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Abstract 

In this thesis, a comprehensive analysis of focal and non-focal electroencephalography is 

carried out in the empirical mode decomposition (EMD) and discrete wavelet transform 

(DWT) domains. First, the analysis is carried out in the EMD domain and its variants, for 

example, in ensemble empirical mode decomposition (EEMD) and complete ensemble 

empirical mode decomposition with adaptive noise (CEEMDAN) domains. A number of 

spectral entropy-based features such as the Shannon entropy, log-energy entropy and Renyi 

entropy are calculated in EMD, EEMD and CEEMDAN domains. In lieu of using the direct 

signals from the EEG channels, the differences between two adjacent EEG channels are 

used due to its robustness to noise and interference. The EEG signals are obtained from a 

publicly available electroencephalography database that consists of 7500 signal pairs which 

contain over 80 hours of electroencephalogram data collected from five epilepsy patients. 

Then, the ability of the entropy-based features in separating the focal and non-focal EEG 

signals is explored utilizing the one-way ANOVA analysis and the box-whisker plots. After 

that, well-known classifiers like support vector machine (SVM) and k-nearest neighbor 

(KNN) have been utilized to classify focal and non-focal EEG signals. 

Next, similar analysis is carried out in discrete wavelet transform domains and the efficacy 

in discriminating the focal and non-focal EEG signals is investigated. It is observed that 

the entropy-based features perform better in DWT domain to classify the EEG signals than 

in EMD domain. In this regard, it is interesting to investigate the capability of the same 

features to discriminate the EEG data in the combined EMD-DWT domain. It is shown that 

in the log-energy entropy, when calculated in the combined EMD-DWT domain, gives a 

better discrimination of these signals as compared to that of the other entropy measures as 

well as to that obtained in EMD or DWT domain, and utilizing a KNN classifier, it provides 

89.4% accuracy (with 90.7% sensitivity), which is higher than that of the state-of-the-art 

methods. Overall, the proposed classification method reports a significant improvement in 

terms of sensitivity, specificity and accuracy in comparison to the existing techniques. 

Besides, for being computationally fast, the proposed method has the potential for 

identifying the epileptogenic zones, which is an important step prior to resective surgery 

usually performed on patients with low responsiveness to anti-epileptic medications. The 

analysis may encourage the researchers to develop improved algorithms to classify these 

signals. 
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Chapter 1 

Introduction 

About 1% people of the world is affected with epileptic seizure which is a common 

neurological disorder of the brain characterized by recurrent seizures [1]. When epilepsy 

attacks a limited area of the brain, then it is called as the focal or partial epilepsy. Among 

various types of focal epilepsy, simple partial seizures affects a small part of one of the 

temporal lobes, and it is often a precursor to a larger seizure named as complex partial 

seizure. Generalized seizures include tonic-clonic (grand mal), absence (petitmal), 

myoclonic, clonic, tonic, and atonic seizures [2]. Although anti-epileptic drugs are 

available, there is a problem with the 25% of the epilepsy patients who do not respond well 

to these drugs [3]. In such cases, the treatment option is resective surgery where a section 

of the brain, identified as the epileptogenic focus (or the onset of early seizure), is removed. 

However, such surgeries are not risk free especially in the case of multi-focal epilepsy and 

may affect other eloquent areas responsible for language, primary motor and vision. Thus, 

efficient methods for the identification of those epileptogenic area of the brain is an 

important step prior to surgery. 

Epilepsy is a common health problem in Bangladesh. It is estimated that there are at least 

1.5 to 2.0 million epilepsy patients in Bangladesh. 30-40% of patients are still treated by 

traditional healer. The most common cause of non-compliance is cost of drug. 50-60% 

patients remain symptoms free with 4 common drugs. Epidemiological study was 

conducted at Epilepsy Clinic, Neurology foundation Hospital, Dhaka, Bangladesh, and 

total of 2200 patients were included. Men are more often affected than female and rural 

populations are affected more than the urban populations. The common ages of epileptic 

patients in Bangladesh are between 16 to 31 years. The etiology varies with age. Birth 

trauma, birth asphyxia, central nervous system infections are common in neonate and 

infancy whereas head trauma, brain tumor, stroke, infections are common causes in middle 

aged and elderly. Appropriate antiepileptic drugs are sometime unavailable in Bangladesh. 

The BSMMU study showed 23% of patients found it difficult to continue treatment due to 

financial problem.  
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1.1 Epilepsy and EEG Signals 

Epilepsy is a neurological disorder which is characterized by a predisposition to generate 

seizures, a transient occurrence that arises due to abnormal and excessive or hyper-

synchronous activity in the brain. It is one of the most common diseases of the human brain, 

with a prevalence of more than 3 million patients in Europe alone. Epilepsy is characterized 

by sudden changes in brain dynamics that lead to abnormal synchronization of extended 

brain networks, which is called seizure. These seizures are characterized by transient 

impairments of sensation, thinking and motor control and intermittent abnormal ring of 

neurons in the brain. Brain activity in the ictal state (during a seizure) differs significantly 

from the activity in the normal state with respect to frequency and pattern of neuronal ring. 

Temporal lobe epilepsy (TLE) is probably the most common focal epilepsy in humans. 

TLE consists of simple partial seizures without loss of awareness and complex partial 

seizures (i.e. with loss of awareness).  

Electro-encephalogram (EEG) contains a set of electric potential differences developed as 

a result of volume currents spreading from active neural tissue throughout the conductive 

media of the brain. These measurements can be obtained either using sensors on the scalp 

or by placing special intra-cranial electrodes. About 50 million people worldwide are 

suffering from epilepsy and 85% of those live in developing countries. Each year 2.4 

million new cases are estimated to occur globally. In most patients, seizures are infrequent, 

occupying much less than 0.1% of the time. The unpredictable nature of seizures may lead 

to unexpected injury. It has considerable economic implications in terms of health care 

needs, premature mortality, and losses in productivity. Patients are, however, suffering 

from restrictions in several domains, e.g., physically due to the risk of trauma, socially due  

 

Fig. 1.1. EEG Signals from a normal person (left) and a patient (right) 



3 

 

to driving and occupational restrictions, psychologically due to a feeling of helplessness 

and sometimes, it may lead to death of the matured persons. The EEG records can easily 

display these electrical discharges as a rapid change in potential differences, and thus have 

long been used for the diagnosis of epilepsy. 10 seconds EEG data from a healthy person 

and a patient are shown in Fig. 1.1.  

1.2 Different Kinds of Epileptic Seizures  

Doctors have described more than 30 different types of seizures. They classify seizures by 

how much of the brain is affected. Seizures are divided into two major categories- focal 

seizures and generalized seizures. However, there are many different types of seizures in 

each of these two categories and there are some unclassified which do not fit into the 

previous categories. 

Focal seizures, also known as local or partial seizures, are caused by abnormal electrical 

activity in a specific, smaller part of the brain. The part of the brain causing the seizure is 

called the seizure focus. Focal seizures are divided into simple and complex seizures. Some 

focal seizures evolve into generalized ones and are called secondarily generalized seizures. 

During the simple focal seizures, you remain conscious although some people can't speak 

or move until the seizure is over. Uncontrolled movements, such as jerking or stiffening, 

can occur throughout your body. You also may experience emotions such as fear or rage 

or even joy; or odd sensations, such as ringing sounds or strange smells. During complex 

focal seizures, you are not fully conscious and may appear to be in a dreamlike state. 

Typically, they start with a blank stare. You may involuntarily chew, walk, fidget, or 

perform other repetitive movements or simple actions, but actions are typically unorganized 

or confused. These seizures typically last between 30 seconds and a minute. The 

secondarily generalized seizures seizures begin as a focal seizure and develop into 

generalized ones as the electrical abnormality spreads throughout the brain. When the 

seizure begins, you may be fully conscious but then lose consciousness and experience 

convulsions as it develops. 

Generalized seizures are a result of abnormal neuronal activity on both sides of the brain. 

These seizures may cause loss of consciousness, falls, or massive muscle spasms. There 
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are mainly six types of generalized seizures. Absence seizures, also called petit mal 

seizures, are characterized by staring and subtle body movement. These seizures can cause 

a brief loss of awareness. Tonic seizures cause stiffening of your muscles. These seizures 

usually affect muscles in your back, arms and legs and may cause you to fall to the ground. 

Clonic seizures are associated with rhythmic, jerking muscle movements. These seizures 

usually affect the neck, face and arms. Myoclonic seizures usually appear as sudden brief 

jerks or twitches of your arms and legs. Atonic seizures, also known as drop seizures, cause 

a loss of muscle control, which may cause you to suddenly collapse or fall down. Tonic-

clonic seizures, also called grand mal seizures, are characterized by a loss of consciousness, 

body stiffening and shaking, and sometimes loss of bladder control or biting your tongue. 

1.3 Literature Review 

In [4], EEG signals obtained (during seizure) from the epileptogenic area are named as 

focal EEG signals, whereas those originating from other areas as non-focal signals. Several 

methods are available in the literature for identifying the epileptogenic focus by classifying 

the focal and non-focal EEG signals [5]-[10]. Epileptic seizures are often detected from 

time or frequency or time-frequency domain analysis of EEG signals [11]-[32]. Two steps 

of these detection processes include appropriate feature extraction and classification. 

Appropriate features may include entropy, higher order statistics, etc. whereas the 

classification may be carried out using well-known classifiers like support vector machine 

(SVM) or k-nearest neighbor (KNN). 

Among various types of features which have been shown to be quite effective to 

differentiate the EEG signals, higher order moments, like variance, skewness and kurtosis 

have been used for discriminating EEG signals in [11], [30]; whereas Lyapunov exponents 

and correlation dimension are used in [12], [16]. In [15], the EEG signals and their sub-

bands are modeled by a probability density function, and then, the model parameters are 

utilized to separate various types of EEG signals. Various types of entropy measures like 

Shannon entropy or Renyi entropy, are used in [16], [24] to classify the EEG signals. The 

entropy-based features are considered due to their successful application in detecting 

epileptic activities [7], [16]. The motivation behind utilizing the spectral entropy measures 

like Shannon entropy comes from its previous success to provide the measurement of the 
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variability related to different sub-bands to classify the EEG signals [5]. The log-energy 

entropy is also considered to characterize the complexity related to the EEG sub-bands for 

classifying the EEG data successfully [24]. Besides, Renyi entropy provides the 

measurement of the randomness of the wavelet coefficients of the EEG signals [5]. In [25], 

the correlation among the sub-bands of the EEG signals has also been introduced to 

differentiate the EEG signals. 

However, among the various techniques to classify focal and non-focal EEG signals, 

methods employing entropy-based features obtained from the EEG signals in discrete 

wavelet transform (DWT) and empirical mode decomposition (EMD) domain are shown 

to be most promising [5], [7]. It should be noted that the effectiveness of wavelet-based 

classification depends on the appropriate choice of the basis function [23]. On the other 

hand, the EMD is data driven and does not require a prior basis function [13], [28]. As 

noted in earlier works [12], the characteristics of EEG signals are spread over different 

frequency bands, well described by DWT sub-bands. In [14], it is shown that epileptic 

seizures can be identified effectively from the Hilbert magnitude spectrum of the intrinsic 

mode functions (IMF) of EEG signals. The DWT is also an orthogonal transform as the 

Hilbert Transform while providing the time-frequency representations of a signal.  

Furthermore, it has also been shown in earlier works [33], [34] that non-stationary signals 

such as ECG can be effectively analyzed by processing the DWT sub-bands obtained from 

the IMFs in the EMD domain. Thus, it would be interesting to study whether the focal and 

non-focal EEG signals are classified better in the combined EMD-DWT domain. 

1.4 Objectives of the Thesis 

The objectives of this thesis are: 

(i) To develop a statistical method to classify focal and non-focal EEG signals. 

(ii) To investigate the capability of different spectral entropy features to differentiate 

focal and non-focal EEG signals.  

(iii) To study the EEG signals in various time-frequency domains, like EMD, EEMD 

and CEEMDAN domains. 

(iv) To explore the EEG signals in a hybrid domain, like in EMD-DWT domain. 
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(v) To investigate one-way analysis of variance (ANOVA) and receiver operating 

characteristic (ROC) curves for different entropy-based features 

(vi) To study the performance of well-known classifiers like KNN and SVM to 

classify the EEG signals utilizing the entropy-based features. 

1.5 Thesis Overview 

This thesis is divided into four chapters.  

Chapter 1 provides general introduction followed by necessary background, literature 

review and the objectives of the work.  

Chapter 2 presents comprehensive analysis of EEG signals in EMD domain and in its 

variants, for example, EEMD and CEEMDAN domains.  Various entropy measures, such 

as Shannon entropy, log-energy entropy and Renyi entropy, are measured, and due to their 

ability to characterize the complexity and measure the variability of the EEG signals, they 

are utilized to classify the EEG signals using different well-known classifiers like support 

vector machine (SVM) or k-nearest neighbor (KNN). The performance of KNN and SVM 

classifiers are studied using the well-known criteria such as sensitivity, specificity and 

accuracy. 

The EEG signals are first analyzed in DWT domain in chapter 3. Next, a hybrid method 

using entropy-based features obtained from EEG signals in the EMD-DWT domain is 

proposed for classifying focal and non-focal EEG signals. The ability of the previously 

mentioned features to discriminate focal and non-focal EEG signals is investigated 

employing one-way analysis of variance (ANOVA) and receiver operating characteristic 

(ROC) curves.  

Chapter 4 contains the concluding remarks along with suggestions for future work on the 

topic. 
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Chapter 2 

Analysis in EMD Domain and its variants 

In this chapter, a comprehensive analysis for the discrimination of the focal and non-focal 

electroencephalography (EEG) signals is carried out in the empirical mode decomposition 

(EMD) domain, and its variants, like ensemble empirical mode decomposition (EEMD) 

and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) 

domains. A number of spectral entropy-based features such as the Shannon entropy, log-

energy entropy and Renyi entropy are calculated in EMD, EEMD and CEEMDAN domain 

of the EEG signals. In lieu of using the signals from the EEG channels, the differences 

between two adjacent EEG channels are used due to its robustness to noise and interference. 

The ability of the entropy-based features in separating the focal and non-focal EEG signals 

is explored utilizing the one-way ANOVA analysis and the box-whisker plots. The results 

reveal that among the entropy measures computed in the EEMD and CEEMDAN domains, 

the quadratic Renyi entropy and log-energy entropy measures are most promising in 

discriminating the focal and non-focal EEG signals. Finally, k-nearest neighbor (KNN) and 

support vector machine (SVM) are employed to classify the focal and non-focal EEG 

signals utilizing the extracted features.  

2.1 EEG Dataset 

The EEG signals are obtained from a publicly available EEG database [35], [4]. For the 

convenience of the readers a brief description of the database is provided in this Section. 

The reasons behind using this database are: (i) availability in public domain, (ii) a 

considerable volume, which is necessary to provide the statistical significance of the 

discriminating features, and (iii) use in the literature of EEG (See references [5], [8], [10]). 

The database consists of two types EEG signals- Focal and Non-focal EEG. Each class 

contains 3750 pairs of simultaneously recorded signals, denoted as x and y. Each of these 

3750 EEG records contains data of 20 seconds duration, with 10240 samples, since the 

sampling frequency is 512 Hz. For focal recordings, signal x is collected randomly from 

any of the five patients from all those channels that detects the first ictal EEG signals and 
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signal y corresponds to the one of the neighboring focal channels. All other channels 

included in the recordings are classified as non-focal EEG channels where the recordings 

of two adjacent channels are also named as signals x and y. Before inclusion in the database, 

EEG signals containing prominent measurement artifacts, are discarded. 

Moreover, recordings of seizure activity and three hours after the last seizure are excluded. 

In this thesis, first, 50 sets of signals for focal and non-focal EEG, named Data_F_50 and 

Data_N_50 respectively, are utilized for the investigation of the appropriate features. All 

the sets (7500 sets in total) are used for the classification. 

Figure 2.1 shows 20 seconds sample EEG from focal and non-focal EEG signals. First 

column shows signal x, signal y and signal x-y for the focal signals and the second shows 

the same respectively for the non-focal EEG signals. The motivation to analyze the signal 

x-y, the difference between two adjacent channels, comes from its robustness to noise and 

interference reported in various algorithms related to seizure detection [21]. 

 Fig. 2.1  Raw focal(Left) and non-focal(Right) EEG signals with duration of consecutive 

20 seconds for signals x (first row), y (second row) and x-y (third row). 
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The frequency range, that is interesting for the EEG signal analysis, spans over 0 to 60 Hz. 

The frequencies beyond 60 Hz may come from noise [36]. On the other hand, as the 

sampling frequency is 512 Hz, the highest frequency component of an EEG segment of the 

database is 256 Hz. The frequencies beyond 60 Hz are removed by using a 6th order Butter-

worth filter. 

2.2 Classification Methods 

In the EEG literature, there are, in general, two steps of any type of classification 

algorithms. First of all, the appropriate features are extracted from the EEG signals, and 

then, those features are utilized in suitable classifiers to classify the signals in clinically 

relevant cases. 

2.2.1 Feature Extraction 

Entropy is a quantity that measures the randomness in a signal and characterizes the 

disorder of a chaotic system. The non-linear behavior of entropy to measure the complexity 

of a signal maximizes the capability to describe and differentiate the EEG signals which 

are also non-stationary by nature. 

Among various types of entropy, spectral entropy parameters (e.g. Shannon entropy, log-

energy entropy and Renyi entropy) have been utilized in the literature to measure the 

spectral complexity of a time series data [7], [16], [37]-[42]. For this reason, the entropy 

features are expected to have a significant capability to discriminate EEG signals into 

clinically relevant cases. Shannon entropy quantifies the potential reduction of uncertainty 

if the outcome of the probabilistic process is known. For the non-linear signals like EEG 

signals, Shannon entropy measures the average information contained in the probability 

distribution function (pdf). On the other hand, Renyi entropy can be used to derive the 

continuous family of mutual information measures and can be applied not only in these 

kinds of statistical signals but also in economics, ecology or quantum information too. 

Besides, the capability of log-energy entropy to characterize the non-linear dynamics of 

EEG signals helps to describe the electrophysiological behavior of epileptogenic regions 

successfully. These spectral parameters measure the power spectral density (PSD) which 

represent the power distribution according to the frequencies. 
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If the power level of the 𝑖𝑡ℎ frequency component is 𝑝𝑖, for a given data-set, with length N, 

the corresponding Shannon-entropy (SE), log-energy entropy (LE) and Renyi entropy (RE) 

are expressed as 

 𝑆𝐸 =  − ∑ 𝑝𝑖
2𝑁

𝑖=1 × 𝑙𝑜𝑔(𝑝𝑖
2) (2.1) 

 𝐿𝐸 =  ∑ 𝑙𝑜𝑔(𝑝𝑖
2)𝑁

𝑖=1  (2.2) 

 𝑅𝐸 =  
1

1−𝛼
𝑙𝑜𝑔  { ∑ (𝑝𝑖)

𝛼 𝑁
𝑖=1 } (2.3) 

The renyi entropy (RE) is of order 𝛼, where 𝛼 > 0 and 𝛼 ≠ 1. If 𝛼 is equal to 2, then the 

measurement equally emphasizes the sub-gaussian and the super-gaussian components 

[42]. This feature has been successfully utilized in the EEG literature for classifying the 

EEG data [5], [7], [42]. However, if 𝛼 = 2, the measurement is called as quadratic Renyi 

entropy, that is given by- 

 𝑅𝐸 =  − 𝑙𝑜𝑔  { ∑ (𝑝𝑖)
2 𝑁

𝑖=1 } (2.4) 

2.2.2 Classifiers 

In this thesis, the entropy-based features are used to classify the EEG signals employing 

two different well-known classifiers, namely support vector machine (SVM) and k-nearest 

neighbor (KNN). 

Support Vector Machine (SVM), proposed by Vapnik [43], is a widely used classifier to 

separate various types of EEG signals [5], [13]-[15]. It is a non-linear binary classifier 

which maps the input features onto the higher dimensional hyper-plane. The best hyper-

plane is used to separate all data points of one class from other to classify the signals. The 

SVM has the added advantage of reduced over-fitting. To train the classifier, a proper 

kernel function for a certain problem is dependent on the specific data. In this thesis, the 

performance of the SVM classifiers is measured using both the radial basis function and 

polynomial kernel function, as well as employing the least square method for training. 

K-nearest neighbor (KNN) is a supervised non-parametric classifier that does not need a 

prior assumption about the statistics of the training samples. Any new testing sample is 

classified by measuring the distance from the nearest training case where K number of 

training points closest to the test sample are calculated and the most common class among 
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these k-nearest neighbors is selected as the class. The number k decides how many 

neighbors influence the classification, for example, when k = 1, it becomes simply the 

nearest neighbor algorithm. The KNN classifier has mainly two parameters to tune; those 

are the distance parameter and K. In this thesis, the performance is observed by varying K 

and varying the distance parameter as Euclidean, cosine, correlation and city-block. In 

various cases of various distance parameters, different values of K provide the optimum 

accuracy. Moreover, in the literature, this classifier has been shown to be quite promising 

to classify various types of EEG signals [44] - [46]. 

For both classifiers, SVM and KNN, randomly selected 20% segments are used for training, 

and the other 80% segments have been used for testing. Due to the non-stationary nature 

of EEG signals, each twenty second sample data has been segmented into ten non-

overlapping parts. Thus, each segment contains two seconds data and corresponds to 1024 

samples. The performance criteria of the proposed classification method in classifying 

different types of EEG data are- 

        𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁 
× 100 %         (2.5) 

        𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁 
× 100 %        (2.6) 

        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
× 100 %        (2.7) 

where TP, TN, FP and FN stand for true positive, true negative, false positive and false 

negative events, respectively [15]. 

2.3 Analysis of Focal and Non-focal EEG Band-limited Signals  

In this thesis, the entropy-based features are first explored for the bandlimited EEG 

segments. For 50 EEG records of 20s duration each, the values of the entropies are 

calculated for each of the signals x, y and x-y. To investigate whether these values can 

discriminate the focal EEG from the non-focal ones or not, one-way ANOVA is carried 

out. The small p-values obtained from ANOVA indicate that differences between column 

means are significant. Box plots are also used to see if the entropy values can differentiate 

focal and non-focal EEG signals. From the box plots in Figure 2.2, it is obvious that the 
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values of focal and non-focal EEGs are mostly overlapping for these band limited signals. 

Besides, the p-values obtained from ANOVA, shown in Table 2.1, are, in general, not small 

enough to establish the evidence of capability of the features to discriminate the signals. 

Furthermore, in the ROC curves in fig. 2.3, in general, none of these three entropy 

parameters indicates a significant level of discrimination capability. Thus, the overall 

scenario underscores the necessity to decompose the EEG signals in sub-band levels to 

investigate in the decomposed versions whether they may be separable in sub-band levels. 

           

Fig. 2.2  Box Plots for Band-limited EEG signals corresponding to Shannon entropy (first 

column), Log-energy entropy (second column) and Quadratic Renyi Entropy (third 

column) for signals x (first row), y (second row) and x-y (third row).       

Fig. 2.3 ROC curve for entropy values for band-limited signals x, y and x-y, respectively 
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                Table 2.1  p-values for various features for the band-limited signals 

Signals Shannon Entropy Log-energy Entropy Renyi Entropy 

Signal x 0.1015 2.4546e-04 0.0446 

Signal y 0.0721 5.1087e-03 5.8915e-03 

Signal x-y 0.0165 0.0220 0.0160 

2.4 Analysis in EMD Domain and in Its Variants  

The Empirical Mode Decomposition(EMD) provides amplitude and frequency modulated 

oscillatory patterns known as intrinsic mode functions (IMF), which are derived using the 

basis obtained from the signal subjected to EMD. As discussed before, a major problem 

with EMD is mode-mixing; recently, variants of EMD such as EEMD and CEEMDAN 

have been proposed to eradicate this problem. In the following, a brief review of these 

variants is provided. 

 

2.4.1 Empirical Mode Decomposition 

The empirical mode decomposition (EMD) provides amplitude and frequency modulated 

oscillatory patterns, known as intrinsic mode functions (IMF), of a nonlinear and non-stationary 

signal [7], [13]. For an N -point data X (𝑥1 , 𝑥2 , 𝑥3 , … … … , 𝑥𝑁), IMFs are obtained as- 

 First step is to set the input as 𝑚0, such that  𝑚0 = 𝑋, and then, 𝑚0𝑙𝑑 =  𝑚0 

 After the identification of the local maxima and minima of 𝑚0𝑙𝑑 , cubic spline interpolation 

is used to obtain the envelopes of those. 

 After that, the mean values(m) of 𝑒𝑚𝑖𝑛  and 𝑒𝑚𝑎𝑥 are calculated using and subsequently 

the value is subtracted from 𝑚𝑜𝑙𝑑  as- 

                                               𝑚𝑛𝑒𝑤 =  𝑚𝑜𝑙𝑑 −  
𝑒𝑚𝑎𝑥+𝑒𝑚𝑖𝑛

2
                                            (2.8) 

 Finally, 𝑚𝑜𝑙𝑑 is set equal to 𝑚𝑛𝑒𝑤 

 Stop the decomposition if 
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∑|𝑚𝑛𝑒𝑤−𝑚𝑜𝑙𝑑|2

∑ 𝑚𝑜𝑙𝑑
2 <  𝛼                                              (2.9) 

where 0.2 ≤ 𝛼 ≤ 0.3. Otherwise, the second and third step will be repeated to get the 

IMFs [16]. 

Figure 2.4 shows the band-limited signals and first five IMFs for a sample focal (left column) and 

a sample non-focal (right column) EEG signals comprising 4s recordings of signal x for each.  

Tables 2.3 and 2.4, respectively, show the p-values obtained from the various IMFs of signals x, 

y and x-y. It is seen that log-energy entropy provides, in general, smaller p-values than the 

quadratic Renyi entropy or Shannon entropy. It indicates the superior capability of the log-energy 

entropy to separate the focal EEG data from the non-focal ones than the other entropy parameters 

for various IMFs. It should be noted that the p-values for log-energy entropy parameters for IMFs 

1 and 2, are significantly smaller than others for signals x, y and x-y.  

                  Table 2.2  p-values for various features for different IMFs in EMD Domain 

Levels Shannon Entropy Log-energy Entropy Renyi Entropy 

x y x y x y 

IMF 1 0.203 0.183 3.0e-15 2.7e-15 0.011 0.001 

IMF 2 0.512 0.162 9.8e-19 3.6e-20 3.1e-12 5.5e-13 

IMF 3 0.192 0.910 9.5e-17 7.5e-07 0.1963 0.041 

IMF 4 0.269 0.483 2.4e-07 1.2e-09 5.8e-11 1.6e-13 

IMF 5 0.312 0.245 3.8e-09 4.3e-08 0.0038 0.0062 

 

Besides, the box plots in fig 2.5 shows a better level of discrimination for the log-energy entropy 

values (second column) than Shannon entropy (first column) and Renyi Entropy (third column) 

for IMF 1. Furthermore, in fig. 2.6, the ROC curves are shown when the three entropy parameters 

obtained from IMF 1 are utilized. It is seen that, in general, the area under the ROC curves for the 

IMFs has been increased from the case of band-limited signals in fig. 2.5 which indicates 

significant discrimination level in the EMD domain than in the band-limited signals. Finally, in 

table 2.5, classification performance is shown for the features in EMD domain. 
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                      Table 2.3  p-values for various features for the first five IMFs for signal x-y 

Entropy Shannon Log-energy Renyi 

IMF 1 0.1035 1.13e-13 0.0035 

IMF 2 0.7470 3.94e-14 1.30e-05 

IMF 3 0.8246 4.45e-06 0.0601 

IMF 4 0.1542 0.0056 5.01e-04 

IMF 5 0.2316 0.0073 0.0751 

               

                   

Fig. 2.4  First five IMFs extracted from EMD for focal(left) and non-focal(right) EEG signals for 

signal x. 
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Fig. 2.5  Box plots for IMF 1 for signals x, y and x-y in first, second and third row respectively 

for Shannon entropy, log-energy entropy and quadratic Renyi entropy in first, second and third 

column respectively 

 

  

Fig. 2.6  ROC curve for the entropy values obtained from the rst IMF of the EEG signals x, y and 

x- y respectively. 
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                                   Table 2.4  Classification Accuracy in EMD Domain 

IMFs Shannon Entropy Log-energy Entropy Renyi Entropy 

KNN SVM KNN SVM KNN SVM 

1 76.2 % 75.1 % 79.1 % 78.3 % 77.4 % 78.1 % 

2 73.8% 72.7 % 76.5% 75.7 % 75.8% 74 % 

3 71.1 % 70 % 74.3 % 72.6 % 74.4 % 72.6 % 

4 69.2 % 68.3 % 74.4 % 73.3 % 73.9 % 71.1 % 

5 69.8 % 69.6 % 72.4 % 72.9 % 70.2 % 69.8 % 

All 81 %  79.8 % 85.7 % 84.6 % 82.3 % 81.1 % 

 

2.4.2 Ensemble Empirical Mode Decomposition (EEMD) 

The EEMD [47] provides the EMD of ensemble average of Gaussian noise-assisted data. A low-

level Gaussian noise is mixed with the original signal which is then decomposed by EMD [10]. 

The steps of EEMD are as follows: 

 First, from the actual signal X, 𝑋𝑖 is calculated as 𝑋𝑖 =  𝑋 + 𝑤𝑖 where 𝑤𝑖 indicates the 

realizations of white Gaussian noise (while i = 1,2,3,…,R) with zero mean and unit 

variance, and R is the number of realizations of the noise. 

 Next, each of the signals of 𝑋𝑖 is subjected to EMD, thus giving the IMFs, denoted as 

𝐼𝑀𝐹𝑖
𝑘, where k = 1, 2, 3, …, L represents the different modes. 

 Finally, the mode functions in EEMD domain, 𝐼𝑀𝐹𝑘 is calculated as- 

                                                            𝐼𝑀𝐹𝑘 =  
1

𝐿
∑ 𝐼𝑀𝐹𝑖

𝑘𝑅
𝑖=1                                             (2.10) 

In Fig. 2.7, the first three mode functions of the focal and non-focal EEG signals in EEMD domain 

have been shown for the signal x-y in both cases. Table 2.5  shows the p-values obtained from 

the various IMFs of signal x-y, and table 2.6 shows the classification performance. 
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Fig. 2.7  First three IMFs extracted from EEMD for focal (left) and non-focal (right) EEG signals 

for signal x-y 

               Table 2.5  p-values for various features for the EEMD Domain for signal x-y 

IMFs Shannon Entropy Log-energy Entropy Renyi Entropy 

1 0.1013 0.0742 2.12e-06 

2 0.0044 4.84e-04 3.26e-08 

3 0.0457 0.0085 1.53e-07 

4 0.0776 0.0035 3.75e-06 

5 0.0136 0.2831 2.71e-04 

                                          

                                     Table 2.6  Classification Accuracy in EEMD Domain 

IMFs Shannon Entropy Log-energy Entropy Renyi Entropy 

KNN SVM KNN SVM KNN SVM 

1 76.8 % 74.3 % 77.1 % 77.3 % 79.4 % 79.1 % 

2 73.2% 73.7 % 78.5 % 75.8 % 77.9 % 78.9 % 

3 72.3 % 71.4 % 75.6 % 74.6 % 76.2 % 77.2 % 

4 70.9 % 69.1 % 72.7 % 71.1 % 77.1 % 76.1 % 

5 69.2 % 69.8 % 73.4 % 72.7 % 75.2 % 74.8 % 

All 82.8 %  81.7 % 85 % 83.4 % 81.9 % 81.2 % 
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2.4.3 Complete Ensemble Empirical Mode Decomposition with Adaptive 

Noise (CEEMDAN) 

Although EEMD successfully minimizes the mode-mixing problem, due to the use of different 

realizations, it can give different number of modes and residual noise. The CEEMDAN [49] gives 

an exact reconstruction of the data while computationally less expensive as compared to EEMD 

[13]. In CEEMDAN, an operator 𝑀𝑗  is defined that produces the 𝑗𝑡ℎ mode of EMD. Unlike 

EEMD, the added white Gaussian noise has a certain standard deviation denoted as  𝜎0. Thus, the 

steps of the CEEMDAN algorithm is given as below- 

 First, from the actual signal X, 𝑋𝑖 is calculated as 𝑋𝑖 =  𝑋 + 𝜎0𝑤𝑖 and transformed in 

EMD to obtain the first mode functions. 

 Next, the first mode IMF, named as 𝐼𝑀𝐹1 and the first residue 𝑟1 in CEEMDAN are 

calculated as-                          𝐼𝑀𝐹1 =  
1

𝐿
∑ 𝐼𝑀𝐹𝑖

1𝑅
𝑖=1                                              (2.11) 

                                                                  𝑟1 = 𝑥 − 𝐼𝑀𝐹1                                                        (2.12) 

 If  𝜎1 is the standard deviation of the white Gaussian noise at this stage, then 𝐼𝑀𝐹2 is 

determined as 

                                  𝐼𝑀𝐹2 =  
1

𝐿
∑ 𝑀1[𝑟1 + 𝜎1𝑀1(𝑤𝑖)]𝑅

𝑖=1                                          (2.13) 

 Subsequently, the 𝑘𝑡ℎ residue and the (𝑘 + 1)𝑡ℎ mode functions are obtained as 

                                           𝑟𝑘 =       𝑟𝑘−1 − 𝐼𝑀𝐹𝑘                                                           (2.14) 

                               𝐼𝑀𝐹𝑘+1 =  
1

𝐿
∑ 𝑀1[𝑟𝑘 + 𝜎𝑘𝑀𝑘(𝑤𝑖)]𝑅

𝑖=1                                            (2.15) 

 The previous step is repeated until the residue becomes a monotonic function such that 

further extraction of an IMF is impossible. If k is the total number of modes and 𝑟𝑘 is the 

final residue, the input X can be reconstructed from all the IMFs as 

                                                 𝑋 =  ∑ 𝐼𝑀𝐹𝑘𝐿
𝑘=1 + 𝑟𝑘                                            (2.16) 

In Fig. 2.8, the first three mode functions of the focal and non-focal EEG signals in CEEMDAN 

domain have been shown for the signal x-y in both cases. Table 2.8 shows the p-values obtained 
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from the various IMFs of signal x-y, and table 2.9 shows the classification performance. Fig. 2.9 

shows the box-plots for EEMD and CEEMDAN domains. 

         

                                 

Fig. 2.8  First three IMFs extracted from CEEMDAN for focal(left) and non-focal(right) 

EEG signals for signal x-y. 

            Table 2.7  p-values for various features for the CEEMDAN Domain for signal x-y 

IMFs Shannon Entropy Log-energy Entropy Renyi Entropy 

1 0.1084 0.0959 2.21e-06 

2 0.0393 0.2990 8.81e-07 

3 0.0306 0.3668 4.35e-04 

4 0.0072 0.1546 8.43e-06 

5 0.0321 1.02e-08 1.04e-10 
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                            Table 2.8  Classification Accuracy in CEEMDAN Domain 

IMFs Shannon Entropy Log-energy Entropy Renyi Entropy 

KNN SVM KNN SVM KNN SVM 

1 76.5 % 76.3 % 77.9 % 78.3 % 78.9 % 79.3 % 

2 74.2 % 75.7 % 79.2 % 78.8 % 77.5 % 78.3 % 

3 72.8 % 73.9 % 78.1 % 76.6 % 76.8 % 77.8 % 

4 71.2 % 72.5 % 74.8 % 72.1 % 73.2 % 75.4 % 

5 71.9 % 71.8 % 73.9 % 73.7 % 71.2 % 72.5 % 

All 84.1 %  82.9 % 85.4 % 84.7 % 82.3 % 81 % 

 

 

Fig. 2.9  Sample box plots for IMF 3 for EEG signal x-y in for Shannon entropy, log-energy 

entropy and quadratic Renyi entropy in EEMD domain(left) and CEEMDAN domain(right) 
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2.5 Discussions  

The following observations can be made based on the analysis in section 2.4: 

 The p-values obtained from EMD domain and its variants, like in EEMD and CEEMDAN 

domains, are small enough to indicate the discrimination capability of the entropy-based 

features. 

 The p-values for quadratic Renyi entropy and log-energy entropy are significantly smaller 

than the those for Shannon entropy which indicates their superior capability to distinguish 

between the focal and non-focal EEG signals. 

 The box plots further confirm that Renyi entropy and log-energy entropy perform a better 

discrimination than Shannon entropy. 

 Moreover, the box plots also confirm that these features can separate EEG signals more 

for signal x-y than for signal x or signal y. 

 Between the two classifiers, KNN and SVM, in almost all the cases, KNN provided better 

performance than SVM. 

 From the classification performance in tables 2.5, 2.7 and 2.9, the maximum accuracy has 

been achieved up to 85.7 % from log-energy entropy in EMD domain for KNN classifier. 
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Chapter 3 

Analysis in EMD-DWT Domain 

In this chapter, EEG signals are first analyzed in discrete wavelet transform (DWT) domain. 

Next, being motivated by the success of discriminating various types of non-stationary 

signals, like ECG, where the frequency bands are extracted from the IMFs [14], [33]-[34], 

EEG signals are next analyzed in EMD-DWT domain. The hybrid method using entropy-

based features obtained from EEG signals in the EMD-DWT domain is proposed for 

classifying focal and non-focal EEG signals. Entropy-based features such as Shannon 

entropy, log-energy entropy and Renyi entropy are calculated in the EMD, DWT and EMD-

DWT domains. In this chapter, the ability of these features to discriminate focal and non-

focal EEG signals is investigated employing one-way analysis of variance (ANOVA) and 

receiver operating characteristic (ROC) curves. It is noted that the best scenario in 

differentiating focal and non-focal EEG signals is obtained while using the combined 

EMD-DWT domain and employing log-energy entropy values. 

3.1 Analysis of EEG signals in Discrete Wavelet Transform 

(DWT) Domain 

Discrete wavelet transform (DWT) has emerged as one of the most important tools in non-

stationary signal analysis because of its capability to extract the time and frequency 

localization from the time domain signals. Various studies are available in the literature 

exploiting the superior time-frequency localization of DWT for identifying epilepsy 

activities [5], [23], [30]. The DWT decomposes EEG signals onto basis functions by 

expanding, contracting and shifting a single prototype function (the mother wavelet) 

providing a coarse approximation (𝐶𝑗,𝑘) of the signal and detail information (𝐷𝑗,𝑘) as given 

by- 

                𝐶𝑗,𝑘 =< 𝑓(𝑡), 𝜑𝑗,𝑘(𝑡) > =  ∫ 𝑓(𝑡)
𝑅

× 2−
 𝑗

2⁄  𝜑(2−𝑗 𝑡 − 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑑𝑡                   (3.1) 

                𝐷𝑗,𝑘 =< 𝑓(𝑡), 𝜓𝑗,𝑘(𝑡) > =  ∫ 𝑓(𝑡)
𝑅

× 2−
 𝑗

2⁄  𝜓(2−𝑗 𝑡 − 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   𝑑𝑡                 (3.2) 
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where 𝜓(𝑡) is the mother wavelet, 𝜙(𝑡) is the basic scaling, j is the scale index, and k 

is the translation parameter. The inverse discrete wavelet transform is given by- 

𝑓(𝑡) =  ∑ 𝐶𝑗,𝑘𝑘 × 2−
 𝑗

2⁄   𝜑(2−𝑗 𝑡 − 𝑘) +  ∑ 𝐷𝑗,𝑘𝑘 × 2−
 𝑗

2⁄   𝜓(2−𝑗 𝑡 − 𝑘)            (3.3) 

Contrary to the band-limited signals, the DWT decomposition captures the dynamics 

of EEG signals better [12]. Certain features that are not so prominent in band-limited 

signal can be emphasized in the time frequency domain sub-bands [15], [23]. Hence-

fore, it is more appropriate to analyze the EEG signals at DWT sub-band levels. For the 

purpose of analysis, the band-limited EEG signals are subjected to a 4 level DWT 

decomposition and the obtained sub-bands are shown in table 3.1. In this thesis, 

Daubechies-4 (db4) is chosen to be the mother wavelet for performing the DWT 

decomposition. The smoothing feature of the db4 wavelet has made it to be more 

appropriate to detect continuous changes of the EEG signals [23]. However, if the 

mentioned five sub-bands are reconstructed utilizing the inverse DWT, it would 

approximately correspond to the five physiological EEG sub-bands [25] which is listed 

in table 3.1. In fig. 3.1, two seconds band-limited (BL) EEG signals from focal and non-

focal ones are shown in the first row in the first and second column, respectively. 

Table 3.1  DWT Sub-bands 

Sub-band Name Frequency Range Physiological EEG Sub-bands 

a4 0-4 Hz Delta band 

d4 4-8 Hz Theta band 

d3 8-15 Hz Alpha band 

d2 15-30 Hz Beta band 

d1 30-60 Hz Gamma band 

 

Now, for of the sub-bands, for all the two seconds segments Shannon entropy, log-energy 

entropy and quadratic Renyi entropy have been estimated, and then, the one-way ANOVA 

has been conducted. The corresponding p-values for signal x and signal y have been shown 

in Table 3.2. Furthermore, for the signal x-y, the p-values have been shown in Table 3.3. 
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Fig. 3.1  Five DWT sub-bands extracted in DWT domain for focal (left) and non-focal 

(right) EEG signals for signal x. 

Table 3.2  p-values for various features for the DWT sub-bands 

Sub-bands Shannon Entropy Log-energy Entropy Renyi Entropy 

x y x y x y 

d1 0.016 0.017 2.3e-10 2.6e-12 4.1e-12 3.3e-14 

d2 0.921 0.596 2.7e-08 2.7e-06 3.5e-04 3.8e-05 

d3 0.220 0.805 2.2e-14 8.6e-12 8.4e-10 2.0e-10 

d4 0.159 0.149 2.3e-09 7.2e-08 0.0144 0.0313 

a4 0.102 0.847 2.1e-05 6.0e-07 0.0373 0.0077 

   

Table 3.3  p-values for various features for the DWT sub-bands of signal x-y 

Sub-bands Shannon Log-energy Renyi 

d1 0.0036 2.02e-04 2.38e-05 

d2 0.6225 7.61e-07 0.0019 

d3 0.4200 4.58e-12 6.62e-06 

d4 0.2188 4.77e-15 2.40e-04 

a4 0.9099 5.58e-19 6.34e-06 
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From Tables 3.2 and 3.3, it is shown that except the sub-band d1(30-60 Hz), log-energy 

entropy provides smaller p-values than the quadratic Renyi entropy or Shannon entropy. It 

indicates the superior capability of the log-energy entropy to separate the focal EEG data 

from the non-focal ones than the other entropy parameters for those sub-bands. The box 

plots in fig. 3.2 shows the discrimination for d4 sub-band for Shannon entropy, Log-energy 

entropy and Renyi entropy in the first, second and third column, respectively, which 

confirms the better discrimination ability of the log-energy entropy parameters. 

Furthermore, in fig. 3.3, the ROC curves are shown when the three entropy parameters 

obtained from the five sub-bands are utilized and the area under the ROC curves is also 

increased by a significant level than the case of band-limited signals in chapter 2. Finally, 

table 3.4 shows the classification performance of the entropy-based features in DWT 

domain for various sub-bands. 

     

Fig. 3.2  Box plot for d4 sub-band for Shannon, log-energy and Renyi entropy, respectively. 
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Fig. 3.3  ROC curve for Shannon, log-energy and Renyi entropy when all the sub-bands in 

DWT domain are utilized. 

Table 3.4  Classification Results in DWT Domain for signal x-y 

Sub-bands Shannon Entropy Log-energy Entropy Renyi Entropy 

KNN SVM KNN SVM KNN SVM 

d1 81.5 % 80.3 % 77.4 % 78.4 % 78.7 % 79.1 % 

d2 76.2 % 77.1 % 78.2 % 78.5 % 75.4 % 76.3 % 

d3 78.3 % 78.9 % 81.1 % 80.5 % 78.8 % 77.8 % 

d4 79.2 % 80 % 81.8 % 81 % 76.2 % 75.9 % 

a4 73.9 % 72.8 % 82.3 % 81.5 % 77.9 % 76.5 % 

All 84.6 % 83.8 %. 87.2 % 86.1 % 82.8 % 83.6 % 

3.2 Analysis of EEG signals in EMD-DWT domain 

From the analysis in section 3.1 and chapter 2, it is quite obvious that the log-energy entropy 

parameter can discriminate the EEG data quite well in comparison to the other features in 

both of the EMD and DWT domains. In this regard, it would be interesting to investigate 

the capability of the features to classify the EEG data in the combined EMD-DWT domain. 

The motivation comes from the success of discriminating various types of non-stationary 

signals, like ECG, where the frequency bands are extracted from the IMFs [14], [33]-[34]. 

For that reason, in this thesis, first the EEG signals are decomposed into the EMD domain, 

and then, each of the IMF is decomposed in the sub-bands through the DWT. Next, the log-

energy entropy values are calculated for each of the sub-bands for all the IMFs and the 
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ANOVA is conducted. The corresponding p-values are shown in Tables 3.5, 3.6 and 3.7. 

Furthermore, the sample box-plots for all the sub-bands for IMF 1 are shown in Figure 3.4. 

Table 3.5  p-values for signal x in EMD-DWT domain 

Sub-bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 

d1 1.1e-06 5.0e-05 0.0440 1.9e-11 0.2389 

d2 3.3e-07 9.6e-07 6.4e-08 0.1904 0.7866 

d3 2.3e-09 1.3e-06 1.3e-09 0.4321 0.4238 

d4 5.6e-13 1.4e-10 2.0e-04 0.5194 0.0761 

a4 1.2e-16 1.9e-18 0.9857 0.1497 0.4573 

 

It is seen from the tables that the p-values for Log-energy entropy parameters are quite 

small for signals x, y and x   y. It should be noted that the p-values for IMFs 1 and 2 are, in 

general, significantly smaller than those for the IMFs 3,4 or 5. It should be noted that, on 

average, the values for signal x-y are smaller than those for the others. 

Table 3.6  p-values for signal y in EMD-DWT domain 

Sub-bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 

d1 4.3e-08 8.9e-13 2.6e-06 3.3e-11 0.1292 

d2 3.3e-07 2.8e-12 1.7e-09 4.9e-05 0.1683 

d3 1.0e-09 1.2e-12 1.9e-05 0.0016 0.8419 

d4 3.6e-13 1.7e-12 0.4033 0.0017 0.2196 

a4 1.6e-16 1.1e-11 0.0078 4.5e-05 0.4695 

 

Table 3.7  p-values for signal x-y in EMD-DWT domain 

Sub-bands IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 

d1 3.9e-20 1.7e-25 0.008 2.2e-05 0.118 

d2 5.0e-19 4.4e-27 6.9e-08 0.829 0.875 

d3 1.7e-24 3.7e-29 3.1e-09 0.271 0.454 

d4 4.1e-24 1.1e-19 2.9e-06 0.163 0.199 

a4 1.7e-19 1.8e-13 0.006 0.809 0.785 
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Fig. 3.4  Box-plots for signals x, y and x-y for log-energy entropy for all the DWT sub-

bands for IMF 1. 

 

Fig. 3.5  ROC curves for the entropy values obtained from the sub-bands of IMF 1 of the 

EEG signals x, y and x   y respectively 

 

Furthermore, the ROC curves are also shown for all the three entropy features for the sub-

bands for IMF 1 which is shown in fig 3.5. It is clearly seen that the log-energy entropy 

provides a larger area under the curves in comparison to Shannon and Renyi entropy. 

Besides, it also provides larger area under the curves than the curves for EMD or DWT 

domain which indicates a better discrimination capability of the log-energy entropy in the 

EMD-DWT domain than in EMD or in DWT domain.  
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In summary, after all these analysis, it is clear that the log-energy entropy has a significant 

better discrimination capability than Shannon entropy or Renyi entropy. Apart from the 

analysis with the bandlimited signals, it is shown to be quite promising to decompose the 

EEG signal into EMD and DWT domain providing some IMFs or sub-bands. It is shown 

that the discrimination is more obvious for the difference of the signals (signal x-y) when 

the IMFs extracted from EMD domain are decomposed in various sub-bands level through 

the DWT decomposition. The p-values are smaller for the sub-bands extracted from IMFs 

1 and 2 and the separation in the box-plots is also significant. It should be noted that in 

[27], IMFs 1 and 2 have been considered to be noise, but in this thesis, the noise was already 

removed using the butter-worth filter. Besides, in [28], IMFs 1, 2 and 3 have been utilized 

for EEG signal classification while in [29], feature from IMF 2 provide up to 100% 

accuracy for seizure detection.  

Thus, the previous success of IMFs 1 and 2 to classify EEG signals also works as the 

motivation along with the previous analysis of this thesis. In the next portion of this thesis, 

the log-energy entropy values for signal x-y in the EMD-DWT domain, would be utilized 

as the discriminating features for various types of classifiers. 

3.3 Results and Discussions 

In Table 3.8, the classification performance is shown for SVM classifiers where the 

parameters need to be tuned for RBF kernel (sigma) and polynomial kernel (order) to obtain 

a good accuracy. Observing the performance from the RBF Kernel, polynomial Kernel and 

Least Square Method based SVM classifiers, it is obvious that the accuracy obtained using 

the signal x-y provides, on average, better performance in comparison to those obtained 

from signal x or signal y alone. However, in all the cases, RBF-Kernel provides better 

performance than the others. Next, in Table 3.9, in KNN classifiers, the signal x-y 

discriminates the focal and non-focal EEG signals better than the signal x or y. Among 

various types of KNN classifiers, the Cityblock distance KNN provides the highest 

accuracy 89.4% with 90.7% sensitivity and 88.1% specificity. In Table 3.10 and 3.11, the 

results of the proposed method are compared with the several recent algorithms available 

in EEG literature. 
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From Table 3.10, it is seen that the proposed method provides 91% accuracy which 

indicates providing the best performance in comparison to the recent algorithms described 

in [5], [7], [8] and [10]. It is also seen that the log-energy entropy-based features obtained  

Table 3.8  Classification Results for SVM classifiers 

Signals SVM Methods Performance 

Sensitivity Specificity Accuracy 

 

x 

Kernel Function RBF 82.6 (±2.3) 80.2 (±3.5) 81.4 (±2.8) 

Kernel Function Polynomial 81.7 (±2.0) 77.6 (±3.3) 79.6 (±2.7) 

Least Square 81.9 (±3.1) 78.5 (±3.3) 80.2 (±3.2) 

 

y 

Kernel Function RBF 80.7 (±1.3) 79.8 (±2.8) 80.3 (±1.7) 

Kernel Function Polynomial 79.7 (±4.3) 75.1 (±2.7) 77.4 (±3.3) 

Least Square 78.4 (±4.9) 76.2 (±2.8) 77.3 (±3.7) 

 

x-y 

Kernel Function RBF 88.7 (±3.1) 85.7 (±4.3) 87.2 (±3.5) 

Kernel Function Polynomial 88.1 (±3.0) 83.5 (±2.7) 85.8 (±2.8) 

Least Square 84.1 (±2.8) 83.1 (±1.3) 83.6 (±1.9) 

 

Table 3.9  Classification Results for KNN classifiers 

Signals KNN Methods Performance 

Sensitivity Specificity Accuracy 

 

x 

Cityblock 84.8 (±3.7) 82.0 (±3.3) 83.4 (±3.6) 

Euclidean 84.1 (±2.3) 83.1 (±2.8) 83.6 (±2.6) 

Cosine 82.6 (±4.9) 79.5 (±5.3) 81.1 (±4.7) 

Correlation 82.3 (±3.2) 81.2 (±4.3) 81.7 (±4.0) 

 

y 

Cityblock 83.6 (±4.1) 79.1 (±3.1) 81.4 (±3.6) 

Euclidean 81.1 (±4.3) 77.6 (±4.2) 79.3 (±4.2) 

Cosine 80.8 (±3.5) 77.6 (±3.2) 79.2 (±3.3) 

Correlation 79.5 (±3.8) 76.1 (±4.3) 77.8 (±4.1) 

 

x-y 

Cityblock 90.7 (±1.9) 88.1 (±2.2) 89.4 (±2.1) 

Euclidean 88.3 (±2.8) 87.9 (±3.3) 88.1 (±2.9) 

Cosine 88.2 (±3.7) 85.2 (±5.1) 86.7 (±4.3) 

Correlation 87.1 (±3.1) 85.9 (±3.3) 86.5 (±3.5) 
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Table 3.10  Comparison of the performance from various methods 

Methods Classifier-Method Features Accuracy (%) 

Guohun [8], 2013 SVM RBF Kernel Delay Permutation 

Entropy 

84 

Sharma [5], (2015) SVM-LS Method DWT, Entropy 

Measures 

84 

Sharma [10], (2014) SVM-LS Method EMD, ASE, AVIF 85 

Rajeev [7], (2015) SVM-LS Method EMD, Entropy 

Measures 

87 

Proposed Method in 

EMD Domain 

KNN City-block 

Distance 

EMD, Log-energy 

Entropy 

88 

Proposed Method in 

DWT Domain 

KNN City-block 

Distance 

DWT, Log-energy 

Entropy 

89 

Proposed Method in 

EMD-DWT Domain 

KNN City-block 

Distance 

EMD-DWT, Log-

energy Entropy 

91 

 

in the first five IMFs in EMD domain give better accuracy than the methods in [5], [8] and 

[10]. However, when the same features are extracted from the five sub-bands of the DWT 

sub-bands, the accuracy improves and thus, provides better performance than the method 

described in [7]. When, the features are obtained from the five DWT sub-bands of the first 

two IMFs in EMD domain, the KNN classifier provides 91% accuracy. It should be noted 

that the methods in [5], [7] and [10] provides the classification utilizing only 50 signals 

from focal and non-focal EEG each without any segmenting into 2s recordings. However 

in this thesis, the classification performance has also been provided, in table 3.11, utilizing 

the whole database containing 3750 signals from focal and no-focal EEG each, which leads 

the performance to be significant in the statistical point of view. Besides, a smaller part of 

the database (20%) has been used as the training part whereas a larger portion (80%) has 

been utilized for testing, which makes the proposed method to be more generalized in 

comparison to the previous methods in [5] and [7]. However, while using the same data 

selection method as in [5] and [7], but having the segmentation of 2s records, the proposed 
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Table 3.11  Performance from our method using the whole database 

Methods Classifier-Method Features Accuracy (%) 

Proposed Method in 

EMD Domain 

KNN City-block 

Distance 

EMD, Log-energy 

Entropy 

85.7 

Proposed Method in 

DWT Domain 

KNN City-block 

Distance 

DWT, Log-energy 

Entropy 

87.2 

Proposed Method in 

EMD-DWT Domain 

KNN City-block 

Distance 

EMD-DWT, Log-

energy Entropy 

89.4 

 

method provides 90.5% accuracy with 91.3% sensitivity and 89.7% specificity if the 

segmentation is applied. The proposed method is also computationally quite fast. It takes 

on an average of 0.05 to 0.07 seconds to extract the features from a 2s data segment of focal 

or non-focal EEG records in MATLAB [49] using 2GB RAM in core-2-duo processor. The 

method could be faster if MATLAB could be run with multiple cores in parallel fashion. 

In fig. 3.6, the detailed flow chart of the algorithm is shown Some initial results of this 

analysis are described in [50], whereas the detailed results are published in [51]. 

                    

                Fig. 3.6  The flow chart of the proposed method to classify the EEG signals 
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Chapter 4 

Conclusion and Future Works 

4.1 Conclusion 

In this thesis, a statistical analysis of focal and non-focal EEG is carried out in the empirical 

mode decomposition (EMD) and discrete wavelet transform (DWT) domains. First, the 

EEG signals are analyzed in the EMD domain and its variants, EEMD and CEEMDAN 

domains. Several spectral entropy-based features such as the Shannon entropy, log-energy 

entropy and Renyi entropy are calculated in EMD, EEMD and CEEMDAN domains. 

Instead of using the direct signals from the EEG channels, the differences between two 

adjacent EEG channels are used due to its robustness to noise and interference. Next, 

similar analysis is carried out in discrete wavelet transform domains and the efficacy in 

discriminating the focal and non-focal EEG signals is investigated. The ability of the 

entropy-based features in separating the focal and non-focal EEG signals is explored 

utilizing the one-way ANOVA analysis and the box-whisker plots. After that, being 

motivated by the previous analysis, the signals are decomposed into a hybrid domain, where 

the DWT sub-bands are extracted from the IMFs of EMD domain, and the spectral entropy-

based features are calculated in the EMD-DWT domain. Finally, well-known classifiers 

like support vector machine (SVM) and k-nearest neighbor (KNN) have been utilized to 

classify focal and non-focal EEG signals using appropriate features. It is observed that the 

entropy-based features perform better in DWT domain to classify the EEG signals than in 

EMD domain. In this regard, EEG signals have been investigated to observe the capability 

of the same features to discriminate the EEG data in the combined EMD-DWT domain. In 

short, the major observations of this thesis are: 

(i)   The spectral entropy-based features like Shannon entropy, log-energy entropy and 

Renyi entropy has the capability to discriminate between focal and non-focal EEG 

signals. 

(ii) The features can differentiate the EEG signals more in EMD or DWT domain 

than in the band-limited case.  
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(iii) The discrimination capability of these features are quite similar in EMD domain 

or in its variants like EEMD or CEEMDAN domains, but in EMD domain, it takes 

less time to extract the features. 

(iv) The features also perform quite well in the discrete wavelet transform (DWT) 

domain. 

(v) The best performance is achieved when the signals are analyzed in a hybrid 

domain like EMD-DWT domain. 

(vi) Log-energy entropy provides highest accuracy for classifying focal and non-focal 

EEG signals when incorporated in KNN classifier. 

Overall, the proposed classification method reports a significant improvement in terms of 

sensitivity, specificity and accuracy in comparison to the existing techniques. This analysis 

may encourage the researchers to develop improved algorithms classify these signals 

Furthermore, for being computationally fast, the proposed method has the potential for 

identifying the epileptogenic zones, which is an important step prior to resective surgery 

usually performed on patients with low responsiveness to anti-epileptic medications. 

4.2 Future Works 

Although, the proposed method performs quite well in comparison to the available methods 

for focal and non-focal EEG data classification, but there are still some scopes to extend 

this work. For example, instead of DWT, wavelet packet or dual-tree complex wavelet 

transform (DT-CWT) can be explored whether that can perform better or not. Besides, 

EEMD or CEEMDAN can be explored for a part of the hybrid domain. Furthermore, the 

method can be explored with a larger database which would provide more statistical 

significance of this method. 
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