
M.Sc. Engg. Thesis

MANY-OBJECTIVE PERFORMANCE
OPTIMIZATION IN HETEROGENEOUS

COMPUTING CLUSTERS

by

A.S.M Rizvi (1015052053 F)

Submitted to

Department of Computer Science & Engineering

(In partial fulfillment of the requirements for the degree of

Master of Science in Computer Science & Engineering)

Department of Computer Science & Engineering

Bangladesh University of Engineering & Technology (BUET)

Dhaka 1000

July 22, 2017

Dedicated to my loving parents

Author’s Contact

A.S.M Rizvi

Email: asm.rizvi.bd@gmail.com

The thesis titled “MANY-OBJECTIVE PERFORMANCE OPTIMIZATION IN HETERO-
GENEOUS COMPUTING CLUSTERS”, submitted by A.S.M Rizvi, Roll No. 1015052053
F, Session October 2015, to the Department of Computer Science & Engineering, Bangladesh
University of Engineering & Technology, has been accepted as satisfactory in partial fulfillment
of the requirements for the degree of Master of Science in Computer Science & Engineering
and approved as to its style and contents. Examination held on July 22, 2017.

Board of Examiners

1.
Dr. A. B. M. Alim Al Islam Chairman
Associate Professor (Supervisor)
Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology, Dhaka.

2.
Prof. Dr. M. Sohel Rahman Member
Head and Professor (Ex-Officio)
Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology, Dhaka.

3.
Prof. Dr. Md. Monirul Islam Member
Professor
Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology, Dhaka.

3.
Dr. Muhammad Abdullah Adnan Member
Assistant Professor
Department of Computer Science & Engineering
Bangladesh University of Engineering & Technology, Dhaka.

4.
Prof. Dr. Mohammad Faisal Member
Professor (External)
Department of Electrical and Electronic & Engineering
Bangladesh University of Engineering & Technology, Dhaka.

Candidate’s Declaration

This is hereby declared that the work titled “MANY-OBJECTIVE PERFORMANCE OPTI-

MIZATION IN HETEROGENEOUS COMPUTING CLUSTERS”, is the outcome of research

carried out by me under the supervision of Dr. A. B. M. Alim Al Islam, in the Department of

Computer Science & Engineering, Bangladesh University of Engineering & Technology, Dhaka

1000. It is also declared that this thesis or any part of it has not been submitted elsewhere for

the award of any degree or diploma.

A.S.M Rizvi

Candidate

Acknowledgment

First of all, I would like to express my heart-felt gratitude to my supervisor, Dr. A. B. M. Alim

Al Islam, for his constant supervision of this work. He helped me a lot in shaping, deciding

steps of my work, and providing infrastructural supports.

I would also want to thank the honorable members of my thesis committee: Prof. Dr. M.

Sohel Rahman, Prof. Dr. Md. Monirul Islam, Dr. Muhammad Abdullah Adnan, and spe-

cially the external member Prof. Dr. Mohammad Faisal, for their encouragements, insightful

comments, and valuable suggestions.

I am also thankful to Mohammad Mosiur Rahman Lunar (Ph.D. Candidate, University

of Nebraska at Lincoln, USA), Tarik Reza Toha (Under-graduate student, CSE-BUET), and

Siddhartha Shankar Das (Lecturer, CSE-BUET). I sought help from them a number of occa-

sions regarding simulation set-up and performance evaluation of this thesis. I am also grateful

to all honorable teachers of the department for their comments and suggestions. I would like

to give special thanks to Dr. Muhammad Abdullah Adnan and Abu Wasif for their valuable

suggestions during my thesis work.

Last but not the least, I remain ever grateful to my beloved parents, wife and family, for

their inspirations behind every success of mine.

iv

Abstract

In computing clusters, there are different performance metrics, which often appear to be con-

flicting while being attempted to be optimized. For having such conflicting cases along with

experiencing existence of heterogeneous environment, it is often difficult for the cluster ad-

ministrators to select the right number and right combination of machines. As a remedy to

this situation, in this thesis, we develop a technique through which cluster administrators can

select the right set of machines to enhance cluster performance. In our solution, we integrate

both cooling energy consumption and empirical performance characterization of clusters. To

the best of our knowledge, existing studies do not integrate these two simultaneously in solving

many-objective optimization problem for clusters. We exploit a many-objective optimization

approach based on NSGA-III algorithm to solve our cluster problem. Our technique attempts

to simultaneously optimize many objectives such as computation time, computation energy,

cooling energy, and utilization. Subsequently, we demonstrate through both real experimenta-

tion and simulation that our technique mostly performs better than optimization approaches

existing in the literature. In this study, we integrate cooling energy while evaluating cluster

performance. Cooling energy consumption is one of the most significant parts of total energy

consumed by clusters and similar distributed systems. However, little effort has been spent so

far to integrate the cooling energy in simulators that are used for simulating the distributed sys-

tems. Therefore, we also perform integration of cooling energy consumption in a widely-known

simulator of distributed systems namely SimGrid.

v

Acronyms List

ACO = Ant Colony Optimization

BBO = Bio-geography Based Optimization

CT = Current Transformer

EA = Evolutionary Algorithm

KWh = KiloWatt hour

mins = Minutes

MOEA = Multi-Objective Evolutionary Algorithm

MOEA/D = Multi-Objective Evolutionary Algorithm based on Decomposition

NSGA = Non-dominated Sorting Genetic Algorithm

PSO = Particle Swarm Optimization

PT = Potential Transformer

VM = Virtual Machine

vi

Contents

Board of Examiners ii

Candidate’s Declaration iii

Acknowledgment iv

Abstract v

Acronyms List vi

1 Introduction 1

1.1 Background . 1

1.1.1 Architecture of Computing Cluster . 2

1.1.2 Performance Metrics for Computing Clusters 3

1.2 Motivation . 3

1.3 Objectives of This Thesis . 6

1.4 Our Contributions . 6

2 Related Work 8

2.1 Cloud Based Many-Objective Performance Optimization Techniques 9

2.2 Cluster Based Many-Objective Performance Optimization Techniques 9

2.3 Cluster and Cloud Based Many-Objective Performance Optimization Techniques 10

2.4 Generalized Many-Objective Optimization Techniques 10

2.5 Simulation of Energy Consumption in Distributed Systems 11

vii

3 Problem Formulation 13

3.1 Cluster Objectives . 13

3.2 Impacts of Different Factors on Cluster Objectives 15

3.3 Proposed Problem Formulation . 17

4 Proposed Solution Technique 21

5 Cooling Energy Integration in SimGrid 29

5.1 Overview on SimGrid . 29

5.2 Proposed Methodology . 30

5.3 Validation of Cooling Energy Integration . 32

5.3.1 Testbed Settings . 33

5.3.2 Testbed Compatible Settings in SimGrid : 36

5.3.3 Experimental Results . 39

5.3.4 Summary of Findings . 41

6 Experimental Results 43

6.1 Validation Modified NSGA-III Performs Better Than NSGA-III 43

6.2 Effects of Number of Iterations over Performance 45

6.3 Simulation Evaluation . 46

6.3.1 Simulation Settings . 46

6.3.2 Simulation Results . 47

6.3.3 Findings from Simulation Results . 47

6.4 Testbed Evaluation . 49

6.4.1 Testbed Settings . 50

6.4.2 Testbed Results . 51

6.4.3 Findings from Testbed Results . 55

6.5 Improvement over PSO and ACO in Real Testbed and SimGrid 56

7 Conclusion and Future Work 58

List of Figures

1.1 Parallel computing usage in modeling, simulation, and experimentation [1] . . . 2

1.2 Master machine sends tasks to the slave machines. Slave machines will reply

after finishing their tasks . 3

1.3 Energy consumption in USA data centers [2] . 4

2.1 Clusters in different size . 8

3.1 Comparative analysis of cluster objectives with an increase of number of machines 14

3.2 Comparative analysis of cluster objectives with different number of machines

and with a presence of machine failure . 16

4.1 Elbow points in different graphs for getting the value of NM 24

4.2 Crossover region for decision variables. Crossover will be made within yellow

portion and blue portion separately. 26

4.3 Objective values with different optimization techniques 27

5.1 Topology of laboratory setup . 33

5.2 Snapshot of laboratory setup . 34

5.3 Testbed hardware setup for evaluating cooling energy and computation energy . 34

5.4 Energy comparison between SimGrid and Testbed for 12.6 GB data 35

5.5 Energy comparison between SimGrid and Testbed for 9.44 GB data 36

5.6 Energy comparison between SimGrid and Testbed for 6.3 GB data 37

5.7 Energy comparison between SimGrid and Testbed for 3.14 GB data 38

5.8 Measuring computation and cooling power . 42

ix

6.1 Comparison of NSGA-III and modified NSGA-III with various workloads in

SimGrid with 30 machines cluster . 44

6.2 Average of computation time, computation energy, and cooling energy in various

iterations with standard deviations . 45

6.3 Comparison of different algorithms with various workloads in SimGrid with 30

machines cluster . 49

6.4 Comparison of different algorithms with various workloads in SimGrid with 50

machines cluster . 50

6.5 Lab map for cluster . 53

6.6 Comparison of different algorithms with various custom made workloads in real

testbed with 30 machines cluster . 54

6.7 Comparison of different algorithms with various benchmark workloads in real

testbed with 30 machines cluster . 55

6.8 Improvement over PSO and ACO in Real Testbed and SimGrid 57

List of Tables

3.1 Impacts of weight values in experimental results. 19

4.1 Impacts of selection threshold value in experimental results 23

4.2 Impacts of selection threshold value in solutions of pareto-front 23

5.1 Simulation environment in laboratory . 32

5.2 Frequency and memory vs number of machines 32

5.3 Average and standard deviation comparison between testbed and SimGrid . . . 35

5.4 Different power states and consumed power . 39

5.5 Simulation environment in SimGrid . 39

6.1 Simulation environment in SimGrid . 46

6.2 Improvement over PSO and ant colony optimization with various workloads in

SimGrid with 30 machines . 48

6.3 Improvement over PSO and ant colony optimization with various workloads in

SimGrid with 50 machines . 49

6.4 Experimental environment in laboratory . 51

6.5 Frequency and memory vs number of machines 51

6.6 Machine ID with corresponding network B/W 52

6.7 Improvement over PSO and ant colony optimization with various workloads in

real testbed . 53

xi

Chapter 1

Introduction

Computing clusters are extensively used for distributed and parallel computing now-a-days

[3]. In a computing cluster, machines are connected to work together so that they can be

viewed as a single machine. Computing clusters are generally used for increasing computation

speed, availability, fault tolerance, and scalability. They have a wide range of applicability in

simulation, modeling, and experimentation. Examples of applications include galaxy formation

simulation, modeling planetary movement, climate change prediction, traffic jam simulation,

plate tectonics movement simulation, and experimentation with weather forecast. Fig. 1.1

shows the usage of parallel computing in different modeling, simulation, and experimentation.

In traffic jam simulation, we have huge sample space. We have different types of vehicles,

different conditions of roads, different pressure of vehicles at different hours of the day, etc.

Combining all these things into the simulation is computationally expensive. Using just one

machine to simulate all these things is infeasible as well. That is why parallel computing has

become necessary and significant in modeling, simulation, and experimentation.

1.1 Background

Parallel computing is necessary for modeling, simulation, and experimentation of complex

real-world phenomena where rigorous computing power is necessary [1]. There are different

architectures for implementing parallel computing. In the next section, we will describe those

1

CHAPTER 1. INTRODUCTION 2

(a) Galaxy formation (b) Planetary movement (c) Climate change

(d) Traffic simulation (e) Plate tectonics (f) Weather forecast

Figure 1.1: Parallel computing usage in modeling, simulation, and experimentation [1]

architectures.

1.1.1 Architecture of Computing Cluster

In a computing cluster, multiple machines work together to increase overall capacity. Fig.

1.2 shows the architecture of messaging among the machines of a computing cluster. Here,

a central machine normally controls the other machines. There is a master machine that

distributes a big task among several slave machines. The slave machines work and send their

results to the master machine. Master machine generally maintains coordination among the

slave machines and accumulate all the results. We can use different tools for the purpose of job

distribution. Hadoop [4] and Yarn [5] are such kind of tools. A sophisticated mechanism such

as MapReduce [6] normally runs to handle these distribution tasks among machines. A cluster

administrator normally operates the cluster. There are different performance metrics which a

cluster administrator wants to achieve. Next, we see the performance metrics for computing

clusters.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Master machine sends tasks to the slave machines. Slave machines will reply after
finishing their tasks

1.1.2 Performance Metrics for Computing Clusters

There exist several performance metrics for clusters [7] [8] in the literature. Here, some ad-

ministrators may want to reduce the total computation energy, few others may want to reduce

cooling energy consumption, and so on. In this thesis, we consider both the computation en-

ergy and cooling energy in combination. Besides, resource utilization and computation time

are also important for some administrators. Therefore, we consider CPU usage and memory

usage for resource utilization along with considering computation time.

1.2 Motivation

In many cases, performance objectives of a computing cluster appear to be conflicting. For

example, from our year-long collected laboratory data, we find that increasing the number

of machines can reduce computation time. It can also decrease total energy consumption.

However, increasing the number of machines may decrease resource utilization, and increase

cluster maintenance cost as well, pertaining a conflicting scenario with the other objectives.

Solving conflicting objectives is a classical problem and there exist myriad techniques in the

literature available to solve multiple conflicting objectives [9]. However, little effort has been

CHAPTER 1. INTRODUCTION 4

39%

5% 1%
14%

16%

4%

16%

4% 1% Energy Consumption Cooling

Uninterruptible power supply

Power distribution unit

Server power

Other server

Losses

Processor

Communication equipment

Lighting

(a) Energy consumption in data centers

(b) Data centers from USA consume 39% of their total energy consumption

Figure 1.3: Energy consumption in USA data centers [2]

spent to date to solve conflicting objectives in computing clusters to the best of our knowledge.

Therefore, in this thesis, we motivate to propose a new approach to solve the conflicting

objectives of a computing cluster.

CHAPTER 1. INTRODUCTION 5

After getting motivated to give a solution for selecting the right number and right combination

of machines, we use our year-long laboratory data to formulate a many-objective optimization

problem consisting objectives and constraints relevant to clusters. We perform empirical

analyses over the data to facilitate solving the optimization problem. Our solution approach

exploits a synergy between greedy method and NSGA-III algorithm. Exploiting the synergy,

our solution gives a set of machines as its final output, which cluster administrator can adopt

to operate. We test our solutions in a real setup as well as in simulation environment. We find

our approach mostly performs better than other existing approaches for computing clusters.

In our thesis, we put a special focus on cooling energy while experimenting with energy

consumption. Distributed computing infrastructures such as computing clusters consume

a considerable part of electricity consumption around the world and their extent of energy

consumption is increasing day by day [10]. For example, an analysis on few data centers

reports that around 39% of total energy consumption of the data centers pertains to cooling

energy. Fig. 1.3 shows a breakdown of the total energy consumption in US data centers.

This energy consumption can vary from place to place, environment to environment, and

design to design. Consequently, success of any work related to energy consumption of such

infrastructures vastly depends on proper realization of the cooling energy. One of the widely

adopted methodologies for realizing different aspects of energy consumption is to perform

simulation.

Different simulation tools have been developed for computing energy consumption. Among

them NS-2 [11] and NS-3 [12] are the two most popular ones. However, NS-2 and NS-3

are yet to offer any support for measuring energy consumption in wired systems mimicking

conventional distributed systems such as computing clusters. Both of these simulators are

capable of measuring energy consumption for wireless systems.

SimGrid [13], being a simulation tool developed for simulating distributed systems, offers an

energy plug-in for measuring energy consumption in wired systems. However, this energy

plug-in is yet to consider cooling energy consumption that remains a significant part of

energy consumption as mentioned above. Therefore, in this thesis, we motivate to perform

necessary modifications in the plug-in to incorporate cooling energy consumption. Here, we

integrate cooling energy consumption with the consideration of environment temperature,

CHAPTER 1. INTRODUCTION 6

maximum allowable temperature inside the machines, and the workload of the system under

consideration. We perform validation of our integration through comparing our simulation

results against that of real testbed experiments.

1.3 Objectives of This Thesis

We identify the following objectives for this thesis:

• Propose a solution for the cluster administrator to select the right number and right

combination of machines.

• Propose a many-objective optimization problem for cluster computing.

• Put special care for cooling energy which is an objective of the cluster.

• Integrate a cooling energy module in real testbed and simulation environment.

• Propose a solution approach for the many-objective optimization problem so that our

solution will perform better.

• Rigorous experimentation to show how our suggested approach performs.

1.4 Our Contributions

Based on our work on devising a new many-objective optimization technique for computing

clusters and integrating cooling energy in simulation,

• We formulate a new many-objective optimization problem for computing clusters consid-

ering different relevant objectives and constraints. The objectives include cooling energy

consumption, which is mostly ignored in contemporary studies. Besides, we consider our

year-long collected laboratory data in formulating the problem.

• We develop a new technique exploiting both greedy method and NSGA-III algorithm

to solve the many-objective optimization problem for computing clusters. Outcomes

CHAPTER 1. INTRODUCTION 7

of our technique pinpoint the set of machines that need to be selected to achieve the

best-possible performance from a cluster in terms of all the considered cluster objectives.

• We use a well-established simulation platform namely SimGrid to experimentally evaluate

performances of our proposed and other existing approaches, in diversified settings.

• To perform simulation in SimGrid with cooling energy, we point out necessary models

that need to be incorporated in SimGrid to integrate the cooling energy consumption in it.

Subsequently, we make necessary modifications in the existing SimGrid to incorporate

the models. We simulate different distributed computing systems using our modified

SimGrid module. Besides, we perform real testbed experiments with similar settings

adopted in our simulation. We compare the simulation and testbed results to validate

applicability of our proposed modified plug-in of SimGrid.

• Finally, we implement our proposed optimization technique along with existing ones in a

real setup and evaluate their performances. Comparative analysis over all the experimen-

tal results demonstrates that our proposed technique can provide significant performance

improvement in most of the cases compared to other existing ones.

The rest of the book is organized in the following way. In Chapter 2, we will show the back-

ground and related research studies. After that in Chapter 3, we will discuss about the many-

objective problem formulation for the clusters. In Chapter 4, we discuss the methodology that

we use to solve the problem which is formulated in Chapter 3. In the later two chapters we will

show the experimental results in both real testbed and in simulation environment SimGrid.

After that we willl have a short conclusion including the future possible research directions.

Chapter 2

Related Work

(a) Large Linux cluster in University of Technology,
Germany

(b) Home made cluster

Figure 2.1: Clusters in different size

Distributed computing can be implemented using different platforms such as clusters, grid, and

cloud. In clusters, computing machines are connected through a local area network, whereas,

in clouds or grids, machines are conventionally geographically distributed [14]. In this thesis,

we mainly focus on cluster architectures. We can form clusters not only in a big setup as shown

in Fig. 2.1(a) but also in a small home environment as shown in Fig. 2.1(b). We generally

build clusters with similar performing machines while it is possible to make grid and cloud

with varying performing machines.

8

CHAPTER 2. RELATED WORK 9

As mentioned in Chapter 1, computing clusters as well as distributed systems can have conflict-

ing objectives. In the literature, several research studies exist that intend to solve optimization

problem pertinent to these objectives. Here, most of the studies focus on cloud having a little

focus on clusters. Next, we present the existing studies.

2.1 Cloud Based Many-Objective Performance Opti-

mization Techniques

Multi-objective optimization techniques are studied for virtual machine based cloud architec-

tures [15]. There exist some other studies [16] [17], [18], which consider resource provisioning

techniques in cloud computing. Besides the study presented in [19], focuses on minimizing cost

and energy consumption. This study only considers two objectives and is specialized for cloud

architectures. In this study, authors try to place the VMs in such a way that it provides the

least increase in power consumption without violating the negotiated Service Level Agreements

(SLAs). All these studies are not applicable to computing clusters owing to significant archi-

tectural gap between clusters and clouds. Moreover, they are not fully aware of cooling energy

in cluster computing.

2.2 Cluster Based Many-Objective Performance Opti-

mization Techniques

There are a few studies in the literature, which consider performance optimization in cluster

computing. For example, the study in [8] presents a stochastic technique for performance opti-

mization. This study first formulates an energy aware steady-state model. Then, it designs an

optimization problem for resource provisioning. The authors introduces an uncertainty model,

and they make a stochastic programming formulation based on the steady-state and uncertainty

model. Later, an orthogonal weighted sum algorithm was used to generate pareto front solving

the optimization problem. This study deals with many objective (more than three objectives

[20]) optimization for upgrade cost, failure rate, power consumption, and number of completed

tasks objectives. However, it does not consider any specialized many-objective optimization

CHAPTER 2. RELATED WORK 10

technique, rather it uses a multi-objective stochastic technique. Nonetheless, existing study in

the literature [9], [20] show that a specialized many-objective optimization technique performs

better than a multi-objective optimization technique. Existing multi-objective optimization

techniques show a number of problems relating to convergence, diversity, and computation

time while solving many objective optimization problems [21].

2.3 Cluster and Cloud Based Many-Objective Perfor-

mance Optimization Techniques

Some recent studies focus on multi-objective performance optimization in computing clusters

and clouds. Examples include a Particle Swarm Optimization (PSO) based technique [22] and

Ant Colony Optimization (ACO) based technique [23]. In [22], authors solve the problem of load

balancing in cloud clusters with the objectives of minimizing the average workload of all servers

in cloud clusters, the deviation of the workload, and the migration cost between servers using

PSO based technique. In [23], authors simultaneously minimize resource wastage and power

consumption in cloud architecture using ACO based technique. However, these techniques

are yet to be extended for many-objective cases. Moreover, integrating empirical performance

characterization of clusters is yet to be focused by all the techniques in the literature to the

best of our knowledge. Such integration of empirical characterization is important as it exhibits

a potential to reveal environmental impacts over performance of a cluster.

2.4 Generalized Many-Objective Optimization Tech-

niques

There exist several generalized many-objective optimization techniques in the literature. Ex-

amples include MOGA [24], NSGA [25], NPGA [26], etc. Although these methods can be

used to find multiple non-dominated solutions on many test problem cases, researchers realized

the need of introducing more useful procedure to solve multi-objective optimization problems

better. Accordingly, in the study presented in [27], researchers show the notion of elitism helps

in achieving better convergence. Later, researchers found many real life problems have more

CHAPTER 2. RELATED WORK 11

than three objectives. Optimization problems with more than three objectives are known as

many-objective optimization problem [20]. Studies focusing on multi-objective optimization

are not sufficient to solve many-objective optimization problems.

Diversity and convergence preservation are two important aspects in solving optimization prob-

lem. Research study [28] clearly shows that these two goals are contradictory, and usual ge-

netic operators are not able to attain both goals at the same time. This problem is more

severe for many-objective optimization problems. To solve many-objective optimization prob-

lems, a research study [29] suggests measures for 5-50 objectives. Other studies such as the

study presented in [30] extends NSGA-II [31] using modified diversity-controlling operators

to solve 6 to 20-objective problems. NSGA-II possesses some limitations in solving many-

objective optimization. Moreover, the study [32] claimed that NSGA-II is not suitable for

many-objective optimization problems and suggests a collection of alternative metrics that can

replace NSGA-IIs crowding distance operator for better performance. All these techniques are

the modifications of the previously-suggested evolutionary algorithms to solve multi-objective

optimization techniques. However, these solutions only address special test problems such as

DTLZ problems [33]. More real-life and challenging problems are yet to be explored by these

techniques. An alternative namely MOEA/D [34] attempts to solve the problems of previous

studies, however, it is not tested for a large number of objectives. Finally, a recent technique

namely NSGA-III [9] shows better performance for large number of objectives. At the same

time, it exhibits capability to work with diverse real-life challenging problems. However, to the

best of our knowledge, NSGA-III is yet to be investigated for many-objective optimization in

clusters.

As one of the important objectives in this regard is energy consumption, we present an overview

on existing studies on simulating energy consumption next.

2.5 Simulation of Energy Consumption in Distributed

Systems

Measuring energy consumption has been investigated in various research studies [35], [36], and

[37]. However, these studies mostly deals with ad-hoc networks. For example, the study pre-

CHAPTER 2. RELATED WORK 12

sented in [38] presents an energy consumption model for mobile ad-hoc networks for measuring

performance of routing protocols. This study uses NS-2 simulator for measuring energy con-

sumption. Similar other study [39] also exists in the literature. Besides, some other studies

focus on energy efficient protocols in wireless networks [40]. Nonetheless, only a few studies [41]

aim at modeling energy consumption in distributed systems. An example of such studies [42]

develops different APIs that are used in SimGrid. However, to the best of our knowledge, none

of these studies has modeled the cooling energy to integrate it within total energy consumption.

Nonetheless, SimGrid energy module has already been used by the studies presented in [43],

[44], hence, integrating cooling energy with SimGrid is necessary to get more concrete and

accurate results.

Chapter 3

Problem Formulation

To formulate our research problem, we first conduct laboratory experiments for more than

a year. In our experiments, we measure different metrics such as computation time, energy

consumption, and resource utilization. We utilize the measured data to identify impacts of

operational parameters on objectives of the cluster. Our experimental data demonstrate that

objectives of a cluster get substantially influenced by environmental impacts. Here, we consider

the number of machines, configuration of machines, network bandwidth, etc, as the operational

parameters.

As outcome of our study vastly depends on definition of objectives of the cluster, we describe

the objectives that we consider in our cluster. Then, we construct a mathematical model

incorporating these cluster objectives, which eventually formulate our research problem. Note

that in our model and problem formulation, more cluster objectives can be added if needed.

However, in this thesis we confine our focus with four cluster objectives.

3.1 Cluster Objectives

We present the four cluster objectives which we adopt in this study, along with impacts of

operational parameters over them, in the following way:

• Objective 1 - Decreasing computation time: Computation time refers to the time required

to finish a task assigned to a cluster. Cluster administrators always want to decrease the

13

CHAPTER 3. PROBLEM FORMULATION 14

0

5

10

15

20

25

30

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C
om

pu
ta

tio
n

tim
e

(m
in

s)

of machines

6 GB
9 GB
12 GB

(a) Computation time comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

To
ta

l e
ne

rg
y

(K
W

h)

of machines

6 GB
9 GB
12 GB

(b) Total energy consumption comparison

0

10

20

30

40

50

60

70

80

90

100

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C
PU

 u
til

iz
at

io
n

(%
)

of machines

6 GB
9 GB
12 GB

(c) CPU utilization comparison

Figure 3.1: Comparative analysis of cluster objectives with an increase of number of machines

computation time so that tasks are finished within a shortest possible time. From Fig.

3.1(a), we can see that when we increase the number of machines, the computation time

gets decreased. We make our experiment in different seasons of the year and find the

same pattern which indicates the robustness of our experimental decision. Moreover, if

we increase the workload, the computation time gets increased as well.

CHAPTER 3. PROBLEM FORMULATION 15

• Objective 2 - Decreasing total energy: In computing clusters, we want to decrease total

energy consumption. From Fig. 1.3, we can see cooling energy plays a significant role in

total energy consumption (around 39%). Hence, we incorporate cooling energy module

in total energy consumption. We describe the procedure to integrate cooling energy

into the existing SimGrid in Chapter 5. From Fig. 3.1(b), we can see a trend line of

decreasing energy consumption with the increase of number of machines. Decreasing

energy consumption with the increase of number of machines is unusual, however, it was

evident in our experiment. We describe a possible cause in Chapter 5.

• Objective 3 - Decreasing cost: Cost to operate a computing cluster increases with the

increase of number of machines. Cluster administrators want to decrease the cost of a

cluster. With the increase of number of machines other costs like maintenance, utilities

etc. will also be increased.

• Objective 4 - Increasing utilization: Administrators also try to improve the resource

utilization. When a machine runs it consumes a particular amount of physical memory

and CPU usage. Getting more CPU and memory utilization with the help of fewer

number of machines is more desirable than getting smaller CPU and memory usage with

a greater number of machines. From Fig. 3.1(c), we can see CPU utilization decreases

with the increase of number of machines.

In the following section we will discuss different environmental impacts over cluster objectives.

3.2 Impacts of Different Factors on Cluster Objectives

Different environmental factors have significant impacts over cluster objectives. Here, we dis-

cuss how these factors have impacts on cluster objectives.

Impacts of Number of Machines: Cluster objectives are dependent on the number of oper-

ating machines. Number of operating machines has conflicting impacts over cluster objectives.

By increasing number of machines, we can decrease computation time. At the same time, the

CHAPTER 3. PROBLEM FORMULATION 16

0

2

4

6

8

10

12

14

16

18

30
-2

30
-0

29
-0

28
-0

27
-0

26
-0

25
-0

24
-0

23
-0

22
-0

21
-0

20
-0

19
-0

18
-0

17
-0

16
-0

15
-0

14
-0

13
-0

12
-0

11
-0

10
-0 9-
0

8-
0

7-
0

6-
0

5-
0

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

of machines-# of failures
(a) Computation time comparison

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

30
-2

30
-0

29
-0

28
-0

27
-0

26
-0

25
-0

24
-0

23
-0

22
-0

21
-0

20
-0

19
-0

18
-0

17
-0

16
-0

15
-0

14
-0

13
-0

12
-0

11
-0

10
-0 9-
0

8-
0

7-
0

6-
0

5-
0

To
ta

l e
ne

rg
y

(K
W

h)

of machines - # of failures
(b) Total energy consumption comparison

0

10

20

30

40

50

60

70

80

90

100

30
-2

30
-0

29
-0

28
-0

27
-0

26
-0

25
-0

24
-0

23
-0

22
-0

21
-0

20
-0

19
-0

18
-0

17
-0

16
-0

15
-0

14
-0

13
-0

12
-0

11
-0

10
-0 9-
0

8-
0

7-
0

6-
0

5-
0

C
PU

 u
til

iz
at

io
n

(%
)

of machines - # of failures
(c) CPU utilization comparison

Figure 3.2: Comparative analysis of cluster objectives with different number of machines and
with a presence of machine failure

total energy consumption will be decreased. We can fulfill these two objectives with the in-

crease of number of machines. However, resource utilization will be decreased with the increase

of number of machines. As more machines are now working, they will not be utilized according

to their capacities. At the same time, the operating cost will also be increased, which is not

CHAPTER 3. PROBLEM FORMULATION 17

desirable. Hence, number of machines have conflicting impacts over cluster objectives. Fig.

3.1 shows the impacts of increasing number of machines.

Impacts of Configuration of Computing Machines: Configuration of computing ma-

chines have impacts on cluster objectives. High-performing computing machines can reduce

the computation time. At the same time, these machines increase the overall cluster cost.

Impacts of Machine Failures: From our experiment, we see that failures can have a seri-

ous impact on computation time, total energy consumption and also in resource utilization.

However, these impacts are highly dependent on workload. We find that impacts with smaller

workload are more severe than the impacts with larger workload. From Fig. 3.2(a) we can see a

comparative analysis. With workload of 12.6 GB, 30 machines with 2 failures have comparable

performance to 6 machines with no failure. Here, along the X-axis, M-N denotes M number of

machines with N number of failures. Hence, 30-2 denotes 30 machines with 2 failures. From

Fig. 3.2(b), we can see that failures can cause a significant increase in energy consumption.

Even 12 machines with no failure can be more energy efficient than 30 machines with 2 failures.

From Fig. 3.2(c), we can also see the impact of failures in CPU utilization.

Based on these impacts we develop a mathematical model for many-objective optimization

problem.

3.3 Proposed Problem Formulation

We define the configuration of a computing machine as the machine property. We can have

different machine properties such as physical memory, processor speed, failure rate or network

bandwidth. We represent these properties as P1, P2, P3, ..., PN , where N is the number of

machine properties. We express the effectiveness of a computing machine using the term

Machine Value, MV . We can define the machine value of a computing machine i by MVi =

w1×P1+w2×P2+w3×P3+ ...+wN×PN . w1, w2, w3, ..., wN are the weights of N properties. In

this thesis, we use CPU usage, memory usage, and network bandwidth as machine properties.

We try to optimize the following four objectives in this thesis: (1) Minimizing computation

time, (2) Minimizing total energy consumption, (3) Minimizing cost, (4) Increase utilization.

Minimizing computation time: Computation time is dependent on the number of machines

and machine value. As we said earlier, we will get a decrease in computation time with the

CHAPTER 3. PROBLEM FORMULATION 18

increase of number of machines. Computation time will also be decreased when the machine

value is increased (using high performing machines). Let, there are NM machines in the cluster.

We can express the objective as:

max

NM∑
i=1

si(MV)i
(3.1)

si is the decision variable, which describes an indicator function. si is 1 if we take ith machine

into our cluster and 0 if we do not take ith machine. We can write:

si =

1, if machine i is in the cluster

0, otherwise

For simplicity, we make this optimization problem as a minimization problem and make nec-

essary changes in all the objective functions. Hence, the objective function becomes:

min

NM∑
i=1

(100− si(MV)i)
(3.2)

The machine value for any device i will be any value from 0 to 100. Computation time is also

dependent on work load. If the workload gets increased then the computation time will be

decreased. If the workload for machine i is Wi, then we get the following normalized value for

the objective function:

min

∑NM

i=1 (100− si(MV)i)∑NM

i=1 si × 100
× PW1 +

Wi

Wmax(i)
× PW2

(3.3)

We use Wmax(i) as the maximum allowable workload for machine i. Wi is the machine workload,

which we assume Totalworkload∑NM
i=1 si

. This is because our simulation platform SimGrid normally

distributes its workload among machines equally. PW1 and PW2 indicate the property weights.

We assume similar effects from machine configuration and workload. That is why we give same

50-50 weights in both PW1 and PW2 of Eq. 3.3. We can also use a variable here if we intend

to make different effects of machine configuration and workload.

Minimizing total energy consumption: Energy consumption is dependent on the number

CHAPTER 3. PROBLEM FORMULATION 19

Table 3.1: Impacts of weight values in experimental results.

Weight
ratio

Compu
tation
time

Cooling
energy
(KWh)

Computation
energy
(KWh)

No. of
selected
machines

CPU
usage (%)

Memory
usage (%)

25-75 34.8 2.6 0.3 7 57.5 91.2
75-25 23.5 1.76 0.24 11 55.2 91.0

of cluster machines and temperature difference. From Fig. 5.4(b), we can see that total

energy is decreasing with the increase in number of machines. If the temperature difference

(Tdiff) decreases, the total energy consumption gets decreased. Let, TE be the environment

temperature. In our model, there is a range for allowable temperature. TM is the maximum

allowable temperature within the cluster, and TL is the lowest value of allowable temperature

range. TD be the decision variable within TL and TM . We can describe Tdiff = TE − TD.

The cooling system needs to cool the system by Tdiff amount. The maximum temperature

difference can be TMaxDiff = TE − TL. We can write the following objective function:

min

∑NM

i=1 si
NM

× PW3 +
Tdiff

TMaxDiff

× PW4

subject to TL ≤ TD ≤ TM

(3.4)

We assume same weights for number of machines and temperature difference (PW3 and

PW4) in Eq. 3.4. We can use different weights if we intend different effects of number of

machines and temperature difference.

We can bias the solution for a specific objective by varying the weights. In Table 3.1, we can see

the impacts of weight values in experimental results. 25-75 weight ratio indicates to give less

weights (25%) in variables PW1 and PW3. It gives around 75% weight to variable PW2 and

PW4. This 25-75 weight ratio selects less number of machines. Hence, computation time, and

energy consumption gets increased as we select less number of machines. At the same time,

CPU usage, and memory usage gets increased as we select less number of machines. 75-25

weight ratio give the opposite results.

Minimizing cost: Cost of the cluster is dependent on the number of machines and machine

configuration. Cost will be increased with the increase of number of machines. High performing

CHAPTER 3. PROBLEM FORMULATION 20

machines will also increase the cost. We can write the objective function:

min

NM∑
i=1

si(MV)i
(3.5)

Maximizing utilization: Utilization will be increased if we decrease the number of machines.

We multiply with 100 here to have a value within 0 to 100 range as we have all other objective

values within this range.
∑NM

i=1 si indicates the number of selected machines and NM indicates

the number of total cluster machines. We can write the objective function as:

min

∑NM

i=1 si
NM

× 100
(3.6)

If there are
∑NM

i=1 si number of machines and Wi workload, then there should be Wi∑NM
i=1 si

work

load per machine approximately. If HDDi be the size of the hard disk of machine i , we can

write the constraint as ∀i Wi∑NM
i=1 si

≤ HDDi. Combining all the above objectives and constraints

we can write:

min

∑NM
i=1 (100−si(MV)i)∑NM

i=1 si×100
× PW1 + Wi

Wmax(i)
× PW2

∑NM
i=1 si
NM

× PW3 +
Tdiff

TMaxDiff
× PW4

∑NM

i=1 si(MV)i

∑NM
i=1 si
NM

× 100

subject to

∀i Wi∑NM
i=1 si

≤ HDDi

∑NM

i=1 si(MV)i > 0

TL ≤ TD ≤ TM

In Chapter 4, we will try to optimize the above optimization problem.

Chapter 4

Proposed Solution Technique

In Chapter 3, we described a many-objective optimization problem and there are many tech-

niques to solve this problem which can be found in [20]. In our experiment, we use NSGA-III

as our baseline algorithm. We make empirical analyses of the cluster environment to modify

the NSGA-III algorithm. We use a greedy approach while modifying the existing NSGA-III

algorithm.

Justification behind our Proposed Approach: We use a synergy between NSGA-III and

greedy approach in solving our cluster problem. Applying greedy approach in evolutionary al-

gorithm is not new. In [45], authors use a greedy crossover approach to solve traveling salesman

problem [46]. In [47], the authors try to use a greedy approach with evolutionary algorithm in

solving bounded-diameter minimum spanning tree problem. Authors try to solve a quadratic

assignment problem based on greedy genetic algorithm in [48]. In most of the cases, later in

this book in Section 6.1, we also show our greedy NSGA-III approach performs better than the

existing NSGA-III algorithm which also validates our solution approach.

Several functions are usually participated in an optimization algorithm like selection, crossover

and mutation. We use our analyses results to design these functions. In our optimization

problem, selection decision of a machine is considered as a decision variable. If there are NM

number of machines then we will have NM number of decision variables. We also consider the

expected environment temperature (previously expressed as TD) as a decision variable. This

expected temperature will be maintained by the cooling devices. Hence, our algorithm will

finally give the number of machines to be active in the cluster, a selected set of machines and a

21

CHAPTER 4. PROPOSED SOLUTION TECHNIQUE 22

temperature, which needs to be maintained by the cooling devices. We will have the following

decision variables:

s1, s2, s3, ..., sNM
, TAC

Here, s1, s2, s3, ..., sNM
are the indicate variables which can be either 0 or 1. TAC indicates the

temperature which should be kept by the cooling devices. Now, we are describing different

modifications over the functions which are actively used in optimization steps.

Population Selection From our experiment, we find that if the number of machines is below

than a particular number then the computation time and total energy consumption are very

high. From Fig. 3.1(a) and 3.1(b), we can see that the rate of decrement in computation time

and total energy is very high when the number of machines is less than 6 to 8. After this range,

we see a decrease in the changing rate significantly. Based on this observation, while we select

population for the next generation, we eliminate the population which has fewer operating

machines. In our case, we take this threshold value, Th as NM

6
. We use jMetal [49] as the

Algorithm 1 Population Selection

1: function selectPopulation(Threshold value, Th)
2: G← Existing generation
3: for each population p ∈ G do
4: populationSize← populationSize(p)
5: if populationSize > Th then
6: newGeneration.add(p)

7: Fill up the generation with random population
8: return newGeneration

objective optimization framework and modify the existing selection, mutation and crossover

functions. Algorithm 1 shows the steps for population selection.

For a workload of 67.7 GB, we experiment in the simulation platform SimGrid to show the

effects of different threshold values. We will present the details of experimental setup in later

chapters. For now, we are just going to show the simulation results for threshold values of NM

from 2 to 8.

We can see the impacts of selection threshold in Table 4.1. We have a good value for compu-

tation time when we have NM as 4. We have good values for cooing energy and computation

energy when NM is 6. When we take very small value for threshold NM , chance is very high

CHAPTER 4. PROPOSED SOLUTION TECHNIQUE 23

Table 4.1: Impacts of selection threshold value in experimental results

Threshold
value

Computation
time (mins)

Cooling
energy
(KWh)

Computation
energy
(KWh)

2 11.1 0.43 0.92
4 9.5 0.31 0.66
6 9.7 0.24 0.53
8 10.2 0.32 0.68

Table 4.2: Impacts of selection threshold value in solutions of pareto-front

Threshold
value

Total no. of
solutions in the

pareto front
No. of solutions

with < 6 machines
No. of solutions

with >= 6 machines

2 120 34 86
4 120 27 93
6 120 13 107
8 120 14 106

to have more population with with fewer number of machines. Table 4.2 shows the solutions

of pareto-front. It is evident that when NM is 2, there are 34 solutions among 120 solutions

which have less than 6 machines in its pareto-front. When we increase the value of NM , the

number of solutions with less than 6 machines gets decreased. We found the lowest value when

we have NM as 6. Solutions with less than 6 machines have bad effects over cluster objectives.

Hence, we try to ignore these solutions as our solution for the cluster administrator. We can

use the elbow points to get the value of NM . Before this elbow point we have a sharp change

in the output. After this point, we have a smooth change. Fig. 4.1(a) to 4.1(f) show the values

of elbow points. It indicates the elbow points in between 7 and 10.

Crossover: While making crossover we use a partition to separate machine selection variables

and temperature variable as they are different forms of variables. We make crossover among

machine selection variables while not mixing temperature variable with machine selection vari-

able. From Fig. 4.2, we can see the crossover regions. Yellow portion and blue portion will

have crossover separately. From Algorithm 2, we can see the crossover algorithm. We make

three steps crossover modification. Following a greedy technique, we introduce biasness for

the highly performing machines while we make crossover. This ensures a high chance of their

CHAPTER 4. PROPOSED SOLUTION TECHNIQUE 24

(a) Elbow point in computation time graph with 6
GB workload

(b) Elbow point in computation time graph with 9
GB workload

(c) Elbow point in computation time graph with 12
GB workload

(d) Elbow point in total energy consumption graph
with 6 GB workload

(e) Elbow point in total energy consumption graph
with 9 GB workload

(f) Elbow point in total energy consumption graph
with 12 GB workload

Figure 4.1: Elbow points in different graphs for getting the value of NM

CHAPTER 4. PROPOSED SOLUTION TECHNIQUE 25

Algorithm 2 Population Crossover

1: function crossOver(Parent P1, Parent P2)
2: C1 ← Chromosome set in P1

3: C2 ← Chromosome set in P2

4: size← C1.size()− 1
5: i = 0
6: while i < size do
7: if C1.get(i) 6= C2.get(i) and Random.nextDouble() < crossOverProbability then
8: Inter-change chromosome value

9: noOfCluster ← 2
10: Implement k-means clustering for all machine properties with noOfCluster
11: Find out the machines, which are in the top group for all the machine properties,

ST .
12: Find out the machines, which are in the lowest group for all the machine properties,

SL.
13: if i is in ST and Random.nextDouble() < insertProbability then
14: C1(i).set(1)
15: C2(i).set(1)

16: if i is in SL and Random.nextDouble() < deletionProbability then
17: C1(i).set(0)
18: C2(i).set(0)

19: i + +

20: if Random.nextDouble() < takeTopProbability then
21: rndProperty = Random.nextInt() mod noOfproperty
22: Take the top machine for rndProperty
23: Remove the lowest valued machine for rndProperty property

24: Update P1 and P2 according to the value of C1 and C2

selection in the new generation. We describe the three steps crossover below:

• Half uniform crossover: We apply half-uniform crossover as our primary crossover

technique. Crossover is made over 50% of the total chromosomes. As we have binary

decision variable, we only make crossover when the particular chromosome is different

from each other. We can see the half uniform crossover in lines 7 and 8 of Algorithm 2.

• Crossover based on clustering: We separate the NM number of machines into two

clusters for each property. Line 10 of Algorithm 2 shows this. We use Euclidean distance

in k-means clustering to make two separate clusters. We deploy Cluster 3.0 [50] tool for

clustering. We name these two clusters as high performing and low performing clusters.

We make a set (ST) of machines, which are in the high performing cluster for all properties

CHAPTER 4. PROPOSED SOLUTION TECHNIQUE 26

ࡹࡺ࢙ ࢙ ࢙ ࢙ ࡰࢀ

ࡹࡺ࢙ ࢙ ࢙ ࢙ ࡰࢀ

Figure 4.2: Crossover region for decision variables. Crossover will be made within yellow
portion and blue portion separately.

and a set of machines (SL), which are in the low performing cluster for all properties.

Line 11 and 12 of Algorithm 2 show this. From ST , with some probabilistic condition,

we take machines into our next generation. Besides, from SL, with some probabilistic

condition, we do not take that machine into our next generation. We can see this in lines

13-18 of Algorithm 2.

• Take the top and remove the bottom: With some probabilistic condition, we take

the topmost machine for one property (which is also selected with some probabilistic

process) and exclude the bottom most performing machine for that property. We see this

from line number 20-23 of Algorithm 2.

Solution Filtering: Optimization methods give a pareto-front with multiple solutions.

From Fig. 4.3, we can see four objective values for different optimization techniques. In

these graphs, each line indicates one solution with four objective values. We only show fifteen

solutions with all the objective values for the sake of clarity. Along the X-axis we take the

objective numbers, and along the Y-axis we take the objective values. Solutions having a

desirable value for one objective sometimes have an undesirable value for other objectives.

These solutions are not acceptable since they make significant performance degradation for

some objectives. Hence, we take only those solutions, which have values from 25% to 75% for

all objectives. Among these solutions, based on the administrator defined weighted function,

we select only one solution. We use the following function to converge four objective values

into one value:

Ftotal=Wobj1× Vobj1 + Wobj2 × Vobj2 +· · ·+ WobjN × VobjN . (4.1)

CHAPTER 4. PROPOSED SOLUTION TECHNIQUE 27

(a) Objective values with PSO

(b) Objective values with ant colony optimization

(c) Objective values with modified NSGA-III

Figure 4.3: Objective values with different optimization techniques

In Eq. 4.1, every objective value, Vobj, should be within 25% to 75% of the corresponding

objective value. In this way, we can filter out the solutions which do not have desirable values

for all objectives. The weights of these objectives can be defined by the cluster administrator.

After having the feasible solutions, we make a sorting over the feasibleSolution, and take the

top solution having the lowest merged objective value since we have a minimization problem

CHAPTER 4. PROPOSED SOLUTION TECHNIQUE 28

here. Algorithm 3 shows the filtering process. Here, firstBoxP lot indicates the 25% value

and thirdBoxP lot indicates the 75% value.

Algorithm 3 Solution Filtering

1: function solutionFiltering(objectiveValues, O)
2: if for all objectives o.val() ≥ O.firstBoxP lot() and o.val() ≤ O.thirdBoxP lot() then
3: feasibleSolution.add(O)

4: Sort feasibleSolution in increasing order
5: return feasibleSolution.get(0)

Chapter 5

Cooling Energy Integration in

SimGrid

In the previous chapters, we mentioned that we integrate a cooling energy module into SimGrid

to evaluate total energy consumption in clusters correctly. In this chapter, first, we will give

an overview about SimGrid. Then we will show how we integrate cooling energy module into

SimGrid. Later, we will show how we validate our model with real testbed setup.

5.1 Overview on SimGrid

SimGrid [13] is a well-known simulation tool for distributed systems. It mainly supports C

and Java programming language. Users can create simulation topology using XML format. To

create topology, one must define the configurations of all the nodes along with the connections

among them. One must describe a deployment scenario of the topology in another XML

file. In XML format, one needs to mention about the description of jobs, their chunk sizes,

selection of master, and slave nodes. SimGrid master distributes the jobs among the worker

machines. SimGrid can measure the computation time to complete the jobs. Moreover, there

is a module to calculate computation energy consumption. This energy uses workload and

computation time while evaluating computation energy consumption. Though SimGrid can

measure computation energy, it does not have any plug-in to measure cooling energy. Next,

we will show the methodology that we use to measure cooling energy of computing clusters.

29

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 30

5.2 Proposed Methodology

As mentioned earlier, SimGrid can evaluate energy dissipations by the machines of a dis-

tributed system. However, this energy plug-in does not include cooling energy. Present energy

plug-in first evaluates the CPU load. CPU load is dependent on the task that is intended to

be done by the participant machines. Then the energy plug-in measures the necessary time to

complete the task. This time is dependent on the processing power of the machines. Based on

the CPU load and required time, SimGrid measures the energy consumption to complete the

given task.

SimGrid has three types of energy consumption state. One state gets initiated when the

CPU is in full-load, another state gets initiated when the CPU is idle, and the remaining

state gets initiated when the CPU is totally off. All of these states are pertinent to measuring

computational power, exhibiting no impact related to cooling power.

In SimGrid, we model cooling energy based on CPU load and temperature difference between

environment and cluster temperature. Cooling energy is also dependent on many other factors,

however, to correlate with the existing simplified model of energy consumption, we keep our

model simple. We have the conventional heat formula as:

Q = Cp ×W ×DT (5.1)

where Q denotes the generated heat, Cp means the specific heat. W refers the mass of the

airflow per minute. This airflow is required to keep the temperature of the machines to a

specific value, and the mass of the airflow is counted for a particular time. DT means the

difference between environment temperature and maximum allowable temperature (we will

give an example later).

Also, it is not very hard to write:

W = CFM ×D (5.2)

Here, CFM denotes cubic feet per minute and D refers to density. We can validate this equation

by observing the units. CFM refers to volumeperminute and density refers to masspervolume.

Multiplying both we get massperminute which is the same unit that we have for W .

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 31

Putting the value of Eq. 5.2 to Eq. 5.1, we get the following equation:

Q = Cp × CFM ×D ×DT (5.3)

From Eq. 5.3, we consider the equation for airflow in a chassis as follows:

CFM =
Q

Cp ×D ×DT
(5.4)

Specific heat of a room remains constant and at a certain place where the pressure is

constant we can assume density also remains constant. Considering other heat losses through

the chassis wall we can write the following formula [51] for Fahrenheit scale:

CFM =
3.16×Q

DT (F)
(5.5)

Where DT (F) denotes the temperature difference in Fahrenheit scale. In Celsius scale it

can be written as:

CFM =
1.76×Q

DT (C)
(5.6)

For example, if the chassis has 200 watts of load, environment has temperature of 26◦ Celsius,

and maximum allowable temperature is 38◦ Celsius, then in Celsius scale we can write:

CFM =
1.76× 200

(38− 26)
= 44 (5.7)

CPU load is responsible for heat generation. More heat will be generated with the increase of

CPU load. As they show proportional relation, we can write Q as the CPU load instead of

heat, for any given time and task.

Algorithm 4 shows the algorithm that we used in our experiment. Here, environment

temperature is TE and we need to keep the chassis temperature at TA, which is the maximum

allowable temperature. Then the difference will be TE ∼ TA. This difference is the same

difference that is showing in Eq. 5.5 and Eq. 5.6 as TF annd TC . SimGrid provides the CPU

load. Using this CPU load and temperature difference we calculate the value of CFM. We use

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 32

Algorithm 4 Cooling Power Integration Algorithm

1: function UpdateCoolingEnergy(Work-load, W)
2: TE ← EnvironmentTemperature
3: TA ←MaximumAllowableTemperature
4: TDiff ← TE ∼ TA

5: CFM ← 1.76×W
DT (C)

6: Power ← PreviousPower + (CFM × 47.82)
7: ConsumedEnergy ← Power × TimeForComputation

Table 5.1: Simulation environment in laboratory

Parameter Value
No. of master 1
No. of slaves 29

Processor Intel Core 2 Duo
Processor base frequency 2.4 GHz, 2.66 GHz and 2.8 GHz

Memory 1GB to 2GB
OS Ubuntu 14.04 LTS (x86)

Table 5.2: Frequency and memory vs number of machines

Processor base frequency Memory No. of machines
2.4 GHz 1 GB 1
2.4 GHz 2 GB 2
2.66 GHz 1 GB 2
2.66 GHz 2 GB 8
2.8 GHz 2 GB 17

1 CFM = 47.82 W [52] to get the watt value corresponding to the CFM . Finally, we multiply

this watt value with computation time to get the consumed energy.

5.3 Validation of Cooling Energy Integration

We validate our energy integration through comparing our simulation results against that

obtained from real experiments performed in a real testbed. We briefly present the testbed

settings following a comparative result.

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 33

Figure 5.1: Topology of laboratory setup

5.3.1 Testbed Settings

We prepare a testbed in a laboratory having thirty machines. Among them we select one as

the master node and rest ones as slave nodes. Fig. 1.2 shows the distribution of tasks from

the master node to slave nodes. To implement the distributed system, we use Hadoop [4]

framework. We set up a distributed, multi-nodes (30 PCs) Apache Hadoop cluster backed by

the Hadoop Distributed File System (HDFS), running on Ubuntu Linux [53]. We vary the data

size from 3.14GB to 12.6GB (with 4, 8, 12 and 16 files, each having 787 MB data) and the

machine number from 5 to 30. We exploit this laboratory setup to get total energy and cooling

energy consumption. For a particular data size and number of machines, we run the popular

word-count task four times so that we can minimize the effects of outliers. Table 5.1 shows the

lab environment in detail, Table 5.2 shows the number of machines based on frequency and

memory, and Fig. 5.2 shows the snapshot of laboratory set-up. From Fig. 5.1, we can see the

overall topology where a master and 29 slaves are connected through a switch.

We use two Arduino energy monitors to get computation energy and cooling energy. Each

energy monitor has two current transformers and one potential transformer. In Fig. 5.3, left

energy monitor collects current from air-conditioner #1 (AC-1), cluster current, and cluster

voltage. Right energy monitor collects current from air-conditioner #2 (AC2), air-conditioner

#3, and voltage from air-conditioner #2. We use these hardware tools to estimate the values

of real power, apparent power, power factor, voltage, and current. We use power formula to

get computation power and cooling power. Power consumed by air-conditions is considered as

the cooling power. After that, using Work = P × T formula we get the computation energy

and cooling energy, where, P refers to power and T refers to time. One thing is to be noted

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 34

Figure 5.2: Snapshot of laboratory setup

Figure 5.3: Testbed hardware setup for evaluating cooling energy and computation energy

that, computation power means the power which is necessary to finish the given task by the

participant machines. In the case of SimGrid, computation power can be measured by the

existing energy plug-in. In this thesis, we use computation power and energy consumption

(without cooling energy) interchangeably.

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35

C
oo

lin
g

en
er

gy
 (K

W
h)

of machines

SimGrid
Testbed

(a) Cooling energy comparison for 12.6 GB data

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35

C
om

pu
ta

tio
n

en
er

gy

(K
W

h)

of machines

SimGrid
Testbed

(b) Computation energy comparison for 12.6 GB data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

E
ne

rg
y

(K
W

h)

of machines

Current SimGrid
output
SimGrid total energy

Testbed total energy

(c) Total energy comparison for 12.6 GB data

Figure 5.4: Energy comparison between SimGrid and Testbed for 12.6 GB data

Table 5.3: Average and standard deviation comparison between testbed and SimGrid

Workload
Cooling energy consumption(KWh) Computational energy consumption(KWh) % deviation in SimGrid w.r.t. testbed

Average Std. deviation Average Std. deviation Cooling energy Computational energy
Testbed SimGrid Testbed SimGrid Testbed SimGrid Testbed SimGrid Average Std. deviation Average Std. deviation

12.6 GB 0.367 0.235 0.156 .0975 0.088 0.125 0.006 0.052 36.1 37.7 41.6 766.7
9.44 GB 0.398 0.176 0.281 .073 0.069 0.094 0.006 0.039 55.7 74.0 35.6 550.0
6.3 GB 0.242 0.117 0.134 0.049 0.052 0.063 0.006 0.026 51.6 63.4 19.9 348.3
3.14 GB 0.146 0.058 0.058 0.025 0.030 0.031 0.002 0.013 60.2 48.6 5.1 500.0

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 36

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20 25 30 35

C
oo

lin
g

en
er

gy
 (K

W
h)

of machines

SimGrid
Testbed

(a) Cooling energy comparison for 9.44 GB data

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30 35

C
om

pu
ta

tio
n

en
er

gy

(K
W

h)

of machines

SimGrid

Testbed

(b) Computation energy comparison for 9.44 GB data

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

E
ne

rg
y

(K
W

h)

of machines

Current SimGrid
output
SimGrid total
energy
Testbed total
energy

(c) Total energy comparison for 9.44 GB data

Figure 5.5: Energy comparison between SimGrid and Testbed for 9.44 GB data

5.3.2 Testbed Compatible Settings in SimGrid :

After setting up the real testbed, we try to imitate the lab environment into our SimGrid

environement. To imitate the testbed, we need to make some conversion over parameter units

as SimGrid uses a different unit system for measuring machine power. SimGrid uses FLOating

Points per Second (FLOPS) unit for evaluating the power of machines. We use the following

formula to evaluate FLOPS [54] [55] [56]:

FLOPS = Ns × Nc

Ns
× Cycles

second
× FLOPS

Cycle

Here, Ns refers to the number of sockets, Nc refers to the number of cores per socket, Cycles
second

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 37

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

C
oo

lin
g

en
er

gy
 (K

W
h)

of machines

SimGrid
Testbed

(a) Cooling energy comparison for 6.3 GB data

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30 35

C
om

pu
ta

tio
n

en
er

gy

(K
W

h)

of machines

SimGrid
Testbed

(b) Computation energy comparison for 6.3 GB data

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

E
ne

rg
y

(K
W

h)

of machines

Current SimGrid
output

SimGrid total energy

Testbed total energy

(c) Total energy comparison for 6.3 GB data

Figure 5.6: Energy comparison between SimGrid and Testbed for 6.3 GB data

refers to the frequency of the machine, and FLOPS
Cycle

refers to the floating point operations per

cycle.

We adopt these values from the specifications of the laboratory machines. Table 5.5 shows the

simulation environment.

We create each file using random texts of 787MB size. We use different number of files ranging

from 4 to 16. Hence, we consider data size from 3.14GB to 12.6GB. In SimGrid, we have

to give the number of chunks and the size of each chunk. We divide our total data size

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 38

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35

C
oo

lin
g

en
er

gy
 (K

W
h)

of machines

SimGrid
Testbed

(a) Cooling energy comparison for 3.14 GB data

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25 30 35

C
om

pu
ta

tio
n

en
er

gy

(K
W

h)

of machines

SimGrid

Testbed

(b) Computation energy comparison for 3.14 GB data

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35

E
ne

rg
y

(K
W

h)

of machines

Current SimGrid
output

SimGrid total
energy

Testbed total
energy

(c) Total energy comparison for 3.14 GB data

Figure 5.7: Energy comparison between SimGrid and Testbed for 3.14 GB data

into five thousand chunks. For example, 12.6GB data will be divided into equal sized five

thousand chunks. This is a random value, however, other chunk sizes show similar results.

We know from our early description that each node can have three power states. From our

testbed experiment, we get most nodes consume 100W-120W power. The more the load, the

more the power consumption. It is also known from our testbed experiment that when the

machine is in idle state it dissipates 40W power. At power-off state, we have only 5W power

consumption. Table 5.4 shows the power states. Fig. 5.8 shows how we measure cooling

power and computation power. SimGrid generally divides a large file into small chunks similar

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 39

Table 5.4: Different power states and consumed power

Power state Consumed power
Active state 100W-120W

Idle state 40W
Power-off state 5W

Table 5.5: Simulation environment in SimGrid

Parameter Value
of master machines 1
of slave machines 4, 9, 14, 19, 24, 29

PC power 38,400-44,800 Mega FLOPS
PC power consumption Peak: 100 - 120 W, idle: 40 W, power off: 5 W

Line bandwidth 100 kbps
Total # of files 4, 8, 12, 16
Size of each file 787 MB
Total data size 3.14. 6.3, 9.44, 12.6 GB

Maximum allowable temperature 22◦ C
Environment temperature 25◦ C

to Hadoop. Hence, if we use big files (more than 787MB) then the number of chunks will

be increased, and the simulation will take much longer time to finish and will consume more

cooling energy.

5.3.3 Experimental Results

We create an identical environment, and distribute same amount of work among nodes. We

experiment the whole process similarly in both SimGrid and testbed platform. After that, we

compare cooling energy, computation energy, and total energy between testbed and SimGrid.

We can see the comparison from Fig. 5.4-5.7 for various data sizes. For each data size, these

figures show the comparison for cooling energy, computation energy, and total energy. If we

increase the number of machines, the energy gets decreased, and this is evident in all the

graphs. It is visible from the fact that all the graphs have a downward slope. If we use smaller

number of machines then all the machines need to work for a long time. At the same time, the

overall power consumption gets decreased as we use smaller number of machines. However,

the ratio of increasing computation time is much more greater than the decrease in power

consumption. As we get energy from multiplying computation time with consumed power,

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 40

the overall energy consumption gets decreased with the increase in number of machines. On

the other hand, if we use more number of machines, the machines need to work for a smaller

amount of time and decrease consumed energy.

SimGrid previously had computation energy module. The comparison of computation energy

between existing SimGrid and real testbed can be seen from Fig. 5.4(b). 5.5(b), 5.6(b), and

5.7(b). We can see a common pattern of decreasing computation energy as we increase the

number of machines. Moreover, when the number of machines is 5, the difference between

SimGrid and real testbed is bigger than other differences. SimGrid and real testbed have

almost equal value when there are 15-20 machines.

We can see the cooling energy comparison graphs in Fig. 5.4(a). 5.5(a), 5.6(a), and 5.7(a). We

can see, cooling energy comparison graphs follow a similar pattern as the existing computation

energy comparison graphs. These graphs also show a big difference when the number of

machines is 5, and show nearly same cooling energy when there are 15-20 machines. Hence,

we can say that our modeled cooling energy curves follow the similar pattern of the existing

computation energy curves.

We can see the total energy comparison from Fig. 5.4(c). 5.5(c), 5.6(c), and 5.7(c). ”Current

SimGrid output” line shows the total energy value if we do not integrate the cooling energy.

SimGrid line shows the total energy after integrating cooling energy, and testbed total energy

line shows the total energy for testbed. We can see from these graphs that if we do not

integrate cooling energy, then the total energy value is far less than the actual value of the

total energy. After integrating cooling energy, we can get a close total energy line between

SimGrid and real testbed.

Both the results from SimGrid and real testbed have some variations, however, they are

closely similar. If we do not integrate cooling energy with SimGrid, this difference will be

more prominent.

In Table 6.2, we show the comparison of average value and standard deviation between testbed

and SimGrid. We present the result for various workloads.

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 41

5.3.4 Summary of Findings

We can summarize our findings as follows:

• Both the computation energy and cooling energy deviate similarly from the testbed energy

consumption. Hence, our module for cooling energy is compatible with the existing energy

model of SimGrid.

• Number of machines and energy consumption follow an inverse relationship. This inverse

relationship is observable in our cooling energy model as well as existing computation

energy model. Testbed result also validates this.

• In most cases, if we increase the workload then the consumed energy is increased. We

get the similar trend for SimGrid simulation and testbed experiment, though there are

some exceptions.

• Integrating cooling energy is necessary to get a closer total energy consumption to real

testbed.

CHAPTER 5. COOLING ENERGY INTEGRATION IN SIMGRID 42

(a) Measuring computation power

(b) Measuring cooling power

Figure 5.8: Measuring computation and cooling power

Chapter 6

Experimental Results

In this chapter, we will show the experimental results in both platform. We rigorously ex-

perimented our approach with other existing approaches in both real testbed and simulation

platform SimGrid. In Chapter 4, we see the solution approach to solve the problem indicated

in Chapter 3. We implemented an NSGA-III based algorithm. Hence, at first, we will see

how our modified NSGA-III algorithm performs better than the existing NSGA-III algorithm.

Then we will discuss our experimental results and present a comparative results among our

approach and existing other approaches.

6.1 Validation Modified NSGA-III Performs Better

Than NSGA-III

We use Table 6.1 for showing the modified NSGA-III technique performs better than the ex-

isting NSGA-III approach. We use different workloads from 28.3 GB to 67.7 GB. We use 30

machines cluster in this case. Fig. 6.1 shows the experimental results in SimGrid. From Fig

6.1(a), we can see the comparison for computation time. For 28.3 GB and 67.7 GB data, mod-

ified NSGA-III performs better than the existing NSGA-III algorithm. For 50.4 GB data, both

NSGA-III and modified NSGA-III perform similarly. In Fig. 6.1(b), we can see the compari-

son for cooling energy consumption in different workloads. For each workload, we can see that

modified NSGA-III performs better than the NSGA-III though for 50.4 GB data they are very

43

CHAPTER 6. EXPERIMENTAL RESULTS 44

0

1

2

3

4

5

6

7

8

9

10

67.7 GB 50.4 GB 28.3 GB

C
om

pu
ta

tio
n

tim
e

(m
in

s)

Workload

NSGA-III
Modified NSGA-III

(a) Computation time comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

67.7 GB 50.4 GB 28.3 GB

C
oo

lin
g

en
er

gy
 (K

W
h)

Workload

NSGA-III

Modified NSGA-III

(b) Cooling energy consumption comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

67.7 GB 50.4 GB 28.3 GB

C
om

pu
ta

tio
n

en
er

gy
 (K

W
h)

Workload

NSGA-III

Modified NSGA-III

(c) Computation energy consumption comparison

Figure 6.1: Comparison of NSGA-III and modified NSGA-III with various workloads in
SimGrid with 30 machines cluster

close to each other. From Fig. 6.1(c), we can see another comparative result for computation

energy. Here, modified NSGA-III performs better than the NSGA-III for data sizes 28.3 GB

CHAPTER 6. EXPERIMENTAL RESULTS 45

0
1
2
3
4
5
6
7
8
9

10

Computation time (min) Computation energy (x10
KWh)

Cooling energy (x10 KWh)

Va
lu

e

Metric

Figure 6.2: Average of computation time, computation energy, and cooling energy in various
iterations with standard deviations

and 67.7 GB. NSGA-III performs better in this case for 50.4 GB data.

In real testbed, we perform the analysis for 31.5 GB data. We found NSGA-III needs 26 minutes

18 seconds to finish the task, however, modified NSGA-III needs 25 minutes 21 seconds to finish

the task. Hence, modified approach performs better than the NSGA-III. Modified NSGA-III

consumed slightly less cooling energy and computation energy too. Modified NSGA-III needs

2.07 KWh energy, whereas, NSGA-III needs 2.15 KWh cooling energy. For computation en-

ergy, modified NSGA-III needs 0.23 KWh energy and NSGA-III needs 0.25 KWh computation

energy. NSGA-III has some improved result for CPU and memory utilization. It utilizes

74.7% CPU and 91.3% memory utilization. Modified NSGA-III, on the other hand, utilizes

72.0% CPU and 91.0% memory. As in most cases, modified NSGA-III performs better we use

modified NSGA-III for solving the many-objective optimization problem. Next we will discuss

about the simulation experimentation and then we will discuss about the experimental results

for real testbed.

6.2 Effects of Number of Iterations over Performance

For a single setting, we run our NSGA-III algorithm for 10 times. We get different outputs.

However, as we use a greedy approach, there are some machines which are selected more often

than the other machines. At the same time, there are some machines which are selected less

CHAPTER 6. EXPERIMENTAL RESULTS 46

Table 6.1: Simulation environment in SimGrid

Parameter Value
of master machines 1
of slave machines 29, 49

PC power 4,000-38,000 Mega FLOPS
PC power consumption Peak: 10 - 400 W, idle: 2.5-100 W, power off: 5 W

Line bandwidth 10-100 kbps
Total # of files 86, 64 and 36
Size of each file 787 MB
Total data size 67.7 GB, 50.4 GB and 28.3 GB

Maximum allowable temperature 20− 23◦ C
Environment temperature 28◦ C

SimGrid version 3.12

than the other machines. Hence, over the solutions in different iterations we find a common

pattern of selected machines. That is why when we evaluate performance we get a similar

performance pattern over different iterations. From Fig. 6.2, we can see the average and

standard deviation for various iterations. In most cases, we get performance values close to

the average value as we select similar type of machines in each period. We use probabilistic

conditions to select the machines after clustering and identifying the best or worst machine.

This probability helps us not to select the biased machines all the time.

6.3 Simulation Evaluation

We test our algorithm and other existing techniques in a simulation environment. We use

30 and 50 machines clusters to test our algorithm and compare other techniques with our

technique. We use computation time, cooling energy, and simulation energy as our comparative

parameters. We cannot get CPU utilization and memory utilization directly from SimGrid.

Hence, we ignore these utilizations. We present utilization-based comparison in real testbed

results.

6.3.1 Simulation Settings

For simulation we use a well-known simulation tool for distributed system named SimGrid [13].

Our modified SimGrid has energy plug-in, which can compute both computation and cooling

CHAPTER 6. EXPERIMENTAL RESULTS 47

energy [57]. Table 6.1 shows the simulation environment in SimGrid. SimGrid uses different

unit conventions while setting-up machines in clusters. The conversion between SimGrid unit

and traditional unit can be found in Chapter 5. We use one master machine, and 29, 49 slave

machines. In SimGrid each machine should be given a power value. We use 4000-38000 Mega

FLOPs for giving the machine power values. We try to keep this value close to the real testbed

setup machine properties. We have three different level of power consumption for the machines

of SimGrid. We use up-to 400W when the machines are in full load, we use 2.5-100W when the

machines are idle, and we use 5W power consumption when the machines are off. We use line

bandwidth from 10 kbps to 100 kbps. There are 86, 64, and 36 files for which we implemented

the typical word count job. Each data file had 787 MB of data making total data size of 67.7

GB, 50.4 GB, and 28.3 GB data respectively. We use 5◦ C difference in temperature. We use

SimGrid 3.12 version for our simulation.

6.3.2 Simulation Results

Figures from 6.3(a) to 6.3(d) show the simulation results in SimGrid for 30 machines and

figures from 6.4(a) to 6.4(d) show the simulation results for 50 machines. We have the results

for 67.7 GB, 50.4 GB, and 28.3 GB data. White bar indicates the results for modified NSGA-

III, gray line indicates the result for Ant Colony Optimization (ACO) technique, and black line

indicates the simulation results for Particle Swarm Optimization (PSO) technique. In most of

the comparison, white bar is below than the other two bars which indicate the efficacy of our

proposed algorithm. Table 6.2 and 6.3 show the improvement made by our technique for 30

and 50 machines respectively.

6.3.3 Findings from Simulation Results

We test our algorithm with different workloads using the simulation environment of Table

6.1. Table 6.2 and 6.3 show the comparison. We take the following parameters as the cluster

objectives:

• Computation time

• Cooling energy

CHAPTER 6. EXPERIMENTAL RESULTS 48

Workload
Improvement over PSO Improvement over ACO

Time(%) Cooling energy (%) Comp. energy (%) Time (%) Cooling energy (%) Comp. energy (%)
67.7 GB 21 13 10 43 10 5
50.4 GB 36 11 10 17 8 8
28.3 GB 43 13 10 15 5 0

Table 6.2: Improvement over PSO and ant colony optimization with various workloads in
SimGrid with 30 machines

• Computation energy

We use 67.7 GB, 50.4 GB and 28.3 GB workloads and consider 30 and 50 machines clusters.

We can see from Table 6.2 and 6.3 that modified NSGA-III gives better performance than

other methods for all three objectives in most cases. In Table 6.2, we show the improvement

made by our modified NSGA-III algorithm over PSO and ant colony optimization technique

for 30 machines. We can see the computation time is improved by 21%, 36% and 43% than

PSO and we have 43%, 17% and 15% improvement over ant colony optimization with different

workloads. Cooling energy is improved by 13%, 11% and 13.0% than PSO. It is also improved

by 10%, 8% and 5% than ant colony optimization. Computation energy is also improved by the

modified NSGA-III algorithm. We have nearly 10% improvement over PSO and nearly 5% to

8% improvement over ant colony optimization. We also show the performance comparison for

50 machines in Table 6.3. Here, we have 10%-33% improvement over PSO for computation time.

Modified NSGA-III also has up-to 59% improvement for computation and cooling energy over

PSO. We have some negative values for energy also. Evolutionary approaches cannot guarantee

to get the optimal values all the time. However, in most cases, modified NSGA-III performs

better than the other existing approaches. Over ACO, modified NSGA-III gives improvement

within 16% to 46% for computation time. We have 55% to 87% improvement for both cooling

energy and computation energy. Now, we will show the experimental results for real testbed.

CHAPTER 6. EXPERIMENTAL RESULTS 49

0

2

4

6

8

10

12

14

16

18

67.7 GB 50.4 GB 28.3 GB

N
o.

 o
f s

el
ec

te
d

m
ac

hi
ne

s

Workload

PSO ACO Modified NSGA-III

(a) No. of selected machines comparison

0

2

4

6

8

10

12

14

67.7 GB 50.4 GB 28.3 GB

C
om

pu
ta

tio
n

tim
e

(m
in

s)

Workload

PSO

ACO

Modified NSGA-III

(b) Computation time comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

67.7 GB 50.4 GB 28.3 GB

C
oo

lin
g

en
er

gy
 (K

W
h)

Workload

PSO

ACO

Modified NSGA-III

(c) Cooling energy consumption comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

67.7 GB 50.4 GB 28.3 GB

C
om

pu
ta

tio
n

en
er

gy
 (K

W
h)

Workload

PSO

ACO

Modified NSGA-III

(d) Computation energy consumption comparison

Figure 6.3: Comparison of different algorithms with various workloads in SimGrid with 30
machines cluster

Workload
Improvement over PSO Improvement over ACO

Time(%) Cooling energy (%) Comp. energy (%) Time (%) Cooling energy (%) Comp. energy (%)
67.7 GB 38 59 59 16 55 55
50.4 GB 33 36 38 41 79 79
28.3 GB 10 -6 0 46 87 87

Table 6.3: Improvement over PSO and ant colony optimization with various workloads in
SimGrid with 50 machines

6.4 Testbed Evaluation

We test our algorithm and other existing techniques in a real testbed environment. We run

our modified NSGA-III algorithm before implementing any workload into the cluster. After

selecting the machines we only power on the selected machines. All other machines are in

sleep state. We continuously log our data for each slave machines. We have some sensors too

to measure different current and voltage to measure the power. Similarly, we also implement

other approaches like ACO and PSO. We test these two techniques also in our laboratory

environment.

CHAPTER 6. EXPERIMENTAL RESULTS 50

0

5

10

15

20

25

30

18.9 GB 12.6 GB 8.7 GB

N
o.

 o
f s

el
ec

te
d

m
ac

hi
ne

s

Workload

PSO ACO Modified NSGA-III

(a) No. of selected machines comparison

0

2

4

6

8

10

12

14

16

67.7 GB 50.4 GB 28.3 GB

C
om

pu
ta

tio
n

tim
e

(m
in

s)

Workload

PSO

ACO

Modified NSGA-III

(b) Computation time comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

67.7 GB 50.4 GB 28.3 GB

C
oo

lin
g

en
er

gy
 (K

W
h)

Workload

PSO

ACO

Modified NSGA-III

(c) Cooling energy consumption comparison

0

0.5

1

1.5

2

2.5

3

67.7 GB 50.4 GB 28.3 GB

C
om

pu
ta

tio
n

en
er

gy
 (K

W
h)

Workload

PSO

ACO

Modified NSGA-III

(d) Computation energy consumption comparison

Figure 6.4: Comparison of different algorithms with various workloads in SimGrid with 50
machines cluster

6.4.1 Testbed Settings

Description of the testbed setup was presented in Chapter 5. We are also presenting the en-

vironment here as we made some changes in the configuration. Table 6.4 and 6.5 show the

testbed configuration. We use 30 machines cluster to test our algorithm and compare other

techniques with our technique. In this case also, we use one master machine and our cluster

has 29 slave machines. We have different CPU frequency ranging from 2.4 GB to 2.8 GB. We

have memory range from 1 GB to 2 GB. We use 5 to 100 MBPS. We have Ubuntu 14.04 LTS

OS in all the machines.

Fig. 6.5 shows how we map our machines in the laboratory. We test our technique in a het-

erogeneous environment to see the effect of our greedy and NSGA-III technique. To create

heterogeneity, we use Wondershaper tool to control the network bandwidth. Table 6.6 shows

the network bandwidth of various machines. Note that, this is not the value that a machine

could get. The table data is 8-10 times than the original value. SimGrid and real testbed use

different unit conventions. Hence, imitating the real testbed into SimGrid is not completely

CHAPTER 6. EXPERIMENTAL RESULTS 51

Table 6.4: Experimental environment in laboratory

Parameter Value
No. of master 1
No. of slaves 29

Processor Intel Core 2 Duo
Processor base frequency 2.4 GHz, 2.66 GHz and 2.8 GHz

Memory 1 GB to 2 GB
Network B/W 5 to 100 MBPS

OS Ubuntu 14.04 LTS (x86)
Total number of files 40, 24, 16, 11

Size of each file 787 MB
Total data size (custom made) 31.5 GB, 18.9 GB, 12.6 GB, and 8.7 GB
Total data size (benchmark) 26 GB (1 file), 1 GB (1 file)

Table 6.5: Frequency and memory vs number of machines

Processor base frequency Memory No. of machines
2.4 GHz 1 GB 1
2.4 GHz 2 GB 2
2.66 GHz 1 GB 2
2.66 GHz 2 GB 8
2.8 GHz 2 GB 17

possible. Besides, we use different performance metrics for real testbed and simulation envi-

ronment. In real testbed, we can get resource utilization, however, in the existing SimGrid we

cannot get resource utilization.

6.4.2 Testbed Results

We can see the testbed results in Figures 6.7(a) to 6.7(f). We use different workloads and

consider the following five cluster objectives:

• Computation time

• Cooling energy

• Computation energy

• CPU usage

• Memory usage

CHAPTER 6. EXPERIMENTAL RESULTS 52

Table 6.6: Machine ID with corresponding network B/W

Machine ID Network B/W (mbps)
0 18
1 35
2 50
3 40
4 27
5 20
6 65
7 25
8 100
9 100
10 30
11 60
12 49
13 40
14 8
15 69
16 13
17 19
18 92
19 13
20 26
21 100
22 5
23 100
24 5
25 100
26 42
27 75
28 10
29 37

CHAPTER 6. EXPERIMENTAL RESULTS 53

Figure 6.5: Lab map for cluster

Table 6.7: Improvement over PSO and ant colony optimization with various workloads in real
testbed

Workload

Improvement
over PSO

Improvement
over ACO

Time(%)

Cool
ing

energy
(%)

Comp.
energy
(%)

CPU
usage
(%)

Mem.
usage
(%) Time(%)

Cool
ing

energy
(%)

Comp.
energy
(%)

CPU
usage
(%)

Mem.
usage
(%)

31.5 GB (custom) 43 75 22 1 5 13 49 28 23 4
26 GB (benchmark) 20 6 9 4 1 -16 -17 4 23 1
18.9 GB (custom) 74 75 63 127 5 49 49 58 159 0
12.6 GB (custom) 36 35 25 0 -1 -18 -20 10 27 3
8.7 GB (custom) 21 21 20 10 -7 43 42 56 130 1
1 GB (benchmark) 4 7 -13 4 0 0 21 -2 65 0

CHAPTER 6. EXPERIMENTAL RESULTS 54

0

10

20

30

40

50

60

70

31.5 GB 18.9 GB 12.6 GB 8.7 GB

C
om

pu
ta

tio
n

tim
e

(m
in

s)

Workload

PSO

ACO

Modified NSGA-III

(a) No. of selected machines comparison

0

10

20

30

40

50

60

70

31.5 GB 18.9 GB 12.6 GB 8.7 GB

C
om

pu
ta

tio
n

tim
e

(m
in

s)

Workload

PSO

ACO

Modified NSGA-III

(b) Computation time comparison

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

31.5 GB 18.9 GB 12.6 GB 8.7 GB

C
oo

lin
g

en
er

gy
 (K

W
h)

Workload

PSO

ACO

Modified NSGA-III

(c) Cooling energy consumption comparison

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

31.5 GB 18.9 GB 12.6 GB 8.7 GB

C
om

pu
ta

tio
n

en
er

gy
 (K

W
h)

Workload

PSO

ACO

Modified NSGA-III

(d) Computation energy consumption comparison

0

10

20

30

40

50

60

70

31.5 GB 18.9 GB 12.6 GB 8.7 GB

C
PU

 u
sa

ge
 (%

)

Workload

PSO
ACO
Modified NSGA-III

(e) CPU usage comparison

0

10

20

30

40

50

60

70

80

90

100

31.5 GB 18.9 GB 12.6 GB 8.7 GB

M
em

or
y

us
ag

e
(%

)

Workload

PSO ACO Modified NSGA-III

(f) Memory usage comparison

Figure 6.6: Comparison of different algorithms with various custom made workloads in real
testbed with 30 machines cluster

Along X axis, we take the workloads. We experimented with 8.7 GB, 12.6 GB, 18.9, and 31.5

GB of data. We also use benchmark data of 1 GB and 26 GB size [58]. In all the cases,

white box indicates our modified NSGA-III approach, gray box indicates ACO, and black

box indicates PSO technique. We can see from these graphs that, in most cases, white bars

show better performance than the other two bars. We show all the comparisons among the

techniques in Table 6.7.

CHAPTER 6. EXPERIMENTAL RESULTS 55

0

2

4

6

8

10

12

14

16

26 GB 1 GB

N
o.

 o
f s

el
ec

te
d

m
ac

hi
ne

s

Workload

PSO ACO Modified NSGA-III

(a) No. of selected machines comparison

0

2

4

6

8

10

12

14

16

18

26 GB 1.0 GB

C
om

pu
ta

tio
n

tim
e

(m
in

s)

Workload

PSO

ACO

Modified NSGA-III

(b) Computation time comparison

0

0.2

0.4

0.6

0.8

1

1.2

26 GB 1 GB

C
oo

lin
g

en
er

gy
 (K

W
h)

Workload

PSO

ACO

Modified NSGA-III

(c) Cooling energy consumption comparison

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

26 GB 1 GB

C
om

pu
ta

tio
n

en
er

gy
 (K

W
h)

Workload

PSO

ACO

Modified NSGA-III

(d) Computation energy consumption comparison

0

10

20

30

40

50

60

70

80

26 GB 1 GB

C
PU

 u
sa

ge
 (%

)

Workload

PSO ACO Modified NSGA-III

(e) CPU usage comparison

82

84

86

88

90

92

94

96

26 GB 1 GB

M
em

or
y

us
ag

e
(%

)

Workload

PSO ACO Modified NSGA-III

(f) Memory usage comparison

Figure 6.7: Comparison of different algorithms with various benchmark workloads in real
testbed with 30 machines cluster

6.4.3 Findings from Testbed Results

We compare our technique and other existing techniques in the real testbed mentioned in

Figures 6.7(a) to 6.7(f) and in Table 6.7. As we previously mentioned, we take number of

machines, computation time, computation energy, cooling energy, CPU usage and memory

usage as our cluster objectives. We want to decrease the number of machines (to decrease

cost), computation time, computation energy and cooling energy. At the same time, we want

to increase the CPU and memory usage. From Table 6.7, we can see the comparison. With 31.5

GB data, NSGA-III performs better than the other three approaches. For the case of 18.9 GB

CHAPTER 6. EXPERIMENTAL RESULTS 56

workload, NSGA-III shows significant improvement than the other two techniques for all the

objectives. With 12.6 GB data, NGSA-III performs better for most of the cluster objectives.

For 8.7 GB workload, though PSO has a better memory usage, NSGA-III performs better for

all other objectives. For 31.5 GB data we have 43%, 75%, 22%, 1%, and 5% improvement

over PSO and 13%, 49%, 28%, 23%, and 4% improvement over ACO. In the case of 18.9 GB

data, we have 49% to 74% improvement over computation time, 49% to 75% improvement over

cooling energy, 58% to 63% improvement over computation energy, 127% to 159% improvement

over CPU usage and 0% to 5% improvement over memory usage. In the case of 12.6 GB

data, we have up-to 36% improvement over computation time, 35% improvement over cooling

energy, 25% improvement over computation energy, 27% improvement over CPU usage and

3% improvement over memory usage. For 8.7 GB data, we get upto 43% improvement over

PSO, 42% improvement over cooling energy, 56% improvement over computation energy, 130%

improvement over CPU usage, and 1% improvement over memory usage. For benchmark

data, with 26 GB data modified NSGA-III has 20% improvement in computation time, 6%

improvement in cooling energy, 9% improvement in computation energy, 4% improvement

in CPU usage, and 1% improvement in memory usage over PSO. Modified NSGA-III has no

improvement in computation time and cooling energy, 4% improvement in computation energy,

23% improvement in CPU usage, and 1% improvement in memory usage over ACO. For 1 GB

data, we have improvement in computation time, cooling energy, and CPU usage over PSO.

We also have improvement in cooling energy and CPU usage over ACO.

6.5 Improvement over PSO and ACO in Real Testbed

and SimGrid

We have close improvements over PSO and ACO in real testbed and SimGrid on an average.

Fig. 6.8 shows the results. Here, gray box indicates percentage of improvement over PSO and

ACO in SimGrid, and black box indicates percentage of improvement over PSO and ACO in

real testbed. On an average, we can see both graphs are close to each other. Hence, we have

similar type of improvements in SimGrid and real testbed which indicates the robustness of our

approach. For each bar, we also show the error bars which was drawn by standard deviations.

CHAPTER 6. EXPERIMENTAL RESULTS 57

0

10

20

30

40

50

60

70

80

Computation time Cooling energy Computation energy

%
 o

f i
m

pr
ov

em
en

t
% of improvement in real testbed

% of improvement in SimGrid

Figure 6.8: Improvement over PSO and ACO in Real Testbed and SimGrid

This helps us to understand what could be the lowest and highest values, and how they differ

from the average value.

Chapter 7

Conclusion and Future Work

Solving conflicting objectives in clusters to provide administrators a set of machines is impor-

tant, and only a few studies attempt to solve this problem for computing clusters. Moreover,

the existing studies focus on optimizing single or multi-objective perspectives. On the contrary,

in this thesis, we provide a many-objective solution for cluster administrators to select the clus-

ter nodes. Here, we exploit a synergy between a greedy technique and NSGA-III algorithm to

solve the many-objective problem. We test our technique with other existing techniques and

show our proposed technique reveals the best set of nodes in most of the cases, which fulfill

the cluster objectives. We experiment in a real testbed, which confirms robustness and efficacy

of our technique. We also simulate our technique in a simulation platform named SimGrid to

test in larger clusters. We add a cooling energy module into the existing SimGrid. To augment

all these testing, we collect real data for a period of more than one year and conduct empirical

analyses over the data. We consider different environmental settings in different seasons of

the year to ensure robustness of the empirical analyses. Our technique engendered from the

analyses can be used in real clusters to select the best combination of machines, which will

fulfill the cluster objectives.

In our study, we use only one laboratory environment to experiment real testbed setup. In

future, we need to deploy our model in different laboratory environments. We use NSGA-III as

our base algorithm, as literature shows NSGA-III works well with many-objective optimization

problems. Further experimental study is necessary to prove it in cluster environment. We

also need to experiment with more number of machines in real testbed. There are many other

58

CHAPTER 7. CONCLUSION AND FUTURE WORK 59

factors which have impacts on cooling energy. Among them room size, room cooling capacity,

environment temperature are the most important ones. We need to incorporate those factors

to get a more robust results. We only consider the word-count job, hence, different type of

jobs should be tested with the discussed approaches. Moreover, we should test our experiment

with various types of content.

Bibliography

[1] B. Barney, “Introduction to Parallel Computing.” https://computing.llnl.gov/

tutorials/parallel_comp/, 2017. [Online; accessed 29-June-2017].

[2] Mason and Hanger, Data Center Energy Consumption, Dec 2015. Available online

at http://www.ha-inc.com/blog/entry/data-center-energy-consumption/. Last ac-

cessed April 1, 2017.

[3] K. Xiong and S. Suh, “Resource provisioning in sla-based cluster computing,” in Workshop

on JSSPP, pp. 1–15, Springer, 2010.

[4] T. White, Hadoop: The Definitive Guide. O’Reilly, first edition ed., june 2009.

[5] S. Wadkar, M. Siddalingaiah, and J. Venner, Pro Apache Hadoop. Apress, 2014.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[7] G. Singh, C. Kesselman, and E. Deelman, “A provisioning model and its comparison with

best-effort for performance-cost optimization in grids,” in Proceedings of the 16th HPDC,

pp. 117–126, ACM, 2007.

[8] K. Tarplee, A. Maciejewski, and H. Siegel, “Robust performance-based resource provi-

sioning using a steady-state model for multi-objective stochastic programming,” IEEE

Transactions on Cloud Computing, 2016.

[9] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using

reference-point-based nondominated sorting approach, part i: Solving problems with box

constraints.,” IEEE Trans. Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

60

BIBLIOGRAPHY 61

[10] X. Wang, Y. Wang, and Y. Cui, “A new multi-objective bi-level programming model for

energy and locality aware multi-job scheduling in cloud computing,” Future Generation

Comp. Syst., vol. 36, pp. 91–101, 2014.

[11] “The Network Simulator NS-2.” http://www.isi.edu/nsnam/ns/. [Online; accessed 15-

August-2016].

[12] “The Network Simulator NS-3.” https://www.nsnam.org/. [Online; accessed 15-August-

2016].

[13] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Simgrid: a sus-

tained effort for the versatile simulation of large scale distributed systems,” CoRR,

vol. abs/1309.1630, 2013.

[14] Chaos, “Difference among clusters, clouds, and grids.” https://stackoverflow.com/

questions/9723040/what-is-the-difference-between-cloud-grid-and-cluster,

2017. [Online; accessed 29-June-2017].

[15] R. Li, Q. Zheng, X. Li, and J. Wu, “A novel multi-objective optimization scheme for

rebalancing virtual machine placement,” in 9th IEEE CLOUD, pp. 710–717, 2016.

[16] S. Manvi and G. Shyam, “Resource management for infrastructure as a service (iaas) in

cloud computing: A survey,” Journal of Network and Computer Applications, vol. 41,

pp. 424–440, 2014.

[17] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning for cloud computing,” in

Proceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative

Research, pp. 101–111, IBM Corp., 2009.

[18] S. Chaisiri, B. Lee, and D. Niyato, “Optimization of resource provisioning cost in cloud

computing,” IEEE Transactions on Services Computing, vol. 5, no. 2, pp. 164–177, 2012.

[19] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing,” Future generation computer

systems, vol. 28, no. 5, pp. 755–768, 2012.

BIBLIOGRAPHY 62

[20] S. Chand and M. Wagner, “Evolutionary many-objective optimization: a quick-start

guide,” Surveys in Operations Research and Management Science, vol. 20, no. 2, pp. 35–42,

2015.

[21] V. Khare, X. Yao, and K. Deb, “Performance scaling of multi-objective evolutionary

algorithms,” in EMO, vol. 2632, pp. 376–390, Springer, 2003.

[22] C. Lijun and L. Xiyin, “Modeling server load balance in cloud clusters based on multi-

objective particle swarm optimization,” IJGDC, vol. 8, no. 3, pp. 87–96, 2015.

[23] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing,” Journal of Computer and

System Sciences, vol. 79, no. 8, pp. 1230–1242, 2013.

[24] C. M. Fonseca, P. J. Fleming, et al., “Genetic algorithms for multiobjective optimization:

Formulationdiscussion and generalization.,” in Icga, vol. 93, pp. 416–423, 1993.

[25] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic algorithm for mul-

tiobjective optimization,” in Evolutionary Computation, 1994. IEEE World Congress on

Computational Intelligence., Proceedings of the First IEEE Conference on, pp. 82–87, Ieee,

1994.

[26] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting in

genetic algorithms,” Evolutionary computation, vol. 2, no. 3, pp. 221–248, 1994.

[27] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms:

Empirical results,” Evolutionary computation, vol. 8, no. 2, pp. 173–195, 2000.

[28] R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization of many conflicting

objectives,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 770–784,

2007.

[29] M. Garza-Fabre, G. Pulido, and C. Coello, “Ranking methods for many-objective opti-

mization,” MICAI 2009: Advances in Artificial Intelligence, pp. 633–645, 2009.

BIBLIOGRAPHY 63

[30] S. F. Adra and P. J. Fleming, “Diversity management in evolutionary many-objective

optimization,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 2, pp. 183–

195, 2011.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2,

pp. 182–197, 2002.

[32] M. Köppen and K. Yoshida, “Substitute distance assignments in nsga-ii for handling many-

objective optimization problems,” in Evolutionary multi-criterion optimization, pp. 727–

741, Springer, 2007.

[33] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization

test problems,” in Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002

Congress on, vol. 1, pp. 825–830, IEEE, 2002.

[34] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm based on decom-

position,” IEEE Transactions on evolutionary computation, vol. 11, no. 6, pp. 712–731,

2007.

[35] J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless ad-hoc networks,”

in INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE, vol. 1, pp. 22–31, IEEE, 2000.

[36] Y. Zhu, M. Huang, S. Chen, and Y. Wang, “Energy-efficient topology control in coopera-

tive ad hoc networks,” Parallel and Distributed Systems, IEEE Transactions on, vol. 23,

no. 8, pp. 1480–1491, 2012.

[37] Q. Zhao, L. Tong, and D. Counsil, “Energy-aware adaptive routing for large-scale ad hoc

networks: Protocol and performance analysis,” Mobile Computing, IEEE Transactions on,

vol. 6, no. 9, pp. 1048–1059, 2007.

[38] L. M. Feeney, “An energy consumption model for performance analysis of routing protocols

for mobile ad hoc networks,” Mobile Networks and Applications, vol. 6, no. 3, pp. 239–249,

2001.

BIBLIOGRAPHY 64

[39] J.-C. Cano and P. Manzoni, “A performance comparison of energy consumption for mobile

ad hoc network routing protocols,” in Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, 2000. Proceedings. 8th International Symposium on, pp. 57–

64, IEEE, 2000.

[40] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J. C. Chen, “A survey of energy efficient

network protocols for wireless networks,” wireless networks, vol. 7, no. 4, pp. 343–358,

2001.

[41] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre, “A survey on techniques for improv-

ing the energy efficiency of large-scale distributed systems,” ACM Computing Surveys

(CSUR), vol. 46, no. 4, p. 47, 2014.

[42] T. Hirofuchi and A. Lebre, “Adding virtual machine abstractions into simgrid: a first

step toward the simulation of infrastructure-as-a-service concerns,” in Cloud and Green

Computing (CGC), 2013 Third International Conference on, pp. 175–180, IEEE, 2013.

[43] F. D. Rossi, M. G. Xavier, Y. J. Monti, and C. A. De Rose, “On the impact of energy-

efficient strategies in hpc clusters,” in 2015 23rd Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, pp. 17–21, IEEE, 2015.

[44] E. Outin, J.-E. Dartois, O. Barais, and J.-L. Pazat, “Enhancing cloud energy models for

optimizing datacenters efficiency,” in Cloud and Autonomic Computing (ICCAC), 2015

International Conference on, pp. 93–100, IEEE, 2015.

[45] H. Ismkhan and K. Zamanifar, “Developing improved greedy crossover to solve symmetric

traveling salesman problem,” arXiv preprint arXiv:1209.5339, 2012.

[46] T. Bektas, “The multiple traveling salesman problem: an overview of formulations and

solution procedures,” Omega, vol. 34, no. 3, pp. 209–219, 2006.

[47] G. R. Raidl and B. A. Julstrom, “Greedy heuristics and an evolutionary algorithm for

the bounded-diameter minimum spanning tree problem,” in Proceedings of the 2003 ACM

symposium on Applied computing, pp. 747–752, ACM, 2003.

BIBLIOGRAPHY 65

[48] R. K. Ahuja, J. B. Orlin, and A. Tiwari, “A greedy genetic algorithm for the quadratic

assignment problem,” Computers & Operations Research, vol. 27, no. 10, pp. 917–934,

2000.

[49] J. J. Durillo and A. J. Nebro, “jmetal: A java framework for multi-objective optimization,”

Advances in Engineering Software, vol. 42, pp. 760–771, 2011.

[50] A. Bender, “An evaluation of cluster 3.0 as a general tool for principal component analy-

sis,” in Proceedings of the 47th SIGCSE, pp. 725–725, ACM, 2016.

[51] Sunon, “How to Select the Right Fan or Blower.” http://www.sunon.com/uFiles/file/

03_products/07-Technology/004.pdf, 2016. [Online; accessed 15-August-2016].

[52] Wikipedia, “CFM to Watt Transformation.” http://www.traditionaloven.com/

tutorials/power/convert-atm-cfm-atmosphere-to-watts-w.html, 2016. [Online; ac-

cessed 22-February-2016].

[53] M. G. Noll, “Running Hadoop on Ubuntu Linux.” http://www.michael-noll.com/

tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/, 2016. [Online;

accessed 22-February-2016].

[54] B. Barth, “Determine FLOPS.” https://scicomp.stackexchange.com/questions/

11306/how-to-determine-the-amount-of-flops-my-computer-is-capable-of,

2017. [Online; accessed 29-June-2017].

[55] S. Shah, “FLOPS calculation.” https://www.quora.com/

How-do-I-determine-the-amount-of-FLOPs-my-computer-is-capable-of, 2017.

[Online; accessed 29-June-2017].

[56] M. R. Fernandez, “FLOPS related definitions.” http://en.community.dell.com/

techcenter/high-performance-computing/w/wiki/2329, 2017. [Online; accessed 29-

June-2017].

[57] A. Rizvi, T. Toha, M. Lunar, M. Adnan, and A. A. Al Islam, “Cooling energy integration

in simgrid,” in NSysS, pp. 132–137, IEEE, 2017.

BIBLIOGRAPHY 66

[58] Purdue University, MapReduce Benchmark, July 2017. Available online at https:

//engineering.purdue.edu/~puma/pumabenchmarks.htm. Last accessed July 22, 2017.

