
Integrated Economic Design of Quality Control and Maintenance 
Management Using CUSUM Chart with VSIFT Sampling Policy 

 
 
 
 
 
 
 
 
 

 
RAJESH SAHA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MASTER OF ENGINEERING IN ADVANCED ENGINEERING MANAGEMENT 

Department of Industrial and Production Engineering 

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY 

October 2017 
 
 



   

ii 
 

Integrated Economic Design of Quality Control and Maintenance 
Management Using CUSUM Chart with VSIFT Sampling Policy 

 
 
 
 
 
 
 

BY 
RAJESH SAHA 

 
 
 
 
 
 

A thesis submitted to the Department of Industrial & Production Engineering, Bangladesh 
University of Engineering & technology, in partial fulfillment of the requirements for the 

degree of Master of Engineering in Advanced Engineering Management 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING 
BANGLADESH UNIVERSITY OF ENGINEERING & TECHNOLOGY 

DHAKA-1000, BANGLADESH 
 

October, 2017 
 



CERTIFICATE OF APPROVAL

The thesis titled "INTEGRATED ECONOMIC DESIGN OF QUALITY CONTROL
A}tD MAINTENAI{CE MANAGEMENT USING CUSUM CIIART WITH VSIFT
SAMPLING POLICY" submitted by Rajesh Saha, Roll no: 1014082135F has been

accepted as satisfactory in partial fulfrllment of the requirements for the degree of Master
of Engineering in Advanced Engineering Management on October 16,2017.

BOARD OF EXAMINERS

If,
Dr. AbdullahilAzeem
Professor
Department of lPE, BUET. Dhaka.

Dr. A. K. M. Masud
Professor
Department of IPE, BUET, Dhaka.

Dr. Ferdous Sarwar
Associate Professor
Department of [PE, BUET. Dhaka.

Chairman
(Supervisor)

Member

Member

lll



CANDIDATE’S DECLARATION 

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for 

the award of any degree or diploma 

 
 
 

 
 
 
                                                                                                                                    

                                                                                                                   Rajesh Saha 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

v 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To the Almighty 

To my family 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

vi 
 

ACKNOWLEDGEMENT 

All credits go to God, the most benevolent and the Almighty, for his boundless grace in 

successful completion of this thesis. 

At the very beginning the author expresses his sincere gratitude and profound 

indebtedness to his thesis supervisor Dr. Abdullahil Azeem, Professor, Department of 

Industrial & Production Engineering, BUET, Dhaka-1000, under whose continuous 

supervision this thesis was carried out. His affectionate guidance, valuable suggestions 

and inspirations throughout this work made this study possible. 

The author also expresses his gratitude to Ineen Sultana, Assistant professor (on leave), 

Department of Mechanical & Production Engineering, AUST, now Graduate research 

assistant at Texas A & M University, for her valuable directions and suggestions at this 

work.  

The author would also like to extend his sincere thanks to his parents whose continuous 

inspiration, sacrifice and support encouraged him to continue the study. Finally, the 

author offer his sincere thanks to all those who either directly or indirectly helped him in 

various ways to complete this thesis work, especially to his friends for providing courage. 

 

 

 

 

 

 

 
 
 

 
 
 
 

 



   

vii 
 

 

ABSTRACT 

Due to the close interrelation between statistical process control and maintenance 

management policy and the necessity of these two key tools in running a smooth 

production system, this paper presents an integrated economic model for joint 

optimization of quality control parameters and preventive maintenance policy with 

cumulative sum (CUSUM) control chart. In this model CUSUM chart is used to monitor 

both process mean and variance and joint average run length (ARL) is determined by 

combining mean and variance through absorbing Markov chain approach. Here the 

CUSUM chart is designed using variable sampling interval fixed time (VSIFT) sampling 

policy. In order to determine the in control and out of control chart for both mean and 

variance, Taguchi quadratic loss function and modified linear loss function are used 

respectively in this model. In this proposed model two types of maintenance policy i.e. 

imperfect preventive maintenance and minimal corrective maintenance have been 

considered. The proposed model determines the optimum values of eight test parameters 

(the sample size (n), the fixed sampling interval (h), the number of subintervals between 

two consecutive sampling times (ȵ), the control limit coefficient for CUSUM mean chart 

(k), the warning limit coefficient for CUSUM mean chart (w), the time interval of 

preventive maintenance  (tpm), the control limit coefficient for CUSUM variance chart 

(k1) and the warning limit coefficient for CUSUM variance chart (w1)) so that expected 

total cost per unit time is minimized. A numerical example is presented to demonstrate 

the effectiveness of the test model in cost minimization. Nelder-Mead downhill simplex 

method and Genetic algorithm approaches are applied to search for the optimal values of 

the eight test parameters for the economic statistical design of VSIFT CUSUM charts. A 

sensitivity analysis has also been performed to observe the effect of different process 

parameters on total cost.    
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CHAPTER I 

INTRODUCTION 

In today’s competitive business world, quality plays the role of prime catalyst to 

satisfy the customers. To achieve desired quality, flawless products and services with 

least variances are necessary. Statistical process control (SPC) can be a key tool in 

restricting products and processes to deviate from the desired level. Along with this, 

the performance of a production system highly depends on the breakdown-free 

operations of equipment and processes. Because the reduction in the performance of 

machine or equipment causes deterioration in product quality. Thus a proper 

maintenance policy becomes handy in reducing breakdowns and process variations to 

ameliorate quality level. It is evident from this context, quality and maintenance are 

interrelated to each other. This relationship between quality and maintenance has lead 

the researchers to develop integrated economic models using the concept of SPC and 

maintenance to reduce total cost of quality and maintenance.   

 A control chart is one of the seven basic tools of total quality management (TQM). It 

is used in monitoring the variations in the characteristics of products or services to 

maintain a process in a state of statistical control. Conventionally, control charts are 

designed considering statistical criteria only. Its performance may be unsatisfactory 

from the economic point of view. But economic control charts are designed 

considering both economic and statistical criteria and this design is used to determine 

and evaluate some design parameters. These parameters have large significance 

because the value of these parameters are determined in a way so that all costs 

associated with control chart, such as cost of sampling, downtime costs, cost of 

searching assignable cause due to out of control signal and resetting it, cost of false 

alarm, cost of accepting nonconforming items etc. are optimized. Besides assignable 

causes production can be hampered by machine breakdowns which incur corrective 

maintenance cost. Before complete breakdown machine may degrade from its 

desirable working conditions. This menial functionality of machines may lead to 

higher operating cost and rejection. Therefore increase repair and replacement cost.       

A suitable preventive maintenance (PM) policy can reduce these breakdown rates as 

well as improve machine function ability. So economic control chart and proper 
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maintenance policy both are necessary to maintain quality and to minimize total costs. 

Moreover, both PM and quality control add costs in terms of sampling, inspection, 

down time, repair/replacement, etc. so it’s better to integrate these two shop floor 

policies rather than operating separately.   

1.1 Rationale of the Study 

Although the economic design of control chart and proper maintenance policy both 

are important in terms of quality as well as different costs and these two areas have 

already been proven to be highly correlated [1,2], the usual practice of industries 

indicates that quality control and maintenance plan are optimized independently. 

However academic community has shown interests in studying the interrelation of 

process control and maintenance management and many researchers has developed 

several integrated models of process quality and maintenance policy. Though many of 

these integrated models focus on the integration of process quality and preventive 

maintenance action, most of them ignored the possibility of a machine/equipment 

failure in terms of machine breakdown or inferior functionality of the equipment 

which results in deterioration of product quality from the desired level and call for 

maintenance action. Rather they focused on only on determining a warning limit or 

fixed time interval beyond which planned maintenance will be carried out. 

In most cases of integrating process control and maintenance management, X-bar 

control chart has been used to monitor the process mean [3]. Although some recent 

studies have taken Exponentially Weighted Moving Average (EWMA) chart into 

consideration [4, 5, 6] but, Cumulative Sum (CUSUM) chart, which is very effective 

to detect a small shift, has been considered by only a few [7].  Since it is cumulative, 

even minor drifting in the process mean or variance may lead to steadily increasing or 

decreasing cumulative deviation values. Therefore, this chart is especially useful in 

detecting slow shifts away from the target value due to machine wear, calibration 

problems, and so on. It is also useful for process industries, such as chemical 

products, liquid pharmaceuticals, cold drinks etc., where sample size n=1 is justified. 

In a comparative study [8] it is found that in detecting shifts in order of 1 standard 

deviation or less EWMA chart shows better performance. Whereas CUSUM shows a 

prompt and accurate response to detecting shifts in between standard deviation 1 and 
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2. Since in most of the practical cases, allowable slack is almost 1 standard deviation, 

so CUSUM can be more effective than EWMA chart. 

 In case of designing these integrated economic models, different sampling interval 

and sample size policy are getting more attention of the researchers nowadays. 

Although variable sampling interval (VSI) and variable sample size have (VSS) 

already been applied in these integrated models in case of sampling interval policy, 

but most promising Variable Sampling Interval at Fixed Times (VSIFT) [8] action has 

not yet been explored by many researchers. Reynolds [21] has shown that using 

VSIFT sampling policy is more advantageous and effective than VSI or VSS policies 

in designing different control charts specially EWMA and CUSUM. But VSIFT 

policy has never been used in designing CUSUM chart, in case of an integrated 

economic model of quality control and maintenance management using. 

In most of the control chart models, in control and out of control costs are calculated 

based on traditional American goal post view which doesn’t consider losses due to 

deviation from the target value, unlike Taguchi Loss Function. Moreover, every 

model considers only Process means to monitor the process and to determine Average 

Run Length (ARL) while considering both mean and variance can be more effective. 

Though a few study [10, 23] has been conducted on EWMA chart by combining mean 

and variances, in case of CUSUM chart, it has not yet been done. 

 Considering the significance of integration of process quality with maintenance 

management using CUSUM chart and importance of joint ARL combining both mean 

and variance, the effectiveness of VSIFT sampling policy and Taguchi Loss function 

to calculate the in control and out of control cost an integrated general economic 

model is developed to optimize the design parameter and preventive maintenance 

schedule. 

1.2 Objectives of the study 

The objective of this thesis is to determine the joint ARL combining both mean and 

variance and to develop an integrated model that can be used to minimize the 

expected total cost of process failures, sampling and inspection and maintenance 

action by jointly optimizing maintenance and CUSUM quality control chart 

parameters. The specific objectives of this research are 
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 To compute ARL combining both mean and variance in CUSUM chart. 

 To develop an integrated economic model of process quality control and 

maintenance actions in case of CUSUM control chart parameters, using 

combined ARL with VSIFT sampling policy incorporating Taguchi Loss 

Function and modified linear loss function. 

 To optimize the integrated model with a suitable nonlinear optimization 

technique to determine the value of design parameters of the model. 

 To design and develop a numerical hypothetical example for clear 

understanding of the model  

1.3 Outline of Methodology 

A mathematical cost model has been developed to be used to minimizing the expected 

total cost of process failures, inspection, sampling and corrective and Preventive 

maintenance action by jointly optimizing maintenance and quality control chart 

parameter considering both mean and variance. This mathematical model is used to 

determine the values of control chart design parameters and preventive maintenance 

schedule (sample size, fixed sampling interval, number of subintervals between two 

consecutive sampling times, control limit coefficient for mean, warning limit 

coefficient for mean, preventive maintenance interval, control limit coefficient for 

variance and warning limit coefficient for variance) The proposed research 

methodology is outlined below: 

 Machine and process failure is categorized such that whenever a complete 

machine failure occurs, a corrective maintenance action is used to restore the 

machine. Besides process is monitored through CUSUM mean (CUSUM-m) 

and CUSUM variance (CUSUM-S2) control charts. Whenever a shift is being 

detected in any of these control charts due to machine degradation a corrective 

action is carried out, if the shift occurs due to external reasons, resetting of the 

process is done. Preventive maintenance is also carried out at some fixed 

interval which is also a decision variable along with control chart parameters. 

 Combined ARL for mean and variance in CUSUM control chart is computed 

using absorbing Markov Chain approach. 
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 The equation to determine the cost of process failure has been developed by 

adopting Lorenzen-Vance general cost model. 

 The equation of both in control and out of control cost for CUSUM-m and 

CUSUM-S2 chart is determined using the concept of Taguchi Loss function 

and modified Kapoor and Wang’s [9] linear loss function respectively. 

 The cost functions for carrying out both corrective and preventive 

maintenance have been developed. 

 Finally, a total cost function or objective function is formulated for 

determining the cost of CUSUM chart with VSIFT policy integrating both 

preventive and corrective maintenance action as well as Taguchi Loss 

function. 

 The objective function is optimized using Genetic Algorithm and Nelder Mead 

Downhill Simplex Algorithm. 

 Then a sensibility analysis is done to analyze the robustness of the model. 
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CHAPTER II 

LITERATURE REVIEW 

As a usual practice, control chart has been used for many years in industries to 

monitor the variances in process and product.Because, an appropriately designed 

quality control chart may help in identifying any abnormal behavior of the process, 

thereby helping to initiate a restoration action. Similarly, different kinds of 

maintenance actions are used to maintain the performance of machine and equipment. 

Because, an appropriate Preventive Maintenance (PM) policy not only reduces the 

probability of machine failure but also improves the performance of the machine in 

terms of lower production costs and higher product quality.So, Quality control and 

maintenance management are key tools in daily industrial practice. However, 

researchers have shown that a relationship exists between equipment maintenance and 

process quality [1], and joint consideration of these two policies can be more effective 

and lucrative. 

 Although these integrated models are gaining popularity nowadays among 

researchers but it all started when at first Tagaras [10] developed an integrated cost 

model for the joint optimization of process control and maintenance.  Following him, 

Rahim [11] jointly determined the optimal design parameters of an X- bar control 

chart and preventive maintenance time for a production system with an increasing 

failure rate. They generalized the model for the economic design of X- bar control 

charts of Duncan [12], starting from the papers of Lorenzen and Vance [13] and 

Banerjee and Rahim [14]. The classical model of Duncan [12] and its several 

extensions including the unified model of Lorenzen and Vance [13] assumed 

exponentially distributed in-control periods and provided uniform sampling schemes. 

Banerjee and Rahim [14], however, assumed a Weibull-distributed in-control period 

having an increasing failure rate and used variable sampling intervals. This article was 

an extension of the work of Banerjee and Rahim [14], where a general distribution of 

in-control periods having an increasing failure rate was assumed and the possibility of 

age-dependent repair before failure was considered. A general distribution of the in-

control period was considered and the salvage value of the equipment was introduced. 

The model allowed the possibility of age-dependent replacement before failure. A 
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replacement before failure was meaningful only when such a replacement yields 

economic benefits. Intuitively, the residual life beyond a certain age for systems 

involving increasing hazard rate shock models would be rather short. Consequently, 

more frequent sampling could be necessary after the system attains a certain age. 

This, in turn, might increase the operational cost as a result of frequent sampling. 

Therefore, they argued that it is conceivable that terminating a production cycle at 

some time beyond this age might yield additional economies. A truncated production 

cycle was defined to be a production cycle which terminates after the detection of a 

failure or at a certain pre-specified age, whichever comes first. The question of 

replacement before failure did not arise for the Markovian shock model because of its 

memoryless property. Following an approach similar to that of Banerjee and Rahim 

[14], the focus of their study was to propose a manner by which the frequency of 

sampling was to be regulated, while taking into account the underlying probability 

distribution of the in-control duration. The criterion for choosing the sampling plan 

was that the expected cost per hour of operation should be minimized when the 

lengths of the sampling intervals were chosen in such a way as to maintain a constant 

integrated hazard over each sampling interval. Several different truncated and 

nontruncated probability models were chosen. It was proposed that economic benefits 

could be achieved by adopting a non-uniform inspection scheme and by truncating a 

production cycle when it attains a certain age. Numerical examples were presented to 

support this proposition. Finally, the effect of model specification in the choice of 

failure mechanism was investigated.  

Rahim [15] presented a model for jointly determining an economic production 

quantity, inspection schedule and control chart design of an imperfect production 

process. The process was subjected to the occurrence of a non- Markovian shock 

having an increasing failure rate. The product quality of the process was monitored 

under the surveillance of an X-bar control chart. The objective was to determine the 

optimal control chart design parameters and production quantity so as to minimize the 

expected total cost (the quality control cost and inventory control cost) per unit time. 

Both uniform and non-uniform inspection schemes were considered. For non-uniform 

inspection schemes, the lengths of the inspection intervals were regulated to maintain 

a constant integrated hazard rate over each inspection interval. Examples of weibull 

shock models having increasing failure rate were provided. It was shown that the non-
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uniform and decreasing process inspection intervals scheme resulted in a lower cost 

than the uniform inspection scheme. 

Ben-Daya and Duffuaa [16] discussed the relationship and interaction between 

maintenance, production and quality. Models relating these three important 

components of any manufacturing system had been briefly reviewed. Two approaches 

had been proposed to link between maintenance and quality to incorporate that 

relationship into a model so that they could be jointly optimized. One approach was 

based on the idea that maintenance affects the failure pattern of the equipment and it 

should be modeled using the concept of imperfect maintenance. The second approach 

was based on Taguchi’s approach to quality. 

Ben-Daya [17]  developed an integrated model for the joint optimization of the 

economic production quantity, the economic design of X- bar control chart and the 

optimal maintenance level. This model considered a deteriorating process where the 

in-control period follows a general probability distribution with increasing hazard 

rate. The proposed model consists of the four different costs: the production setup 

cost; the inventory holding cost; the quality control cost; and the preventive 

maintenance cost. In the proposed model, the Preventive Maintenance (PM) actions 

were supposed to change the failure pattern of the equipment. It was assumed that, 

after PM, the age of the system would be reduced proportionally to the PM level. This 

reduction in the age of the equipment would affect the time to shift distribution and 

consequently control chart design. It would also affect the production run length and 

consequently the economic production quantity (EPQ). Thus the modeling of the 

effect of maintenance on the time shift distribution provided the underlying link and 

allowed the integration of EPQ, the economic design of control chart, and the 

optimization of the preventive maintenance effort. Compared to the case with no PM, 

the extra cost of maintenance results in lower quality control cost which would lead to 

lower overall expected cost. These issues were illustrated using an example of a 

Weibull shock model with an increasing hazard rate. 

Lindeman et al. [18] demonstrated the value of integrating Statistical Process Control 

and maintenance by jointly optimizing their policies to minimize the total costs 

associated with quality, maintenance, and inspection. While maintenance is often 

scheduled periodically, this analysis encourages ‘‘adaptive’’ maintenance where the 
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maintenance schedule accelerates when the process becomes unstable. The 

completion of maintenance was supposed to return the process to its original 

operating condition and resulted in a process renewal. The analysis demonstrated 

considerable economic benefit in coordinating process-control and maintenance 

policies and indicated conditions for which the benefits were most pronounced. In 

addition, this research provided expanded insight into the implications of Process 

Failure Mechanism when determining process-control and maintenance policies. The 

model derived an optimal policy to minimize the cost per unit time. Finally, a 

sensitivity analysis was conducted to develop insights into the economic and process 

variables that influence the integration efforts. 

 

 Fig. 2.1 Three scenarios proposed by Lindeman et al. [18]  

Three scenarios were considered in their paper as showed in Fig.2.1. They assumed 

that the process begins in-control and inspections occur after h hours of production to 

determine whether the process has shifted from an in-control to an out-of-control 

state. Sometime between the jth and (j+1)th sampling interval an assignable cause 

occurs and the process shifts to an out-of-control state. The process continue to 

operate; however, the control chart does not detect an out-of-control condition until 

the (j +i)th sample. A time lag is associated with collecting the data and plotting the 

results on the chart. The control chart then signals an out-of-control condition and a 

search for an assignable cause takes place to validate the signal. A valid control-chart 

signal then results in Reactive Maintenance that restores the equipment to a ‘‘good-as 

new’’ condition (a renewal) this is scenario 1. In Scenario 2 in Fig.2.1, the process 

shifts to an out-of-control state, but the control chart does not signal an out-of-control 
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condition before the Planned Maintenance. As in Scenario 1, the process begins in an 

in-control state and sometime between the jth and (j +1)th sampling interval, the 

process shifts to an out-of-control state. However, the process continues to operate 

because the control chart does not detect an out-of-control condition. At the (k +1)th 

sampling interval, maintenance begins, and the out-of-control state is identified. They 

considered that to be Reactive Maintenance because the out-of-control condition 

occurred before the scheduled maintenance and additional time and expense would be 

incurred to identify and resolve the equipment problem. Completing the maintenance 

causes the process to renew and return to the in-control state. In Scenario 3 in Fig.2.1, 

the process still remains in an in-control state at the time of the Planned Maintenance. 

The Planned Maintenance would take place at the (k + 1)th sampling interval to 

preempt a process failure. Typically, the activities associated with planned 

maintenance are less costly than those associated with Reactive Maintenance because 

preparation activities can be conducted off-line before the Planned Maintenance. 

Finally, after maintenance completion, the process renews itself. The approach 

assumed that the process monitoring and maintenance schedule followed a rolling 

schedule.  

Zhou and Zhu et al. [19] developed an integrated model of control chart and 

maintenance management with reference to the integrated model proposed by 

Linderman et al. [18]. In their model, control chart was used to monitor the equipment 

and to provide signals that indicate equipment deterioration, while Planned 

Maintenance was scheduled at regular intervals to pre-empt equipment failure. Based 

on Alexander’s cost model, they investigated the economic behavior of the integrated 

model, and gave an optimal design for determining the four policy variables (the 

sample size (n), the sampling interval (h), scheduled sampling times (k), control limit, 

(L) that minimize hourly cost. 
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                        Fig. 2.2 Four scenarios proposed by Zhou and Zhu et al. [19] 

The integrated model espoused the framework as shown in Fig. 2.2. The process 

begins with an in-control state with a Process Failure Mechanism that follows a 

Weibull distribution. They assumed that process inspections with control chart occur 

after h hours of production to determine whether the process has shifted from an in-

control to an out-of-control state. The quality characteristic was measured and plotted 

on a control chart to assess the state of the process. If the control chart does not signal 

an out-of-control condition after k inspection intervals, then scheduled or Planned 

Maintenance occurs at the (k + 1) th sampling interval. However, if the control chart 

signals an out-of-control condition at any of the j inspections, a search for an 

assignable cause takes place to validate the signal. A valid control-chart signal then 

results in Reactive Maintenance and false signal results in Compensatory 

Maintenance. They assumed that the completion of Planned, Reactive and 

Compensatory maintenance restores the equipment to a “good-as-new” condition (a 

renewal). As shown in Fig. 2.2., the integrated model might result in four different 

scenarios. In S1, the process begins with an “in-control” state and inspections occur 

after h hours of monitoring as to whether the process has shifted from an “in-control” 

to an “out-of-control” state. And there is an alert signal in the control chart before the 

scheduled time when maintenance should be performed. But if the signal is false, that 
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is to say, the process is still “in-control”. Since searching and determining false signal 

take time and incur cost, Compensatory Maintenance would be performed. Similar to 

S1, there is also a signal in S2. While the signal is valid and the process shifts to an 

“out-of-control” state, it results in Reactive Maintenance. In S3 and S4, no signal 

occurs in the control chart before the scheduled time. Then at the (k + 1) th sampling 

interval, appropriate maintenance should be arranged. In S3, the process is always 

“in-control”, and Planned Maintenance was suggested to be performed. When the 

process shifts to an “out-of-control” state in S4, Reactive Maintenance would take 

place because the “out-of-control” condition occurred before the scheduled time and 

additional time and expense would be incurred to identify and solve the equipment 

problem.  

The interesting fact is almost all of the above researches proposed integration of SPC 

and maintenance and developed their model using X-bar control chart which has the 

disadvantage of not detecting small changes in mean efficiently. So nowadays 

researchers are paying attention to other types of control charts like EWMA and 

CUSUM charts for the purpose of developing an integrated model to detect even 

small changes quickly. 

Average run length (ARL) is the measure of expected number of constructive samples 

taken before the sample statistics falls outside the control limits. ARL has become the 

traditional measure to determine the control chart’s performance. So in designing 

economic control chart, proper computation of ARL has large significance. Since 

determining ARL is a difficult job many researchers tried to find out a simple and 

credible ways to find out ARL precisely. 

Lucas and Saccucci [20] developed a model to determine the average run length 

(ARL) for exponentially weighted moving average (EWMA) and combined 

Shewhart-EWMA control schemes. The model was developed using markov chain 

approach to calculate zero-state and steady-state ARLs. 

Knoth [21] discussed the importance of ARL in detecting changes in the process 

mean using EWMA control chart. They also discussed different methods of 

determining accurate ARL.  According to the paper, the most accurate method—

solving a Fredholm integral equation with the Nystr¨om method—fails due to an 
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improper kernel in the case of chi-squared distributions. Here, they exploited the 

collocation method and the product Nystrom method. These methods were compared 

to Markov chain based approaches. Collocation allowed fast and very precise 

computation of the ARL. With the exception of two-sided charts based on individual 

observations (leads to k = 1) the collocation results were very accurate. Even in 

problematic cases collocation provided suitable results.  

Morais and Pacheo [22] considered the problem of the joint monitoring of process 

mean (µ) and the process standard deviation (ơ)- when the quality characteristic 

follows a normal distribution -, using a combined Exponentially Weighted Moving 

Average (CEWMA) scheme. Three performance measures of this joint control 

scheme were investigated under shifts in the process mean or inflation of the process 

standard deviation, and under the adoption of head starts: the average run length, the 

run length percentage points and the probability of a misleading signal. The 

Markovian approach and the independence between the horizontal and vertical 

transitions of the approximating two-dimensional Markov chain played an important 

role in providing tractable expressions for these three performance measures. A 

numerical comparison between these three performance measures and the 

corresponding ones of the matched combined Shewhart (CShewhart) scheme was also 

provided in the paper, which concluded that the substitution of this combined scheme 

by the CEWMA scheme can improve the joint monitoring of the process mean and 

standard deviation. 

Since ensuring optimal quality in the process and product is the prime concern to 

satisfy customers, so proper identification of quality loss is necessary. Most of the 

cases in determining quality loss American traditional goal post view were used 

which doesn’t consider the loss due to deviation from the target value. It only 

considers loss when sample values goes beyond the control limits of respective 

control charts. Realizing the importance of determining both in control and out of 

control losses of quality, several researchers tried to incorporate different loss 

functions to determine proper quality loss. 

Al-Ghazi et al. [23] incorporated Taguchi’s quadratic loss function in the economic 

design of the control chart. This was done by redefining the in-control and out-of-

control costs using Taguchi’s loss function in the general model for the economic 



14 
 

design of x- bar-control charts developed by Banerjee and Rahim. Both cases of 

increasing hazard rate (Weibull failure rate) and constant hazard rate (exponential 

distribution) was presented and followed by numerical examples. Finally, sensitivity 

analysis was conducted to study the effect of important parameters on the cost.  The 

resulting model combined the advantages of the economic design and Taguchi's 

philosophy. 

Serel [24] studied the economic design of EWMA-based mean and dispersion charts 

where a linear, quadratic, or exponential loss function was used for computing the 

costs arising from poor quality. The chart parameters (sample size, sampling interval, 

control limits and smoothing constant) minimizing the overall cost of the control 

scheme are determined via computational methods. Using numerical examples, he 

compared the performances of the EWMA charts with Shewhart X-bar and S charts, 

and investigated the sensitivity of the chart parameters to changes in process 

parameters and loss functions. His computational study suggested that using a 

different type of quality loss function (linear versus quadratic) leads to a significant 

change in sampling interval while affecting the sample size and control limits very 

little. It was also observed that the overall costs are insensitive to the choice of 

Shewhart or EWMA charts. Numerical results implied that rather than sample size or 

control limits, the users need to adjust the sampling interval in response to changes in 

the cost of poor quality. 

With the development of economic control charts, different types of sampling policies 

got attention of the researchers to design economic control charts more effectively by 

saving costs. 

Reynolds [25] discussed various sampling policy such as fixed sampling interval 

(FSI), variable sampling interval (VSI) and variable sample size (VSS). This paper 

also considered a type of VSI control chart in which samples were always taken at 

specified equally spaced fixed time points, but additional samples were allowed 

between these fixed times when indicated by the data from the process. The location 

of the fixed times would typically be determined by administrative considerations 

such as testing schedules or by the desirability of sampling according to natural 

periods in the process. Markov process methods were given for analyzing the 

performance of these VSI with fixed times (VSIFT) charts. The VSIFT feature had 
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been considered for the X bar-chart, the EWMA chart and the CUSUM chart and 

general expressions for the ATS had been developed. It was shown that VSIFT charts 

will detect most process shifts substantially faster than FSI charts. It also showed that 

VSIFT charts are just as effective in detecting shifts as standard VSI charts that are 

not constrained to sample at the specified fixed times. In comparison VSS charts, the 

VSIFT charts were shown to be better at detecting large shifts but not as good at 

detecting small shifts, in case of X bar Chart. But,  the VSS EWMA and CUSUM 

charts did not perform as well as the corresponding VSIFT EWMA and CUSUM 

charts except at very small shifts.Finally, this paper recommended for the use of the 

design of VSIFT X bar-charts, VSIFT EWMA charts and VSIFT CUSUM charts, 

over other sampling policies. 

Park et al. [26] compared the Variable Sampling Rate (VSR) approach with Fixed 

Sampling Rate (FSR) approach in case of a EWMA chart. A VSR EWMA chart is a 

EWMA chart with the VSR sampling scheme. The properties of the VSR EWMA 

chart were obtained by using a Markov chain approach. The model contained cost 

parameters which allow the specification of the costs associated with sampling, false 

alarms and operating off target as well as search and repair. Control charts that vary 

the sample size are called Variable Sample Size (VSS) charts. A large sample size is 

used when there is some indication of a problem and a small sample size is used when 

there is no indication of a problem. Variable Sampling Rate (VSR) charts allow both 

the sample size and the sampling interval to vary depending on the previous value of 

the control statistic. The idea of the VSR chart was to combine the VSI and VSS 

features. The economic design model of Park and Reynolds had been applied to 

evaluate the expected cost per hour associated with the operation of VSR and FSR 

EWMA charts in the single and double occurrence models. The optimal parameters of 

the VSR and FSR EWMA charts were obtained in this economic model for some 

given sets of values of the process and cost parameters. For the parameter 

combinations considered here, it was shown that the optimal control limit of the VSR 

chart was considerably higher than that of the FSR chart. This results in a much lower 

false alarm rate for the VSR chart. The percent reductions in cost presented in the 

tables showed that applying the VSR scheme in place of the FSR scheme in the 

EWMA chart could result in substantial cost savings. A double occurrence model was 

studied for a possible situation in which, given that a special cause has occurred, a 
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second special cause may arrive before a signal is given. It was shown that such a 

model change has little effect on determining the optimal chart parameters.  

Chou et al. [27] developed the economic design of the exponentially weighted moving 

average (EWMA) chart using variable sampling intervals with sampling at fixed times 

(VSIFT) control scheme to determine the values of the six test parameters of the chart 

(i.e., the sample size, the fixed sampling interval, the number of subintervals between 

two consecutive sampling times, the warning limit coefficient, the control limit 

coefficient, and exponential weight constant) such that the expected total cost per 

hour is minimized. The sampling scheme of a VSIFT chart was to use the sampling 

interval (denoted as h) between fixed time points as long as the sample point is close 

to the target so that there is no indication of process change. However, if the sample 

point is far away from the target, but still within the control limits, so that there is 

some indication of process shift, then additional samples were allowed between the 

two fixed sampling time points. The control charts using variable sampling intervals 

with sampling at fixed times (VSIFT) policy had been shown to give substantially 

faster detection of most process shifts than the conventional control charts. The cost 

function was established based on the cost model in Lorenzen and Vance [13] with 

the VSIFT control scheme. The genetic algorithms (GA) were applied to search for 

the optimal values of the six test parameters of the VSIFT EWMA chart, and then an 

example and its solution were provided. Finally, a sensitivity analysis was carried out 

to investigate the effect of model parameters on the solution of the economic design. 

Haq et al [4] proposed new EWMA control charts for monitoring the process mean 

and the process dispersion. These EWMA control charts were based on the best linear 

unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and 

ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA-

ODRSS and EWMA-OIDRSS charts, respectively.They used Monte Carlo 

simulations to estimate the average run length, median run length, and standard 

deviation of run length of the proposed EWMA charts.The performances of the 

proposed EWMA chart was compared with the existing EWMA charts when 

detecting shifts in the process mean and in the process variability. It turned out that 

the EWMA-ODRSS mean chart performed uniformly better than the classical 

EWMA, fast initial response-based EWMA, Shewhart-EWMA, and hybrid EWMA 



17 
 

mean charts. The EWMA-ODRSS mean chart also outperformed the Shewhart-

EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes 

and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical 

comparisons of the EWMA dispersion charts reveal that the proposed EWMA-

ODRSS and EWMA-OIDRSS charts are more sensitive than their counterparts. They  

also provided illuminating examples to illustrate the implementation of the proposed 

EWMA mean and dispersion charts. 

Pandey et al. [2] introduced a new integrated approach for joint optimization of 

maintenance (preventive maintenance interval) and process control policy (control 

chart parameters) using “Taguchi Loss Function” and a way to categorize the machine 

and process failure. Two failure modes were considered (showed in fig.2 4.), failure 

mode 1 leads to the immediate breakdown of the machine. This machine failure was 

assumed to follow a two-parameter weibull distribution. Failure mode 2 could be 

caused either by external reasons or malfunction of the machine to some extent which  

Fig. 2.3 Failure modes and actions proposed by Pandey et al. [2] 

immediately affects the process mean. To monitor these types of shift an X-bar 

control chart was suggested to use. Whenever a complete failure occurs, corrective 

maintenance action, which restores the machine, would be implemented immediately. 

In parallel, the process would be monitored through a control chart in order to identify 

the actual operating state. Whenever a quality shift would be detected owing to 
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machine degradation (partial failure), a corrective maintenance action was suggested 

to be performed to restore an in-control state through a repair action. Whenever 

quality shift would be detected owing to external reasons, a resetting of the process 

was suggested to be performed to restore the process to its in-control state. Thus, this 

type of maintenance action was expected to result in twin benefits, i.e. eliminating the 

quality cost related to out-of-control operation owing to external reasons and machine 

degradation and also improving the machine’s reliability by protecting it against 

failures. Two types of maintenance policies were considered: minimal corrective 

maintenance that maintains the state of the equipment without affecting the age and 

imperfect preventive maintenance that upgrades the equipment in between ‘as good as 

new’ and ‘as bad as old’ condition. The proposed model enabled the determination of 

the optimal value of each of the four decision variables, i.e. sample size (n), sample 

frequency (h), control limit coefficient (k), and preventive maintenance interval (tPM) 

that minimizes the expected total cost of the integration per unit time. A numerical 

example was presented to demonstrate the effect of the cost parameters on the joint 

economic design of preventive maintenance and process quality control policy. The 

sensitivity analysis was alsoconducted to study the effect of various model parameters 

on the behaviour of the system. This may help the manufacturer to identify the 

parameters which are more sensitive from those which are not. 

Sultana et al. [6] developed an economic statistical design of the exponentially 

weighted moving average (EWMA) chart using variable sampling intervals with 

sampling at fixed times (VSIFT) control scheme considering preventive maintenance 

and Taguchi Loss function to determine the values of the seven test parameters of the 

chart (i.e., the sample size, the fixed sampling interval, the number of subintervals 

between two consecutive sampling times, the warning limit coefficient, the control 

limit coefficient, and exponential weight constant and the time interval of preventive 

maintenance) such that the expected total cost per hour is minimized.In this model 

taguchi loss function was incorporated to determine in control and out of control 

cost.this paper alo gave emphasis on preventive maintenance to maintain proper 

functionality of equipments and to restrict the process from moving out of control 

state due to machone degradation or deteriorartion.That’s why this paper influenced 

on integarted optimization of preventive maintenance interval and EWMA control 
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chart parameters.They used Genetic algorithm and nealder mead downhill simplex 

algorithm to optimize the value of seven test parameters. 

Serel and Moskowitz [5] used control charts with exponentially weighted moving 

average (EWMA) statistics (mean and variance) to jointly monitor the mean and 

variance of a process. A EWMA cost minimization model was presented to design the 

joint control scheme based on pure economic or both economic and statistical 

performance criteria. The pure economic model was extended to the economic-

statistical design by adding constraints associated with in-control and out-of-control 

average run lengths. The quality related production costs were calculated using 

Taguchi’s quadratic loss function. The optimal values of smoothing constants, 

sampling interval, sample size, and control chart limits were determined by using a 

numerical search method. The average run length of the control scheme was 

computed by using the Markov chain approach. Computational study indicated that 

optimal sample sizes decrease as the magnitudes of shifts in mean and/or variance 

increase, and higher values of quality loss coefficient lead to shorter sampling 

intervals. The sensitivity analysis results regarding the effects of various inputs on the 

chart parameters provided useful guidelines for designing an EWMA-based process 

control scheme when there exists an assignable cause generating concurrent changes 

in process mean and variance. 

Shrivastava et al [7] developed an integrated model for joint optimization of 

preventive maintenance and quality control policy with cumulative sum (CUSUM) 

control chart parameters. Two types of maintenance policies were considered, namely 

minimal corrective maintenance and imperfect preventive maintenance. The proposed 

model enables the determination of the optimal value of each of the five decision 

variables, i.e. sample size (n), sample interval (h), the reference value (K), the 

decision interval (h1) and preventive maintenance interval(tPM), that minimize the 

expected total system cost per unit time. A numerical example was presented to 

demonstrate the effect of the cost parameters on the integrated design of 

preventivemaintenance and quality control policy. It also compared the system 

performance employing the proposed integrated approach with that obtained by 

considering maintenance and CUSUM chart independently. Substantial economic 

benefit of 19 % was observedin the joint optimization. 
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Zaman et al [28] proposed a new control chart named as mixed CUSUM-EWMA 

(called MCE) control chart for the efficient monitoring of process dispersion. The 

proposed MCE chart has been  compared with other existing control charts and some 

of their modifications. Average run length, extra quadratic loss, relative average run 

length, and performance comparison index were the measures that were used to judge 

the performance of charts. For practical considerations, an illustrative example with 

real data was also provided. 
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CHAPTER III 

COMPUTATIONAL OPTIMIZATION PROCEDURE 

3.1 Nelder Mead Downhill Simplex Algorithm 

The Nelder-Mead algorithm was originally published in 1965 is one of the best known 

algorithms for multidimensional unconstrained optimization without derivatives. The 

algorithm is stated using the term simplex (a generalized triangle in N dimensions) and 

finds the minimum of a function of N variables. It is effective and computationally 

compact. Since, this method does not require any derivative information; therefore, it 

is quite suitable for problems with non-smooth functions. It is widely used to solve 

parameter estimation and similar statistical problems, where the function values are 

uncertain or subject to noise and that is a particular cause of choosing this particular 

algorithm for my analysis. 

The Nelder-Mead algorithm is designed to solve the classical unconstrained 

optimization problem of minimizing a given nonlinear function f: Rn→R . The method 

 uses only function values at some points in Rn , and 

 Does not try to form an approximate gradient at any of these points. 

The Nelder-Mead method is simplex-based. A simplex K in Rn is defined as the convex 

hull of n+1 vertices x ….., xn ∈ Rn . For example, a simplex in R2is a triangle, and a 

simplex in R3 is a tetrahedron. A simplex-based direct search method begins with a set 

of n+1 points x0,…,xn ∈ Rn that are considered as the vertices of a working 

simplex K , and the corresponding set of function values at the 

vertices fj:=f(xj) , for j=0,…,n . The initial working simplex S has to be non degenerate, 

i.e., the points x0…, xn must not lie in the same hyper plane. 

The method then performs a sequence of transformations of the working 

simplex K, aimed at decreasing the function values at its vertices. At each step, the 

transformation is determined by computing one or more test points, together with their 

function values, and by comparison of these function values with those at the vertices. 
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This process is terminated when the working simplex K becomes sufficiently small in 

some sense, or when the function values fj are close enough in some sense (provided f is 

continuous). 

The Nelder-Mead algorithm typically requires only one or two function evaluations at 

each step, while many other direct search methods use n or even more function 

evaluations. 

3.1.1 Initial simplex 

Initial simplex K is usually constructed by generating n+1 vertices x0,…,xn around a 

given input point xin ∈ Rn . In practice, the most frequent choice is x0=xin to allow proper 

restarts of the algorithm. The remaining n vertices are then generated to obtain one of 

two standard shapes of K. 

 K is right angled at x0, based on coordinated axes, or 

xj = xo + hj ej ,          j=1…….n 

Where hj is a step size in the direction of unit vector ej in Rn . 

 K is a regular simplex, where all edges have the same specified length. 

3.1.2 General Simplex transformation algorithm 

One iteration of the Nelder-Mead method consists of the following three steps. 

1. Ordering: Determine the indices of the worst (w), good (G), best (B) vertex, 

respectively, in the current working simplex K, 

fW = maxj fj,                      fG = max j≠W  fj,                      fB = minj ≠W  fj 

2. Centroid: Calculate the centroid c of the best side—this is the one opposite 

the worst vertex xw 

c =1n∑j≠hxj. 

3. Transformation: Compute the new working simplex from the current one. 

First, try to replace only the worst vertex xw with a better point by using 

reflection, expansion or contraction with respect to the best side. All test points 

lie on the line defined by xw and c, and at most two of them are computed in one 

iteration. If this succeeds, the accepted point becomes the new vertex of the 
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working simplex. If this fails, shrink the simplex towards the best vertex xb. In 

this case, n new vertices are computed. 

Simplex transformations in the Nelder-Mead method are controlled by four parameters 

α for reflection, β for contraction, γ for expansion and δ for shrinkage. They should 

satisfy the conditions,   α>0,   0<β<1,   γ>1,   γ>α,    0<δ<1.The standard values used 

in most implementations are α = 1, β = ½, γ = 2, δ = ½. 

3.1.3 Simplex transformation algorithm for two variables 

For two variables, a simplex is a triangle, and the method is a pattern search that 

compares function values at the three vertices of a triangle. The worst vertex, where 

f(x,y) is largest, is rejected and replaced with a new vertex. A new triangle is formed 

and the search is continued. The process generates a sequence of triangles, for which 

the function values at the vertices get smaller and smaller. Eventually, the size of the 

triangles is reduced and the coordinates of the minimum point are found. 

Initial Triangle: Let f (x, y) be the function that is to be minimized. At the beginning, 

three vertices of a triangle are considered such that, Vk=(xk, yk) where, k=1, 2, 3. For 

simplicity let’s assume the points as B=(x1, y1), G=(x2, y2), and W=(x3, y3). The 

function f (x, y) is then evaluated at each of the three points i.e. zk=f (xk, yk) for k=1, 2, 

3. The subscripts are then reordered so that z1≤z2≤z3.  

Midpoint of the Good Side: The construction process uses the midpoint of the line 

segment joining B and G. 

𝑀 =  
𝐵+𝐺

2
= (

𝑥1+𝑥2

2
,

𝑦1+𝑦2

2
)        (3.1) 

Reflection using the Point R: The function decreases as the points move along the 

side of the triangle from W to B, and also along the side from W to G. Hence it is 

feasible that f (x, y) takes on smaller values at points that lie away from W on the 

opposite side of the line between B and G. So, a test point R is chosen, that is obtained 

by “reflecting” the triangle through the side BG.  

𝑅 = 𝑀 + 𝛼(𝑀 − 𝑊)                                                                                               (3.2) 

If fB≤ fR< fG, then W is replaced by R and iteration terminated.  
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Fig. 3.1 Initial triangle BGW, midpoint (M) and reflection point (R) in Nelder Mead 

method 

Expansion using the Point E: If the function value at R is smaller than the function 

value at B, then the point has moved in the correct direction toward the minimum. 

Perhaps the minimum is just a bit farther than the point R. So in the next step, the line 

segment through W, M and R is extended to the point E. This forms an expanded 

triangle BGE. The point E is found by moving an additional distance d along the line 

joining M and R.  

𝐸 = 𝑅 + 𝛾(𝑅 − 𝑀)                                                                                               (3.3) 

If fE<fR, then E is accepted, otherwise R is accepted and iteration is terminated. 

 

Fig. 3.2 Expanded triangle BGE, reflection point (R) and extended point (E) in Nelder 

Mead method 
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Contraction using the Point C: If the function values at R is greater or equal to G, 

another point must be tested. Perhaps the function is smaller at M, but W cannot be 

replaced with M because the points must form a simplex, in this case a triangle. So, the 

two points C1 and C2 of the line segments WM and MR is considered, respectively. If 

function value of R is greater than or equal of W inside contraction (C1) should be done. 

If function value of R is less than of W outside contraction (C2) should be done 

C1= M+β (W-M) (3.4) 

If fC1 < fW, then C1 is accepted, otherwise shrink transformation is performed. 

C2 = M+ β (R-M)                  (3.5) 

If fC2 ≤ fR, then C2 is accepted, otherwise shrink transformation is performed. 

 

 

 

 

 

 

 

Fig. 3.3 Contraction point C1 and C2 in Nelder Mead method 

Shrink Towards B: If the function value at C1 is not less than the value at W or 

function value at C2 is not less than the value at R, the points G and W must be shrunk 

towards B. The point G is replaced with M, and W is replaced with S, which is the 

midpoint of the line segment joining B with W (for δ = ½).So, in shrinking n new 

vertices are formed for n variable optimization. 
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General formula for shrinking is, 

Xj = B + δ (xj - B)   and    fj = f(xj);                                                                             (3.6)  

for j = 1,2,3………n+1;  where, j ≠l; here l indicates lowest or best value, xl = B. 

 

Fig. 3.4 Shrinking of simplex (triangle) towards B 

3.1.4 Termination Tests 

A practical implementation of the Nelder-Mead method must include a test that ensures 

termination in a finite amount of time. The termination test is often composed of three 

different parts i.e.  

1. term\_x , 

2. term\_f and  

3. fail. 

‘term\_x’ is the domain convergence or termination test. It becomes true when the 

working simplex S is sufficiently small in some sense (some or all vertices xj are close 

enough). ‘term\_f’ is the function-value convergence test. It becomes true when (some 

or all) function values fj are close enough in some sense. ‘fail’ is the no-convergence 

test. It becomes true if the number of iterations or function evaluations exceeds some 

prescribed maximum allowed value. The algorithm terminates as soon as at least one 
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of these tests becomes true. The flow chart of the working procedure of the algorithm 

is as follows: 

Fig. 3.5 Flow chart of Nelder Mead algorithm’s working procedure 

3.1.5 Convergence of Nelder Mead Method 

Rigorous analysis of the Nelder-Mead method seems to be a very hard mathematical 

problem. Known convergence results for direct search methods in simplex terms rely 

on one or both of the following properties: 

(a) The angles between adjacent edges of the working simplex are uniformly bounded 

away from 0 and π throughout the iterations, i.e., the simplex remains uniformly non-

degenerate. 

(b) Some form of “sufficient” descent condition for function values at the vertices is 

required at each iteration. 
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In general, the original Nelder-Mead method does not satisfy either of these properties. 

By design, the shape of the working simplex can almost degenerate while “adapting 

itself to the local landscape”, and the method uses only simple decrease of function 

values at the vertices to transform the simplex. Hence, very little is known about the 

convergence properties of the method 

3.1.6 Advantages and Disadvantages 

In many practical problems, like parameter estimation and process control, the function 

values are uncertain or subject to noise. Therefore, a highly accurate solution is not 

necessary, and may be impossible to compute. All that is desired is an improvement in 

function value, rather than full optimization. 

The Nelder-Mead method frequently gives significant improvements in first few 

iterations and quickly produces quite satisfactory results. Also, the method typically 

requires only one or two function evaluations per iteration, except in shrink 

transformations, which are extremely rare in practice. This is very important in 

applications where each function evaluation is very expensive or time-consuming. For 

such problems, the method is often faster than other methods, especially those that 

require at least n function evaluations per iteration. In many numerical tests, the Nelder-

Mead method succeeds in obtaining a good reduction in the function value using a 

relatively small number of function evaluations. 

Apart from being simple to understand and use, this is the main reason for its popularity 

in practice. 

On the other hand, the lack of convergence theory is often reflected in practice as a 

numerical breakdown of the algorithm, even for smooth and well-behaved functions. 

The method can take an enormous amount of iterations with negligible improvement in 

function value, despite being nowhere near to a minimum. This usually results in 

premature termination of iterations. A heuristic approach to deal with such cases is to 

restart the algorithm several times, with reasonably small number of allowed iterations 

per each run. 
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3.2 Genetic Algorithm 

A genetic algorithm (GA) is a search algorithm or method developed by Holland (1975) 

for solving both constrained and unconstrained optimization problems based on a 

natural selection process that mimics biological evolution. In evolution, the problem 

that each species faces is to search for beneficial adaptations to the complicated and 

changing environment. In other words, each species has to change its chromosome 

combination to survive in the living world. In GA, a string represents a set of decisions 

(chromosome combination), that is a potential solution to a problem. Each string is 

evaluated on its performance with respect to the fitness function (objective function). 

The ones with better performance (fitness value) are more likely to survive than the 

ones with worse performance. Then the genetic information is exchanged between 

strings by crossover and perturbed by mutation. The result is a new generation with 

(usually) better survival abilities. This process is repeated until the strings in the new 

generation are identical, or certain termination conditions are met. A generic flow of 

GA is given in Fig.3.6 this algorithm is continued since the stopping criterion is 

reached. 

 The genetic algorithm uses three main types of rules at each step to create the next 

generation from the current population: 

 Selection rules select the individuals, called parents, which contribute to the 

population at the next generation. 

 Crossover rules combine two parents to form children for the next generation. 

 Mutation rules apply random changes to individual parents to form children. 

The generic cycle and operations of basic GAs can be explained as follows:  

Step 1: The individuals resulting from these three operations for the next generation’s 

population are obtained. This process is repeated until the system stops its evolution. 

Step 2: Individuals contribute to the gene pool in proportion to their relative fitness; 

occasionally good individuals contribute more copies and poor individuals contribute 

fewer copies than before. 
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Step 3: The recombination happen depends on crossover operators. Next population 

consists of a new chromosome. 

Step 4: The mutation happen depends on mutation operators which help to assure 

population variety. 

 

Fig. 3.6 Flow chart of Genetic Algorithm’s working procedure 

GAs is used in forming models to solve optimization problems. Readers can find more 

details of GAs in Gen and Cheng [29], Kaya [30].GAs are different from other search 

procedures in the following ways [31]. 
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3.2.1 Outline of the Basic Genetic Algorithm 

[Start] Generate random population of n chromosomes (suitable solutions for the 

problem) 

[Fitness] Evaluate the fitness f(x) of each chromosome x in the population 

[New population] Create a new population by repeating following steps until the new 

population is complete 

[Selection] Select two parent chromosomes from a population according to their fitness 

(the better fitness, the bigger chance to be selected) 

[Crossover] With a crossover probability crossover the parents to form a new offspring 

(children). If no crossover was performed, offspring is an exact copy of parents. 

[Mutation] With a mutation probability mutate new offspring at each locus (position in 

chromosome). 

[Accepting] Place new offspring in a new population 

[Replace] Use new generated population for a further run of algorithm 

[Test] If the end condition is satisfied, stop, and return the best solution in current 

population 

The GA, based on the concept of natural genetics, is directed toward a random 

optimization search technique. The GA solves problems using the approach inspired by 

the process of Darwinian evolution. In the GA, the solution of a problem is called a 

‘‘chromosome’’. A chromosome is composed of genes (i.e., features or characters). 

Although there are several kinds of numerical optimization methods, such as neural 

network, gradient-based search, GA, etc., the GA has advantages in the following 

aspects: 

1. The operation of GA uses the fitness function values and the stochastic way (not 

deterministic rule) to guide the search direction of finding the optimal solution. 

Therefore the GA can be applied for many kinds of optimization problems. 
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2. The GA can lead to a global optimum by mutation and crossover technique to avoid 

trapping in the local optimum. 

3. The GA is able to search for many possible solutions (or chromosomes) at the same 

time. Hence, it can obtain the global optimal solution efficiently. 

Based on these points, GA is considered as an appropriate technique for solving the 

problems of combinatorial optimization and has been successfully applied in many 

areas to solve optimization problems. 

 

3.2.2 Parameters of GA  

Crossover probability says how often will be crossover performed. If there is no 

crossover, offspring is exact copy of parents. If there is a crossover, offspring is made 

from parts of parents' chromosome. If crossover probability is 100%, then all offspring 

is made by crossover. If it is 0%, whole new generation is made from exact copies of 

chromosomes from old population (but this does not mean that the new generation is 

the same!). 

 Mutation probability says how often will be parts of chromosome mutated. If there 

is no mutation, offspring is taken after crossover (or copy) without any change. If 

mutation is performed, part of chromosome is changed. If mutation probability is 100%, 

whole chromosome is changed, fit is 0%, nothing is changed.  

Population size says how many chromosomes are in population (in one generation). If 

there are too few chromosomes, GA has a few possibilities to perform crossover and 

only a small part of search space is explored. On the other hand, if there are too many 

chromosomes, GA slow down.  
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CHAPTER IV 

MODEL DEVELOPMENT 

4.1 Problem Identification 

Since two major tools for control of production process i.e. Statistical Process Control 

(SPC) and Maintenance Management (MM) are closely related to each other and their 

goals overlap a great deal, integration of these two may be more effective than their 

separate parallel application. Realizing this fact several researchers have already 

developed a great deal of integrated models of these two. But the following omissions 

are observed in the literature in this context: 

1. Most of the integrated general cost models integrate maintenance management 

policy and process quality control considering X  control chart and EWMA 

control chart. But CUSUM chart can be very effective in detecting small shifts 

and it is also known for its prompt response. Since it is cumulative in nature, it 

represents even very small drift in steadily increasing or decreasing cumulative 

deviation values. . It is also effective for process industries, where sample size 

n=1 is justified. 

2. Most of the models consider only Process mean to monitor the process and to 

determine Average Run Length (ARL), while considering both mean and 

variance chart in case of process monitoring can be more effective. In this 

context joint ARL (combining mean and variance) should be determined. 

3. Most of the integrated models focus on process quality problems and completely 

ignore the possibility of an equipment failure in terms of machine breakdown or 

improper functioning of the equipment that result in poor product quality and 

call for maintenance action. 

4. Most of the integrated models focus on the investigation of preventive 

replacement or perfect PM policy that restores the equipment to an ‘as-good-as-

new’ state. Relatively very few papers have appeared that incorporate the aspect 

of imperfect PM. But in real life aspect imperfect PM has attained more 

acceptances. 

5. Most of the integrated models consider the conventional goal-post approach in 

the economic design of control chart to determine the quality loss. But it doesn’t 
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consider the loss due to deviation from the target value; however, any deviation 

of quality characteristics from the target value is an indirect loss to the 

customers. Thus, incorporating the taguchi quadratic loss function approach in 

designing integrated economic control chart and maintenance policy should give 

better results.  

6. In case of sampling policy, variable sampling interval has been considered to be 

more effective than fixed sampling interval and has become more realistic one. 

Variable Sampling Interval at Fixed Times (VSIFT) is one of the latest variable 

sampling technique which has been used in a very few study and recently it has 

already been accepted as the most promising technique of sampling policy. But 

only one integrated model has ever been developed with VSIFT approach and 

that integrated model was based on EWMA control chart. It has never been 

applied in integrated model based on CUSUM control chart. 

4.2 Model Formulation 

It is always required to consider the design of a control chart from an economical 

point of view. Because the choice of control chart parameters affect the whole cost. 

Selection of these control chart parameters is usually called the “Design of the 

Control Chart”. Economic models are generally formulated using a total cost function, 

which expresses the relationships between the control chart design parameters and 

associated costs of process control. The production, monitoring and adjustment 

process are a series of independent cycles over time. Each cycle begins with the 

production process in the in-control state and continues until process monitoring via 

the control chart results in an out-of-control signal. After adjustment it returned to the 

in-control state to begin another cycle. Then the expected cost per unit time is, 

𝐸(𝐴) =
𝐸(𝑐)

𝐸(𝑇)
                                                                                                              (4.1)                    

Where C, T are dependent random variables. 

The above equation is optimized to design economically optimal control chart. The 

sequence of production-monitoring-adjustment, with accumulation of costs over the 

cycle, can be represented by a particular type of stochastic process called Renewal 
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Reward Process. Where time cost is given by the ratio of the expected reward per 

cycle to the expected cycle length. 

4.2.1 The VSIFT CUSUM chart 

The sampling scheme of a VSIFT chart is to use the sampling interval (denoted as h) 

between fixed time points as long as the sample point is close to the target so that 

there is no indication of process change. However, if the sample point is far away 

from the target, but still within the control limits, so that there is some indication of 

process shift, then additional samples are allowed between the two fixed sampling 

time points. Suppose that the interval h between two fixed times is divided into η 

subintervals of length d, where d = h/ η. For example, if h = 1 h and η = 5 (i.e., d = 12 

min), then samples would always be taken every hour. But if the sample point 

indicates a problem, then the next sample would be taken 12 min later.  

CUSUM chart for mean (CUSUM- m): The ith sample statistic of a CUSUM chart 

for mean is  

Ci 
+ = max[C i-1 

+ + xi - (µ0 + s), 0]                                                                             (4.2) 

Ci 
- = max[C i-1 

+ + (µ0 - s) - xi, 0]                                                                              (4.3) 

Where Ci 
+ and Ci 

- are the one sided upper and lower CUSUM for ith sample statistic. 

µ0 is the process target value, the sequentially recorded observations xi can either be 

individually observed values from the process or sample averages obtained from 

rational subgroups and s is the allowable slack and usually it is denoted by s = 𝛿∗ 𝜎𝑥

2
; 

usually δ =1. The upper and lower control limits (denoted by UCL and LCL, 

respectively) for the CUSUM-m chart are 

UCL = µ0 + kơx                                   (4.4) 

LCL = µ0 - kơx                              (4.5) 

Here, k is the control limit coefficient of the CUSUM-m chart that determines the size 

of the critical region of the chart, and ơx  is the asymptotic standard deviation of the 

sample statistic for mean and is equal to 
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ơx = 
ơ

√𝑛
 (4.6) 

 Where ơ is the standard deviation of the process characteristic and n is the sample 

size. The upper and lower warning limits (denoted by UWL and LWL, respectively) 

for the CUSUM -m chart are  

UWL = µ0 + wơx (4.7) 

LWL = µ0 - wơx                  (4.8) 

Where w is the warning limit coefficient of the CUSUM chart for mean. 

CUSUM chart for variance (CUSUM-S2 ) : Castagolia et al [32] proposed a new 

type of CUSUM chart to monitor process variance. In this paper that CUSUM-S2chart 

will be used to monitor the variance.  

Let xk,1, . . . ,xk,n be a sample of n independent normal (µ0,ơ) random variables, where 

µ0 is the nominal process mean, ơ is the nominal process standard-deviation and k is 

the subgroup number. The investigated chart is used to monitor the process 

dispersion, therefore the “out-of-control” condition for the process corresponds to the 

occurrence of a special cause, which leaves unchanged the process mean and shifts 

the standard deviation. Let Sk
2 be the sample variance of subgroup k, i.e. 

𝑆𝑘
2 = 1

𝑛−1
∑ (𝑥𝑘𝑗 − �̅�𝑘

𝑛
𝑗=1 )2                                                                                         (4.9) 

Where �̅�k is the sample mean of subgroup k.  

𝑇𝑘=𝑎 + 𝑏𝑙𝑛(𝑆𝑘
2 + 𝑐)                                                                                               (4.10) 

Here, 𝑏 = 𝐵(𝑛) 

 𝑐 = 𝐶(𝑛)𝜎2 

𝑎 = 𝐴(𝑛) − 2𝐵(𝑛) ln(𝜎) 

The value of A(n), B(n), C(n) can be determined from the Appendix A of 

Castagolia(2005a). The kth static to monitor the process variance is, 

Zk 
- = max [0, Zk-1 

-  + (E(Tk ) – L) - Tk ]                                                                  (4.11) 
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Zk 
+ = max[0, Zk-1 

+  + Tk  - (E(Tk ) + L)]                                                                  (4.12) 

Zk = max (Zk 
- , Zk 

+ )                                                                                               (4.13) 

Here, E(Tk ) is the expected mean value of Tk..  L is the allowable slack for CUSUM-

S2 chart. L ≥ 0 is a constant. The upper and lower control limits (denoted by UCL and 

LCL, respectively) for the CUSUM-S2 chart are 

UCL = k1ơx                                                                                                                                       (4.14) 

LCL = 0                                                                                                         (4.15) 

Here, k1 is the control limit coefficient of the CUSUM-S2 chart that determines the 

size of the critical region of the chart, and ơx is the standard deviation of the sample 

statistic for variance and is equal to 

ơx = 
ơ

√𝑛
                                                                                                                     (4.16) 

 Where ơ is the standard deviation of the process characteristic and n is the sample 

size. The upper warning limit (denoted by UWL) for the chart is 

UWL = w1ơx                                                                                                                                            (4.17) 

Where w1 is the warning limit coefficient of the CUSUM-S2 chart. 

If the last sample point falls in the safe region (i.e., LWL ≤ xi ≤ UWL) for both the 

mean and variance chart, then take the next sample at the next fixed sampling time 

point. If the last sample point falls in the warning region for at least one chart i.e. 

CUSUM-m or CUSUM-S2 (i.e., UWL < xi ≤ UCL or LCL ≤ xi < LWL or xi>UWL), 

then take the next sample using the sampling interval d. A search for the assignable 

cause is under taken when the sample point falls outside the control limits. Thus, 

when the VSIFT CUSUM chart is applied to maintain current control of a process, 

seven test parameters (i.e., n, h, ȵ, k, w, k1 and w1) should be determined. The 

economic design of VSIFT CUSUM chart is to determine the optimal values of the 

seven test parameters such that the average total cost per hour associated with test 

procedure may be minimized.  
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4.2.2 Process assumptions for VSIFT CUSUM control chart 

To simplify the mathematical manipulation and analysis, the following assumptions 

are made: 

1. The process characteristic monitored by the VSIFT CUSUM chart follows a 

normal distribution with mean µ and standard deviation ơ. 

2. In the start of the process, the process is assumed to be in the safe state; that is, 

µ = µ0 

3. The process mean may be shifted to the out-of-control region; that is, µ = µ0 + 

δ ơ.  

4. The process standard deviation ơ remains unchanged. 

5. The time between occurrences of the assignable cause is exponential with a 

mean of λ occurrences per hour. 

6. When the process goes out of control, it stays out of control until detected and 

corrected. 

7. During each sampling interval, there exists at most one assignable cause which 

makes the process out of control. The assignable cause will not occur at 

sampling time. 

8. The measurement error is assumed to be zero. 

 

4.2.3 Problem Statement and Assumptions 

In the present work, an integrated model of preventive maintenance and quality 

control policy with CUSUM chart is presented to determine the optimal values sample 

size (n), fixed sampling interval (h), sampling sub interval (ȵ), control limit 

coefficient of CUSUM-m chart (k), warning limit coefficient of CUSUM-m chart (w), 

control limit coefficient of CUSUM-S2 chart (k1), warning limit coefficient of 

CUSUM-S2 chart (w1) and preventive maintenance interval (tpm), to minimize the 

expected total cost per unit time of this integrated model. Here VSIFT sampling 

policy has been considered for both CUSUM-m and CUSUM-S2 charts. Joint ARL for 

mean and variance has been computed using absorbing Markov chain approach. In 

control and out of control cost has been determined using Taguchi quadratic and 

linear loss function for CUSUM-m and CUSUM-S2 chart, respectively. 
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Like Pandey et al. [2] here, a production system has been considered consisting of a 

single machine, produce products of the same type with a constant Production Rate 

(PR, items per hour) on a continuous basis (three shifts of seven hours each, six days a 

week). Further, considered a single component operating as a part of machine with 

time-to-failures following a two-parameter Weibull distribution. The failures of most 

components in a mechanical system like production machines can be modeled using a 

two-parameter Weibull distribution. However, the approach proposed in this thesis is 

generic and can be used with other distributions also. 

Here, machine failures are divided into two failure modes: 

 (1) Failure mode 1 (FM1): leads to immediate breakdown of the machine. 

 (2) Failure mode 2 (FM2): leads to deterioration in process quality owing to shifting 

of the desired level. 

Similar classifications were also used by Lad and Kulkarni [33]. They have defined 

the failure of a machine tool as any event that either brings the machine down or leads 

to the machine still running but producing higher rejections. This means that if a 

failure occurs, it is not necessary that it will be detected immediately, and the machine 

will be stopped, but it may also affect the quality of products being manufactured on 

the machine. It is therefore necessary to consider these types of failures, and the 

corresponding failure costs, which may be situation-specific, in maintenance-planning 

decisions. The failures belonging to the second type of failure mode can also be 

considered as partial failures and are defined by Black and Mejabi [34] as degradation 

in the machine performance without complete failure. Thus, the problem is to jointly 

optimize design parameters for the preventive maintenance and process quality policy 

with CUSUM chart 

Let us consider the following assumptions: 

1. A single part gets manufactured on the machine with a single critical to quality 

(CTQ) characteristic. 

2. Corrective maintenance is minimal in nature, i.e. after corrective action, the 

equipment has the same age as it did at the time of failure. 

3. Preventive maintenance is imperfect in nature. 
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4. In this model it is assumed that failure modes FM1 and FM2 are independent 

and result in failures with an appropriate time to failure distribution. For a 

given failure, let the probability that it is due to FM be PFM1 and PFM2 

respectively. Since it is assumed that these are the only failure mode types, 

PFM1 + PFM2=1.These probabilities can be obtained from the failure reports 

maintained by maintenance personnel from production lines. The failure 

reports mainly cover the following information: Component ID, Time to 

failure, Time of repair, Failure mode, Action taken, Failure cost. 

5. The process is jointly monitored by a VSIFT CUSUM-m and CUSUM-S2 

control chart. 

6. At the time of detection and restoration, the whole system is stopped. After 

restoration, the system returns to perfect condition. 

4.2.4 Problem Description 

If FM1 occurs, it immediately stops the machine. Corrective actions are taken to repair 

the machine to its operating condition. Thus, the expected cost of corrective 

maintenance E [CCM] FM1 includes the cost of down time, and the cost of repair/restore 

action. FM2 affects the functionality of the machine and in turn increases the rejection 

level. In other words, FM2 affects the process rejection rate. It is assumed that 

whenever FM2 is detected, the process is stopped immediately, and corrective actions 

are taken to repair the process back to the normal condition. Apart from failures 

owing to FM2, the process may also deteriorate owing to external causes (E) such as 

environmental effects, operators’ mistakes, use of wrong tool, etc. The process is reset 

to the in-control state if an external event ‘E’ is detected. The time-to-failure of the 

process is assumed to follow an exponential distribution (Ben-Daya [17]). The 

detection of FM2 or an external cause is achieved by monitoring the process. In this 

thesis a VSIFT CUSUM control chart mechanism is considered for process 

monitoring. Thus, the expected total cost of process failure E [TCQ]process-failure owing 

to FM and external events considering the cost of down time, cost of rejections owing 

to process shifts, cost of repair/resetting, cost of sampling and inspection, cost of 

investigation of false/valid alarm, and cost of deviation from the target value of the 

CTQ. Apart from the above corrective actions, the machine can undergo preventive 

maintenance tPM to minimize the unplanned downtime losses. In this thesis, imperfect 
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preventive maintenance has been considered. This means that the PM upgrades the 

equipment to a state between the as-good-as-new and as-bad-as-old conditions. The 

frequency of failures can be significantly decreased through PM. Reduction in FM2 

reduces the quality costs related to the out-of-control operation. However, PM also 

consumes some resources and productive machine time that could otherwise be used 

for production. The expected cost of PM (E [CPM]) comprises the cost of downtime 

and cost of performing preventive maintenance actions. 

4.3 Mathematical Model 

4.3.1 Joint ARL Computation for mean and variance 

Average run length (ARL) is a measure of the expected number of consecutive 

samples taken before the sample statistic falls outside the control limits. Since ARL is 

a function of the prevailing process mean and standard deviation, its value depends on 

whether the process is in-control or out-of-control. When multiple charts are used 

jointly for monitoring the process, the investigation for an assignable cause is initiated 

when at least one of the charts shows an out-of-control signal. Hence, not the ARLs of 

the individual charts but the joint ARL of the overall control scheme is the relevant 

performance measure when multiple charts are used simultaneously. Joint ARL of 

mean and variance for the VSIFT CUSUM chart can be computed using absorbing 

Markov chain approach. According to Morais and Pacheco [22] to determine the ARL 

of combined scheme, the run length distribution of mean and variance charts need to 

be determined. Then using this results complementary cumulative distribution 

function can be determined. 

Joint ARL,   ARLj= [∑ �̅�𝑅𝐿𝜇
𝑖

∞
𝑠=0 (𝑠) ∗ �̅�

𝑅𝐿
𝑠2
𝑗 (𝑠)]𝑖=1….𝑢+1

𝑗=1….𝑣+1
                                       (4.18) 

�̅�𝑅𝐿𝜇
𝑖 (𝑠) = {

𝑒𝜇.𝑖
𝑇 ∗[𝑄𝜇]𝑠∗1

𝜇,     𝑠>1

1,    𝑆<1                                                                       (4.19)      

𝐹
𝑅𝐿

𝑠2
𝑗 (𝑠) = {

𝑒
𝑠.2 𝑗
𝑇 ∗[𝑄

𝑠2 ]𝑠∗1
𝑠2,    𝑠>1

1,    𝑠<1                                                                  (4.20) 

Where  �̅�𝑅𝐿𝜇
𝑖 (𝑠) and 𝐹

𝑅𝐿
𝑠2
𝑗 (𝑠)  are the probability that the expected run length of 

CUSUM-m and CUSUM-S2  is greater than or equal s, respectively. Here u+1 and 
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v+1 are the number of in control state for CUSUM-m and CUSUM-S2  chart 

respectively. Here 𝑒𝜇.𝑖
𝑇  and 𝑒𝑠.2 𝑗

𝑇  are the transpose of orthonormal basis of Ru+1 and 

Rv+1, respectively. 𝑄
𝜇
 and 𝑄𝑠2  are [u x u] and [v x v] matrix, that represents initial 

transition probabilities for CUSUM-m and CUSUM-S2  chart, respectively. 1µ and 1s2 

are the column vector of ones. 

4.3.2 Development of cost function 

The cost function, which is the objective function of the economic design of the 

VSIFT CUSUM chart integrating maintenance management, is developed based on 

the economic model given in Lorenzen and Vance [13]. 

Expected Cycle Length Determination  

The cycle length is defined as the total time from which the process starts in control, 

shifts to an out-of-control condition, has the out-of-control condition detected, and 

results in the assignable cause being identified and the process being corrected. Four 

time intervals in an expected cycle length are respectively 

1. The interval the process is in control, denoted by T1, 

2. The interval the process is out of control before the final sample of the detecting 

subgroup is taken, denoted by T2, 

3. The interval to sample, inspect, evaluate and plot the subgroup result, denoted by 

T3, and 

4. The interval to search for the assignable cause and correct the process, denoted by 

T4. 

When the expected cycle length is determined, the cost components can be converted 

to a ‘‘per hour of operation’’ basis. 

The average time interval that the process is in control can be expressed by 

E (T1) =  1
𝜆
 + (1-γ1)*t0 *

s

ARL𝑗1
                                                                                 (4.21) 
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Where t0 is expected time of searching for an assignable cause under a false alarm, s 

is the expected sampling frequency while in control and ARLj1 denotes Joint Average 

Run Length when process is in control. 

γ1 = 1; if production continues during searches 

         0; if production ceases during searches 

 λ is the process failure rate. Let the rate of failure due to external causes be λ1 and 

that due to poor machine condition be λ2. Since we assume that λ1 and λ2 are 

independent and do not occur simultaneously, the process failure rate (λ) is the sum of 

failure rates due to external causes and due to machine degradation. Thus, It can be 

written as 

λ= λ1+λ2 

Process failure rate due to external causes is calculated as 

λ1 = (1 / Mean time between process failures due to external causes) 

Pandey et al [2] used a simulation approach to generate a regression model to 

establish a relationship between Nf  and tPM 

 Nf = 0.0437*(𝑡𝑃𝑀)0.8703                                                                                 (4.22) 

The process failure rate owing to machine degradation can be calculated as 

λ2 = 
Nf∗PFM2

Teval
                                                                                                         (4.23) 

Where, Nf  is the number of machine failures and Teval is the evaluation period and tPM 

is the preventive maintenance interval. 

 Calculation of the expected sampling frequency while in control 

Here the sampling frequency is calculated based on the concept given by Chou et. al. 

[27].The first sampling occurs at time point h (i.e., this is the only one sampling 

during the first interval [0, h]). When the process is in control, except for the first 
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interval, the possible values of the sampling frequency for any interval with fixed 

length h (i.e., the intervals [h, 2h], [2h, 3h], [3h, 4h] ...) are 1, 2,…. η. For any interval 

between two consecutive fixed sampling time points (except for the first interval), 

define Ai as the event that the process is in control at the ith sampling given that the (i 

-1)st sample point falls in the warning region, for i =1,2,..., η. Then the expected 

sampling frequency for any interval with fixed length h (excluding the first interval), 

denoted by v, is  

 𝑣 = ∑ 𝑖𝑃(𝐴𝑖)
𝜂
𝑖=1  

   = (1-ρ) +2ρ (1- ρ) +3ρ2 (1- ρ) +……+ (η-1) ρ η-2(1- ρ) + η ρ η-1 

     =1−𝜌𝜂−1

1−𝜌
 + (2𝜂 − 1)ρ𝜂−1             (4.24) 

Let Bj be the event that the process is in control at the start of the jth interval with 

fixed length h, for j =2,3,..., ∞. Then, based on the model assumptions, we have 

P (Bj) = 1- ∫ 𝜆𝑒−𝜆𝑡 𝑑𝑡
(𝑗−1)ℎ

0
  

         = 𝑒−(𝑗−1)𝜆ℎ      (4.25) 

for j =2,3,..., ∞. 

From Eqs. (4.8) and (4.9), the expected sampling frequency while in control is, 

s = 1+ (1−𝜌𝑒𝜂−1

1−ρ
 + (2η – 1) ρη-1) * ∑ 𝑒−(𝑗−1)𝜆ℎ∞

𝑗=2  

  =1+ (1−𝜌𝑒𝜂−1

1−ρ
 + (2η – 1) ρη-1) * ( 𝑒−𝜆ℎ

1−𝑒−𝜆ℎ )   (4.26) 

η = ℎ
d
  (4.27) 

Where ρ is the conditional probability that the sample point is plotted in the warning 

region given that the process is in control and is equal to 

ρ= 
2⌈ ϕ(𝑘)− ϕ(ω)]

ϕ(𝑘)− ϕ(−𝑘)
+

⌈ 𝜙(𝑘1)− 𝜙(𝜔1)]

𝜙(𝑘1)− 𝜙(0)
− (

2⌈ 𝜙(𝑘)− 𝜙(𝜔)]

𝜙(𝑘)− 𝜙(−𝑘)
∗

⌈ 𝜙(𝑘1)− 𝜙(𝜔1)]

𝜙(𝑘1)− 𝜙(0)
)  (4.28) 

Where ϕ(. ) is the cumulative function of the standard normal random distribution, 
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α is the probability of false alarm and for EWMA chart it can be calculated by  

α = 1/ARLj1   (4.29) 

The average time interval that the process is out of control before the final sample of 

the detecting subgroup is taken may be written as 

E(T2)=ATS2–ξ            (4.30) 

ATS2 = (ATS2) m/c + (ATS2)external   (4.31) 

Where ATS2 is defined as the average time from the occurrence of an assignable 

cause to the time when the chart indicates an out-of-control signal. 

ATS2= [ 𝜌 ∑ 𝜌𝑖𝑑 + (1 −  𝜌) ∑ 𝜌𝑖(ℎ − 𝑖𝑑)𝜂−1
𝑖=𝑜

𝜂−2
𝑖=0 ] ∗ [(𝐴𝑅𝐿𝑗2)𝑚𝑐 ∗

𝜆2

𝜆
+ (𝐴𝑅𝐿𝑗2)𝐸 ∗

𝜆1

𝜆
] (4.32) 

Where  (𝐴𝑅𝐿𝑗2)𝑚𝑐 and  (𝐴𝑅𝐿𝑗2)𝐸  are joint out of control ARL machine and external 

cause respectively. =  𝜌 ∑ 𝜌𝑖𝑑 + (1 −  𝜌) ∑ 𝜌𝑖(ℎ − 𝑖𝑑)
𝜂−1
𝑖=𝑜

𝜂−2
𝑖=0  is average sampling 

interval.  

ξ is average time lag between the sampling time point, which is just prior to the 

occurrence of the assignable cause, and the time point that the assignable cause occurs 

and it can be shown that 

ξ =∑ (ρ
1j 

τ1j) + 𝜌2 𝜏2

η−1

j=0
   (4.33) 

Where p1j is the ratio of the sampling interval h- jd to the average sampling interval 

and is equal to 

 p1j =
ρj(1− ρ)(ℎ−jd)

ρ ∑ ρid+(1− ρ) ∑ ρi(h−id)
𝜂−1
i=o

𝜂−2
i=0

       (4.34) 

p2 is the ratio of the sampling interval d to the average sampling interval and is equal 

to 

 p2 =
ρ ∑ ρid

𝜂−2
𝑖=0

ρ ∑ ρid+(1− ρ) ∑ ρi(ℎ−id)
𝜂−1
𝑖=o

𝜂−2
𝑖=0

            (4.35) 
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𝜏1j   is defined as, given that the assignable cause occurs between the sampling time 

points ih + jd and (i +1)h, the expected in-control time interval during this period and, 

from the definition, it may be shown that 

𝜏10 = 1−(1+λℎ)e−λℎ

λ (1− e−λd)
                           (4.36)   

𝜏1j = 1
𝜆
 – (𝜂−j)de−λ(𝜂−j)ℎ

1− e−λ(𝜂−j)ℎ                        (4.37) 

For j = 1, 2…..η-1 

and 𝜏2 is defined as, given that the assignable cause occurs between the ith and (i + 

1)st sampling time points with sampling interval d, the expected in-control time 

interval during this period and is equal to  

𝜏2 = 1−(1+ λd)e−λd

λ(1−e−λd)
                 (4.38) 

The average time interval to sample, inspect, evaluate and plot the subgroup result is 

equal to 

E(T3)=n*Ts        (4.39) 

where Ts is the average sampling, inspecting, evaluating and plotting time for each 

sample. The average time interval to search for the assignable cause and correct the 

process is 

E (T4) = t1 + E (Trestore) 

          =t1+(Tresetting*
λ1

λ
+MTTRcr*

λ2

λ
)              (4.40) 

where t1 is the average time to search for the assignable cause and E(Trestore)is the 

expected time to repair or reset the process. Therefore, from Eqs. (4.20), (4.29), (4.37) 

and (4.38), the expected cycle length is  

E (Tcycle) = E (T1) + E (T2) + E (T3) + E (T4)   (4.41) 
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Expected Cost Calculation 

According to Pandy et al [2], to estimate the expected cost of corrective maintenance 

owing to FM1 and preventive maintenance, the analyst must have the following 

information: 

1. The amount of time that the equipment is expected to be down each time CM/PM is 

required. This can include the time to perform the maintenance as well as any 

logistical delays (i.e. waiting for labor and/or materials required). 

2. The cost of CM/PM including the downtime, labor, materials, and other costs. 

3. The degree to which the equipment will be restored by CM/PM (e.g. ‘as good as 

new,’ ‘as bad as old,’ or ‘Imperfect’). This is quantified in terms of a restoration 

factor. The restoration factor can be determined empirically or based on expert 

judgment as calculated in Reliasoft [35] and Lad and Kulkarni [33] respectively. 

4. The probability that the equipment will fail owing to a particular failure mode. 

The expected cost of minimal corrective maintenance owing to FM1 is given as: 

E [CCM]FM1={MTTRCM[PR.ClP+LC]+CFCPCM}*PFM1*Nf                                         (4.42) 

MTTRCM [PR. ClP +LC] is the down time cost owing to corrective maintenance 

The expected total cost of preventive maintenance action of component will be  

E[CPM]={MTTRPM[PR.ClP+LC]+CFCPPM}*
Teval

𝑡𝑃𝑀
       (4.43) 

Where MTTRPM [PR. ClP +LC] is the down time cost owing to Preventive 

maintenance. 

Let the cost per unit time for investigating a false alarm is Cfalse. This includes the cost 

of searching and testing for the cause. Then the expected cost of false alarm 

E[Cfalse] = Cfalse . 
S

ARLj 1
 .t0     (4.44) 
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Let ‘a’ be the fixed cost per sample of sampling and ‘b’ be the variable cost per unit 

sampled. Thus, the expected cost per cycle for sampling is the sum of the fixed cost 

per sample and variable cost per unit sampled, and is given as:  

E [Cost of sampling] = 
(a+b𝑛)[

1

𝜆
 +{(1−γ1)∗t0 ∗

s

ARL𝑗1
}+ATS2 – ξ+𝜂Ts +r1t1  +r2 E(Trestore)]

ρ ∑ ρid+(1− ρ) ∑ ρi(ℎ−id)
𝜂−1
i=o

𝜂−2
i=0

                                                                                                                          

.                                                                                                                               (4.45) 

γ2 = 1; if production continues during process correction 

        0; if production ceases during process correction 

Let Cresetting be the cost for finding and resetting the assignable cause owing to 

external reasons, downtime if process ceases functioning, and for finding and 

resetting the process. The expected value of Cresetting can be calculated as: 

E[Cresetting]=[Cresetting*Tresetting]* 
λ1

λ
                (4.46) 

The expected cost of corrective maintenance action owing to failure mode FM2 of the 

component and for finding and repairing the assignable cause owing to machine 

failure is given by: 

E[(Crepair)FM2]={MTTRCM[PR. ClP +LC]+CFCPPM}*λ2

λ
      (4.47) 

Consideration of Taguchi Loss 

To calculate the cost of quality loss incurred owing to defectives produced while the 

process is in control and out of control a Taguchi loss function has been used. 

Consider a Critical to Quality (CTQ) with bilateral tolerances of equal value (∆) for 

CUSUM-m chart and unilateral tolerance of value (∆1) for CUSUM-S2 chart. The cost 

to society for manufacturing a product out of specification is A Tk/unit, and uniform 

rejection cost is incurred beyond the control limits. 

CUSUM-m chart 

[L in control] determination: The quality loss per unit time incurred while process is in 

control state is given as  
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[Lincontrol]mean=[PR* A

∆2
 ∫ (𝑥 − 𝜇)2𝑓(𝑥)𝑑𝑥] + (𝑃𝑅 ∗ 𝑅 ∗ 𝐶𝑓𝑟𝑒𝑗  )

𝜇+
𝑘𝜎

√𝑛

𝜇−
𝑘𝜎

√𝑛

       (4.48) 

Where PR is production rate,  x is a random variable denoting sample means of the 

quality characteristic and 𝑓(𝑥)is its normal density function with mean 𝜇 and standard 

deviation  𝜎

√𝑛
 .Now any deviation from the target value will incur a loss. This was not 

the case under the classical SPC approach. The proportion of non-conforming units 

‘R’ when the process is in-control state is given as 𝑅 = 1 − {𝜙(𝑘) − 𝜙(−𝑘)}.Cfrej  

represents cost of rejection per unit. 

From algebraic manipulations given in Appendix-A, 

[Lin control ] mean = PR* A

∆2 *𝜎2

𝑛
[1 −

2𝑘

√2𝜋
 𝑒

−𝑘2

2 − 𝛼] +(𝑃𝑅 ∗ 𝑅 ∗ 𝐶𝑓𝑟𝑒𝑗  )  (4.49) 

Where 𝛼 = 2 ϕ(−k) 

[L out of control] determination 

[L out of control]mean = PR* A

∆2 ∫ (x′ − 𝜇)2𝑓(x′)𝑑x′∞ 

−∞  -∫ (x′ − 𝜇)2𝑓(x′)𝑑x′
𝜇+

𝑘𝜎

√𝑛

𝜇−
𝑘𝜎

√𝑛

} 

Where x′is a random variable denoting sample means and 𝑓(x′) is its normal density 

function with mean 𝜇 + 𝛿𝜎 and standard deviation  𝜎

√𝑛
 . 

From algebraic manipulation given in Appendix-A, 

[L out of control]mean = 𝑃𝑅 ∗ 
𝐴

∆2  ∗
𝜎2

𝑛
[(1 + 𝛿2𝑛) ∗ (1 −  β)+(𝑘+𝛿√𝑛 

√2𝜋
)*𝑒

−(𝑘−𝛿√𝑛)2

2  

+(
𝑘−𝛿√𝑛 

√2𝜋
)*𝑒

−(𝑘+𝛿√𝑛)2

2  ]  + (𝑃𝑅 ∗ 𝑅𝛿 ∗ 𝐶𝑓𝑟𝑒𝑗  )  (4.50) 

β= ϕ(k − 𝛿 ∗ √𝑛 ) - ϕ(−k − 𝛿 ∗ √𝑛) 

Where 𝑅𝛿 is proportion of non-conforming unit while the process moves out of 

control state. 

The quality loss per unit time incurred while the process is operating in out-of-control 

state owing to machine failure is given as: 
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[Lout of control]mean m/c = 𝑃𝑅 ∗ 
𝐴

∆2  ∗
𝜎2

𝑛
[(1 + 𝛿𝑚/𝑐

2 𝑛) ∗ {1 − 𝜙(𝑘 − 𝛿𝑚/𝑐 ∗ √𝑛 )  +

 𝜙(−𝑘 − 𝛿𝑚/𝑐 ∗ √𝑛) }+(
𝑘+𝛿𝑚/𝑐√𝑛 

√2𝜋
)*𝑒

−(𝑘−𝛿𝑚/𝑐√𝑛)2

2  +(
𝑘−𝛿𝑚/𝑐√𝑛 

√2𝜋
)*𝑒

−(𝑘+𝛿𝑚/𝑐√𝑛)2

2 ] +(𝑃𝑅 ∗

𝑅𝛿 𝑚/𝑐 ∗ 𝐶𝑓𝑟𝑒𝑗  )  (4.51) 

Where 𝑅𝛿 𝑚/𝑐 = 1 − {𝜙(𝑘 − 𝛿𝑚/𝑐 𝜎) − 𝜙 (−𝑘 − 𝛿 𝑚/𝑐
𝜎)}.  

Similarly, the quality loss per unit time incurred while the process is operating in out-

of- control state owing to external reasons is given as: 

[Lout of control]mean E= 𝑃𝑅 ∗ 
𝐴

∆2
 ∗

𝜎2

𝑛
[(1 + 𝛿𝐸

2𝑛) ∗ {1 − 𝜙(𝑘 − 𝛿𝐸 ∗ √𝑛 )  +  𝜙(−𝑘 − 𝛿𝐸 ∗

√𝑛) }+(𝑘+𝛿𝐸√𝑛 

√2𝜋
)*𝑒

−(𝑘−𝛿𝐸√𝑛)2

2 +(𝑘−𝛿𝐸√𝑛 

√2𝜋
)*𝑒

−(𝑘+𝛿𝐸√𝑛)2

2 ] + (𝑃𝑅 ∗ 𝑅𝛿 𝐸 ∗ 𝐶𝑓𝑟𝑒𝑗  )    (4.52) 

 Where  𝑅𝛿 𝑚/𝑐 = 1 − {𝜙(𝑘 − 𝛿𝐸𝜎) − 𝜙(−𝑘 − 𝛿𝐸  𝜎)}                                         (4.53) 

CUSUM- S2 chart 

Since it’s a smaller the better situation. I.e. it’s better if variance is smaller in 

CUSUM-S2 chart, the desirable value for variance is 0.in this case only upper control 

limit is considered to monitor the chart. Trietsch [36] stated  that when the expected 

cost of exceeding the tolerance limits is not equal to the right and to the left of the 

target, Taguchi quadratic loss function is inappropriate in that situation. That’s why 

here in control and out of control loss for CUSUM-S2 chart is determined considering 

modified Kapoor and Wang’[37] model stated in Chen and Chou [9] , which is a 

linear loss function. 

[L in control] determination:  The quality loss per unit time incurred while process is in 

control state is given as  

[Lin control ] variance = PR* A

∆1
 ∫ 𝑦𝑓(𝑦)𝑑𝑦

𝑘1∗𝜎

√𝑛
−∞

 + (𝑃𝑅 ∗ 𝑅′ ∗ 𝐶𝑓𝑟𝑒𝑗  )                         (4.54) 

f (y) = 
1

𝜙(𝑘1) ∗ 
𝜎

√𝑛
 ∗ √2𝜋

∗ 𝑒−

(
𝑦−𝜇

𝜎

√𝑛

)2

2                                                                               (4.55) 
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Where PR is production rate,  y is a random variable denoting sample variance of the 

quality characteristic and 𝑓(𝑦)is the probability density function of truncated normal 

random variable with mean 𝜇 and standard deviation  𝜎

√𝑛
 .Now any deviation from the 

target value will incur a loss. In this work  𝜇

𝜎
 >5, probability that y<0 is tense to 0. 

From algebraic manipulations given in Appendix-B, 

[Lincontrol]variance=PR* A

∆1
∗

1

𝜙(𝑘1)
{𝜇 ∗ 𝜙 (𝑘1 

𝜎

√𝑛
− 𝜇) −

𝜎

√𝑛
∗ 𝜑 (𝑘1 

𝜎

√𝑛
− 𝜇) + (𝑃𝑅 ∗ 𝑅′ ∗

𝐶𝑓𝑟𝑒𝑗  )                                                                                                               (4.56) 

Where 𝜑(. ) Signifies standard normal probability density function. 𝑅′ denotes 

proportion defective item while the process is in control state. 

 𝑅′=1 − 𝜙(𝑘1)                                                                                                        (4.57) 

[L out of control] determination 

[L out of control]variance = PR* A

∆1
 {∫ 𝑦′𝑓(y′)𝑑y′∞ 

−∞
 -∫ 𝑦′𝑓(y′)𝑑y′

𝑘𝜎

√𝑛
−∞

}+(𝑃𝑅 ∗ 𝑅′𝛿 ∗ 𝐶𝑓𝑟𝑒𝑗  )   

Where y′is a random variable denoting sample variances and 𝑓(y′) is the probability 

density function of truncated normal random variable with mean 𝜇 + 𝛿1𝜎  and 

standard deviation  𝜎

√𝑛
 . 

f ( y′) = 
1

𝜙(𝑘1) ∗ 
𝜎

√𝑛
 ∗ √2𝜋

∗ 𝑒− 

(
𝑦−𝜇−𝛿1𝜎

𝜎

√𝑛

)2

2                                                                      (4.58) 

 

From algebraic manipulation given in Appendix-B, 

[Lout of control]variance =PR* A

∆1
∗

1

𝜙(𝑘1)
[𝜑 (𝑘1 −

𝜇√𝑛

𝜎
− 𝛿1𝜎) + {{1 − 𝜙(𝑘1 −

𝜇√𝑛

𝜎
−

𝛿1𝜎)}(𝜇 + 𝛿1𝜎)}]+ (𝑃𝑅 ∗ 𝑅′𝛿 ∗ 𝐶𝑓𝑟𝑒𝑗  )                                                               (4.59) 

Where 𝑅′𝛿 is proportion of non-conforming unit while the process moves out of 

control state . 
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The quality loss per unit time incurred while the process is operating in out-of-control 

state owing to machine failure is given as: 

  

[L out of control]variance m/c = PR* A

∆1
∗

1

𝜙(𝑘1)
[𝜑 (𝑘1 −

𝜇√𝑛

𝜎
− 𝛿1𝑚/𝑐𝜎) + {{1 − 𝜙(𝑘1 −

𝜇√𝑛

𝜎
− 𝛿1𝑚/𝑐𝜎)}(𝜇 + 𝛿1𝑚/𝑐𝜎)}]+ (𝑃𝑅 ∗ 𝑅′𝛿 𝑚/𝑐 ∗ 𝐶𝑓𝑟𝑒𝑗  )                                    (4.60)  

Where 𝑅′𝛿 𝑚/𝑐= 1 − 𝜙(𝑘1 − 𝛿𝑚/𝑐 𝜎)                                                                    (4.61) 

Similarly, the quality loss per unit time incurred while the process is operating in out-

of- control state owing to external reasons is given as: 

[L out of control]variance E = PR* A

∆1
∗

1

𝜙(𝑘1)
[𝜑 (𝑘1 −

𝜇√𝑛

𝜎
− 𝛿1𝐸𝜎) + {{1 − 𝜙(𝑘1 −

𝜇√𝑛

𝜎
−

𝛿1𝐸𝜎)}(𝜇 + 𝛿1𝐸𝜎)}]+ (𝑃𝑅 ∗ 𝑅′𝛿 𝐸 ∗ 𝐶𝑓𝑟𝑒𝑗  )                                                         (4.62) 

Where 𝑅′𝛿 𝐸= 1 − 𝜙(𝑘1 − 𝛿 𝐸 𝜎)                                                                           (4.63) 

Thus, the expected process quality loss incurred per cycle in the in-control state is: 

E[Lincontrol]= {[Lin control ] mean + [Lin control ] variance} *
1

λ
                                            (4.64) 

Thus, the expected quality loss incurred per cycle in the out-of-control state owing to 

machine failure is: 

E [(cost of Lout of control) M/C] = [[Lout of control]mean m/c +[L out of control]variance m/c ] * {ATS2 

– ξ + n*Ts + r1t1 +r2 *E (Trestore)}* 
λ2

λ
                                                             (4.65) 

Thus, the expected quality loss cost incurred in out-of-control state owing to external 

reasons is: 

E [(cost of Lout of control)E ] = [[Lout of control]mean E +[L out of control]variance E  ] * {ATS2 – ξ 

+ n*Ts + r1t1 + r2 *E (Trestore)}* 
λ1

λ
            (4.66) 

Adding Equations (4.42), (4.43), (4.44), (4.45), (4.59), (4.60), and (4.61) gives the 

expected cost of process failure per cycle as: 
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E[Cprocess] = E[Cfalse]+ E [Cost of sampling]+ E [Cresetting] + E [(Crepair) FM2]  + E [Lin 

control] + E [(cost of Lout of control) M/C] + E [(cost of  Lout of control)E ]   (4.67) 

The process failure is assumed to be repetitive in nature, i.e. every time when the 

process moves out-of-control from the in-control state and is again restored, it will 

take the same expected time (having fixed expected cycle length).If there are M 

process failure cycles in a given evaluation period, the expected process quality 

control cost for the evaluation period will be: 

E [TCQ]process- failure = E[Cprocess] * M (4.68) 

      where ,    M= Teval

E[Tcycle]
  (4.69) 

  

Optimization Model 

The problem is to determine the optimal values of the decision variables (n, h, η, k, w, 

tpm, k1 and w1) that minimize the expected total cost per unit time of the system 

ETCPUT. Recall that the age of the equipment after a PM is reduced according to the 

restoration factor. The expected total cost per unit time of preventive maintenance and 

control chart policy ETCPUT is the ratio of the sum of the expected total cost of the 

process quality control (E [TCQ] process-failure), expected total costs of the preventive 

maintenance E[CPM] and expected total cost of machine failure (E[CCM]FM1) to the  

evaluation time. Therefore, the expected total cost per unit time for the integrated 

model is given as: 

Minimize [ETCPUT] = E[CCM ]FM1 + E[CPM ] + E[TCQ]process−failure

Teval
          (4.70) 

Where [ETCPUT] = f (n, h, η, k, w, tpm, k1 and w1) and Teval is the Planning period for 

which the analysis is done.  
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CHAPTER V 

NUMERICAL EXAMPLE 

Equation (4.70) indicates that optimizing the eight variables (n, h, η, k, w, tpm, k1 and 

w1) is not a simple process. In this section, we present a numerical example 

(According to Pandey et al. [2]) to illustrate the nature of the solution obtained from 

the economic design of the proposed integrated model. 

To illustrate, consider a single component operating as a part of a machine. Machine 

failure is assumed to follow a two-parameter Weibull distribution. The machine 

considered here is expected to operate for three shifts of seven hours each for six days 

in a week. Time to execute a preventive maintenance action TPM = 7 time units with a 

restoration factor RFPM = 0.6 (it implies 60% restoration of life and sets the age of the 

block to 40% of the age of the block at the time of the maintenance action) and time 

to execute corrective maintenance action TCM=12 time units with restoration factor 

RFCM = 0 (repair is minimal, i.e. the age of a repaired machine is the same as its age 

when it failed).The time to failure for the component was obtained through simulation 

used in Pandey et al. [2]. 

A hypothetical example is illustrated in this section to compute joint ARL and to 

analyze the proposed integrated model. It is assumed that the CUSUM control chart is 

used to monitor a CTQ characteristic. Assuming that the process, in its in-control 

state, is characterized by a process mean of µ0 = 24 mm and a process standard 

deviation of ơ = 0.01 and that the magnitude of the shift owing to external reasons is 

δE = 1 and owing to machine failure is δm/c = 0.5, which occurs at random and results 

in a shift of process mean from µ0 to µ0 + δ ơ. 

The initial values of necessary parameters to obtain joint ARL is given below. 
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Initial transition probability matrix for CUSUM-m chart, 

Qµ = 

[
 
 
 
 
 
 
 
. 47 . 47 . 03 0 0 0 0 0
. 09 . 59 . 31 . 01 0 0 0 0
0 . 15 . 64 . 15 . 06 0 0 0
0 . 01 . 19 . 65 . 09 . 06 0 0
0 0 . 03 . 35 . 45 . 13 . 04 0
0 0 0 . 09 . 3 . 41 . 16 . 04
0 0 0 0 . 05 . 25 . 45 . 2
0 0 0 0 . 02 . 13 . 32 . 39]

 
 
 
 
 
 
 

 

Initial transition probability matrix for CUSUM-S2  chart, 

Qs2 = 

[
 
 
 
 
 
 
 
. 48 . 45 0 0 0 0 0 0
. 28 . 45 . 19 . 05 0 0 0 0
0 . 25 . 61 . 12 . 02 0 0 0
0 . 01 . 3 . 45 . 21 . 03 0 0
0 0 . 02 . 28 . 41 . 28 . 01 0
0 0 0 . 05 . 21 . 49 . 24 . 01
0 0 0 0 0 . 45 . 47 . 08
0 0 0 0 0 0 . 43 . 57]

 
 
 
 
 
 
 

 

The initial values of necessary parameters to develop the integrated model are given 

in Table 5.1. 

 

Table 5.1 Initial values of necessary parameters for the hypothetical numerical 
example 

Parameter Value Parameter Value 

δ E 1 PR 10 
δ m/c 0.5 T eval 1000 
𝛿1𝐸 0.004 C lp 400 

𝛿1𝑚/𝑐 0.001 T resetting 2 
a 50 LC 500 
b 5 Ts 0.4 

C false 1200 MTTRCM 12 
A 500 MTTRPM 6 

C Frej 2750 ∆ 0.03 
CFCPPM 1000 ∆1 0.005 
CFCPCM 10000 µ0 24 
C reset 2000 ơ 0.01 

t0 1 λ 1 0.05 
t1 1 PFM1 0.4 
𝛾1 0 PFM2 0.6 
𝛾2 0   
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 CHAPTER VI 

RESULTS AND DISCUSSIONS 

Since this thesis work is theoretical in nature, here a mathematical hypothetical problem 

has been considered to show better demonstration about the implementation of the 

proposed model.  The proposed model is composed of some mathematical equations which 

are required to determine the optimal values of eight decision variables i.e. sample size (n), 

fixed sampling interval (h), number of subintervals between two consecutive sampling 

times (ȵ), control limit coefficient for mean (k), warning limit coefficient for mean (w), 

preventive maintenance interval (tpm), control limit coefficient for variance (k1) and 

warning limit coefficient for variance (w1). A computer programming code of the proposed 

model has been generated in Matlab 7.8.0 (R2009a) and two of the optimization methods 

have been used to determine the optimal values. 

6.1 Result Discussion 

In this work the Nelder Mead Downhill simplex algorithm is mainly used as numerical 

search method to find the optimum results for a given set of input parameters. The 

numerical results obtained from three of the Nelder Mead Simplex runs are summarized in 

Table 6.1. Although the Nelder Mead method does not guarantee convergence to the global 

optimal solution, but this method succeeds in obtaining a good reduction in the function 

value using a relatively small number of function evaluations. In this case, it is apparent 

that the cost values resulting from implementations with different initial points are close to 

each other. In the table 6.1 three of such implementations’ results are summarized and it is 

observed that the results are fairly similar for both cost and decision variables. So it is 

evident from the results that as an optimization technique Nelder-Mead algorithm has 

exhibited good convergence. 

Table 6.1 Optimization using Nelder-Mead downhill simplex method  

No. of 
obs. 

n h ȵ k w tpm K1 W1 Cost 

1 8.0002 15.999 10 4.9992 1.5001 220 5 2 1119.303 
2 8 16 9.9997 5 1.5 219 4 2 1119.083 
3 8.0001 15.599 9.999 4.9997 1.5 219.35 4.97 2 1118.835 
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Fig. 6.1 Convergence path of points in the domain in Nelder-Mead method 

The Convergence paths of points in the domain in Nelder-Mead method are shown in the 

Fig 6.1. From Fig 6.1 it can be seen all of the three figures look different although they are 
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converging the same problem. It happened because the initial parameters were set different 

for each run and therefore the starting simplex of the Nelder Mead algorithms are different. 

And due to different initial values, the transition of the simplex from larger approximation 

to the optimal solution is different. But the destinations of the paths or the convergence 

points are same at the upper left corner of the graph. So it can be concluded that the 

solutions found using this method might reach to the global optimal value or close to that 

value. 

Moreover, to validate the effectiveness of the result obtained in Nelder Mead approach, 

another technique “Genetic Algorithm (GA) approach” is also used to find the optimal 

values of decision variables that minimize the expected total cost of system per unit time 

ETCPUT. It has been observed that, the results are very close to the results of Nelder-Mead 

method. There are four results shown in table 6.2 obtained using GA. Stall generation (G) 

and mutation rate (m) have been changed to get better view of the result. The Convergence 

steps with number of generations in GA are shown in the Fig 6.2. Since both approaches 

exhibit quite similar results, so it can be concluded that we have got best economic solution 

of the problem. 

Table 6.2 Optimization data using Genetic Algorithm 

G m n h ȵ k w tpm K1 W1 Cost 

1200 .02 8.002 15.994 9.991 5 1.5 220 4.999 2.0 1119.18 
1000 .02 8.0001 15.999 9.998 4.99 1.5 219.997 4.999 2.0 1119.30 
800 .02 8 16 9.984 4.98 1.5 219.997 5 2.0 1120.17 
800 .015 8.0001 15.996 9.986 4.99 1.5 219.996 4.997 2.0 1119.38 
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Fig. 6.2 Minimization of cost (Best cost and Population average) with number of 

generations in GA 
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6.2 Sensitivity Analysis 

In order to study the effects of some of the model parameters, a sensitivity analysis is 

performed with the illustrative example shown in chapter 5. In Table.6.3, basic level which 

was used to solve the example in Section 6.1.Levels 1 and 2 represent the values of these 

parameters at -10 and +10% of the basic level respectively. The values of the objective 

function at this three different levels of the model parameters are also shown in 

Table.6.3.The column ‘changes from level 1 to level 2’ shows how sensitive the optimum 

value is with the change of the value of these parameters. From this table it can be seen that 

four parameters (δE m, δE v, 𝜆1 and A) affect more in changing the optimum cost value than 

any other parameters. 

 

Table 6.3 Experimental data set and result of sensitivity analysis 

 

To analyze the effect of these four parameters precisely, a DOE is performed by using ½ 
fraction factorial analysis. From table 6.4 and fig. 6.3 it can easily be observed that shift 
due to assignable cause in CUSUM-m chart (δE m) is the most significant parameter for this 
model other than the rest 3 competitive parameters. Because change in δE m  changes the 
objective function’s value drastically. Though A and   δE m *A contribute to the change of 
optimum cost value but it is much less than the change causes by δE m. So, It can be 
concluded from this model, production process should be designed in a way to restrict δE m 

as minimum as possible to minimize the overall cost. 

 

parameters Basic 
level 

Level 1 Level 2 B.L 
Cost 

L.1 
Cost 

L.2 
Cost 

Range 

delta E m 1 0.9 1.1 1120 563.893 2512 1948.10
7 

delta m/c m 0.5 0.45 0.55 1120 1121.99 1120.6 1.39 
delta E V 0.004 0.0036 0.0044 1120 1118.3 1124.39 6.09 

delta m/c V 0.001 0.0009 0.0011 1120 1118.7 1121.8 3.1 
lemda 1 0.05 0.045 0.055 1120 1115.5 1128.7 13.2 

b 5 4.5 5.5 1120 1119.7 1124.2 4.5 
Ts 0.4 0.36 0.44 1120 1118.9 1120.8 1.9 
A 500 450 550 1120 1039 1207.7 168.7 

Cfrej(c7) 2500 2250 2750 1120 1119.6 1120.5 0.9 
tr 2 1.8 2.2 1120 1119.8 1120.1 0.3 
t0 1 0.9 1.1 1120 1120 1120 0 
t1 1 0.9 1.1 1120 1120 1120 0 
a 50 45 55 1120 1119.2 1124.1 4.9 
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Table 6.4 Results from ½ fraction factorial analysis 

 

 

Fig. 6.3 Pareto Chart of the standardized effects in ½ fraction factorial analysis 

6.3 Effect of changes in variable parameter on cost 

To observe the effect of the decision variables on the total cost, an analysis for all the 

decision variables was performed. In total 16 data points were used for each of the 

independent variable keeping all other variables constant. In this data set, 8 points were 

taken following increasing trend and the rest 8 points were taken following decreasing trend 

of the respective variable for better understanding about the relationship or effect of the 

variable change on the total cost. 

 

Parameters Effect F value P value 

δE m 1949.01 750815.78 0.00 
δE v 1.01 0.20 0.665 
𝜆1 11.16 24.63 0.001 
A 253.21 12672.50 0.00 

δE m * δE v 0.98 0.19 0.675 
δE m * 𝜆1 8.33 13.71 0.006 
δE m * A 193.48 7398.74 0.00 
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Table 6.5 Variation of cost with the change of sample size and fixed sampling interval 

Variation of cost with sample size Variation of cost with fixed sampling interval 
n 

increasing cost 
n 

decreasing cost 
h 

increasing cost 
h 

decreasing cost 
8 1117.17 8 1117.17 16 1119.29 16 1119.29 

8.25 1291.9 7.75 968.26 17 1119.26 15 1119.35 
8.5 1495.95 7.5 842.05 18 1119.18 14 1119.42 
8.75 1732.95 7.25 735.73 19 1119.12 13 1119.49 

9 2006.82 7 646.7 20 1119.07 12 1119.55 
9.25 2321.94 6.75 572.66 21 1119.04 11 1119.61 
9.5 2682.85 6.5 511.51 22 1118.97 10 1119.66 
9.75 3094.37 6.25 461.43 23 1118.93 9 1119.68 

The variation of cost with the change of sample size and fixed sampling interval is shown 

in the Table 6.5 and the patterns of the relationships are shown in the Fig 6.4 and Fig 6.5 

respectively. The green curve shows pattern for decreasing the value of the variable and the 

blue curve shows the pattern for increasing the value of the variable. 

 

 

Fig. 6.4 Relationship between sample size variability and cost (Increasing and decreasing 

respectively) 
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It is evident from table 6.5 and figure 6.4 that with the increase of sample size cost also 

increase. It is quite justified as increase in sample size will definitely increase the sampling 

cost, again it will also influence the in control and out control cost and also make them 

increase.Due to the same reason with the decrease of sample size cost also decreases. 

 

 

 

Fig. 6.5 Relationship between fixed sampling interval variability and cost (increasing and 

decreasing respectively) 

From the Fig.6.5 it can be found that with the increase of fixed sampling interval the cost 

is decreasing and vice versa. The reason is with higher sampling interval sampling 

frequency decreases which in turn decrease the sampling cost and so decrease the total cost. 

It is also evident from table 6.5 and fig.6.4 that, although with the change of fixed sampling 
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interval cost changes but the rate of cost change is very low, which is negligible in terms 

of total cost.   

Table 6.6 Variation of cost with change of control limit coefficient and warning limit 

coefficient of CUSUM-m chart 

The variation of cost with the change of control limit coefficient and warning limit coefficient 

for CUSUM-m chart is shown in the Table 6.6 and the patterns of the relationships are 

shown in the Fig 6.6 and Fig 6.7 respectively. The blue curve shows pattern for increasing 

the value of the variable and the green curve shows the pattern for decreasing the value of 

the variable. 

It can be found from fig. 6.6 that with the increase of control limit coefficient (k) the cost 

is decreasing rapidly but at the value 6 and higher the rate of reduction of the cost become 

very low and almost converge above the value 6. On the other hand with the decrease of k, 

cost is increasing rapidly at first but little bit slower at the later part. The possible reason is 

with higher control limit coefficient value probability of rejection decreases. Since the 

value of standard deviation is fixed for this problem, with the increase of k the area between 

two control limit also increases which in turn increases the probability of accepting bad 

products. Thus rejection, repair and out of control cost decreases. On the other hand with 

the decrease of k area between control limits decreases which increases the probability of 

rejection and demands high precision production system with very little margin of error. 

Thus the rejection cost and out of control cost increases. But while k increases, due to the 

application of Taguchi loss function in control cost also increases. That’s why rate of 

increasing of cost is much lower than the decreasing of cost with respect to the decrease 

and increase of k. 

Variation of cost with control limit coefficient 
of CUSUM-m chart 

Variation of cost with warning limit 
coefficient of CUSUM-m chart 

k 
increasing cost 

k 
decreasing cost 

w 
increasing cost 

w 
decreasing cost 

5 1117.3 5 1117.3 2.5 1119.57 2.5 1119.57 
5.25 647.73 4.75 2069.6 2.75 1119.58 2.25 1119.55 
5.5 428.63 4.5 3856.9 3 1119.59 2 1119.51 

5.75 330.04 4.25 6896.35 3.25 1119.6 1.75 1119.4 
6 286.8 4 11492.13 3.5 1119.600 1.5 1119.3 

6.25 268.29 3.75 17564.8 3.75 1119.600 1.25 1119.08 
6.5 260.61 3.5 24449.36 4 1119.601 1 1118.7 

6.75 257.61 3.25 30985.1 4.25 1119.60 0.75 1117.99 
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Fig. 6.6 Relationship between control limit coefficient of CUSUM-m chart variability and cost 

(increasing and decreasing respectively) 

In case of warning limit coefficient, with the increase of the coefficient (w), cost is 

increasing at first but from a certain value 3.25 it become constant. With the decrease of 

the w cost remain almost constant at first but began to decrease below 1.75 but at a very 

slow rate. But it can be seen that in both cases (increasing and decreasing of w) the change 

of cost is very little because low warning limit results in higher no. of sampling and more 

sampling results in high sampling cost and higher warning limit increases in control cost in 

Taguchi loss function. Thus these two costs almost nullify each other. 
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Fig. 6.7 Relationship between warning limit coefficient variability and cost (increasing and 

decreasing respectively) 

The variation of cost with the change of no. of subinterval between two consecutive sampling 

time and preventive maintenance intervals is shown in the Table 6.7 and the patterns of the 

relationships are shown in the Fig 6.8 and Fig 6.9 respectively. The green curve shows 

pattern for decreasing the value of the variable and the blue curve shows the pattern for 

increasing the value of the variable. 
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Table 6.7 Variation of cost with the change of no of subinterval between two consecutive 

sampling times and preventive maintenance interval 

 

 

 

Fig. 6.8 Relationship between number of subinterval between two consecutive sampling time’s 

variability and cost (increasing and decreasing respectively) 
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Variation of cost with no of subinterval between 
two consecutive sampling times 

Variation of cost with preventive 
maintenance interval 

ȵ 
increasing cost 

ȵ 
decreasing cost 

tpm 

increasing cost 
tpm 

decreasing cost 
10 1119.304 10 1119.304 220 1119.3 220 1119.3 
11 1118.62 9 1119.55 222 1118.8 218 1119.83 
12 1116.8 8 1119.64 224 1118.3 216 1120.38 
13 1111.65 7 1119.68 226 1117.83 214 1120.95 
14 1096.9 6 1119.7 228 1117.38 212 1121.55 
15 1049.48 5 1119.7 230 1116.95 210 1122.17 
16 821.07 4 11502.52 232 1116.53 208 1122.81 
17 2642 3 35949.82 234 1116.13 206 1123.5 
18 1589 2 38933     
19 1494.3 1 45202     
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It can be found from Fig 6.8 that with the increase of no. of subinterval between two 

consecutive sampling times the cost is decreasing very slowly but at the value 17 cost increase 

drastically then for upper values cost started deteriorating slowly. With the decrease of no. 

of subinterval between two consecutive sampling times the cost remains constant for first few 

values then started to increase and increase rapidly.so basically for the value (5-16) cost 

remains almost unchanged and beyond this range cost increases and for values less than 5 

it increases rapidly.it happened because when no. of subintervals become very high  

sampling cost increases and when the no of ȵ is very low no. of out of control ARL 

increases which in turn increases the probability of repair and rejection and out of control 

costs. 

 

 

Fig. 6.9 Relationship between preventive maintenance interval variability and cost (increasing 

and decreasing respectively) 
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It can be observed from the Fig.6.9 that with the increase and decrease of tpm, cost decreases 

and increases respectively and the relationship is linear. It occurs, because with the increase 

of tpm preventive maintenance cost decreases. But it is also found that change of cost is very 

low.so small change of tpm from its optimum value doesn’t affect the cost much 

The variation of cost with the change of control limit coefficient and warning limit 

coefficient for CUSUM-S2 chart is shown in the Table 6.8 and the patterns of the 

relationships are shown in the Fig 6.10 and Fig 6.11 respectively. The blue curve shows 

pattern for increasing the value of the variable and the green curve shows the pattern for 

decreasing the value of the variable. 

Table 6.8 Variation of cost with change of control limit coefficient and warning limit coefficient 

of CUSUM-S2 chart 

 

 

 

 

 

Variation of cost with control limit coefficient 
of CUSUM-S2 chart 

Variation of cost with warning limit 
coefficient of CUSUM-S2 chart 

K1 
increasing cost 

K1 
decreasing cost 

W1 

increasing cost 
W1 

decreasing cost 
5 1117.3 5 1117.3 2.5 1119.57 2.5 1119.57 

5.25 647.73 4.75 2069.6 2.75 1119.58 2.25 1119.55 
5.5 428.63 4.5 3856.9 3 1119.59 2 1119.51 
5.75 330.04 4.25 6896.35 3.25 1119.6 1.75 1119.4 

6 286.8 4 11492.13 3.5 1119.600 1.5 1119.3 
6.25 268.29 3.75 17564.8 3.75 1119.600 1.25 1119.08 
6.5 260.61 3.5 24449.36 4 1119.601 1 1118.7 
6.75 257.61 3.25 30985.16 4.25 1119.601 0.75 1117.99 



70 
 

 

 

Fig. 6.10 Relationship between control limit coefficient of CUSUM-S2 chart variability and 

cost (increasing and decreasing respectively) 

It can be found from the table 6.8 that with the increase of k1 cost almost remains unchanged 

and with the decrease of k1 cost remains constant for time being and started increasing 

from 3.75 and below. Due to very small value of k1, the margin of error decreases at very 

low level for sample variances which in turn increase the probability of rejection and thus 

increase rejection cost. 
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Fig. 6.11 Relationship between warning limit coefficient of CUSUM-S2 chart variability 
and cost (increasing and decreasing respectively) 

It is evident from table 6.8 that cost remains almost constant with the increase of w1 and 
cost started to decrease very slowly with the decrease of w1. With the increase of control 
limit coefficient, in control cost increases and with the decrease of warning limit 
coefficient, probability of sampling increase which lead to increase the sampling cost.so 
both costs almost nullify each other and total cost remains almost unchanged. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

This present thesis work stated that by combining statistical process control and 

maintenance management policy in a production system considerable economic 

benefit can be achieved rather than the separate use of these two key tools. For this 

purpose, an integrated economic model has been developed where CUSUM chart is 

used to monitor both process mean and variance. Because CUSUM chart is well 

known for detecting small shifts and it can detect shifts faster. Moreover, deviation 

from any one of the desired mean or variance deteriorates product’s quality which 

incurs costs. So, Calculating Joint ARL for integrating both mean and variance is 

justified. Due to the use of VSIFT sampling policy in this model, substantially faster 

detection of process shifts has become possible and the probability of running the 

process at out of control condition has been decreased.Moreover, incorporation of 

Taguchi loss function and modified Kapoor and Wang’s [9] linear loss function in the 

model have helped in minimizing in control and out of control costs for both mean 

and variance which perform far better than the conventional approach. 

In this work two approaches, Nelder Mead downhill simplex algorithm and Genetic 

Algorithm, have been used to find out the optimum values of the decision variables ( 

n,h,ȵ,k,w,tpm, k1, w1) which minimize the total cost. Both approaches have given 

almost similar results which justify the credibility of the model.So it can be concluded 

that the proposed model is a complete model which can give at most possible 

economic benefit. 

7.2 Recommendations 

In this paper CUSUM control chart has been used in developing the model and in 

many research EWMA has already been considered.So it can be effective to use 

mixed CUSUM and EWMA control chart to monitor both mean and 

variance.Although VSIFT is the most promising sampling policy, Variable Sampling 

Rate (VSR) can also be an effective alternative to VSIFT.Because VSR sampling 

policy allows both the sample size and the sampling interval to vary depending on the 
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previous values of the control statistic.Moreover, multiple equipment manufacturing 

processes can be considered in the model.However further research can be conducted 

assuming Weibull or any other distribution in case of determining the time to failure 

or out of control conditions due to the assignable causes. 
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APPENDICES 
 

 

Appendix A: 

[L in control] determination for CUSUM-m chart 

Lin control = PR* A

∆2 ∫ (𝑥 − 𝜇)2𝑓(𝑥)𝑑𝑥
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[L out of control] determination for CUSUM-m chart  

L out of control = PR* 𝐴
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Appendix B: 

[L in control] determination for CUSUM-S2chart 

Lin control = PR* A
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[L out of control] determination for CUSUM-S2 chart 

Lout of control = PR* A
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= PR* A

∆1
∗

1

𝜙(𝑘)
[ 𝜇 + 𝛿𝜎 − 𝜑 (𝑘 −

𝜇√𝑛

𝜎
− 𝛿√𝑛) − 𝜇𝜙 (𝑘 −

𝜇√𝑛

𝜎
− 𝛿√𝑛) −

𝛿𝜎𝜙 (𝑘 −
𝜇√𝑛

𝜎
− 𝛿√𝑛)] 

 

= PR* A

∆1
∗

1

𝜙(𝑘)
[ 𝜑 (𝑘 −

𝜇√𝑛

𝜎
− 𝛿√𝑛) + 𝜇 {1 − 𝜙 (𝑘 −

𝜇√𝑛

𝜎
− 𝛿√𝑛)} + 𝛿𝜎{1 −

𝜙 (𝑘 −
𝜇√𝑛

𝜎
− 𝛿√𝑛)}] 

 

= PR* A

∆1
∗

1

𝜙(𝑘)
[𝜑 (𝑘 −

𝜇√𝑛

𝜎
− 𝛿√𝑛) + {1 − 𝜙 (𝑘 −

𝜇√𝑛

𝜎
− 𝛿√𝑛)} ∗ (𝜇 + 𝛿𝜎)] 

 

 

 


