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Abstract 
 
An elaborate numerical study of developing a model regarding conjugate effect of fluid 

flow and heat transfer in a heat conducting vertical walled cavity filled with copper-water 

nanofluid has been presented in this thesis. This model is mainly adopted for a cooling of 

electronic device and to control the fluid flow and heat transfer mechanism in an 

enclosure. The numerical results have been provided in graphical form showing effect of 

various relevant non-dimensional parameters. The relevant governing equations have been 

solved by using finite element method of Galerkin weighted residual approach. The 

analysis uses a two dimensional rectangular enclosure under conjugate convective 

conductive heat transfer conditions. The enclosure exposed to a constant and uniform heat 

flux at the left vertical thick wall generating a natural convection flow. The thicknesses of 

the remaining parts of the walls are assumed to be zero. The right wall is kept at a low 

constant temperature, while the horizontal walls are assumed to be adiabatic. A moveable 

divider is attached at the bottom wall of the cavity. The governing equations are derived 

for the conceptual model in the Cartesian coordinate system. 

Firstly, conjugate heat transfer in a rectangular enclosure filled with nanofluid is 

numerically investigated. Study have been carried out for the solid volume fraction 

0 ≤ 𝜙 ≤ 0.05. The effects of Rayleigh number, the value of convective heat transfer 

coefficient, location of the divider position, the solid fluid thermal conductivity ratio and 

thickness of solid wall on the hydrodynamic and thermal characteristic of flow have been 

analyzed. Results are presented in the form of streamlines, isotherms and average Nusselt 

number. An increase in the average Nusselt number was found with the solid 

concentration for the whole range of Rayleigh number. In addition, the obtained results 

show a considerable effect on the heat transfer enhancement. In particular it is interesting 

to mention that divider can be located inside the partition to control heat transfer 

especially in electronic device. 

Secondly, the numerical solution will also be carried out for the problem of MHD 

conjugate natural convection flow in a rectangular enclosure filled with electrically 

conducting fluid. The effect of Hartmann number on the pertinent parameters on the flow 

and temperature fields and heat transfer performance of the enclosure will also be 

examined. It is expected that the heat transfer rate will increase with an increase of 

Rayleigh number, divider position and solid fluid thermal conductivity ratio, but it should 
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decrease with an increase of the Hartmann number. It is also expected that an increase of 

the solid volume fraction will enhance the heat transfer performance.  
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Chapter 1: Introduction 

1.1 Introduction 

Conjugate heat transfer occurs when the solution of the conductive heat transfer in the 

solid domain becomes as significant as the solution of the convective heat transfer in the 

fluid domain, to the solution of the overall heat transfer problem. It is well established that 

when convective heat transfer is strongly dependent on thermal boundary conditions, 

consideration of convective heat transfer problems as conjugate problems is necessary to 

obtain physically more strict results. Many research efforts have been given to the 

conjugate problem of forced convection heat transfer problems for both experimental and 

theoretical but few works have been devoted to the conjugate problem of natural 

convection. Heat transfer in solids and fluids is combined in the majority of applications. 

This is because fluid flow around solids or between solid walls, and because solid are 

usually immersed in a fluid. An accurate description of heat transfer modes, materials 

properties, flow regimes and geometrical configurations enables the analysis of 

temperature fields and heat transfer. Such a description is also the starting point for a 

numerical simulation that can be used to predict conjugate heat transfer effects or to test 

different configuration in order, for example, to improve thermal performances of a given 

application. 

1.1.1 Heat Transfer by Solids and Fluids 

Heat transfer in a solid 

In most cases, heat transfer in solids, if only due to conduction, is described by Fourier’s 

law defining the conductive heat flux, 𝑞 proportional to the temperature gradient.  

𝑞 =  − 𝜅Δ𝑇. 

For a time dependent problem the temperature field in an immobile solid verifies the 

following form of the heat transfer equation: 

𝜌𝐶𝑃
𝜕𝑇

𝜕𝑡
=  ∇.  𝜅Δ𝑇  + Q 

Heat Transfer in a fluid 

Due to the fluid motion, three contributions to the heat equation are included: 

1. The transport of fluid implies energy transport too, which appears in the heat 

equation as the convective contribution. Depending on the thermal properties on 
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the fluid and on the flow regime, either the convective or the conductive heat 

transfer can dominate. 

2. The viscous effect of the fluid flow produces fluid heating. This term is often 

neglected, nevertheless, its contribution is noticeable for fast flow in viscous fluids. 

3.  As soon as a fluid density is temperature dependent, a pressure work term 

contributes to the heat equation. This accounts for the well known effect, for 

example, compressing air produces heat. 

1.1.2 Conjugate Heat Transfer Applications 

Effective heat transfer 

Efficiently combining heat transfer in fluids and solids is the key to designing effective 

coolers, heaters, or heat exchangers. The fluid usually plays a role of energy carrier on 

large distances. Natural convection is the most common way to achieve high heat transfer 

rate. In some applications, the performances are further improved by combining 

convection with phase change, for example liquid water to vapor phase change. Even so, 

solids are also needed, in particular to separate fluids in heat exchanger so that fluids 

exchange energy without being mixed. Solids are usually made of metal with high thermal 

conductivity. They dissipate heat by increasing the exchange area between the solid part 

and the surrounding fluid. 

Energy Savings 

Heat transfer in fluids and solids can also be combined to minimize heat losses in various 

devices. Because most gases have small thermal conductivities, they can be used as 

thermal insulators, provided they are not in motion. It is important to limit the heat close to 

the solid temperature, and far from the interface, the fluid temperature is close to the 

ambient fluid temperature. The distance where the fluid temperature varies from the solid 

temperature to the bulk temperature is called the thermal boundary layer.    

1.1.3 Nanofluids  

The fluids with nano-sized solid particles suspended in them are called ―nanofluids‖. In 

other words, nanofluid is a fluid containing nanometer-sized particles, called 

nanoparticles. It is well known that 1 Nano-meter = 10-9m. Also, a nanoparticle is defined 

as the smallest unit that can still behave as a whole entity in terms of properties and 

transport. Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, 
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termed nanofluids, show remarkable thermal and optical property changes from the base 

liquid at low particle loadings. Nanofluids have been studied by Choi (1995) for at least 15 

years and have shown promise to enhance a wide range of liquid properties. The primary 

limitation of convectional fluids such as water, ethylene glycol or propylene glycol is their 

low thermal conductivity. Use of metallic nanoparticles with high thermal conductivity 

will increase the effective thermal conductivity of these types of fluid remarkably. It has 

been shown that mixing nanoparticles in a liquid (nanofluid) has a dramatic effect on the 

liquid thermophysical properties such as thermal conductivity.  

1.1.4 Heat Transfer in Cavities  

Heat transfer in cavities is a topic of contemporary importance, because cavities filled with 

fluid are main components in a long list of engineering and geophysical systems. The flow 

and heat transfer induced in a cavity differs fundamentally from the external convective 

boundary layer. The flow and heat transfer in a cavity is the result of the complex 

interaction between finite size fluid system and thermal communication with the confining 

walls. It differs from the external convective boundary layer that is caused by the 

interaction between a single wall and a very large fluid reservoir. The complexity of this 

internal interaction is responsible for the diversity of flows that can exist inside the cavity. 

The phenomenon of natural convection in cavities is the movement of the fluid by the 

buoyancy forces which occurs due to temperature differences affecting the density. By 

heating, the density change in the boundary layer causes the fluid to rise, that is hotter 

fluid is replaced by cooler fluid that again be heated and rise. The fluid flow and heat 

transfer in a rectangular cavity where the flow is induced by conjugate heat transfer of 

solid and fluid resulting from the boundary conditions and heat flux with the buoyancy 

force due to uniform temperature of the cavity wall studied extensively by researchers to 

understand the interaction between buoyancy and shearing forces in such flow situation. 

Therefore it is also important to understand the effect of conjugate heat transfer on fluid 

flow and heat transfer characteristics of natural convection in a rectangular cavity. 

1.1.5 Thermal Conductivity  

Thermal conductivity is the intensive property of fluid that indicates its ability to conduct 

heat. It is evaluated primarily in terms of Fourier’s law for heat conduction. Thermal 

conduction is the spontaneous transfer of thermal energy through fluid, from a region of 
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high temperature to a region of lower temperature. Thermal conductivity of fluids is 

temperature dependent. The reciprocal of thermal conductivity is called thermal resistivity.  

The fluids that have been traditionally used for heat transfer applications have a rather low 

thermal conductivity, taking into account the rising demands of modern technology. Thus, 

there is a need to develop new types of fluids that will be more effective in terms of heat 

exchange performance. In order to achieve this, it has been recently proposed to disperse 

small amounts of nanometer-sized solids in the fluid. The resulting ―nanofluid‖ is a 

multiphase material that is macroscopically uniform. If it is focused on maximizing the 

heat transfer coefficient, it is clear that the thermal conductivity of the fluid is the 

dominant parameter. 

1.1.6 Heat Flux 

Heat flux is defined as the amount of heat transferred per unit area per unit time from or to 

a surface. In a basic sense it is a derived quantity since it involves two quantities, the 

amount of heat transfer per unit time and the area from/to which this heat transfer takes 

place. In practice, the heat flux is measured by the change in temperature brought about by 

its effect on a sensor of known area. The temperature field set up may either perpendicular 

to the direction of heat flux or parallel to the direction of heat flux.   

It is possible to quantify heat transfer process in terms of appropriate rate equations. These 

equations may be used to compute the amount of energy being transferred per unit time. 

Heat flux may occur in three ways, conduction heat flux, convection heat flux and 

radiation heat flux. 

For conduction the rate equation is expressed as,  𝑞′′ = −𝜅
𝑑𝑇

𝑑𝑥
 

 The heat flux 𝑞′′  𝑊/𝑚2 is the heat transfer rate in the x direction per unit area 

perpendicular to the direction of transfer, and it is proportional to the temperature gradient  
𝑑𝑇

𝑑𝑥
 , in this direction. The proportionally constant 𝜅 is a transport property known as the 

thermal conductivity  𝑊/𝑚𝐾  and is a characteristic of the wall material. The minus sign 

is a consequence of the fact that heat is transfer in the direction of decreasing temperature. 

The heat transfer by convection is describe by 𝑞 = 𝑕 𝐴 𝑇𝑤 − 𝑇∞  
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Where, 

 𝑞 =Heat transfer rate (W) 

 𝑕=Convective heat transfer coefficient (W/𝑚2K ) 

 𝑇𝑤=Wall temperature (K) 

 𝑇∞ =Free stream fluid temperature (K) 

1.1.7 Magnetohydrodynamics 

The branch of science, which deals with the flow of electrically conducting fluids in 

electric and magnetic fields, is known as Magnetohydrodynamics (MHD). The motion of 

the conducting fluid across the magnetic field generates electric currents which change the 

magnetic field and the action of the magnetic field on these currents give rise to 

mechanical forces, which modify the fluid flow direction. Probably the largest advance 

towards an understanding of such phenomena comes from the fields of astrophysics and 

geophysics, where it is still very important. MHD principles in the design of heat 

exchanger, pumps and flow meters, space vehicle propulsion, control and re-entry in 

creating novel power generating systems and developing confinement schemes for 

controlled fusion are employed by engineers. Further potential applications for MHD 

include electromagnets with fluid conductors, various energy conversion or storage 

devices, and magnetically controlled lubrication by conducting fluids etc. Charged 

particles in an electric circuit are accelerated by an electric field but give up some of their 

kinetic energy each time they collide with an ion. The increase in the kinetic or vibrational 

energy of the ions manifests itself as heat and a rise in the temperature of the conductor. 

Hence energy is transferred from the electrical power supply to the conductor and any 

materials with which it is in thermal contact. 

1.2 Literature Review 

1.2.1 Effect of Conjugate Heat Transfer  

The heat transfer enhancement is one of the most important technical aims for engineering 
system due to its wide applications. The natural convection heat transfer in the enclosures 
has been studied extensively, because it is presented in various engineering systems. 
However the effect of the solid walls bounded to the fluid bed has received much attention 
in recent year due to its application in the cooling systems of electronics components, the 
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buildings and thermal insulation system, the nuclear reactor systems, the food storage 
industry and the build –in-storage solar collectors. In convection heat transfer analysis, it 
is common practice to consider the temperature or the heat flux at the fluid-wall-interface 
as known a priori. The result thus obtained is good only for heat transfer in flows bounded 
by wall having extremely small thermal resistance, i.e. very high thermal conductivity or 
very small thickness. However in actual practices, the wall thermal resistance is finite and 
the thermal condition at the fluid wall interfaces are different from their counterparts 
imposed at the outer surface of the solid walls. Such type of problems, where heat 
conduction in the solid is coupled with convection heat transfer in the fluid is often 
referred to as conjugate problem. Conjugate natural convection in a rectangular enclosure 
surrounded by walls was firstly examined experimentally and numerically by Kim and 
Viskanta (1984, 1985). Their result shows that, wall conduction effects reduce the average 
temperature difference across the cavity, partially stabilized the flow and decrease the heat 
transfer rate. Kaminski and Prakash (1986) performed a numerical study on conjugate 
convection in a square cavity with a thick conduction wall on one of its vertical sides. 
They investigated three separate models: (i) two dimensional conduction in the thick wall 
(ii) one dimensional horizontal wall conduction (iii) a uniform solid –fluid interface 
temperature. The three models predict nearly the same values for the overall heat transfer. 
The influence of wall conduction on natural convection in an inclined square cavity was 
researched by Archarya and Tsang (1987). The heat removal strategies in many 
engineering applications such as cooling of electronic components rely on natural 
convection heat transfer due to its simplicity, minimum cost, low noise, smaller size and 
reliability. Ostrach (1988) indicates that natural convection in enclosures has attracted 
considerable interest amongst researchers in the past few decades. Heat producing 
electronic components of the mounted on a printed circuit board above a conducting plate. 
The heat produced is then transferred both by conduction through the plate to its two ends 
and by natural convection in the surrounding fluid to the heat sink. As a result, the heat 
removing rate from the electronic components will depend on the coupling of the wall 
conduction and the fluid convection. This coupling will directly influence the temperature 
distribution among the components and the design of heat removing mechanisms that was 
investigated by Du and Bilgen (1992). Mbaye et al. (1993) study the natural convection 
conduction problem for a rectangular porous cavity to investigate the effect of Rayleigh 
number and conductivity ratio on thermal and flow field. However, in many practical 
situations, especially those concerned with design of thermal insulation, conduction in the 
walls can have an important effect on natural convection flow in the enclosure. The 
primary limitation of convectional fluids such as water, ethylene, glycol or propylene 
glycol is their low thermal conductivity. Use of metallic nanoparticles with thermal 
conductivity will increase the effective thermal conductivity of those types of fluid 
remarkably. Thus, a requirement to a new class of fluid for improving both thermal 
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conductivity and suspension stability leads to the development of nanofluids first 
introduced by Choi (1995). Kimura et al. (1997) presented a review study to show 
different application of conjugate convection problem for porous medium. However, the 
effect of the Rayleigh number, dimensionless conductivity ratio, dimensionless wall width  
and inclination angle on the natural convection in an inclined enclosure  bounded by a 
solid wall were investigated by Ben Yedder and Bilgen (1997). Finite element analysis of 
conjugate natural convection in a square enclosure with a conducting vertical wall was 
studied by Misra and Sarkar (1997). Liaqat and Baytas (2001) analyzed conjugate natural 
convection in a square enclosure containing volumetric sources. Shao-Feng Dong and 
Yin- Tang (2004) investigated conjugate natural convection and conduction in a 
complicated enclosure. Das and Reddy (2006) conducted conjugate natural convection 
heat transfer in an inclined square cavity containing a conducting block. Improvement of 
heat transfer using nanoscale particles suspended in a base fluid has been studied 
extensively in recent year by Jou and Tzeng (2006). Abdullatitif Ben Nakhi and Ali (2007) 
experimentally studied conjugate natural convection in a sqare enclosure with inclined thin 
fin of arbitrary length. Nawaf and Saeid (2007) made a numerical study to investigate the 
effect of conduction in one of the vertical walls in conduction natural convection problem 
in a porous square enclosure. They observed that either increasing the Rayleigh number 
and the thermal conductivity ratio or decreasing the thickness of solid bounded wall  
average Nusselt number can be increased. In the special cases of low Rayleigh number and 
high conductivity walls, the values of the average Nussel numbers are increasing with the 
increase of wall thickness. Mobedi (2008) studied conjugate natural convection in a square 
cavity with finite thickness horizontal walls. Ho et al. (2008) conducted these work using 
nanoparticle to improve the heat transfer rate. One of the systematic numerical 
investigations of this peoblem was conducted by Nouanegue et al. (2009), who considered 
heat transfer by natural convection, conduction and radiation in an inclined square 
enclosure bounded with a solid wall. Varol et al. (2009) investigated conjugate heat 
transfer in porous triangular enclosures with thick bottom wall. However the effect of 
nanoparticles on heat thansfer enhancement in natural convection was conducted by 
Aminossadati and Ghasemi (2009) , who considered natural convection cooling of a 
localized heat source at the bottom of a nanofluid filled enclosure. They found that the 
location of the heat sources provide to significantly affect the heat source maximum 
temperature. This problem may be encountered in a number of electronics devices 
equipped with nanofluids. Studies related with convective flows in different enclosure 
including wall of zero thickness can be found in the investigation of Lei et al. (2008), 
Bednarz et al.(2009), Pesso and Iiva (2009) , Jeng  et al.(2009), Ching and Wu (2010), 
Vorol et al. (2010) and Sankar and Younghae (2010). Improvement of heat transfer using 
nanoscale particles suspended in a base fluid has been studied extensively in recent year 
by Eiyad Abu-Nada et al. (2010). Rahman and Alim (2010) investigated MHD mixed 
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convection flow in a vertical lid-driven square enclosure including a heat conducting 
horizontal circular cylinder with Joule heating.  Zhang et al. (2011) studied conjugate 
convection in an enclosure with time periodic sidewall temperature and inclination. 
Recently, Aminossadati and Ghasemi (2012) investigated conjugate convection in an 
inclined nanofluid filled enclosure. Belazizia et al. (2012) conducted a numerical study of 
conjugate natural convection in a square enclosure with top active vertical wall. They 
obtained for a giver wall thickness d = 0.2, either increases the Rayleigh number and the 
thermal conductivity ratio can increase the average Nusselt number, the interface 
temperature and the flow velocity. Saleh and Hashmi (2014) investigated conjugate heat 
transfer in Rayleigh Bénard convection in a square enclosure. They found that the strength 
of the circulation of each cell can be controlled by the thickness of the bottom wall, the 
thermal conductivity ratio and the Rayleigh number. 

1.2.2 Heat Transfer in Cavity with MHD Effect 

The classical problem of natural convection in an enclosure has many engineering 

applications. In some practical cases such as the crystal growth in fluid, the metal casting, 

the fusion reactors and the geothermal energy extractions, the natural convection is under 

the influence of a magnetic field. Sparrow and Cess (1961) studied effect of magnetic field 

on free convection heat transfer. Sing and Cowling (1963) also studied thermal conduction 

in magnetohydrodynamics. Magnetohydrodynamic free convection was investigated by 

Riley(1964). Kuiken (1970) presented a numerical investigation of magnetohydrodynamic 

free convection in strong flow field. Oreper and Szekely (1983) studied the effect of an 

externally imposed magnetic field on buoyancy driven flow in a rectangular cavity. They 

found that the presence of a magnetic field could suppress natural convection current and 

that the strength of the magnetic field was one of the important factors in determining the 

quality of the crystal. Ozoe and Maruo (1987) investigated magnetic and gravitational 

natural convection of melted silicon on two dimensional numerical computations for the 

rate of heat transfer. Ozoe and Okada (1989) conducted the effect of the direction of the 

external magnetic field on the three dimensional natural convection in a cubic enclosure. 

Garandet (1992) studied natural convection heat transfer in a rectangular enclosure with a 

transverse magnetic field. Venkatachalappa and Subbaraya (1993) investigated natural 

convection in a rectangular enclosure in the presence of a magnetic field with uniform heat 

flux from the side walls. Alchaar et al. (1995) studied natural convection heat transfer in a 

rectangular enclosure with a transverse magnetic field. Rudraiah et al. (1995a) investigated 

the effect of surface tension on buoyancy driven flow of an electrically conducting fluid in 
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a rectangular cavity in the presence of a vertical transverse magnetic field to see how that 

force damped hydrodynamics movements. Rudruiah et al. (1995b) also studied the effect 

of a magnetic field on free convection in a rectangular enclosure. All these investigations 

show there has been an increasing interest to understand the flow behavior and the heat 

transfer mechanism of enclosure that are filled with electrically conducting fluids and are 

in the influence of a magnetic field. The common finding of these studies is that the fluid 

within the enclosure, which is under the magnetic effects, experiences a Lorentz force. 

This force in turn, affects the buoyancy flow field and the heat transfer rate. Nanofluids 

which enhanced thermal characteristics have widely been examined to improve the heat 

transfer performance of many engineering applications. Sarris et al. (2005) presented a 

numerical study of unsteady two dimensional natural convection of an electrically 

conducting fluid in a laterally and volumetrically heated square cavity under the influence 

of a magnetic field. Ece and Byuk (2006) examined the steady and laminar natural 

convection flow in the presence of a magnetic field in an inclined rectangular enclosure 

heated and cooled on adjacent walls. They found that the magnetic field suppressed the 

convective flow and the heat transfer rate. They also showed that the orientation and the 

aspect ratio of the enclosure and the strength and direction of the magnetic field had 

significant effects on the flow and temperature fields. Dulikravich and Colaca (2006) also 

found that the convection heat transfer can be controlled by the magnetic field. A 

numerical investigation on the double-diffusion convective flow in a rectangular enclosure 

by Teamah (2008) also concluded that the heat and mass transfer mechanism and the flow 

characteristics inside the enclosure strongly depend on the strength of the magnetic field 

and the heat generation. Sivasankaran and Ho (2008) numerically studied the effect of 

temperature dependent properties on the natural convection of water in a cavity under the 

influence of a magnetic field. They showed that the heat transfer rate is influenced by the 

direction of the external magnetic field and decrease with an increase of the magnetic 

field. Mamun et al. (2008) investigated MHD –conjugate heat transfer analysis for a 

vertical plate in presence of viscuss dissipation and heat generation. Kanveci and Oztuna 

(2009) numerically simulated the natural convection flow in a laterally heated partitioned 

enclosure and concluded that the magnetic field and its direction affect the heat transfer 

performance of the enclosure. Sathiyamoorthy and Chamkha (2010) used different thermal 

boundary conditions to examine the steady laminar two dimensional natural convection in 

the presence of inclined magnetic field in a square enclosure filled with a liquid gallium. 

They found that the heat transfer decrease with an increase of the magnetic field and the 
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vertically and horizontally applied magnetic fields affect the heat transfer differently. Most 

of the studies on the natural convection in enclosure with the magnetic field effects have 

considered the electrically conducting fluid with a low thermal conductivity. This, in turn, 

limits the enhancement of heat transfer in the enclosure particularly in the presence of 

magnetic field. Mansour et al. (2010) numerically investigated the unsteady magneto- 

hydrodynamic free convection in an inclined square cavity filled with a fluid-saturated 

porous medium and with internal heat generation. Finite element analysis on the conjugate 

effect of joule heating and magnetohydrodynamics on double –diffusion mixed convection 

in a horizontal channel with an open cavity was performed by Rahman et al. (2011), 

Ghasemi et al. (2011) studied magnetic field effect on natural convection in a nanofluid 

filled square enclosure. Nemati et al. (2012) studied magnetic field effects on natural 

convection flow of nanofluid in a rectangular cavity using the Lattice Boltzmann model. 

Effect of joule heating on natural convection in non-linearly heated square enclosure from 

right vertical wall was investigated by Oztop and Salem (2012). They found that flow 

becomes weaker near the right corner of the cavity due to non-isothermal boundary 

condition. They also showed that both Hartmann number and joule parameter have 

significant effects on heat transfer and fluid flow. As discussed earlier, the magnetic field 

results in the decrease of convective circulating flows within the enclosure filled with 

electrically conducting fluid, this, in turn, results the reduction of heat transfer. The 

addition of nanoparticles to the fluid can improve its thermal performance and enhance the 

heat transfer mechanism in the enclosure. In some engineering problems such as the 

magnetic field sensors, the magnetic storage media and the cooling system of electronics 

devices enhance heat transfer in desirable whereas the magnetic field weakens the 

convection flow field. Up until now, no significant studies include MHD effect on 

conjugate heat transfer flow on the natural convection in nanofluid filled enclosure. Hence 

the presence study numerically examines the effect of conjugate heat transfer on flow of 

nanofluid under the influence of horizontally applied magnetic field. 

1.3 Motivation  

In the light of above discussions, it is seen that there has been a good number of works in 

the field of fluid flow and convection heat transfer system in cavities. A very few works 

have been performed applying the effect of conjugate heat transfer on flow of nanofluid 

having finite conducting thick wall and uniform heat flux. To the best knowledge of the 
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author’s no studies that investigate the magnetic field effect of conjugate heat transfer flow 

on the natural convection of nanofluid filled enclosure with heat conducting vertical wall 

have been reported in the literature. The mentioned effects have not been studied yet. The 

study of convection phenomena in cavities is important for numerous engineering 

applications. To apply a system as an effective heat transfer devices such as in designing 

nuclear reactors system, solar collectors, electrical, microelectronic equipments containers 

and in many other design problems convective heat transfer is predominant. In addition, 

coupled of laminar conductive convective heat transfer by free convection in a rectangular 

enclosure has many important engineering and geophysical applications such as nuclear 

energy, heating and cooling of buildings, solar collectors, building, refrigerators, heat 

exchangers, electronic cooling, chemical processing equipment, crystal growth in liquids 

and micro electromechanical systems. Therefore the analysis of the fluid flow and heat 

transfer in cavities for different boundary conditions and shapes are necessary to ensure 

efficient performance of heat transfer equipments. The heat flux can present the heat 

created by the electronic devices. In the present study, a divider is mounted to the bottom 

horizontal wall. It is interesting to mention that the divider can be located inside the cavity 

to control heat transfer especially in electronic device. The aim of the present study is to 

investigate the effect of the location of heat source and also the effect of nanofluid on the 

natural convection flow and temperature fields in the rectangular enclosure. Indeed this 

geometry is mainly adopted for cooling of electronic device. For that reason, necessary 

numerical studies are still required to monitor the variation of fluid flow and heat transfer 

due to the physical changes with economic and environmental considerations due to using 

nanofluid in assisted convection mode, which forms the basis of the motivation behind 

selecting the present work.  

1.4 Overview of the Present Work  

The present study is a numerical investigation on the conjugate heat transfer in a thick 

walled cavity filled with copper-water nanofluid. In the present investigation firstly, the 

analysis use a two dimensional rectangular enclosure under conjugate convection-

conduction heat transfer conditions and considers a range of Rayleigh numbers. The 

enclosure was subjected to a constant conduction-convection uniform heat flux at the left 

wall generating a natural convection flow. The thicknesses of the other boundaries of the 

wall are assumed to be zero. The right wall is kept at a low constant temperature while the 
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horizontal walls are assumed to be adiabatic. A heat conducting moveable divider is 

mounted on the bottom horizontal wall. The study has been carried out for the Rayleigh 

number in the range of 105 ≤ 𝑅𝑎 ≤ 107  and for the solid volume fraction 0 ≤ 𝜙 ≤ 0.05. 

In the present investigation later a magnetic field is applied in the horizontal direction 

normal to the side walls of the cavity. The studies are reveal that the heat transfers in such 

arrangements are different from those studied in the above literature and it will therefore 

prove useful from the designer’s point of view in choosing the best physical condition that 

suits him. 

1.5 Objectives of the Present Study 

The overall goal of this study is to numerically simulate fluid flow and heat transfer in a 

two-dimensional rectangular enclosure filled with Copper-water nanofluid under 

conjugate convective-conductive heat transfer conditions. The investigation is to be 

carried out at different non-dimensional governing parameters. Results are to be presented 

in terms of streamlines, isotherms as well as average Nusselt number for different values 

of governing parameters. 

The specific aims of the present research work are as follows: 

 To develop 2D mathematical model for conjugate conductive-convective heat 

transfer conditions. 

 To solve the mathematical model using FEM (Finite Element Method). 

 To investigate the effect of  Rayleigh Number, solid volume fraction of nanofluids, 

the location of the divider , solid fluid thermal conductivity ratio, the solid wall 

thickness and also the value of the ambient convective heat transfer coefficient on 

the flow and thermal field in the cavity. 

 To explore the effects of  Hartmann number on Rayleigh Number, solid volume 

fraction of nanofluids, the location of the divider , the solid fluid thermal 

conductivity ratio, the thickness of the solid wall and also the value of the ambient 

convective heat transfer coefficient on the flow and thermal field throughout the 

cavity. 
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 To present the numerical results graphically for different values of the parameters 

entering into the present study. 

 To validate the present results with relevant published numerical results. 

1.6 Scope of the Thesis  

A brief description of the present numerical investigation of  the conjugate heat transfer in a 

thick walled cavity filled with nanofluid  have been presented in this thesis through five 

chapters as stated below.  

Chapter 1 contains introduction with the aim and objectives of the present work. This 

chapter also includes a literature review of the past studies on fluid flow and heat transfer 

in cavities which are relevant to the present work. Different aspects of the previous studies 

have been mentioned categorically. Present study and motivation behind it has also been 

incorporated in this chapter.  

Chapter 2 presents a short introduction of numerical methods. Then, the Finite Element 

Method is discussed in this chapter in details. Model equations with their solutions using 

the software are described in a nutshell in this chapter. Creation of geometry, meshing, 

implementation of physics, boundary conditions, and other rate equations, implementation 

of boundary are also included here.  

In Chapter 3, a detailed parametric study regarding the effect of conjugate heat transfer on 

finite element simulation is applied to perform the analysis on the flow of laminar free 

convection heat transfer and fluid flow in a rectangular cavity with heat conducting 

vertical wall and uniform heat flux. Effects of the parameters such as Rayleigh 

number 𝑅𝑎 , convective heat transfer coefficient 𝑕∞ , position of divider  𝑙1 , solid fluid 

thermal conductivity ratio  𝐾𝑟  and solid wall thickness  𝑤1  on heat transfer and fluid 

flow inside the cavity have been presented for better understanding the heat transfer 

mechanisms in such cavities.  

Chapter 4 describes the effect of MHD on conjugate natural convection heat transfer in a 

rectangular enclosure with heat conducting vertical wall and uniform heat flux with solid 

volume fraction 𝜙 = 5%. Numerical results in terms of streamlines, isotherms for 

parametric studies for the relevant parameters are also performed in this chapter for the 

range of Hartmann number (𝐻𝑎)  from 0 to 60. 
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Finally in chapter 5, the concluding remarks of the whole work and the recommendation 

for the future work have been presented systematically. 

 
 

 

 

 

 

 



Chapter 2: Numerical Techniques 

2.1 Introduction 

A numerical technique is a complete and unambiguous set of procedures for the solution 

of a problem, together with computable error estimates. The study and implementation of 

such methods is the province of numerical analysis. Physical phenomena may be described 

mathematically by ordinary or partial differential equations, which are the subject matter 

of analytical and numerical investigations. The partial differential equations concerning 

fluid mechanics and heat transfer may be solved analytically only for a limited number of 

cases. With the help of computer, approximate solution may be obtained numerically 

where the differential equations are approximated by a system of algebraic equations using 

discretization technique. The solution domain is discretized into small sub-domains where 

the numerical solutions give results at discrete locations in space and time. The accuracy 

of numerical results depends on the accuracy of available experimental data and the 

quality of discretizations used. 

Computational fluid dynamics (CFD), is a branch of fluid mechanics that uses numerical 

methods and algorithms to solve and analyze problems of fluid flows. Computers are used 

to perform the calculations required to simulate the interaction of liquids and gases with 

surfaces defined by boundary conditions. With high-speed supercomputers, better 

solutions can be achieved. Engineers use CFD codes that can make physically realistic 

results with high accuracy in simulations using finite grids. Contained within the broad 

field of computational fluid dynamics are activities that cover the range from the 

automation of well established engineering design methods to the use of detailed solutions 

of the Navier-Stokes equations as substitutes for experimental research into the nature of 

complex flows. CFD have been used for solving wide range of fluid dynamics problem. It 

is most frequently used in fields of engineering where the geometry is complicated or 

some important features that cannot be dealt with other methods. Details are available in 

Ferziger and Perić (1997) and Patankar (1980).  

2.2 Advantages of Numerical Analysis 

The problems of fluid flow and heat transfer may be analyzed either theoretically or 

experimentally. From the economical point of view, experimental investigation of such 

problems could not draw much attention because of their inadequate flexibility and 
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applications. However, often experimental investigation is necessary to validate numerical 

method. Separate experimental arrangement set up requires for any change in the 

geometry and boundary condition of the systems for their investigation. Time involvement 

is also a factor to make it unappealing. On the other hand, the theoretical analysis can be 

carried out either by analytical approach or by numerical approach. In solving the practical 

problems, the analytical solution methods are not of much popular. Numerical methods are 

extremely powerful problem-solving tools that are capable of handling large systems of 

equation, complicated geometries etc., which is often impossible to solve analytically. 

General closed form solutions can be obtained only for very ideal cases and the results 

obtained for a particular problem, usually with uniform boundary conditions. For two-

dimensional thermodynamic problems, mathematical model involve partial differential 

equations that are required to be solved simultaneously with some boundary conditions. 

Therefore, numerical methods are the easier way to find out solutions of the problems of 

practical interest because it reduces higher mathematics to basic arithmetic operations.  

2.3 Major Steps of a Numerical Solution  

According to Ferziger and Perić (1997), the main steps from various components of 

numerical solution are as follows: 

2.3.1 Mathematical Model 

The starting point of any numerical method is to develop a mathematical model which 

consists of a set of partial differential equations or integra-differential equations and 

boundary conditions. A solution method is usually designed for a particular set of 

equations. A general-purpose solution method, i.e. one which is applicable to all flows, is 

impractical, though not impossible and with most general purpose tools, they are usually 

not optimum for any single application.  

2.3.2 Discretization Technique 

After selecting the mathematical model, one has to choose a suitable discretization 

method, i.e. a method of approximating the differential equations by a system of algebraic 

equations for the variable at some set of discrete locations in space and time. There are 

several approaches, the most important of which are: finite difference (FD), finite volume 

(FV) and finite element (FE) methods. 
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2.3.3 Mesh 

The discrete locations at which the variables are to be calculated are defined by a mesh 

which covers the geometric domain on which the problem is to be solved. It divides the 

solution domain into a finite number of sub-domains called finite elements, control 

volumes, etc. 

2.3.4 Accuracy 

Numerical solutions of physical event are only approximate solutions. Numerical solutions 

usually incorporate three kinds of systematic errors. 

 Modeling errors which occur due to the difference between the actual physical 

phenomena and the exact solution of the mathematical model. 

 Discretization errors, defined as the dissimilarity between the exact solution of the 

equation of the model and the exact solution of that algebraic system of equations 

obtained by discretizing these equations  

 Iteration errors, defined as the difference between the iterative and exact solutions 

of the algebraic systems of equations. 

It is important to identify these errors, and distinguish them. Various errors may cancel 

each other, so that sometimes a solution obtained on a coarse mesh, pretends to agree 

better with the experiment than a solution on a finer mesh, which should be more accurate. 

Therefore, meshing has to be dealt with very carefully. 

2.3.5 Solution Method 

Practical applications of the finite element method lead to large systems of simultaneous 

linear algebraic equations. Fortunately, finite element equation systems possess some 

properties which allow reducing storage and computing time. The finite element equation 

systems are: symmetric, positive definite and sparse. Symmetry allows storing only half of 

the matrix including diagonal entries. Positive definite matrices are characterized by large 

positive entries on the main diagonal. Solution can be carried out without pivoting. A 

sparse matrix contains more zero entries than nonzero entries. Sparsely can be used to 

economize storage and computations. Solution methods for linear equation systems can be 

divided into two large groups: direct methods and iterative methods. Direct solution 

methods are usually used for problems of moderate size. For large problems iterative 
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methods require less computing time and hence they are preferable. The choice of solver 

depends on the grid type and the number of nodes involved in each algebraic equation. 

2.4 Finite Element Modeling: Implementation and Solution 

The solution of the Fluid flow and heat transfer model equations (presented in chapters 3 

and chapter 4) provides the predictions of state variables (e.g., velocity, temperature) in 

space and time. The solutions of coupled partial differential equations (PDE) require the 

numerical method. The FEM, is used to solve the model equations of fluid flow and heat 

transfer. The FEM solution provides a quantitative understanding of heat transfer.  

2.4.1 Numerical Solution 

Discretization is the first step to solve numerically a mathematical model of physical 

phenomena. That is, the differential equations are transformed into a ―numerical analogue‖ 

which can be represented in the computer and then processed by a computer program built 

on some algorithm. There are many discretisation schemes such as Finite difference (FD), 

Finite volume (FV), Finite element (FE) methods, Boundary element (BE) method and 

Boundary volume (BV) method. The present numerical computation has been performed 

by finite element method (FEM). Detailed analysis of this method is available in Chung 

(2002) and Dechaumphai (1999). In the past few years the growth of powerful computers 

with greater computational capabilities has facilitated the formulation of sophisticated 

numerical methods that simulate the real physical systems by solving complex 

mathematical models [Moens and Vandepitte (2005), Mohamed (2010), Wang and Sun 

(2003)]. In the literature, there are different numerical methods which include differential 

methods (e.g., Finite difference method, FDM), integral methods (variation and weighted 

residuals, e.g., FEM), and stochastic methods (e.g. Monte Carlo method) [Sandeep et al. 

(2008)]. In engineering applications, the FDM and the FEM are the commonly employed 

numerical techniques [Puri and Anantheswaran (1993), Reddy (1993)]. The former is a 

less complex and computationally inexpensive method compared to the latter [Wang and 

Sun (2003)]. However, the latter has several advantages compared to the former – the 

FEM is more flexible in handling the spatial variation of material properties, irregular 

shape and regions, nonlinear problem, mixed boundary and initial conditions [Martins et 

al. (2008), Zienkiewicz and Taylor (1991)]. Therefore, FEM was chosen to solve the 

mathematical model of heat transfer. 
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2.4.2 Finite Element Method 

The finite element discretization divides the problem domain of interest into a finite 

number of elements, and each element is connected to each other at points called nodes 

[Sandeep et al. (2008)]. The collection of the elements and nodes is called the Finite 

Element mesh (Figure 2.1). The nodes typically lie on the element boundary where 

adjacent elements are connected. The nodal values of the field variable and the 

interpolating functions for the elements define the behavior of the field variable within the 

elements. The nodal points depict the field variable or the unknown, defined in terms of 

approximating or interpolating functions within each element. A detailed discussion of the 

FEM and techniques can be found in many books, for example Martins et al. (2008), Puri 

and Anantheswaran (1993).  

Investigation using numerical technique is the most economical method and can address to 

solve complicated physical problems easily than done by the other methods. Finite  

 

 

 

 

 

 

 

 

 

 

 

 

 

element modeling appears to be the best option for the desired solution. Therefore, these 

are described in this chapter elaborately. 

2.5 Computational Procedure 

The Galerkin finite element method of Taylor and Hood (1973) and Dechaumphai (1999) 

is used to solve the non-dimensional governing equations along with boundary conditions 

for the considered problem. The equation of continuity has been used as a constraint due 

Figure 2.1: Two-dimensional Finite Element mesh. 
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to mass conservation. The finite element method is used to solve the Eqs. (3.6) - (3.9). The 

continuity equation is automatically fulfilled for large values of this constraint. Then the 

velocity components (U, V) and temperature (θ) are expanded using a basis set. The 

Galerkin finite element technique yields the subsequent nonlinear residual equations. 

Three points Gaussian quadrature is used to evaluate the integrals in these equations. Then 

the non-linear residual equations are solved using Newton-Raphson method to determine 

the coefficients of the expansions. The convergence of solutions is assumed when the 

relative error for each variable between consecutive iterations is recorded below the 

convergence criterion such that |𝜓𝑛+1 − 𝜓𝑛 | ≤ 10-4, where n is the number of iteration and 

𝜓 is a function of U, V and θ. 

Algorithm 

The algorithm was originally put forward by the iterative Newton-Raphson algorithm; the 

discrete forms of the continuity, momentum and energy equations are solved to find out 

the value of the velocity and the temperature. It is essential to guess the initial values of 

the variables. Then the numerical solutions of the variables are obtained while the 

convergence criterion is fulfilled. The simple algorithm is shown by the flow chart in the 

next page. 
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Chapter 3: Effect of Conjugate Heat Transfer on Flow 

of Nanofluid 

3.1 Introduction 

Natural convection inside enclosure has received a noticeable attention of investigation. 

This is due to their extensive applications in industry like cooling or heating system, 

energy storage system, heat dissipation from electronic components etc. Recently the 

natural convection was widely improved by using the technique of nanofluid. Heat transfer 

in solids and heat transfer in fluids are combined in the majority of applications. This is 

because fluid flow around solid or between solids walls and solid are usually immersed in 

a fluid. The term conjugate heat transfer is used to describe processes which involve 

variation of temperature within the solids and fluids due to thermal interaction between 

solids and fluids. A typical example is the heating or cooling of a solid object by the flow 

of air in which it is immersed. The conjugate heat transfer model was developed after 

computer came into wide use in order to substitute the empirical relation of proportionality 

of heat flux to temperature difference with heat transfer coefficient which was the only 

tool in theoretical heat convection. This model, base on strictly mathematically stated 

problem, describes the heat transfer between a body and a fluid inside it as a result of two 

object. The physical procedure and solution of the governing equations are considered 

separately for each object in two sub domains. Matching conditions for these solutions at 

the interface provide the distribution of velocity, temperature and heat flux along the body 

and the flow interface. The conjugate convection heat transfer problem is governed by the 

set of equations consisting two separate systems for solid body and fluid domain, which is 

done by a set of partial differential equations for both the fluid and solid domain and with 

corresponding boundary conditions, which allow the simulation of heat transfer between 

solid and fluid. 

The generalized governing equations are used based on the conservation law of mass, 

momentum and energy. As the fluid velocity and the heat transfer depend upon a number 

of factors, a dimensional analysis is presented to show the importance of non-dimensional 

parameters, which will influence the dimensionless heat transfer parameter, i.e. Nusselt 

number 𝑁𝑢 . 
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In the present study an analysis is carried out to investigate the effect of conjugate heat 

transfer on flow of nanofluid in a rectangular enclosure with heat conducting vertical wall 

and uniform heat flux. 

3.2 Physical Model 

The schematic diagram of the present study displays in Figure 3.1. It consists of two 

dimensional rectangular enclosure filled with electrically conducting fluid sides of width 𝐿 

and height 𝐻 under conjugate conduction convection heat transfer. The enclosure expose 

to a uniform constant heat flux 𝑞, which is maintained at the ambient air flow. The left 

wall has a thickness of  𝑤1 =
𝑤

𝐿
= 0.1, while the thicknesses of the other boundaries of the 

wall are assumed to be zero. The right wall is kept at a low temperature 𝑇𝑐 , while the 

horizontal walls are assumed adiabatic. A movable conducting divider of length 0.2 and 

width 0.1 is attached to the horizontal bottom wall of the cavity. The rectangular enclosure 

is filled with a suspension of copper nanoparticles in water. The nanofluid used in the 

analysis is assumed to be Newtonian, incompressible and laminar. The shape and the size 

of the nanoparticles are assumed to be uniform. The base fluid and nanoparticles  𝐶𝑢  are 

in thermal equilibrium and there is no slip between them. 

 

The thermo-physical properties of the fluid and nanoparticles are given in Table 3.1. The 

thermophysical properties of the nanofluid are assumed constant except for the density 

properties of nanoparticles and fluid are taken to be constant which determine base on 

Boussinesq approximation. The effect of viscous dissipation is neglected. 

 

Figure 3.1: Physical Geometry of the Model 
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3.3 Mathematical Formulation 

Several steps for mathematical formulation of the above physical model are as follows. 

3.3.1 Governing Equation in Dimensional Form 

In the present problem, the flow is considered to be steady, two-dimensional, laminar, 

incompressible and there is no viscous dissipation. The gravitational force acts in the 

vertically downward direction. Under the above assumptions, the system of equations 

governing the flow using conservation of mass, momentum and energy equations for 

nanofluid and solid in dimensional form can be written as follows: 

For Fluid: 

Continuity Equation: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  (3.1) 

Momentum Equations: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

1

𝜌𝑛𝑓
 −

𝜕𝑝

𝜕𝑥
+ 𝜇𝑛𝑓  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2    (3.2) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
=

1

𝜌𝑛𝑓
 −

𝜕𝑝

𝜕𝑦
+ 𝜇𝑛𝑓  

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +  𝜌𝛽 𝑛𝑓𝑔 𝑇 − 𝑇𝑐    (3.3) 

Energy Equation: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓  

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2   (3.4) 

For Solid: 

Energy Equation: 

𝜕2𝑇𝑤

𝜕𝑥2
+

𝜕2𝑇𝑤

𝜕𝑦2
= 0  (3.5) 

where the effective density of the nanofluid is given as 

𝜌𝑛𝑓 =  1 − 𝜙 𝜌𝑓 + 𝜙𝜌𝑝   

where 𝜙 is the solid volume fraction of nanoparticles. In addition the thermal diffusivity of 

the nanofluid is 

𝛼𝑛𝑓 =
𝜅𝑛𝑓

 𝜌 𝐶𝑝  
𝑛𝑓

   

Where  𝜌𝐶𝑝 𝑛𝑓
is the heat capacity of the nanofluid and expressed as 
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 𝜌𝐶𝑝 𝑛𝑓
=  1 − 𝜙  𝜌𝐶𝑝 𝑓

+ 𝜙 𝜌𝐶𝑝 𝑝
 

additionally, the thermal expansion coefficient of the nanofluid  𝜌𝛽 𝑛𝑓  is expressed as 

 𝜌𝛽 𝑛𝑓 =  1 − 𝜙  𝜌𝛽 𝑓 + 𝜙 𝜌𝛽 𝑝  

The effective dynamic viscosity of the nanofluid is given by Brinkmann 1952  is, 

𝜇𝑛𝑓 =
𝜇𝑓

 1 − 𝜙 2.5
 

The Maxwell  1904  model for thermal conductivity of solid liquid mixture of relatively 

large particles (micro/mini size) is good for low solid concentration. The thermal 

conductivity which for spherical nanoparticles, according to Maxwell (1904) is 

𝜅𝑛𝑓 = 𝜅𝑓  
 𝜅𝑝 + 2𝜅𝑓 − 2𝜙 𝜅𝑓 − 𝜅𝑝 

 𝜅𝑝 + 2𝜅𝑓 + 𝜙 𝜅𝑓 − 𝜅𝑝 
  

where 𝜅𝑝  is the thermal conductivity of dispersed nanoparticles and 𝜅𝑓  is the thermal 

conductivity of pure fluid. 

3.3.2 Boundary Conditions 

The boundary conditions for the present problem are specified as follows: 

For all rigid walls: 𝑢 = 𝑣 = 0 

At the right vertical wall: 𝑇 = 𝑇𝑐  

At the top and bottom walls: 𝜕𝑇
𝜕𝑦

= 0 

At the left side of thick wall: 𝑞 = −𝜅𝑤
𝜕𝑇

𝜕𝑥
|𝑤 + 𝑕∞ 𝑇𝑤 − 𝑇∞  

At the divider surface: 𝑢 = 𝑣 = 0 

At the fluid solid wall interfaces: 𝜅𝑤
𝜕𝑇

𝜕𝑥
|𝑤 = 𝜅𝑛𝑓

𝜕𝑇

𝜕𝑥
|𝑛𝑓  

The average Nusselt number can be used in process for engineering design calculations to 

estimate the heat transfer from the heated surface. In order to estimate heat transfer 

enhancement, we have calculated the local Nusselt number and average Nusselt number at 

the thick wall (hot wall) as 

𝑁𝑢𝑙 = −
𝜅𝑛𝑓

𝜅𝑓

𝐻

 𝑇𝑤 − 𝑇𝑐 

𝜕𝑇

𝜕𝑥
|𝑥=0.1 



Chapter 3: Effect of Conjugate heat transfer on flow of nanofluid 

 26 

The average Nusselt number is given by 𝑁𝑢𝑎𝑣 =  𝑁𝑢𝑙𝑑𝑦
𝐻

0
. 

3.3.3 Dimensional Analysis 

In our present study the following dimensionless parameters are introduced to obtained the 

governing equation (3.1-3.5) in non-dimensional forms as follows: 

𝑋 =
𝑥

𝐿
 , 𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢𝐿

𝛼𝑓
 , 𝑉 =

𝑣𝐿

𝛼𝑓
 , 𝑃 =

𝑝  𝐿2

𝜌𝑛𝑓 𝛼𝑓
2  , 𝜃 =

𝑇−𝑇𝑐

∆𝑇
  and  ∆𝑇 =

𝑞′′ 𝐿

𝜅𝑓
 

Where 𝑋and 𝑌 are the dimensionless co-ordinates varying along horizontal and vertical 

directions respectively, 𝑈and 𝑉 are dimensionless velocity component in the x and y 

directions respectively, 𝜃 is the dimensionless temperature and 𝑃 is the dimensionless 

pressure.  

After substituting these dimensionless variables into the equations (3.1-3.5) the non-

dimensional continuity, momentum and energy equations are written as follows: 

For Fluid: 

Continuity Equation: 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0  (3.6) 

Momentum Equations: 

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 
𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2   (3.7) 

𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 
𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2
 +

 𝜌𝛽  𝑛𝑓

𝜌𝑛𝑓 𝛽𝑓
 𝑅𝑎 Pr 𝜃  (3.8) 

Energy Equation: 

𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
=

𝛼𝑛𝑓

𝛼𝑓
 
𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2   (3.9) 

For Solid: 

𝜕2𝜃𝑤

𝜕𝑋2 +
𝜕2𝜃𝑤

𝜕𝑌2 = 0   (3.10) 

The dimensionless parameter appearing in the equations (3.7-3.10) are as follows: 

Rayleigh number 𝑅𝑎 =  
𝑔 𝛽𝑓𝐿3Δ𝑇

𝜈𝑓𝛼𝑓
 and Prandlt number 𝑃𝑟 =

𝜈𝑓

𝛼𝑓
, where 𝛼 =

𝜅

𝜌𝐶𝑝
, the thermal 

diffusivity of the fluid. 
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3.3.4 Non Dimensional Boundary Conditions 

The non dimensional boundary conditions under consideration can be written as: 

For all rigid walls: 𝑈 = 𝑉 = 0 

At the right vertical wall: 𝜃 = 0 

At the top and bottom walls: 𝜕𝜃
𝜕𝑌

= 0 

At the left side of thick wall: 𝑞 = −
𝜅𝑤

𝜅𝑛𝑓

𝜕𝜃

𝜕𝑋
|𝑤 +

𝐻

𝜅𝑛𝑓
𝑕∞𝜃𝑤 = 1 

At the divider surface: 𝑈 = 𝑉 = 0 

At the fluid solid wall interfaces: 𝜕𝜃𝑛𝑓

𝜕𝑋
= 𝐾𝑟

𝜕𝜃𝑤

𝜕𝑋
 

Where, 𝐾𝑟 =
𝜅𝑤

𝜅𝑛𝑓
 is the solid fluid thermal conductivity ratio. 

The local Nusselt number at the thick wall on the enclosure base on the non dimensional 

variable can be expressed as, 

𝑁𝑢𝑙 = −
𝜅𝑛𝑓

𝜅𝑓
 
𝜕𝜃

𝜕𝑋
|𝑥=0.1 

and the average Nusselt number at the left thick wall as 

𝑁𝑢𝑎𝑣 = −
𝜅𝑛𝑓

𝜅𝑓
 

𝜕𝜃

𝜕𝑋
𝑑𝑦 

𝐻

0
and the bulk average temperature is defined as, 𝜃𝑎𝑣 =  𝜃

𝑑𝐴 

𝐴 
, 

where 𝐴  is the area of the considered domain. The fluid motion is displayed using the 

stream functions  𝜓  obtained from the velocity components 𝑈and 𝑉, can be expressed as: 

𝑈 =
𝜕𝜓

𝜕𝑌
 , 𝑉 = −

𝜕𝜓

𝜕𝑋
  

3.4 Numerical Analysis 

In this section Galerkin weighted residual finite element techniques are discussed in detail 

by which the governing equations along with the boundary conditions are solved 

numerically. 

3.4.1 Finite Element Formulation and Computational Procedure 

The method of weighted residuals to derive the finite element equations according to 

Zienkiewicz (1991) is applied to the equations (3.6) – (3.10) as  
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 𝑁𝛼  
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
 

𝐴
𝑑𝐴 = 0   (3.11) 

 𝑁𝛼  𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
 

𝐴
𝑑𝐴 = − 𝐻𝜆  

𝜕𝑃

𝜕𝑋
 

𝐴
𝑑𝐴 +

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 𝑁𝛼  

𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2 𝑑𝐴
𝐴

  (3.12) 

 𝑁𝛼  𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
 

𝐴
𝑑𝐴 = − 𝐻𝜆  

𝜕𝑃

𝜕𝑌
 

𝐴
𝑑𝐴 +

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 𝑁𝛼  

𝜕2𝑉

𝜕𝑋2
+

𝜕2𝑉

𝜕𝑌2
 𝑑𝐴                

𝐴
  

+
 𝜌𝛽  𝑛𝑓

𝜌𝑛𝑓 𝛽𝑓
 𝑅𝑎𝑃𝑟  𝑁𝛼𝜃𝑑𝐴

𝐴
  (3.13) 

 𝑁𝛼  𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
 

𝐴
𝑑𝐴 =

𝛼𝑛𝑓

𝛼𝑓
  

𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2 𝐴
𝑑𝐴  (3.14) 

 𝑁𝛼  
𝜕2𝜃𝑤

𝜕𝑋2 +
𝜕2𝜃𝑤

𝜕𝑌2  
𝐴

𝑑𝐴  (3.15) 

where A is the element area,𝑁𝛼  (   = 1, 2, … … , 6) are the element interpolation 

functions for the velocity components and the temperature, and 𝐻𝜆(   = 1, 2, 3) are the 

element interpolation functions for the pressure. 

Gauss’s theorem is then applied to equations (3.12)-(3.15) to generate the boundary 

integral terms associated with the surface tractions and heat flux. Then equations (3.12)-

(3.15) become, 

 𝑁𝛼  𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
 

𝐴
𝑑𝐴 +  𝐻𝜆  

𝜕𝑃

𝜕𝑋
 

𝐴
𝑑𝐴  

+
𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
  

𝜕𝑁𝛼

𝜕𝑋

𝜕𝑈

𝜕𝑋
+

𝜕𝑁𝛼

𝜕𝑌

𝜕𝑈

𝜕𝑌
 𝑑𝐴 =  𝑁𝛼𝑆𝑥𝑑𝑆𝜊𝑆𝜊𝐴

   (3.16) 

 𝑁𝛼  𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
 

𝐴
𝑑𝐴 +  𝐻𝜆  

𝜕𝑃

𝜕𝑌
 

𝐴
𝑑𝐴 +

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
  

𝜕𝑁𝛼

𝜕𝑋

𝜕𝑉

𝜕𝑋
+

𝜕𝑁𝛼

𝜕𝑌

𝜕𝑉

𝜕𝑌
 𝑑𝐴

𝐴
  

−
 𝜌𝛽  𝑛𝑓

𝜌𝑛𝑓 𝛽𝑓
 𝑅𝑎𝑃𝑟  𝑁𝛼𝜃𝑑𝐴 =  𝑁𝛼𝑆𝑦𝑑𝑆𝜊𝑆𝜊𝐴

  (3.17)  

 𝑁𝛼  𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
 

𝐴
𝑑𝐴 −

𝛼𝑛𝑓

𝛼𝑓
  

𝜕𝑁𝛼

𝜕𝑋

𝜕𝜃

𝜕𝑋
+

𝜕𝑁𝛼

𝜕𝑌

𝜕𝜃

𝜕𝑌
 

𝐴
𝑑𝐴 =  𝑁𝛼𝑞1𝑤𝑑𝑆𝑤𝑆𝑤

  (3.18) 

  
𝜕𝑁𝛼

𝜕𝑋

𝜕𝜃𝑤

𝜕𝑋
+

𝜕𝑁𝛼

𝜕𝑌

𝜕𝜃𝑤

𝜕𝑌
 

𝐴
𝑑𝐴 =  𝑁𝛼𝑞2𝑤𝑑𝑆𝑤𝑆𝑤

  (3.19) 

Here (3.16)-(3.19) specify surface tractions  𝑆𝑥 , 𝑆𝑦  along out flow boundary S0 and (3.18) 

specify velocity components and fluid temperature or heat flux  𝑞1𝑤 , 𝑞2𝑤  that flows into 

or out from the domain along the wall boundary Sw.  
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The basic unknowns for the above differential equations are the velocity components 𝑈, 𝑉; 

the temperature, 𝜃 and the pressure, 𝑃. The six node triangular element is used in this 

work for the development of the finite element equations. All six nodes are associated with 

velocities as well as temperature; only the corner nodes are associated with pressure. This 

means that a lower order polynomial is chosen for pressure and which satisfies continuity 

equation. The velocity component and the temperature distributions and linear 

interpolation for the pressure distribution according to their highest derivative orders in the 

differential equations (3.6)-(3.10) as  

𝑈 𝑋, 𝑌 = 𝑁𝛽𝑈𝛽   (3.20) 

𝑉 𝑋, 𝑌 = 𝑁𝛽𝑉𝛽   (3.21) 

𝜃 𝑋, 𝑌 = 𝑁𝛽𝜃𝛽   (3.22) 

𝜃𝑤 𝑋, 𝑌 = 𝑁𝛽𝜃𝑤𝛽   (3.23) 

𝑃 𝑋, 𝑌 = 𝐻𝜆𝑃𝜆    (3.24) 

Where 𝛽 = 1,2, …… . .6; 𝜆 = 1,2,3. 

Substituting the element velocity component distributions, the temperature distribution 

and the pressure distribution from equations (3.20)-(3.24) in equations (3.11) and (3.12)-

(3.15) 

 𝑁∝ 𝑁𝛽,𝑥𝑈𝛽 + 𝑁𝛽,𝑦𝑉𝛽 𝑑𝐴 = 0
𝐴

  (3.25) 

 𝑁𝛼   𝑁𝛽𝑈𝛽  𝑁𝛾,𝑥𝑈𝛾 +  𝑁𝛽𝑉𝛽  𝑁𝛾,𝑦𝑈𝛾  𝐴
𝑑𝐴 +  𝐻𝜆𝐴

𝐻𝜇 ,𝑥𝑃𝜇𝑑 +

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
  𝑁𝛼,𝑥𝑁𝛽,𝑥𝑈𝛽 + 𝑁𝛼,𝑦𝑁𝛽,𝑦𝑈𝛽 𝐴

𝑑𝐴 =  𝑁𝛼𝑆𝑥𝑑𝑆𝜊𝑆𝜊
  (3.26) 

 𝑁𝛼   𝑁𝛽𝑈𝛽  𝑁𝛾,𝑥𝑉𝛾 +  𝑁𝛽𝑉𝛽  𝑁𝛾,𝑦𝑉𝛾  𝐴
𝑑𝐴 +  𝐻𝜆𝐴

𝐻𝜇 ,𝑦𝑃𝜇𝑑
𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
  

  𝑁𝛼,𝑥𝑁𝛽,𝑥𝑉𝛽 + 𝑁𝛼,𝑦𝑁𝛽,𝑦𝑉𝛽 
𝐴

𝑑𝐴 −
 𝜌𝛽  𝑛𝑓

𝜌𝑛𝑓 𝛽𝑓
 𝑅𝑎𝑃𝑟  𝑁𝛼𝑁𝛽𝜃𝛽𝑑𝐴

𝐴
=  𝑁𝛼𝑆𝑦𝑑𝑆𝜊𝑆𝜊

 (3.27) 
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 𝑁𝛼   𝑁𝛽𝑈𝛽  𝑁𝛾,𝑥𝜃𝛾 +  𝑁𝛽𝑉𝛽  𝑁𝛾,𝑦𝜃𝛾  𝐴
𝑑𝐴 −

𝛼𝑛𝑓

𝛼𝑓
  𝑁𝛼,𝑥𝑁𝛽,𝑥𝜃𝛽 +𝑁𝛼,𝑦𝑁𝛽,𝑦𝜃𝛽 
𝐴

𝑑𝐴 =  𝑁𝛼𝑞1𝑤𝑑𝑆𝑤𝑆𝑤
  (3.28) 

  𝑁𝛼,𝑥𝑁𝛽,𝑥𝜃𝑤𝛽 +𝑁𝛼,𝑦𝑁𝛽,𝑦𝜃𝑤𝛽  
𝐴

𝑑𝐴 =  𝑁𝛼𝑞2𝑤𝑑𝑆𝑤𝑆𝑤
  (3.29) 

Then the finite element equations can be written in the form 

𝐾𝛼𝛽𝑥𝑈𝛽 + 𝐾𝛼𝛽𝑦𝑉𝛽 = 0  (3.30) 

𝐾𝛼𝛽𝛾 𝑥𝑈𝛽𝑈𝛾 + 𝐾𝛼𝛽𝛾 𝑦𝑉𝛽𝑈𝛾 + 𝑀𝜆𝜇𝑥𝑃𝜇 +  
𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦  𝑈𝛽 = 𝑄𝛼𝑢   (3.31) 

𝐾𝛼𝛽𝛾 𝑥𝑈𝛽𝑉𝛾 + 𝐾𝛼𝛽𝛾 𝑦𝑉𝛽𝑉𝛾 + 𝑀𝜆𝜇𝑦𝑃𝜇 +  
𝜇𝑛𝑓

𝜌𝑛𝑓𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦  𝑉𝛽   

−
 𝜌𝛽  𝑛𝑓

𝜌𝑛𝑓 𝛽𝑓
 𝑅𝑎𝑃𝑟𝐾𝛼𝛽𝜃𝛽 = 𝑄𝛼𝑣    (3.32) 

𝐾𝛼𝛽𝛾 𝑥𝑈𝛽𝜃𝛾 + 𝐾𝛼𝛽𝛾 𝑦𝑉𝛽𝜃𝛾 −
𝛼𝑛𝑓

𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦  𝜃𝛽 = 𝑄𝛼𝜃   (3.33) 

 𝑆𝛼𝛽𝑥𝑥 +𝑆𝛼𝛽𝑦𝑦  𝜃𝛽 = 𝑄𝛼𝜃𝑤   (3.34) 

where the coefficients in element matrices are in the form of the integrals over the element 

area and along the element edges 𝑆𝜊and 𝑆𝑤  as  

𝐾𝛼𝛽𝑥 =   𝑁𝛼𝑁𝛽,𝑥𝐴
𝑑𝐴  (3.35a) 

𝐾𝛼𝛽𝑦 =   𝑁𝛼𝑁𝛽,𝑦𝐴
𝑑𝐴  (3.35b) 

𝐾𝛼𝛽𝛾 𝑥 =   𝑁𝛼𝑁𝛽𝑁𝛾,𝑥𝐴
𝑑𝐴   (3.35c) 

𝐾𝛼𝛽𝛾 𝑦 =   𝑁𝛼𝑁𝛽𝑁𝛾,𝑦𝐴
𝑑𝐴   (3.35d) 

𝐾𝛼𝛽 =  𝑁𝛼𝑁𝛽𝐴
𝑑𝐴  (3.35e) 

𝑆𝛼𝛽𝑥𝑥 =  𝑁𝛼,𝑥𝐴
𝑁𝛽,𝑥𝑑𝐴   (3.35f) 

𝑆𝛼𝛽𝑦𝑦 =  𝑁𝛼,𝑦𝐴
𝑁𝛽,𝑦𝑑𝐴  (3.35g) 

𝑀𝜆𝜇𝑥 =  𝐻𝜆𝐴
𝐻𝜇 ,𝑥𝑑𝐴  (3.35h) 

𝑀𝜆𝜇𝑦 =  𝐻𝜆𝐴
𝐻𝜇 ,𝑦𝑑𝐴  (3.35i) 
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𝑄𝛼𝑢 =  𝑁𝛼𝑆𝑥𝐴
𝑑𝑆𝜊   (3.35J) 

𝑄𝛼𝑣 =  𝑁𝛼𝑆𝑦𝐴
𝑑𝑆𝜊   (3.35k) 

𝑄𝛼𝜃 =  𝑁𝛼1𝑞𝑤𝑆𝑤
𝑑𝑆𝑤   (3.35l) 

𝑄𝛼𝜃𝑤 =  𝑁𝛼2𝑞𝑤𝑆𝑤
𝑑𝑆𝑤   (3.35m) 

These element matrices are evaluated in closed form ready for numerical simulation. 

Details of the derivation for these element matrices are omitted herein. 

The derived finite element equations (3.30)-(3.34) are nonlinear. These nonlinear algebraic 

equations are solved by applying the Newton-Raphson iteration technique by first writing 

the unbalanced values from the set of the finite element equations (3.30)-(3.34) as, 

𝐹𝛼𝑝 = 𝐾𝛼𝛽𝑥𝑈𝛽 + 𝐾𝛼𝛽𝑦𝑉𝛽   (3.36a) 

𝐹𝛼𝑢 = 𝐾𝛼𝛽𝛾 𝑥𝑈𝛽𝑈𝛾 + 𝐾𝛼𝛽𝛾 𝑦𝑉𝛽𝑈𝛾 + 𝑀𝛼𝜇𝑥𝑃𝜇   

                                        +
𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦  𝑈𝛽 − 𝑄𝛼𝑢   (3.36b) 

𝐹𝛼𝑣 = 𝐾𝛼𝛽𝛾 𝑥𝑈𝛽𝑉𝛾 + 𝐾𝛼𝛽𝛾 𝑦𝑉𝛽𝑉𝛾 + 𝑀𝛼𝜇𝑦𝑃𝜇   

                   +
𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦  𝑉𝛽 −

 𝜌𝛽  𝑛𝑓

𝜌𝑛𝑓 𝛽𝑓
 𝑅𝑎𝑃𝑟𝐾𝛼𝛽𝜃𝛽 − 𝑄𝛼𝑣   (3.36c) 

𝐹𝛼𝜃 = 𝐾𝛼𝛽𝛾 𝑥𝑈𝛽𝜃𝛾 + 𝐾𝛼𝛽𝛾 𝑦𝑈𝛽𝜃𝛾 −
𝛼𝑛𝑓

𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦  𝜃𝛽 − 𝑄𝛼𝜃   (3.36d) 

𝐹𝛼𝜃𝑤 =  𝑆𝛼𝛽𝑥𝑥 +𝑆𝛼𝛽𝑦𝑦  𝜃𝛽 − 𝑄𝛼𝜃𝑤   (3.36e) 

This leads to a set of algebraic equations with the incremental unknowns of the element 

nodal velocity components, temperatures and pressures in the form, 
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  (3.37) 

where Δ represents the vector of nodal velocities, pressure and temperature. 

𝐾𝑢𝑢 = 𝐾𝛼𝛽𝛾 𝑥𝑈𝛽𝑉𝛽 +  
𝜇𝑛𝑓

𝜌𝑛𝑓𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦    
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𝐾𝑢𝑣 = 𝐾𝛼𝛽𝛾 𝑦𝑈𝛾   

𝐾𝑢𝜃 = 0  

𝐾𝑢𝑝 = 𝑀𝛼𝜇𝑥   

𝐾𝑣𝑢 = 𝐾𝛼𝛽𝛾 𝑥𝑉𝛾   

𝐾𝑣𝑣 = 𝐾𝛼𝛽𝛾 𝑦𝑉𝛾 + +
𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦    

𝐾𝑣𝜃 = −
 𝜌𝛽  𝑛𝑓

𝜌𝑛𝑓 𝛽𝑓
 𝑅𝑎𝑃𝑟𝐾𝛼𝛽   

𝐾𝑣𝜃𝑤
= 0  

𝐾𝜃𝑢 = 𝐾𝛼𝛽𝛾 𝑥𝜃𝛾   

𝐾𝜃𝑣 = 𝐾𝛼𝛽𝛾 𝑦𝜃𝛾   

𝐾𝜃𝜃 = −
𝛼𝑛𝑓

𝛼𝑓
 𝑆𝛼𝛽𝑥𝑥 +𝑆𝛼𝛽𝑦𝑦    

𝐾𝜃𝜃𝑤
= 0  

𝐾𝜃𝑤𝑝 = 0  

𝐾𝜃𝑤𝑢 = 0  

𝐾𝜃𝑤𝑣 = 0  

𝐾𝜃𝑤𝜃𝑤
=  𝑆𝛼𝛽𝑥𝑥 + 𝑆𝛼𝛽𝑦𝑦    

The iteration process is terminated if the percentage of the overall change compared to the 

previous iteration is less than the specified value. 

To solve the sets of the global nonlinear algebraic equations in the form of matrix, the 

Newton-Raphson iteration technique has been adapted through PDE solver with 

MATLAB interface. The convergence of solutions is assumed when the relative error for 

each variable between consecutive iterations is recorded below the convergence criterion ε 
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such that |𝜓𝑛+1 − 𝜓𝑛 | < 𝜀, where 𝑛 is number of iteration and 𝜓 is the 

variable 𝑢, 𝑣 𝑜𝑟 𝜃, 𝜃𝑤 . The convergence criterion was set to 𝜀= 10-6. 

3.4.2 Thermo-physical Properties 

The thermophysical properties of the water and nanoparticles are taken from Aminosadati 

and Ghasemi (2009) and given in Table 3.1  

 

Table 3.1: Thermo-physical properties of fluid and nanoparticles 

 

Physical Properties Fluid phase 

(Water) 

Solid phase Copper(Cu) 

Cp(J/kgK) 4179 385 

 (kg/m3) 997.1 8933 

k (W/mK) 0.613 401 

β×105 (𝐾−1) 21 1.67 

3.4.3 Grid Generation 

In the finite element method, the grid or mesh generation is the technique to subdivide a 

domain into a set of sub-domains, called finite elements. The discrete locations are defined 

by the numerical grid, at which the variables are to be calculated. It is basically a discrete 

representation of the geometric domain on which the problem is to be solved. The 

computational domain with irregular geometries by a collection of finite elements makes 

 

 
 

Figure 3.2: Mesh structure of elements for the physical model 
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the method a valuable practical tool for the solution of boundary value problems arising in 

various field of engineering. The mesh structure of finite elements for the present physical 

model displays in Figure 3.2. 

3.4.4 Grid Refinement Check  

An extensive mesh testing procedure is conducted to guarantee a grid-independent 

solution for 𝑅𝑎 = 106 , 𝜙 = 0.05, 𝑙1 = 0.40, 𝑃𝑟 = 6.2 , 𝑕∞ = 100𝑊/𝑚2 𝐾 , 𝐾𝑟 = 10 and 

𝑤1 = 0.1 through a rectangular enclosure. In the present work, five different non-uniform 

grid systems with the following number of elements within the resolution field: 394, 533, 

1058, 3258 and 13020 are examined.  

 

 

Figure 3.3: Grid Refinement check. 
 

The extreme value of 𝑁𝑢 is used as a sensitivity measure of the accuracy of the solution 

and is selected as the monitoring variable for water-copper nanofluid ( = 5%) as well as 

base fluid ( = 0%) for the aforesaid elements to develop an understanding of the grid 

fineness as shown in Table 3.2 and Figure 3.3. The scale of the average Nusselt number 

for 3258 elements shows a little difference with the results obtained for the other elements. 
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Hence, considering the non-uniform grid system of 3258 elements is preferred for the 

computation. 

Table 3.2: Grid Test at 𝑅𝑎 = 106 , 𝜙 = 0.05, 𝑙1 = 0.40, 𝑃𝑟 = 6.2, 𝑕∞ = 100𝑊/𝑚2 𝐾 ,  
𝐾𝑟 = 10 and 𝑤1 = 0.1 

 

3.4.5 Validation of Numerical Procedure 

The model validation is an essential part of a numerical investigation. Hence, the outcome 

of the present numerical procedure is benchmarked against the numerical results of 

Aminossadati and Ghasemi (2009) which are reported for natural convective cooling of a 

localized heat source at bottom of a nanofluid filled enclosure in a cavity having relatively 

low temperature at the top and vertical walls and Rahman and Alim (2010) which are 

reported for conjugate heat transfer in a lid-driven square enclosure having heat 

conducting circular cylinder placed at the center. Excellent agreement is achieved, as 

illustrated in Figure 3.4(a) and Figure 3.4(b), between present results and the numerical 

results of Aminossadati and Ghasemi (2009) and Rahman and Alim (2010) for both the 

streamlines and isotherms inside the cavity. These validations boost the confidence in our 

numerical procedure to carry on with the above stated objectives of the current 

investigation. 

 

 

 

 

 

Nodes 

(elements) 
6181 

(394) 

10062 

(533) 

13922 

(1058) 

16181 

(3258) 

28926 

(13020) 

Nu (nanofluid) 
3.16853 3.20314 3.36192 3.49042 3.49057 

Nu (basefluid) 
2.49469 2.98212 3.14750 3.28430 3.28576 

Time [s] 66.265 96.594 122.157 196.328 310.377 
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Physical Model 

Aminossadati and Ghasemi      Present 

   
Figure 3.4 (a): Model generation of Aminossadati and Ghasemi(2009) 
 

 
Physical model 

  Rahman and Alim     Present 

  
 

Figure 3.4 (b): Model generation of Rahman and Alim (2010) 
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3.5 Results and Discussion 

Finite element simulation is applied to perform the analysis on the flow and heat transfer 

of nanofluid filled rectangular enclosure with thick and conducting vertical wall. Effects of 

the parameters such as Rayleigh number  𝑅𝑎 , convective heat transfer coefficient  𝑕∞ , 

position of divider  𝑙1 , solid fluid thermal conductivity ratio  𝐾𝑟  and solid wall thickness 

 𝑤1  on heat transfer and fluid flow inside the cavity have been studied for the range of 

solid volume fraction 𝜙  of 0 to 0.05. The results are generated for different values of 

governing parameter for this investigation is 𝑅𝑎 = 104-107, 𝑕∞ =0.0- 400, 𝑙1 = 0.1 to 

0.7, 𝐾𝑟 = 0.5 - 10.0 and 𝑤1 = 0.1- 0.3 respectively. The working fluid is assigned a 

Prandtl number 6.2 throughout this investigation. The outcomes for the different cases are 

presented in the following sections. 

3.5.1 Effect of Rayleigh number 

The influence of Rayleigh number  𝑅𝑎  from 104 to 107 on streamlines as well as 

isotherms for the present configuration at 𝑃𝑟 = 6.2, 𝑕∞ = 100𝑊/𝑚2 𝐾 , 𝑙1 = 0.40, 𝐾𝑟 =

10   and 𝑤1 = 0.1 for both the pure fluid and nanofluid with 𝜙 = 0.05 has been illustrated 

in Figures 3.5 (a, b). It can be seen from Figure 3.5 (a), the left column shows the stream 

lines for pure fluid and right column shows the stream lines for the nanofluid and in 

Figures 3.5 (b) the left column shows the isotherm for pure fluid and the right column 

shows the isotherm for nanofluid with various value of Rayleigh number  𝑅𝑎 . In each 

case we see that the flow rises along the left vertical wall, then it get block towards the top 

wall, which then causes the flow that turn towards the right cold wall then it get blocked 

again by the bottom wall, which then direct the flow towards the divider then it finally 

goes again towards the left wall. So a clockwise circulation is located within the 

rectangular enclosure. We also observe that the centre of recirculation cell is located at the 

left side of the divider. However, it is observed from the figure that at very low Rayleigh 

number  𝑅𝑎 = 104  the isotherms inside the enclosure seem to be vertical, since the heat 

flux is along horizontal, so this implies that the heat is transferred by conduction. It is 

obvious from the Figure 3.5 (a) that the increase in Rayleigh number  𝑅𝑎  enhances the 

strength of buoyancy force and hence the natural convection flow, so the value of the 

stream function at the centre of the enclosure increase with the increase of Rayleigh 

number  𝑅𝑎 . Also, observe that the stream lines are more clustered towards the walls 

with the increase of Rayleigh number 𝑅𝑎 . So we can say with the further increase of  
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Figure 3.5: (a) Streamlines at various 𝑅𝑎  (at 𝑃𝑟 = 6.2, 𝑕∞ = 100𝑊/𝑚2 𝑘 , 𝑙1 = 0.40,
𝐾𝑟 = 10  and 𝑤1 = 0.1) for base fluid and nanofluid. 
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Figure 3.5: (b) Isotherms at various 𝑅𝑎  (at 𝑃𝑟 = 6.2, 𝑕∞ = 100𝑊/𝑚2 𝑘 , 𝑙1 = 0.40, 𝐾𝑟 =
10 and 𝑤1 = 0.1) for base fluid and nanofluid. 
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contact between the fluid and the wall the heat transfer rate increase and we also noticed 

that with the further increase of Rayleigh number  𝑅𝑎  less flows go down and enters to 

the region between the right wall and divider, so minimum level of temperature are 

observed there, and flow mostly turn towards the left wall. The mechanism of forming 

stream lines is as follows, the fluid adjacent to the left hot wall (interface) is heated, and 

moves up due to convection (buoyancy force ) which moves to the right cold wall (due to 

heating) and falls downwards to the lower adiabatic wall. 

With the increase of solid volume fraction  𝜙  of nanofluid, thermal conductivity of the 

nanofluid will be increased, hence the buoyancy force and flow strength will be increased 

with the increase of Rayleigh number  𝑅𝑎 .It is interesting to observe that the increase in 

Rayleigh number  𝑅𝑎 , enhanced the heat transfer rate that leads to the decreases in both 

the flow and the wall temperatures, which is an indication of enhancing the enclosure 

cooling performance. So in the case of pure fluid we see that the maximum wall 

temperature decreases from 0.95 for 𝑅𝑎 = 104 to 0.87 for 𝑅𝑎 = 107 in the case of pure 

fluid. It is also noticeable from Figure 3.4 (b) that for higher Rayleigh number  𝑅𝑎  the 

isotherms in the middle section of the enclosure are smooth curves, which are parallel to 

the horizontal walls, where near the side walls we see the isotherm are more strictly 

parallel to the vertical wall. 

We also see that the increase of solid volume fraction  𝜙  of nanofluid, enhance the 

thermal conductivity and hence the heat transfer rate is increase, which leads to the 

temperature reduction within the thick wall.   

Figure 3.5 (c) displays the average Nusselt number along the hot wall for various values of 

Rayleigh number  𝑅𝑎  and solid volume fraction 𝜙 . We see here a linear variation of 

average Nusselt number with the increase of solid volume fraction. It is seen that the 

average Nusselt number increases with the increase of Rayleigh number 𝑅𝑎 . The effect 

of nanoparticles can be more observed at lower Rayleigh number  𝑅𝑎  because in this 

case conduction is the dominant mode of heat transfer. When the solid volume fraction 

increases the heat transfer rate as well as average Nusselt number enhance, from this we 

can say adding copper nanoparticles to the base fluid leads to enhancement in the heat 

transfer which shows the ability of heat absorption by the inner flow. 
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Figure 3.5 (c): Average Nusselt number at various 𝑅𝑎  (for 𝑃𝑟 = 6.2, 𝑕∞ =
100W/m2𝑘 , 𝑙1 = 0.40 , 𝐾𝑟 = 10 and 𝑤1 = 0.1). 
 

3.5.2 Effect of Convective Heat Transfer Coefficient 

We now discuss the effect of convective heat transfer coefficient  𝑕∞  on the flow and 

temperature field in Figures 3.6 (a, b) for 𝑃𝑟 = 6.2, 𝑅𝑎 = 106  , 𝑙1 = 0.40, 𝐾𝑟 = 10 and 

 𝑤1 = 0.1 for both the pure fluid and nanofluid. A zero value of convective heat transfer 

coefficient  𝑕∞  indicates the fact that the submitted heat is completely transfered from 

the left wall to the inner flow. So, in the case of  𝑕∞ = 400𝑊/𝑚2 𝑘 the maximum value of 

the stream function decrease with respect to the case 𝑕∞ = 100𝑊/𝑚2 𝑘 . The buoyancy 

force and flow strength are more pronounced for higher values of convective heat transfer 

coefficient  𝑕∞ . The increase of convective heat transfer coefficient  𝑕∞  reduces the 

thick wall temperature, thereby heat is less absorbed by the inner flow which leads to 

decrease the maximum temperature. We also see in the case 𝑕∞ = 0, the isotherms near 

the vertical side walls are more clustered; however the increase in convective heat transfer 

coefficient  𝑕∞  cause the decrease in the temperature gradient in the region. We notice 

here that isotherms are almost parallel to the vertical walls, which indicates the reduction 

of heat transfer. This point can be explained as when the ambient convective heat transfer 

coefficient  𝑕∞  is increased, the input heat flux is absorbed by ambient rather than inner 

flow. However the increase in 𝑕∞  causes decreases in the temperature gradients in the 

inner flow, which is also an indication of enhancing of cooling performance. 



N
u

0 0.01 0.02 0.03 0.04 0.05

2

4

6

8

Ra=10^4

Ra=10^5

Ra=10^6

Ra=10^7



Chapter 3: Effect of Conjugate heat transfer on flow of nanofluid 

 42 

 
𝜙 = 0.0 

 
𝜙 = 0.05 

𝑕
∞

=
0

 𝑊
/𝑚

2
 𝐾

 

  

𝑕
∞

=
1

0
0
𝑊

/𝑚
2

 𝐾
 

  

𝑕
∞

=
2

0
0
𝑊

/𝑚
2

 𝐾
 

  

𝑕
∞

=
3

0
0
𝑊

/𝑚
2

 𝐾
 

  

𝑕
∞

=
4

0
0
𝑊

/𝑚
2

 𝐾
 

  
Figure 3.6: (a) Streanlines at various convective heat transfer coefficient  𝑕∞  (at  𝑅𝑎 =
106 , 𝑃𝑟 = 6.2, 𝑙1 = 0.40, 𝐾𝑟 = 10 and  𝑤1 = 0.1) for base fluid and nanofluid. 
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Figure 3.6: (b) Isotherms at various convective heat transfer coefficient  𝑕∞  (𝑎𝑡 𝑅𝑎 =
106 , 𝑃𝑟 = 6.2, 𝑙1 = 0.40, 𝐾𝑟 = 10  and  𝑤1 = 0.1) for base fluid and nanofluid. 
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The variation of average Nusselt number  𝑁𝑢  is displayed in Figure 3.6 (c) along the hot 

wall against the solid volume fraction for different values of ambient convective heat 

transfer coefficient 𝑕∞ . We see that when convective heat transfer coefficient  𝑕∞  

increase the input heat flux is less absorbed by the inner flow, which point the reduction in 

the average Nusselt number  𝑁𝑢  . 

 

 

 
 

Figure 3.6 (c): Average Nusselt number at various 𝑕∞   ( for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,
𝑕∞ = 100𝑊/𝑚2 𝐾 , 𝑙1 = 0.40, 𝐾𝑟 = 10 and  𝑤1 = 0.1). 
 

 

3.5.3 Effect of Divider Position  

The effect of divider position  𝑙1  on streamlines and isotherms are shown in Figures 3.7 

(a, b) for 𝑅𝑎 = 106 , 𝑃𝑟 = 6.2, 𝑕∞ = 100 𝑊/𝑚2𝐾, 𝐾𝑟 = 10  and 𝑤1 = 0.1 for both the 

pure fluid and nanofluid with 5% concentration.  

We see in Figure 3.7 (a), when 𝑙1 = 0.1 a clockwise circulation is observed with one core 

which covers the whole cavity. In this case we notice that there is a weak flow between the 

divider and the left wall. So, the temperature of this region increases which cause from the 

reduction of the convective heat transfer. As the divider position  𝑙1  increases from the 

left wall the resistance of circulating flow decrease, which leads to increase in the flow 

strength. For 𝑙1 = 0.45 we see again a clockwise circulation with one cores. With further 
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increase of position of divider i.e. for 𝑙1 = 0.7 we observe that the flow strength increases 

between the left wall and the divider. It is also noticeable that the center of the core 

location changes with the divider positions. We also see decrease in the distance between 

the left wall and divider cause the cold flow down. Through the increase in 𝑙1 enhanced 

the heat transfer, so energy absorption by the inner flow occurs, which indicate the fact 

that heat is more transferred from the hot wall to the cold region. So the temperature of the 

thick wall reduces. It is also observed from the Figure 3.7 (b) that for smaller 𝑙1 the 

isotherms are clustered near the wall and with the increase in distance between the left 

wall and the divider isotherms is parallel to the horizontal walls. 

Figure 3.7 (c) displays the variation of average Nusselt number  𝑁𝑢  along the hot wall 

for various position of divider against the solid volume fraction. We see the increase in 𝑙1 , 

leads to the increase in the flow strength  and hence the heat transfer rate enhance, so the 

average Nusselt number clearly increases with the increase of distance between the hot 

wall and the divider. When the divider move from 𝑥 = 0.1 to 𝑥 = 0.45 the average 

Nusselt number increases faster because in this case convection dominate the conduction 

mode, but the rate of increasing average Nusselt number 𝑁𝑢  decreases when the divider 

gets closure to the right wall, which is noticeable at 𝜙 = 5% more effectively. 
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Figure 3.7: (a) Streamlines at various Divider Position  𝑙1   (at 𝑅𝑎 = 106 , 𝑃𝑟 = 6.2, h∞ =
100W/m2K, 𝐾𝑟 = 10 and  w1 = 0.1) for base fluid and nanofluid. 
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Figure 3.7 (b): Isotherms at various Divider Position  𝑙1  (at 𝑅𝑎 = 106 , 𝑃𝑟 = 6.2 , h∞ =
100W /m2K , 𝐾𝑟 = 10  and w1 = 0.1) for base fluid and nanofluid. 
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Figure 3.7 (c): Average Nusselt number at various 𝑙1  (for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,
𝑕∞ = 100𝑊/𝑚2 𝑘 , 𝐾𝑟 = 10 and  𝑤1 = 0.1). 
 

3.5.4 Effect of Solid Fluid Thermal Conductivity Ratio 

Figures 3.8 (a, b) show the effect of solid fluid thermal conductivity ratio  𝐾𝑟  on the flow 

and temperature field for 𝑅𝑎 = 106 , 𝑃𝑟 = 6.2, 𝑕∞ = 100 𝑊/𝑚2𝐾, 𝑙1 = 0.4 and 𝑤1 = 0.1 

for both the pure fluid and nanofluid with 𝜙 = 5%. We observe that at very low wall 

conductivity ratio  𝐾𝑟 = 0.5  the wall thermal resistance is very high, hence a steeper 

gradient of isotherm within the wall is seen, which indicates less amount of heat is 

transferred to the enclosure. Further increase of 𝐾𝑟 , leads to reduce the wall thermal 

resistance. This can be characterized by the reduction of isotherm gradient within the wall 

and the convection activities within the enclosure. It is observed that two cores are formed 

as shown in the figure 3.8 (a). As the conduction ration (𝐾𝑟) increases, the magnitude of 

the left cell increases, while the magnitude of the right core decreases. This indicates the 

facts that with the increase of conductivity ratio (𝐾𝑟), the flow strength between the left 

wall and the divider increase. This phenomenon is due to the temperature gradient near the 

wall increase with increase of the parameter 𝐾𝑟 . Thus much amount of heat transfer from 

the thick wall to the fluid is obtained for the higher value of solid fluid thermal 

conductivity ratio  𝐾𝑟 (good conductivity solid wall). It is also observed that convection 

effect in the fluid become stronger for higher value of thermal conductivity ratio  𝐾𝑟  . 
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Figure 3.8: (a) Streamlines at various solid fluid thermal conductivity ration  𝐾𝑟   (at 𝑅𝑎 = 106, 
𝑃𝑟 = 6.2,   𝑕∞ = 100𝑊/𝑚2𝐾 , 𝑙1 = 0.40 and 𝑤1 = 0.1) for base fluid and nanofluid. 
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Figure 3.8: (b) Isotherms at various solid fluid thermal conductivity ration  𝐾𝑟    (at 𝑅𝑎 =
106, 𝑃𝑟 = 6.2,   𝑕∞ = 100𝑊/𝑚2 𝐾 , 𝑙1 = 0.40 and 𝑤1 = 0.1) for base fluid and nanofluid. 
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Figure 3.8 (c) displays the variation of average Nusselt number  𝑁𝑢  with the solid 

volume fraction for different values of wall thermal conductivity ratio (𝐾𝑟) for 𝑅𝑎 =

106 , 𝑃𝑟 = 6.2, 𝑕∞ = 100 𝑤/𝑚2𝑘 , 𝑙1 = 0.4 and 𝑤1 = 0.1 with the solid volume fraction 

𝜙 = 5%. We observe that the heat transfer rate increases with the increase of conductivity 

ratio. This is due to the temperature gradient near the solid wall increase with the increase 

of conductivity ratio and this mechanism enhances the heat transfer rate 

 
Figure 3.8 (c): Average Nusselt number at various 𝑘𝑟   (for  𝑅𝑎 = 106 , Pr = 6.2, 
 l1 = 0.4, 𝑕∞ = 100𝑊/𝑚2K  and 𝑤1 = 0.1). 
 

3.5.5 Effect of Solid Wall Thickness  

The effect of wall thickness   𝑤1  is depicted in Figures 3.9 (a, b) for  𝑅𝑎 = 106 , 𝑃𝑟 =

6.2, 𝑕∞ = 100 𝑤/𝑚2𝑘 , 𝐾𝑟 = 10 and 𝑙1 = 0.4 for both pure fluid and nanofluid with 

𝜙 = 5% . We see that the parameter wall thickness   𝑤1  affects the fluid and solid wall 

temperature as well as the flow characteristics. We notice here that the strength of the flow 

circulation is much higher for a thin solid wall. For thick solid wall  𝑤1 = 0.1  we 

observe that a circular main cell with two cores is formed within the enclosure, with the 

increasing of wall thickness the shape of the circulating cell becomes elliptical. This is 

because the fluid adjacent to the hotter wall has lower density than the fluid at the middle 

of the enclosure. As a result the fluid moves upwards from the middle section of hot wall, 

and reach at the upper part of the enclosure, and then it is cooled, so its density increase, 

then the fluid flows downwards at the right side, and finally it directed to the left wall. 
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Figure 3.9: (a) Streamlines at various solid wall thickness  𝑤1    (at 𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,
 𝑕∞ = 100𝑊/𝑚2K , 𝐾𝑟 = 10 and  𝑙1 = 0.40) base fluid and nanofluid. 
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Figure 3.9: (b) Isotherms at various solid wall thickness  𝑤1   (at  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ =
100𝑊/𝑚2 𝐾 , 𝐾𝑟 = 10  and 𝑙1 = 0.40) for base fluid and nanofluid. 
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So a clockwise circulation is observed. We also notice here that for small wall thickness 

  𝑤1 = 0.1  the strength of flow between the solid wall and the divider is higher than the 

larger value of wall thickness   𝑤1 . On the other hand the effect of wall thermal resistance 

is directly proportional with wall thickness, so when wall thickness   𝑤1  increase from 

𝑤1 = 0.1 to  𝑤1 = 0.3 , the temperature (isotherm) gradient within the wall decreases, 

with less convection amount within the enclosure. This is because with the increase of 

solid wall thickness  𝑤1 , it behaves as an insulated material in this case. So we can say 

the thermal resistance of the wall is inversely proportional with its thermal conductivity 

and directly with its wall thickness. 

The effect of wall thickness   𝑤1  on Nusselt number  𝑁𝑢  is depicted in Figure 3.9 (c) 

with the various values of solid volume fraction 𝜙 . In general increasing wall thickness 

  𝑤1  decrease Nusselt number  𝑁𝑢 , because of the increased of thermal wall resistance 

which resist the heat transfer rate to the cavity. 

 

 

 
Figure 3.9 (c): Average Nusselt number at various 𝑤1  (for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,
𝑕∞ = 100𝑊/𝑚2 𝐾 , 𝐾𝑟 = 10 and  𝑙1 = 0.4). 
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3.6 Conclusion of Chapter Three 

Based on the results and discussion as furnished in this chapter of conjugate effect on fluid 

flow and heat transfer in a cavity with finite vertical thick walled enclosure the following 

conclusions are drawn. 

1) There is a significant effect of Rayleigh number on the pattern of streamlines and 

isotherms in the cavity. Both increasing the value of Rayleigh number and solid 

volume fraction of nanparticles arguments the flow strength keeping other 

parameter fixed. A remarkable effect of Ra on the average heat transfer rate 

(Nesselt number) is observed which indicate enhanced rate of heat transfer and 

increase the cooling performance of the enclosure. i.e. Nusselt number is an 

increasing function of Rayleigh number.  

2) The increase in the convective heat transfer coefficient leads to the decrease in the 

heat transfer. The presence of the nanoparticles is more effective at a higher h∞.  

3) The location of the divider position has a remarkable effect on the thermal 

behavior and flow pattern. When the divider gets closure to the cold wall, the heat 

transfer is enhanced. 

4) Conduction in the wall makes a strong effect on natural convection in the fluid 

part. It is found that the rate of heat transfer increases and the fluid moves with 

greater velocity when the value of Rayleigh number and conductivity ratio 

increase. It is observed that the temperature difference between the interface and 

the cold boundary reduces with decreasing the solid fluid thermal conductivity 

ratio, therefore reducing the average Nusselt number. For lower value of kr, where 

solid wall is insulation material, Nu has low values comparing with those at high 

value of kr because of the increase in the thermal resistance of the overall system 

and vice versa. 

5) The strength of the flow circulation of the fluid is much higher with thin wall. The 

strength of the circulation cell can be controlled by the thickness of the solid wall. 

The natural convection inside the nanofluid filled cavity decreases with increasing 

its wall thickness. The average Nuselt number decreases by increasing the wall 

thickness and Nu becomes constant for the highest values of the thickness 

parameter of the solid vertical wall. 



 

Chapter 4: MHD Effect on Conjugate Heat Transfer 

4.1 Introduction 

The influence of the magnetic field on convective conjugate heat transfer flow of the 

nanofluid is of paramount importance in engineering. A free convection flow of an 

electrically conducting fluid in a cavity in the presence of magnetic field is of special 

technical significance because of its frequent occurrence in many industrial applications 

such as geothermal reservoirs, cooling of nuclear reactors, thermal insulations and 

petroleum reservoirs. These types of problems also arise in electronic packages, 

microelectronic devices during their operations. 

 In this chapter, the present work is devoted to the numerical study of laminar magneto 

hydrodynamic (MHD) conjugate natural convection flow on an incompressible, viscous 

and electrically conducting fluid with heat conducting vertical wall and uniform heat flux.  

The objective of the present study is to examine the momentum and energy transport 

processes in a rectangular enclosure in presence of magnetic field. The results are shown 

in terms of parametric presentations of streamlines and isotherms for various pertinent 

dimensionless parameters. This dimensionless group includes the Rayleigh number  𝑅𝑎 , 

convective heat transfer coefficient  𝑕∞ , position of divider  𝑙1 , solid fluid thermal 

conductivity ratio  𝐾𝑟 , solid wall thickness  𝑤1  and solid volume fraction 𝜙  on heat 

transfer and fluid flow inside the cavity for the range of Hartmann number (𝐻𝑎) of  0 to 

60. Results are presented graphically with detailed discussion. Finally, the implications of 

the above parameters are depicted on the average Nusselt number  𝑁𝑢  of the fluid. . The 

current numerical results have an excellent agreement on heat transfer flow for a 

Newtonian fluid in a cavity in the presence of magnetic field. 

4.2 Physical Model 

The schematic diagram of the present study is displayed in Figure 4.1. It consists of two 

dimensional rectangular enclosure filled with electrically conducting fluid with sides of 

width 𝐿 and height 𝐻 under conjugate conduction convection heat transfer. The enclosure 

exposes to a uniform and constant heat flux  𝑞, which is maintained at the ambient air 

flow. The left wall has a thickness of width 𝑤1 =
𝑤

𝐿
= 0.1, while the thicknesses of the 

other boundaries of the wall are assumed to be zero. The right wall is kept at a low 
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temperature 𝑇𝑐  , while the horizontal walls are assumed adiabatic. A movable conducting 

divider is attached to the horizontal bottom wall of the cavity. The rectangular enclosure is 

filled with a suspension of copper nanoparticles in water. The nanofluids used in the 

analysis are assumed to be Newtonian, incompressible and laminar. The shape and the size 

of the nanoparticles are assumed to be uniformed.  The base fluid and nanoparticles  𝐶𝑢  

are in thermal equilibrium and there is no slip between them. A magnetic field of strength 

B0 is applied horizontally normal to the side walls. 

 

4.3 Mathematical Formulation 

The working fluid is assumed to be Newtonian and incompressible. The flow is set to 

operate in the laminar natural convection regime. The fluid properties are assumed 

constant except for the density variation which is treated according to Boussinesq 

approximation while viscous dissipation effects are considered negligible. The viscous 

incompressible flow and the temperature distribution inside the cavity are described by the 

Navier–Stokes and the energy equations, respectively. The governing equations of the 

present problem are as follows: 

4.3.1 Governing Equation  

For Fluid: 

Continuity Equation: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0   (4.1) 

 

 

 

 

 

  

 

 
Figure 4.1:Physical Geometry of the model 
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Momentum Equations: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

1

𝜌𝑛𝑓
 −

𝜕𝑝

𝜕𝑥
+ 𝜇𝑛𝑓  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2     (4.2) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
=

1

𝜌𝑛𝑓
 −

𝜕𝑝

𝜕𝑦
+ 𝜇𝑛𝑓  

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +  𝜌𝛽 𝑛𝑓𝑔 𝑇 − 𝑇𝑐 − 𝜎𝑛𝑓𝐵𝜊
2𝑣   (4.3) 

Energy Equation: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑛𝑓  

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2   (4.4) 

For Solid: 

Energy Equation: 

𝜕2𝑇𝑤

𝜕𝑥2 +
𝜕2𝑇𝑤

𝜕𝑦2 = 0  (4.5) 

4.3.2 Boundary Conditions 

The boundary conditions for the present problem are specified as follows: 

For all rigid walls: 𝑢 = 𝑣 = 0 

At the right vertical wall: 𝑇 = 𝑇𝑐  

At the top and bottom walls: 𝜕𝑇
𝜕𝑦

= 0 

At the left side of thick wall: 𝑞 = −𝜅𝑤
𝜕𝑇

𝜕𝑥
|𝑤 + 𝑕∞ 𝑇𝑤 − 𝑇∞  

At the divider surface: 𝑢 = 𝑣 = 0 

At the fluid solid wall interfaces: 𝜅𝑤
𝜕𝑇

𝜕𝑥
|𝑤 = 𝜅𝑛𝑓

𝜕𝑇

𝜕𝑥
|𝑛𝑓  

In order to estimate heat transfer enhancement, we have calculated the local Nusselt 

number and average Nusselt number at the thick wall (hot wall) as 

𝑁𝑢𝑙 = −
𝜅𝑛𝑓

𝜅𝑓

𝐻

 𝑇𝑤 − 𝑇𝑐 

𝜕𝑇

𝜕𝑥
|𝑥=0.1 

The average Nusselt number is given by 𝑁𝑢𝑎𝑣 =  𝑁𝑢𝑙𝑑𝑦
𝐻

0
. 

4.3.3 Dimensional Analysis 

The above equations are non-dimensionalized upon incorporating the following 

dimensionless variables: 
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𝑋 =
𝑥

𝐿
 , 𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢𝐿

𝛼𝑓
 , 𝑉 =

𝑣𝐿

𝛼𝑓
 , 𝑃 =

𝑝  𝐿2

𝜌𝑛𝑓 𝛼𝑓
2  , 𝜃 =

𝑇−𝑇𝑐

∆𝑇
 and  ∆𝑇 =

𝑞′′ 𝐿

𝜅𝑓
.  

After substituting these dimensionless variables into the equations (4.1-4.5) the non-

dimensional continuity, momentum and energy equations are written as follows: 

For Fluid: 

Continuity Equation: 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0  (4.6) 

Momentum Equations: 

𝑈
𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
= −

𝜕𝑃

𝜕𝑋
+

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 
𝜕2𝑈

𝜕𝑋2 +
𝜕2𝑈

𝜕𝑌2   (4.7) 

𝑈
𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
= −

𝜕𝑃

𝜕𝑌
+

𝜇𝑛𝑓

𝜌𝑛𝑓 𝛼𝑓
 
𝜕2𝑉

𝜕𝑋2 +
𝜕2𝑉

𝜕𝑌2 +
 𝜌𝛽  𝑛𝑓

𝜌𝑛𝑓 𝛽𝑓
 𝑅𝑎 Pr 𝜃 − 𝐻𝑎2 Pr 𝑉  (4.8) 

Energy Equation: 

𝑈
𝜕𝜃

𝜕𝑋
+ 𝑉

𝜕𝜃

𝜕𝑌
=

𝛼𝑛𝑓

𝛼𝑓
 
𝜕2𝜃

𝜕𝑋2 +
𝜕2𝜃

𝜕𝑌2   (4.9) 

For Solid: 

𝜕2𝜃𝑤

𝜕𝑋2
+

𝜕2𝜃𝑤

𝜕𝑌2
= 0   (4.10) 

The dimensionless parameter appearing in the equations (4.7-4.10) are as follows: 

Rayleigh numbe 𝑅𝑎 =  
𝑔 𝛽𝑓𝐿3Δ𝑇

𝜈𝑓𝛼𝑓
 , Hartmann number 𝐻𝑎 =  𝐵𝜊𝐿 

𝜎𝑛𝑓

𝜌𝑛𝑓 𝜈𝑓
  ,  𝐵𝜊  is the 

magnitude of the magnetic field and 𝜎 is the electrical conductivity and Prandlt number 

𝑃𝑟 =
𝜈𝑓

𝛼𝑓
 ,where 𝛼 =

𝜅

𝜌𝐶𝑝
, is the thermal diffusivity of the fluid. 

4.3.4 Non Dimensional Boundary Conditions 

The non dimensional boundary conditions under consideration can be written as: 

For all rigid walls: 𝑈 = 𝑉 = 0 

At the right vertical wall: 𝜃 = 0 

At the top and bottom walls: 𝜕𝜃
𝜕𝑌

= 0 

At the left side of thick wall: 𝑞 = −
𝜅𝑤

𝜅𝑛𝑓

𝜕𝜃

𝜕𝑋
|𝑤 +

𝐻

𝜅𝑛𝑓
𝑕∞𝜃𝑤 = 1 
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At the divider surface: 𝑈 = 𝑉 = 0 

At the fluid solid wall interfaces: 𝜕𝜃𝑛𝑓

𝜕𝑋
= 𝐾𝑟

𝜕𝜃𝑤

𝜕𝑋
 

Where, 𝐾𝑟 =
𝜅𝑤

𝜅𝑛𝑓
 is the solid fluid thermal conductivity ratio. 

The local Nusselt number at the thick wall on the enclosure base on the non dimensional 

variable can be expressed as, 

𝑁𝑢𝑙 = −
𝜅𝑛𝑓

𝜅𝑓
 
𝜕𝜃

𝜕𝑋
|𝑥=0.1 

and the average Nusselt number at the right thick wall as 

𝑁𝑢𝑎𝑣 = −
𝜅𝑛𝑓

𝜅𝑓
 

𝜕𝜃

𝜕𝑋
𝑑𝑦 

𝐻

0
.  

4.4 Numerical Validation 

4.4.1 Grid Generation 

Grid or mesh generation is the partition of the geometry model into small units of simple 

shapes named finite elements, control volume etc that approximates the physical domain 

in finite element method. Dependent variables are approximated at the local element 

coordinates defined by the numerical grid. It is mainly a disconnected demonstration of 

the physical domain where the solutions are to be carried out. Meshing the complicated 

geometry make the finite element method a powerful technique to solve boundary value 

problems occurring in a range of engineering applications. Figure 4.2 shows the mesh 

configuration of present physical domain with triangular finite elements.  

 

 
 

Figure 4.2: Mesh Structure of elements for the physical model 
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4.4.2 Grid Refinement Check  

In order to determine the proper grid size for this study, a grid independence test is 

conducted with five types of mesh for  𝑅𝑎 = 106 , 𝐻𝑎 = 30, 𝜙 = 0.05, 𝑙1 = 0.40, 𝑃𝑟 =

6.2 and 𝑕∞ = 100 𝑊/𝑚2𝐾 ,𝐾𝑟 = 10 and 𝑤1 = 0.1 through an rectangular enclosure. In 

the present work, five different non-uniform grid systems with the following number of 

elements within the resolution field: 394, 533, 1058, 3258 and 13020 are examined. 

 

 

Figure 4.3: Grid refinement check. 

 
The numerical scheme is carried out for highly precise key in the average Nusselt number 

for water-copper nanofluid ( = 5%) as well as base fluid ( = 0%) for the aforesaid 

elements to develop an understanding of the grid fineness as shown in Table 4.2 and 

Figure.4.3. The scale of the average Nusselt number for 3258 elements shows a little 

difference with the results obtained for the other elements. Hence, considering the non-
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uniform grid system of 3258 elements is preferred for the computation. Since, it is noticed 

from Table 4.2 and Figure 4.3 that no further improvement is found for higher values. 

 

Table 4.2: Grid Test at 𝑅𝑎 = 106 , 𝜙 = 0.05, 𝑙1 = 0.40, 𝑃𝑟 = 6.2, 𝐻𝑎 = 30, 𝑕∞ =
100 𝑊/𝑚2𝐾 , 𝐾𝑟 = 10 and 𝑤1 = 0.1 

 

4.5 Results and Discussion 

In this section, the effects of MHD on conjugate natural convection heat transfer in a 

rectangular enclosure with heat conducting vertical wall and uniform heat flux are 

explored with solid volume fraction 𝜙 = 5% . Numerical results in terms of streamlines, 

isotherms for various Rayleigh number  𝑅𝑎 ,convective heat transfer coefficient  𝑕∞ , 

position of divider  𝑙1 , solid fluid thermal conductivity ratio  𝐾𝑟 , solid wall thickness 

 𝑤1  and solid volume fraction 𝜙  on heat transfer and fluid flow inside the cavity have 

been studied for the range of Hartmann number (𝐻𝑎) of  0 to 60. The ranges of 𝑅𝑎, 𝑕∞, 𝑙1, 

𝐾𝑟  and 𝑤1 for this investigation vary from 104 to 107, 0.0 to 400, 0.1 to 0.7, 0.5 to 10.0, 

0.1 to 0.3 respectively. In addition, the values of the average Nusselt number (Nu) in the 

domain have been calculated for the above mentioned parameters.  The outcomes for the 

different cases are presented in the following sections.  

4.5.1 Effect of Hartmann number on Rayleigh number  

The effect of Hartmann number  𝐻𝑎  on the streamlines and isotherms for the present 

configuration at 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2 𝐾 , 𝑙1 = 0.40 ,𝑤1 = 0.1 and 𝜙 = 0.05 are 

presented in Figures 4.4 (a, b) respectively for four values of the Rayleigh number 

 𝑅𝑎 = 104 , 105 , 106 , 107 . The enclosure is filled with nanofluid, which has the solid 

volume fraction 𝜙 = 0.05 . We here notice that the buoyancy driven clockwise 

circulating flows are evident for all values of the Rayleigh number  𝑅𝑎  and Hartmann 

Nodes 

(elements) 

6181 

(394) 

10062 

(533) 

13922 

(1058) 

16181 

(3258) 

28926 

(13020) 

Nu (nanofluid) 2.81063 2.81877 2.92582 3.01603 3.01899 

Nu (basefluid) 2.71233 2.72012   2.84810 2.95562 2.95577 

Time [s] 96.265 106.594 192.157 256.328 390.377 
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number  𝐻𝑎 .We see that the strength of these circulating increases as the Rayleigh 

number  𝑅𝑎  increases and decreases as the Hartmann number  𝐻𝑎  increase. The result 

also shows a conducting dominating regime at low Rayleigh number  𝑅𝑎  with vertical 

isotherms and convective dominating regime at high Rayleigh number  𝑅𝑎 with 

horizontal isotherms. We also observe here that the strength of the flow circulation and the 

streamlines are affected by different values of Hartmann number  𝐻𝑎 . This effect is more 

pronounced at 𝑅𝑎 = 105, where an increasing in Hartmann number  𝐻𝑎 , the isotherms 

goes from horizontal to vertical. Because at 𝑅𝑎 = 105, where the convective flow field is 

not very strong and can be influence by the magnetic field. This is an indication of weaker 

convection flows at higher Hartmann number  𝐻𝑎  due to influence of magnetic field on 

the convective flows. 

Figure 4.4 (c) , displays the effect of Hartmann number  𝐻𝑎  on the average Nusselt 

number  𝑁𝑢  along the hot wall at four different values of Rayleigh number  𝑅𝑎 =

104 , 105 , 106 , 107 , with 𝜙 = 0.05. The result shows that due to the strong buoyancy flow 

the average Nusselt number  𝑁𝑢  increases as the Rayleigh number  𝑅𝑎 increases and 

due to the suppression of the convective circulating flows by the magnetic fields, it 

decreases as the Hartmann number  𝐻𝑎  increases. We also notice that for lower Rayleigh 

number  𝑅𝑎  where the heat transfer is only due to conduction and in this case magnetic 

field does not have a considerable effect on the heat transfer performance, we see the 

change of average Nusselt number  𝑁𝑢  remains same, but the average Nusselt number 

decreases faster when the Hartmann number  𝐻𝑎 increase for higher value of Rayleigh 

number 𝑅𝑎 , where heat transfer occurs mainly for convection and the magnetic field can 

suppress the convective flow. 
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Figure 4.4: (a) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Streamlines at various 
Rayleigh number for 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K, 𝑙1 = 0.40 ,𝑤1 = 0.1, 𝐾𝑟 = 10 and 
𝜙 = 0.05. 
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Figure 4.4: (b) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Isotherms at various 
Rayleigh number for 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2 𝐾 , 𝑙1 = 0.40 ,𝑤1 = 0.1 , 𝐾𝑟 = 10 and 
𝜙 = 0.05. 
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Figure 4.4 (c): Average Nusselt number at various 𝑅𝑎  (for 𝐻𝑎 = 0,15, 30, 60 , Pr =
6.2, h∞ = 100W/m2 K , l1 = 0.40, 𝐾𝑟 = 10  and  w1 = 0.1). 

4.5.2 Effect of Hartmann number on Convective Heat Transfer 

Coefficient  

Figures 4.5 (a, b) represent the effect of Hartmann number  𝐻𝑎  on fluid flow and 

temperature field for various values of convective heat transfer coefficient  𝑕∞  with 

𝑅𝑎 = 106 , 𝑙1 = 0.40, 𝑤1 = 0.1, 𝑃𝑟 = 6.2 , 𝐾𝑟 = 10 and 𝜙 = 0.05. We observe that 

strength of the flow circulation decreases as the convective heat transfer coefficient  𝑕∞  

and the Hartmann number  𝐻𝑎  increase. We also notice in Figure 4.5 (a) that in the case 

of 𝑕∞ = 400W/𝑚2K the maximum value of stream function decreases with respect to the 

case 𝑕∞ = 100W/𝑚2K. We know that the increase of convective heat transfer coefficient 

 𝑕∞  reduces the thick wall thermal temperature, so heat will less absorbed by inner flow. 

We also notice due to magnetic field, the strength of convective circulation reduces, so 

with the increases of Hartmann number  𝐻𝑎  we see weaker flow strength. We also 

observe in Figure 4.5 (b) that at lower Hartmann number  𝐻𝑎  the isotherms near the 

vertical wall are more clustered for the lower values of convective heat transfer 

coefficient 𝑕∞ . 
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Figure 4.5: (a) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Streamlines at various 
Convective heat transfer coefficient for  𝑅𝑎 = 106, 𝑃𝑟 = 6.2,  𝑙1 = 0.40,𝑤1 = 0.1 , 
𝐾𝑟 = 10 and 𝜙 = 0.05. 
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Figure 4.5: (b) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Streamlines at various 
Convective heat transfer coefficient for 𝑅𝑎 = 106, 𝑃𝑟 = 6.2 , 𝑙1 = 0.40, 𝑤1 = 0.1, 𝐾𝑟 =
10  and 𝜙 = 0.05. 

 

 



Chapter 4: MHD effect on Conjugate heat transfer 

 69 

 

It is also evident that for the influence of magnetic field, we see that with the increase of 

Hartmann number  𝐻𝑎  isotherms goes from horizontal to vertical direction, which is an 

indication of weaker convection. 

The effect of Hartmann number  𝐻𝑎   on the average Nusselt number  𝑁𝑢  along the hot 

wall for different values of convective heat transfer coefficient  𝑕∞  depicted in Figure 4.5 

(c) on taking 𝑅𝑎 = 106 , 𝑙1 = 0.40, 𝑤1 = 0.1, 𝑃𝑟 = 6.2 and 𝜙 = 0.05. We see that with the 

increase of convective heat transfer coefficient  𝑕∞  the input heat flux is less absorbed by 

the inner flow, and due to the effect of magnetic field, the flow strength reduces as the 

Hartmann number  𝐻𝑎  increases. We also notice that at 𝑕∞ = 0.0W/𝑚2K , heat transfer 

rate is high, because in that case input heat flux is fully absorbed by the inner flow. 

 

 

 

Figure 4.5 (c): Average Nusselt number at various 𝑕∞  (for 𝐻𝑎 = 0, 15, 30, 60 ,
𝑅𝑎 = 106 , 𝑃𝑟 = 6.2, , 𝑙1 = 0.40,  𝐾𝑟 = 10 and 𝑤1 = 0.1). 

 

4.5.3 Effect of Hartmann number on Solid Volume Fractions  

The effect of Hartmann number  𝐻𝑎  on stream lines and isotherms for various values of 

solid volume fraction  𝜙  is depicted in Figures 4.6 (a, b) with 𝑅𝑎 = 106 , 𝑙1 = 0.40, 𝑤1 =

0.1, 𝑃𝑟 = 6.2 and 𝑕∞ = 100W/𝑚2K. The addition of nanoparticles results in an 

increasing of the maximum stream function. The reason for this is that the addition of 
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solid nanoparticles with higher thermal conductivity enhances the conduction heat transfer 

process at low Rayleigh number 𝑅𝑎  and with the increase in Rayleigh number  𝑅𝑎  due 

to increasing the strength of the buoyancy driven flow within the enclosure, we see 

stronger flow pattern. But in present of the Hartmann number  𝐻𝑎  due to magnetic field 

the strength of convective circulation decreases. The mechanism is that the enclosure that 

are filled with electrically conducting fluid, are in the influence of magnetic field. The 

finding of these studies is that the  fluid within the enclosure, which is under the magnetic 

effects, experiences a Lorentz force, which affects the buoyancy flow field and  reduces 

the flow velocities, which in turn affects in the heat transfer. We observe here that the 

addition of nanoparticles results in an increasing of the maximum stream function in the 

absence of the magnetic field; however the strength of the convective circulation decreases 

when the magnetic field is applied. It is because the addition of nanoparticle in the 

presence of the magnetic field, produce a weaker buoyancy driven circulation and make 

lower value of the stream functions. On the other hand we notice that the increase of the 

solid volume fraction  𝜙  the temperature gradient in the thick wall increases, and due to 

the suppression of the convection circulation flows by the influence of stronger magnetic 

field, it decreases as a Hartmann number  𝐻𝑎  increases, which is noticed in the isotherm 

line, as it is found more clustered near the thick wall for the lower value of Hartmann 

number  𝐻𝑎 , this is  an indication of higher convection flow at lower Hartmann number 

 𝐻𝑎 . 
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Figure 4.6: (a) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Streamlines at various Solid 
volume fraction for 𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K , 𝑙1 = 0.40, 𝐾𝑟 = 10 and 
𝑤1 = 0.1. 
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Figure 4.6: (b) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Isotherms at various 
Solid volume fraction for 𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K , 𝑙1 = 0.40, 𝐾𝑟 = 10 
and 𝑤1 = 0.1. 
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Figure 4.6 (c) shows the effect of Hartmann number  𝐻𝑎  on the average Nusselt number 

 𝑁𝑢  along the hot wall of the enclosure at five different values of  solid volume fraction 

 𝜙 = 0.0, 0.01, 0.02, 0.03, 0.04, 0.05  with 𝑅𝑎 = 106 , 𝑙1 = 0.40, 𝑤1 = 0.1, 𝑃𝑟 = 6.2 and 

𝑕∞ = 100W/𝑚2K. This shows that the Hartmann number  𝐻𝑎  plays a critical role in the 

study of the heat transfer performance of the enclosure at various value of solid volume 

fraction 𝜙  of nanoparticles. We see that the strength of the buoyancy flow and heat 

transfer rate increases as the solid volume fraction  𝜙 increases, however an increasing in 

Hartmann number  𝐻𝑎  reduces the heat transfer rate, since magnetic field suppress the 

convective flow and heat transfer rate. So we can control convective heat transfer by the 

magnetic field.  

 

 

Figure 4.6 (c): Average Nusselt number at various 𝜙 (for 𝐻𝑎 = 0, 15, 30, 60 ,
𝑅𝑎 = 106 , 𝑃𝑟 = 6.2, , 𝑙1 = 0.40,  𝑤1 = 0.1 , 𝐾𝑟 = 10 and 𝑕∞ = 100W/𝑚2K). 
 

4.5.4 Effect of Hartmann number on Divider Position 

The flow and temperature field due to various values of Hartmann number  𝐻𝑎  on 

different divider positions  𝑙1  is shown in Figures 4.7(a, b) on taking 𝑅𝑎 = 106 , 𝑤1 =

0.1, 𝑃𝑟 = 6.2 and 𝑕∞ = 100W/𝑚2K with  𝜙 = 0.05. We observe that an increasing in 

divider position  𝑙1  from the solid wall leads to increase the flow strength, but it retards 

the flow strength with the higher values of Hartmann number  𝐻𝑎  due to the effect of 
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magnetic field. We also see that when the distance between the solid wall and the divider 

increases the isotherms show more convective dominating mode, and its go to horizontal 

from vertical position. It is an indication of higher convection. But it reduces with the 

increase of Hartmann number at 𝐻𝑎 = 30,60, due to the influence of higher effect of 

magnetic field.  
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Figure 4.7: (a) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Streamlines at various 
Divider Position for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K , 𝐾𝑟 = 10  and 𝑤1 = 0.1. 
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Figure 4.7: (b) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Isotherms at various 
Divider Position for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K , 𝐾𝑟 = 10  and 𝑤1 = 0.1. 

 

Finally, from Figure 4.7 (c) it is found that the average Nusselt number  𝑁𝑢  decreases 

mildly with increasing values of Hartmann number  𝐻𝑎  at various position of divider 

 𝑙1 .We see that in absence of Hartmann number 𝐻𝑎 = 0 , the heat transfer rate increases 

as the increase of distance between the solid wall and the divider but it reduces as the 

value of the Hartmann number  𝐻𝑎   increase. 
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Figure 4. 7(c): Average Nusselt number at  various 𝑙1 (for 𝐻𝑎 = 0, 15, 30, 60 ,
𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑤1 = 0.1, 𝐾𝑟 = 10  and 𝑕∞ = 100 𝑊 /𝑚2K) 

4.5.5 Effect of Hartmann number on Solid fluid Thermal Conductivity 

Ratio  

The influences of Hartmann number on the streamlines and isotherms for different values 

of solid fluid thermal conductivity ratio  𝐾𝑟  with  𝑅𝑎 = 106 , 𝑤1 = 0.1, 𝑙1 = 0.40, 𝑃𝑟 =

6.2 and  𝑕∞ = 100W/𝑚2K with 𝜙 = 0.05 are depicted in Figures 4.8 (a, b). We know at 

very low thermal wall conductivity ratio  𝐾𝑟 = 0.5 , the solid wall acts as a thermal 

resistance wall, hence a steeper temperature gradient of isotherm is observed here in the 

solid wall, which indicates less amount of heat transfer to the enclosure. With the increase 

of wall thermal conductivity ratio the flow strength becomes higher and buoyancy 

dominates the flow. It is also noticeable in Figure 4.8 (b) that the isotherm becomes 

horizontal with the increase of thermal conductivity of the solid wall. The effect of 

Hartmann number  𝐻𝑎  is more visible here. As we observe with the increase of 

Hartmann number  𝐻𝑎   the magnetic field retards the buoyancy flow, and reduces the 

flow strength. So we see weaker flow pattern on the flow and the temperature field. 
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Figure 4.8: (a) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Streamlines at various 
Solid Fluid thermal conductivity ratio for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K , and 
𝑤1 = 0.1. 
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Figure 4.8: (b) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Isothermss at various 
Solid Fluid thermal conductivity ratio for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K , and 
𝑤1 = 0.1. 

 

The variation of average Nusselt number  𝑁𝑢  with the Hartmann number  𝐻𝑎  is 

displayed on Figure 4.8 (c) with the different values of solid fluid thermal conductivity 

ratio  𝐾𝑟 .We see that heat transfer increases with the increase of wall thermal 

conductivity ratio 𝐾𝑟 , wher the increase of Hartmann number  𝐻𝑎  results in the 

reduction of heat transfer performance of the enclosure. This is due to the greater effect of 

the magnetic field and the stronger suppression of the buoyancy flow in the nanofluid. 
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Figure 4.8 (c): Average Nusselt number at various 𝐾𝑟  (for 𝐻𝑎 = 0, 15, 30,
60) 𝑅𝑎 = 106 , 𝑃𝑟 = 6.2, 𝑙1 = 0.40, 𝑤1 = 0.1 and 𝑕∞ = 100W/𝑚2K). 
 

4.5.6 Effect of Hartmann number on Solid Wall Thickness  

Figures 4.9 (a, b) examines the effect of Hartmann number  𝐻𝑎  at various values of Solid 

wall thickness  𝑤1 = 0.1, 0.2, 0.3  on the fluid flow and temperature field for 𝑅𝑎 =

106 , 𝑙1 = 0.40, 𝑃𝑟 = 6.2 and 𝑕∞ = 100W/𝑚2K with 𝜙 = 0.05. Here we notice that the 

strength of the circulating cell is much higher for a thin solid wall. When the thickness of 

the solid wall increases it acts as a resistance wall, so less heat is transferred from the solid 

wall to the enclosure for higher value of solid wall thickness 𝑤1 . We also observe that 

two core are created in the enclosure for lower wall thickness and it becomes turn as 

elliptic shape as solid wall thickness increase, which is an indication of weaker convection 

flow. As in the case of isotherms we see with the increase of solid wall thickness from 

𝑤1 = 0.1 to 𝑤1 = 0.3 the temperature gradient within the wall decreases, which make the 

less convection amount within the enclosure. When the Hartmann number  𝐻𝑎  applies to 

the fluid, the strength of the flow circulations decrease with increase of the Hartmann 

number  𝐻𝑎  . As discussed earlier the magnetic field results in the decrease of convective 

circulating flows within the enclosures filled with electrically conducting fluid, this turn 

the reduction of heat transfer, which is also noticeable in the isotherms curves. 
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Figure 4.9: (a) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Streamlines at various 
Solid wall thickness for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K , 𝐾𝑟 = 10 and 𝑙1 = 0.4. 
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Figure 4.9: (b) Effect of Hartmann number (𝐻𝑎 = 0.0, 15, 60) on Isotherms at various 
Solid wall thickness for  𝑅𝑎 = 106 , 𝑃𝑟 = 6.2,  𝑕∞ = 100𝑊/𝑚2K , 𝐾𝑟 = 10 and 𝑙1 = 0.4. 

 

An examination of average Nusselt number  𝑁𝑢  with respect to the Hartmann number 

 𝐻𝑎 are seen for three values of Solid wall thickness  𝑤1  on taking 𝑅𝑎 = 106 , 𝑙1 = 0.40,

𝑃𝑟 = 6.2 and 𝑕∞ = 100W/𝑚2K with 𝜙 = 0.05. We observe that the average Nusselt 

number  𝑁𝑢  decreases with the increase of Solid wall thickness  𝑤1  and Hartmann 

number  𝐻𝑎 due to the effect of wall thermal resistance and magnetic field. 
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Figure 4. 9 (c): Average Nusselt number at various 𝑤1 (for 𝐻𝑎 = 0, 15, 30, 60 ,
𝑅𝑎 = 106 , 𝑃𝑟 = 6.2 l1 = 0.4 , 𝐾𝑟 = 10 and 𝑕∞ = 100W/𝑚2K) 

4.6 Conclusion of Chapter Four 

Considering the results and discussion the following conclusions are made. 

1) Stronger flow circulations within the enclosure and intensified isotherms near 

the vertical walls are evident at higher Rayleigh number and at lower Rayleigh 

number for a fixed solid volume fraction. The magnetic field reduces the 

circulation in the cavity. When the magnetic field becomes stronger, it causes 

the convective heat transfer to reduce and, subsequently, conduction heat 

transfer becomes dominate. 

2) The increase in the convective heat transfer coefficient leads to the decrease in 

the heat transfer. The average Nusselt number along the solid wall verifies that 

when the Hartmann number increase, the heat transfer rate decreases. The rate 

of this decrease is a function of Rayleigh number.  

3) Adding nanoparticles to the fluid, the average Nusselt number increases and by 

increasing the value of Hartmann number it decrease. 

4) The strength of the magnetic field affects significantly the flow, temperature 

and heat transfer inside the enclosure. When the position of the divider gets 

closure to the cold wall, the heat transfer is enhanced but it reduces with the 

increase of Hartmann number. 
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5) Natural convection inside the fluid part is driven by the temperature difference 

between the interface and the cold wall. This difference is lower for walls with 

poor thermal conductivity, but it becomes more important with the increase of 

Kr, and leads to increase the average Nusselt number. Here it is found that heat 

transfer decreases with an increase of the magnetic field. So, convective heat 

transfer can be controlled by the magnetic field. 

6) The natural convection inside the nanofluid filled cavity decrease with 

increasing of its wall thickness and by the influence of applied magnetic field 

due to thermal resistance of solid wall and the suppression of convective 

circulating flow. As a result average Nusselt number also reduced. 

 
 
 

 

 

 



 

Chapter 5: Conclusions and Recommendations 

Numerical investigation on the effect of conjugate heat transfer in a thick walled cavity 

filled with copper-water nanofluid has been performed for heat transfer and fluid flow by 

solving steady state two dimensional Naviers-Stokes equations, energy equation and 

continuity equation. The work reported in this thesis is dependent of conjugate effect on 

convective heat transfer phenomena in a rectangular cavity configuration. Based on the 

outcome of the numerical investigation, specific conclusions and recommendations for 

future work have been presented in this section. 

5.1 Summary of Major Outcomes 

In view of the results the following conclusions may be summarized.  

 Increasing the Rayleigh number resulted in stronger flow pattern and streamlines 

within the cavity. The nanofluid associates with stronger circulation cell compared 

with pure water at high Rayleigh numbers. 

 The nanoparticles when immersed in a fluid are capable of increasing the heat 

transfer capacity of base fluid. As solid volume fraction increases, the effect is 

more pronounced. 

 When the divider gets closer to the cold wall, the heat transfer is enhanced. 

 The increase of Rayleigh number and conductivity ratio increase heat transfer 

between the wall and fluid on the solid-fluid interface. 

 The natural convection inside the cavity filled with nanofluid decrease with 

increasing its wall thickness. So it can be said that, the strength of the circulation 

cell can be controlled by the thickness of the solid wall. 

 Magnetic force has considerable effect on the flow and temperature field. Stronger 

magnetic field slows down the heat transfer rate as well as the average velocity of 

the fluid because of resistive effect of Lorentz force.  

 Increasing Hartmann number reduces the fluid motion causing the core of the 

primary vortex smaller.  Owing to this effect, lower heat transfer rate and lower 

average velocity is observed. 

 At the zero magnetic force, the flow as well as heat transfer performance is found 

to be most effective. Increasing Ha causes higher fluid temperature whereas the 

fluid motion is weaker for the greater values of magnetic parameter Ha.  
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In general, the present study reveals that the fluid flow and temperature is significantly 

affected by the conjugate heat transfer and MHD effect. It is also observed that the MHD 

effect decreases the rate of heat transfer remarkably in the cavity.  

Indeed, the aim of the present study is to investigate the effect of present parameters and 

also the effect of nanofluid on the natural convection flow and temperature fields in the 

rectangular enclosure. This geometry is mainly formulated for the cooling of electronic 

devices. 

5.2 Recommendations 

In consideration of the present investigation on the effect of conjugate heat transfer on 

flow of nanofluid in an enclosure with heat conducting vertical wall and uniform heat flux, 

the following recommendation for future works have been provided. 

1) In future, the study can be extended by choosing different shape of enclosures. 

2) The study can be extended by incorporating different physics like radiation effects, 

internal heat generation / absorption, viscous dissipations, Joule heating, entropy 

generation etc. 

3) This study can be extended by changing the boundary conditions of the enclosure. 

4) This numerical analysis can be extended for mass transfer problem.  

5) Investigation can be performed by using the porous medium and changing the 

boundary conditions of the cavity’s walls. 

6) The study can be extended for turbulent flow using different fluids, different thermal 

boundary conditions. 

7) This simulation can be extended by considering the moving surface. 

8) This investigation can be performed by talking wavy bottom surface. 

9) Only two-dimensional fluid flow and heat transfer have been analyzed in this thesis. 

So this deliberation may be extended to three-dimensional analyses to investigate the 

effects of parameters on flow fields and heat in cavities.  

10) Single phase flow is considered here. The problem can be extended for double 

diffusive natural convection as well as for multiphase flow also.  
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11) The problems can be analyzed by including the temperature dependent properties of 

thermal conductivity, viscosity or density. 
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