xa) = [f1(x
a), f2(x

a), f3(x
a), ..., fm(xa)] is said to dominate another solution xb

with objective vector f(xb) = [f1(x
b), f2(x

b), f3(x
b), ..., fm(xb)], iff ∀i, fi(xa) ≤ fi(x

b) and

∃i, fi(xa) < fi(x
b).

Based on dominance relation there can be three possible outcomes,
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1. xa dominates xb

2. xb dominates xa

3. xa and xb are non-dominated with each other.

The Pareto dominance is not reflexive, since any solution xa doesn’t dominant itself. The

dominance relation is also not symmetric, because xa dominates xb does not imply that xb

dominates xa. Since dominance relation is not symmetric, it cannot be antisymmetric as well.

The relation is transitive because if xa dominates xb and xb dominates xc, then xa dominates

xc.

Fig. 2.4 shows the Pareto dominance relation of a 2- objective minimization problem.

Pareto non-dominated

Pareto dominated

Pareto front

f1

f2

Figure 2.4: Pareto dominance relation and Pareto front of a simple 2- objective minimization problem

Pareto Optimality

Pareto optimality states that x is Pareto optimal if no feasible vector exists which would

improve some criterion without causing a simultaneous worsening in at least another one.

Contrary to single-objective optimization problems, the solution to a MOP is not a single
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solution, but a set of nondominated solutions called the Pareto optimal set. A solution that

belongs to this set is said to be a Pareto optimum and when the solutions of this set are plotted

in the objective space, they are collectively known as the Pareto front. Obtaining an accurate

approximation of the Pareto front is the main goal in multi-objective optimization.

Fig. 2.5 shows the Pareto Optimal front of a 2 objective minimization optimization problem

in the feasible objective space.

Feasible Objective space

Pareto optimal front

f1

f2

Figure 2.5: Pareto Front in the feasible objective space

2.4 Fuzzy Preliminaries and Related Work

The loss of selection pressure occurs when a selection scheme fails to discriminate solutions

based on their objective values. To overcome this problem, a myriad of techniques have been

proposed which are highlighted in the previous section. One such technique is the incorporation

fuzzy concepts in fitness evaluation, which is also employed in the proposed F -DEA. In this

section, some related fuzzy based works, basic ideas of fuzzy logic, the issues of using such

concepts in the existing methodologies and other related works of F -DEA are discussed.
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2.4.1 Fuzzy Preliminaries

The term fuzzy logic was first introduced by Lotfi Zadeh (1965) in his seminal work “Fuzzy

sets. It refers to a form of many-valued logic in which the output of an input data may be

any real value between 0 and 1, beyond crisp value (say, true and false). The application of

fuzzy logic to solve a given problem usually requires three steps: fuzzification, fuzzy inference

and defuzzification. Fuzzification converts input data into fuzzy data through membership

functions. The second step combines the membership values to derive the fuzzy outputs.

Finally, the fuzzy outputs are converted back to crisp outputs, if necessary. Let F is a fuzzy

set and v is an element of any set V . We call γF (v) as the membership degree of v in F ,

which quantifies the membership grade of v to F . If γF (v) is 0 (or 1), it indicates v is not a

member (or fully a member) of F . The values between 0 and 1 characterize fuzzy members,

representing v belongs to F only partially.

A variety of membership functions has been used in the literature [22, 35–38]. These in-

clude triangular shaped, trapezoidal-shaped, Gaussian, bell-shaped, and Sigmoidal membership

functions. The choice of membership function, however, is dependent on the nature of applica-

tions. For example, the triangular-shaped or trapezoidal-shaped membership function is used

for those applications that require significant variation within a short period of time, while the

Gaussian or Sigmoid one is used for those applications that require high precision.

Pareto dominance based EMO algorithms compare two solutions xa = xa1, x
a
2, . . . , x

a
n and

xb = xb1, x
b
2, . . . , x

b
n based on their objective vectors f(xa) = f1(x

a), f2(x
a), . . . , fm(xa) and

f(xb) = f1(x
b), f2(x

b), . . . , fm(xb), respectively. In line with this, fuzzy based EMO algorithms

can utilize the difference of the objective vectors as the argument of the membership function

i.e., v = fi(x
a) − fi(xb) or v = fi(x

b) − fi(xa). As a membership function, the left Gaussian

function, as depicted in Fig. 2.6, is usually employed in the EMO literature (e.g. [22], [37]).

An interesting feature of this function is its monotonic decreasing nature. The analytic form

of this function is
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γg(v) = e−
1
2
( v−µ
σ

)2 (2.3)
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gaussian(µ = −1, σ = 0.5) and (∀(f̃3(x
a)− f̃3(x

b)) < −1) → γ3(f̃3(x
a)− f̃3(x

b)) = 1)

Mean Normalized objective difference µ̃ = 0.268

Figure 2.6: Left Gaussian Membership Function. This particular case shows the position of mean
nomalized objective difference value (µ̄3) for the third objective of WFG2 problem obtained from the
250th generation of a particular seed.

It is seen from Eq. (2.3) that the Gaussian function is defined by two parameters, µ and σ.

While µ represents mean and it is set to −1, σ defines the spread of the Gaussian function and

it is set to 0.5 as a compromise. It has been indicated that setting σ too large or too small leads

to the inability to discriminate v ∈ [−1, 0] or v ∈ [0, 1] [22]. Even setting σ in this way may

create uneven discrimination between the entire domain of v ∈ [−1, 1]. This can be attributed

from Fig. 2.6 that the discrimination ability of γg(v) for v ∈ [−1, 0] and for v ∈ [0, 1] is not

similar because the curve’s nature in the said ranges are not identical.

An MaOP may or may not have an identical range of values for its each objective, fi. To

handle this issue, we may use a different membership function for each of different objectives

i.e., a separate σ for each objective. A similar concept is used in [37] where σ is chosen

manually. This will, however, require rich domain knowledge for each problem we like to solve.

Alternatively, we may normalize v by the maximum difference among all pairs of solutions in

that objective and can use the same membership function for all objectives. This alternative

approach is used in some previous studies (e.g. [22]). The downside of normalization is the loss

of information and influence of very large/small isolated value(s).
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In the inference step, to compute dominance of one solution with respect to other (e.g.

xa over xb), the fuzzy membership values of m-objective differences (fi(x
a) − fi(x

b), i =

1, 2, · · · ,m) are combined. Irrespective of the type of membership function, any suitable fuzzy

set theoretic operation can be used for combination [40]. Table 2.1 shows some typical inference

operations. The fuzzy intersection set operation is generally used for a minimization problem.

The most popular intersection set operation used in MaOPs is the product operation, also

known as t-norm operation.

Table 2.1: Some common fuzzy set operations to combine membership values in the inference step of
fuzzy logic

OR (Union) AND (Intersection)

Max({γ1(v1), γ2(v2)}) Min({γ1(v1), γ2(v2)})

γ1(v1) + γ2(v2)− γ1(v1)× γ2(v2) γ1(v1)× γ2(v2)

Min({1, γ1(v1) + γ2(v2)}) Max({0, γ1(v1) + γ2(v2)− 1})

The following equations show the fuzzy inference and relative dominance computation pro-

cedure of two m-objective solutions, xa and xb.

dom(xa,xb) =
m∏
i=1

γi(fi(x
a)− fi(xb)) (2.4)

dom(xb,xa) =
m∏
i=1

γi(fi(x
b)− fi(xa)) (2.5)

φ(xa,xb) =
dom(xa,xb)

dom(xa,xb) + dom(xb,xa)
(2.6)

φ(xb,xa) =
dom(xb,xa)

dom(xa,xb) + dom(xb,xa)
(2.7)

where dom(xi,xj) is a scalar value and represents how much xa dominates xb. The term

φ(xa,xb) indicates the relative dominance of xa to xb. We consider xa dominates xb iff
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dom(xa,xb) > dom(xb,xa) and non-dominated iff dom(xa,xb) = dom(xb,xa). It is evident

from the above relations that if one solution is Pareto dominated then it will also be fuzzy

dominated and if two solutions are fuzzy non-dominated they are Pareto non-dominated. How-

ever, it is very unlikely that two different solutions will have a same fuzzy dominance value

(fuzzy non-dominated) even though they are Pareto non-dominated. Because of the different

objective differences, fuzzy dominance is able to discriminate two solutions even when they

are Pareto non-dominated. Therefore Pareto dominance can be considered as a special case of

fuzzy dominance.

In defuzzification step, the dominance impact of one solution with respect to other solutions

can be combined, ranked or used instead of Pareto dominance [22, 35–38]. An important

observation is that irrespective of a membership function and a set theoretic operation, we

end up with only a scalar fuzzy value which does not tell anything about diversity. If the

solutions are selected solely based on the fuzzy dominance values, the chosen solutions will be

less diverse and will not able to cover the entire Pareto front of a given problem. This can be

seen from the experimental evidences provided in a recent study [25]. Some existing approaches

(e.g. [22], [38]) use a threshold parameter to divide solutions into different fronts but still fails

to provide enough diversity in high-dimensional and non-regular Pareto [41].

2.4.2 Related Fuzzy Based Work

There are a very few fuzzy based EMO algorithms in the literature.

In [37], Farina and Amato proposed definitions of fuzzy-based optimality for multi-objective

optimization. The main idea behind the given definitions is to introduce different degree of

optimality. For each objective, the authors used a combination of three Gaussian functions

as a non-adaptive membership function. The purpose of such a combined mechanism is to

distinguish amongst better, equal and worse objective differences between two solutions. The

proposed definitions have been applied on two simple multi-criteria decision making problems
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and two MOPs.

The work described in [36] studied the fuzzyfication of Pareto dominance relation and its

application to the design of an EMO algorithm. In fuzzyfication, the authors used a non-

symmetric membership function. Solutions those have high performance in one objective but

poor in others will be preferred in the given fuzzy dominance definition. As no additional

diversity measure was used in [36], the evolving population will lose diversity. To verify the

usefulness of proposed EMO algorithm, an analytic study of the Pareto-Box problem was

provided.

Nasir et al. [38] introduced a decomposition based fuzzy dominance algorithm (MOEA/DFD).

For all objectives, the algorithm uses a general membership function of Ae−x with uneven dis-

crimination power. As the same membership function is used for all objectives, scaling issues

are not addressed here. In comparing solutions, MOEA/DFD employed fuzzy dominance when

a solution’s dominance level is found greater than a particular threshold value. Otherwise, it

used decomposition based weighted approach, which is able to handle diversity. The perfor-

mance of MOEA/DFD was evaluated on twelve benchmark problems having two-objective to

five-objective.

In [22,35], the authors utilized fuzzy dominance concept to continuously differentiate indi-

viduals of a population into different degrees of optimality. They used the same left Gaussian

function as a membership function for all objectives of a given MaOP. To handle the scaling

issue, the objective differences are normalized by corresponding maximum objective difference

value. The fuzzy concept was incorporated into NSGA-II and SPEA2 as a case study and

termed them FD-NSGA-II and FD-SPEA2. In FD-NSGAII, a threshold value is used to divide

solutions into different fronts based on the fuzzy dominance value. However, the solutions in

the last front are chosen based on crowding distance. As fuzzy dominance is capable of dis-

criminating solutions, crowding distance will rarely be used. Moreover, crowding distance has

already found to be ineffective on MaOPs [21, 23, 27]. In FD-SPEA2, the best N solutions for

next generation are taken based on fuzzy dominance values. The performance of the proposed
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algorithm was evaluated on seven DTLZ problems and two WFG problems having 5-, 10- and

20-objective.

In summary, with respect to existing fuzzy works, three issues need to be addressed while

using fuzzy dominance in an EMO algorithm. These include uneven discrimination ability of

the membership function, normalization of the objective difference and loss of diversity during

environmental selection.

The proposed framework described in the following Chapter uses a preferred reference point

based clustering along with adaptive Sigmoid membership function to deal with the issues

commonly faced by other fuzzy based approaches. While the preferred reference point based

clustering is used to deal with diversity promotion (Section 3.2.3), the adaptive membership

function (3.2.4) is employed to handle the objective scaling issue.



Chapter 3

Proposed Framework

3.1 Introduction

From the previous chapter we can realize that the fuzzy concept is particularly suitable for

many objective problem as it can effectively offer comparability among non-dominated solu-

tions for large number of objectives. The proposed F -DEA utilizes this notion and handles the

issues faced by existing approaches. In order to avoid the detrimental effect of uneven discrim-

ination and objective normalization, F -DEA employs a separate membership function for each

objective and determines its parameters adaptively. It also employs preferred reference points

based clustering for ensuring diversity in its environmental selection. These features make the

proposed algorithm different from others. In the following sections our proposed framework is

described and the theoretical aspects of the components explained which are further supported

through experiments in the Chapter 4. Finally in terms of existing works we mentioned the

novel aspects of our proposed F -DEA.

24
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3.2 Proposed Algorithm

The algorithm starts with a randomly generated parent population Pt of N solutions and a

set of generated/supplied reference points Rg/Rs. It then creates an offspring population Qt

of size N by applying crossover and mutation. Based on the positional information in the

objective space, F -DEA finds p preferred points (p ≤ N) and constructs clusters using the

solutions as members and the preferred points as centers. It then adaptively constructs m

fuzzy membership functions i.e., one function for each objective and utilizes them to compute

dominance degrees of the solutions. Finally, F -DEA assigns fitness to the solutions and selects

the best ones from different clusters in a round-robin fashion to from a new population Pt+1

for the next generation. We summarize the steps of our method in Algorithm 3.1, which are

explained further as follows.

Algorithm 3.1 Generation t of F -DEA

Input: Rg/Rs (generated reference points or supplied points), Pt (parent population of t-th
generation), N (population size)
Output: Pt+1

1: Qt ← Recombination and Mutation on Pt
2: Ct ← Pt ∪Qt

3: Select p ≤ N preferred reference points:
Rp ← PreferredReferencePoint(Ct, R

g/Rs, p)
4: Construct clusters using Rp:
Rp({rj, X(rj)|1 ≤ j ≤ p}) % rj: j-th reference point in Rp, X(rj): associated solution
with rj

5: Construct m membership functions:
(γ1, γ2 · · · γm)← AdaptiveMembershipFunction(Ct)

6: Assign fitness to solutions within individual cluster:
FitnessAssignment(Rp, Ct, γ)

7: Sample solution from each cluster:
Pt+1 ← SamplingSelection(Rp, N)
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Algorithm 3.2 PreferredReferencePoint(Ct, R
g/Rs, p)

Input: Rg/Rs, Ct (combined population), p (maximum size of preferred reference points)
Output: Rp({rj, X(rj)|1 ≤ j ≤ p}) (set of preferred reference points rjs with associated
cluster of solutions X(rj)s)

1: for each solution x ∈ Ct do
2: Normalize f(x): f̃(x) = f̃1(x), f̃2(x), . . . f̃m(x)
3: end for
4: Ra = {∅}
5: for each solution x ∈ Ct do
6: r = rg : argmaxrg∈Rg/Rs(S(rg, f̃(x)))
7: if r /∈ Ra then
8: X(r) = {x}
9: Ra = Ra

⋃
{r}

10: else
11: X(r) = X(r)

⋃
{x}

12: end if
13: end for
14: if |Ra| > p then
15: Sort Ra: MinMax(Ra)
16: Rp = First p points of Ra

17: Rr = (Ra −Rp)
18: for each rr ∈ Rr do
19: for each solution x ∈ X(rr) do
20: r = rp : argmaxrp∈Rp(S(rp, f̃(x)))
21: X(r)=X(r)

⋃
{x}

22: end for
23: end for
24: else
25: Rp = Ra

26: end if

3.2.1 Reference Point Generation

A number of existing studies [3, 20, 21, 27, 31, 42] employ reference points for assigning fitness

values. However, F -DEA uses such points for clustering the solutions with a hope of maintain-

ing both convergence and diversity. There are two important considerations for generating the

reference points. Firstly, the reference points are to be generated in such a way so that they

are uniformly distributed over the m-dimensional objective space. Secondly, the generation

procedure has to be scaleable and computationally efficient. Keeping these considerations in
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Algorithm 3.3 MinMax(R)

Input: R (reference points)
Output: Rst (reference points sorted according to MinMax distance)

1: Rst = ∅
2: Rm = A set of m extreme points (one for each objective) chosen from R
3: Rst = Rst

⋃
Rm

4: R′ = R−Rst

5: for each r in R′ do
6: Distance measure: dist(r) = min

∀rst∈Rst
d(r, rst)

7: end for
8: while R′ 6= ∅ do
9: rb = r : argmaxr∈R′ dist(r)

10: Rs = Rs
⋃
{rb}

11: R′ = R′ − {rb}
12: for each r in R′ do
13: Update: dist(r) = min (dist(r), d(r, rb))
14: end for
15: end while

mind, F -DEA uses the Das and Dennis’s procedure [14] like others [2,21,27] for generating the

reference points, which are distributed uniformly along the m-dimensional hyper-plane. The

procedure generates a set of reference points, Rg, spanning the whole plane, each at δ = 1
λ

distance apart from the others. Analytically, |Rg| =
(
m+λ−1

λ

)
reference points are generated

where λ denotes the number of divisions in each objective-coordinate.

The main problem of this generation procedure or others [2] is the exponential increase of

reference points with the increase of objectives. A simple technique to handle this issue is to

increase the population size with respect to |Rg|. This in turn will increase evolution time. As

an alternative, some studies (e.g. [21, 27]) generate a smaller number of reference points and

impose this number as a constraint on the population size. F -DEA, on the other hand, first

generates a large number reference points and then selects a set of preferred points based on

the population size. This alleviates the problem of imposing constraint on the population size.
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3.2.2 Preferred Reference Point

All the generated reference points may not be equally important with respect to the existing

solutions of an evolving population. The proposed F -DEA thus selects a set of preferred

reference points, Rp. It first finds the active reference points from Rg/Rs and then applies the

MinMax procedure on them to choose p diverse points. A reference point is called an active

reference point if it maintains some associations with one (or more) solution(s). The upper

bound of p i.e., |Rp| is N , the population size. The solutions of a population may reside in some

(not all) regions of the m-dimensional objective space. In that case, p will be less than N . Our

algorithm constructs p clusters using the preferred points as their centers and the solutions of

Ct as their members. The procedure for selecting the preferred reference points and clusters is

given in Algorithm 3.2.

Active Reference Point

As the values of the generated reference points lie in the range between 0 and 1, we adaptively

normalize the objective values of the solutions to measure how close a solution is with respect

to a particular reference point. Following the adaptive normalization procedure of [27], the

i-th objective value, fi(x
a), of any solution xa can be normalized as

f̃i(x
a) =

fi(x
a)− fmini (xu)

zi − fmini (xu)
∀i ∈ 1, 2, · · · ,m (3.1)

where f̃i(x
a) is the i-th normalized objective value of the solution xa. The symbol fmini (xu)

refers to the minimum value of the i-th objective with respect to all solutions in Ct and the

solution xu has the minimum i-th objective value. The symbol zi refers to the intercept

computed from the i-th objective axis and a m-dimensional linear hyper-plane. The hyper-

plane is constituted fromm solutions, where a solution xh ∈ Ct makes the following achievement

scalarizing function (ASF) minimum for an objective direction wi.
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ASF (xh,wi) =
m

max
i=1

f(xh)− fmin(xu)

wi

xh ∈ Ct (3.2)

Normalization using intercepts helps solutions to expand it’s objective space.

The closeness of solutions indicates their associations with the reference points. We utilize

cosine similarity measure for this purpose. The cosine similarity measure, S(rj, f̃(xa)), between

the normalized fitness vector f̃(xa) = f̃1(x
a), f̃2(x

a), . . . f̃m(xa) of any solution xa and the m-

dimensional j-th reference point rj can be computed as

S(rj, f̃(xa)) =
f̃(xa).rj

|f̃(xa)||rj|
∀j ∈ 1, 2, · · · , |Rg| (3.3)

As we generate a set of reference points, Rg, there will be |Rg| similarity measures for xa. The

largest similarity measure obtained for any of the reference points is considered as the active

reference point that maintains the highest association with xa. While associating the solutions

with the reference points, it is possible that some points may associate more than one solutions,

some may associate one solution or some may associate no solution at all.

MinMax Measure

The objective space size increases exponentially with an increasing number of objectives. It

would be beneficial if we can cover the whole objective space by a reasonable number of active

reference points in the least crowded manner. We devise a procedure based on the MinMax

measure to select p diverse active reference points, which F -DEA employs as the clusters’

centers, from the crowded ones (Algorithm 3.3).

The procedure first selects m number of most extreme active reference points i.e., one for

each objective and then incrementally selects the other points. To select the other points,

it calculates the minimum Euclidean distance between the already selected points and the
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remaining ones. The point with the maximum distance is selected as the next point and the

minimum distance of the remaining points are updated based on the selected point. This

procedure continues until all the points are selected. In this way, we finally obtain a sorted

list of active reference points that are far apart from each other i.e., diverse. This procedure

will be effective for disconnected, degenerated and other irregular shaped geometry because we

are using the reference points only where solutions exist. Thus we are effectively maintaining

cluster uniformity using the same number of reference points as other approaches but we are

using them where it is needed. It may possible to devise other techniques as well, which can be

a future research topic. Fig. 3.1 demonstrates the process of selecting the preferred reference

points from a set of generated reference points.
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Figure 3.1: Process of selecting the preferred reference points from a set of generated reference points

3.2.3 Clustering

The proposed algorithm constructs clusters where the preferred reference points and solutions

(data points) are used as the clusters’ centers and members, respectively. An important ques-

tion may arise why we do not use a classical approach for clustering. The classical approach

usually partition a set of data points into a set of meaningful sub-classes with an aim of un-

derstanding the natural grouping/structure among them. This is why the clusters’ centers are

determined from the existing data points. On the other hand, the aim of our clustering is to
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facilitate diversity in selecting solutions for the next generation. We thus use a set of preferred

points, which are diverse and selected from a set of uniformly generated reference points, as

the clusters’ centers. Although the generation of uniform reference points may suffer in case

of an irregular Pareto front, the use of the preferred reference points as the clusters’ centers

alleviates this problem to some extent.

Fig. 3.2 shows the effect of preferred reference points based clustering and traditional k-

means clustering. It is clear from the figure that k-means clustering with Euclidean distance

measure won’t work as it considers locally crowded regions to form clusters. Thus, the solutions

that are Pareto dominated might be grouped together in the objective space. Although k-means

clustering with cosine measure handles the aforementioned issue, it does not consider and

maintain uniformity in clusters. In contrast, the reference points based clustering we employ

in F -DEA maintains clusters uniformity by employing a uniformly distributed reference points

as the clusters’ centers.

The reference points and evolved solutions are considered in F -DEA as the clusters’ centers

and members, respectively. Existing works (e.g. [3, 20, 21, 27, 31, 42] generally utilize reference

points in some way for assigning fitness to the solutions. Some previous non-fuzzy EMO algo-

rithms [21,27,28] also employ clustering in solving MaOPs. The clustering procedure of F -DEA

differs from the one used in [27] with two notable exceptions. Firstly, F -DEA employs preferred

reference points based clustering to provide better cluster uniformity, remove dependency on

population size and handle irregular shaped Pareto fronts. Secondly, it uses cosine similarity

instead of Euclidean distance to find the solutions’ association with the generated reference

points. It is suitable because angle between a reference point and a candidate solution remains

constant irrespective of exact distance from the ideal point, which handles the scaling issue

of the generated reference points. The θ-dominance algorithm [21] also uses reference points

based clustering similar to [27] with an exception in normalization procedure. CEGA [28], a

clustering based elitist genetic algorithm, utilizes a bottom up hierarchical approach in the

decision variable space not in the objective space. The basic notion of CEGA is that conver-

gence with a poorly spread set of Pareto-optimal solutions is preferred than a well-spread set
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of solutions which are far from the Pareto-optimal surface. The procedure and notion of this

clustering is different from the one we employ in F -DEA. In RVEA [31], reference vectors are

used to decompose solutions into different sub-problems. Cosine similarity measure is used for

association but unlike F -DEA vectors are dynamically adjusted on each generation according

to the scales of the objective functions.
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Figure 3.2: Solutions are grouped (rectangle box) by different clustering mechanisms. The red squared
solutions are the selected solutions obtained by applying fuzzy fitness based environmental selection
procedure within each cluster.
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3.2.4 Adaptive Membership Function

In this work, we for the first time use the Sigmoid membership function (Fig. 3.3) into a

fuzzy based EMO algorithm. This function is not only monotonically decreasing but also anti-

symmetric at mean. We set its growth parameter i.e., α in such a way so that it handles the

extreme values to some extent and work in support of our clustering approach. The Sigmoid

membership function for the i-th objective can be defined as

γi(fi(x
a)− fi(xb)) =

1

1 + e−αi((fi(xa)−fi(xb)))
(3.4)

where mean is set to zero for making the membership function anti-symmetric at that value.

An MOP may or may not have an identical range of values for each objective. To capture

this notion, it is better to determine αi adaptively. We calculate it for each objective at every

generation of evolution. The mean (µi) and variance (σ2
i ) of objective differences are used to

compute αi. We obtain µi and σ2
i using absolute objective differences of all pairs of solutions.

The growth parameter αi has been defined in such a manner so that the membership value

obtained from Eq. (3.4) is 0.99 at the point (−µi − σi). We compute αi as

αi =
ln p− ln(1− p)

qi
(3.5)

where p = 0.99 and qi = −µi − σi. The way we define αi is advantageous in three aspects.

� Firstly, as αi is defined based on mean and variance instead of maximum or minimum

objective difference, inappropriate normalization effect of a significantly large/small ob-

jective difference mentioned in Section 2.4 will be minimized to some degree.

� Secondly, if the objectives are in different scales, the corresponding mean and variance

of the objective differences will be different which in turn will produce different αis i.e.,

different membership functions.
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� Thirdly, as we cluster the solutions, all objective differences in the same cluster will be

small. It ensures that most of the objective differences will lie in the range between

−µi− σi and µi + σi. The shape of membership function indicates that the solutions are

evenly discriminable within this range.

In short, the anti-symmetric property and αi’s definition resolve the issues of uneven discrimi-

nation ability, objective difference normalization and objective scaling.
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Figure 3.3: Sigmoid Membership Function. This particular case shows the position of mean objective
difference value (µ3) for the third objective of WFG2 problem obtained from the 250th generation of
a particular seed.

3.2.5 Fuzzy Dominance and Fitness Assignment

The essence of our fuzzy dominance computation and fitness assignment is that they are lo-

cal. We utilize the solutions in the same cluster for computing their dominance degrees and

assigning their fitness scores. An advantage of this approach is that there is an opportunity to

employ parallelism for such computation and assignment. We employ the membership function

represented by Eq. (3.4) to compute membership values which in turn are used for obtaining

fuzzy dominance among all pairs of solutions in each cluster. We use Eqs. (2.4) and (2.5) for

obtaining fuzzy dominance.

For assigning fitness to a solution of any cluster, we first compute the relative dominance
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degrees, φs, using Eqs. (2.6) and (2.7). Note that the relative dominance degree of any solution

xa in a particular cluster is considered only with respect to all other solutions in that cluster.

We then add all these degrees and assign it as the solution’s fitness as represented by Eq. (3.6).

fit(xa) =
b=n∑

b=1,b6=a

φ(xb,xa) (3.6)

Here n is the number of solutions in any cluster. If a solution is least dominated by other

solutions of the same cluster, then its fitness value will be smallest and it will be selected for

the next generation.

3.2.6 Environmental Selection

As mentioned before, F -DEA constructs clusters using the evolved solutions as their members

and the preferred reference points as their centers. The aim of our environmental selection pro-

cedure is to choose solutions for the next generation by considering not only their convergence

but also their diversity. To achieve these goals, F -DEA first sorts the clusters by applying the

MinMax procedure based on the clusters’ centers. This is done to give priority on the distant

clusters. The algorithm then selects the solutions from the sorted clusters in a round robin

fashion. For a minimization problem, a solution having a minimum dominance score compared

to the remaining ones of the same cluster is considered for selection. It means the selected

solution is least dominated by the remaining ones of the same cluster. Giving preference to

the distant clusters and selecting the least dominated solutions from them indicates F -DEA’s

emphasis on both diversity and convergence in its environmental selection.

To visualize the essence of our reference points based clustering, Fig. 3.2 shows the effect of

reference points based clustering, no clustering, k-means clustering with Euclidean distance and

k-means clustering with cosine similarity measure. It is evident from this figure that reference

points based clustering is able to maintain well both convergence and diversity in selecting
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solutions for the next generation. In contrast, when no clustering is employed, fuzzy dominance

ranks all solutions based on their scalar values and the corner solutions are selected in concave

surface due to bias introduced by fuzzy dominance (Fig. 3.2(d)). Diversity maintenance of k-

means clustering with Euclidean distance (Fig. 3.2(b)) is better than no clustering (Fig. 3.2(d))

but worse than k-means clustering with cosine similarity measure (Fig. 3.2(c)).

3.2.7 Contribution of Fuzzy Ranking and Reference Points

To get a further insight of how much contribution we get from reference points based clustering

and fuzzy dominance over Pareto dominance, the theoretical aspects are discussed in this

section and detail experimentation has been conducted and presented in Experimental Studies

Section 4.10.

Impact of Fuzzy Fitness Assingment

In many-objective problems almost all solutions become non-dominated during evolutionary

progress that is why Pareto based approaches fail to provide enough selection pressure. Fuzzy

domination principle can offer comparability among Pareto incomparable solutions. Depending

on fuzzy domination principle, there exists bias to which direction solutions are preferred.

To handle this bias and make it work in favor of selection pressure we have modified fuzzy

membership functions and incorporated reference points based cluster mechanism to provide

more comparability and maintain diversity throughout generation.

From the fitness assignment procedure of F -DEA we get a complete order of solutions

even if all of them are non-dominated to one another. Therefore if the solutions are selected

based on this fitness value a bias will be noticed. The following examples shows that the fuzzy

definition handles scaling issue, appropriately assigns better fitness and prefers those solutions

that dominate others and are least dominated.
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� Scaling issue: Let solutions are distributed along a straight line where scale of the two

objective may be different. Fig 3.4(a) shows such a case where we have 4 solutions in a

straight line where scale of two objectives are different. The membership functions of the

two objectives in Fig. 3.4(c) and Fig. 3.4(d) are derived based on the solution objective

values.

Here we can see the span of f1 objectives’ membership function is longer than span of

f2 objectives’ membership function. Therefore in case of dominance relation between

solution x1 and x2, we see that improvement of solution x1 to x2 in objective f1 is

relatively same with the improvement of solution x2 to x1 in objective f2 although their

objective difference is different.

The span of the membership functions handles the scaling factor of solutions. To under-

stand more precisely in Fig. 3.4(b), we have shown the domination curve derived from

the two membership functions. This plot shows the domination impact of a solution to

other solution respective to it. The blue line represents the non-domination curve, any

solution along that curve will be non-dominated with respective to centered solution.

We have calculated non-domination curve from the following relation, γ1(dx1)∗γ2(dx2) =

γ1(−dx1) ∗ γ2(−dx2)

Here dx1 represents the 1st objective difference of two solutions and dx2 represents 2nd

objective difference of two solutions. Two solutions will return same dominance value if

the above relation satisfies. Therefore solving for dx2 for given different values of dx1 we

can obtain the non-domination curve.

From the dominance relation plot we can see how the scale issue is handled. As we move

to upper quadrant the domination impact increases non-linearly based on the objective

difference value because of the multiplication of Sigmoid functions. In Fig. 3.4(a) we

have plotted non-domination curve with respect to individual solution. In this case all

solutions resides on same line, so they are non-dominated to each other means domination

impact to each other is same. Assigned normalized fitness value is same and 0.5 for all

solutions. The two selected solutions in figure are selected based on randomly according



CHAPTER 3. PROPOSED FRAMEWORK 38

to the solutions order of appearance.
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Figure 3.4: This figures explain how fuzzy fitness assignment procedure handles different scale of
objectives. a) The red solutions are those which will be selected for next generation (here fitness is
same for all thus any two solutions can be selected)

� Domination Impact of solutions : In Fig.3.5(a), let scale of the two objectives are same.

Solutions, x1,x2, · · · ,x7 lies in straight line and solution x8 resides outside the line domi-

nated by x1,x2,x3,x4. Due to solution x8, the membership function of the two objective

will be different as pairwise objective differences will be now different. Fig.3.5 shows the

membership functions and domination curve.

When in comparison x1 and x2 although the objective wise difference is same but relative

to the membership function, improvement in objective f1 is significant than improvement

in objective f 2, so x1 will dominate x2.

Blue lines in Fig.3.5(a) shows the approximation non-domination curve respective to indi-

vidual solutions. The fact that x1 dominates x2 can be also justified from the domination
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curve.

In this case we can see x8 is Pareto dominated by x1,x2,x3 and x4 so domination impact of

x8 to those solutions will be less and solutions x5,x6,x7 are non-dominated so domination

impact of x8 to these will be more. Thus after considering overall domination impact we

will find x1,x2,x3 and x4 with minimum domination impact in that order.
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Figure 3.5: Membership function of 3.5(a) and domination curve

� Other cases : Fig. 3.6 shows some other cases. From these figures we can conclude that

solutions dominate others solutions and solutions that are least dominated by others are

usually preferred.

From these figures we can see that convergence of solutions is ensured but no diversity

mechanism is inherent with this. Therefore if we continue next generation selection in this

approach solutions will be converged to some points.
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Figure 3.6: Different scenarios showing how fitness is assigned to solution.
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Impact of Reference Points based Clustering

To support diversity throughout next generation fuzzy dominance alone is not enough because

of the bias. Some existing approaches (eg. FD-NSGAII) use α parameter to divide solutions

into fronts but still fails to provide enough diversity in high dimensional and non-regular Pareto

surfaces( [22, 35]). To promote diversity we have incorporated the concept of reference points

to guide solutions in certain direction. We have used reference points uniformly throughout

the generations to maintain diversity. Also we know that uniform reference points may suffer

from irregular Pareto front. To alleviate this problem and have a control over diversity and

convergence we have introduced computation of preferred reference points. Together they will

promote diversity as well as convergence in many objective problems.

Here in the following two examples we have shown how reference points based clustering ap-

proach handles the problem of biases created by dominance operation and how using preferred

reference points we can solve the irregular Pareto problem.

� Solutions in Fig. 3.7 are in two fronts so we can consider them in a single big cluster and

the bias to the solutions will be to the corners as expected. The membership functions

for both objective will be same in this case due to same objective values in two axis.

Fig. 3.7(c) shows case for 3 uniform reference points and formed three clusters. As

membership functions are computed from entire solution set so same domination principle

will be applicable for any pair of solutions within clusters. From the figure we can see

that from the middle clusters we have selected converged solutions so overall it promotes

more diversity than before.

In case of 12 uniform reference points, we get clusters of 2 solutions each and the selected

solutions within the clusters guarantee uniformity as well as convergence.

� The second scenario in Fig. 3.8 explain how clustering with preferred reference points in

effect works for irregular shaped Pareto problem of WFG2.
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(b) Concave surface with 3 clus-
ters
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Figure 3.7: Concave surface

The motivation behind computing preferred points comes from the fact that, we use

sampling from each cluster to obtain best solution for next generation. So for selecting

N next generation solutions there cannot be more than N clusters and thus we are limited

with N reference points. During evaluation many reference points may have no solution

in association. Our ultimate goal is to find desired p reference points such that they

uniformly represents the objective surface where solution exists.

To do this first we generate lots of uniform reference points and associate solutions with

the reference points. Solutions are normalized by following NSGAIII normalization pro-

cedure which will keep diversity tension to outwards ( [27]).

Using Cosine similarity measures we get first level of reference points which represents

objective surface, we call these points active reference points. Fig. 3.8(a) and 3.8(b)

shows steps.

Now from the active reference points we need to select p reference points. So here we

applied MinMax procedure to remove crowded reference points, shown in Fig. 3.8(c).

After reassigning solutions that was assigned to the removed reference points we will find

desired clusters of solutions shown in Fig. 3.8(d).

Fig. 3.8(e) and Fig. 3.8(e) shows how with and without cluster next generation solutions

is selected from that generation.
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(The preferred reference points can be used in another algorithms, which we intend to

show in future work.)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1

f
2

 

 

Rg/Rs

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

f
1

f
2

 

 Combined Population
Normalized solutions

(a) Generated reference points
Rg, the original solutions in
combined population Ct and
their normalized ones.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

f
2

 

 

0.45 0.5 0.55 0.6
0.35

0.4

0.45

0.5

0.55

f
1

f
2

 

 

Global Reference Points

Rg

Selected Reference Vectors

(b) Global reference points to
active reference points (marked
with vector line)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

Preferred Active Points
Removed Active Points

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 Preferred Active Points

(c) Reduction of active refer-
ence points to preferred size p =
15

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

f

f
2

 

 

0.75 0.8 0.85 0.9

1.6

1.8

2

2.2

2.4

2.6

f
1

f
2

 

 
Selected solutions
Unseleted solutions

(d) Cluster of solutions associ-
ated with preferred points

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

f
1

f
2

 

 

Selected solutions
Unseleted solutions

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

f
1

f
2

 

 
Selected solutions

(e) Selected solutions based af-
ter clustering

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

f
1

f
2

 

 

Selected solutions
Unseleted solutions

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

f
1

f
2

 

 
Selected solutions

(f) Selected solutions without
clustering. The bias is toward
objective f1

Figure 3.8: Construction of clusters using the solutions in the combined population and generated
reference points for the WFG2 problem.

3.2.8 Computational Complexity

The basic F -DEA algorithm contains seven lines (Algorithm 3.1). As the first two lines are

common in an evolutionary algorithm, the remaining five lines that call five procedures actually

determine F -DEA’s complexity. Algorithm 3.2 finds p preferred reference points from |Rg/Rs|

generated/supplied points and constructs clusters using such points. The overall computation
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including adaptive normalization (O(mN)) can be performed withmax(O(mN |Rg| / |Rs| , O(mN2))

operations. The construction of adaptive membership function using mean µ and variance σ2

requires O(mN2) operations.To calculate µ and σ2 in a single pass, we use the Knuth’s running-

mean-variance approximation process [43]. Let the maximum number of solutions in a cluster

is χ. As there can be p different clusters, the time complexity of fitness assignment is at

most O(mpχ2), including the selection of best solutions that requires max(O(mp2), O(pχ)) or

O(mN2) in the worst case. Thus the overall time complexity of F -DEA ismax(O(mN |Rg/Rs|), O(mN2)).

3.3 Novel features of the Proposed Algorithm

In this thesis we propose a fuzzy dominance based evolutionary algorithm (F -DEA) for effi-

ciently solving MaOPs. The proposed algorithm exploits the strength of fuzzy dominance in

conjunction with clustering based active diversity promotion mechanism in order to efficiently

solve MaOPs. The novelty of F -DEA comes from the following new features,

� Diversity maintenance is the primary issue faced by any fuzzy based approaches. To

maintain diversity among solutions, F -DEA employs reference points based clustering to

select solutions for the next generation of an evolutionary process. To the best of our

knowledge, F -DEA is the first algorithm that employs fuzzy dominance and reference

point synergistically. Unlike existing reference point based approaches [3,20,21,27,31,42].

� The preferred reference points based clustering provides better cluster uniformity, removes

dependency on population size and effectively handles irregular-shaped Pareto fronts.

Also the preferred reference points size parameter gives control over convergence and

diversity.

� F -DEA introduces the anti-symmetric Sigmoid membership function with an aim of

ensuring proper discrimination ability of the membership function. Existing approaches

either use domain knowledge [37] or approximation procedure [22].
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� To handle the scaling issue of objectives, F -DEA uses a separate membership function

for each objective and estimates its parameter(s) adaptively. The estimation procedure

handles the bias induced by isolated solutions.

� The proposed algorithm emphasizes both convergence and diversity in the same way from

beginning to end of an evolutionary process. These aspects relate to the consideration

of both diversity and convergence in the same selection process. Existing fuzzy based

algorithms use fuzzy dominance as a primary selection criterion and diversity measure as

a secondary one. This is problematic in the sense that algorithms would rarely employ

the secondary criterion as fuzzy dominance is capable of discriminating solutions.



Chapter 4

Experimental Studies

4.1 Introduction

We perform a series of experiments to investigate and compare the optimization capability of

our algorithm. Two well known benchmark test suites WFG [44] and DTLZ [45] are utilized

for this purpose. The WFG problems are truly non-linear, non-separable and multimodal, and

they do not have an identical range of values for each objective [44]. These characteristics

make the WFG problems more challenging than DTLZ ones. To investigate the performance

on degenerate problems, we also include the Rectangle problem [41] for experimentation.

4.2 Benchmark Problems

The evaluation and comparison of our method is based on several benchmark problems taken

from the WFG and DTLZ test suites. The WFG test suite contains nine problems and we

choose eight of them for experimentation. We exclude the WFG3 problem because it has a non-

degenerate part [46] which might create erroneous result during performance evaluation. We

46
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choose five (DTLZ1, DTLZ2, DTLZ3, DTLZ4 and DTLZ7) out of seven problems the DTLZ

problem suite. We omit the DTLZ5, DTLZ6 problems due to their ambiguity in Pareto fronts

beyond 3-objective [44]. Table 4.1 shows characteristics of the WFG and DTLZ problems. We

also choose three instances of Rectangle problem.

The problems in WFG and DTLZ test suites can be scaled to any number of objectives and

decision variables. We consider the number of objectives m ∈ {2, 3, 5, 7, 10, 12, 15, 20, 25}. As

per recommendation from the WFG Toolkit1, we set the distance related parameter l = 20, the

position related parameter k = 4 for m = 2, k = 2× (m− 1) for 3 ≤ m ≤ 10, and k = (m− 1)

for m > 10. The number of decision variables, n, is set equal to l + k. We also follow the

suggestions of [27, 45] in setting n and k of DTLZ problems. We set n equal to m + k − 1 for

all DTLZ problems we consider in this work. We set k = 5 for DTLZ1, k = 10 for DTLZ3 and

k = 20 for DTLZ7. In this study, WFGX-Y refers to the problem WFGX with Y objective.

The similar notation is used for the DTLZ problems.

4.3 Performance metrics

The performance of any evolutionary algorithm for an MOP is usually measured from two

aspects: convergence and diversity. Inverse generalization distance (IGD) [47] and hypervol-

ume (HV) [32] are two performance metrics that capture in one scalar both convergence and

diversity. To calculate IGD, a well uniform sample set of true Pareto front is required. It is,

however, challenging to get such a set for an increasing number of objectives [34]. Deb and

Jain [27] recently introduced a direct procedure for calculating IGD based on the reference

points, where for each reference direction we can exactly locate the intersecting point of a

known true Pareto front.

The other performance metric HV has nicer mathematical properties and is the only quality

measure known to be strictly Pareto-compliant [47]. These good features make HV a fair

1http://www.wfg.csse.uwa.edu.au/toolkit/README.txt
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Table 4.1: Characteristics of different WFG and DTLZ test Problems.

Problem Features

WFG1 Separable, Uni-modal, Biased, Mixed, Scaled

WFG2
Nonseparable, Multi-modal

Convex, Disconnected, Scaled

WFG4 Separable, Multi-modal, Concave, Scaled

WFG5 Separable, Deceptive, Concave, Scaled

WFG6 Nonseparable, Uni-modal, Concave, Scaled

WFG7 Separable, Uni-modal, Biased, Concave, Scaled

WFG8 Nonseparable, Uni-modal, Biased Concave, Scaled

WFG9
Nonseparable, Multi-modal, Deceptive

Biased, Concave, Scaled

DTLZ1 Separable, Multi-modal, Linear

DTLZ2 Separable, Uni-modal, Concave

DTLZ3 Separable, Multi-modal, Concave

DTLZ4 Separable, Uni-modal, Biased, Concave

DTLZ7 Multi-modal, Disconnected
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indicator for comparing different algorithms. For a non-dominated solution set A obtained in

final generation by an algorithm, HV is calculated with respect to a reference point r. HV of

A with respect to r is the volume of region dominated by A and bounded by r.

HV (A, r) = volume(
⋃
f∈A

[f1, r1]× · · · × [fm, rm]) (4.1)

The choice of r is crucial in computing HV and it has been known that choosing r slightly

larger than the nadir point, znad, is suitable [48]. In our experiments, we set r to 1.1znad, which

can be analytically obtained or approximated [44]. The Pareto front of WFG4-WFG9 is part

of a hyper-ellipse with radii Ri = 2 × i ( i = 1, 2, · · · ,m) and has a regular geometry [3, 44].

It of DTLZ1-DTLZ4 also has a regular shape. As the Pareto fronts of WFG1 (mixed), WFG2

(disconnected) and DTLZ7 (disconnected) do not have a regular geometry, we obtain znad for

these problems by an using an approximation procedure. Following [49], the points which

do not dominate r are discarded in computing HV. For the problems having Pareto fronts

with differently scaled objective values, we first normalize the objective values of the points

in A and the reference point r using znad and z∗ before computing HV. Here z∗ indicates the

optimal objective value, which is 0 for all adopted problems we consider in this study. Thus

the computed HV for an m-objective problem would be between 0 and 1.1m−Vm, where Vm is

hypervolume of the region enclosed by the normalized Pareto front and coordinate axes. We

use exact HV calculation for problems with objective less than 5 and the Monte Carlo based

fast HV approximation algorithm [33] with 10, 00, 000 sampling points for others. The large

number of sampling points is considered here to ensure accuracy in computing HV.

In experimental studies, we have used HV, IGD and visualization figures to evaluate per-

formances of the algorithms.
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4.4 Other Algorithms in Comparison

There exists a few fuzzy dominance based EMO algorithms in the literature. FD-NSGAII [22]

is one such algorithm, which has been found better than other similar algorithms. We thus

select FD-NSGAII for comparison. We also choose NSGAIII [27] for comparison because it ex-

hibits superior performance compared to several well-known algorithms. Decomposition based

algorithm MOEA/D [2] with weighted Tchebycheff approach has been chosen as a represen-

tative of decomposition, aggregation and reference weights/points based approach. Although

a new version of MOEA/D (e.g. MOEA/D-DE [29]) with differential evolution has been pro-

posed to deal with complicated Pareto surfaces, it has been found to be shown poor per-

formance in MaOPs [27]. We choose a variant of SDE [25], SPEA2+SDE, for comparison.

This particular variant shows the best overall performance among its other variants (NSGA-

II+SDE, SPEA2+SDE and PESA-II+SDE) [25]. Preference based co-evolutionary algorithm

(PICEAg) [3] and HypE [33], an indicator based algorithm, are also chosen for comparison.

HypE adopts Monte Carlo simulation to approximate exact hypervolume. Its core idea is

that only the rankings of the solutions induced by the hypervolume indicator are important,

while the actual indicator values are not. All the aforementioned algorithms cover standard

approaches for solving MaOPs.

4.5 Parameter Setting

The population size N of NSGAIII cannot be arbitrarily specified, rather it has to be set equal

to the number of reference points. The procedure employed for generating such points uses

a division parameter λ that determines this number. Although our algorithm uses reference

points, it does not put any constraint in choosing N . Table 4.2 shows λ of NSGAIII and

F -DEA, the weights Z of MOEA/D and the number of goals G for PICEAg. To make a fair

comparison, the population size is set same for all competing algorithms.
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All competing algorithms employ simulated binary crossover and polynomial mutation for

generating offspring. The crossover and mutation probabilities are set to 1 and 1/n, respec-

tively. We also use the same mutation distribution index i.e., 20 for these algorithms. The

crossover distribution index is set to 30 for F -DEA and NSGAIII, 20 for SDE, and 15 for HypE,

MOEA/D, FD-NSGAII, and PICEAg. Beside the general and common parameters, there are

some specific parameters for competing algorithms.

1. F -DEA: The division number, λ, of the Das and Dennis’s procedure [14] used in F -DEA

is shown in Table 4.2 and p is set equal to N .

2. HypE [33]: The bound of reference point and the number of sampling points have been

set to 200 and 10, 000, respectively.

3. MOEA/D [2, 29]: The neighborhood size, T , is chosen 5% of the population and the

maximum number of population slots, ηr, has been chosen 1% of T .

4. FD-NSGAII [22]: The fuzzy ranking threshold parameter β has been set to 0.50.

5. NSGAIII [27]: The division number, λ, of the Das and Dennis’s procedure [14] used in

NSGAIII is shown in Table 4.2.

6. SDE [25]: the archive is set equal to population size, N .

7. PICEAg [3]: The number of goal G is set to m× 100.

Each algorithm is run independently with 20 different seeds for each problem instance.

We set the termination criterion to 250 generations for each run. The Wilcoxon rank-sum

test [50], which is equivalent to the MannWhitney U test [51] (MATLAB implementation2)

with a 5%-significance level is used while comparing two algorithms on any problem instance

over 20 runs. For reducing Type-I error in pairwise testing, Šidák corrections [52] are also

employed. F -DEA has been implemented by the authors in JMetal3 framework and it’s source

2http://www.mathworks.com/help/stats/ranksum.html
3www.jmetal.org
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Table 4.2: Population Size N , number of divisions λ used in NSGAII [1] and F -DEA,
number of weight vectors Z used in MOEA/D [2] and goals in PICEAg [3] for different
objectives

Obj. No.

(m)

N used in

all algorithms

λ used in Z used in

MOEA/D

G used in

PICEAgNSGAIII F-DEA

2 204 200 2000 20400 200

3 204 18 100 20400 300

5 212 6 30 21200 500

7 212 4 13 21200 700

10 220 3 9 22000 1000

12 160 2, 2 7 16000 1200

15 240 2, 2 6 24000 1500

20 212 2 5 21200 2000

25 328 2 4 32800 2500

code is available online4. HypE and MOEA/D from MOEA framework5. We use a C++

implementation6 for NSGAIII. FD-NSGAII has been implemented by the authors from [22]

in JMetal framework. The source codes of SDE and PICEAg algorithms are received from the

authors of the respective algorithms. The true Pareto front of the WFG problems is generated

using the WFG-Toolkit 7. The uniform Pareto front of DTLZ1, DTLZ3 is generated from

NSGAIII implementation tools6. For the DTLZ7 problems, the Pareto front is generated using

MOEAFramework 5. All algorithms were run on Intel 2.40GHz core i5 processor with 4GB

RAM. The performance evaluation and visualization codes are shared in Github 8.

4https://github.com/siddhartha047/FDEA
5www.moeaframework.org
6http://web.ntnu.edu.tw/ tcchiang/publications/nsga3cpp/nsga3cpp.htm
7http://www.wfg.csse.uwa.edu.au/toolkit/
8https://github.com/siddhartha047/MOEAevaluation-plot
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4.6 Experiment on WFG Problems

This section presents evaluation and comparison of our F -DEA and six other algorithms on

eight WFG problems with 2-, 3-, 5-, 7-, 10-, 12-, 15-, 20- and 25-objective. Table 4.3 and

Table 4.4 shows the average HV with standard deviation and ranks of different algorithms

obtained by the Wilcoxon rank-sum test based on HVs of 20 independent runs. The lower a

rank is, the better an algorithm is.

For a particular problem, the performance score is a count that indicates the number of

times the algorithm is significantly beaten by the competing algorithms based the Wilcoxon

rank-sum test. If there are h algorithms, the lowest score could be 0 (none found better) and

the highest one could be h− 1 (all the competing algorithms are better). The lower the score

is, the better the algorithm is. The detail results of these problems are given in appendix for

brevity.

4.6.1 WFG1 Problem

The WFG1 problem has most transformation functions among the other problems of the same

suite. Hence, it is difficult to maintain diversity with sufficient convergence for this problem

and algorithms that stress over diversity will fail to achieve convergence. This problem uni-

modal, biased and the Pareto front is mixed (concave and convex). F -DEA exhibited the

best performance among all competing algorithms from 2-objective to 25-objective. PICEAg,

NSGAIII, SDE were the close competitors for a lower number of objectives. As the number

of objective increases, FD-NSGAII secured the second position and exhibited better results

compared to others.



CHAPTER 4. EXPERIMENTAL STUDIES 54

4.6.2 WFG2 Problem

This is the only disconnected problem in the WFG test suite. To achieve good performance, it

is necessary for an algorithm to distribute the obtained solutions in all the disconnected regions.

FD-NSGAII exhibited the worst performance on this problem with nine different objectives we

considered in this work. NSGAIII was the top performer in 2-objective, while PICEAg and

SDE were the top two performers from 3-objective to 25-objective. F -DEA secured overall the

third position and showed very competitive performance with respect to average HVs achieved

by the top performers.

4.6.3 WFG4 Problem

From WFG4 to WFG9, the Pareto front is part of a hyper-ellipse with radii Ri = 2 × i (

i = 1, 2, · · · ,m) and has a regular geometry [3, 44]. Although the Pareto fronts are same but

the problem nature and transformations are different from problem to problem. WFG4 is a

concave multi-modal problem. For a smaller number of objectives, SDE and PICEAg were

the two top performing algorithms while F -DEA showed competitive performance. F -DEA,

however, tied with SDE in 7-objective and outperformed all other competing algorithms from

10-objective to 25-objective. These results indicate that the performance of F -DEA improves

as the number of objectives increases.

4.6.4 WFG5 Problem

An important aspect of this problem is its deceptive nature, which challenges the ability of

an algorithm to find good quality solutions. F -DEA handled the challenge successfully and

outperformed all competing algorithms from 15-objective to 25-objective. From 7-objective

to 12-objective, F -DEA, SDE and PICEAg were top performers. Our algorithm also showed

competitive performance for 2-, 3- and 5-objective.
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4.6.5 WFG6 Problem

F -DEA was the top performer from 12-objective to 25-objective of the non-separable reduced

problem, WFG6. The proposed algorithm shared the top position with SDE and PICEAg for 2-

objective and with PICEAg for 10-objective. For other objectives, F -DEA showed competitive

performance with the top performers.

4.6.6 WFG7 Problem

This is a separable unimodal problem. Table shows F -DEA achieved better performance with

an increasing number of objectives. For example, it outperformed all other algorithms from

15-objective to 25-objective and showed competitive performance with SDE, PICEAg and

NSGAIII for a smaller number of objectives.

4.6.7 WFG8 Problem

SDE, PICEAg and F -DEA were the top performing algorithms with close average HV values for

this non-separable problem. SDE was the top performer for 2-, 3- and 20-objective, PICEAg for

5- and 10-objective, and F -DEA for 15- and 25-objective. F -DEA together with SDE became

the top performer for the 12-objective and it secured the second position for the 2-, 7-, 10 and

20-objective with relatively close average HV values.

4.6.8 WFG9 Problem

This is a non-separable deceptive problem for which NSGAIII and SDE were two top performers

for 2-, 3- and 5-objective. As the number objective increases, the performance of F -DEA

enhanced and shared the top position with SDE, PICEAg for the 7- and 10-objective. However,

F -DEA outperformed all other algorithms from 12-objective to 25-objective.
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Table 4.3: Part I: Average HV of different algorithms on WFG1, WFG2, WFG4 and WFG5 problems
over 20 independent runs. The best result based on the Wilcoxon rank sum test with a significance
level of 0.05 is marked in bold-face. The rank of a particular algorithm is shown in bracket.

Prob. m HYPE MOEA/D FD-NSGAII SDE NSGAIII PICEA-g F-DEA

wfg1 2 0.0970±0.0257(6) 0.1467±0.0264(5) 0.0495±0.0214(7) 0.2324±0.0434(4) 0.3333±0.0689(1.5) 0.3233±0.0037(3) 0.3438±0.0371(1.5)

3 0.2968±0.0248(7) 0.4042±0.0485(5) 0.3959±0.0226(5) 0.5614±0.0497(2.5) 0.4094±0.0396(5) 0.5689±0.0052(2.5) 0.6120±0.0413(1)

5 0.3515±0.0347(7) 0.5187±0.0246(5) 0.5979±0.0474(3) 0.5622±0.0232(4) 0.4065±0.0732(6) 0.7117±0.0114(2) 0.7516±0.0337(1)

7 0.4164±0.0279(7) 0.5985±0.0402(5) 0.8524±0.0531(2.5) 0.7058±0.0256(4) 0.4824±0.0275(6) 0.8429±0.0297(2.5) 0.9058±0.0560(1)

10 0.6005±0.0225(6) 0.8432±0.0692(5) 1.2047±0.0754(2) 0.9937±0.0418(4) 0.3671±0.0924(7) 1.0310±0.0307(3) 1.4206±0.0684(1)

12 0.6543±0.0292(6) 0.8989±0.0669(5) 1.3867±0.1012(2) 1.1189±0.0517(4) 0.2839±0.0633(7) 1.2233±0.0310(3) 1.6017±0.1296(1)

15 0.8732±0.0501(6) 1.2230±0.0545(5) 2.1247±0.1903(2) 1.6596±0.0671(3) 0.4128±0.1145(7) 1.5930±0.0473(4) 2.3314±0.1024(1)

20 1.2481±0.0439(6) 1.6443±0.1007(5) 3.4625±0.3626(1.5) 2.7029±0.1280(3) 0.3940±0.1587(7) 2.5527±0.0635(4) 3.5738±0.2874(1.5)

25 2.1095±0.1037(6) 2.4165±0.1568(5) 6.6621±0.3718(2) 2.8201±0.0539(4) 1.8261±0.2503(7) 4.0829±0.0980(3) 7.1479±0.4528(1)

wfg2 2 0.6806±0.0149(5.5) 0.6820±0.0183(5.5) 0.3459±0.0572(7) 0.7407±0.0054(2) 0.7452±0.0087(1) 0.7406±0.0091(3) 0.7363±0.0064(4)

3 0.9702±0.0767(5.5) 1.0575±0.0972(5.5) 0.3862±0.0656(7) 1.2207±0.0581(2) 1.1573±0.0929(3.5) 1.2450±0.0022(1) 1.2119±0.0418(3.5)

5 1.3316±0.1315(4.5) 1.3283±0.1175(6) 0.4409±0.0009(7) 1.5401±0.0840(2) 1.3872±0.1229(4.5) 1.5546±0.1049(1) 1.5277±0.0838(3)

7 1.6032±0.1593(5.5) 1.4962±0.1489(5.5) 0.5498±0.0678(7) 1.8686±0.1022(2) 1.6951±0.1574(4) 1.8875±0.1285(1) 1.8347±0.1241(3)

10 2.2659±0.1715(4.5) 2.1991±0.1021(6) 0.5655±0.2030(7) 2.5531±0.0064(2) 2.3060±0.0507(4.5) 2.5889±0.0018(1) 2.5280±0.0097(3)

12 2.6969±0.0885(4.5) 2.5541±0.1337(6) 0.6473±0.2821(7) 3.0745±0.0166(2) 2.6757±0.0975(4.5) 3.1266±0.0034(1) 3.0375±0.0228(3)

15 3.7255±0.1172(4) 3.5520±0.1362(5.5) 0.8039±0.3350(7) 4.1263±0.0084(2) 3.5388±0.0700(5.5) 4.1692±0.0022(1) 4.0798±0.0196(3)

20 5.7851±0.4480(4.5) 5.6843±0.2581(4.5) 1.2816±0.6254(7) 6.6467±0.0169(2) 4.0451±0.7806(6) 6.7064±0.0094(1) 6.5645±0.0299(3)

25 9.6551±0.3095(4.5) 9.1922±0.3394(6) 2.2394±0.9957(7) 10.6314±0.0470(2.5) 8.9972±1.8322(4.5) 10.8188±0.0074(1) 10.6293±0.0517(2.5)

wfg4 2 0.3946±0.0041(6) 0.4058±0.0044(5) 0.1278±0.0377(7) 0.4184±0.0010(1.5) 0.4182±0.0010(1.5) 0.4143±0.0014(4) 0.4172±0.0006(3)

3 0.6447±0.0203(6) 0.6697±0.0115(5) 0.1220±0.0053(7) 0.7501±0.0028(1) 0.7096±0.0038(4) 0.7432±0.0021(2) 0.7321±0.0024(3)

5 0.9151±0.0969(6) 1.0343±0.0251(5) 0.2472±0.0915(7) 1.2164±0.0083(2.5) 1.0503±0.0134(4) 1.2475±0.0262(1) 1.2220±0.0083(2.5)

7 1.1010±0.1397(6) 1.3328±0.0423(4) 0.3230±0.1273(7) 1.6016±0.0149(1.5) 1.3015±0.0559(4) 1.3295±0.0982(4) 1.6127±0.0221(1.5)

10 1.5518±0.1823(6) 2.0844±0.0399(4.5) 0.4548±0.1907(7) 2.3121±0.0292(2) 2.0664±0.0923(4.5) 2.1635±0.0753(3) 2.3892±0.0111(1)

12 1.6225±0.2620(6) 2.4331±0.1179(3) 0.4192±0.1924(7) 2.7870±0.0416(2) 1.9808±0.0874(5) 2.3082±0.1245(4) 2.8607±0.0273(1)

15 2.3364±0.3730(6) 3.4223±0.0955(3.5) 0.6341±0.2520(7) 3.7551±0.0348(2) 2.7353±0.1271(5) 3.3657±0.1431(3.5) 3.9442±0.0311(1)

20 3.6517±0.3742(6) 5.2892±0.1486(3.5) 0.7661±0.2789(7) 5.9939±0.2018(2) 4.0528±0.2925(5) 5.1166±0.3164(3.5) 6.3855±0.0460(1)

25 7.4075±0.6866(6) 8.8991±0.1289(3.5) 1.1546±0.1966(7) 9.4890±0.4354(2) 8.2805±0.4261(5) 8.7945±0.5704(3.5) 10.5396±0.0492(1)

wfg5 2 0.3243±0.0122(6) 0.3603±0.0068(5) 0.0861±0.0202(7) 0.3743±0.0005(1.5) 0.3740±0.0006(3.5) 0.3741±0.0009(1.5) 0.3737±0.0008(3.5)

3 0.5445±0.0262(6) 0.6056±0.0145(5) 0.1142±0.0305(7) 0.7010±0.0035(1) 0.6648±0.0056(4) 0.6966±0.0033(2) 0.6882±0.0022(3)

5 0.8947±0.0602(6) 0.9683±0.0248(5) 0.1278±0.0006(7) 1.1715±0.0074(3) 0.9993±0.0119(4) 1.1854±0.0038(1) 1.1800±0.0073(2)

7 1.0418±0.1275(6) 1.2624±0.0405(4.5) 0.1554±0.0003(7) 1.5562±0.0097(3) 1.2482±0.0517(4.5) 1.5814±0.0173(1.5) 1.5809±0.0085(1.5)

10 1.4758±0.1146(6) 1.9581±0.0466(4) 0.2064±0.0005(7) 2.2843±0.0079(2) 1.8706±0.0613(5) 2.1577±0.0755(3) 2.2964±0.0062(1)

12 1.6040±0.1641(6) 2.2598±0.0914(4) 0.2487±0.0005(7) 2.7525±0.0127(1.5) 2.0394±0.1186(5) 2.3688±0.0823(3) 2.7670±0.0236(1.5)

15 2.4435±0.1978(6) 3.2303±0.0904(4) 0.3316±0.0016(7) 3.6807±0.0185(2) 2.7944±0.1447(5) 3.3723±0.0774(3) 3.7649±0.0091(1)

20 3.6012±0.4559(6) 5.0711±0.2051(3.5) 0.5312±0.0011(7) 5.9066±0.0244(2) 4.5393±0.3738(5) 5.1737±0.1697(3.5) 6.0356±0.0172(1)

25 6.5479±0.7306(6) 8.3672±0.3236(4.5) 0.8543±0.0013(7) 8.6133±0.2848(4.5) 8.9789±0.2287(2.5) 8.8711±0.1808(2.5) 9.7850±0.0161(1)
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Table 4.4: Part II: Average HV of different algorithms on WFG6, WFG7, WFG8 and WFG9 problems
over 20 independent runs. The best result based on the Wilcoxon rank sum test with a significance
level of 0.05 is marked in bold-face. The rank of a particular algorithm is shown in bracket.

Prob. m HYPE MOEA/D FD-NSGAII SDE NSGAIII PICEA-g F-DEA

wfg6 2 0.2660±0.0187(6) 0.3587±0.0115(5) 0.0864±0.0027(7) 0.3845±0.0040(2) 0.3735±0.0127(4) 0.3836±0.0041(2) 0.3817±0.0045(2)

3 0.3448±0.0424(6) 0.6295±0.0123(5) 0.1070±0.0052(7) 0.7094±0.0039(1) 0.6736±0.0066(4) 0.7039±0.0069(2) 0.6874±0.0048(3)

5 0.5599±0.0876(6) 0.9626±0.0238(5) 0.1341±0.0026(7) 1.1874±0.0072(2) 1.0276±0.0183(4) 1.2105±0.0074(1) 1.1804±0.0129(3)

7 0.6954±0.1325(6) 1.2821±0.0561(4.5) 0.1632±0.0021(7) 1.6131±0.0125(2) 1.2492±0.0339(4.5) 1.6319±0.0137(1) 1.5948±0.0155(3)

10 1.2015±0.1278(6) 1.9249±0.0507(4) 0.2175±0.0022(7) 2.2412±0.0276(3) 1.8219±0.0262(5) 2.2302±0.0846(1.5) 2.2819±0.0258(1.5)

12 1.3825±0.1510(6) 2.1664±0.1233(4) 0.2638±0.0023(7) 2.6691±0.0246(2) 2.0114±0.1159(5) 2.5231±0.1406(3) 2.7368±0.0532(1)

15 2.1409±0.2052(6) 3.1680±0.1164(4) 0.3519±0.0029(7) 3.5523±0.0467(2.5) 2.7916±0.1132(5) 3.5061±0.1279(2.5) 3.7578±0.0354(1)

20 3.0136±0.4601(6) 4.7739±0.2878(4) 0.5655±0.0055(7) 5.5752±0.1867(2) 3.9772±0.5521(5) 5.3687±0.3096(3) 6.0223±0.0860(1)

25 5.6551±0.6803(6) 8.2901±0.2623(4) 0.9077±0.0050(7) 8.4299±0.4208(4) 8.5485±0.5225(4) 9.1704±0.3702(2) 9.8641±0.0942(1)

wfg7 2 0.3460±0.0130(6) 0.3829±0.0105(5) 0.1092±0.0007(7) 0.4204±0.0004(1) 0.4196±0.0007(2) 0.4188±0.0002(3.5) 0.4188±0.0005(3.5)

3 0.5615±0.0440(6) 0.6549±0.0211(5) 0.1209±0.0000(7) 0.7583±0.0010(1) 0.7360±0.0017(4) 0.7548±0.0010(2) 0.7449±0.0014(3)

5 0.8518±0.0860(6) 1.0421±0.0267(5) 0.1463±0.0000(7) 1.2677±0.0038(2) 1.0804±0.0163(4) 1.2840±0.0031(1) 1.2584±0.0045(3)

7 1.1269±0.0937(6) 1.2974±0.0650(5) 0.1771±0.0004(7) 1.7049±0.0086(1.5) 1.3397±0.0280(4) 1.6038±0.0907(3) 1.7000±0.0106(1.5)

10 1.3918±0.1735(6) 2.0242±0.0660(4.5) 0.2357±0.0000(7) 2.4482±0.0060(2) 2.0276±0.0773(4.5) 2.4141±0.0638(2) 2.4440±0.0099(2)

12 1.4725±0.2122(6) 2.1892±0.2464(4.5) 0.2851±0.0004(7) 2.9726±0.0110(1) 2.3038±0.1306(4.5) 2.6645±0.1339(3) 2.9359±0.0194(2)

15 2.2205±0.2748(6) 2.7870±0.3252(5) 0.3800±0.0008(7) 3.9866±0.0159(2) 3.2219±0.1321(4) 3.7738±0.1628(3) 4.0371±0.0115(1)

20 3.6111±0.3759(6) 4.2830±0.3362(5) 0.6168±0.0177(7) 6.4104±0.0543(2) 4.8939±0.4791(4) 5.8699±0.1624(3) 6.5277±0.0246(1)

25 6.4233±1.0674(6) 7.5748±0.4440(5) 0.9969±0.0541(7) 10.2048±0.2123(2.5) 9.4596±0.4048(4) 10.1284±0.3726(2.5) 10.6904±0.0235(1)

wfg8 2 0.2809±0.0075(6) 0.3027±0.0064(4.5) 0.0076±0.0230(7) 0.3299±0.0017(1) 0.3009±0.0015(4.5) 0.3221±0.0024(3) 0.3243±0.0016(2)

3 0.4898±0.0258(6) 0.5556±0.0176(5) 0.1204±0.0004(7) 0.6538±0.0024(1) 0.6176±0.0046(4) 0.6422±0.0030(2) 0.6304±0.0031(3)

5 0.7401±0.0472(6) 0.7954±0.0399(5) 0.1461±0.0001(7) 1.0653±0.0072(2) 0.9567±0.0099(4) 1.0781±0.0072(1) 1.0411±0.0074(3)

7 0.9667±0.0709(5.5) 0.9092±0.1073(5.5) 0.1769±0.0000(7) 1.4248±0.0154(2) 1.2062±0.0381(4) 1.4170±0.0538(2) 1.4186±0.0123(2)

10 1.1224±0.0912(6) 1.5561±0.1768(5) 0.2354±0.0005(7) 2.1759±0.0216(2.5) 1.8744±0.0598(4) 2.1823±0.0500(1) 2.1766±0.0124(2.5)

12 1.3276±0.1107(6) 1.9617±0.2471(4.5) 0.2849±0.0004(7) 2.6802±0.0418(1.5) 2.0247±0.1341(4.5) 2.5040±0.1345(3) 2.6891±0.0191(1.5)

15 1.9463±0.1602(6) 2.9531±0.3379(4) 0.3793±0.0007(7) 3.6871±0.0869(2) 2.8278±0.1333(5) 3.5647±0.0864(3) 3.7733±0.0353(1)

20 2.9824±0.3292(6) 5.1240±0.3526(4) 0.6108±0.0013(7) 6.2214±0.0311(1) 4.1653±0.2093(5) 5.7492±0.2372(3) 6.1634±0.0429(2)

25 5.5585±0.6066(6) 8.9032±0.2442(4.5) 1.0571±0.3308(7) 10.2317±0.0798(2) 9.1665±0.4875(4.5) 9.7334±0.1773(3) 10.3434±0.0374(1)

wfg9 2 0.3037±0.0237(6) 0.3564±0.0169(3.5) 0.1030±0.0271(7) 0.3835±0.0330(1.5) 0.4055±0.0039(1.5) 0.3493±0.0231(5) 0.3758±0.0335(3.5)

3 0.4596±0.0595(6) 0.6116±0.0240(5) 0.0919±0.0000(7) 0.6848±0.0383(1.5) 0.6743±0.0251(1.5) 0.6370±0.0023(4) 0.6669±0.0339(3)

5 0.7079±0.0664(6) 0.9108±0.0357(5) 0.1165±0.0000(7) 1.0942±0.0492(2) 1.0267±0.0549(2) 1.0618±0.0028(2) 1.0627±0.0219(4)

7 0.9327±0.0564(6) 1.0914±0.0761(5) 0.1431±0.0001(7) 1.4376±0.0731(2) 1.2560±0.1225(4) 1.3869±0.0063(2) 1.3916±0.0126(2)

10 1.4499±0.1661(6) 1.7477±0.1010(4.5) 0.1892±0.0001(7) 1.9608±0.1248(3) 1.7120±0.1009(4.5) 2.1912±0.0919(1.5) 2.2331±0.0414(1.5)

12 1.5584±0.1890(6) 1.8958±0.1707(4.5) 0.2287±0.0000(7) 2.2009±0.1204(3) 2.0178±0.1406(4.5) 2.3813±0.1246(2) 2.6000±0.0902(1)

15 2.5248±0.1976(5.5) 2.6371±0.2223(5.5) 0.3067±0.0123(7) 2.9727±0.1766(3.5) 2.9336±0.1684(3.5) 3.4368±0.1596(2) 3.6800±0.1132(1)

20 3.9541±0.3817(5) 3.9678±0.4635(6) 0.5114±0.0422(7) 4.2424±0.2701(3.5) 4.4592±0.4513(3.5) 5.1012±0.3868(2) 5.8761±0.2987(1)

25 6.9389±0.4429(5) 6.8244±0.4366(5) 0.8860±0.0942(7) 6.7878±0.3133(5) 8.9492±0.7306(2.5) 8.9584±0.5207(2.5) 9.8070±0.4047(1)
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Table 4.5 summarizes the obtained results of different algorithms with respect to the number

of objectives. We count the number of times F -DEA is better, worse or equal than any

competing algorithm based on the Wilcoxon rank-sum test. For better understanding, we

present the results into three groups: 2-objective to 3-objective, 5-objective to 7-objective and

10-objective to 25-objective. For 2-objective and 3-objective, F -DEA was outperformed by

SDE and PICEAg, but it was found better than MOEA/D, HypE, FD-NSGAII and NSGAIII.

SDE and PICEAg were also the top performing algorithms for 5-objective to 7-objective, while

F -DEA secured the overall third position and outperformed others. This scenario is totally

different for a higher number of objectives i.e., 10-objective to 25-objective for which F -DEA

was found better than all competing algorithms.

Table 4.5: Summary of HV performance of competing algorithms for eight WFG problems. Here B,
E AND W indicate the number of times F -DEA was found better, equal and worse compared to a
particular algorithm.

WFG HV Performance on 2- and 3- objective

F-DEA vs HypE MOEA/D FD-NSGAII SDE NSGAIII PICEA-g

B 16 15 16 2 8 5

E 0 1 0 1 3 4

W 0 0 0 13 5 7

HV Performance on 5- and 7- objective

B 16 16 15 4 15 4

E 0 0 0 5 0 3

W 0 0 1 7 1 9

HV Performance on 10-, 12-, 15-, 20- and 25-objective

B 40 40 35 29 40 31

E 0 0 2 4 0 3

W 0 0 3 7 0 6

We use the non-dominated solutions obtained in the final generation for obtaining plots. In

terms of HV, the solutions were taken from the 10th run of the sorted 20 independent runs. For

brevity, we consider the WFG9 problem with 3- and 15-objective for attainment surface plots

and parallel coordinate plots, respectively. Note that the deceptive, biased, non-separable, and
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multi-modal nature make WFG9 a very difficult problem.

To visualize the achieved convergence and diversity more clearly, the obtained non-dominated

solutions of a particular algorithm are divided into two categories: converged and non-converged.

The solutions that are at most d-distance apart from the normalized surface are considered as

converged and remaining are considered as non-converged.

Figure 4.1 shows the attainment surfaces of five different algorithms on the WFG9 problem

with 3-objective. We here call an obtained non-dominated solution as the converged one if

it is at most d = 0.03 distance apart from the points of normalized Pareto surface. Other-

wise, it is called as the non-converged solution. It can be seen from Fig. 4.1(a) that both

the converged solutions (red colored diamond points) and the non-converged ones (gray col-

ored circle points) of F -DEA’s are almost uniformly distributed in the entire Pareto surface.

Although the obtained solutions of NSGAIII are evenly distributed, but a few of them con-

verges (Fig. 4.1(b)). One reason is that while F -DEA employ reference point for constructing

diverse clusters, NSGAIII uses the reference point directly for maintaining diversity among the

solutions. However, some experimental observations [23, 49, 53] have indicated that favoring

too much diversity has the potential detrimental effect on the convergence of EMO algorithms

for MaOPs. For SDE, most of the obtained solutions were converged (Fig. 4.1(f)), but they

were not evenly diverse like those of NSGAIII and F -DEA. PICEAg maintained good diver-

sity without convergence (Fig. 4.1(g)). It is evident from Fig. 4.1(d) that the solutions of

FD-NSGAII, whether they converged or non-converged, cover only a very small portion of the

normalized Pareto surface.

The situation, however, changes as the number of objectives increases. For example, Fig. 4.2

shows the parallel coordinate plots of the five algorithms for the WFG9 problem with 15-

objective. In terms of the number of converged solutions, FD-NSGAII 4.2(d), F -DEA 4.2(a)

and PICEAg 4.2(g) secured the first, second and third positions, respectively. However, only

F -DEA was able to maintain good diversity which could be attributed to the variations in the

objective values of the solutions. While FD-NSGAII failed miserably to maintain diversity,
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PICEAg was able to maintain diversity moderately. Although most of the solutions from SDE

(Fig. 4.2(f)), NSGAIII (Fig. 4.2(b)) were not converged but they maintained better diversity

than FD-NSGAII and PICEAg. The bottom figures of five competing algorithms show the

zoomed version of all the obtained non-dominated solutions. It is clear from these figures that

F -DEA is better in terms of simultaneous minimization of all the objectives while maintaining

diversity.

(a) F -DEA (b) NSGAIII (c) MOEA/D

(d) FD-NSGAII (e) HypE (f) SDE

(g) PICEAg

Figure 4.1: Attainment surface of different algorithms for the WFG9 problem with 3-objective. For
better visualization, the obtained non-dominated solutions are categorized into converged (red dia-
mond points) and non-converged (gray circle points) based on threshold distance 0.03 from the points
in the normalized Pareto surface to the normalized solution value.
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(b) NSGAIII
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(c) MOEA/D
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(d) FD-NSGAII
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(e) HypE
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(f) SDE
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(g) PICEAg

Figure 4.2: Parallel coordinate plot of different algorithms for the WFG9 problem with 15-objective.
Here the non-dominated solutions are separated into two categories based on a threshold distance
value from the normalized Pareto front. The solutions with a distance less than or equal to 0.025 is
regarded as converged solutions (top figure, red colored), while the other ones are regarded as non-
converged solutions (middle figure, blue colored). Also, to observe the simultaneous minimization of
different objectives, the bottom figure shows closer inspection of all the solutions.
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4.7 Experiments on DTLZ Problems

We apply F -DEA and other competing algorithms on five DTLZ problems, DTLZ1, DTLZ2,

DTLZ3, DTLZ4 and DTLZ7. We use HV and IGD for comparison. But as DTLZ7 is a

disconnected problem, it is difficult to get the reliable estimation of IGD value for this case.

Hence, we did not employ IGD for DTLZ7.

Tables 4.6 and 4.7 show the performances of different algorithms on DTLZ problems in

terms of HV and IGD, respectively.

4.7.1 DTLZ1 Problem

Although DTLZ1 has a simple linear Pareto Front (
∑m

i=1 fi = 0.5), a large number of local

optima (= 115 − 1) makes it difficult for an algorithm to converge into the hyper-plane. In

terms of average HV and IGD, NSGAIII was better than all other competing algorithms for

a smaller number of objectives. F -DEA, MOEA/D, PICEAg, SDE were able to solve this

problem with competitive performance. F -DEA, however, outperformed others as the number

of objectives increased. For example, in terms of HV, F -DEA was found better than all

competing algorithms from 10-objective to 25-objective. In terms of IGD, it beat all others in

7-, 10-, 15- and 20-objective and secured the second position after SDE in 12- and 25-objective.

4.7.2 DTLZ2 Problem

This is relatively an easy problem with concave geometrical shape (
∑m

i=1 f
2
i = 1). All of the

competing algorithms were able to solve it. In terms of IGD, NSGAIII was the top performer

from 2-objective to 7-objective. SDE secured the top position based on HV for all but 2-

objective. It also secured the top position in terms of IGD obtained for 10-objective to 25-

objective. The performances of F -DEA were close to the top performers both with respect to
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IGD and HV. In terms of IGD for the 10-objective to 25-objective, the proposed algorithm

secured the second position after SDE.

4.7.3 DTLZ3 Problem

This problem has the same shape as DTLZ2 but it has a large number of local Pareto fronts

parallel to the global one.

This problem has concave geometrical shape (
∑m

i=1 f
2
i = 1) with a large number of local

Pareto fronts parallel to the global one. This property makes it a very challenging problem.

SDE and MOEA/D were top performers on this problem. Not all but F -DEA, SDE, MOEA/D,

and PICEAg were able to solve this problem for a larger number of objectives, which could

be seen by their non-zero HV values. In terms of HV and IGD, F -DEA was one of the best

performers in 3-objective and secured the second position after SDE for the 25-objective. It

shared the second position with MOEA/D in many cases while compared with respect to HV

and for a larger number of objectives. MOEA/D, however, outperformed F -DEA in terms of

IGD values, which caused F -DEA to achieve overall the third position.

4.7.4 DTLZ4 Problem

Although DTLZ4 has same geometrical shape as DTLZ2 and DTLZ3, it challenges the ability

of an algorithm to maintain diversity in the objective space by introducing variable density of

solutions along the Pareto front. The IGD values showed that F -DEA secured the first position

in the 20-objective and the second position in rest of the objectives. NSGAIII showed the best

performance for a smaller number of objectives and SDE for a larger ones. In terms of HV,

F -DEA secured the third position after SDE and NSGAIII.
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4.7.5 DTLZ7 Problem

This problem has disconnected regions which make it interesting and challenging. In terms

of HV, F -DEA exhibited superior performance for a larger number of objectives while SDE

showed superior performance for a smaller ones (Table 4.6). For example, SDE and MOEA/D

jointly secured the first position for 2-objective and the former one independently secured the

first position from the 3-objective to 7-objective. NSGAIII obtained the second position for 3-

objective and F -DEA secured the second position for 5-objective and 7-objective. For a larger

number of objectives (from 10-objective to 25-objective), F -DEA was the best and PICEAg

was next to it. Most of the algorithms did not able to converge within the reference point

bound which constituted their small HV values for a larger number of objectives.

Tables 4.8 and 4.9, respectively, show the number of times F -DEA is found better, worse

or equal than any competing algorithm based on the Wilcoxon rank-sum test applied on the

HV and IGD values of the DTLZ problems. In terms of HV and IGD, the three algorithms

SDE, NSGAIII, PICEAg and F -DEA showed a very similar performance for a smaller number

of objectives, 2-objective to 7-objective. However, for higher number of objectives F -DEA

outperforms others in DTLZ1, DTLZ7 problems and shows competitive performance with

SDE and MOEA/D at DTLZ3 problem.

Fig. 4.3 shows the parallel coordinate plot of the competing algorithms for the DTLZ7

problem with 10-objective. The upper bound of the last objective for this problem is 2 ×m

or f10 ≤ 20. It can be seen from the figure that F -DEA was able to maintain diversity and

convergence together within the Pareto optimal front. SDE (Fig. 4.3(f)) maintained diversity

and convergence well but F -DEA outperforms SDE by having more objective value variation

in the first 9 objectives. PICEAg (Fig. 4.3(g)) converged in the first nine objective but few

solutions converge on 10-th objective. Similarly, NSGAIII (Fig. 4.3(b)) also converges in the

first 9 objectives but only few converges in the 10-th objective. FD-NSGAII (Fig. 4.3(d))

converged solutions into a region as expected.
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Table 4.6: Average HV of different algorithms on DTLZ1, DTLZ3 and DTLZ7 problems over 20
independent runs. The best result based on the Wilcoxon rank sum test with a significance level of
0.05 is marked in bold-face. The rank of a particular algorithm is shown in bracket.

Prob. m HYPE MOEA/D FD-NSGAII SDE NSGAIII PICEA-g F-DEA

dtlz1 2 0.6596±0.0422(6) 0.7069±0.0005(2) 0.0000±0.0000(7) 0.7066±0.0002(2) 0.7063±0.0012(2) 0.7061±0.0005(4.5) 0.7063±0.0002(4.5)

3 0.6849±0.5932(6) 1.0884±0.0088(5) 0.0000±0.0000(7) 1.1261±0.0023(3.5) 1.1246±0.0277(1.5) 1.1313±0.0045(1.5) 1.1249±0.0020(3.5)

5 0.0067±0.0116(6) 1.5142±0.0098(5) 0.0000±0.0000(7) 1.5481±0.0046(4) 1.5707±0.0076(1) 1.5297±0.0459(2.5) 1.5582±0.0030(2.5)

7 0.6145±0.7117(6) 1.8803±0.0094(4) 0.0000±0.0000(7) 1.9108±0.0031(3) 1.9095±0.1091(1) 1.7799±0.0819(5) 1.9272±0.0026(2)

10 0.6077±1.0526(6) 2.4924±0.0229(3) 0.0090±0.0331(7) 2.5591±0.0044(2) 1.7479±0.9172(4.5) 2.2692±0.3215(4.5) 2.5829±0.0024(1)

12 0.0141±0.0231(6) 2.9727±0.0335(3) 0.0306±0.1175(7) 3.0855±0.0093(2) 1.8917±1.1930(4.5) 2.5134±0.6594(4.5) 3.1253±0.0034(1)

15 0.7807±0.6792(6) 4.0354±0.0273(3) 0.0152±0.0680(7) 4.1336±0.0064(2) 3.8412±0.3188(4.5) 3.4812±1.0382(4.5) 4.1680±0.0021(1)

20 0.0000±0.0000(6.5) 6.4428±0.0967(3) 0.1024±0.2214(6.5) 6.6532±0.0101(2) 3.2618±2.7249(4.5) 5.1065±2.0933(4.5) 6.7005±0.0072(1)

25 0.3519±0.6122(5.5) 0.0000±0.0000(7) 0.2169±0.3563(5.5) 10.7567±0.0128(2) 6.9000±4.0868(4) 10.3842±0.3817(3) 10.8130±0.0069(1)

dtlz2 2 0.3953±0.0042(6) 0.4223±0.0000(1) 0.1099±0.0000(7) 0.4222±0.0000(2.5) 0.4222±0.0001(2.5) 0.4210±0.0002(5) 0.4217±0.0001(4)

3 0.6160±0.0487(6) 0.7172±0.0085(5) 0.1209±0.0000(7) 0.7646±0.0007(1) 0.7638±0.0006(2) 0.7600±0.0007(3) 0.7569±0.0012(4)

5 0.9862±0.0894(6) 1.1694±0.0120(5) 0.1463±0.0000(7) 1.3040±0.0028(1) 1.2995±0.0007(2) 1.2975±0.0021(3) 1.2847±0.0026(4)

7 1.1859±0.0833(6) 1.6068±0.0124(5) 0.1770±0.0000(7) 1.7729±0.0024(1) 1.7193±0.1551(3) 1.7582±0.0069(2) 1.7469±0.0045(4)

10 1.5584±0.0502(6) 2.3023±0.0203(4) 0.2357±0.0000(7) 2.5098±0.0017(1) 1.8555±0.2055(5) 2.4646±0.0380(2.5) 2.4854±0.0059(2.5)

12 1.5474±0.1067(6) 2.6923±0.0658(3.5) 0.2852±0.0000(7) 3.0618±0.0032(1) 2.1792±0.2725(5) 2.7169±0.1602(3.5) 3.0037±0.0180(2)

15 2.0251±0.2760(6) 3.7780±0.0643(4) 0.3796±0.0000(7) 4.1362±0.0030(1) 3.1109±0.2047(5) 3.8769±0.1392(3) 4.1171±0.0083(2)

20 2.7181±0.9549(6) 5.9789±0.1165(3.5) 0.6114±0.0000(7) 6.7068±0.0018(1) 5.2380±0.5474(5) 5.9443±0.2673(3.5) 6.6499±0.0300(2)

25 5.8982±0.5908(6) 9.6726±0.0691(4) 0.9846±0.0001(7) 10.8225±0.0023(1) 8.9515±0.9008(5) 10.4096±0.3050(3) 10.8131±0.0059(2)

dtlz3 2 0.0830±0.1437(5.5) 0.4139±0.0068(1.5) 0.0000±0.0000(7) 0.4104±0.0096(1.5) 0.3796±0.0911(4) 0.1540±0.1810(5.5) 0.4041±0.0120(3)

3 0.1338±0.2317(5.5) 0.6931±0.0150(3) 0.0000±0.0000(7) 0.4101±0.2904(4) 0.1595±0.2052(5.5) 0.4626±0.3281(1.5) 0.7261±0.0130(1.5)

5 0.0000±0.0000(6.5) 1.1638±0.0221(2) 0.0000±0.0000(6.5) 1.2779±0.0197(1) 0.0673±0.1730(4.5) 0.6202±0.4698(3) 0.1174±0.2130(4.5)

7 0.0000±0.0000(6) 1.4667±0.3553(2) 0.0000±0.0000(6) 1.7475±0.0093(1) 0.1311±0.3230(6) 0.5283±0.6051(3.5) 0.8720±0.7061(3.5)

10 0.0000±0.0000(6) 1.9846±0.4769(2.5) 0.0000±0.0000(6) 2.4098±0.2289(1) 0.0000±0.0000(6) 0.6794±0.7619(4) 1.7546±0.9708(2.5)

12 0.0000±0.0000(5.5) 1.6366±1.0472(2.5) 0.0000±0.0000(5.5) 2.5020±1.0833(1) 0.0000±0.0000(5.5) 0.1847±0.5736(5.5) 1.3304±1.3433(2.5)

15 0.0000±0.0000(6) 3.4835±0.0759(2.5) 0.0000±0.0000(6) 4.0894±0.0245(1) 0.0000±0.0000(6) 0.9834±1.3996(4) 2.2773±1.8582(2.5)

20 0.0000±0.0000(6) 4.6077±1.7082(2) 0.0000±0.0000(6) 6.5836±0.0571(1) 0.0000±0.0000(6) 1.3989±2.1580(3.5) 1.5242±2.5204(3.5)

25 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 10.7668±0.0279(1) 0.0000±0.0000(5.5) 5.5089±3.6702(2.5) 3.9419±4.2086(2.5)

dtlz4 2 0.2107±0.1745(6) 0.3911±0.0961(1) 0.1099±0.0000(7) 0.4222±0.0000(3) 0.4223±0.0000(2) 0.4212±0.0001(5) 0.4217±0.0001(4)

3 0.5398±0.1510(6) 0.6848±0.0957(5) 0.1209±0.0000(7) 0.7501±0.0672(1) 0.7219±0.1024(2) 0.7591±0.0007(3) 0.7573±0.0009(4)

5 0.9247±0.1222(6) 1.1728±0.0561(5) 0.1463±0.0000(7) 1.3001±0.0329(1) 1.3031±0.0010(2) 1.2928±0.0035(3) 1.2889±0.0019(4)

7 1.0358±0.3297(6) 1.6415±0.0852(5) 0.1770±0.0000(7) 1.7707±0.0036(1) 1.7616±0.0051(2) 1.7483±0.0167(3.5) 1.7540±0.0025(3.5)

10 1.2239±0.0970(6) 2.4014±0.0554(5) 0.2356±0.0000(7) 2.5058±0.0029(1) 2.4908±0.0366(2) 2.4802±0.0111(4) 2.4951±0.0023(3)

12 0.5542±0.5997(6) 2.8696±0.0733(5) 0.2850±0.0001(7) 3.0586±0.0060(1) 2.9287±0.1026(4) 2.9963±0.0209(3) 3.0480±0.0044(2)

15 0.9156±0.3491(6) 4.0652±0.0213(4.5) 0.3793±0.0002(7) 4.1406±0.0020(1.5) 4.0400±0.1085(4.5) 4.1160±0.0078(3) 4.1402±0.0019(1.5)

20 0.5678±0.2077(7) 6.6212±0.0255(5) 0.6630±0.1608(6) 6.7076±0.0020(1) 6.6739±0.0408(3.5) 6.6902±0.0047(3.5) 6.7038±0.0034(2)

25 1.1185±0.7458(6.5) 10.7742±0.0087(5) 1.1514±0.3481(6.5) 10.8284±0.0006(1.5) 10.8250±0.0153(1.5) 10.8247±0.0013(4) 10.8277±0.0013(3)

dtlz7 2 0.3190±0.0101(6) 0.3337±0.0000(1.5) 0.1133±0.0143(7) 0.3337±0.0000(1.5) 0.3337±0.0000(3) 0.3165±0.0372(5) 0.3334±0.0001(4)

3 0.3753±0.0141(6) 0.4103±0.0070(5) 0.1207±0.0001(7) 0.4351±0.0008(1) 0.4327±0.0006(2) 0.4033±0.0560(3.5) 0.4281±0.0015(3.5)

5 0.4074±0.0018(5) 0.3423±0.0376(6) 0.1436±0.0003(7) 0.5248±0.0036(1) 0.4318±0.0241(3.5) 0.4079±0.0494(3.5) 0.4834±0.0038(2)

7 0.3774±0.0159(3) 0.2361±0.0553(6) 0.1535±0.0030(7) 0.5093±0.0074(1) 0.3231±0.0322(5) 0.3547±0.0204(4) 0.4822±0.0061(2)

10 0.2845±0.0445(3.5) 0.0345±0.0243(7) 0.1649±0.0014(5) 0.3119±0.0479(3.5) 0.0848±0.0555(6) 0.3405±0.0253(2) 0.4563±0.0149(1)

12 0.2441±0.0042(2.5) 0.0052±0.0063(6) 0.1735±0.0048(4.5) 0.1591±0.0329(4.5) 0.0010±0.0023(7) 0.2522±0.0418(2.5) 0.5079±0.0507(1)

15 0.2748±0.0394(3) 0.0002±0.0003(6) 0.1636±0.0012(4) 0.0283±0.0099(5) 0.0001±0.0005(7) 0.3346±0.0274(2) 0.3831±0.0245(1)

20 0.1714±0.0362(2) 0.0000±0.0000(6.5) 0.0834±0.0066(3.5) 0.0086±0.0125(5) 0.0000±0.0000(6.5) 0.0889±0.0836(3.5) 0.3275±0.0571(1)

25 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 0.0000±0.0000(5.5) 0.0005±0.0005(3) 0.0000±0.0000(5.5) 0.1203±0.0984(2) 0.1932±0.0399(1)
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Table 4.7: Average IGD of different algorithms on DTLZ1 and DTLZ3 problems over 20 independent
runs. The best result based on the Wilcoxon rank sum test with a significance level of 0.05 is marked
in bold-face. The rank of a particular algorithm is shown in bracket.

Prob. m HYPE MOEA/D FD-NSGAII SDE NSGAIII PICEA-g F-DEA

dtlz1 2 0.0016±0.0010(6) 0.0000±0.0000(2) 0.3873±0.1489(7) 0.0000±0.0000(3) 0.0000±0.0000(1) 0.0000±0.0000(4) 0.0001±0.0000(5)

3 0.0117±0.0164(6) 0.0021±0.0001(5) 0.5881±0.2721(7) 0.0011±0.0000(1) 0.0009±0.0011(4) 0.0011±0.0002(2) 0.0012±0.0001(3)

5 0.0512±0.0312(6) 0.0052±0.0000(4) 0.3606±0.1076(7) 0.0041±0.0000(2) 0.0020±0.0013(1) 0.0076±0.0033(5) 0.0042±0.0001(3)

7 0.0592±0.0444(6) 0.0077±0.0001(4) 0.2067±0.0495(7) 0.0067±0.0001(2.5) 0.0040±0.0044(2.5) 0.0182±0.0020(5) 0.0063±0.0001(1)

10 0.0631±0.0359(6) 0.0116±0.0007(3) 0.0821±0.0310(7) 0.0092±0.0001(2) 0.0254±0.0083(5) 0.0226±0.0021(4) 0.0083±0.0002(1)

12 0.1058±0.0682(7) 0.0152±0.0007(3) 0.1077±0.0509(6) 0.0113±0.0002(1) 0.0335±0.0125(4) 0.0301±0.0106(5) 0.0116±0.0004(2)

15 0.0929±0.0674(7) 0.0132±0.0010(3) 0.0775±0.0366(6) 0.0095±0.0002(2) 0.0202±0.0016(4) 0.0235±0.0058(5) 0.0094±0.0002(1)

20 0.1201±0.0407(7) 0.0204±0.0006(3) 0.0728±0.0335(6) 0.0155±0.0003(2) 0.0370±0.0128(5) 0.0320±0.0110(4) 0.0141±0.0009(1)

25 0.0165±0.0093(6) 0.1045±0.0217(7) 0.0150±0.0049(5) 0.0033±0.0000(1) 0.0077±0.0029(4) 0.0060±0.0003(3) 0.0036±0.0002(2)

dtlz2 2 0.0032±0.0017(6) 0.0001±0.0000(2) 0.0611±0.0000(7) 0.0006±0.0001(5) 0.0000±0.0000(1) 0.0002±0.0000(4) 0.0002±0.0000(3)

3 0.0153±0.0024(6) 0.0054±0.0003(5) 0.0744±0.0000(7) 0.0046±0.0001(4) 0.0002±0.0001(1) 0.0028±0.0000(2) 0.0031±0.0000(3)

5 0.0250±0.0016(6) 0.0152±0.0002(5) 0.0808±0.0000(7) 0.0127±0.0002(4) 0.0008±0.0001(1) 0.0111±0.0002(2) 0.0115±0.0002(3)

7 0.0350±0.0042(6) 0.0230±0.0002(5) 0.0858±0.0000(7) 0.0165±0.0004(2) 0.0046±0.0132(3.5) 0.0153±0.0010(1) 0.0175±0.0005(3.5)

10 0.0501±0.0045(6) 0.0298±0.0004(4) 0.0876±0.0000(7) 0.0197±0.0005(1) 0.0583±0.0136(5) 0.0241±0.0072(3) 0.0223±0.0006(2)

12 0.0688±0.0056(6) 0.0399±0.0037(3) 0.1044±0.0000(7) 0.0242±0.0015(1) 0.0759±0.0166(5) 0.0642±0.0088(4) 0.0305±0.0016(2)

15 0.0622±0.0029(5) 0.0359±0.0030(3) 0.0854±0.0000(7) 0.0198±0.0013(1) 0.0668±0.0030(6) 0.0534±0.0061(4) 0.0250±0.0009(2)

20 0.0755±0.0024(6) 0.0528±0.0031(3) 0.0941±0.0000(7) 0.0202±0.0016(1) 0.0752±0.0074(5) 0.0729±0.0037(4) 0.0306±0.0035(2)

25 0.0197±0.0004(6) 0.0151±0.0003(3) 0.0239±0.0000(7) 0.0094±0.0000(1) 0.0191±0.0015(5) 0.0170±0.0013(4) 0.0102±0.0002(2)

dtlz3 2 0.0435±0.0396(5) 0.0004±0.0003(1) 1.6814±0.7393(7) 0.0008±0.0003(2) 0.0039±0.0122(4) 0.0586±0.0755(6) 0.0008±0.0005(3)

3 0.1586±0.1130(6) 0.0056±0.0004(2) 1.1440±0.4942(7) 0.0271±0.0269(3) 0.0493±0.0292(4) 0.0317±0.0395(5) 0.0037±0.0003(1)

5 0.6058±0.2773(6) 0.0150±0.0004(2) 0.9245±0.2767(7) 0.0130±0.0005(1) 0.1037±0.0649(5) 0.0608±0.0397(3) 0.0904±0.0624(4)

7 0.9081±0.3801(7) 0.0272±0.0120(2) 0.8025±0.2808(6) 0.0173±0.0006(1) 0.1592±0.1150(5) 0.1012±0.0586(4) 0.0528±0.0418(3)

10 0.9161±0.2690(7) 0.0404±0.0119(2) 0.6995±0.2610(5) 0.0245±0.0048(1) 0.6902±0.3276(6) 0.1096±0.0593(4) 0.0396±0.0246(3)

12 1.3816±0.4275(6) 0.0786±0.0540(2) 1.1271±0.4369(5) 0.0494±0.0359(1) 1.0651±0.6395(7) 0.2625±0.1429(4) 0.1004±0.0884(3)

15 0.8515±0.3101(6) 0.0469±0.0046(2) 0.5108±0.1996(5) 0.0289±0.0031(1) 0.9245±0.4516(7) 0.1055±0.0299(4) 0.0510±0.0317(3)

20 1.2758±0.4770(6) 0.0761±0.0293(2) 0.6600±0.2519(5) 0.0374±0.0033(1) 1.4316±0.4919(7) 0.1644±0.0839(4) 0.1337±0.0769(3)

25 2.8646±0.7739(6) 3.0273±0.3555(7) 0.1204±0.0454(4) 0.0107±0.0010(1) 0.3112±0.0964(5) 0.0249±0.0084(3) 0.0230±0.0098(2)

dtlz4 2 0.0162±0.0266(6) 0.0062±0.0188(5) 0.0612±0.0000(7) 0.0006±0.0001(4) 0.0000±0.0000(1) 0.0002±0.0000(3) 0.0002±0.0000(2)

3 0.0383±0.0204(6) 0.0118±0.0160(5) 0.0746±0.0000(7) 0.0068±0.0099(4) 0.0065±0.0158(3) 0.0029±0.0000(1) 0.0031±0.0000(2)

5 0.0475±0.0080(6) 0.0193±0.0087(5) 0.0809±0.0000(7) 0.0140±0.0050(4) 0.0010±0.0002(1) 0.0113±0.0002(3) 0.0112±0.0002(2)

7 0.0561±0.0093(6) 0.0251±0.0077(5) 0.0858±0.0000(7) 0.0180±0.0004(3) 0.0019±0.0009(1) 0.0173±0.0033(4) 0.0178±0.0003(2)

10 0.0579±0.0057(6) 0.0310±0.0046(5) 0.0876±0.0000(7) 0.0225±0.0007(3) 0.0036±0.0071(1) 0.0216±0.0028(4) 0.0225±0.0005(2)

12 0.0808±0.0023(6) 0.0457±0.0069(5) 0.1044±0.0000(7) 0.0248±0.0025(1) 0.0328±0.0156(4) 0.0368±0.0042(3) 0.0269±0.0008(2)

15 0.0652±0.0026(6) 0.0327±0.0025(5) 0.0854±0.0000(7) 0.0203±0.0009(1) 0.0279±0.0109(4) 0.0271±0.0021(3) 0.0224±0.0005(2)

20 0.0804±0.0048(6) 0.0420±0.0021(5) 0.0938±0.0010(7) 0.0281±0.0013(2) 0.0299±0.0126(3) 0.0327±0.0015(4) 0.0247±0.0019(1)

25 0.0203±0.0009(6) 0.0117±0.0001(5) 0.0237±0.0003(7) 0.0097±0.0000(1) 0.0100±0.0005(4) 0.0104±0.0001(3) 0.0102±0.0001(2)
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Table 4.8: Summary of HV performance of competing algorithms for DTLZ1, DTLZ3 and DTLZ7
problems. Here B, E AND W indicate the number of times F -DEA was found better compared to a
particular algorithm.

DTLZ HV Performance on 2- and 3- objective

F-DEA vs HypE MOEA/D FD-NSGAII SDE NSGAIII PICEA-g

B 10 5 10 1 2 4

E 0 0 0 1 0 3

W 0 5 0 8 8 3

HV Performance on 5- and 7- objective

B 10 8 10 2 3 3

E 0 0 0 0 1 3

W 0 2 0 8 6 4

HV Performance on 10-, 12-, 15-, 20- and 25-objective

B 25 21 25 10 23 22

E 0 3 0 1 0 3

W 0 1 0 14 2 0

Table 4.9: Summary of IGD performance of competing algorithms for four DTLZ problems. Here B,
E AND W indicate the number of times F -DEA was found better compared to a particular algorithm.

DTLZ IGD Performance on 2- and 3- objective

F-DEA vs HypE MOEA/D FD-NSGAII SDE NSGAIII PICEA-g

B 8 5 8 5 4 4

E 0 0 0 0 0 0

W 0 3 0 3 4 4

IGD Performance on 5- and 7- objective

B 8 6 8 4 3 5

E 0 0 0 0 1 0

W 0 2 0 4 4 3

IGD Performance on 10-, 12-, 15-, 20- and 25-objective

B 20 16 20 5 19 20

E 0 0 0 0 0 0

W 0 4 0 15 1 0
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Figure 4.3: Parallel coordinate plot of all competing algorithms in 10− objective DTLZ7 problem.
The inset figure shows the closer inspection of the first 9 objectives.
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4.8 Experiment on Rectangle Problem

The rectangle problem is a 4-objective test problem. The interesting properties of it are that

the degenerate Pareto optimal solutions lie in a rectangle of the two variable decision space and

have similar images in the objective space. We choose three different instances of the problem:

Rectangle Problem I, Rectangle Problem II and Rectangle Problem III. Each instances differs

from others with respect to the domain of two decision variables, x1 and x2. Note that the

domain ranges of three different instances were chosen according to [41].

We apply all the competing algorithms on the three instances of Rectangle problem. For

brevity we show results for F -DEA, NSGAIII, FD-NSGAII, SDE, PICEAg and results for

MOEA/D, HypE are included in the supplementary materials. The division parameter, λ,

of NSGAIII’s and F -DEA’s were set 10 and 60, respectively. The number of weights used in

MOEA/D was chosen as 28800, while the number of goals for PICEAg was 400. The population

size was set to 288 by considering the constraint of NSGAIII and the termination criterion was

chosen to 250 generations. All the other parameters of the algorithms are in usual settings.

4.8.1 Rectangle Problem I

The domain of x1 and x2 for Rectangle Problem I is set to [−20, 120]. This problem has

the smaller search region compared to its other two counter parts. Fig. 4.4 shows the non-

dominated solutions of different algorithms obtained at the final generation of a particular

run. It is evident that the solutions of FD-NSGAII (Fig. 4.4(c)) were concentrated into a

particular location, indicating the algorithm’s good convergence but poor diversity. Although

the solutions from algorithm NSGAIII (Fig. 4.4(b)) converged but its distribution was not

uniform. In contrast, most of the solutions of F -DEA (Fig 4.4(a)) and PICEAg (Fig 4.4(e))

were converged and maintained better uniformity. The solutions of SDE (Fig 4.4(d)) showed

superior performance as all of them were converged and their distribution was uniform.
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4.8.2 Rectangle Problem II

In this instance, the domain of x1, x2 is increased from [−20, 120] to [−10000, 10000], which

poses a challenge to an algorithm for maintaining both convergence and diversity. SDE (Fig. 4.5(d))

achieved both good convergence and diversity in this problem. The solutions of FD-NSGAII

(Fig. 4.5(c)) failed to converge in this problem. NSGAIII (Fig. 4.5(b)) and PICEAg (Fig. 4.5(e))

had very few converged solutions and they formed a cross. In the rectangle problem, any so-

lution inside the parallel objectives’ line can be only dominated by a solution in the same line

whereas the solutions in corner are dominated by those reside in the broader region [41]. This

property creates difficulty for Pareto based algorithm to converge. As the primary selection

criterion of NSGAIII and PICEAg was based on Pareto, it makes problem for them reaching

to the Pareto optimal front and solutions are distributed in crisscross. Our F -DEA applied

fuzzy-fitness criterion in it’s selection mechanism which alleviates the problem faced by Pareto

dominance. Fig. 4.5(a) shows that most of the solutions of F -DEA was able to converge in

optimal and near-optimal regions with uniformity.

4.8.3 Rectangle Problem III

In this test instance, the decision variables’ domain is increased further x1, x2 ∈ [−1012, 1012]

to evaluate the ability of an algorithm in a very large search space. Fig. 4.6 shows the ob-

tained non-dominated solutions of different algorithms. Solutions from SDE (Fig. 4.6(d)),

PICEAg (Fig. 4.6(e)), and FD-NSGAII (Fig. 4.6(c)) have failed to converge into the optimal

region i.e. inside the rectangle. NSGAIII (Fig. 4.6(b)) had solutions distributed in the criss-

cross manner and few of them only converged, which can be seen from the closer inspection of

the inset figure. With respect to the other competing algorithms, F -DEA (Fig. 4.6(a)) showed

good convergence and diversity.



CHAPTER 4. EXPERIMENTAL STUDIES 71

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

x
1

x
2

(a) F -DEA

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

x
1

x
2

(b) NSGAIII

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

x
1

x
2

(c) FD-NSGAII

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

x
1

x
2

(d) SDE

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

x
1

x
2

(e) PICEAg

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

x
1

x
2

(f) MOEA/D

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

x
1

x
2

(g) HypE

Figure 4.4: Final non-domination solution set of F -DEA and six others competing algorithms in
decision space on Rectangle Problem Instance I where x1, x2 ∈ [−20, 120]
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Figure 4.5: Final non-domination solution set of F -DEA and six others competing algorithms in
decision space on Rectangle Problem Instance II where x1, x2 ∈ [−10000, 10000]



CHAPTER 4. EXPERIMENTAL STUDIES 73

−200 −100 0 100 200
−200

−100

0

100

200

300

400

x
1

x
2

(a) F -DEA

−4 −3 −2 −1 0 1 2 3

x 10
11

−3

−2

−1

0

1

2

3
x 10

x
1

x
2

0 50 100

0

50

100

x
1

x
2

(b) NSGAIII

−5 0 5

x 10
10

−6

−4

−2

0

2

4

6
x 10

10

x
1

x
2

(c) FD-NSGAII

−1 −0.5 0 0.5 1

x 10
12

−1

−0.5

0

0.5

1
x 10

12

x
1

x
2

(d) SDE

−2 0 2 4 6 8

x 10
9

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

11

x
1

x
2

(e) PICEAg

−12 −10 −8 −6 −4 −2 0 2

x 10
9

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

x
1

x
2

(f) MOEA/D

0 2 4 6 8 10

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

x
1

x
2

(g) HypE

Figure 4.6: Final non-domination solution set of F -DEA and six others competing algorithms in
decision space on Rectangle Problem Instance III where x1, x2 ∈ [−1012, 1012]
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4.9 Discussion

The results presented in the previous sections and supplementary material give an idea about

the performances of F -DEA with respect to different competing algorithms. This section briefly

explains the reasons behind such performances.

F -DEA maintains cluster uniformity based on preferred reference points. If a parent pop-

ulation lies in crowded regions and any offspring solution lies in a different region, then the

solution will form a new cluster and F -DEA will select it for the next generation. The next

generation clusters will thus have a broader span. This property helps F -DEA expanding its

search region whenever possible. And this is beneficial for a deceptive problem containing

large-size hill and disconnected problems having isolated regions. However, this property is

not beneficial for a degenerate problem. As the isolated solution increase the search region, it

will take some generations to converge. This can be seen for the Rectangle Problem where few

solutions reside outside the optimal region. The fuzzy dominance with adaptive membership

functions can optimize different objectives well in case of a large number of objectives (Fig. 4.2),

and the bias induced for that was mitigated from the cluster uniformity. The fitness assignment

procedure can maintain extreme point well in F -DEA which helps to retain cluster uniformity

for the next generation.

The poor performance of FD-NSGAII [35] was due to lack of diversity among solutions (4.2(d)

and 4.3(d)). NSGAIII [27] emphasizes on solutions that are non-dominated and close to refer-

ence line. When the number of objectives is large, the Pareto-dominance relied on by NSGAIII

lacks enough selection pressure to push the population towards Pareto front. In a sense, NSGA-

III stresses diversity more than convergence [21]. Our F -DEA uses fuzzy dominance that is

able to maintain good selection pressure in high dimensional objective space. As the number of

objectives increases fuzzy dominance becomes more effective to differentiating which solutions

are better. Also the preferred reference points based clustering method promotes diversity

using those reference points where solution exists rather than entire high dimensional objective

space.
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SDE [25] performs relatively well in the DTLZ problem suite than the WFG one. The

reason most likely is the normalized nature of the former problem suite. The performance of

F -DEA for the WFG problem signifies that the proposed algorithm was able to handle the

scaling issue well due to the use of scale independent adaptive fuzzy membership function.

The co-evolutionary algorithm PICEAg is goal oriented and Pareto based algorithm. The

maintenance of an increasing number of goal vectors by this algorithm enhances the com-

parability among solutions in a high dimensional objective space. The inherent tendency to

maintain diversity sometimes responsible for reducing selection pressure. This can be under-

stood by looking the results of the algorithm for the WFG1 problem for which it performed

worse compared to its performance on other problems (Table 4.3).

The obtained solutions of MOEA/D in high dimension might achieve good aggregation

values but far away from the corresponding weight vector. This property makes harder for

MOEA/D to maintain diversity for problems with a large number of objectives. HypE failed

to maintain diversity in some cases and pushed the solutions into the corner of the Pareto

front.

The test problems in the WFG suite are far more difficult to solve and hard to maintain

diversity. It is because the WFG problems have more transformation functions and they have

different ranges for different objectives. The proposed algorithm F -DEA was able to outperform

competing algorithms on these problems with a larger number of objectives. From the results

of the DTLZ suite, we see that for a larger number of objectives, F -DEA was able to solve

difficult to converge DTLZ1 and disconnected DTLZ7 problems better than others.
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4.10 Effect of Reference Point Based Clustering and Fuzzy

Dominance

To investigate how much benefit we get from reference point based clustering and fuzzy dom-

inance over Pareto dominance, we evaluate two variants, F -DEA∗ and F -DEA#, of basic

F -DEA on DTLZ1 and DTLZ3 problems with the usual settings. While F -DEA∗ does not

employ reference points based clustering, F -DEA# employs Pareto-dominance based fitness

assignment instead of fuzzy dominance based fitness assignment. Tables 4.10 shows the com-

parative performances of F -DEA∗ and F -DEA# against basic F -DEA in terms of HV and

IGD. For brevity, we consider DTLZ1 and DTLZ3 problems with 7-, 10- and 15-objective.

It is clear from Tables 4.10 that the basic F -DEA outperforms both F -DEA∗ and F -DEA#

significantly in all problem instances. The large IGD values and small (in fact zero) HV

values of F -DEA# in DTLZ1 and DTLZ3 suggest that the Pareto based selection failed to

create necessary selection pressure on hard to converge problems. F -DEA∗, on the other hand,

convergences into a part of Pareto front due to the bias created from fuzzy dominance. The

IGD and HV values of F -DEA∗ are better than F -DEA# as no solution obtained by F -DEA#

converges into Pareto front.

Fig.4.7 shows the non-dominated solutions obtained by F -DEA∗, F -DEA# and basic F -

DEA for DTLZ1 problem with in 10-objective. Basic F -DEA achieved good convergence

(overall objective range [0 − 0.5]) while maintaining good diversity (Fig. 4.7(c)). In contrast,

F -DEA# (Fig. 4.7(b)) maintained diversity due to reference points based clustering but failed

to converge (overall objective range [0 − 500]) because of Pareto based selection. F -DEA∗

(Fig. 4.7(a)) converged to a part of Pareto front but severely lacked diversity.

The performances of two variants F -DEA∗ and F -DEA# indicate the importance of using

clustering and fuzzy dominance based selection in solving MaOPs. The fuzzy based selection

alone cannot maintain diversity and clustering does not work with Pareto based approach due

to its lack of comparability for a large number of objective. This is why F -DEA harvests the
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benefits from these two techniques, clustering and fuzzy dominance, and compliments each

others’ weakness.
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Figure 4.7: Parallel coordinate plots of variants of F -DEA on 10− objective DTLZ1 problem.

4.11 Parameter Sensitivity

In the absence of supplied reference points, F -DEA employs the Das and Dennis [14] procedure

for generating such points. This procedure requires a parameter λ, the number of division in

an objective. It is worth mentioning that λ is necessary if any evolutionary algorithm (see, for

example, [27]) employs this procedure. The aim of this section is to show why we select p

(=N , the population size) preferred points from a large number of generated points.

Trivially, an evolutionary algorithm maintains diversity and convergence by its own way,

where the decision maker has no control. In F -DEA, the decision maker can control them using

p. Furthermore, λ and p together remove the constraint to population size for any number

of objectives unlike NSGAIII [21, 27] in which the population size is bounded by λ and not

flexible for an arbitrary number of objectives.

Fig. 4.8 shows impact of λ and p on the GD, IGD and HV performances of DTLZ2 problem

with 10-objective. The experiments were conducted with the usual parameter settings but

varying λ and p. For convenience, p was changed in such a way that the expected number of

solutions in each cluster, χ, becomes 2, 3, · · · , 10.
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Table 4.10: Comparison among three different versions of the proposed algorithm, basic version (F -
DEA), F -DEA without clustering (F -DEA∗), and F -DEA with Pareto dominance (F -DEA#), on
DTLZ problems based on IGD and HV value.

IGD

Prob. Obj. F -DEA∗ F -DEA# F -DEA

DTLZ1 7 0.0296±0.0152(2) 9.0918±1.5703(3) 0.0063±0.0001(1)

10 0.0302±0.0155(2) 7.6205±1.1507(3) 0.0083±0.0002(1)

15 0.0269±0.0159(2) 5.8475±1.1274(3) 0.0094±0.0002(1)

DTLZ2 7 0.0858±0.0000(2) 0.1602±0.0014(3) 0.0175±0.0005(1)

10 0.0877±0.0000(2) 0.1357±0.0108(3) 0.0223±0.0006(1)

15 0.0855±0.0000(2) 0.1015±0.0074(3) 0.0250±0.0009(1)

DTLZ3 7 0.0861±0.0001(2) 83.6979±7.0178(3) 0.0528±0.0418(1)

10 0.0905±0.0120(2) 70.5014±6.9913(3) 0.0396±0.0246(1)

15 0.0856±0.0001(2) 56.6080±6.5905(3) 0.0510±0.0317(1)

DTLZ4 7 0.0858±0.0000(2) 0.1517±0.0034(3) 0.0178±0.0003(1)

10 0.0877±0.0000(2) 0.1056±0.0069(3) 0.0225±0.0005(1)

15 0.0855±0.0000(3) 0.0729±0.0066(2) 0.0224±0.0005(1)

HV

DTLZ1 7 0.1410±0.0723(2) 0.0000±0.0000(3) 1.9272±0.0026(1)

10 0.1877±0.0963(2) 0.0000±0.0000(3) 2.5829±0.0024(1)

15 0.2839±0.1682(2) 0.0000±0.0000(3) 4.1680±0.0021(1)

DTLZ2 7 0.1771±0.0000(2) 0.0000±0.0000(3) 1.7469±0.0045(1)

10 0.2357±0.0000(2) 0.0004±0.0019(3) 2.4854±0.0059(1)

15 0.3797±0.0000(2) 0.0000±0.0000(3) 4.1171±0.0083(1)

DTLZ3 7 0.1684±0.0053(2) 0.0000±0.0000(3) 0.8720±0.7061(1)

10 0.2156±0.0511(2) 0.0000±0.0000(3) 1.7546±0.9708(1)

15 0.3683±0.0096(2) 0.0000±0.0000(3) 2.2773±1.8582(1)

DTLZ4 7 0.1771±0.0000(2) 0.0000±0.0000(3) 1.7540±0.0025(1)

10 0.2357±0.0000(2) 0.0001±0.0004(3) 2.4951±0.0023(1)

15 0.3797±0.0000(2) 0.0491±0.0596(3) 4.1402±0.0019(1)
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We can see as λ increases so does overall HV (Fig. 4.8(c)) and reduces GD (Fig. 4.8(a)) and

IGD (Fig. 4.8(b)) up to a certain level. Increasing λ increases the number of generated reference

points exponentially. A small number of reference points do not cover the entire objective space.

Generating a large number of reference points maintains better cluster uniformity which in turn

improves overall performance. But if we continue increasing reference points then after a certain

λ, the clusters’ representative points will be nearly same as before and performance will be

clipped. It is also expensive to generate a huge number of reference points. Hence, a reasonable

number of reference points should be used. By inspecting the performance on DTLZ2, it is

clear that after λ = 9 the performance doesn’t improve increasing λ (Fig. 4.8). It is to be

noted that HV for λ = 3 is greater than the HV value for λ = 4 and this behavior is problem

dependent. Therefore it is sufficient to use λ = 9 for 10-objective problem.

As p decreases, the number of clusters decreases and the expected number of solutions,

χ, in a cluster increases for a fixed-size combined population, |Ct| = 2N (e.g. for p = N ,

χ = 2N/N = 2 and for p = N
2

, χ = 2N/N
2

= 4). The fuzzy dominance relation within a cluster

promotes faster convergence. By decreasing p, the solutions achieve faster convergence while

losing some diversity. A closer inspection of Fig. 4.8(a) reveals that as p decreases (i.e., increas-

ing χ), the overall GD value decreases i.e., convergence increases. The overall performance of

HV decreases (Fig. 4.8(c)) and IGD value increases (Fig. 4.8(b)), which indicates reduction in

diversity. Therefore p = N or χ = 2 is preferable as it works as the best compromise between

convergence and diversity. We might require more converged optimal solutions compromising

some diversity in some real-world applications. It is possible to achieve this goal by decreasing

p. An opposite scenario i.e., obtaining more diverse solutions can also be achieved by increasing

p.
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(a) GD values of DTLZ2 with 10-objective
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(b) IGD values of DTLZ2 with 10-objective
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(c) HV values of DTLZ2 with 10-objective

Figure 4.8: Effect of λ and χ on GD, IGD and HV performance of F -DEA on the DTLZ2 problem
with 10-objective. The plots show expected number of solutions in a cluster(χ) for a fixed population
size N = 250 vs HV performance for incremental values of λ in horizontal line. The stable parameter
for λ selected as 9, 6 for objective 10, 15 respectively.



Chapter 5

Conclusion

5.1 Conclusion and Future Work

Evolutionary algorithms can provide several candidate solutions in a single run, which make

them popular to solve many practical problems including MaOPs. However, the loss of selection

pressure is a challenging issue for such algorithms while solving MaOPs. In this thesis, we have

incorporated fuzzy-dominance and reference points in the environmental selection mechanism

of the proposed F -DEA with an aim of improving selection pressure. The introduction of

reference point in conjunction of fuzzy-dominance not only helps in maintaining diversity of

the evolved solutions but also convergence.

F -DEA has been extensively evaluated and compared using eight WFG and three DTLZ

problems having 2- to 25-objectives. The simulation results reveal that F -DEA in general

performs better than other algorithms on complex problems with an increasing number of

objectives. It has also been found that F -DEA can balance between the conflicting goal of

convergence and diversity well in comparison with other algorithms, especially for complex

problems.
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In its current implementation, the reference point generation procedure [14] used in F -DEA

has one user-specified parameter, which was set after some preliminary experiments. One of

the future avenues would be to make it adaptive. It would be interesting in the future to

analyze F -DEA further and identify its strength and weakness. It would also be interesting to

apply F -DEA to real-world problems.
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