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Abstract 

In reversible image steganographic schemes, an embedding algorithm implants the secret bits into a 

few high-frequency contents in its embedding space such that a de-embedding algorithm can extract 

the secret and reconstruct the original image. Most of these schemes increase the quantity of these 

embeddable contents through some pre-processing mechanisms like computing the transformed 

coefficients and measuring prediction errors by applying a prediction process. The prediction error 

based schemes are able to implant a higher number of bits, because the prediction errors are mostly 

distributed in zero or around the zero in the prediction error histogram. The embedding 

performance of these schemes depends on their ability to maximize the quantity of these high-

frequency embeddable errors. Towards improving the frequency of these embeddable errors, this 

thesis aims in its first stage to improve the prediction accuracy of the existing multi-block centre 

reference based predictor by more rationally weighing the pixels in the prediction rules. The thesis 

also improves the frequency of embeddable errors by applying multiple predictors and computing 

the optimal error for each pixel from these multiple prediction errors or from a set of hybrid errors 

generated by applying these errors in a set of linear equations. The thesis demonstrates a policy of 

repeatedly implanting secret bits in the embeddable errors. The proposed methods of generating 

embeddable content for each pixel and of controlling the generation of the embeddable contents 

according to the demand of the application have further enriched the arena of data hiding 

technology. The thesis also contributes in enhancing the embedding capacity by applying prediction 

methodologies in the image distortion based reversible processes. It strengthens the security of the 

implanted data by encapsulating the implemented security levels. All the proposed schemes have 

the potential to make significant contributions towards hiding the large volume of data as well as to 

demonstrate the superior performances over their competing ones. The contribution of this thesis 

will hasten the arrival of new digital communication era in securing the transmission of copyrights, 

evidence, investigation reports, scientific results and political documents in the area of medical, 

forensic, law-enforcing agencies and military use. 
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  1  

Chapter 1 

Introduction  

The researchers are incessantly devoting their efforts to demolish the goals of the intruders as 

an adversary; however, the hackers and predators are continuously seeking alternate ways to 

break the security by diverse mechanisms. In the recent years, a lot of divergence events 

including the e-mail hacking from Hillary Clinton, a candidate for the US president in 2016 

election [87], stealing 50 terabytes of classified NSA data [15], hacking the secret electronic 

command and passwords, e.g., stealing about 81 million US dollar from the reserved of 

Bangladesh bank [30], have occurred. In spite of such menaces, the volume of secret 

information transmitted over the Internet is growing quickly [101, 102]. With the rising rate of 

the secret data communication over the public network, the threats to the communicating hush-

hush information are also increasing hastily. Consequently, the importance of information 

security is escalating necessarily. 

The methodologies of securing the information work by considering some security goals 

where the taxonomy of security goals includes confidentiality, integrity and availability [18] of 

data. The confidentiality refers to the matter of protecting data from being disclosed to any 

unauthorized device or person. The data integrity provides a Boolean information about 

whether the data is modified from any unauthorized access or not. The last taxonomy, i.e., the 

availability, is used to make sure the accessibility of data to a user on the basis of demands. 

The first two taxonomies are useless if the availability of data cannot be ensured. Besides, 

information does not come into use if it is not available for the access.  

To meet these security goals, several methodologies, e.g., encryption, data fusion and data 

embedment, are adopted in the area of data security. A very common strategy of securing the 

information during the communication is to encrypt the data. The encryption process uses a 

secret key and applies a reversible algorithm, which is built by a one-way function, on the 

secret message owing to completely destroy the meaning of the secrets [18, 47]. The altered 

message is known as the ciphertext. The receiver decrypts the secrets from that ciphertext 

applying a secret key and an inverse encrypted function. The encryption process is a famous 
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method for securing data while transmitting the information over the Internet and storing data 

to a standalone device. The unauthorized deciphering is quite hard when the key and the 

algorithm are unknown, however, it is possible in many contexts when the portion of the key, 

the part of the text and/or their patterns are known to the attacker [18]. In such cases, the 

success rate of deciphering depends on the length of the secret key, the number of attempts that 

are made to break the encryption, the computing performance of the device and the guessing 

accuracy of the secret pattern. The average number of tries to break an encryption method 

usually rises as the length of the key grows. Nevertheless, still, the process of encrypting data 

by a long key cannot assure data security as the current computers with high computing 

performance are often used in cracking the data security methods. Therefore, alternative 

security mechanisms, like data fusion, watermarks and steganography, are getting attractions 

of the developers and the researchers during the implementation of the security features. 

The data fusion process combines the different source generated information [10, 103]. 

The types of information may vary depending on the nature of the sources. The fusion node 

measures the correlation and the association between the data and estimates the prediction 

states for the integration purpose, and thus, the meaning of the original data is destroyed. 

Nevertheless, if the data is generated from a single source or if the data is of a single type, 

application of the data fusion process is not necessary. Besides, the fusion process increases 

the overhead information, which is required for defusing the individual data at the receiver 

end. 

Data embedment is a popular method for providing data security. It implants data bits into 

a carrier and then transmits that carrier to a destination. The destination end retrieves the 

message from the carrier. The data embedment processes are of two types - watermarks and 

steganography. In both of these two embedment processes, the sender side uses a cover media 

as a carrier to implant the secret message into it. Before embedding the secret message into the 

media, the embedding scheme converts the message into bitstream [31, 32] or symbols [76]. 

An embedding algorithm, also known as the encoder or the data hider, implants either a single 

bit, a group of bits or a symbol of the message into a content or a group of contents [7, 8, 11]. 

This data implantation process modifies the cover media. The modified cover media are 

addressed as the stego media. The stego media is transmitted over the Internet to a destination. 

The receiver end de-embeds the data to extract the message from the stego media. The de-

embedding algorithm is known as the decoder or the data extractor. The data embedment and 

de-embedment processes are depicted in Figure 1.1, where the vertical long line separates the 
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processes, i.e., operational blocks on the sender side from those on the receiving side. In the 

sender side, the embedding algorithm takes the secret message stream, implants it into the 

cover media using the secret key and the sender sends the conceived media, i.e., the stego 

media, to the receiver end. In the receiver end, a de-embedding algorithm extracts implanted 

message from the stego media using the secret key. Depending on the applied embedding and 

de-embedding algorithms, the scheme may reconstruct the cover media from the stego media. 

 

 

 

Though, both the watermarks and the steganographic processes hide the message bits into 

a carrier, the aims of these two are different. The main purpose of the watermarking is to make 

sure the data integrity and identity authentication [9, 77, 92]. Hence, the watermarking policy 

may allow the implanted watermarks to be visible to others [100]. On the contrary, the 

steganographic schemes hide the message bits into the contents of the carrier in a way that the 

third-party cannot guess the matter of existing the secret information inside into the media. 

Thus, these schemes manage the confidentiality of the secrets. As a result, the steganographic 

schemes are becoming bewitching methods in the field of data hiding. 

The distinguishing media used in the field of steganography are text [24, 65, 74, 108], 

audio [27, 66, 86], video [58, 109], network protocol [68, 104] and image [31, 32, 33]. Each of 

Sender Receiver 
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(a)                   (b) 
 

Figure 1.1: Block diagram of data hiding and data extracting processes: (a) data embedment 
process; and (b) data de-embedment process 
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the media differs from one another by their properties of having redundant information, data 

processing complexity and volume of data, i.e., the size of the media. The data redundancy in 

the media states the recurring of information in the media contents. The more the media hold 

redundant information, the more the media conceive message bits. The rate of redundancy also 

affects the distortion rate. The distortion rate decreases in the stego image when the amount of 

redundancy increases. Media of different formats exhibit dissimilar processing complexities in 

reading and writing data from/into these. That processing complexity affects the total 

processing speed of the data embedment process and the volume of the media impinges on the 

communication channels. Hence, choosing the proper media during the data embedment is an 

important issue. 

The text holds a very limited number of redundant information and hence, cannot 

conceive large volume of information to meet the demand of bigger payload. Both the audio 

and the video contain lots of redundant information; however, these are managed by some 

complex algorithms and are large to be communicated over the Internet in a frequent way. The 

data embedment process at the header of network protocol increases network congestions. The 

image is the only one that, at a time, serves a set of benefits during the data embedment 

process. It holds much redundant information, which is the boosting property of achieving 

higher embedding payload and better image quality. The size of the image is also significant 

for embedding much information. It is enough suitable for communicating over the Internet. 

The images are, indeed, communicated casually and in a frequent mode over the public 

networks. The image as a cover media can mislead the target of the attackers to look for secret 

data inside it because this hides the matter of existing of the embedded data and the changes in 

the stego image is not detectable visually and even in many cases statistically. It is, therefore, 

found in the literature as the most famous carrier in the field of steganography. 

Figure 1.1 highlights the process of image steganography if the word 'media' is replaced 

by the word 'image'. In the scheme of image steganography, the cover image is, sometimes, 

processed first before starting the data implantation task depending on the applied algorithm 

[36, 64]. The message is then embedded into the processed image. The encoder embeds a 

chunk of the message at each execution step. The chunk of the message consists of a bit [51, 

52, 53], a group of bits [71], a numerical digit or a symbol [22, 48]. Therefore, the message is 

first converted into a bit stream, digits or symbols according to the demand of the applied 

algorithm. Each message chunk is then concealed by modifying a single content or a group of 

contents in an embedding space, e.g., prediction errors and discrete cosine transform (DCT) 
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coefficients. The embedding space is constructed from image pixels. After implanting the 

message, the data hider sends the stego to the destination through a public communication 

channel. The receiver end carries out a reverse process to extract the hidden message from the 

stego image. 

Based on embedding space, image steganography is classified into five major groups: 

spatial domain, transformed domain, pixel difference domain, prediction error domain and 

compressed domain. In the spatial domain, message bits are directly embedded in the pixel 

values [106, 114]; while the transform domain undergoes a transformation of the pixel values 

to other formats, e.g., DCT coefficients [28], Fast Fourier transform (FFT) coefficients [82, 

96], wavelet transform coefficients [45, 85], etc. An embedding algorithm implants the 

message chunks into these coefficients. Thereafter, an inverse transformation is done to 

engender the stego image. In the pixel difference domain, the embedding scheme first 

measures a difference between each pixel value and one of its neighbors. Figure 1.2 depicts the 

process where Figure 1.2(a) represents an image block. In this block, the pixels with deep gray 

color and white color are explored by this time, i.e., these pixels have already been processed. 

The pixel with black color represents the working pixel and the pixels with deep gray color are 

treated as immediate neighbors of the working pixel. The pixels with light gray color are yet to 

be processed. The value of one of the immediate neighborhood pixels is subtracted from the 

value of the black pixel to measure the pixel difference, as shown in Figure 1.2 (b). After 

computing the differences in all the pixel values, data are embedded in these different values 

[70, 83]. In the prediction error domain, one or several predictors are applied to predict a pixel 

value. As an example, the black located pixel is predicted in Figure 1.2(c) by the weighted 

average of its three immediate neighbors. If several predictors are applied to estimate the value 

of a single pixel, one of these measured values is computed as an optimal prediction value. The 

prediction errors are computed by deducting each predicted value from its respective cover 

value. These errors are used as an embedding space. The message chunks are embedded into 

these errors by using a set of embedding rules. After the completion of the data embedment 

task, these modified errors are added to the corresponding predicted values to form the stego 

image. Another less likely used embedding space is the compressed domain where the image 

data is compressed by a compression technique like vector quantization [49, 60, 95] and 

truncation encoded compression method [7]. These compressed data are used to implant the 

secret message. 
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The basic steganographic performance parameters are embedding payloads, media 

distortions due to the data implantation and the embedding time [22, 72]. The embedding 

payload is measured as the total implanted bits into a medium. The number of implanted bits 

per media content is represented by the terminology of embedding capacity, which is also 

known as the embedding rate. During the data implantation, the encoder modifies the contents 

of the media. Consequently, the cover and the stego media become statistically dissimilar. This 

matter of dissimilarity is termed as the media distortions. Amount of distortions is measured in 

several ways, e.g., by peak signal to noise ratio (PSNR), structural similarity index (SSIM). 

The third parameter, i.e., the time complexity, is used to measure the required times to 

accomplish the data embedment process. These three parameters are individually or 

collectively applied for comparing the performance of a scheme with the competing ones. The 

values of these parameters are influenced both by the types of used media and the applied 

embedding process. 

 

 

 

 

 

 
                     (a) 

Figure 1.2:  A simple method of measuring pixel differences and prediction errors: (a) an image block; 
(b) measurement of pixel difference; and (c) computation of predictive value. 

Many schemes generate a histogram of the contents of the domain before implanting data, 

e.g., pixel histogram, DCT histogram, pixel difference histogram and error histogram. Several 

schemes compute the histogram for the image [98]; while many other schemes do the same 

individually for each image block [114]. During the computation of the histogram, the contents 

are arranged into the bins of the histogram on a scale of 0 to 255, -255 to 255 or to a user-

defined range. Each bin in the histogram represents the frequency of a content that is equal to 

that bin value. The message chunks are embedded into the contents by shifting each bin value 

in the histogram [31, 114]. The histogram bins are shifted either by unequal amounts [51] or 

by a fixed amount for the histogram of blocky pixels [42, 43, 71]. 

The steganographic methodologies are classified into irreversible and reversible processes 
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according to their ability in reconstructing the cover image from the stego one at their data 

extraction phase. The irreversible techniques only focus on extracting the implanted secrets 

from the stego image and do not care about the reconstruction of the cover image [8, 33, 34, 

48]; whereas the reversible schemes retrieve both the embedded data and the cover image from 

the stego one [31, 54, 58]. The irreversible schemes are inapplicable when both the extracted 

information and the cover contents are equally important at the data extractor end for further 

processing purposes. To manage the reversibility, the reversible schemes do not implant the 

message bits into all the contents of the embedding space; rather, these schemes conceal 

message bits into several highest frequency contents depending on the applied algorithm and 

demanded payloads [54, 113]. Many reversible schemes, additionally, implant supplementary 

information, e.g., the starting point of the data embedment, message length, size of image 

block and decoding related other secret keys/values, into a separate part of the cover image 

[21, 57, 94]. This supplementary information is known as the additional information/extra 

information/assistant information/side information/overhead information. The decoder first 

extracts this side information from the stego image for finding the decoding key information. 

The decoder, then, applies the side information to extract the secret message from the stego 

image and to reconstruct the cover image as well. The requirement of implanting these 

additional bits decreases the original message embedding capacity, known as the pure 

embedding capacity, and increases some degrees of processing complexity. Nevertheless, the 

side information increase both the security of the message and the robustness of the reversible 

schemes as one cannot retrieve and comprehend the secret information without realizing the 

meaning of these additional bits. Moreover, in many applications including medical [44, 56, 

79, 89] and forensic [3, 46] applications, preserving the evidences and copyrights [43], 

authenticating document [5, 25] and hologram [12], ensuring security and privacy in data 

communication [38], performing online payment [78], electronic voting [50, 80] and trust 

management [105], there is no alternative for using the reversible schemes because during 

such critical scientific analyses the matter of retrieving both the hidden message and the 

original cover media are equally important. The uses of reversible applications are, therefore, 

necessarily increasing. When the dashed line on the right side of Figure 1.1 is considered as an 

active connection to a must performing process, the figure represents an abstract of the 

reversible scheme. 

In the reversible data-hiding (RDH) arena, message bits are embedded either by shifting 

the histogram of the contents in the embedding space or by expanding each content 
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individually. The histogram manipulation based embedding processes are more famous 

compared with the schemes implanting bits directly into the contents of the embedding space 

because the content histogram provides statistics as well as a pictorial view of the content 

information. The statistics, inferred from the histogram, help the data hider to choose a cover 

image with rich embedding space, its embeddable contents and values of parameters that are 

used in the pre-processing stage. A very common strategy, that is used in the histogram 

manipulation based data embedment arena, is to implant bits into several most appeared 

contents. That implantation process modifies the values of the contents and thus, shifts them to 

other bins from their original bins in the histogram. To manage the movement of the contents 

during the data embedment process, these schemes select only contiguous valued contents as 

the embeddable contents. For this, the schemes first choose the contents of the peak presented 

bin from the histogram for implanting data bits. These schemes then select a sufficient number 

of embeddable contents from the immediate right and left positioned bins, regarding the peak 

one, in the histogram depending on the volume of data to be embedded. Therefore, sharper 

Laplacian-like distributions of the contents in the content histogram are obviously desired to 

meet a higher embedding capacity. The frequency of contents in n number of bins, n>0, varies 

in the histogram of the spatial values, transformed coefficients, pixel differences and 

prediction errors. To compare the scenario, histograms of these embedding spaces are drawn in 

Figure 1.3 by experimenting the well-known Lena image. The histogram, shown in Figure 1.3 

(a), indicates that the highest frequency pixels of the image are at apart places. The highest 

appeared one contains only 500 pixels. The other three figures, i.e., Figure 1.3 (b) -1.3 (d), 

represent Laplacian-like distributions of their contents. The highest frequency DCT 

coefficient, pixel difference, prediction error shown in Figure 1.3 (b), Figure 1.3 (c) and Figure 

1.3 (d) are 3200, 4000 and 8400, respectively. Thus, this is investigated in all the experimented 

images that the prediction error space provides the sharpest histogram. Therefore, the schemes, 

which implant bits into the prediction errors, present both higher embedding capacity and 

better stego image quality. Moreover, these schemes give stronger security of the embedded 

data because of their undisclosed parameters like applied predictor, the starting point of 

predictions in the image, the number of the associated pixels used in the prediction rules and 

the other parameters of the predictor own. 
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(c) (d) 

Figure 1.3: Comparison of histograms for different embedding spaces: (a) pixel value histogram; (b) 
DCT coefficient histogram; (c)  pixel difference histogram; and (d) prediction error histogram. 

In the prediction error based reversible data embedment processes, a predictor is 

employed to predict either a single pixel [31] or a block of pixels [32] by exploiting the 

features of spatial association among the neighboring pixels of the cover image. Predictors are, 

therefore, classified as the single pixel predictor and the block pixel predictor. Prediction 

accuracy depends on the correlations between the associated pixels and the predicting pixel. 

The size of the block also significantly affects the prediction values because when the 

associated pixel values in the prediction rules come from multiple blocks, the smaller sized 

blocks allow the predictor to predict more accurately. These associated pixels have remained 

unchanged during the data hiding process such that the receiving end can unambiguously 

predict the same values. The prediction process generates the prediction errors by subtracting 

the predicted values from their corresponding cover pixel values. In the recent literature, uses 

of multiple predictors are observed for the improvement of the prediction accuracy [63]. In that 

case, all the predictors separately predict each pixel value. After analyzing all the predicted 

values, an optimal one is chosen from these predicted values for each predicting pixel to 

improve the prediction accuracy. Likewise the single predictor, the prediction errors are 

measured by subtracting these optimal values from the corresponding pixel values. 

The embedding processes are broadly classified into the single layer and multilayer data 
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embedment processes depending on whether they embed data bits into two [32] or more [31, 

113] highest frequency errors. These high-frequency errors, to which data bits are implanted, 

are termed as the embeddable errors. An amount of the changes in the value of each 

embeddable error depends on the implanted message bit, e.g., modification amount is one unit 

for the implanted bit '1' and zero unit for the implanted bit '0' [32, 51]. The other errors, known 

as the non-embeddable errors, are certainly shifted by one unit to make sure that the non-

embeddable errors will not contain the same value of modified embeddable errors. This 

analysis infers that the embedding capacity increases and the total image distortion decrease if 

the number of embeddable errors increases. The multi-layer embedding schemes [31,113], on 

the other hand, implant data bits into more than two highest appeared errors. These schemes 

embed bits into the errors of layer L in the error histogram where the embeddable errors are {-

L, ..., -1, 0, 1, ..., L}, i.e., 2L+1 different valued errors. The uses of 2L+1 errors increase the 

embedding capacity but destroy the stego image quality notably. The importance of the multi-

layer embedding schemes is notable when the requirement of the embedding capacity is 

higher, which is not achievable by using a single layer scheme. Likewise, the single layer data 

embedment process, both the embedding capacity and the stego image quality are improved, if 

the number of the embeddable error increases in the multi-layer schemes. Consequently, most 

schemes try to improve the embedding performance by enhancing the prediction accuracy [11, 

31, 51, 63, 88]. The endeavor of improving the prediction accuracy and the attempts to 

enhance the frequencies of the embeddable errors are not the same. None of the schemes yet 

focuses directly to enhance the frequencies of the embeddable errors. Again, in the prediction 

error space, embedding capacity that is achievable by employing errors of L+1 layers is 

nominally higher than the one of the errors of layers L when the value of L is large because 

most of the prediction errors are distributed in and around the 0 valued error in the prediction 

error histogram. As a result, embedding into a smaller set of errors for several times, e.g., into 

the errors of layers L/t for t times, will increase the embedding capacity as well as the image 

quality rather than embedding into the errors of layer L for a single time. 

Though most of the reversible data embedding schemes try to lower the image distortions 

[13, 55], in the recent literature, several schemes are found where distortion of cover image 

quality is made intentionally [52, 110]. Both the approaches have different applications in the 

field of the data embedment arena. In very usual cases, the embedding schemes try to reduce 

the image distortions in the stego image owing to keep the originality of the cover image used. 

The objective of such attempt is to avoid the attraction of the intruders to the transmitted stego 
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image by influencing them to believe that the image is not modified in any way. In many 

applications in the field of forensic, medical, military, satellite and industry control units, the 

carrier of the message is treated as another secret of the system. For the secrecy of the cover 

image, these applications damage the cover information in the stego image so that any third 

party cannot realize the cover values from the transmitted image. At the receiver end, the 

original cover image is reconstructed by a reversible mechanism. The destruction of the cover 

image is performed by two ways - (i) the quality of the image is destroyed first by a policy 

(e.g., encrypting the image) and the data are embedded into that destroyed contents [110]; and 

(ii) the embedding rules destroy the image quality during the data implantation process [71]. 

As all the cover information are destroyed in the stego image, the embedding process is 

allowed to change any number of bits of each image pixel to their binary values. If the scheme 

allows for changing all the bits of pixels, the embedding capacity is achievable up to 8 bits per 

pixel (bpp). Nevertheless, none of these existing schemes are able to give an embedding 

capacity of 8bpp due to the necessity of managing the reversibility. 

The objective of this thesis is to contribute to the processes of enhancing the embedding 

capacity and the stego image quality. Focusing these objectives, the thesis, thus, emphasizes 

the following major aims: 

i) To improve the prediction accuracy, so that the frequency of the embeddable errors is 

increased. 

ii) To apply multi-times, say t times, data embedment into the errors of layer L/t, for L>0, 

for satisfying larger embedding capacity than embedding into the errors of layer L for 

a single time in the traditional multi-layer schemes. 

iii) To generate embeddable codes for all the pixels or to produce only a sufficient number 

of embeddable codes through applying two pattern matching operators, namely, the 

local binary pattern (LBP) and the local ternary pattern (LTP). 

iv) To enhance the embedding capacity of the distortion based embedding schemes by 

implanting bits into each bit of the binaries of the pixel values. 

v) To improve the data security by encrypting the image before and after the data 

embedment as well as implanting a variable number of bits in the pixel values. 

vi) To increase the embedding capacity of histogram association and mapping (HAM) 

based schemes by implementing the HAM policy using prediction error histogram 

rather than the traditional pixel value histogram. 
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To achieve the aforementioned aims, this thesis has reviewed a good number of latest 

articles on the reversible data-hiding arena. The thesis has criticized several reviewed articles 

and proposed their solutions as well as introduced several new methodologies for improving 

the embedding capacity and the stego image quality. The author of this thesis has first 

developed mathematical models for all the proposals. These models are then implemented in 

the MATLAB for the justification of novelty. The major novel contributions of this thesis are 

listed in the following. 

i) The limitation of several schemes for the requirement of partitioning the cover image 

into 3x3 pixel blocks [32] has been solved through generalizing the block size to d × 

d, for d ≥ 3, and proposing the methodologies of predicting pixels for such block size. 

ii) The quantity of the embeddable errors is increased through proposing several 

techniques in this thesis: (a) the prediction accuracy of the reference pixel based 

predictor [32] is improved by weighting the associated pixels in the prediction rules 

with their Euclidean distance value from the predicting one; (b) the biases affairs of 

the predicting pixels toward their block centre, i.e., central tendency of the block 

pixels, during the prediction of a pixel is analyzed in this thesis and a block centre 

biasing tendency parameter is incorporated in the prediction rules to further improve 

the prediction accuracy; (c) multiple predictors are applied in predicting each pixel to 

improve the number of the embeddable errors of -1 and 0; (d) incorporation of LBP 

codes to generate embeddable codes for all the image pixels is for the first time; and 

(e) an LTP based method is proposed to generate just the required number of 

embeddable codes by analyzing all the image pixels and the embedding rules are 

designed to improve the image quality by retaining the non-embeddable codes as 

unchanged. 

iii) It is explained that the frequency of a smaller valued prediction error is higher than the 

larger valued prediction error. Based on this concept, the embedding capacity and the 

image quality are enhanced through deploying embedding rules into a fewer number of 

the highest frequency errors for multiple times rather than implanting into a large set 

of errors for a single time. 

iv) Findings in the reviewed HAM based schemes state that the amount of image 

distortion and the number of embedded bits depend on the range value of the block 

pixels. Prediction error histogram based two new HAM schemes are proposed and 
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implemented in this thesis to meet higher embedding capacity. 

The remaining chapters of this thesis are organized as follows: 

In Chapter 2, a brief review of the different techniques used in predicting single pixel by 

applying both a single predictor and multiple predictors, the means of estimating block pixels, 

the common methods of implanting bits in a single layer and multi-layer data embedment 

processes, the way of translating blocks in HAM based schemes as well as the procedures of  

embedding into encrypted image are outlined. The methods of measuring the image quality 

and testing the security of implanted data are also epitomized. 

Chapter 2 is devoted to a brief description of the techniques, which are used to improve 

the embedding capacity and the stego image quality in state-of-the-art technologies. As the 

thesis puts emphasis on improving the embedding capacity through implanting secret bits into 

prediction errors, a good number of prediction error based embedded schemes are concisely 

presented in this chapter. The predictors of different schemes are presented thereby 

categorizing them in some classes. The embedding rules and data extraction processes are 

outlined as a template for the reviewed schemes. Though most schemes try to manage better 

stego image quality, some of the recent schemes destroy the stego image quality intentionally 

for ensuring the security of cover contents. As the thesis has also contributed to this distortion 

based embedding area, several image distortions based schemes are also narrated in this 

chapter. The image quality measurement policies and the steganalysis that are commonly used 

in different schemes in the literature are also described in two separate sections of this chapter. 

Chapter 3 explains a proposed work that improves the prediction accuracy while 

predicting the pixels of a block. The scheme improves the methodology of Hong and Chen's 

predictor [32] by applying more rational weights to the context pixels in the prediction rules. 

The improvement in the prediction accuracy aids the scheme in yielding better embedding 

capacity and stego image quality. The scheme further proposes a single layer, multi-cycle 

process for embedding into the same valued errors for multiple times. This multi-cycle 

embedment process boosts up the embedding capacity remarkably. The first part of this work 

has been published in IEEE International Conference on Advanced Networks and 

Telecommunication Systems (ANTS) 2015 [40]. 

In Chapter 4, multiple predictors are employed to generate optimal prediction errors with 

the aim of enhancing the frequencies of two embeddable errors. The chapter discusses the 

methodology of applying multiple predictors for each pixel and the process of computing 
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optimal error from these multiple prediction errors. These optimal errors are used for data 

embedment. The generated optimal errors present very rich embedding space. The proposed 

work has been published in the Elsevier Journal of Information Security and Applications, 

2016 [41]. 

Chapter 5 presents another proposed embedding scheme which extends the traditional 

multi-layer embedding process. Usually, multi-layer embedding schemes implant message bits 

into several highest frequency errors for a single time. The proposed scheme enhances the 

embedding capacity notably by embedding bits for multiple times into the errors of a very 

small layer, i.e., into a few errors.  This novel work has been published in Elsevier Journal of 

Visual Communication and Image Representation, 2016 [39]. 

In Chapter 6, local ternary pattern (LTP) matching operator is employed to satisfy smaller 

embedding capacity. The proposed LTP based scheme is capable of controlling the generation 

of embeddable codes such that these are enough to accept the demanded message bits. The 

proposed embedding rules allow all the non-embeddable errors to remain unchanged. 

Consequently, the scheme presents a very high image quality. To satisfy large embedding 

capacity, the scheme applies local binary pattern (LBP) operator to generate LBP code for each 

pixel where each LBP code is embeddable. The generated LBP codes allow all the image 

pixels to accept the message bit equally. The achieved image quality with the uses of LTP and 

the embedding capacity for LBP are remarkably higher than all of its competing schemes. The 

article related to this chapter has been published in MDPI Journal of Electronics, 2016 [43]. 

Chapter 7 explains the image distortion based reversible embedding scheme. The scheme 

applies a predictor in image pixels to improve the embedding capacity of Ong et al.'s scheme 

[71] by translating pixel values of each block by exploiting the properties of error values and 

message chunk. The traditional histogram association and mapping scheme [71] translates 

block pixels of an image by utilizing the properties of the block pixel histogram. The number 

of implanted bits for such a traditional scheme depends on the range of the block pixel values. 

The proposed scheme implements the HAM scheme using prediction error histogram with the 

aim of achieving higher embedding capacity because this is expected that the range of 

absolute-valued prediction errors is smaller than the range of pixel values in a block. The 

findings of this chapter have been published in Proceedings of International Conference on 

Networks Systems and Security (NSysS), 2016 [42] and Journal of Computer Science, 2016 

[29]. 
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Chapter 8 discusses another proposed novel scheme in the area of destroying image 

quality before the start of data embedment. The scheme enhances the embedding capacity 

notably. The scheme establishes seven levels security features for the implanted data in a 

hierarchical manner. 

Chapter 9 presents an analysis and a comparison of the proposed works of this thesis. The 

comparisons are performed on the values of embedding capacity and image quality. 

Finally, in Chapter 10, some concluding remarks are drawn with reference to possible 

future directions of this research work. 
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Chapter 2 

Literature Review 

Data hiding schemes conceal the secret information into a medium. Among the data hiding 

policies, image steganography is a widely used one that hides the secrets into an image. The 

primary objective of image steganographic schemes is to increase the data embedment rate to 

satisfy the demand of ever-growing hiding data amount. Another objective of the image 

steganographic processes is to focus on increasing the security of the implanted data while 

managing the image quality and reducing the processing time. Researchers are continuously 

trying to improve the embedding capacity, i.e., increasing the number of conceivable contents 

by pre-processing the contents of the embedding space. Some schemes calculate pixel value 

histogram for embedding secret information into the most frequent pixels, while some others 

predict pixels and embed data into the most frequent predicted errors. The data security can be 

achieved by applying some security features at their pre-processing, post-processing or 

implantation phase.  The matter of time complexity is not always a momentous issue, 

especially when small size of data is implanted in a single image and/or the data hider works in 

offline. Taking all the above-stated issues into account, this chapter provides a comprehensive 

review of various methods to explain the mechanism of predicting pixels on the ground of 

improving the embedding capacity, implanting the bits, destroying the image quality 

intentionally and measuring the level of image distortions. 

2.1 Introduction 

A common strategy of implanting data is to manipulate the histogram of spatial contents or the 

processed contents like prediction errors. In this strategy, the schemes conceal information into 

the contents of a single layer (SL) or multi-layers (ML) in the histogram. The SL data 

embedment schemes are employed when the embeddable data size is small. On the contrary, 

ML schemes implant large volume of data into an image. Both the methodologies modify the 

contents of the embedding space; however, the SL schemes exhibit better image quality after 
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the concealment. These processes do not raze the image quality deliberately; rather, their 

intention is to minimize the distortion rate in the stego image. Some recent schemes, on the 

other hand, intentionally destroy the cover image information before or during the data 

embedment process. These intentional distortion based schemes are employed when the cover 

image itself is secret. 

A very common embedding space for quality preservation based SL and ML schemes is 

prediction errors. Prediction errors provide rich embedding space and the schemes find more 

embeddable elements in the error space for implanting information. Prediction accuracy in 

such a case plays a vital role in enhancing the frequency of embeddable errors. The number of 

embeddable errors increases with the advancement in the prediction accuracy. The prediction 

accuracy, however, varies for applying prediction techniques. Selection of an appropriate 

predictor, thus, is very important. The prediction accuracy again affects the distortion rate in 

the stego image because the level of distortions decreases for the improved quantity of 

embeddable errors [31, 32, 51, 72]. This distortion amount is analyzed by several 

methodologies, including mean-square-error (MSE), peak signal to noise ratio (PSNR), 

universal image quality index (UIQI), structural similarity index matrix (SSIM) [19, 99]. These 

terminologies of MSE, PSNR, UIQI and SSIM are defined in the following section 2.6. 

The target of this thesis is to get better embedding capacity through improving the 

prediction accuracy either by exploring a better predictor or by employing the better prediction 

policy if the process does not use any predictor. An overview of the predictors used in various 

literature is presented in section 2.2. Section 2.3 of this chapter outlines the rules of implanting 

bits into the errors by the encoder and the processes of extracting message bits by the decoder. 

The schemes presented in this section concentrate more on enriching the error quantity of 

embeddable errors rather than modifying the embedment rules. Mechanisms of obtaining a 

distorted stego image, by employing intentional distortion-based schemes, are described in 

section 2.4. Reviews of non-predictive steganography schemes and the policies of measuring 

the level of distortions in the stego image with respect to the cover image are described in 

section 2.5 and section 2.6, respectively. Many security tools are used for testing the resistance 

of the schemes against attacks on the implanted data. These security tools are reviewed in 

section 2.7. Finally, a summary and some concluding remarks are presented in section 2.8. 
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2.2 Overview of Different Predictors 

The predictors used in the steganographic schemes predict either a single pixel or a block of 

pixels as a group. In both the cases, the reviewed predictors are classified into several 

categories based on their uses of gradients, number of used predictors, the reference value(s) 

(e.g., block center, immediate neighbors and block median). A brief description of the different 

categories of predictors is presented in the sub-sections 2.2.1 through 2.2.3. 

2.2.1 Gradient-Based Predictors 

Gradient means changes of intensity of a pixel value in a specific direction, e.g., in the 

horizontal, vertical and diagonal. Say, the pixels of an image I  of size h w  are read as ,i jI , 

for 1 i h   and 1 j w  . The horizontal, vertical and diagonal gradients between two 

neighbor pixels are measured by , , 1i j i jI I  , , 1,i j i jI I   and , 1, 1i j i jI I    respectively. These 

gradient values are commonly used in weighted average prediction schemes or in edge 

detection based prediction schemes.  

2.2.1.1 Weighted Average Predictors 

A very traditional prediction policy is to predict the pixel values by averaging the grayscale 

values of the neighboring ones. Sachnev et al. in 2009 [81] predicted each pixel value by 

averaging four of its neighbor pixel values in the rhombus shape, i.e., by ,i j D
D

P I , where 

{ op, right, bottom, left}D t . In this prediction process, a single pixel among these four with 

high variant texture value can affect the predictor to estimate wrongly. This scheme also does 

not consider the directional effect of the changes in intensity. Ou et al. in 2013 [71] improved 

the predictor by proposing a mechanism for repeatedly updating the prediction accuracy. This 

predictor starts to estimate the pixel value from the average of its four neighbors in the 

rhombus shape, i.e., from 0
, ,i j i jP P  where ,i jP  is the Sachnev's predicted value. In each of next 

repetitions, it computes the amount of improvement of the prediction accuracy, say t , at 

iteration number t, by taking a weighted average of four neighbor pixels’ gradients, and 

updates the predicted values by using an equation, 1
, ,
t t t

i j i jP P    .  
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Wang et al. in 2014 [94] divided the image pixels into two groups 'O' and 'X' in a 

chessboard fashion for the prediction purpose. First, it predicts the values of 'O' pixels by 

averaging the values of the four neighboring pixels. These four pixels come from  'X' pixels. 

The scheme embeds message bits into the prediction errors. Similarly, it predicts the pixels of 

'X' from the stego pixels of 'O' and embeds remaining data bits into these newly computed 

prediction errors. 

2.2.1.2 Edge Detection Based Predictors 

Edge detection based predictors first detect vertical, horizontal or diagonal edge that passes 

through the pixel. The predictors then compute the predicted values of each pixel by taking a 

weighted average of all neighbor pixels where values for weights are allotted based on 

detected edge. Yang et al. in 2013 [107] presented an edge detection based estimation 

technique by employing Sobel and Interpolation (SI) filtering mask into each sub-image of size 

n n . They improved the interpolation based prediction policy proposed by Luo et al. [62] 

and neighbors averaging scheme proposed by Sachnev et al. [81] by applying a weighted 

average of four rhombus pixels where weight distribution was governed by the detected edge. 

This scheme first measures both the horizontal and the vertical gradient responses by applying 

respectively a horizontal and a vertical SI filtering mask into a sub-image. A bigger value for 

the vertical gradient response means that a horizontal edge passes through the working pixel. 

Then the value of weights for two immediate horizontal pixels in the rhombus shape are 

allotted for more than the two vertical neighbors. The vice versa is true for the bigger value of 

the horizontal gradient response. After assigning the weights of 1,i jw  , , 1i jw  , 1,i jw   and , 1i jw   

respectively for 1,i jI  , , 1i jI  , 1,i jI   and , 1i jI   from the analyses of vertical and horizontal 

gradient responses, the pixel ,Ii j  is predicted by Eq. (2.1). 

 1, 1, , 1 , 1 1, 1, , 1 , 1
,

1, , 1 1, , 1

i j i j i j i j i j i j i j i j
i j

i j i j i j i j

w I w I w I w I
P

w w w w
       

   

  


  
 (2.1) 

Due to performing the convolution between the SI mask and the sub-image of the same size, 

this scheme has the higher time complexity, which is augmented for the bigger sized mask. 

This also ignores the diagonal gradient response during its estimation task. Pixels in the 

/ 2n    rows of each upmost and bottom of the image and / 2n    columns of each leftmost 
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and rightmost are not predicted for a mask size of n n , where .    stands for the 

mathematical floor in this thesis.  

Hong W. [31] in 2012 introduced a median edge detector based estimation technique to 

improve the Tai et al.'s scheme [83] of predicting a pixel by the value of the previously 

processed pixel. This scheme uses immediate top, left and top-left pixels to estimate a pixel. 

Considering the top-left one as an edge pixel, the working pixel is predicted either from one of 

the other two or by subtracting the corner one from the sum of the other two. This prediction 

process being biased by a single corner pixel has reduced the prediction accuracy. The number 

of concern pixels is fixed to three immediate neighbor pixels in this scheme. 

2.2.2 Multi-Predictors  

Multi predictors based schemes employ multiple predictors either to improve the prediction 

accuracy or to embed for multiple times. Chen X. et al. in 2013 [11] used asymmetric 

predictors in their scheme, where prediction errors do not obey any symmetric distribution. 

The quantity of the smaller valued errors is notably unequal to the quantity of the higher 

valued errors. An asymmetric selection function chooses the prediction errors of the best 

asymmetric predictor. The authors also implemented a complementary embedding strategy 

using dual prediction errors for improving the embedding capacity. Two asymmetric predictors 

used in this scheme are chosen in such a way that if one gathers more errors on the right side 

of the peaked one in the prediction error histogram (PEH), the other one distributes more 

errors to the left side of it, e.g., the predictors min and max predict the minimum and the 

maximum values from the three immediate neighbors of the predicting pixel. This scheme first 

implants message bits into the highest frequency errors by shifting the PEH of the min 

predictor in a direction. The second predictor, say max, is then applied to that stego image to 

generate new prediction errors. At the second phase of the data embedment, this scheme 

implants into the most appeared errors after performing the modification of errors in the PEH 

in the opposite direction of the first attempt. This process works as if two separate machines 

apply the two predictors independently, i.e., a double-time data embedment into the same 

image. The asymmetric predictors are not always good predictors for obtaining better 

accuracy. 

Another use of the multi-predictor is observed in the scheme of Ma et al. in 2015 [63], 

where multiple predictors separately predict each pixel. The optimal prediction value is 

generated by verifying the following situations-  
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i) Type I: If all the predicted values are equal, this value is regarded as an optimal 

predicted value. 

ii) Type II: Else if all the predicted values are greater than the predicting pixel, the 

smallest predicted value is taken as an optimal prediction value. 

iii) Type III: Else if all the predicted values are smaller than the predicting pixel, the 

greater value of the predictions is considered as an optimal predicted value. 

iv) Type IV: when some predicted values are greater than and some are smaller than 

the predicting pixel, this pixel is deemed as non-embeddable and the prediction 

process skips that pixel without generating any error. 

Our investigation reveals that Type IV pixels are about one-third of the total image pixels 

and this portion increases as the increase in the number of applied predictors. The empirical 

results presented in [63] for five predictors also justify the same scenario. Hence, doing so, this 

scheme skips lots of potential pixels in Type IV by marking them non-embeddable even when 

it is equal to one of the predicted values. 

2.2.3 Reference Value Based Predictors 

Reference value based predictors consider a value in the image as a predictive value for the 

others or computes the predicted value from a set of reference values. This process is used to 

predict either a single pixel or a block of pixels. 

2.2.3.1 Block Center Reference Predictors 

In the block center reference predictor, an image is first divided into blocks of size n n  each. 

The center of the block is considered as the reference value and termed as the basic pixel. 

While working on a block, the other four blocks, which are situated in the immediate top, 

right, bottom and left, are addressed as its neighbor blocks. Regarding a working block, the 

basic pixels of these four neighbor blocks are called satellite pixels.  

Tsai et al. in 2009 [88] considered the basic pixel as a predicted value for the other pixels in 

the block. The error residues were computed by subtracting the value of the basic pixel from 

all the other pixels. These residues were used to conceal data bits. The basic pixel was 

remained unchanged and did not conceive any message bit. For bigger sized blocks, especially 

in texture and gradual contrast images, the accuracy of this predictor is poor.  
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In 2010, Hong and Chen [32] improved the prediction accuracy by associating four satellite 

pixels and a basic pixel of the working block in the prediction rules. A set of limitations is 

investigated in this prediction policy. The scheme fixes the block size to 3x3.  The scheme also 

avoids the border pixels and all the basic pixels during the bit implantation process and hence 

keeps them unchanged. While predicting each corner pixel of the block, the scheme computes 

the average of the basic pixel and two nearest satellite pixels, i.e., puts equal emphasis on all 

these three pixels, although the pixel to be predicted is closer to the basic one. This irrational 

weighted averaging policy decreases the prediction accuracy. Lu and Huang in 2014 [59] 

proposed a scheme, where the basic pixels of all the blocks are also used for the data 

embedment. After applying the [32]'s data embedment task, they collected the unchanged basic 

pixels and generated another image plane upon the original one. The whole prediction and 

embedment processes are then applied to that upper plane to embed more data. The stego 

pixels in the upper plane are again distributed to their actual places in the original plane. By 

repeating the process of generating an upper plane from the basic pixels of the immediate 

lower plane, they generated a pyramidal structure. This scheme presents an improved 

embedding capacity. Nevertheless, this process increases the time complexity by repeatedly 

constructing upper levels and distributing the stego pixels of the upper level to the 

corresponding places in the original plane. 

2.2.3.2 Neighbor Pixel Reference Predictors 

Tai et al. in 2009 [83] used immediately processed neighbor pixel as a predicted value. The 

scheme used the first pixel, i.e., the pixel at left-top corner of the image, as a reference value 

and did not change that value. The difference of this first pixel with the second one was 

computed. The prediction error of the third pixel is computed by considering the second pixel 

as a reference value and similarly, the prediction errors for all the pixels were computed. These 

errors were then used to implant bits. The accuracy of this predictor is very poor as it predicts 

an error from only a single directional neighbor. 

2.2.3.3 Block Median Reference Predictors 

In the block median reference predictor based processes, the block pixels are sorted first. The 

value of the median pixel, of these sorted pixels, is deemed as a reference value for the other 

pixels of the block. If multiple pixels are of the median-valued, the first accessed one is 

considered as a reference median value. Leung et al. in 2013 [51] computed the differences of 
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the blocky pixels with its block median value. These differences were used for both in the SL 

and in the ML data embedment processes. Though this scheme increases the prediction 

accuracy, the performance of this predictor in the bigger sized block is low.  

2.2.3.4 Combined Disjoint Predictors 

Some of the prediction policies combine the results of two predictors. These predictors work in 

a disjointed manner. One predictor predicts one set of pixel values, while the second predictor 

predicts the rest pixel values in the image. Chang et al. [7] in 2015 presented such a scheme, 

where a linear block center reference predictor and a neighbor reference predictor are used in 

the prediction process. Before applying the prediction process, they generated a block 

truncated coded image if the cover image is not a block truncation coded one. In the block 

truncation coding, first, the pixels of each block are categorized into two groups: 'above the 

mean' and 'the mean and below'. All the pixels belong to the group of above the mean are 

quantized to a single value, say a. Similarly, all the pixels belong to the group of the mean and 

below are quantized to another single value, say b. A bitmap (BM) is generated to track the 

pixels' origin, e.g., set 1 in BM for the pixels quantized with the value of a and set 0 for the 

pixels quantized with the value of b. These trios (a, b, BM) are used to code a block of pixels. 

Data embedment is performed in this truncated image. The scheme collects one a from each 

block and arranges them in a plane. This plane is then divided into several non-overlapping 

blocks of a defined size. The linear predictor predicts all the pixels of a block by using a single 

reference pixel, e.g., the block center. The residues are computed by subtracting the predicted 

value from all other values in the block. Message bits are then embedded through shifting the 

residual errors in the histogram. A deviation d is computed as d=a-b for all the values of a and 

b. This process is regarded as a neighbor reference predictor. The scheme embeds the message 

bits again after shifting the histogram by an amount of d. The b values are updated by 

subtracting the stego d from stego a to preserve the block truncation coding property. Thus, a 

block can conceive at most two bits. Moreover, the scheme is applicable in block truncated 

compressed image only. 

Wang et al. in 2013 [97] proposed a two-disjoint-predictors based scheme where they first 

classified the pixels into two groups: wall pixel (i.e., border pixels) and non-wall pixels. The 

interpolation prediction method is used to compute the interpolation value for each wall pixel. 

Interpolation is performed by associating two pairs of neighboring non-wall pixels. The 

differences between the wall pixels and their corresponding interpolation values are measured 
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to find interpolation errors. A part of the secret message is embedded into these interpolation 

errors. Again, while processing the non-wall pixels, these non-wall pixels are first arranged in 

a defined traversing order. In this arrangement, a difference between a pixel and its immediate 

earlier traversed pixel is computed. These two pixels become always neighbor in the cover 

image. This way, all the differences are computed. The remaining data bits are implanted into 

these computed pixel differences. 

2.3 Quality Preservation Based Reversible Steganographic Rules 

Prediction error based reversible data embedment schemes first compute the prediction errors. 

A reversible algorithm is applied to implant data bits into these errors. To maintain the 

reversibility as well as the image quality, data bits are embedded into several highest frequency 

errors only. The values of these higher frequency errors are called embeddable errors and the 

rest are addressed as non-embeddable errors. 

2.3.1 Data Embedment Policies 

The SL data embedment processes embed message bits into the errors of {0} or {-1, 0}; while 

the ML schemes implant bits into the errors of L layers, for L>0, in the error histogram, i.e., 

into {-L, ..., -1, 0, 1, ..., L} valued 2L+1 dissimilar errors. In both the cases, the error 

histograms are modified or shifted to make space for implanting data, as shown in Figure 2.1 

and 2.2 for the SL and the ML schemes respectively. In these processes, at first, the non-

embeddable errors are shifted by an equal amount, e.g., non-embeddable positive and negative 

valued errors are shifted to the right and left directions respectively by an equal amount, to 

create sufficient vacant positions in the histogram. The embeddable errors are modified by the 

embedding rules. The Figure 2.1(c) and 2.2(c) represent the state of the stego errors in the SL 

and the ML scheme. The scenarios are almost the same for all the reviewed schemes. 

Consequently, the data embedment rules are defined in the following as a template. Let the 

predicted value of ,Ii j  the pixel in the image I  is ,i jP . Each prediction error ,i je  is measured 

by , , ,i j i j i je I P  . The SL and ML data embedment rules implant bit into this error ,i je  by 

applying the Eq. (2.2) and (2.3), respectively. Finally, the stego pixel ,Ii j  is reformed by the 

Eq. (2.4). 
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Where b, L and ,i je  stands for a message bit, embedding layer in the histogram and stego error, 

respectively. 

  

 

(a)  (b)  (c)  

Figure 2.1: SL data embedment process for implanting bits into the prediction errors: (a) prediction 

errors; (b) shifting of non-embeddable errors; and (c) Stego errors after bit implantation. The gray color 

represents the embeddable errors, whereas black color to represent non-embeddable errors. 

  

 

(a)  (b)  (c)  

Figure 2.2: ML data embedment process for implanting bits into the prediction errors: (a) prediction 

errors; (b) shifting of non-embeddable errors; and (c) Stego error after implantation of bits. The gray 

color represents the embeddable errors, whereas black color to represent the non-embeddable errors. 
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2.3.2 Data Extraction Policies 

During the data extraction, a reverse process is carried out. At first, the receiver-end computes 

the same predicted value, ,i jP as computed during the embedment process by associating the 

same set of pixels in the prediction rules. The stego errors ,i je  are computed using the Eq. 

(2.4). The message bit that was implanted into each error, i.e., in ,i je  in the SL or the ML 

embedment process, is extracted by using the Eq. (2.5) and (2.6), respectively. 
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In the Eq. (2.6), the function mod(a, b) outputs the remainder value when b divides a and |.| 

stands for the absolute value of an expression. The function |.| carries same meaning 

throughout this thesis. 

2.3.3 Cover Reconstruction Policies 

The errors for reconstructing of cover image are computed for both the SL and the ML 

schemes using the Eq. (2.7) and (2.8), respectively. 
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Finally, the cover image is reconstructed from these retrieved errors using the Eq. (2.9). 

 , , ,i j i j i jI P e   (2.9) 
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2.3.4 Payload Volume Dependent Embedding Process 

A data embedment process in some schemes [51, 94] depends on the volume of the payload, 

say C. Wang et al. in 2014 [94] proposed a payload volume dependent data embedment 

scheme, where 'rate-distortion model' is used for embedding low volume of data, while ‘multi-

layer model’ is used to embed high-volume of data. In both the cases, at first, a histogram is 

drawn from the computed prediction errors on the cover image.  

Rate-distortion model: 

i) Find an optimal bin with a frequency fr in the right side of the histogram so that fr>C. 

If such bin exists, embed data bits into these bin errors. Otherwise, go to the next step. 

ii) Find an optimal bin with a frequency fl on the left side of the histogram so that fl>C. If 

such bin exists, embed data bits into these bin errors. Otherwise, go to the next step.  

iii) Checking simultaneously, find two bins with frequency fl and fr so that (fl +fr)>C. If 

such bins exist, embed data bits into these bin errors. Otherwise, go to the next step 

(i.e. first, step in the sub-optimal scheme). 

Sub-optimal scheme: Multilayer model 

i) Find two peak-presented bins with the frequencies fl and fr respectively on the left and 

right side of the error histogram. If (fl +fr)<C, measure the maximum value 'f' of these 

two frequencies and the value 'e' of the corresponding peaked error. 

ii) Embed data bits into the errors of value 'e' and calculate the remaining payload as 

C=C-f. 

iii) Repeat step i and ii until (fl +fr)<C. Otherwise, go to step iv. 

iv) As a final layer, apply the rate-distortion model. 

2.4 Intentionally Quality Distortion Based Reversible 
Steganographic Process 

Many schemes [52, 71, 110] destroy all the cover information in the stego image when the 

cover image itself is secret. This distortion is performed either during the data embedment time 

by the embedding rules or before starting the embedment process.  
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2.4.1 Razing the Cover Image While Applying the Data Embedment Rules 

A simple methodology of distorting a cover image is to apply ML embedding processes into 

the errors of larger embedding layer L. Although, the ML processes destroy the image, notably 

through embedding data into the errors of larger value of L, these schemes do not destroy the 

cover information entirely and lots of cover information remains visible in the stego image. 

Ong et al. in 2014 [71] presented an improved cover image distorted based scheme, where the 

cover image is razed effectively by translating each block of pixels by an amount. The scheme 

first divided the cover image into k blocks. The range value Ri, for 1 i k  , of pixel values in 

each block i is measured. While working on each block i, that Ri is used to divide the grayscale 

into equal spaced Pi parts, where 28 log2 iR
iP     and .    stands for mathematical ceiling 

operation. The length of the embeddable message chunk, say bi, in the block i is defined by 

28 logi ib R     . Figure 2.3(a) demonstrates an example, where the possible embeddable 

message chunk is one of the {00, 01, 10, 11} for 32 63iR  , Pi=4 and bi=2. Primarily the 

histogram of blocky pixels will take place at one of the Pi parts, which is known as the original 

partition. The second part of the left in Figure 2.3 (a) is the original partition. Each arrow line 

indicates the partition into which the original histogram will be reflected and each bold and 

italic number, i.e., the label of each arrow line, represents a possible embeddable message 

chunk. To carry out this reflection, at first, an association of the original partition is performed 

with one of the parts Pi according to message chunk bi. Each bin of the histogram is then 

mapped to the corresponding position in the associated partition to perform the reflection. The 

methodology is called histogram association and mapping (HAM). Thus, after the embedment 

of message chunk '10', the original histogram, as depicted in Figure 2.3(a), is reflected in the 

last partition in the gray part by the HAM policy. That reflection is depicted in Figure 2.3 (b). 

This reflection ensures a change in the values of all the pixels in the block. The embedding 

capacity of the scheme depends on the range value of the block because bi is derived from Ri 

and bi increases with the decrease in the value of Ri. Hence, minimizing the value of block 

range Ri eventually increases the distortion of the cover image.  
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(b)  

Figure 2.3: Histogram association and mapping policy: (a) position of the original and reflection 

partitions for 32 < Ri < 63; and (b) Position of Stego error histogram after implanting a message chunk 

of '10'. 

2.4.2 Razing the Cover Image Before the Data Embedment 

Many schemes [52, 110] destroy the cover image before implanting data. The very famous 

technique of destroying the image before data implantation is to encrypt each image pixel by 

performing bit-wise simple exclusive-or (XOR) operation with a key. Liao and Shu in 2015 

[52] presented an image razing data embedment scheme, where the image is destroyed, first, 

using the very common XOR based image encryption technique. The encrypted image is then 

converted into m n  sized blocks. The contents of each encrypted block are further separated 

into two groups S0 and S1 with the size of ( ) 2m n    and ( ) 2m n   , respectively, where  

represents the mathematical floor operation. One bit of information is embedded into this 

block by flipping three least significant bits (LSBs) of all the pixels in either S0 or S1 

depending on whether the data bit is 0 or 1. The embedding code fragment is provided in 

Figure 2.4. 
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In the extraction phase, the stego image is decrypted first by using the decryption key. 

Likewise the embedding phase, the decrypted image is partitioned into blocks of m n  pixels. 

These stego pixels are grouped into two sets 0S  and 1S  by size ( ) 2m n    and ( ) 2m n   , 

respectively by the decoder. As three LSBs of pixels of S0 or S1 was flipped by the embedding 

rules, the cover block will be generated from 0 1S S  or 0 1S S  where 0S  and 1S  represent the 

three LSBs flipped pixels of the set of 0S  and 1S  respectively, thus, 0S = 0S  and 1S = 1S . Let 

00 1H S S  and 01 1H S S . This is certain that the original cover block is one of the 0H  and 

1H . The pixels in 0H  and 1H  are applied in a relation to measuring the block complexity  

for  and  for . These complexities are measured by summing up the differences between 

each of the pixels and the mean of its neighbors. The measured complexity is used in an 

analysis to identify whether 0H  or 1H  belongs to the original block. If 0H  belongs to the 

original block, message bit '0' is extracted and the 0H  is reconstructed as the cover block. 

Otherwise “1” is extracted and 1H  is reconstructed as the cover block. The stated process is 

repeated for all the blocks. Finally, the cover image is reconstructed by concatenating all of the 

retrieved blocks. This scheme, however, suffers from very smaller embedding capacity as it 

embeds only a single bit into every block of m n  pixels. 

 

 

 

 

 

Figure 2.4: Data implantation by flipping three LSBs of a group of pixels 

In 2014, Zhang et al. [110] proposed another scheme which provided higher embedding 

capacity than the [52]. Likewise the [52], this scheme first encrypts the cover image and 

thereby destroys the image quality notably. All the encrypted pixels of the image are then 

divided into two parts, namely “Black” and “White”, where black and white pixels are 

collected from a chessboard fashion distribution of whole encrypted pixels. The fourth LSBs 

of all the white pixels are extracted and then compressed. The compressed 4th LSBs along with 

If secret message bit is “0” 

 Flip 3 LSBs of all pixels in the set S0. Say these are 0S  

Else if secret message bit is “1” 

 Flip 3 LSBs of all pixels in the set S1. Say these are 1S  

End 
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the secret message bits are embedded in the white pixels by replacing all of the 4th LSBs. The 

scheme has to embed additional information, e.g., 4th LSBs of all white pixels, and thus, 

reduces the actual payloads. Moreover, the black marked pixels are not used for message bit 

implantation. 

2.5 Non-predictive Reversible Data Hiding Scheme 

Pan et al. (in 2015) [114] proposed a non-predictive reversible data-hiding scheme. The 

scheme divides the cover image into blocks of size s s . Histogram of spatial values is 

measured individually for each block. The highest frequent pixel PB  is marked in each block 

histogram. If PB  is not at the extreme of the histogram i.e., not in the leftmost or the rightmost 

of the histogram, its immediate right and left neighboring peaks are explored at 1PB   and 

1PB  , respectively. If the highest peak with two neighbor peaks is still absent, the block is 

skipped. Otherwise, data are embedded starting from layer m = 0 following rules given below: 

i) In each block, the scheme embeds message bits into pixels of 1PB   and 1PB   

shifting its pixel histogram in right and left directions, respectively. It concatenates 

these modified blocks to form stego image at embedding layer m. 

ii) If data bits to be embedded are still in hand, it reuses the stego image for the next 

embedding layer m+1 and partitions the stego image into blocks by doubling its 

dimension by (2 ) (2 )m ms s , i.e.  2 2s s  for m=1, 4 4s s  for m=2 and so on; and 

followed the same procedure for embedding message bits. 

The scheme does not change the peak presented pixels for the purpose of data extraction 

and cover image reconstruction. The layered approach works independently and thus, the 

process works as a multi-time data embedment method. 

2.6 Methodologies for Measuring the Image Distortions 

There are many ways of measuring the image distortions of a test image. The traditional 

measuring policies are measuring the mean square error (MSE), root means square error, mean 

absolute error, average difference, maximum difference, standard deviations, normalized 

cross-correlation, peak signal to noise ratio (PSNR) between the original and the test image 

[19, 93, 99]. All of these methodologies are developed based on the computation of pixel 
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differences. Among these policies, MSE and PSNR are widely used. Let the cover and the 

stego images are I  and I , respectively. The MSE and the PSNR of an image with a size 

of h w  are measured using Eq. (2.10) and (2.11), respectively. 

 

2
, ,

1 1
( )

h w

i j i j
i j

I I
MSE

h w


 



 



 (2.10) 

 
225510logPSNR

MSE
  (2.11) 

Where 50.65 10    is added to the MSE to measure the 100dBm of PSNR while comparing 

two same images. Thus, the PSNR loss due to data implantation is measured by the Eq. (2.12). 

 _ 100PSNR Loss PSNR   (2.12) 

The visual attributes of an image that a human can perceive are brightness, contrast, shape 

and texture of objects, orientations, smoothness, etc. Since the sensitivity of the human visual 

system is dissimilar to a different aspect of the images; it makes sense to account for these 

sensitivities during the comparison of two images [93, 99]. The universal image quality index 

(UIQI) [93] combines the factors like loss of correlation, luminance distortion and contrast 

distortion. To measure UIQI, at first, the image is divided into blocks of size d d  each and 

then the block means and the block variances for each of the cover blocks and the stego image 

blocks are measured. Let C  and S  be the block means of a specific block in the cover image 

and the respective block in the stego image, respectively and 2
C , 2

S  be their respective block 

variances. Say, 2
CS  is the covariance measured for the same block of the cover and the stego 

image. From these three factors, UIQI of the block is measured using Eq. (2.13). 

 2 2 2 2

4
( )( )

CS C S

C S C S

UIQI   

   


 
 (2.13) 

The UIQI values for all the blocks are measured and a mean of these is computed to 

compare the image quality. The UIQI is an unstable measure when 2 2( )C S   or 2 2( )C S   is 

very close to zero. In addition, UIQI does not correlate with the subjective assessment. 

Nevertheless, the human visual system is highly adapted to extract structural information from 

visual scenes. Structural similarity index (SSIM) between two images, therefore, provides 
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better comparable information [16, 99]. The SSIM value for a specific block of an image is 

measured by using the Eq. (2.14).  

 1 2
2 2 2 2

1 2

(2 )(2 )
( )( )

C S CS

C S C S

c cSSIM
c c

  

   

 


   
 (2.14) 

Where, 1c  and 2c  are two constants. Values of these two constants were set to 0.01 and 0.03, 

respectively, for all the experiments presented in this thesis so that the divisor never becomes 

0. Computing the SSIM value for all the individual blocks and then averaging them compute 

the SSIM value for an image.  

Another visual attribute of an image, namely, structural dissimilarity index (SDIM) is a 

distance metric, which is measured by the Eq. (2.15). 

 (1 )
2

SSIMSDIM 
  (2.15) 

All of the attributes are the useful parameters for comparing the structural dissimilarities 

which are happened after implementation of the data implantation process. 

2.7 Tools for Testing the Security of Implanted Data 

An attempt at maintaining better image quality does not ensure the security of the implanted 

data because there are many steganalyzers available for detecting the hidden data. Some 

analyzers detect the changes in the LSBs [21,35, 75, 106], some others analyze the difference 

histograms to detect the modification performed [74, 110, 111]. A few of the steganalyzers 

analyze the dependencies among the pixels by using a Markov model in order to apply the 

Markovian features into a support vector machine [19, 73]. Generalized Benford's law is also 

used to detect stego contents by verifying the behavior of the significant digits in the images 

[1, 2, 23]. The standard deviation between two images and the correlation coefficients are also 

used as security tools to measure the modifications occurred in an image. Relative entropy is 

also analyzed to detect any major changes made in an image [17, 37]. Among these tools, Chi-

Square test, histogram differences, generalized Benford's law, standard deviations and relative 

entropy were used in this thesis to test the resistance of various schemes against statistical 

attacks.  
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2.7.1 Chi-Square Test 

Chi-Square test is a very illustrious process to check the pixels' modifications in the stego 

image with respect to the pixel values in the cover image [17, 20]. In this process, a histogram 

of the image pixels is computed. The frequency of every bin in the histogram is considered as 

an independent sample. As an image can be converted to grayscale, without loss of 

generality, the degree of freedom (DF) for this test was taken at 255, i.e., 255DF  . The 

frequency of each pixel in both the cover and the stego image, i.e. bin values in the 

histogram, is compared with the expected ones in the Chi-Square relation. The Chi-Square 

statistics of these pixels, whose frequencies in the histogram of stego image are greater than 4 

are measured by the Eq. (2.16). 

 , ,2

1 1 ,

h w
i j i j

i j i j

Oberved Expected
X

Expected 


  (2.16) 

For testing the null hypothesis, a critical value is measured. The MATLAB programmer can 

use the tool chi2inv by setting the probability to 0.05 for measuring the critical value. Let the 

measured critical value is 2X . The test of the null hypothesis is accepted if this holds 

2 2X X  for all the images measured. 

2.7.2 Histogram Differences 

Zhao et al. in 2009, [111] have shown that, in the image of the archetype, there is a similarity 

between the changes of intensities along the vertical and horizontal direction. To check this 

matter, a vertical difference histogram and a horizontal difference histogram are computed by 

taking differences of every two neighbor pixels along the vertical and the horizontal directions, 

respectively. Any major dissimilarity between these two histograms is regarded as a sign of 

tempered image. Let the histograms of the vertical differences and the horizontal differences 

are  and , respectively. The discrepancy D between these two histograms for several most 

appeared differences, e.g., bin values in the range [-T, T], is calculated by using the Eq. (2.17). 

  
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( ) ( )
T

h v
i T

D H i H i


   (2.17) 

For all the empirical tests conducted for this thesis, the value of T was set to 20 to minimize 

the computation time. A smaller value of D yielded from the Eq. (2.17) typifies that the image 

is not tempered and, thus, this does not contain any hidden information.  
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2.7.3 Analyzing the Standard Deviation and Correlation Coefficient of Images 

Standard deviations and correlation coefficient are measured from the cover and stego images. 

The divergence between the standard deviations of the cover and the stego images is 0% if the 

cover and the stego images coincide. The divergence in higher percentage is used to guess the 

existence of hidden data. For better image quality, a smaller value of divergence is expected. 

The value of correlation coefficient also provides statistical information on the relative 

similarities between the two images. When the correlation coefficient value is close to 1, two 

images are statistically alike. Therefore, the correlation coefficient is used as a security-testing 

tool. 

2.7.4 Comparing the Relative Entropy 

To measure the divergence of stego image (S) from the original image (I), the relative entropy 

provides useful information. The relative entropy (D) between the probability distributions of 

the original image (I) and the stego image (S) is calculated by using the Eq. (2.18). 

255

0

( )( || ) ( ) log
( )x

I xD I S I x
S x

     (2.18) 

If the relative entropy (D), which lies between is zero, the system is perfectly secure. 

D(I||S) is a nonnegative continuous function and equals to zero if and only if I(x) and S(x) 

coincide for all the x. Thus, D(I||S) can be normally considered as a distance of entropy 

between the measures of I(x) and S(x).  

2.7.5 Generalized Benford's Law 

Steganalysis based on Benford’s Law is a very latest, faster and effective mechanism to detect 

larger modifications in a large volume of natural data [1, 2, 23]. The Benford’s law is stated 

from the investigation that, among the significant digits, the probability of appearing ‘1’ as a 

first significant digit in a large set of natural numbers is more than the probability of appearing 

‘2’ and so on, i.e., P(1)>P(2)> … … … >P(9), where P(n) is the appearing probability of n (1 

≤ n ≤ 9) as a first significant digit. The expected values of p(n) in a large volume of discrete 

cosine transformed (DCT) coefficients can be measured by the generalized Benford's law 

(gBL) using the Eq. (2.19). 
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Where, N, q and s define the accuracy of the relation at different compression quality factors. 

A goodness-of-fit of these three parameters N, q and s are measured using Matlab curve fitting 

toolboxes in [1] for each of the different quality factors, say, 50, 60, 70, 75, 80, 90 and 100. 

The goodness-of-fit values of N, q and s are used in (2.19) to estimate the best value by it. For 

example, for the compression quality factor of 75, the values are fitted to N=1.396, q=1.731 

and s= -0.3549. 

In the experiments, the mean distributions of each significant digit i, say i , in the DCT 

coefficients are measured. At the same time the expected distributions ip  of each digit i are 

computed by the Eq. (2.19). Let the mean distributions and the expected distributions in the 

cover and the stego images are C
i , S

i , C
ip  and S

ip , respectively. The percentage of 

differences between the expected distributions and the mean distributions for all the digits i are 

measured for both the cover and the stego images as 
 

100%
C C
i iC

i C
i

p
d

p


  and 

 
100%

S S
i iS

i S
i

p
d

p


 , respectively. If the changes in the stego image due to the data 

embedment do not happen on a large scale, the values of C
id  and S

id  will be very close. A 

difference id  between C
id  and S

id  is measured by the Eq. (2.20). 

 C S
i i id d d   (2.20) 

The value of id  must be smaller than a threshold Ti, where Ti is a very small value if the image 

is not modified drastically. Thus, the Eq. (2.21) will classify an image as a cover or a stego 

one. 

 
         1,2,...,9

ImgClass
                            

i iCover if d T for i
Stego Otherwise

 
 


 (2.21) 

For the different quality factors, the minimum value of T2, i.e. for the digit 2, is listed in [1]. It 

is 3 for the compression factor of 75%. Following the goodness-of-fit table in [1], the static 

parameters N, q and s of the Eq. (2.19) and the threshold T2 are initialized to 1.396, 1.731, 

0.3549 and 3, respectively. In the experiment, the computed statistics regarding the digit 2 are 

analyzed. 
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2.8 Image Datasets Used in the Experiments 

The reviewed schemes of this chapter and all the proposed models, stated in Chapter 3 to the 

Chapter 8, are experimented on several typical image datasets, as shown in Table 2.1. The first 

four image datasets of Table 2.1 are commonly used in the field of image steganography. Next 

two image datasets of the table are used to test the performance of the schemes in the diverse 

images. The last dataset of the table includes the images which are very commonly used in the 

field of image processing. 

Table 2.1: Standard image datasets which are used in experimenting the models of this thesis. 

Sr. Names of the image datasets Quantity Referred as* 

1 USC-SIPI Standard: Signal and Image Processing Institute, 
University of Southern California, USA [90] 50 Standard 

2 USC-SIPI Texture: Signal and Image Processing Institute, 

University of Southern California, USA [91] 

50 Texture 

3 CalTech101: Images of category of 101 of Computer Vision Lab of 
the California Institute of Technology, USA [6] 5000 CalTech 

4 BOSS: Bank of Standardized stimuli [4] 500 BOSS 

5 Natural: National History Museum Public Library, UK [69] 50 Natural 

6 CRISP-Satellite: Center for Remote Imaging, Sensing and 

Processing, National University of Singapore [14] 

50 Satellite 

7 Common: Ten commonly used images (Baboon, Boat, Camera 

Man, Girl Blonde, Lena, Mona Lisa, Plane, Peppers, Plane and 

Tiffany)  

10 Common 

*In this thesis, these short names are used to refer to their respective image dataset. 

2.9 Summary and Comments 

This chapter summarizes the key literature on reversible data hiding schemes, where 

continuous attempts were made for improving the prediction accuracy or applying better 

predictor to achieve enhanced embedding capacity and image quality. Empirical analysis 

reveals that '0' is the highest appeared prediction errors for all the experimented predictors. 

Without some rare exceptions, the second highest frequency error is '-1'. The frequency of the 
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prediction error decreases sharply as the absolute value of the error goes higher. It was also 

revealed that though the multi-predictor based schemes increase the time complexity by 

employing multiple predictors these schemes generate more optimal prediction errors and, 

thus, produces more quantity of embeddable errors. The block median reference predictor also 

demonstrates better performance in the smaller sized block. The gradient and edge detection 

based predictors show better accuracy than the block center reference predictors and the 

neighbor reference predictors. The embedding capacity and the image quality vary in both the 

SL and the ML schemes with the variation in the prediction accuracy. Although the ML 

schemes increase the embedding payloads, these destroy the image quality, notably for a larger 

value of embedding layer. The SL schemes are employed to satisfy small embedding capacity 

due to their lower complexities. Intentionally image distortion based schemes are used when 

the cover image itself is a secret of the communication system. None of the reviewed image 

distortion based schemes uses a predictor in their embedding process.  

As an image quality measurement parameter, MSE and PSNR are more famous from the 

perspective of their uses in the literature. These provide the statistics of temped pixels. In the 

recent literature, SSIM is taking the leads on the others as this provides a structural comparison 

between two images and the human visual system is more sensitive to the structural changes in 

the image. The values of PSNR and SSIM are investigated in the thesis to compare the quality 

of the stego image with the cover image. 

The LSB replacement is detectable by the Chi-Square value. Histogram of adjacent pixel 

differences is useful in analyzing the resistance of the scheme against attacks as this provides 

both statistical information and graphical view. Generalized Benford's law is the latest analyzer 

that provides better information on the changes of pixel values in the stego image. Standard 

deviations in percentage and the relative entropy are used to test the statistical changes in the 

images. 
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Chapter 3 

Multi-Block Center Reference Predictor  

The existing multi-block center reference predictor based data embedment scheme first divides 

the cover image into blocks of 3 3  pixels and measures the weighted average of numerous 

contextual block centers to predict each pixel. Findings show that while predicting the corner 

pixels of a block, the scheme did not utilize the weights rationally. To rationalize the weighting 

factor of each context pixel in the prediction rule, in this chapter, a new data embedment 

scheme is proposed by generating weights for a pixel as an inverse of its air distance from the 

predicting pixel. The data embedding capacity of the scheme has been further improved by 

embedding message bits into the errors of a single layer for multiple times.  This scheme has 

generalized the block size from 3 3  pixels to d d  pixels, where d ≥ 3 is a common divisor 

of an image’s height and width. The scheme has also modified the existing block skipping 

criteria to overcome the problem of detecting sharp hill and deep valley around the working 

block. Each proposal from these bundle has enriched the capability of the proposed scheme to 

achieve a higher embedding capacity and better stego image quality.  

3.1 Introduction 

In the block center reference based predictors, the cover image is partitioned into fixed sized 

blocks. These predictors are of two types–single block center reference (SBCR) based 

predictor and multi-block center reference (MBCR) based predictor. In the SBCR predictor, 

the cover image is divided into m m  sized blocks. All the block pixels are predicted by the 

value of its block center. The policy differs in MBCR predictor based schemes. In MBCR 

predictor, the cover image is divided into 3 3  non-overlapping blocks. The center pixel of the 

working block is termed as the basic pixel while the other pixels in this block are addressed as 

the non-basic pixels. The neighbor blocks are defined by 4-connectivity rules and thus, each 

block has four neighbor blocks at its immediate top, right, bottom and left positions. The 

center pixels of these four neighbor blocks are phrased as the satellite pixels regarding the 
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working block. When the predictor works in an ith block, the basic is read by iC  and the top, 

right, bottom and left satellite pixels are read by T
iC , R

iC , B
iC  and L

iC , respectively. The eight 

non-basic pixels are represented by bi,j, where 1≤j≤8. In Figure 3.1, white, black and gray 

colors are used to represent basic, satellite and non-basic pixels respectively. All the non-basic 

pixels, bi,j are predicted by two or three of iC , T
iC , R

iC , B
iC  and L

iC  in MBCR predictor 

based schemes. Let the predicted values of bi,j  are Pi,j. The prediction errors ei,j are computed 

by subtracting the predicted values from the corresponding non-basic pixels, i.e., by  

, , ,i j i j i je b P  .  

These prediction errors are used as an embedding space. The single layer (SL) embedding 

schemes implant data bits into two most appeared errors, e.g., into the errors of -1 and 0. The 

performance of these embedding schemes mostly depends on the quantity of these two 

embeddable errors because both the embedding capacity and the image quality thrive for the 

improved frequencies of these two embeddable errors. The frequencies of these two errors 

depend on the accuracy of the applied predictor. 

In addition to enhancing the number of embeddable errors, the schemes apply some other 

strategies to improve the stego image quality. The very commonly used policy is to skip the 

less embeddable blocks as unchanged. The quantities of embeddable errors vary from block to 

block. The higher embeddable blocks are termed as the smooth, candidate or embeddable 

block. On the other hand, the less probable blocks are termed as the complex or less 

embeddable block. A threshold is applied to the block classification rule to categorize a block 

as either a smooth or a complex block. To protect the rate of distortions, the schemes skip less 

embeddable blocks because these blocks conceive fewer bits, but incur much devastation on 

the image quality of the block. 

 

In this chapter, we propose a novel reversible SL data-hiding scheme resolving the 

addressed problems stated from the outset of this chapter. In predicting the pixel values, the 

algorithm first divides the block pixels into two groups–baseline and non-baseline pixels. 

While predicting the baseline pixels, the scheme computes Euclidean distances of the working 

pixel from its own block center and the nearest neighbor satellite pixel. For predicting the non-

baseline pixels, the scheme computes the Euclidean distances of the working pixel from its 

basic pixel and two nearest satellite pixels. The relative similarity of a pixel value with it's 

associated basic and satellite pixels depends on how much the working pixel is near to these 
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associated basic and satellite pixels. That is why the inverse of the Euclidean distance is used 

as a weighting factor of the corresponding associated pixel to rationalize the weights in the 

prediction rules. The proposed scheme further applies more weights for the basic pixel in the 

prediction rule to devote more honor to the properties of the locality and the proximity. The 

predicting algorithm generalizes the proposed scheme to be applicable for any size of blocks. 

To the best of our knowledge, this block generalization strategy is proposed for the first time in 

the arena of MBCR predictor. The block classification rule is also modified to ensure that no 

candidate block is to be skipped from being bit-embedded without sacrificing the peak signal 

to noise ratio (PSNR). Furthermore, the proposed scheme adopts a technique of zero-bit 

maximization in the message stream to increase the stego image quality. 

 

 

 

 

 

 

 

 

 
Figure 3.1: Basic, satellite and non-basic pixels in an image. 

 
The rest of this chapter is organized into several sections. The section 3.2 will present the 

related schemes in a concise manner. The proposed scheme is described in section 3.3. It is 

investigated that the pixel values of a block are closer to their basic pixel than the satellite 

pixels. The affair of that block bias tendency is utilized in section 3.4 to further improve the 

prediction accuracy. The process of multi times data embedment into the errors of a single 

layer, e.g., into the errors of values of -1 and 0, is proposed in section 3.5. The resistance 

against statistical attacks is delineated in section 3.6 for several renowned steganalyzers. 

Finally, some concluding remarks are given in section 3.7. 
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3.2 Block Center Reference Based Prediction Schemes 

The MBCR based predictor is an improved version of the SBCR based predictor. In this 

section, the prediction methods of an SBCR based prediction scheme, namely Tsai et al. in 

2009 [88] and two MBCR based prediction policies, namely, Hong et al. in 2010 [32] and Lu 

et al. in 2014 [59] are reviewed. These schemes are shortly described in Chapter 2. In this 

section, their limitations are highlighted. 

3.2.1 Predicting Block Contents by Their Own Center Pixel 

In 2009, Tsai et. al. [88] has proposed a lossless steganographic scheme where the cover image 

is partitioned into 3 3  sized non-overlapping blocks. In this scheme, the prediction errors are 

measured by considering the center pixel of a block as a predictive value for the other pixels in 

the block. One highest appeared positive valued prediction error and another highest appeared 

negative valued prediction error are chosen to conceal the secret message bits. The scheme 

performs very poorly in texture images because it predicts very inaccurately in high gradient 

regions. As no optimization technique is applied to increase the frequencies of these two 

errors, the embedding capacity is lower. Embedding into fewer pixels and shifting the others 

by the embedment rules result in lowering the visual quality of the stego image. 

3.2.2 Predicting Block Pixels by Associating Multiple Block Centers 

In 2010, Hong et al.[32] has modified the scheme presented in [88] by predicting the values of 

all non-basic pixels from its basic pixel and four satellite pixels. They predicted the corner 

pixels of a block, i.e., bi,2, bi,4, bi,6, bi,8 as shown in Figure 3.1 from the weighted average of 

their two nearest satellite pixels and the basic pixel. For example, bi,4 is predicted by using the 

formula of ,4 ( ) / 3T R
i i i iP C C C   . The other non-basic pixels, i.e., non-corner pixels, are 

predicted by taking the weighted average of a nearest single satellite pixel along with the basic 

pixel. For an instance, bi,5 is predicted by using the formula of ,5 (2 ) / 3R
i i iP C C  . While 

predicting the corner pixels, the scheme ignores the neighborhood property because though the 

basic pixel, Ci is close to the bi,j, the Ci is weighted equally in the formula. For example, in the 

Figure 3.1, air distance, known as Euclidean distance, between Ci and bi,4, T
iC  and bi,4, and R

iC  

and bi,4 are 1, 2.24 and 2.24 respectively (the Euclidean distance is measured by 
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   
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1 2 1 2x x y y   , where (x1, y1) and (x2, y2) are the positions of two different pixels). 

Nevertheless, in the predicting equation iC , T
iC  and R

iC  are weighted equally. Consequently, 

the scheme predicts these pixels inaccurately. 

The scheme classifies the blocks into smooth and complex ones for reducing the 

computational complexity and image distortions. For performing the classification of the 

block, first a variance, var( )iC , of the five values, (one basic pixel and four satellite pixels), 

are computed as           
2 2 2 221

5
T R B L

i m i m i m i m i mC C C C C C C C C C         , where 

Cm is the mean value of five pixels of iC , T
iC , R

iC , B
iC  and L

iC . This variance value is 

compared with a predefined threshold value to classify the block as a smooth or complex. 

When a satellite pixel is highly unlike compared to others, this variance value becomes more 

biased by that single satellite pixel. This variance value cannot detect the sharp hill and deep 

valley as well in and around the block. In addition, no data bits are implanted into the basic 

pixels and these remain unchanged for the convenience of message extraction and cover 

reconstruction by the receiver. These basic pixels are 1/8th of the whole image in quantity. In 

2014, Lu et al. [59] separated all the basic pixels in an imaginary layer upon the stego image. 

They applied the same prediction and embedment process on these upper layer pixels. 

Considering the last upper layer as a stego image, the process of generating another upper 

layer is repeated to embed more bits. The scheme does not provide any new prediction policy; 

rather, shows only a way of embedding into basic pixels. The correlations among the collected 

pixels in the upper layer decrease as these pixels come from distinct places. Therefore, the 

prediction accuracy of the applied predictor decreases at the upper layers. 

3.3 Generalized Block-Size Based Predictive Error Embedding 
Scheme 

In this section, the proposed block-size generalization process modified the block classification 

strategy as well as the data embedment and extraction rules as outlined below. The block 

generalization scheme presented here provides the flexibility of using blocks of an arbitrary 

size rather than blocks of 3×3 as used in all previous satellite-pixel based block prediction 

methods. New block classifier allows more blocks to conceive bits. 
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3.3.1 Predicting Pixel Values in Arbitrary Sized Blocks 

The proposed scheme first divides the cover image into two parts– the upper part A and the 

lower part I. Data embedment is done in A by replacing the least significant bits (LSBs) to 

hide all the assistant information, i.e., a set of values which assist the receiver in extracting 

message and reconstructing the cover image. The generalized block size based pixel value 

prediction algorithm, proposed in this chapter, divides the image part I into 1 2t t  blocks of 

d d  size each, where d = {x | x is a natural odd  number} and both height and width of I is 

divisible by d, t1=(height of I)/d and t2= (width of I)/d. Each block, ,r cB  ( 11 r t  , 21 c t  ) 

has a basic pixel at (i, j) with value ,i jI  and four satellite pixels at ( , )i d j d   with values 

,i d jI  , ,i j dI  ,  where  1 / 2i r d d     and  1 / 2j c d d     as depicted in Figure 3.3. 

The pixel values of the block are accessed by ,m nI , where    / 2 / 2i d m i d          , 

   / 2 / 2j d n j d          . For the space constraints and unknown dimension of d, the satellite 

pixels at ( , )i d j d   in Figure 3.3 are exposed as closer to the predictive block rather than 

showing the actual comparative distance, which is / 2d    pixels apart from the boundary line 

of the predictive block. 

The values of the pixels  , ,,m nI m i n j   in a block are predicted using the weighted 

average of the basic pixel value ,i jI  and one or two of the satellite pixel values, ,i d jI  , ,i j dI  . 

Euclidean distance rules are applied in measuring the weights so that the locality and the 

proximity are considered rationally. The Euclidean distance between two pixels is the air 

distance between them and is measured by    
2 2

1 2 1 2x x y y   , where  1 1,x y  and 

 2 2,x y  are the positions of two different pixels. The base-line pixels are predicted from the 

weighted average of the basic pixel and the nearest satellite pixel, whereas all the other pixels 

in the block are predicted from the weighted average of the basic pixel and that of its two 

nearest satellite pixels. Let ,u vI and ,x yI  are the two nearest satellite pixels while predicting a 

non-base-line pixel ,m nI . For example, ,u vI = T
iC  and ,x yI = R

iC  in Figure 3.1 when ,i jI =Ci and 

,m nI =bi,4. Say, the Euclidean distances of ,m nI  from ,i jI , ,u vI  and ,x yI  are ,
,

i j
m nD , ,

,
u v
m nD  and ,

,
x y
m nD  

respectively. Again, let the nearest satellite pixel is ,x yI  when ,m nI  is a base-line residual, e.g., 

,x yI = R
iC  when ,m nI =bi,5. The Euclidean distance between ,m nI  and each of ,i jI  and ,x yI  are 
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,
,

i j
m nD  and ,

,
x y
m nD  respectively. Let the predicted value of a pixel ,m nI  is ,m nP . The prediction of a 

base-line pixel ,m nI  is performed by using Eq. (3.1). The expression is simplified in the Eq. 

(3.2). In the same way, the non-base-line pixels are predicted by using Eq. (3.3). 

 , ,, ,
, ,

,

, ,
, ,

1 1

1 1

i j x yi j x y
m n m n

m n

i j x y
m n m n

I I
D D
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D D

  





 (3.1)  
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m n m n i j m n m n u v m n m n x y

m n i j u v u v x y i j x y
m n m n m n m n m n m n
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D D D D D D
 


 

     

  
 (3.3) 

The values of (u, v) and (x, y) are distinct and indicate the location of two different 

satellite pixels. Therefore, based on the location of (m, n) in the block, the values of (u, v) and 

(x, y) are selected from ( , )i d j d  . Considering clockwise direction, the values in the first 

quadrant are  ,i j d  and  ,i d j , whereas these are  ,i d j  and  ,i j d  in the second 

quadrant,  ,i j d  and  ,i d j  in the third quadrant and  ,i d j  and  ,i j d  in the 

fourth quadrant. All the basic pixels remain unchanged for the convenient of predicting the 

same ,m nP at the receiver end. The prediction errors ,i jE  are then calculated by using the Eq. 

(3.4). 

 , , ,i j i j i jE I P   (3.4) 

Two highest appeared errors pH  and nH are recorded, where npH H , rather than one 

positive and one negative valued error, as considered in [32], because in many images both 

pH  and nH  are greater than or equal to zero, as shown in Figure 3.2. This process will 

improve the embedding capacity a bit. 
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Figure 3.2: Prediction error histogram where both two highest peaked errors are positive valued. 

3.3.2 Block Classification Using Block Variance 

To improve the image quality, the scheme in [32] avoids less embeddable blocks. The scheme 

first estimates block whether it contains a large number of embeddable pixels or not. The 

estimation is performed by measuring the block variance. The variance value is computed 

from one basic pixel and four satellite pixels. In their equation, the variance value is largely 

influenced by a single unlike satellite pixel even if the block contains many embeddable pixels. 

For example, if a satellite pixel exists in a sudden transitional area, e.g., in a texture region, this 

pixel value will influence the classification rules to mark the block as a non-smoothed block 

even if the value of the other three satellite pixels and the block's own pixels are very close to 

each other. The block skipping rules cannot detect a sharp hill or a deep valley in a small 

vicinity as well. In a deep valley or in a sharp hilly region, the values of block pixels differ 

largely from the satellite pixels; however, the four satellite pixels will influence the classifier 

to consider the block as a smoothed one. The predictor will then predict in that block very 

inaccurately. To protect the misguidance by the block classifier stated in [32], the block 

variance calculation process of [32] is modified in the following ways. First, a mean of the 

four satellite pixels (MoS), is measured. For all natural images, the MoS is very close to ,i jI , 

i.e., MoS ≈ ,i jI . The variance of (MoS, ,i jI ) is applied to grade a block as smooth or complex 

by comparing it with a predefined threshold, TH, as depicted in Eq. (3.5) through Eq. (3.7). 

 , , , ,,
4

i d j i j d i d j i j dI I I I
MoS round       

  
 

 (3.5) 
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  
2

, ,r c i jVar I MoS   (3.6) 

 ,
,

         
                

r c
r c

complex if Var TH
BS

smooth Otherwise


 


 (3.7) 

The MoS computed using the Eq. (3.5) reduces the effect of a single unlike satellite pixel and 

the variance computed using the Eq. (3.6) detects the existence of any sharp hill or deep valley 

around the basic pixel.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3: Prediction of pixels in the generalized block 

 

3.3.3 Embedment Procedure Used by the Data Hider 

The method of [32] first divides the cover image into two parts A and I,  where the A comes 

from the upper portion of the cover image and the I comprises of the remaining portion of the 

cover. The process of managing the assistant information, say infoAI , and hiding it in the image 

part A by using the LSB replacement method are explained in [32]. Before replacing the LSBs 

of A, these LSBs of A are extracted and concatenated with the secret message, known as 

processed secrets. Next, the bit stream of infoAI  is implanted into the pixels of A by the LSB 

replacement method. Let the [32] generated stego part of A  is A . The scheme implants the 

processed secrets into the other part I by using the prediction error based process. In the 

… … … … … … … 
…      … 

…      … 

…   Ii,j   … 

…      … 
…      … 
… … … … … … … 

Ii,j-d 

Ii,j+d 

Ii-d,j Ii+d,j 
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prediction error based process, a predictor estimates the pixel values of all the block in I. It, 

then, computes the prediction errors ,i jE  by subtracting the predicted values ,i jP  from their 

respective cover values Ii,j. The bit stream of the processed secrets is implanted into these 

computed error values ,i jE  by using the Eq (3.8). The implantation process modifies the 

prediction errors. Let the modified stego errors are ,i jE . Finally, the scheme forms the stego 

values of the lower part, ,i jI of each (i, j) location by adding each of the ,i jE  with their 

corresponding predicted values ,i jP . The scheme forms the stego image SI  by concatenating 

I with A . 

 
, , ,

, , , ,

,

1 

   

i j i j p i j n

i j i j i j p i j n

i j

E s if E H or E H
E ifE E H or E H
E Otherwise

  


  



 (3.8) 

Where ='-' if ,i jE ≤ nH or ='+' if ,i jE ≥ pH  , s is a message bit and .  is used to represent 

the absolute value. 

3.3.4 The Extraction Procedure Used by the Receiver 

At the receiver, the stego image SI is partitioned into two parts A  and I . From the LSBs of 

A , the assistant information infoAI is reproduced. The block classification threshold TH, the 

length of the message, two highest appeared errors pH and nH are separated from the infoAI . 

As the basic pixels were remained unchanged, the same predicted values ,i jP  are generated for 

each pixel of a specific block ,r cB  by using the Eq (3.2) and (3.3). The stego prediction errors 

,i jE  are obtained as , ,i j i jI P . Each message bit s is extracted by using the Eq (3.9). Then the 

original cover prediction errors ,i jE  are calculated by using the Eq (3.10). 

 , ,

, ,

0
1 1 1

i j p i j n

i j p i j n

if E H or E H
s

if E H or E H
  

 
   

 (3.9) 
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i j

i j
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  

 
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 (3.10) 

The extracted message contains the LSBs of A  as these LSBs were concatenated with the 

message before the data embedment by the data hider. The upper part A of the image is 
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reproduced from the stego image part A  by replacing the LSBs. The lower part of the cover 

image ,i jI  is reconstructed as , ,i j i jP E . Finally, concatenating A and I reproduces the cover 

image CI. 

 

Figure 3.4: Payloads achieved in various images by the different schemes. 

 

 
Figure 3.5: Performance of new block classifier. 

 

3.3.5 Result Analysis 

In the experiments, we use the image datasets of BOSS, Caltech, Texture, Satellite, Natural, 

Standard and Common, as stated in Table 1.1 of Chapter 1. The schemes of Tai et al.[83], 
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Hong et al.[32] and Lu et al.[59] are experimented and compared with our proposed scheme. 

The proposed scheme dominates the others in all the measuring performance parameters. The 

outcomes of the experimental results are demonstrated below.  

3.3.5.1 Payload comparison 

Figure 3.4 clearly depicts the superiority of the proposed scheme in achieving higher 

embedding payloads. It happens for two reasons - the predictor proposed in this scheme 

predicts more accurately than the other scheme and the new block classifier classifies blocks 

more rationally. The new classifier allows more blocks to participate in conceiving message 

bits. The performance of the classifier is delineated in Figure 3.5 in log scale. This figure 

shows that the number of smooth blocks categorized by the proposed scheme is more than the 

scheme proposed by Hong et al. in 2010 [32]. The percentage of improvement in the number 

of smooth blocks is always positive, which indicates that the proposed classifier grades more 

blocks as a smooth block for the same level of the threshold value. 

 

3.3.5.2 Comparison of Stego Image Quality 

The stego image quality is compared in terms of the values for both the peak signal to noise 

ratio (PSNR) and the structural dissimilarity index (SDIM). The amount of PSNR loss due to 

data implantation is measured. The quantities of payloads per unit PSNR_Loss achieved in the 

different images of CalTech dataset are demonstrated in Figure 3.6. The figure states that the 

proposed scheme enhances the number of embedded bits for each 1dBm loss of PSNR values, 

i.e., the ratio between the number of implanted bits and the amount of PSNR loss is higher in 

the proposed scheme. Similarly, the Figure 3.7 depicts that the proposed scheme embeds more 

data for the same amount of SDIM value. This investigation concludes that, for the same level 

of image distortions, the proposed scheme embeds more data bits into an image. 
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Figure 3.6: Payloads per unit PSNR loss achieved in various images by the different schemes. 

 

 

Figure 3.7: Payloads per SSIM achieved in various images by the different schemes 

3.3.5.3 Comparison of Payloads in Diverse Image Dataset 

To study the impacts of the proposed scheme on various types of images, experiments are 

conducted in several standard image data sets. The achieved payloads in the image datasets of 

BOSS and Satellite are demonstrated in Figure 3.8 and Figure 3.9, respectively. These two 

figures clearly show that the proposed scheme outperformed over all the schemes for different 

types of image of data sets. 
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Figure 3.8: Payloads of the different schemes for the BOSS image dataset. 

 

Figure 3.9: Payloads of the schemes in the Satellite image dataset. 

3.4 Block Biasness Tendency Affairs for Further Improving the 
Prediction Accuracy 

Investigation shows that the pixels of a block are more similar to their block center, i.e., basic 

pixel. That is why, in predicting a pixel Ii,j, the proposed predictor applies the weighting factor 

of the context pixels as the inverse of their Euclidian distances from the predicting pixel. In 

natural images, both smooth and greater transitions of intensities among the pixel values, 

known as image gradient, are happened in a frequent manner. The value of the gradient 

becomes large when a big transition is observed. In a place of the greater gradient, two pixels 
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become non-correlated when pixels come from a bit apart places. On the contrary, the amount 

of gradient decreases sharply for two pixels of closed positions. In a block, the block pixels are 

closer to the basic pixel than their satellite pixels. Hence, further augmenting the assigned 

weights to basic pixel, in the Euclidian distance based weighted average predictor, will 

improve the prediction accuracy. The Eqs (3.2) and (3.3) for the prediction rules are modified 

in Eqs. (3.11) and (3.12), respectively, by incorporating a new parameter α.  In Eqs (3.11) and 

(3.12), the basic pixel is given more weight by assigning a value to α by greater than one. The 

α is restricted not to be greater than 3 because for a big value of α this predictor will be biased 

to estimate the basic pixel value directly and in that case, the objective of a weighted average 

of multi-block centers will be demolished. Besides, thereafter, the performance of the predictor 

decreases, as shown in Figure 3.10. This parameter α is used to meet the pixels' block bias 

tendency. 
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Figure 3.10: The effect of Alpha in estimating pixels. 

3.4.1 Result Analysis 

To demonstrate the improvement for the utilization of α in the prediction rules, the Figure 3.11 

is depicted. The comparison is performed between the Euclidian distance based predictor and 

the predictor that consider block bias tendency. The embedding capacity is improved by the 
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uses of the second predictor and hence, the frequencies of the embeddable errors are higher in 

this predictor. In this experiment the value of α was set to 3 as at α=3, the predictor shows the 

best performance, as shown in Figure 3.10. 

 

Figure 3.11: Improvement of payloads for α=4. 

3.5 Multi-Cycle Embedding Procedure 

In this chapter, we implement a multi-cycle embedding procedure where the scheme reuses the 

stego errors in each repeating step to implant bits using the same embedding rules. Applying 

the same implantation procedure for multiple times in the stego errors, the scheme enhances 

the embedding capacity. This multi-cycle embedment process is not deprecated only when the 

payload is big, but the data should be implanted into the same image; however, this process 

may reduce the image quality notably and the location map can disallow many pixels to accept 

bits. The location map is a binary map that keeps track of these pixels, which may exceed the 

grayscale if data bits are implanted into these. Therefore, 0 and 255 valued pixels are not used 

in the single cycle data embedment procedure. Similarly, {0, 1, 254, 255} and {0, 1, 2, 253, 

254, 255} valued pixels are not employed for embedding bits in the 2-cycle and 3-cycle data 

embedment procedure. A binary location map tracks the positions of these pixels in the image. 

This location map is compressed and implanted into the image along with other data. 

However, if the pixels within the range of [0, k] and [255-k, 255] are not used in k-cycle data 

embedment procedure and if these pixels are large in quantity, the embedding space will be 

shrunk dramatically. The investigation reveals that 34%, 0%, 14%, 64%, 38% and 20% images 
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in the dataset of Natural, BOSS, CalTech, Standard, Texture and Satellite, respectively do not 

contain any pixel with the values of 0 or 255. The investigation also reveals that 30%, 0%, 

14%, 64%, 36% and 16% images of the respective standard dataset images do not contain any 

pixel with the values of {0, 1, 254, 255}; while 28%, 0%, 12%, 60%, 34% and 12% images of 

the same datasets do not contain any pixel with the values {0, 1, 2, 253, 254, 255}. Therefore, 

we have lots of images where we can apply up to triple cycle data embedment process without 

the uses of location map. Even if the generation of location map is mandatory, this map can be 

handled by the existing methods stated in [32, 57]. The multi-cycle data embedment and data 

extraction processes are outlined in the following subsections. 

3.5.1 Embedment of Secret Information 

The embedding procedure takes a bit of information, s from the to be implanted stream cS at 

each embedding attempt and implants it into an error ,i jE . Let PTR be a pointer that points to 

the first position of  cS  and returns a message bit s on each of its sequential access. After each 

access, this pointer moves to the next position in the bit stream. Two steps as depicted below 

do the multi-times data embedment:  

Step 1. Each message bit s, which is returned by the PTR is embedded in the prediction 

error ,i jE  by using the Eq (3.7). 

Step 2. If PTR NULL , i.e., all the blocks are tried, then all the stego prediction 

errors ,i jE produced by using the Eq (3.7) are assigned to ,i jE , i.e. , ,i j i jE E , and 

Step 1 is repeated. 

The scheme counts the number of bits, say l, that is implanted in its last cycle. This l is 

converted to 16 bits binary. The embedding cycle k is converted to 3 bits binary. This 19 bits, 

i.e., 16 bits+3 bits, are finally implanted as a part of the assistant information by the last cycle 

in the upper part A of the image through substitution of LSBs as depicted in the Section 3.3.3. 

Say the upper stego part is A . The stego errors are added to the corresponding predicted values 

to form stego lower parts I . These two are concatenated to form the final stego image SI.  
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3.5.2 Extraction of Secret Information 

As depicted in Section 3.3.1, the stego image SI is divided into two parts– the upper part A  and 

the lower part  . The assistant information is collected from the stego image part  . If data 

embedment for multiple cycles is realized from the assistant information, the hidden message 

in the last cycle is extracted first by using the Eq. (3.9) and the errors are reconstructed by 

using the Eq. (310). After completing a cycle of data extraction, all the prediction errors 

,i jE are assigned to stego prediction errors ,i jE . The Eqs  (3.9) and (3.10) are applied again to 

,i jE  in the next extraction cycle to extract the remaining data and to reconstruct the cover 

prediction errors. This process is repeated until all the message bits are not extracted and the 

cover errors are not reconstructed. 

 

Figure 3.12: Comparison of payloads among the multi-cycle data embedment processes for the CalTech 
image data set. 

3.5.3 Result Analysis 

The proposed single cycle data embedment procedure stated in Section 3.3 demonstrates better 

results than its competing schemes regarding all the performance measuring parameters such 

as embedding payloads, PSNR. In this section, the multi-cycle processes are compared among 

themselves. As the stego image quality decreases with the increment of embedding cycles, 

only the results of first three cycles are presented in the following figures. The Figure 3.12 

demonstrates that the payload increases as the embedding cycle goes higher. The rate of 

improvement from the second cycle to the third cycle is smaller compared with the 

improvement from the first cycle to the second cycle. After each embedding cycle, the quantity 
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of embeddable errors decreases. The same scenarios are investigated in the Figure 3.13 and 

Figure 3.14, where the payload per unit PSNR loss and payload per unit structural similarity 

index (SSIM) are considered. Thus, it is investigated that the multi-cycle embedment schemes 

provide higher payloads per level of image distortions. 

 

 

Figure 3.13: Payload per unit PSNR loss in the multi-cycle scheme. 

 

 

Figure 3.14: Payloads per SSIM in the multi-cycle scheme. 

3.6 Resistance to Attacks 

The attackers use various steganalyzers to realize the existence of the hidden message in an 

image and to retrieve the secret in an unauthorized manner. The developers and the researchers 

also test the resistance of the proposed or implemented model by using different Steganalyzers 
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creating many virtual attacks. Several Steganalyzers like a histogram difference test (presented 

in the Section 2.7.2), standard deviations and correlation coefficient test (presented in the 

Section 2.7.3) and relative entropy test (presented in the Section 2.7.4) are used to analyze the 

robustness of the proposed scheme. The results obtained are tabulated in Tables 3.1-3.3. The 

entropy of cover image pixels and stego image pixels are measured first. The difference 

between these two entropies is presented in the Table 3.1. The table states that the difference 

values are very small. These smaller values confirm that the relative changes in the stego 

image with respect to the cover image are undetectable under the statistical analysis.  

Table 3.1: Differences in entropy values between the cover and the stego images  

Image Tsai Hong Euclidean 
Alpha 

Euclidean 
Cycle 2 Euclidean Cycle3 

Boat 0.00328 0.004079 0.006822414 0.021759 0.034933 
Camera Man 0.019866 0.026278 0.023318849 -0.52975 -0.47127 
Tiffany 0.009402 0.012604 0.014059786 -0.25278 -0.22789 
Lena 0.004386 0.005465 0.005598739 -0.24291 -0.22126 
Baboon 0.000509 0.000723 0.002899321 0.017921 0.018189 
Peppers 0.003265 0.003755 0.004240759 -0.17741 -0.17509 
Plane 0.014237 0.016943 0.015655001 0.030364 0.079689 
 

Table 3.2: The correlation coefficients and percentage of changes in the standard deviations of the cover 
and the stego images 

Tsai Hong Euclidean Alpha Euclidean Cycle 2 Euclidean Cycle3 
Change 
in Std* 

(%) 

Corr 
Coeff** 

Change 
in Std* 

(%) 

Corr 
Coeff** 

Change 
in Std* 

(%) 

Corr 
Coeff** 

Change 
in Std* 

(%) 

Corr 
Coeff** 

Change 
in Std* 

(%) 

Corr 
Coeff** 

0.304 1.000 0.295 0.986 0.289 0.986 4.777 0.921 4.784 0.921 
0.177 1.000 0.195 0.991 0.187 0.991 6.120 0.934 6.107 0.934 
0.534 1.000 0.548 0.989 0.515 0.989 9.583 0.910 9.521 0.909 
0.658 1.000 0.657 0.990 0.670 0.990 1.846 0.849 1.867 0.849 
0.881 1.000 0.884 0.979 0.892 0.979 0.308 0.857 0.300 0.857 
0.133 1.000 0.128 0.992 0.143 0.992 4.524 0.913 4.543 0.912 
0.581 1.000 0.588 0.986 0.585 0.986 9.958 0.866 9.971 0.866 

*Change in Std: % of Changes between the standard deviations of cover and stego image,  

**CorrCoeff: Correlation Coefficients. 
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Table 3.3: D values (stated in Section 2.7.2) computed from vertical and horizontal difference histogram  

Image Tsai Hong Euclidean 
Alpha 

Euclidean 
Cycle 2 

Euclidean 
Cycle3 

Boat 950.20 975.10 903.35 890.45 919.20 
Camera Man 1210.37 1214.15 1216.96 836.09 844.25 
Tiffany 1278.37 1285.03 1218.76 741.20 797.66 
Lena 3261.18 3250.73 3080.94 2861.22 2855.46 
Baboon 463.99 471.69 432.85 419.54 418.66 
Peppers 1868.70 1876.27 1718.80 1121.48 1172.47 
Plane 1507.52 1489.17 1463.34 838.13 930.42 

 

Table 3.2 indicates that the values of the correlation coefficients, which are measured 

from the cover and the stego images, are much larger, i.e., higher than 0.85. The differences of 

standard deviations, measured between the cover and the stego images, are always less than 

10%. These tabulated values ensure that the cover and the stego images are statistically more 

alike. These images accept message bits up to 20000 to 60000 depending on different schemes. 

Nevertheless, the value of D (stated in the Section 2.7.2) is less than 3000 in most of the 

images in different schemes. These mean that it is very hard to detect the changes in the stego 

image. Thus, the proposed scheme shows enough resistance against statistical attacks. 

3.7 Summary and Comments 

In every day, the volume of information communicated is increasing rapidly and thus the 

requirement for hiding the large volume of data. The proposed scheme improves the 

embedding capacity by employing several policies. Generalizing the partitioning size in the 

satellite-based prediction scheme is a unique contribution. The uses of Euclidian distance rules 

to rationally weight the context basic and satellite pixels and the application of alpha value in 

the prediction rules to put emphasis on bias tendency of block pixels towards their basic pixel 

have improved the prediction accuracy significantly. This accuracy in the prediction policy has 

acted as an agent to improve the frequencies of the two most appeared prediction errors. 

Consequently, the scheme finds more space to implant bits. The multi-cycle embedment policy 

is designed to satisfy the demand for larger payloads. Though the embedment of bits for 

multiple times into the same image will reduce the image quality, the quality degradation is not 

significant, i.e., remains below a threshold margin level (the value of SSIM is more than 0.85 

in more than 50 percent of images) up to three cycles data embedment. These multi-cycle 
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schemes will be a notable contribution in the field of image steganography. The statistical 

analyzers show that the scheme bears enough resistance against attacks.  
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Chapter 4 

Hybridizing Multiple Predictors 

In this chapter, an optimal prediction error generation method is proposed through employing 

multiple predictors and selecting the best one or a combination of them. The proposed scheme 

predicts multiple values for each pixel of the cover image, each of which is generated through 

the employment of a separate predictor. The scheme then measures the prediction errors for all 

of them. Investigations show that, for each predictor, the highest frequency appeared 

prediction error among the computed ones for an image is always 0 and, with some exceptions, 

the prediction error with the second highest frequency is -1. In the exceptional cases, 1 is 

observed as the second highest frequency predation error and then the frequencies of -1 and 1 

differ slightly. Hence, the single layer-embedding scheme proposed in this chapter implants 

message bits into the prediction errors of -1 and 0. After generating the prediction errors using 

each of the predictors, the scheme sequentially explores for the prediction error of -1 or 0 for 

each pixel among those measured by the different predictors and embeds a message bit into 

that error. If none of the prediction errors are embeddable, then the scheme applies several 

linear relations on those computed errors of the pixel to generate more errors, called the hybrid 

errors, with an intention of generating 0 or -1 as the prediction error for that pixel. The process 

increases the quantities of the two embeddable errors, and thus, increases the embedding 

capacity. These improved frequencies of the embeddable errors also reduce the amount of total 

error shifting and hence, lessen the degradation in the image quality. The experimental results 

presented in this chapter demonstrate significant improvements in embedding capacity and 

maintaining the stego-image quality compared with both the multi-predictor based schemes 

and single predictor based schemes presented in the literature. 

4.1 Introduction 

The prediction error based schemes predict each cover pixel value by employing one or 

multiple predictors. The prediction errors are computed by subtracting the predicted values 



 Chapter 4                                                                   Hybridizing Multiple Predictors   62  
                                    

 

from the values of the corresponding cover pixels. Few of these prediction errors centered at 0, 

known as the embeddable errors, are used to implant secret message bits. The number of 

embeddable errors increases when the prediction process estimates the pixel value more 

accurately. The more the embeddable errors, the more the embedding capacity as well as the 

better the stego image quality. Based on this philosophy, the prediction error based schemes, in 

the state-of-the-art, incorporated diverse prediction methodologies to improve the prediction 

accuracy. When the prediction accuracy is improved, the prediction errors present a better 

spiky Laplacian-like distribution [72] with the peak at zero or very close to zero. This spiky 

Laplacian-like distribution implies that the number of errors in and around the peak presenting 

error is increased. This is evident that the highest appeared error in the prediction error 

histogram is always 0. The second highest frequency error in most cases is -1. The value of the 

second most occurrence error is 1 in very rare cases and if it is, then the frequency of the error 

value 1 is very close to that of -1. Hence, the single layer (SL) data embedment schemes, e.g., 

[51], generally recon only -1 and 0 as the members of the embeddable error set. 

Though the predictor with better accuracy increases the frequencies of the errors of -1 and 

0, these will not greedily maximize the frequencies of these two errors, because a better 

predictor reduces only the magnitudes of prediction errors by improving the accuracy rather 

than intending to produce the errors of -1 and 0 only. Consequently, an improvement of 

prediction accuracy, while predicting a pixel value, does not ensure that the value of the 

corresponding prediction error will be -1 or 0. Indeed, then the predictor concentrates more 

prediction errors near 0. The errors rather than -1 and 0 are useless in the SL data embedment 

process as these are unable to accept any message bit. This chapter presents a new 

methodology that applies multiple predictors, say n predictors, on each pixel prediction for 

increasing the possibilities of generating prediction errors of -1 or 0 by using at least one of the 

predictors. In a case, when none of the predictors generate a prediction error of -1 or 0, an 

attempt is made to produce these two errors by employing the computed n prediction errors in 

m different linear relations as the output of them. Thus, each optimal prediction error is 

extracted from these n m  errors. Simulation results confirm that the proposed scheme 

provides almost 10%–9233% higher embedding capacity depending on the texture contents of 

the cover image, while ensuring the improved image quality compared with the competing 

ones. 

The whole process of the proposed scheme is organized into several sections. Section 4.2 

provides a description of the prediction policies and categorizes them from different 
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perspectives. This section is furnished with brief descriptions of the related existing schemes. 

The proposed multi-predictor based data embedment scheme is outlined in Section 4.3.  

Section 4.4 is organized to provide a demonstration of the experimental results and a 

discussion on them. Finally, Section 4.5 is for concluding the chapter. 

4.2 Prediction Policies for Generating Rich Embedding Space 

Prediction errors are generated in the first phase of the data embedment process, known as the 

prediction phase. In the prediction phase, the predictor predicts a pixel. The prediction errors 

are measured by subtracting the predicted values from the corresponding cover pixel values. In 

Section 2.2, several diverse prediction methodologies are presented for the prediction phases 

of the data embedment processes. These methodological varieties come from the policies of 

weighting the associated pixels in the prediction rules, the application of gradient responses, 

the uses of multi predictors, the exploitation of a number of reference pixels taken as context 

values in the prediction rules and their positions in the image. All of these predictors predict 

either a single pixel ([31]) or a group of pixels ([32]) from a set of homogeneous context pixels 

by exploiting the features of spatial association among the neighboring pixels of the cover 

image. Predictors are, therefore, classified as either single pixel predictor (SPP) or block pixel 

predictor (BPP). Associated pixels, used to predict the target ones by the predictor, remain 

unchanged during the data hiding process for the benefits of extracting the secret messages at 

the receiver end. The research presented in this chapter aims to enhance both the embedding 

capacity and the stego image quality by increasing the quantities of embeddable errors. The 

competing schemes in the area of SPP and BPP are listed in the Subsections 4.2.1 and 4.2.2, 

respectively. 

4.2.1 Related SPP Schemes for Hiding Data 

As an SPP scheme, Hong (2012) [31] presented a median edge detection based predictor where 

the predictor first detects a horizontal, vertical or diagonal edge that passes through it by 

comparing the values of the immediate left, top and left-top, i.e., corner, pixels. If the edge is 

vertical and passes through the left of the predicting pixel, the predictor picks the value of the 

top pixel as the prediction value of the working pixel. For the existence of a horizontal edge 

above the predicting pixel, it predicts the working pixel by the value of the left pixel. The 

expression of (left pixel value + top pixel value — corner pixel value) is computed for 
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generating the predicted value of the current pixel when no edge is detected. Ou et al. (2013)  

[72] proposed a methodology that predicts a pixel by repeatedly applying a partial differential 

equation (PDE) on four of its neighbor pixel values located at the top, right, bottom, and left. 

The scheme proposed by Yang et al. (2013) [107] predicted each pixel by taking the weighted 

average of those four neighbor pixels. Ma et al. (2015) [63] presented a scheme where multiple 

predictors were applied to predict each pixel value. Among these predicted values, the more 

accurate one is chosen as an optimal prediction value for the working pixel. Nevertheless, this 

predicted value does not ensure that this will generate an embeddable error. Chen et al. (2013) 

[11] employed two asymmetric predictors separately. First, a predictor is applied and the 

prediction errors are measured.  The embedding process implants bits into the highest appeared 

error by modifying this and its greater valued errors in the right direction in the error 

histogram. Next, the second predictor is applied and the embedding process is executed. In this 

embedding process, the highest appeared and its smaller valued errors are modified in the left 

direction in the error histogram. The main objective of the scheme is to reduce the amount of 

total error shifting. Indeed, this is a double-time data embedment process where, as if, two 

machines are individually embedding in the same image at two separate times. The scheme 

proposed by Wang et al. (2013) [97] applies two separate predictors where one predictor 

predicts a group of pixels in each image block, say, boundary pixels and another predicts the 

rest of them. The prediction values of these two disjoint predictors are not dependent on one 

another for any operational purpose. Details of these prediction schemes and their limitations 

are given in Chapter 2. 

4.2.2 Related BPP Schemes for Data Hiding 

As a BPP scheme, Tsai et al. (2009) [88] estimated the values of all pixels within a block from 

the value of its center pixel. Hong and Chen (2010) [32] improved this prediction scheme by 

associating the center pixels of four neighbor blocks along with its own center pixel in their 

prediction rules. These two schemes leave the block centers, known as the basic pixels, 

unchanged for the convenience of reapplying the same estimation process at the receiver. Lu 

and Huang (2014) [59] proposed a scheme for increasing the embedding capacity by bringing 

the basic pixels of all blocks in an imaginary plane upon the image and applying the same 

prediction and data embedment process in these pixels. In Chapter 3, we prove that the 

schemes presented in [32, 59, 88] cannot predict well in texture images when the deep valley 

or the sharp hill exists in a frequent manner around the working block. To overcome this, we 
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propose a new prediction scheme based on Euclidean distances between each working pixel 

and every of its context basic pixels to improve the prediction accuracy and thus, to enhance 

the number of embeddable errors. The work is published in the proceedings of ANTS 2015. 

Another BPP based method proposed by Leung et al. (2013) [51] improved the prediction 

accuracy by predicting pixel values in a block with the median value of block pixels. Chang et 

al. (2015) [7] presented a scheme where data bits are implanted into the block truncation coded 

image by shifting the residual errors in the histogram. The operational methodologies for all of 

these schemes and the limitations have already been detailed in Chapter 2. 

All the reviewed SPP based schemes [11, 31, 63, 72, 107] and BPP based schemes [7, 32, 

40, 51, 59, 88] are experimented and compared with the scheme proposed in this chapter. The 

simulation results demonstrate that the embedding capacity in our proposed scheme has been 

improved notably compared with its competing schemes. Additionally, this scheme also 

improves the stego image quality. 

4.3 Proposed Multi-Predictor Based Reversible Data Embedment 
Scheme 

The proposed reversible data embedment (RDE) scheme employs n predictors, say Ak for 

, in its prediction phase for increasing the frequencies of two highest occurrence 

embeddable errors -1 and 0. The scheme is also called the multi-predictor scheme and shortly 

as the n-predictor scheme, e.g., 2-predictor, 3-predictor and 4-predictor schemes for the uses of 

two predictors, three predictors and four predictors, respectively. Let the n predicted values for 

a pixel Ii,j at (i, j) location in the image in the n-predictor scheme are Pk,i,j. For example, if n=3, 

a cover pixel at (i, j) location is predicted by the predictors A1, A2 and A3 separately and the 

predicted values are P1,i,j, P2,i,j and P3,i,j respectively. The prediction error Ek,i,j for a specific 

predictor Ak is measured by subtracting the predicted value from the processing cover pixel, Ii,j, 

i.e., Ek,i,j = Ii,j –Pk,i,j. Similarly, n prediction errors are measured against each cover pixel Ii,j. 

The proposed scheme first sequentially examines n prediction errors E1,i,j, E2,i,j, ..., ..., En,i,j; if 

any of these errors hold a value r, where r ϵ{−1, 0}, then the first encountered r is considered 

as a final prediction error and this scheme stops the execution for this pixel and proceeds to the 

next pixel; otherwise the scheme generates m new errors, known as hybrid errors, by 

employing these n errors into m different linear relations. The scheme again looks for an error 

r inside these new m errors as well. If the error r is found, the first encountered -1 or 0 is taken 
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as an optimal prediction error. If the scheme is still unable to find an error of r, the minimum 

of the m hybrid errors is regarded as the optimal prediction error. The optimal error generation 

process is repeated for all the pixels. Let the generated optimal errors for the image pixels are 

ei,j. The proposed scheme increases the frequencies of the two errors of −1 and 0 in the 

computed prediction errors ei,j. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: A generalized algorithm for optimal error generation. 

The optimal error generation module keeps a track of the acting predictor (APi,j), i.e., 

optimal error provided by the predictor for each pixel at (i, j) location, for the purpose of to be 

utilized by the data embedment module. The methodology of generating optimal prediction 

errors and AP list is presented as an algorithmic module in Figure 4.1.  The encoder embeds 

Algorithm 4.1: CoverOptimalErrorGeneralized 

Prediction errors list: It contains n prediction errors.  

Hybrid errors list:  That contains m hybrid errors.  

Combine errors list: It contains n prediction errors and then m hybrid errors, thus total n+m 

errors. 

Step 1: It find an error from n prediction errors in the prediction error list that valued to -1 

or 0, if such error exists. If multiple errors arises with the value of -1 or 0, the first 

one is regarded as an optimal error for the working pixel. Say the position of the 

optimal error in the prediction errors list is k, the position of the optimal error in the 

combine error list is also k. It saves the value of k to APi,j. 

Step 2: If none of the n prediction errors of the prediction error list contains -1 or 0, it moves 

to the hybrid errors list. It finds the first encountered error from m hybrid errors, if 

such a hybrid error exists, which has a value of -1 or 0. If such an error is found in 

the hybrid errors list, it is regarded as an optimal error for the working pixel. Say, 

the position of that optimal error in the hybrid errors list is k. Then, the position of 

optimal error in the combine errors list is n+k. It saves the value of n+k to APi,j. 

Step 3: If both the steps fail to generate an optimal error, it measures the minimum of the 

hybrid errors as an optimal error value. If multiple values become the minimum, the 

first one is regarded as the optimal error. Let, the position of the optimal error in the 

hybrid errors list is k. The value of n+k, i.e., index value of the optimal error in the 

combine errors list, is saved to APi,j. 
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message bits into ei,j by its embedding rules as represented by the Eq. (4.2). After passing the 

data embedment phase, these modified optimal errors are termed as the stego errors, ,i je . If the 

amount of modification made due to data embedment is ,i jM , then , , ,i j i j i je e M  . The 

encoder finally forms the Stego image Si,j by adding each of the stego errors, ,i je  with the 

prediction value provided by the corresponding optimal error provided predictor. The 

parameter APi,j guides the encoder to find this prediction value, as it is done by Eq. (4.3).  

The embedding process works in a way so that each kth predictor in the decoder end can 

predict the same value Pk,i,j from the stego image without any ambiguity. Like the encoder, the 

decoder also generates n prediction errors and m hybrid errors. The process of measuring the 

optimal stego errors is outlined in the Section 4.3.1.2. The hidden message is extracted from 

these optimal stego errors by data extraction rules represented in Eq. (4.5). Thereafter, the 

original prediction errors are reconstructed to retrieve the cover pixels. 

The Sections 4.3.1 and 4.3.2 narrate the whole steganographic process. For a better 

understanding of the proposed scheme, first, a 2-predictor based optimal error computation 

method and the data embedment process are explained in Section 4.3.1. Finally, the 

generalized optimal error computation method is presented for n predictors in Section 4.3.2. 

The symbols M, e, e , Ek, I and S are used as the matrices of Mi,j,  ,i je , ,i je , Ek,i,j, Ii,,j and Si,j, 

respectively, in the explanation of the proposed scheme and error computation method. 

4.3.1 Two Predictors Based RDE Scheme 

The conventional single predictor based RDE scheme, as shown in Figure 4.2(a), utilizes only 

one predictor during their data embedment process. On the contrary, the proposed two-

predictor based RDE scheme applies two different predictors in its prediction phase, as shown 

in Figure 4.2(b). The two-predictor based scheme predicts each cover pixel separately by using 

each of the two predictors Ak, where {1,2}k  to obtain two prediction values. Let the 

predicted values and the prediction errors of these two predictors A1 and A2 are P1, P2, and E1, 

E2, respectively. 
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4.3.1.1 Generating Hybrid Errors 

The two error matrices E1 and E2 are used to generate new errors, 3xE , termed as hybrid errors, 

from an expression 3 1, 1, 1 2, 2, 2x x x x xE B E B E   , where x {1,  2} ; 1, 1, 2, 2, 1x x x xB B   ; 

1, 2,,  { 1,  1}x x    ; and 1,xB , 2,xB  are of integer-valued. The constraint of 1, 1, 2, 2, 1x x x xB B    

ensures that after choosing the value for 1,x , 2,x , 1,xB  and 2,xB , the hybrid error 3xE  will be 

E if we consider all errors like E1, E2 as E. This means that the hybrid error 3xE  is just another 

error. Although, 1,xB  and 2,xB can hold any value maintaining the constraint of 
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Figure 4.2: Single predictor vs. two-predictor based RDE Scheme: (a) Single predictor 
based RDE scheme; and (b) Two-predictor based RDE scheme. 
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1, 1, 2, 2, 1x x x xB B   , for the processing simplicity 1,xB  and 2,xB  are bounded here to hold only 

one of the values, say, {1, 2}. Eqs (4.1.1) and (4.1.2) are executed to produce two hybrid 

errors 31E  and 32E  (in the case of 1,xB , 2,xB {1,  2} ). 

 
2            (4.1.1)31 1 2
2            (4.1.2)32 2 1
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In the Eq.(4.1.1) 1,xB =2, 2,xB =1, 1,x =1 and 2,x =-1, whereas in the Eq. (4.1.2) 1,xB =1, 

2,xB =2, 1,x =-1 and 2,x =1. 

4.3.1.2 Generating Optimal Prediction Errors 

Using Algorithm 4.2 of Figure 4.3, each optimal prediction error 3E (temporarily stored in this 

variable before saving to e) is computed from the two prediction errors 1E , 2E  and the two 

hybrid errors 31E , 32E . A parameter AP keeps track of one of the 1E , 2E , 31E  and 32E for each 

of the pixels that provides the optimal error. For this purpose, first, the prediction errors are 

Figure 4.3: Generation of optimal prediction errors. 

1.  If 10  11E or E   then 

2.   1 1,3   E E APi jand   

3.  Else if 2 20 or 1E E   then 

4.   2 2,3   E E APi jand   

5.  Else if  31 310  1E or E    then 

6.   31 3,3   E E APi jand   

7.  Else if 32 320  1E or E    then 

8.   32 4,3   E E APi jand   

9.  Else  
  10.  31 32min(3 , )E E E  

  11.  31 32If E E then 

  12.  3,APi j   

  13.  Else 
  14.  4,APi j   

  15.  End if 
  16. End if 

Algorithm 4.2: CoverOptimalErrors2Pred( 1 2 31 32, ,  , E E E E ) 
 



 Chapter 4                                                                   Hybridizing Multiple Predictors   70  
                                    

 

assigned a numerical ID which ranges from 1 to n, here n=2 as it is for two predictors scheme. 

For example, ID is 1 for E1 and 2 for E2. Then, next m numerical values range from n+1 to 

n+m are assigned to m hybrid errors.  For m = 2, the hybrid errors of E31 and E32 are given a 

numerical value of 3 and 4, respectively. The ID of the optimal error presenting one is 

assigned as the value of the AP, e.g., APi,j =1 if E1,i,j is equal to -1 or 0, APi,j =2 if E2,i,j ϵ {-1, 

0},and so on, where Ex,i,j is the prediction error generated by the predictor Ax for the pixel at (i, 

j). An illustration of the stated optimal prediction error generation process is provided in the 

shaded area of Figure 4.2(b) as well as in Example 4.1. The Figure 4.2(b) is, indeed, a snapshot 

of the proposed embedding process that flows based on the Eq. (4.1). The former rhombus in 

the shaded area in the figure states that the scheme first sequentially checks whether E1 or E2 is 

equivalent to one of the values of embeddable errors of -1 and 0. If a value is found, the first 

matched value is regarded as the optimal prediction error value against the processing pixel. 

Otherwise, the Eq. (4.1) is applied to generate two hybrid errors E31 and E32, as shown in the 

first rounded rectangle in the shaded area of the figure. Like E1 and E2, an optimal error is 

computed from E31 and E32 if such a one is found, as shown in the second rhombus of the 

shaded area. If the hybrid errors still cannot provide the optimal error, then it is computed from 

the minimum of the two hybrid errors in the last rounded rectangle of the shaded area. Finally, 

message bits are embedded into these optimal errors. 

4.3.1.3 Message Embedment and Stego Image Generation 

The computed optimal errors 3E  are assigned to a two dimensional matrix ,i je , i.e. , 3, ,i j i je E  

each for one pixel of the image. Using the Eq. (4.2), all the message bits are then embedded 

into ,i je  in the encoder side. After the concealment of information, the modified errors  ,i je  are 

assigned to 3, ,i jE , i.e., 3, , ,i j i jE e . As a final step in the encoder end, the Eq. (4.3) is used to 

generate the stego image S. The pixels associated with the prediction rules remain as 

unchanged. The process of the data embedment and the stego image generation is explained in 

Example 4.2. 
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where, ,_ ( )i jsign of e  . 
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Example 4.1: Generating optimal prediction errors. 

Assume an image block as it is shown in Figure 4.4(a). The center pixel known as the basic 

pixel of the block is 55. Let the value of the basic pixels of its four neighbor blocks, not 

depicted in this figure, situated on top, right, bottom and left are 53, 54, 53 and 52, 

respectively. The predictors of Tsai et al.’s[88] and Hong and Chen's [32] schemes are 

separately applied to the block pixels. Say, these two predictors are A2 and A2 

correspondingly. The predicted values computed by A1 and A2 are tabulated in Figure 4.4(b) 

and 4.4(c), respectively. The respective prediction errors E1 and E2 are tabulated in Figure 

4.4(d) and 4.4(e), correspondingly. 

 

   

 
        (a)            (b)          (c)       (d)                (e) 

 

 

 
          (f)            (g)       (h)                  (i)        

Figure 4.4: Generating optimal prediction errors in the two-predictor scheme: (a) an instance of a cover 

image block; (b) the predicted values generated by Tsai et al. (2009)[88]; (c)  the predicted values 

generated by Hong and Chen (2010)[32]; (d) the prediction error values generated by Tsai et al. 

(2009)[88]; (e) the prediction error values generated by Hong and Chen (2010)[32]; (f) hybrid error E31; 

(g) hybrid errors E32; (h) optimal errors E3;  and (i) list of applied predictors AP. 

Hybrid prediction errors E31 and E32 are measured by applying Eqs (4.1.1) and (4.1.2) 

and these are tabulated in Figure 4.4 (f)-(g), respectively. Finally, algorithm 1 in Figure 4.1 

computes the optimal errors E3. Figure 4.4(h) demonstrates the generated optimal errors. 

Figure 4.4(i) lists the values of AP. Each predictor generates 8 errors. Among these 8 errors, 

the number of embeddable errors, i.e., -1 and 0, is 38% (3/8) in E1, 50% (4/8) in E2, 25% (2/8) 
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in E31, 75% (6/8) in E32 and 100% (8/8) in E3. This example shows that the two-predictor 

scheme has an increase of 62% and 50% in the generation of embeddable errors compared to 

the same for A1 and A2 predictor based scheme. 

 

 

Example 4.2. The data embedment and stego image generation processes. 

The 3E  computed in Example 4.1 is copied into ,i je  in Figure 4.5(a). Let a chunk of the 

message stream that is to be embedded is 11101001. The Eq. (4.2) is used to implant these 

message bits into ,i je . The Figure 4.5(b) demonstrates stego errors ,i je  generated. The data 

embedment process is started from the upper left corner and the scheme embeds bits into the 

errors row-by-row. For the convenient of stego image generation, some information such as 

the AP list, P1, P2, E1 and E2 are copied here in Figure 4.5(c)-(g) from the Example 4.1. The 

portions of Eq. (4.3) such as 4.3.1, 4.3.2, 4.3.3 and 4.3.4 that are used for stego image 

generation are noted in Figure 4.5(h). Figure 4.5(i) depicts the Stego block generated after 

applying the embedding process. 

  

 

 
                      (a)                      (b)                       (c)             (d)                       (e)  

 

 
                     (f)                     (g)                               (h)              (i) 

Figure 4.5: The process of data embedment into the optimal errors and the stego image generation: (a) 

optimal errors; (b) stego errors  i,j,; (c) acting predictors APi,j ; (d) predicted values using A1  predictor; 

(e) predicted values using A2 predictor; (f) prediction errors generated for A1  predictor; (g) prediction 

errors generated for A2  predictor; (h) list of equations applied during Stego pixel generation; and (i) 

Stego values.   

 

4.3.1.4 Message Extraction and Cover Image Reconstruction 

The decoder applies the same n predictors in the stego image to predict each stego pixel 

separately. Let these predicted values be d
kP . The encoder did not change the pixels, which 
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took part in the prediction rules. This implies that these d
kP  and Pk are the same, i.e. Pk= d

kP  

for all k. The scheme measures the stego prediction errors , ,k i jE  by , , , , ,
d

k i j i j k i jE S P  , e.g. 

1, , , 1, ,
d

i j i j i jE S P   and 2, , , 2, ,
d

i j i j i jE S P  . The stego hybrid errors 31E  and 32E  are generated by 

using Eqs. (4.4.1) and (4.4.2), respectively. 

 31 1 2

32 2 1

2            (4.4.1)
2            (4.4.2)

E E E
E E E

  


  
 (4.4) 

The AP and the optimal stego errors 3E  are generated by the decoder. This optimal error 

generation process is depicted in the flowchart in Figure 4.7. This figure states the process of 

generating the AP and the optimal stego errors for n predictors rather than two. Nevertheless, 

this is fully realizable for n=2. In this process, at first, the decoder generates the stego errors 

1E  to nE  and hybrid errors 1nE  to nmE , here n=2 and m=2, against each stego pixel. The 

encoder then arranges these stego and hybrid errors in two separate lists. An ID is assigned to 

each error as the encoder did it. The decoder sequentially searches in the stego errors, 1E  to 

nE  to find an encountered error of the value of -1 or 0. An error of -1 or 0 can be only found if 

this stego error conceived a bit 0 at the encoder end. If the decoder finds such an error, this is 

regarded as an optimal stego error and the corresponding ID of the error is stored to APi,j. If the 

decoder does not find an error value of -1 or 0, it looks for a stego error with the value of -2 or 

1. This is the case, when a prediction error of -1 or 0 was modified by implanting a message bit 

of 1 by the encoder. If the check finds a stego error with the value of -2 or 1, the decoder saves 

it as an optimal stego error to 3, ,i jE  and the corresponding ID to APi,j. If the decoder fails 

again, this implies that none of the stego prediction errors, i.e., none of { 1E , 2E , ..., nE }, 

conceives any message bit. In that circumstance, the scheme moves its execution pointer to 

hybrid errors to find an optimal stego error from them. The scheme repeats the whole process 

with the stego hybrid errors as it is done for stego prediction errors, i.e., it first checks in the 

hybrid errors for an error value of -1 or 0; if it fails, the scheme checks for an error value of -2 

and 1. When a matching case is found, the scheme saves the error as an optimal stego error to 

3, ,i jE  and its ID to APi,j. If the scheme is still unable to find an error of -2, -1, 0, and 1 from 

these checks, this indicates that the pixel did not conceive any message bit. The decoder then 

collects the minimum of the hybrid errors as an optimal stego error and store the corresponding 
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ID to APi,j. Thus, the decoder calculates the optimal stego errors, 3E , and the full AP for the 

image pixels. 

Assigning these optimal stego errors 3E  into ,i je , Eqs. (4.5) and (4.6) are executed to 

extract each message bit s and the cover error ei,j, respectively. Finally, Eq. (4.7) constructs the 

cover image I. An illustration of message extraction and cover image reconstruction is 

provided in Example 4.3. 

 
0       if 0 or 1, ,
1       if 1 or 2, ,

e ei j i j
s

e ei j i j



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
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
  
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where ,_ ( 1 )i jsign of e   , 0pH   and 1nH    

 

 
         (a)               (b)            (c)         (d)                    (e)  

 

 
          (f)                         (g)                     (h)                       (i)                       (j)  

 

 
            (k)                 (l)                   (m) 

Figure 4.6: Optimal error generation, message extraction and cover reconstruction process: (a) the stego 

image block S; (b) predicted values P1 using A1 predictor; (c) prediction errors  1 from A1; (d); predicted 

values P2 using predictor A2; (e) prediction errors  2 from A2; (f) hybrid errors of  31, produced by Eq.( 

4.4.1); (g) hybrid errors of  32, computed by Eq. (4.4.2); (h) AP list, formed by Figure 4.1; (i) optimal 

stego errors  3; (j) recontracted cover errors ei,j by using Eq. (4.6);  (k) extracted message bits M by 

using Eq. (4.5); (l) applied equations in each cell; and (m) the cover pixels. 

 

51 56 53 
52  56 
52 53 52 
 

55 55 55 
55  55 
55 55 55 
 

54 54 54 
54  55 
54 54 54 
 

-4 1 -2 
-3  1 
-3 -2 -3 
 

-3 2 -1 
-2  1 
-2 -1 -2 
 

-5 0 -3 
-4  1 
-4 -3 -4 
 

-2 3 0 
-1  1 
-1 0 -1 
 

4 1 1 
4  1 
4 2 2 
 

-2 1 -2 
-1  1 
-1 -1 -2 
 

-1 0 -1 
-1  0 
-1 -1 -1 
 

1 1 1 
0  1 
0 0 1 
 

eq. (4.7.4) eq. (4.7.1) eq. (4.7.1) 
eq. (4.7.4)  eq. (4.7.1) 
eq. (4.7.4) eq. (4.7.2) eq. (4.7.2) 
 

52 55 54 
52 55 55 
52 53 53 
 



 Chapter 4                                                                   Hybridizing Multiple Predictors   75  
                                    

 

 

 

 

Example 4.3. Message extraction and cover image reconstruction process from the stego 

image 

The stego block is reprinted in Figure 4.6(a) from the Example 4.2. The same predictors 

A1 and A2 are again applied in the stego block. Figure 4.6(b) and 4.6(d) list the predicted 

values P1 and P2, respectively. The corresponding stego prediction errors 1E  and 2E  are 

shown in Figure 4.6(c) and 4.6(e), respectively. Eqs. (4.4.1) and (4.4.2) generate the stego 

hybrid errors 31E  and 32E , which are depicted in Figure 4.6(f) and 4.6(g), respectively. The 

optimal stego errors 3E  and the list of AP are computed by using the process stated in Figure 

4.7. The AP list and all the optimal stego errors are demonstrated in Figure 4.6(h) and 4.6(i), 

respectively. Eq. (4.5) is used to extract the message of 11101001 from 3E  of Figure 4.6(i). 

The extracted message stream is shown in Figure 4.6(k). The original cover errors are 

computed by using Eq. (4.6). These cover errors are tabulated in Figure 4.6(j). The 

components of the Eq. (4.7), i.e. Eqs. (4.7.1) to (4.7.4) are applied in each cell during the stego 

image generation, are shown in Figure 4.6(l). The components of Eq. (4.7) reform the cover 

image block, as it is shown in Figure 4.6(m). 

 

4.3.2 Multi-Predictor Based RDE Scheme 

The n-predictor scheme is generalized to work with n number of predictors, where n is an 

arbitrary positive number. The scheme first predicts each pixel value by each of the n 

predictors and then measures n prediction errors for each pixel u. Say, these predicted values 

and the prediction errors are P1, P2, ..., Pn and E1, E2, ..., En, respectively. The rules of breeding 

the hybrid prediction errors are generalized by the following Eq. (4.8). 

 1, 1, 1, 1, , , ,... ...n m m m m n m n m n mE B E B E     , (4.8) 

where 1, 1, 2, 2, , ,... ... 1m m m m n m n mB B B      , each of 1, 2, ,{ , ,... ...., }m m n m    can hold a value 

from {1, -1} and m is the number of possible expressions represented by the Eq. (4.8). 

Primarily, 1 is assigned to each value of Bk,m, for k = 1 to n. If n is an even number, then in 

each m expression only one Bk,m will be updated by the value of 2 for the purpose of holding 
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the relation of 1, 1, 2, 2, , ,... ... 1m m m m n m n mB B B      . It is observed that 1,1 2B  , 1,1 1  , 

2,1 1B   and 2,1 1    are used to generate Eq. (4.4.1); while 1,2 1B  , 1,2 1   , 2,2 2B   and 

2,2 1   are used to generate Eq. (4.4.2). A list of possible  1,n mE   for 3, 4 and 5 predictors, i.e. 

n=3, n=4 and n=5, is shown in Table 4.1. 

A modified version of the Algorithm 1 of Figure 4.1 is employed to compute an optimal 

error and the AP value from 1 2, ,... ..., nE E E  and 1,n mE   errors. The Algorithm 1 is designed to 

work with two predictors and the algorithm checks the values of E1, E2, E31 and E32 

sequentially. In the generalized version, the algorithm serially checks n prediction errors, i.e. 

E1, E2, … … , En, and then m hybrid errors, i.e. 1,1nE  , 1,2nE  , ... ..., 1,n mE   to find the optimal 

error. The corresponding ID of the error is recorded in AP. After computing all the optimal 

errors and their respective AP, the scheme assigns 1nE 
 to ,i je . The embedding is done into the 

errors of ,i je  by using the Eq. (4.2). The stego errors ,i je  are then constructed by using the Eq. 

(4.2), are copied to 1,n mE  . Finally, the Eq. (4.9) produces the stego image. 

 
                if  ,1,

,         Otherwise, 1 1

P E AP ni jA ni jSi j I E Ei j n n

 



 

 





 (4.9) 

In the decoder end, the data extractor generates n stego prediction errors 1E , ..., nE  and m 

stego hybrid errors 1nE  , ..., n mE   for each of the processing stego pixels. Like the 2-predictor 

method, the decoder computes AP list and the optimal stego errors 1nE   for all the image 

pixels. The Eq. (4.5) extracts the every bit m of M from 1nE  . The Eq. (4.6) reconstructs the 

cover errors ,i je  from these optimal stego errors. Finally, Eq. (4.10) constructs the cover 

image in the n-predictor scheme. 

 
,                 if  ,,

,         Otherwise, , 1

i jP e AP ni jAi jIi j S e Ei j i j n

 


 







 (4.10) 

The optimal stego error generation process is depicted in Figure 4.7. The functionality of the 

flowchart is explained in the Section 4.3.1.4. For clarification of the proposed method, for an 

example, assume that the prediction errors of E1, E2 and E3 generated by three separate 

predictors are -2, -1 and 0, respectively. The hybrid errors of E41, E42 and E43 are computed 

from the expressions stated in Table 4.1 are -1, -3 and 1, respectively and the IDs of the errors 
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of E1, E2, E3, E41, E42 and E43 are 1, 2, 3, 4, 5 and 6, respectively. In the encoder end, the 

Algorithm 1 of Figure 4.1 generates an optimal error E4 = -1 and AP=2. If '0' bit is embedded 

into this error, the stego error 4E  will be -1, i.e., not changed. The decoder is blind about the 

value of the optimal error 4E , the AP and the embedded bit. Nevertheless, the decoder is able 

to compute 1E =-2, 2E =-1 and 3E =0 and then 41E =-1, 42E =-3 and 43E =1. The IDs of the 

stego and hybrid errors, 1E , 2E , 3E , 41E , 42E  and 43E  are 1, 2, 3, 4, 5 and 6, respectively. In 

these errors, 2E  is the first encountered one that holds -1, i.e., 2 { 1,0}E   . Hence, the 

optimal stego error is 2E  which is -1 and the respective APi,j is 2. The Eqs. (4.5) and (4.6) 

extract the message bit '0' from this error and reconstruct the error value to -1, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7: Generation of optimal prediction errors and AP list. 
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 Table 4.1: Possible expression for hybrid errors 1,n mE   

m 
Values of 1,n mE   for 

n=3 n=4 n=5 

1 E1-E2+E3 2E1+ E2- E3-E4 E1+ E2+E3-E4-E5 

2 E1+E2-E3 E1+ 2E2-E3- E4 E1+ E2-E3+E4-E5 

3 -E1+E2+E3 2E1-E2+E3-E4 E1+E2-E3-E4+E5 

4  E1-E2+ 2E3- E4 E1-E2+ E3+E4-E5 

5  2E1- E2-E3+E4 E1- E2+E3-E4+E5 

6  E1- E2-E3+2E4 E1- E2-E3+E4+E5 

7  -E1- E2+2E3+ E4 -E1+ E2+E3+ E4-E5 

8  -E1- E2+E3+ 2E4 -E1+ E2+E3- E4+E5 

9  -E1+ 2E2+E3- E4 -E1- E2+E3+ E4+E5 

10  -E1+ E2+2E3- E4 -E1+ E2-E3+ E4+E5 

11  -E1+ 2E2-E3+E4  

12  -E1+ E2-E3+2E4  

4.4 Result Analysis and Discussions 

The main objective of the proposed prediction error based reversible data embedment scheme 

is to increase the embedding capacity as well as to enhance the quality of the stego image. To 

test these two performances-measuring parameters of the scheme, i.e., embedding capacity and 

stego image quality, experiments are conducted on 50 texture, 50 standard, 5000 CalTech, 50 

natural and 50 satellite images in MATLAB. Both the SPP and the BPP based predictors are 

experimented on the above-listed image datasets. As the SPP based schemes, the predictors of 

Hong (2012) [31], Tai et al. (2009) [83], Yang et al. (2013) [107], Ma et al. (2015) [63] and 

Chen et al. (2013) [11] are tested and compared with the proposed n-predictor policies. The 

predictors of Tsai et al. (2009) [88], Hong and Chen (2010) [32], Lu and Huang (2014) [59], 

Kamal and Islam (2015) [40], Leung et al. (2013) [51] and Chang et al. (2015) [7] are 

employed in exploiting the BPP based schemes. Before applying the Chang et al.’s scheme, 

the image pixels are converted to truncation-coded values in our experiments. As a proposed n-

predictor scheme, the 2-predictor, 3-predictor, 4-predictor and 5-predictor are analyzed. 

Generally, ‘n-predictor’ is used in a sentence in this chapter to address it as a singular 
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collective noun; while the phrase ‘n-predictor policies’ is used as the plural collective noun. In 

both the SPP and the BPP based prediction categories, the proposed n-predictor scheme 

dominates the other schemes by the values of all the performance measuring parameters like 

the payload, i.e., the embedding capacity, peak signal to noise ratio (PSNR) and structural 

similarity index matrix (SSIM). In the demonstration, the performance measuring values are 

plotted along the y-axis for the experimented images. Each legend in the figures represents a 

scheme. The meaning of the legends is tabulated in Table 4.2. These 20 schemes, as listed in 

Table 4.2, are separately experimented and the results are compared in this chapter. 

4.4.1 Performance Analysis of the Predictors 

Taking the best of all, the n-predictor scheme enhances the quantity of the two embeddable 

errors, i.e., -1 and 0. Figure 4.8 depicts two prediction error histograms; one is for the SPP and 

other is for the BPP based predictors. The Figure 4.8(a) and Figure 4.8(b) demonstrate the 

prediction error histograms for several SPP and BPP based predictors, respectively. As a 

sample, only the 3-predictor is demonstrated in these figures. In both cases, i.e., in SPP and 

BPP, the 3-predictor scheme noticeably dominates the others by increasing the frequencies of 

the several highest appeared errors. The n-predictor scheme produces the highest frequency of 

the ‘0’ valued error. The scenario is the same while comparing the frequencies of ‘−1’ valued 

errors. Hence, the summation of these two embeddable errors is a lot more than the values of 

others. By improving the frequencies of the errors of −1 and 0, then-predictor scheme 

enhances the prediction accuracy as well. To test the prediction accuracy, prediction errors per 

predicting pixel (EPP) are measured where EPP is defined by Eq. (4.11). The values of the 

EPPs in the n-predictor policies are smaller than their competing schemes, as shown in Figure 

4.9(a) and Figure 4.9(b). 

 
 , ,

1 1

h w

i j i j
i j

I P
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 (4.11) 

where Ii,j is the predicting pixel, Pi,j is the predicting value, h and w are the width and 

height of the image and |.| means the computation of absolute value. 
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Table 4.2: An interpretation of the legends used in the Figure 4.8-4.11. 

Sr. Figure's Legend For Scheme of 

1 Tai Tai et al. (2009) 

2 Wien Hong (2012) 

3 Weijen Yang et al. (2013) 

4 Xiao2 Ma Xiaoxiao et al. (2015) with two predictors 

5 Xiao3 Ma Xiaoxiao et al. (2015) with three predictors 

6 Xiao4 Ma Xiaoxiao et al. (2015) with four predictors 

7 Kamal  Kamal and Islam (2015) 

8 Leung Leung et al. (2013) 

9 Wien Hong and Chen (2010) 

10 Tsai Tsai et al. (2009) 

11 Mid Chen et al. (2013) 

12 Truncation Chang et al. (2015) 

13 P2 Combined Wien and Weijen 

14 P3 Combined Wien, Weijen and Tai 

15 P4 Combined Wien, Weijen, Tai and Xiao2 

16 P5 Combined Wien, Weijen, Tai, Xiao2 and Xiao3 

17 P2:KL Combined Kamal and Leung 

18 P3:KLW Combined Kamal, Leung and (Hong, 2010) 

19 P4:KLWT Combined Kamal, Leung, (Hong, 2010) and Tsai 

20 P5:KLWTM Combined Kamal, Leung, (Hong, 2010), Tsai and Mid 

 

 
   (a)      (b)  

Figure 4.8: Comparison of prediction errors: (a) SPP and (b) BPP techniques. 

 



 Chapter 4                                                                   Hybridizing Multiple Predictors   81  
                                    

 

 
   (a)      (b) 

Figure 4.9: A comparison of EPP among the schemes: (a) EPP in SPP based schemes; and (b) EPP in 

BPP based schemes. 

4.4.2 Analysis of the Embedding Payload 

The total number of embedded bits, i.e., payload, by each scheme is measured for each image 

separately. Block or pixel skipping criteria used in different schemes (e.g., schemes of Hong 

(2012) [31]; Hong and Chen  (2010)[32]; Kamal and Islam (2015)[40]; and Leung et al. 

(2013)[51]) is omitted in this chapter to allow the schemes to embed data bits at their 

maximum capabilities. The payloads, which are obtained in the images of the CalTech101 

dataset, are delineated in Figure 4.10 along y-axis against the experimented images. The 

Figure 4.10(a) illustrates that the SPP based multi-predictor schemes like Ma et al.’s (e.g., 

Xiao2, Xiao3, Xiao4) and the proposed n-predictor policies (e.g., P1, P2, . . ., Pn) demonstrate 

superior payloads than all the single predictor based schemes, e.g. Tai, Wien, Weijen. The 

figure also states that between the multi-predictor schemes, the proposed n-predictor policies 

embed the highest amount of data and the values of embedded payloads are at a significant 

mark. It is also investigated that the amount of payloads raises for the use of more predictors, 

i.e., PL(P2, I) > PL(P3, I) > PL(P4, I) > PL(P5, I), where PL(X, I) represents the achieved 

payloads by the scheme of X in the image I. Similarly, Figure 4.10(b) exhibits the embedding 

payloads of n-predictor policies at a distinguishable higher level over the other BPP based 

schemes. These two figures prove that the n-predictor scheme outperforms in all the ways in 

providing better payloads. 

 To figure out the rate of improvement of n-predictor policy over the competing schemes, 

embedding gains are measured and analyzed as well. The embedding gains of the proposed n-

predictor scheme over the compared methodologies in each image I for the implantation of the 

same message stream are measured in percentage by using the Eq. (4.12). 
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 ( , ) ( , )( ) 100%
( , )

PL X I PL Y IEmbeddingGain I
PL Y I


  (4.12) 

where X {'P2', 'P3', 'P4', 'P5', 'P2:KL', 'P3:KLW', 'P4:KLWT', 'P5:KLWTM'} and Y {'Tai', 

'Wien', 'Weijen', 'Xiao2', 'Xiao3', 'Xiao4', 'Kamal', 'Leung', 'Wien', ' Tsai', 'Mid', 'Truncation'}. 

 
   (a)     (b) 

Figure 4.10: Comparison of payloads among the schemes: (a) payloads in SPP based schemes; (b) 

payloads in BPP based schemes 

Table 4.3: Embedding Gains of 4-predictor policy over the SPP based schemes in the CalTech image 

dataset. 

Gain of 4-predictor over the ↓ 
CalTech 

Min Max 

Tai 25 152 

Wien 21 143 

Weijen 19 519 

Xiao2 21 71 

Xiao3 18 56 

Xiao4 19 83 

 

As a sample, the minimum and the maximum gains of the 4-predictor based SPP and BPP 

policies are tabulated in Tables 4.3 and Table 4.4, respectively, only for the CalTech image 

dataset. All the minimum gains are positive valued. Several of the maximum gains are 

praiseworthy notable; even, these gains are some multiples of their competing schemes. The 

proposed scheme achieves the highest gains over the embedding into the truncated images by 

Chang et al. [7] for two reasons. Firstly, the data hider in [7] implants message bits into a 

truncated image, which is a compressed version of pixel value oriented. The compression 
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policy constructs the truncated image by encoding all pixels in each block into two integer 

values and preparing a binary map for the pixels. Consequently, the linear predictor, that is 

applied in [7], generates only two error residues for these two quantized integer values in a 

block and thus, the scheme embeds at most two bits per block in a truncated image. Secondly, 

the linear predictor in [7] operates on a group of pixels, while these pixels are collected from 

the separate blocks in the truncated image. These pixels, which come from separate blocks 

(i.e., from apart places), are more uncorrelated. The applied linear predictor then distributes its 

error residues over the error space more evenly rather than concentrating the majority of errors 

to a few values. 

Table 4.4: Embedding Gains of 4-predictor policy over BPP based schemes in CalTech image dataset. 

Gain of 4-predictor over the ↓ CalTech 
Min Max 

Kamal 27 199 
Leung 19 181 
Wien 35 211 
Tsai 27 226 
Mid 54 1276 
Truncation 1351 8349 

 

4.4.3 Analysis of the Image Quality 

The data embedment scheme alters the visual, the structural and the statistical information in 

the stego image regarding its cover image. The level of modification is estimated by using 

either a pixel difference measurement process or human visual based measurement processes. 

Two common mechanisms of pixel difference measurements are the mean-square-error (MSE) 

and PSNR. Two widely used human visual based measurement policies are the SSIM and the 

universal image quality index (UIQI). In this subsection, the image quality is measured and 

compared in terms of the PSNR and the SSIM values. 

4.4.3.1 Analysis of PSNR Values 

The PSNR of a stego image S of size h w , generated by embedding data bits into a cover 

image I of the same size, is measured. Thereafter, the PSNR loss (i.e., PSNR_LOSS is defined 

in Chapter 2) in each image due to data embedment is computed. 
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   (a)       (b)  
 

 
   (c)      (d) 
 
Figure 4.11: Comparison of PSNR values among the schemes: payload per PSNR loss in (a) SPP and (b) 

BPP based schemes; PSNR for different embedding capacities in (c) SPP and (d) BPP based schemes. 
 

Figure 4.11(a) and Figure 4.11(b) depict the number of implanted bits per PSNR loss in 

the CalTech image dataset as a clipped portion of the results for the whole dataset. The values 

of payloads per PSNR losses are plotted along the y-axis for each image. The figures clearly 

depict that the n-predictor policies implant more bits for the same level of PSNR losses than all 

other competing schemes. This is also investigated that the amount of payload per 

PSNR_LOSS increases for each higher value of n in the n-predictor scheme. Figures 4.11(c) 

and Figure 4.11(d) demonstrate the PSNR values of different schemes along the y-axis for the 

same level of embedding capacity achieved in the CalTech image dataset. The PSNRs at each 

level of embedding capacity is measured by averaging the PSNR values of all the images. The 

figures state that the n-predictor policies provide higher PSNR values during the same amount 

of data embedment. Thus, Figure 4.11 establishes that the proposed scheme achieves better 

stego image quality regarding PSNR value. 

4.4.3.2 Analysis of SSIM Values 

SSIM represents the affair of structural similarity between two images by a single numerical 

value. To compare the cover and stego image quality, the values of SSIM and structural 
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dissimilarity index matrix (SDIM) between these two images are computed. The detail 

methodologies for computing the SSIM and the SDIM between a cover and a stego image are 

described in Chapter 2.  

 
   (a)      (b) 

 
   (c)      (d) 

Figure 4.12: Comparison of embedding efficiency regarding the structural similarity index values 

among the schemes: payload per SDIM in different images in (a) SPP and (b) BPP based schemes; and 

SSIM at different capacities in (c) SPP and (d) BPP based schemes. 

Figure 4.12(a) and Figure 4.12(b) depict the quantity of implanted bits per one unit loss of 

SDIM, in both the SPP and the BPP based schemes, respectively. The values of payload per 

SDIM are plotted along the y-axis for all the experimented images. The figures state that for 

the same amount of dissimilarities, all the n-predictor policies implant more quantity of bits 

and the amount of embedded bits increases for the increment in the number of applied 

predictors in the n-predictor scheme. In another experiment, the changes in the image quality 

for different levels of embedding capacity are investigated in the n-predictor policies and the 

results are compared with all the competing schemes in Figure 4.12(c) and Figure 4.12(d). The 

figures demonstrate that the schemes loss the SSIM value for the achievement of every larger 

embedding capacity. The figures also state that the proposed multi-predictor policies maintain 

the higher value of similarity index and the similarity index value is larger in the scheme that 
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applies more predictors. This implies that the proposed scheme manages better stego image 

quality. 

From these analyses on the PSNR and the SSIM values, it is concluded that the n-

predictor policies preserve better stego image quality and embed more quantity of bits for the 

same amount of image distortions in the CalTech image dataset. 

4.4.4 Performance Evaluation of the Schemes in Different Standard Image 
Datasets 

The n-predictor and the reviewed schemes are experimented in other image datasets as well. 

The same data stream is embedded into each of the images by all the stated reviewed schemes 

and the proposed one. The results are presented in this subsection by averaging the values of 

payloads, PSNRs and SSIMs for each image dataset separately. This subsection also analyses 

the minimum and the maximum embedding gains in each of the image datasets for each of the 

schemes. Finally, the performances of n-prediction policies are presented for analyzing 

themselves. 

4.4.4.1 Analysis of Embedding Payloads in Diverse Image Datasets 

The average payloads of all the SPP and the BPP based schemes, obtained in different image 

datasets, are tabulated in Tables 4.5 and Table 4.6, respectively. The amount of payloads 

obtained by different schemes varies between the image datasets. The CalTech and the satellite 

images provide higher embedding payloads while the texture images present smallest payloads 

in all the experimented schemes. The reason is that most of the CalTech images highlight a 

single object. Variations among the neighbor pixels in such single object highlighting frames 

are small in magnitude. This virtue helps the predictors to predict more accurately and to 

enhance the quantity of the embeddable errors. Again, the satellite images contain cloud like 

large gray regions where the pixel values are very close to each other. Consequently, the 

frequencies of embeddable errors of −1 and 0 rise significantly in these two categories of 

images. On the other hand, in the texture images, greater transitions in pixel values between 

the pixels of each two neighbor regions are observed; whereas the natural and the standard 

images contain random pixel variations. Hence, the payloads in the images of these two last 

categories are at the moderate level. 
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Table 4.5: Average payloads in the SPP based schemes in different image datasets 

Schemes CalTech101 Standard Natural Texture Satellite 

Tai 15409 10362 9064 2891 12231 

Wien 16011 10615 9324 3256 12247 

Weijen 9735 4710 5152 987 9834 

Xiao2 18067 13458 11808 4112 13980 

Xiao3 18880 14477 12903 4511 14533 

Xiao4 18282 13770 12114 4248 14130 

2-predictor 17739 13017 11243 4419 13760 

3-predictor 19519 15301 12917 5756 15170 

4-predictor 20641 16785 14354 6421 16210 

5-predictor 22780 19678 16814 8080 18146 

 

Table 4.6: Average payloads in the BPP based schemes in different image datasets 

 Schemes CalTech101 Standard Natural Texture Satellite 

Kamal 18190 13759 13173 7350 15796 

Leung 18944 14477 13106 7805 16302 

Wien 18293 13902 13595 7351 15708 

Tsai 18163 13516 12494 7370 15806 

Mid 11525 7568 6933 1732 9825 

P2:KL 25376 22643 20652 14690 22643 

P3:KLW 27142 24776 23212 16348 24617 

P4:KLWT 30771 29591 27609 20869 28884 

P5:KLWTM 30099 29161 27028 20454 28169 

Truncation 1051 1669 782 424 1463 

 

While comparing embedding payloads among the SPP based schemes, it is investigated 

that the multi-predictor based methods, i.e., Xiao2, Xiao3, Xiao4, 2-predictor, 3-predictor, 4-

predictor and 5-predictor, present higher payloads. Among the multi-predictor based methods, 

the proposed n-prediction policies exhibit their superior performance on presenting better 

payloads. The results are tabulated in Table 4.5. Similar experiments are performed for the 

BPP based schemes and their results are put in Table 4.6. The average payloads tabulated in 

Table 4.6 underpin that the n-predictor policy notably dominates the competing schemes. 
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Again, in both the SPP and the BPP based n-predictor policies, this is also investigated that the 

scheme employed more predictors provides higher embedding payloads in all the image 

datasets. 

Table 4.7: Payload gain of 3-predictor scheme over the others SPP schemes in diverse image datasets 

Gain of 3-predictor 

over the ↓ 

CalTech101 Standard Natural Texture Satellite 

Min Max Min Max Min Max Min Max Min Max 

Tai 24 123 18 329 19 193 44 418 17 136 

Wien 19 120 15 191 20 189 41 202 17 138 

Weijen 17 463 15 627 19 529 73 460 10 392 

Xiao2 17 55 12 81 18 88 32 103 18 57 

Xiao3 19 42 17 63 14 57 23 68 17 37 

Xiao4 14 66 18 72 13 75 30 91 17 49 

 

Table 4.8: Payload gain of 3-predictor scheme over the others BPP schemes in diverse image datasets 

Gain of 3-predictor 

over the ↓ 

CalTech101 Standard Natural Texture Satellite 

Min Max Min Max Min Max Min Max Min Max 

Kamal 22 136 11 158 20 165 78 160 12 145 

Leung 15 127 19 153 17 149 59 152 19 138 

Wien 30 146 18 169 27 175 84 174 19 159 

Tsai 23 158 14 182 24 183 86 183 16 165 

Mid 47 1018 34 2475 41 1536 185 2930 27 1141 

Truncation 1197 6762 471 6705 790 7093 1018 9233 763 5666 

 

The results are also analyzed in terms of payload gains. The payload gains of the 

proposed n-predictor policies are always positive and this is a few multiple of some of the 

competing ones. As a sample, payload gains in 3-predictor policy regarding each of its 

competing schemes are presented in Table 4.7 and Table 4.8 for each image dataset, 

respectively, for the SPP and the BPP based techniques. Table 4.7 states that the minimum and 

the maximum gains are 17% and 418% over Tai, 15% and 202% over Wien, 10% and 627% 

over Weijen, 12% and 103% over Xiao2, 14% and 68% over Xiao3, 13% and 91% over 

Xiao4. Table 4.8 affirms that the minimum and the maximum gains are 11% and 165% on 

Kamal, 15% and 153% on Leung, 18% and 175% on Wien, 14% and 183% on Tsai, 27% and 

2930% on Mid, 471% and 9233% on Truncation. These afore gain figures validate that the 
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proposed scheme outperforms in all the image datasets regarding the volume of data 

implantation. 

4.4.4.2 Analysis of PSNRs in Diverse Image Datasets 

An average of PSNR values for each dataset is tabulated in Table 4.9 and Table 4.10 

separately for the SPP and the BPP techniques, respectively. Both the tables demonstrate that 

the PSNR values are higher in the proposed n-predictor policies. The PSNR of 50dBm or more 

is observed only in the proposed schemes. These PSNR values validate that the proposed 

scheme preserves the image quality better than the others. The reason is that the proposed 

predictor generates more quantity of embeddable errors. This is realizable from the Eq. 4.2 that 

the error value, and finally the pixel value, remains unchanged for embedding a bit of value 0. 

Consequently, the improved number of embeddable errors by the n-predictor policies has 

increased the number of unaltered pixels in the stego image regarding its cover pixels. As a 

result, the proposed scheme demonstrates better PSNR values. 

4.4.4.3 Analysis of SSIM Values in Diverse Image Datasets 

A larger value of structural similarity index indicates better similarities between two compared 

images. Table 4.11 and Table 4.12 show the SSIM values, respectively, in the SPP and the 

BPP techniques. Table 4.11 demonstrates that the values of SSIM obtained in the n-predictor 

policies are either higher or much closed to others. Table 4.12 outlines a definite improvement 

in SSIM values by the proposed scheme. 

4.4.4.4 Analyzing the Effect of Increasing the Number of Predictors in the n-Predictor 
Scheme 

The number of applied predictors in the n-predictor scheme has impacts on the time 

complexity, the payload and the image quality. The time complexity of the n-predictor scheme 

is proportionate to the number of predictors used because each predictor predicts pixels 

separately. If the quantity of pixels in a cover image is t, then the time complexity of the n-

predictor scheme to predict the cover pixel values will be O(nt), while it is O(t) for a single 

predictor based scheme. The time complexity of embedding data is always O(t), regardless the 

number of predictors used. Hence, the total time complexity of the n-predictor scheme is O(nt 

+ t), while it is O(2t) for the other schemes. The notation O(nt + t) is not a polynomial 
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representation and, thus, the recent computer may complete the whole process within a time 

ranges from very few seconds to a minute depending on the size of image and message length. 

In most embedding applications, the issue of improving the payloads and the image quality by 

a scheme is more important than its execution times if the required time is not too long. 

Table 4.9: Average PSNRs in the SPP based schemes 

Schemes CalTech Standard Natural Texture Satellite 

Tai 49.412 49.039 48.918 48.453 49.215 

Wien 49.467 49.071 48.941 48.478 49.216 

Weijen 49.442 49.109 49.090 48.457 49.320 

Xiao2 49.698 49.362 49.206 48.563 49.385 

Xiao3 49.714 49.381 49.234 48.566 49.393 

Xiao4 49.660 49.322 49.167 48.546 49.361 

2-predictor 49.854 49.556 49.365 48.677 49.524 

3-predictor 49.979 49.705 49.476 48.767 49.621 

4-predictor 50.002 49.735 49.509 48.772 49.634 

5-predictor 50.145 49.921 49.651 48.869 49.754 

 
Table 4.10: Average PSNRs in the BPP based schemes 

Schemes CalTech101 Standard Natural Texture Satellite 

Kamal 49.466 49.131 49.074 48.619 49.318 

Leung 49.532 49.192 49.068 48.650 49.366 

Wien 49.475 49.143 49.110 48.619 49.309 

Tsai 49.467 49.115 49.020 48.620 49.326 

Mid 48.935 48.667 48.613 48.241 48.854 

P2:KL 50.289 50.085 49.935 49.306 50.077 

P3:KLW 50.289 50.085 49.935 49.306 50.077 

P4:KLWT 50.675 50.572 50.362 49.700 50.495 

P5:KLWTM 50.604 50.530 50.303 49.664 50.422 

Truncation 0.380 0.363 0.387 0.397 0.369 
 

When the proposed scheme uses more predictors in its prediction phase, the quantity of 

embeddable errors is increased. This means that the embedding phase implants more message 
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bits. As the embedding rules do not change the value of an error as well as the respective pixel 

value while implanting a message bit 0, the quantity of unaltered pixels is increased. Due to 

producing more embeddable errors, the values of the payload, the PSNR and the SSIM are 

improved in the proposed scheme. The effects on the values of the payload, the PSNR and the 

SSIM due to the use of multiple predictors are demonstrated in Figure 4.13 (a)–(c) 

respectively. In these figures, the average value computed for each image dataset is 

demonstrated as a bar chart. All these figures justify that the better values for the payload, the 

PSNR and the SSIM are found for the employment of more number of predictors. 

Table 4.11: Average SSIMs in the SPP based schemes 

Schemes CalTech101 Standard Natural Texture Satellite 

Tai 0.493 0.450 0.360 0.157 0.389 

Wien 0.495 0.452 0.361 0.158 0.390 

Weijen 0.489 0.445 0.357 0.155 0.386 

Xiao2 0.493 0.450 0.360 0.156 0.388 

Xiao3 0.494 0.451 0.360 0.157 0.389 

Xiao4 0.494 0.451 0.360 0.157 0.389 

2-predictor 0.492 0.448 0.358 0.156 0.387 

3-predictor 0.493 0.449 0.359 0.156 0.388 

4-predictor 0.493 0.449 0.359 0.156 0.388 

5-predictor 0.494 0.451 0.360 0.157 0.389 

 

Table 4.12: Average SSIMs in the BPP based schemes 

Schemes CalTech101 Standard Natural Texture Satellite 

Kamal 0.520 0.459 0.372 0.157 0.400 

Leung 0.521 0.461 0.373 0.159 0.403 

Wien 0.527 0.467 0.380 0.162 0.408 

Tsai 0.524 0.464 0.375 0.161 0.405 

Mid 0.527 0.467 0.378 0.162 0.405 

P2:KL 0.528 0.469 0.380 0.163 0.408 

P3:KLW 0.529 0.470 0.381 0.163 0.409 

P4:KLWT 0.532 0.474 0.384 0.165 0.411 

P5:KLWTM 0.533 0.475 0.385 0.166 0.412 

Truncation 0.034 0.024 0.040 0.137 0.202 
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           (a) 

 

(b) (c) 

Figure 4.13: Observing the effects of using more predictors in the n-predictor scheme on performance 

measuring parameters on diverse image dataset: (a) payloads; (b) PSNR; and (c) SSIM. 

Among the image datasets, the scheme shows the less performance in the texture images 

because of having large valued gradients, i.e., the difference between the values of two 

neighbor pixels are observed due to the existing frequently sudden transitions. The poor 

performance of the predictors increases the quantity of non-embeddable errors. Non-

embeddable errors are shifted by an amount during application of the embedding rules and 

thus, destroy the image quality and decrease the value of the payload. Nevertheless, the 

analyses of this sub-section conclude that the n-predictor scheme shows superior performance 

regarding all the performance measuring parameters independently in the image datasets and 

the performance increases for employment of more predictors. 
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4.4.5 Resistance to Statistical Attacks 

Image steganography shields the disclosure of the secret data communication by hiding them 

into a cover image and makes the embedded data visually insensible. The n predictors and 

their application sequence defined by a negotiation between two communication parties 

impose five steps securities. Firstly, the third party does not know the number of predictors 

that were applied by the encoder. Secondly, without knowing the exact predictors Ak, the 

decoding is not possible. Thirdly, if the lists of parameters of the predictors are not known and 

the parameters are not initialized with proper values, no one can predict accurately. Fourthly, 

the values of , ,,  n m n mB   and m in the Eq. (4.8) will protect secret data from all unauthorized 

decoders, as it cannot generate the hybrid errors without them. Fifthly, without generating 

exact AP one cannot presume an optimal prediction error. To generate AP, one should know 

the exact sequence of the applied predictors along with other parameters. Though it is very 

hard to break these series of data securities, in a random fashion, one can deploy statistical 

analysis to comprehend the existence of the secret information within the stego image. To 

justify the steadfastness of the proposed scheme against statistical attacks two famous and 

latest techniques are analyzed in this chapter. These techniques work by analyzing the 

histograms of differences of adjacent pixels (HDAP) in the stego image and the behavior of 

cover and stego pixels by the generalized Benford's Law (gBL). The HDAP and gBL methods 

are described in Section 2.7 in details. 

4.4.5.1 Testing the Security of the Proposed Scheme by the HDAP Method 

For analyzing the HDAP method, adjacency pixel differences along the vertical and horizontal 

directions are computed. Four the snapshots of these two histograms are depicted in Figure 

4.14. Each snapshot, comprises of both vertical and horizontal difference histograms, displays 

no anomalies between the vertical difference histogram, vH  and the horizontal difference 

histogram, hH . A statistical difference D between  vH  and hH  is measured. The value of D 

becomes large when more quantities of pixel values are modified by the embedding rules. The 

values of D are plotted in Figure 4.15 for sixty images. It is observed that the proposed scheme 

comprises of two predictors provides the best performance as its D values are smaller than the 

others. It happens due to the fact that the proposed scheme increases the number of 

embeddable errors and thus, enhances the frequency of unchanged pixels. 
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Figure 4.14: Vertical and Horizontal Difference Histograms 

 
Figure 4.15: D-values between schemes. 

4.4.5.2 Testing the Security by the gBL 

The proposed scheme measures the values of id , stated in Eq. (2.18), and analyses their 

values. As a sample, the results of first four digits, i.e. 1 to 4, which are measured in our 

experiment, are presented in Figure 4.16, where the y-axis represents the values of id  and each 

minor tic along x-axis represents an individual image. The values are very small. For the 

convenience of visualization, the results of the proposed scheme and the Hong et al.'s (2010) 

scheme are compared. From the figure, it is observed that the id  values are smaller and very 

close to zero in the proposed scheme. This indicates that the changes in the digits are 

negligible. Hence, it can be concluded that the proposed embedding scheme has enough 

resistance to prove its effectiveness against any statistical attacks. 
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Figure 4.16: Result of Generalized Benford’s Law in the digits 1-4. 

4.5 Conclusions and Summary 

The reversible schemes suffer from the lower embedding capacity. Nevertheless, many 

applications related to forensic, medical, military and law enforcing agencies utilize both the 

extracted secrets and the retrieved cover image to their further processing stages at their 

decoder end. Increasing the embedding capacity and enhancing the stego image quality are, 

therefore, an attractive area to the researchers. The proposed n-predictor scheme increases the 

embedding capacity notably. The scheme is experimented on five different image datasets. 

These reveal that it enhances the embedding capacity of the SPP based techniques by 10%–

627% and the BPP based techniques by 11%–9233% depending on the texture properties and 

the pixel variations in the images. The self-reliant decoder can extract the secret message and 

also retrieve the cover image from the stego one. It is an effective method to meet the demand 

for larger embedding capacity. The analyses on both the PSNR and the SSIM ensure that the 

proposed scheme minimizes the distortions in the stego image compared to its competing 

schemes. The use of multiple predictors increases the security of the scheme as the list of the 

applied predictors, the prediction parameters and their application sequences are not open to 

any third party. The scheme also demonstrates its stronger resistance capability against the 

known statistical attacks. 
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Chapter 5 

Multilayer Multi-cycle Embedment Process 

In this chapter, a multilayer multi-cycle data embedment process is proposed, where 

embedment of secret bits is performed into the errors of multiple layers for multiple times in 

the prediction error histogram. Prediction error based traditional multilayer data embedment 

schemes conceal secret bits into a number of distinct and contiguous high-frequency errors. In 

an n layer data embedment scheme, concealment of data is performed in zero and its n 

neighbor errors from each of the positive and the negative sides, i.e., 2n+1 errors. Findings 

show that the value of the better part of the prediction errors is very close to zero and the data 

embedment capacity and the image quality drop sharply if the embedding is performed in a 

wider range of embeddable errors, i.e., for a large value of n. Hence, most of the traditional 

schemes restrain themselves from embedding data into a wider range of embedding layers. The 

investigation also states that the data embedment for k-times into the n/k layers of the 

prediction errors produces higher embedding payloads and maintains better stego-image 

quality compared with the n layer data embedment scheme concealing data for a single time 

only. The proposed multilayer multi-cycle scheme explores the points at which significantly 

better payloads can be obtained while maintaining a minimal image distortion. An improved 

performance in terms of embedding capacity and stego image quality was obtained 

substantially during empirical analysis, especially in the scenario of embedding large volume 

of data. 

5.1 Introduction 

In the prediction error based reversible data embedment schemes, data implantation is 

performed into a certain prediction error values [31, 32, 113, 114] known as the embeddable 

errors. The embeddable errors are defined from the contiguous peak-presented errors in a 

prediction error histogram (PEH). Embedding is performed into one or two peak-presenting 

errors in a single layer data embedment scheme. It is investigated that the highest appeared 
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error is always zero ('0') as shown in Figure 5.1. In most cases, the next highest appeared error 

is -1. Hence, in a single layer data embedment scheme, also known as the layer 0 data 

embedment scheme, the hidden message is implanted either in the error value of 0 or in both 0 

and -1. Though the single layer data embedment schemes ensure smaller degradation in the 

stego image quality, these schemes suffer from smaller embedding capacity. 

Many applications demand large embedding capacity and the size of the data to be 

embedded is increasing day by day. In the recent literature, multiple high-frequency layers of 

errors in the PEH are used to embed data in order to get better embedding capacity [31, 51, 54, 

84, 113, 114]. In an L layer data embedment scheme, for L≥0, message implantation is 

performed into the errors whose values range from L  to L , i.e., into 2L+1 dissimilar 

embeddable errors. The Figure 5.1 demonstrates the definition of layers in the PEH. Arrow 

lines from a layer label indicate the range of the positive and the negative outer errors that are 

encompassed within that layer. Although it is demonstrated in the Figure 5.1 that the layer 0 

encompasses only one error, called zero, in practice, it incorporates two errors, namely -1 and 

0. Embedding secret message in layer 1 ( L=1) means that message bits are concealed into the 

prediction errors of -1, 0 and 1 only, i.e., into 3 errors. Similarly, a scheme using 2-layer 

embedment (L =2) implies that the message bits are implanted into the error values of -2, -1, 0, 

1 and 2, i.e., into 5 errors. 

 

Figure 5.1:  Different layers of errors in a prediction error histogram. 

 

The value of employed error layers in the multilayer data embedment schemes depends 

on the volume of data to be embedded. During the embedment of large volumes of data, more 

error layers are employed. Nevertheless, using a higher number of layers ultimately results in a 

smaller increase in the embedding capacity because the frequency of each error decreases 

sharply from that of its immediate smaller valued error (in their absolute magnitude), as shown 
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in the Figure 5.1. On the contrary, employment of a large number of embedding layers, indeed, 

increases the amount of error shifting and hence, decreases the peak-signal-to-noise-ratio 

(PSNR) as well as the structural similarity index matrix (SSIM) values of the stego image. 

Therefore, rather than embedding data into the errors in an L layer data embedment process for 

a single time, embedding data bits into the L/k layer for k-times will provide larger embedding 

payload and better stego image quality. 

 

  
(a) (b) 

 
 

(c) (d) 

Figure 5.2: Prediction error histogram of Lena image: (a) before data embedment; (b) after single 
cycle data embedment into layer 2 errors; (c) after single cycle data embedment into layer 1 errors; 

and (d) after double cycle data embedment into the errors of layer 1. 

 

Figure 5.2 demonstrates the justification of obtaining better payloads and PSNR values 

from the use of L/k embedding layers for k-times compared with the one from the use of a 

single cycle L layer data embedment scheme. For the simplicity, the demonstration is 

performed for L = 2 and k = 2. A PEH generated by applying a block median predictor on the 

Lena image of size 255 255  is shown in Figure 5.2 (a). The figure demonstrates that the 

number of errors with value ranges from -1 to 1 is Freq(-1:1) = 14744, while Freq(-2:2) = 

19772. If a scheme A1 embeds message bits into every error of L=2 of the computed prediction 

errors, as shown in Figure 5.2 (a), it yields the payloads of 19772bits and the change of PEH is 

depicted in Figure 5.2(b). Alternatively, the scheme A2 may implant message bits for double 

times into every error of layer LD=L/2. Embedding into the errors of layer LD=1 for the first 
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time, the scheme yields a payload of 14744 bits. The modified PEH, due to data embedment 

into the errors of LD =1 for a single time, is depicted in Figure 5.2(c). After the first cycle, if 

the scheme A2 is allowed to embed again, i.e., for second times, into the errors of L=1 of the 

Figure 5.2(c), the scheme will embed 10466 bits more. The modified PEH after the double 

cycle data embedment by the scheme A2 is presented in Figure 5.2(d). After the double cycle 

data embedment process, the scheme A2 will present 25300 bits of payloads in total. This 

payload is greater than the payload of L=2 single cycle data embedment, i.e., 19772bits. Thus, 

the demonstration proves that the double cycle process produces higher payloads by 

embedding into the errors of layer 1 compared with the scheme that embeds into the errors of 

layer 2 for a single cycle. In a constraint of achieving the same amount of embedding 

payloads, the double cycle scheme will present better stego image quality than the single cycle 

process. To achieve the same payloads, i.e., 25300 bits by a multilayer single cycle scheme, it 

has to embed into the errors of L=4, i.e., error points of {-4, -3, -2, -1, 0, 1, 2, 3, 4}, because 

Freq (-3:3)=23580 and Freq(-4:4)=26556 in the Figure 5.2(a). In case of applying single cycle 

embedment process into the errors of 4 layers, the positive and the negative valued non-

embeddable errors have to be shifted by 4 and 5 units respectively to prepare enough space for 

the movement of embeddable errors, whereas in the 1-layer double cycle scheme, these 

negative and positive valued non-embeddable errors have to be shifted by 2 and 4 units 

respectively. The shifting of pixel values is deeply affected by the layer value. Hence, a 

scheme will introduce higher order of image distortions by exploiting errors of 4 layers in their 

single cycle process rather than errors of 1 layer in a double cycle process. The scenario will 

be more promising (both for payload and PSNR) if the value of L is replaced by a higher 

magnitude and k is chosen to a larger value than 2. In addition, attackers may classify the 

highly distorted stego images by employing statistical attacks. Consequently, increasing the 

embedding payloads by employing more layers in the single cycle scheme may introduce a 

new dilemma of successful statistical attacks. Hence, in addition to improving the image 

quality, the use of multi-cycles will introduce new security features like the number of 

exercised cycles and quantities of exploited embeddable error points which are part of a shared 

key. These analyses motivate to propose the thesis in favor of using L/k embedding layers for 

k-times rather than L layers for a single time. 

In the present chapter, the proposed scheme implements a novel multilayer, multi-cycle 

(MLMC) embedding scheme by applying the same embedding process for multiple rounds 

into the errors of a defined layer. The proposed scheme verifies that the multi-cycle embedding 

attempt enhances the embedding capability of the scheme to hide massive amounts of data. 



 Chapter 5      Multilayer Multi-cycle Embedment Process     100  
                                    

 

The process of embedding hybrid data of type numeric, text and audio is outlined in this 

scheme. This unique representation will expand the scope of the scheme to be utilized for 

various purposes like hiding text and audio data related to interviews, investigations and 

reports; and such in forensic, medical, scientific and many other official applications.  The 

estimation process for an optimal layer value is presented in this multi-cycle scheme. The 

scheme also verifies that to achieve the same capacity of k cycle embedding into L/k layers, 

i.e., MLMC, the multilayer, single cycle (MLSC) scheme has to entrench in more than L 

layers. This implies that MLMC scheme reduces the total amount of error shifting. To justify 

the claims, experiments are conducted on diverse image datasets - CalTech dataset comprising 

of 5000 images, BOSS dataset contained 500 images and a standard dataset of 50 images. The 

experimental results and analyses prove that the multi-cycle embedding scheme successfully 

implants massive and hybrid data of type numeric, text, and audio. The MLMC scheme 

provides both higher embedding capacity and stego image quality simultaneously. 

The rest of the chapter is organized into five more sections. In Section 5.2, list of 

reviewed schemes is provided. Section 5.3 is devoted to detailing the proposed multi-cycle 

embedding process. In Section 5.4, the experimental setup, results and their discussions are 

demonstrated. The resistance against statistical attacks is tested in Section 5.5. Finally, Section 

5.6 provides concluding remarks. 

5.2 State-of-the-Arts 

Tai et al. in 2009 [83] and Zhao et al. in 2011 [113] applied differences of adjacent pixel pairs 

as an embedding space in their multi-layer embedding schemes. Luo et al. in 2011 [61] 

produced a difference histogram by exploiting spatial correlation among block pixels. 

Embedding capacity for these schemes is still very low as they embed bits by modifying the 

histogram of adjacency pixel differences, known as the spatial errors, and it is evident that the 

frequencies of several peak errors in the PEH are much higher than those in the spatial error 

histogram. Therefore, many schemes, e.g., Hong in 2012 [31], Hong et al. in 2010 [32], Kamal 

and Islam in 2015 [40], Leung et al. in 2013 [51], Govind et al. in 2015 [26] and Wang et al. 

in 2014 [94], utilize the prediction errors as an embedding space to achieve higher embedding 

capacity. Though the schemes exhibit their variations in their prediction methods and some 

processing stages, these schemes behave just the same during their data embedment. Pan et al. 

in 2015 [114] introduced a different approach of embedding into spatial domain by using 
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multi-layer embedding process. All of these stated schemes are briefly described in Chapter 2 

along with their limitations. 

5.3 Proposed Multilayer Multi-Cycle Embedment Scheme 

The proposed scheme implants message bits into the prediction errors generated by a predictor. 

It does not enhance the prediction accuracy of the applied predictor, rather improves the 

embedding capacity by implanting bits for multiple times into the errors. Therefore, what 

predictor is applied in the prediction phase of the scheme is not a concerned issue of this 

Section. Let ,i je  is the measured prediction error of the pixel at location (i, j) in the image I. 

The error values ,i je , where ,255 255i je   , are termed as the cover errors. The scheme first 

defines the multi-cycle embedding layer (MC_L) in the prediction error histogram. The 

embedding layer MC_L comprises of the errors from -MC_L to MC_L. These error samples are 

known as the primitive embeddable errors. Primitive embeddable errors are measured at stage 

zero, i.e., before starting the data embedment task. In the first round, the proposed multi-cycle 

scheme embeds secret bits into the errors of MC_L layers of the PEH, i.e. into the error points 

of _ ,  ...,  1,  0,  1,  ...,  _MC L MC L  , by the embedding rules of [51]. An error point 

represents a sample value and the frequency of an error point could be greater than or equal to 

zero. After this round, the processed errors are termed as the stego errors at stage one. It is 

investigated that many of the errors of stage one still hold their primitive values, i.e., many 

embeddable errors of stage zero remain unchanged at stage one. Even, the majority of the 

primitive embeddable errors of stage zero do not cross the range [-MC_L, MC_L] after the first 

round of data implantation, as shown in Figure 5.2(c). The stego errors of first embedding 

cycle, i.e., errors at stage one, are reused for data embedment in the second cycle. The second 

cycle employs the same embedding procedure to implant data bits into the errors of stage one, 

i.e., into the error values of _ ,  ...,  1,  0,  1,  ... and _MC L MC L  . The second round 

generates the stage two stego errors. The process repeats its task for k times in a k-cycle 

embedding scheme. The flowchart depicted in Figure 5.3 portrays the process. In this block 

diagram, it is observed that the scheme starts for 1c   and embeds data bits into the errors of 

,i je . After the completion of bit implantation into the errors for a round, the cycle counter c is 

increased by 1. If the execution cycle c is not greater than the planned cycle k, it assigns the 

modified error ,i je  in ,i je  to reuse the errors by the same embedding rules in the next round. 
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This way, the flowchart depicts the module that embeds data bits into the errors for k-times and 

finally the module supplies the stego errors to its next phase for the generation of stego pixels. 

 

  

Figure 5.3: Flowchart of multi-cycle embedding scheme 
 

5.3.1 Defining Embeddable Errors in MLMC Schemes 

The MLMC scheme employs more than one layer, i.e., _ 0ML C  , for k-times to embed data 

bits in its k-cycle scheme. That is, as embeddable errors, the scheme employs (2 _ 1)MC L   

separate valued error points in each of the k cycles of the embedding process. In each of the 

stage, the scheme encounters (2 _ 1)MC L   different error points. Thus, the process 

encounters a total of k (2 _ 1)MC L   error points during its k-cycles. To relate the schemes of 

MLSC and MLMC for the measurement of embedding efficiency, total encountered error 

points (2L+1) in MLSC and k (2 _ 1)MC L   in MLMC should be theee same and hence, 

(2 1) (2 _ 1)L k MC L   , where L is the embedding layer of MLSC scheme. As k, L and 

MC_L are integer values, (2 1)L   and (2 _ 1)k MC L   will not be equal for all the values of k, 

L and MC_L, e.g. if L=4 then both (2 1)L   and (2 _ 1)k MC L   will be equal only for k=3, 

MC_L=1 and if L=7 then the equality will be held only for k=5, MC_L=1 or k=3, MC_L=2. 

This means that if k is allowed to be chosen to any value, the relation 

(2 1) (2 _ 1)L k MC L   , i.e., 2 _ 1 (2 1) /MC L L k   , will not be held always, e.g., the 

equality in the stated relation will not be held for L=7 and k=4. In that case, total encountered 

errors in both the MLSC and the MLMC schemes are managed to be very close valued. This is 

done by the relation (2 _ 1) ( mod( , )) /MC L l k l k k    , where (2 1)l L   and mod( , )l k  is 

the modulus value of l and k. Then, ( mod( , )) /l k l k k   can be either an odd or an even 

number. Let,  ( mod( , )) /l l k l k k    .  The negative valued embeddable error points in 

Single time 
embedment  into 

,i je  by eq. (4.2) 

c=1 

c=c+1 c≤k 
,i je  

Stego 
errors No 

Yes 
,i je = ,i je  
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MLMC scheme will be from -1 to -
2
l 
 
 

 (i.e., total 
2
l 
 
 

 different errors) whereas the positive-

valued embeddable error points will be either from 0 to 
2
l 
 
 

-1 or from 0 to 
2
l 
 
 

 (i.e., 
2
l 
 
 

 or 

2
l 
 
 

+1 different errors) depending on whether l  is even or odd valued respectively. Hence, 

the proposed scheme further replaces the concept of the MC_L by two parameters – number of 

different negative valued embeddable error points (nNEP) and number of different positive 

valued embeddable error points (nPEP), while, the negative valued embeddable error points 

are from -1 to -nNEP and positive valued embeddable error points are from 0 to nPEP-1, as 

shown in Figure 5.4 by two separate gray colors. In the figure, the bars with bright gray color, 

mid-level gray color and black color represent the positive-valued embeddable errors, negative 

valued embeddable errors and non-embeddable errors, respectively. When mod( , ) 0l k  , the 

MLMC scheme sets nNEP= l /2, nPEP= l /2; otherwise it sets 

1 and 
2 2
l lnPEP nNEP
    

     
   

. 

The replacement of MC_L by nNEP and nPEP will allow the scheme to extend its scope 

of selecting an arbitrary number of embeddable error points in a side, depending on different 

types of histogram properties and demand of the applications. 

 

Figure 5.4: Categorizing embeddable error points. 
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5.3.2 Defining the Data Embedment Principles in MLMC Schemes 

Each message bit m of the message stream M is implanted into an embeddable error of     , say, 

err , where ( 1)nNEP nPEPerr     using the embedding rule given in Eq. (5.1). The 

equation modifies the negative valued non-embeddable errors by -nNEP and the positive-

valued non-embeddable errors by nPEP by the first two rules of the Eq. (5.1), respectively. 

The third rule of the Eq. (5.1) implants data bits m into an error ,i je  when ,i je  becomes an 

embeddable error. The embeddable errors are modified by 2 ,i je  or 2 ,i je +1 depending on 

implanted bit 0 and 1 respectively. These modified errors are e . 

 
, ,

, , ,

,

             
                

2                           

i j i j

i j i j i j

i j

e nNEP if e nNEP
e e nPEP if e nPEP

e m Otherwise

   


  
 

 ( 5.1) 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: k cycle data embedment algorithm. 
 
The MLMC scheme applies the Eq. (5.1) in its each embedding cycle to implant data bits. 

At each cycle, the scheme implants the bits of the bitstream M into nPEP+nNEP error points, 

i.e., error values range from -nPEP to nNEP-1. The seven steps of Algorithm 5.1, i.e., steps 1 

to 7, in Figure 5.5 define the k-cycle embedment process. This k-cycle process embeds total 

|M| bits, say tBits, into the errors, where |.| stands for the length of a string. The algorithmic 

step 1 of the Algorithm 5.1 initializes values for the execution controllable parameters. Steps 2 

Algorithm 5.1: kCycleEmbedment ( ,i je , M, k, nNEP, nPEP) 

Step 1. Set cycle=1,  tBits M  

Step 2. Read a bit m from M. Embed the  m into ,i je  by the Eq.(5.1) 

Step 3. 1tBits tBits   

Step 4.  If 0tBits   and all errors in ,i je  are not tried, go to  Step 2 

Step 5. Set cycle=cycle+1 

Step 6. If cycle≤k and 0tBits  , set , ,i j i je e  and go to step 2 

 Else  Go to step 7 

End if 

Step 7. Announce the completion and stop the task 
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to 4 implants bits in a cycle by the Eq (5.1). Steps 5-6 are used to repeat the cycles for k times. 

Finally, step 7 terminates the execution task. 

 

 

Figure 5.6: Error shifting by first and second cycle data embedment process. 

 

For an example, Figure 5.6 depicts a 2-cycle embedding scenario where both the nNEP 

and nPEP are set to 4. The figure narrates the functionality of the Eq. (5.1) in each embedding 

cycle. Errors of each error points are modified by two stego errors in each embedding cycle by 

using the Eq. (5.1), e.g., errors of values of -1 and 0 are modified to the values of -2, -1 and 0, 

1 respectively, depending on the message bit m to be implanted in each error. In the figure, the 

primitive embeddable errors ,i je  are labeled just below the first horizontal line. These are the 

embeddable errors at stage zero. The stego errors at stage one are provided just below the 

second horizontal line. Similarly, the stego errors at stage two are noted just below the third 

horizontal line. The shaded area states the range of embeddable errors in each round. A pair 

represented by two down arrowed lines depicts the possible modification of each error in a 

cycle. The shaded lines are used to highlight the errors, which are crossing the embedding 

range after the embedding cycle. After the first round, the embeddable errors of stage zero, i.e., 

-4 to 3, will be dispersed within -8 to 7 in the errors of stage one. The scheme will consider the 

-4 to 3 valued errors of stage one as embeddable errors for the second round. After executing 

the embedding process for k-times, the stego pixels ,i jS  of the corresponding cover pixels, ,i jI , 

is formed by adding these modified errors ,i je  with its respective predicted values. 

0 1 2 3 -4 -3 -2 -1 4 5 6 7 -8 -7 -6 -5 

... ... ... ... Original ,i je  , c=1 

0 1 2 3 -4 -3 -2 -1 

nNEP=4 nPEP=4 

Come from original 
errors of -2 

Come from 
original errors of 1 

,i je  after 
c=2 

0 1 2 3 -4 -3 -2 -1 4 5 6 7 -8 -7 -6 -5 

,i je  after c=1 

Come from original 
errors of 2 and 3 

Come from original 
errors of -3 and -4 
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5.3.3 Defining the Principalities of Data Extraction and Cover Image 
Reconstruction in MLMC Schemes 

The stego error ,i je  is a modified value of ,i je  obtained after embedding the message bits into 

them.  While measuring ,i je , the sender side applies prediction rules associating a set of pixels. 

The receiver end generates the same predicted values by the affairs that the context pixels 

participated in the prediction rules in the encoder side as they were remained unchanged in the 

stego image by the sender [32] or in the meantime, the same pixels are generated by the 

decoder [31, 107]. The decoder easily computes stego errors ,i je  by subtracting the predicted 

values from the respective stego contents. The Eq. (5.1) states that in each embedding cycle, 

the encoder at the sender side modified and dispersed positive valued embeddable errors from 

0 to 2nPEP-1 and negative valued embeddable errors from -1 to -2nNEP while implanting data 

bits. Consequently, the Eq. (5.2) is applied to extract the message bits from these 

 2 ,  2 1nNEP nPEP   ranged stego errors, i.e., from ,i je  where ,2 2i jnNEP e nPEP   . All 

the modified errors of a cycle are reconstructed by Eq. (5.3). 

 ,1           mod( , 2) 1
0                        

i jif e
m

Otherwise







 (5.2) 
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/ 2          2 1
/ 2              0 2

            2
               2

i j i j

i j i j
i j

i j i j

i j i j

e if nNEP e
e if e nPEP

e
e nNEP if e nNEP
e nPEP if e nPEP

   

 


  

 



  





 (5.3) 

The steps 1-6 of the algorithm 5.2 of Figure 5.7 are executed to extract the whole message 

stream from the stego prediction errors ,i je  and to reconstruct the original prediction errors 

,i je . Step 1 directs the scheme to start the extraction and reconstruction processes from the k-th 

cycle modified errors. Step 2 extracts the secret message bits by using the Eq. (5.2). This step 

extracts the message bits that were implanted in this execution cycle by the encoder. Step 3 

reconstructs the errors which are primitives regarding this execution cycle, i.e., the errors of 

stage k-1. Steps 4-5 control the execution of the steps 2-3 for k-times. Finally, step 6 

announces the completion of the task. 

As a final point, the decoder reconstructs the cover contents by adding the predicted 

values with the corresponding ,i je . The applied predictor, its parameters, the value of k, nNEP 



 Chapter 5      Multilayer Multi-cycle Embedment Process     107  
                                    

 

and nPEP act in a group as a secret key for providing stronger data security at its bit extraction 

and error reconstruction phase. 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 5.7: Secret extraction and cover errors reconstruction processes 

5.3.4 Selecting Embeddable Errors for Fixed Payload 

In most applications, the length of embedded data, i.e. |M|, is a fixed value. Let, the length of 

the message be C. The proposed scheme embeds the target payload of length C into the errors 

of values ranging from -1 to -nNEP and from 0 to (nPEP-1) by its k-cycle data embedment 

process. In each cycle, 50% of the samples (i.e., distinct valued errors) of the original 

embeddable errors exceeds the embedding range by the embedding rules, as it is observed in 

Figure 5.6. This means that the -nNEP to -nNEP/2 valued negative errors and nPEP/2 to 

nPEP-1 valued positive errors, observed in the starting state of the cth cycle, become non-

embeddable for the next (c+1)th cycle. This implies that -1 to -nNEP/2 negative valued and 0 to 

nPEP/2 positive valued primitive error points will be reused to embed more data in the (c+1)th 

cycle. As it is shown in the Figure 5.6, the samples of the embeddable errors are  {-4, -3, -2, -1, 

0, 1, 2, 3}. All these eight sample errors accept the message bit during their first cycle data 

embedment phase. After that embedding cycle, the frequencies of errors of -4, -3, 2 and 3 will 

be redistributed to {-8, -7}, {-6, -5}, {4, 5} and {6, 7} respectively and thus, these errors will 

exceed the embedding range. Simultaneously, the errors with values of -2, -1, 0 and 1 will be 

redistributed within the range -4 to 3. In consequence, only the primitive errors with values of -

2, -1, 0 and 1 are reusable for bit implantation in the second cycle. As a sample, these 4 errors 

Algorithm 5.2: ExtractionReconstruction(k, ,i je ) 

Step 1. Set c=k, where c is used to track the execution cycle. 

Step 2. Apply Eq. (5.2)  to extract each of the message bit m of M which were  

embedded at cth-cycle. 

Step 3. Apply Eq. (5.3) to reconstruct the errors which were found after  

(c-1)th embedding cycle. 

Step 4. Set 1c c  . 

Step 5. If c>0, set , ,i j i je e  and go to Step 2. 

Else Go to Step 6. 

End if 

Step 6. Announce the completion and stop the task. 

 



 Chapter 5      Multilayer Multi-cycle Embedment Process     108  
                                    

 

{-2, -1, 0, 1} are the 50% of the original samples {-4, -3, -2, -1, 0, 1, 2, 3}. Similarly, the 

original sample errors -2 and 1 will cross the embedding range by the second cycle as these 

were dispersed to {-4, -3} and {2, 3} respectively by the first cycle. Consequently, original 

errors of values of -1 and 0 will remain as reusable for third cycle data implantation. These two 

samples -1 and 0 are the 1/4 of the original samples {-4, -3, -2, -1, 0, 1, 2, 3}. Now, 

concentrating to only positive valued errors, this is realized that (0 to nPEP/20), (0 to 

nPEP/21), (0 to nPEP/22), (0 to nPEP/23), ..., (0 to nPEP/2k-1) valued original errors are 

reusable as embeddable errors for the embedding cycle of c=1, c=2, c=3, c=4, ..., c=k 

respectively. A similar pattern of reusability of original errors exists for the negative valued 

embeddable errors. As a result, after the completion of the k-th cycle, the embedding capacity 

will be 1 /2 1 /2

0 1 0 0
( ) ( )

j jk nNEP k nPEP

j i j i
h i h i 

   
    , where h(i) represents the frequency of an error 

i, the inner summation computes the payload for an embedding cycle j and the outer 

summation is used to repeat the inner summation for k times. To meet the demand for the 

embedding payload, this theoretical capacity should be equal to or greater than C. Hence, 

 
1 /2 1 /2

0 1 0 0
( ) ( )

j jk nNEP k nPEP

j i j i
h i h i C

   

   

      (5.4) 

It is notable that different sets of k, nNEP and nPEP values will satisfy the relation ' ' in the 

Eq. (5.4). Among these set of verified values (which satisfy the relation ), a tuple is defined 

as an optimal value for k, nNEP and nPEP, for which the left side of Eq. (5.4) generates the 

minimum value. These optimal values can also be defined by relating these parameters with 

the embedding layer L of single cycle data embedment process while L layers are just enough 

to accept C-bits of data in MLSC process. Among values of k, nNEP and nPEP satisfying the 

Eq. (5.4), one set of values is defined as the optimal one by the Eq. (5.5). Thus, the values of 

nNEP and nPEP are definable by the Eq. (5.4) and the Eq. (5.5). 

 
{1,2,...}, {1,2,...}, {1,2,...}

arg min ( )
k nNEP nPEP

k nNEP nPEP L
  

   (5.5) 

5.4 Result Analysis and Discussions 

The prime objective of the proposed MLMC scheme is to improve the embedding capacity. To 

evaluate the performance of the proposed scheme, binary data are embedded into 50 Standard 

images, 500 images of BOSS database and 5000 images of the CalTech image dataset (in total 
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5550 images) and results are investigated in the scenarios of MLSC and MLMC embedding 

circumstances. The performance of the MLSC schemes and the proposed MLMC scheme are 

evaluated on a set of embedding parameters, e.g. payload or capacity, PSNR, structural 

similarity index (SSIM) value and time complexity. The schemes of Hong in 2012 [31], Leung 

et al. in 2013 [51], Tai et al. in 2009 [83], Wang et al. in 2014 [94] and Pan et. al. in 2015 

[114] are experimented as MLSC processes and a comparison between these MLSC schemes  

and the proposed MLMC scheme are demonstrated in the following discussions. The 

discussion is provided for the performance parameters listed above. First, in the MLMC 

scheme, results of multilayer double cycles (MLDC), multilayer triple cycles (MLTC), 

multilayer quadruple cycles (MLQC), multilayer pentadruple cycles (MLPC), multilayer 

sextuple cycles (MLSEXC), multilayer septuple cycles (MLSEPC) and multilayer octuple 

cycles (MLOC) are evaluated among themselves. Thereafter, these are compared with MLSC 

schemes regarding their performance parameters. 

5.4.1 Experimental Setup 

Digital data of type text, numerical records, small images having a size of 80x80 pixels, tiny 

audio data of “amr” format are concealed into an image of size 510x510 in both individually 

and hybridized manners. Firstly, 500 images are randomly copied from all the 5550 stated 

images to test the ability of implanting hybrid data of large volume. These images are resized 

to 510x510 pixels and experimented on a laptop. Thereafter, 5550 images are resized to 

210x210 pixels to embed an arbitrary bit stream for the purpose of analyzing and comparing its 

performance parameters with its competing schemes. The hybrid data is generated from an 

audio file of ‘amr’ format of 16 seconds duration (reading as characters from the file), the text 

of 1000 characters and an image of size 80x80. The binary stream M of hybrid data, that is to 

be implanted, consists of 260720 bits in total. Again, after the message extraction by the 

decoder, the binary stream of the audio is converted to character streams.  

Again, to embed massive data, a random bit generator is used to generate a long binary bit 

stream comprising of ‘0’ and ‘1’. The MLSC and MLMC schemes are experimented on 5550 

images and analyzed thereby sequentially. The data embedment is performed for 1 to 8 cycles 

in each of the 99 error points separately in the multi-cycle schemes. All the results are outlined 

in the following subsections. 
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5.4.2 Analysis of Embedding Payload 

In this subsection, the data embedment capability of the schemes in terms of either payloads or 

embedding capacity is analyzed and compared from different perspectives. First, a 

mathematical analysis on embedding payload is provided. The requirement of large embedding 

cycle to achieve massive data embedment is analyzed, thereafter. Next, the average embedding 

payloads and capacities are investigated under the affairs of fixed embedding layers, fixed 

embedding cycle, an equal number of encountered errors, sequentially. 

5.4.2.1 Mathematical Analysis of the Embedding Payload 

Eq. (5.1) states that -nNEP, … …, -2, -1, 0, 1, 2, … …, nPEP-1 valued embeddable prediction 

errors are modified to  {-2nNEP, -2nNEP+1},… …, {-4, -3}, {-2, -1}, {0, 1}, {2, 3}, {4, 5}, 

… … {2nPEP-2, 2nPEP-1} respectively in each embedding cycle depending on message bit m 

embedded. Let the frequencies of the original prediction errors of z , … …, -1, 0, 1, 2, … … 

z  are ( )h z , … …, ( 1)h  , (0)h , (1)h , (2)h , … … ( )h z  respectively in the prediction 

error histogram where z  and z  denote the highest valued negative and the highest positve 

valued error correspondingly. Frequencies of every embeddable prediction error are diffused 

into 2c modified errors in the MLMC scheme after the completion of c-th embedding cycle. For 

example, the scheme diffuses the errors of 0 and 1 into [0, 3] and [4, 7] ranged modified errors, 

respectively, after the completion of 2nd cycles, as shown in Figure 5.6. In the first cycle of 

MLMC scheme, all the embeddable errors of nNEP, ..., -1, 0, 1, ..., nPEP contribute to the 

payload by an amount of h(-nNEP)+... +h(-1)+ h(0)+ h(1)+ … + h(nPEP-1). By this time, 

50% of the samples of primitive embeddable errors (SPEE), i.e. 50% of the members of the 

error set {nNEP, nNEP+1, ..., ..., 0, 1, ..., ..., +nPEP-1}, will move to non-embedding range. 

This means that -nNEP to (-nNEP/2)-1 and nPEP/2 to nPEP valued original errors will cross 

the embedding range of [nNEP, nPEP] after the first cycle data embedment task. In the second 

cycle, only the [-nNEP/2, nPEP/2-1] ranged errors of the SPEE will accept message bits. 

Consequently, the embedding payload in the second cycle is h(-nNEP/2)+... +h(-1)+ h(0)+ 

h(1)+ … + h((nPEP/2)-1)). Similarly, the third cycle augments the payload by h(-nNEP/22)+... 

+h(-1)+ h(0)+ h(1)+ … + h((nPEP/22)-1). Thus, the total embedding payload for MLMC 

scheme is approximated by Eq. (5.6). 
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In this equation, the outer summation is used to compute the total payloads that are 

achieved from k cycles. The inner summation repeats for each of the k cycles and computes the 

frequencies of all the embeddable errors in a cycle. The first and second parts of the equation 

in the right side enumerate the payloads for negative and positive valued errors, respectively.  

5.4.2.2 Higher Embedding Cycle for Embedding Hybrid and Massive Data 

The average and the maximum payloads in 500 images are measured in MLMC scheme for 

each of the cycles and layers. These are summarized in Table 5.1. Only the black cell values in 

the table can meet the demand of a big payload of 260720 bits. The tabulated results state that 

the single cycle, even the double cycle cannot meet the requirement of that higher embedding 

capacity within the embedding layer 10. The average payload that is achieved within the 

embedding layer 8 in the triple cycle and the layer 1 in the quadruple cycle are still lower than 

the demanded payload. However, all the maximum payloads in the triple cycle are greater than 

the stated demanded figure. 

To investigate in the tabulated data, the matter of attaining higher embedding payloads by 

the MLMC scheme, let PLl,c represents the payload that is achieved by embedding into l layers 

for c cycles. If  1 1 2 2l c l c    for two different values of l and c, where c2>c1, according to the 

philosophy of this research the achieved payload in c2 cycles should be higher than the attained 

payload in c1 cycles, i.e.,  
2 2 1 1, ,l c l cPL PL . This behavior is investigated in the experiment and 

tabulated in Table 5.1. From the maximum payloads of the Table 5.1, it is observed that: 

PL1,3(=263000bits)>>PL3,1(=101000bits), PL2,3(=287000bits)>>PL3,2(=202000bits), 

PL2,3(=287000bits)>>PL6,1(=102000bits), PL2,4(=341000bits)>>PL4,2(=202000bits) and 

PL2,4(=341000bits)>>PL8,1(=102000bits), where >> stands for much greater than. 

These analyses establish that payloads obtained by employing higher cycles are larger. 
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Table 5.1: Achieved the average (Avg.) and the maximum (Max) payloads (x1000) among the 500 
images of size 510x510 at various embedding layers and embedding cycles. 

Cycle→ 1 2 3 4 

Layer↓ Avg. Max Avg. Max Avg. Max Avg. Max 

1 79 100 154 199 215 263 254 303 

2 82 101 159 201 231 287 276 341 

3 85 101 164 202 237 302 293 364 

4 87 101 167 202 247 303 304 380 

5 88 102 170 203 248 303 315 390 

6 89 102 173 203 250 304 322 399 

7 90 102 175 203 254 304 327 404 

8 91 102 177 204 257 304 331 404 

9 92 103 179 204 261 305 334 405 

10 93 103 180 205 262 305 337 405 

 

This is also investigated that, to achieve the same capacity of k cycle embedding into L/k 

layers, the multilayer single cycle scheme has to embed more than L layers, i.e., when 

1 1 2 2, ,l c l cPL PL for 1 1c  , 2 1c   then 1 1 2 2l c l c    where   stands for close to. The 

scenario is already observed in Figure 5.2, where MLSC scheme utilizes 9 peaked errors of the 

error histogram, i.e. layer 4, to embed 25070 bits whereas the MLDC scheme uses 3 errors for 

layer 1 double time embedment to obtain the same payloads. Table 5.1 also justifies the claim. 

The figures in the table state that,  PL4,1(=101000bits)<<PL1,2(=199000bits) though 

1 2( 4) ( 1)l l   . As always 1 1 2 2l c l c    and in some instances 1 1 2 2l c l c    the non-

embeddable errors in the single cycle scheme have to be shifted by more amount, i.e., non-

embeddable negative errors by - 1l  and positive errors by 1l  in the MLSC scheme whereas 

negative and positive valued non-embeddable errors by - 2 2l c  and 2 2l c  respectively in the 

MLMC scheme. During these shifting of pixel values, from 0 to 1l  valued and 255- 1l  to 255 

valued pixels in MLSC scheme and from 0 to 2 2l c  valued and 255- 2 2l c  to 255 valued 

pixels in MLMC scheme exceeds the gray range. The number of grayscale exceeding pixel 

values is higher in the MLSC scheme. This postulate implies that the MLSC schemes have to 

record positions for more pixels in a location map [51] to overcome the underflow and 

overflow problem in the grayscale than that is for the MLMC scheme. The pixels in the 
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location map are not used to embed data in most of the instances. This means that the quantity 

of message implantable pixels will be reduced in the MLSC schemes. 

The management policy of that location map is not discussed in this scheme because this 

research has not contributed to any aspect of the location map. Rather, it is assumed that the 

location map will be handled as it is done by the other schemes. Nevertheless, the experiment 

reveals that it is possible to avoid the management of location map if the scheme is free from 

any restriction of choosing the cover image. The investigation ensures that 20%, 0%, 8%, 42%, 

30% and 6% images of the dataset of Natural, BOSS, CalTech, Standard, Texture and Satellite, 

respectively, do not contain any pixel which is smaller than 6 or greater than 249. Hence, we 

have many images to implement double cycle embedment in layer 3 and triple cycle in layer 2 

without maintaining any location map. It is also found that, there are a good number of images 

in these datasets where higher cycles and layers are implementable without handling the 

overflow and underflow issues. In that case, the scheme has to select a cover image only from 

these images, which will not introduce any underflow or overflow problem in the stego image. 

From the discussion, it is understood that to meet the larger embedding payload, higher 

cycles should be employed. Again, to verify the reconstructed audio quality, in the experiment, 

the extracted audio data are first separated from the hybrid data. Each of the eight bits of the 

audio data is written as a character in a file and the file is named with “amr” extension. 

Though, some additional noises are introduced into the retrieved audio stream, the audio 

information is fully realizable. Neither the embedding rules nor the extraction process is 

responsible for the introduction of these noises. This happens for reading the audio data as 

characters by the data hider from the audio file of “amr” format and saving the retrieved data 

as a character by the decoder. Nevertheless, the proposed scheme leads all other existing 

schemes in hiding small audio data, e.g., small audio of instructions, statements, investigations 

or interviews, in a hybridized manner. 

5.4.2.3 Analyzing Average Embedding Payload and Embedding Capacity in MLMC 
Scheme 

In the MLMC schemes, data are implanted into a wider range of error points depending on the 

requirement of the embedding payloads. In our experiment, the embedding is done in 2 to 99 

error points separately, i.e. up to 49 layers, to analyze the behavior of our scheme at higher 

layers. The average payloads of n images for each nEP embeddable error points are computed 

by the Eq. (5.7) for 2≤nEP≤99. 
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where ( , )payload r nEP  returns the value of embedding payload that is obtained by implanting 

bits into nEP error points in the r-th image. All average embedding capacities depicted in this 

chapter are measured by AvgPayload(nEP)/(image_size). 

  

(a) (b) 

  

(c) 

Figure 5.8: Average embedding capacity achieved in each of the embedding layers 1, 3, 8 and 12 in (a) 
BOSS images, (b) CalTech images and (c) Standard images. The capacities are investigated at different 

embedding cycles. 
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5.4.2.3.1 Investigating Average Embedding Capacity under the Fixed Embedding Layer 

In this experiment, the behaviors of embedding capacity are investigated in each individual 

embedding layer for embedding cycle ranges from 1 to 8. The average capacities achieved in 

layer 1, 3, 8 and 12 are drawn against 8 embedding cycles in Figure 5.8 (other layers are 

avoided for clear depictions) separately for BOSS, CalTech and Standard image datasets in the 

Figure 5.8(a), Figure 5.8(b) and Figure 5.8(c) respectively. The demonstrated results for each 

of the embedding layers 1, 3, 8 and 12 state that the embedding capacity increases with the 

increment of embedding cycles. It is also noticeable that the capacity enhances in the upper 

embedding layers. These similarities in the behaviors of embedding capacities are observed in 

all the image datasets. If the higher layers are employed, e.g. EL=8 or EL=12, then within 

embedding cycle 4, the capacity is improved by a factor of about 2 with respect to its 

immediate lower cycle. In overall, geometrical progressions in the embedding capacities are 

investigated with the advancement in the embedding cycles. 

5.4.2.3.2  Investigating  Embedding Capacity under the Fixed Embedding Cycle 

In this experiment, each time the embedding cycle c is defined to a fixed value, say 1 for the 

first time. The embedding is performed in each of the 99 embeddable errors for each 

embedding cycle separately. The embedding capacities of some sample embedding cycles 1, 3, 

5 and 8 for first 25 embeddable errors (for better depiction) are demonstrated in the Figure 

5.9(a), Figure 5.9(b) and Figure 5.9 (c) independently for the same three image datasets. These 

figures state that the embedding capacity increases both with the employment of higher 

embedding cycles and more embeddable error points. Though the embedding capacity 

increases sharply for first 5 embeddable errors, thereafter, the rate of increment in the 

embedding capacity decreases gradually because the accounted higher valued errors (resides in 

the upper layer) contribute less to the payload as the frequencies of these errors are smaller. 

Nevertheless, the achieved capacities in the higher cycles are much greater than the capacities 

achieved in MLSC schemes (when k=1). Another perceptible issue is that the embedding 

capacities in 3 cycle process are more than the double of the single cycle process. This rate of 

boosting up the embedding capacities by the process of 5 and 8 cycles reduces gradually. The 

reason lies in the shifting properties of the embeddable errors. It is already discussed that after 

each completed cycle, 50% of the members of SPEE, i.e. 0.5(nNEP+nPEP), move to the non-

embedding range. Consequently, a good number of embeddable errors become non-

embeddable after the first few cycles due to their movement by the embedding rules. It implies 
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that the frequencies of the embeddable errors decrease dramatically after a few of the cycles. 

Consequently, the rate of contribution to the embedding payload declines in each of its next 

cycles. Though the rate of capacity improvement decreases in the upper cycles, the total 

capacity of each higher cycle is greater than the single cycle. 

  

(a) (b) 

  

(c) 

Figure 5.9: Average embedding capacity in each of the sample cycles 1, 3, 5 and 8. The results are 
investigated for embeddable errors from 1 to 25 in image dataset of (a) BOSS (b) CalTech and (c) 

Standard. 
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5.4.2.3.3 Investigating Embedding Payload at Equal Number of Encountered Error 
Points 

Figure 5.10 demonstrates the achieved average embedding payloads in the different 

embedding cycles. The number, annotated at the top of each bar, indicates the quantity of 

embeddable error points nEPc (=nNEP+nPEP) that are applied in the cycle c. The values of 

nEPc in each cycle c are selected in such a way that it becomes equal to or close to       , i.e. 

           . In the Figure 5.10, nEP1 is 24. Therefore, total encountered error points are 

24, 24, 24, 24, 25, 24, 28 and 24 in the cycle 1, 2, 3, 4, 5, 6, 7, and 8 respectively. As the 

values of c and nEPc are always integer, for c=5 and c=7, total encountered error points, which 

are 25 and 28 respectively, are more than 24; because these are no alternative values which are 

closer to 24. This way the encountered error points in all the cycles are equalized at the time of 

comparing the average payloads in the different cycles individually in each image datasets as 

depicted in Figure 5.10(a), Figure 5.10(b) and Figure 5.10(c). The payload for a particular 

cycle increases with the increment in the embedding cycles from 1 to 5. Thereafter, it 

decreases gradually for each cycle. Though, the 7-cycle embedding process demonstrates a bit 

improvement in the embedding payload compared with 6-cycle embedding process, it 

considers nEP7= 4, i.e. total 4×7=28 encountered error points, instead of nEP7=24/7 due to the 

fractional value in 24/7. Hence, a smaller increment in the embedding payload is observed; 

indeed, the payload decreases there too. The decrements in the payloads at the higher 

embedding cycles, e.g. c>5 in the Figure 5.10, are very rational because, thereafter, the 

quantity of nEPc decreases multiplicatively (i.e. by c as nEPc=nEP1 /c). Besides, after each 

embedding cycle, half of the primitives in OSEPE are shifted to the non-embeddable area.  

It is already observed in Figure 5.2 that in the PEH hi>>hi+1 and h-i>>h-i-1 for smaller i. 

Hence, for smaller values of nEPc, the shifting of 50% of nEPc to a non-embedding range 

implies that a larger quantity of embeddable error points will cross the embedding range by the 

embedding rules after the completion of each cycle. Consequently, after executing the 

embedding process for a few of cycles into nEPc embeddable errors, the added payloads by 

these embeddable errors with remaining frequencies become nominal. However, the achieved 

payloads in cycle 6, 7 and 8, (depicted in the last three bars in Figure 5.10), are much greater 

than the achieved payload by equal encountered error points in MLSC scheme, (depicted in the 

first bar in the same figure). This implies that a multi-cycle process is better capacity 

generative than single cycle processes. 
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(a) (b) 

  

(c) 

Figure 5.10: The average payloads in various embedding cycles c; in equal encountered error points; and 
in the image dataset of (a) BOSS, (b) CalTech and (c) Standard. The value on the top of each bar 

indicates the nuuummmb of embeddable errors, nE, in the cycle. Total encountered errors in each cycle 
c are     , e.g., these are 24, 24, 24, 24, 25, 24, 28 and 24 in cycle 1, 2, 3, 4, 5, 6, 7, and 8 

respectively. 
 

5.4.3 Analysis of PSNR Value 

Mean square error (MSE) is used to measure the value of PSNR. Smaller values of MSE 

means higher value of PSNR. PSNR is used to measure the level of visual quality of an image 

compared with the original. The larger value of PSNR implies as the better image quality. An 

embedding scheme, therefore, considers having larger PSNR value. 
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5.4.3.1 Mathematical Representations of MSE in MLMC Scheme 

From Figure 5.6, it is observed that after the completion of c embedding cycles, the ‘0’ valued 

errors are modified by           while     [0,     ]. The embedding rules apportion 

all the positive valued embeddable errors i, 0≤i≤nPEP, to the range [     ,           

 ], e.g. ‘1’ diffuses from 8 to 15 for 3 cycles data embedment when nPEP>=8. The total 

shifting amount of the embeddable errors depends on the quantity of bit '1' in the message 

stream, embedding layers and cycles. Each positive valued non-embeddable error is shifted by
12knPEP   after the completion of k cycles. For the simplicity, consider the frequency of 

each error i, i.e. hi, is equally distributed into [     ,            ] ranged    modified 

errors after the completion of k embedding cycles. The issue of crossing the embedding range 

by the embeddable errors is also ignored here for the minimalism. These two considerations 

are taken into account just to measure approximate distortions. Then, a summation of the 

square of the stego displacement (SSSD) for the positive valued errors is measured using the 

Eq. (5.8). 
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The inner summation      
    sums up for the distortions that are introduced by the 

frequencies of a single error i, i.e. hi, due to its diffusions into [     ,            ] 

modified errors. The outer summation        
    repeats the inner summation for each of the 

embeddable errors from 0 to nPER-1. The third summation    
       computes the 

distortions occurred by the non-embeddable errors. Similarly, the SSSD for the negative 

valued errors in MLMC scheme, SSSDMLMC-, is defined by the Eq. (5.9). Finally, the total MSE 

is calculated using the Eq. (5.10). 
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where h and w stand for the height and width of the image. 
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5.4.3.2 Analysis of the Ratio of Payload Per PSNR in the Schemes 

Analyzing on payload per PSNR, it is investigated that the MLMC scheme can manage a 

better trade-off between the PSNR, embedding payloads and embedding cycles at or above the 

PSNR of 30dBm (lower margin of visually distortion realization [113]). The average payload 

per PSNR for each embedding cycle is delineated in Figure 5.11.  

  

(a) (b) 

  

(c) 

Figure 5.11: The amount of payload per PSNR against each embedding-cycle when the number of 
encountered error points are about equal. The number of embeddable error points in multilayer, single 
cycle is EP_SC. Here EP_SC=24. The number of embeddable error points in multi-layer multi-cycle is 

EP_MC=ceil (EP_SC/k). Here, the values of EP_MC are {24,12,8,6,5,4,4,3} for cycles {1,2,3,4,5,6,7,8} 
respectively. The experimental values for EP_SC and EP_MC are annotated in each figure (a) -(c) for 

BOSS, CalTech and standard image datasets. 

 

The results are depicted separately for BOSS images, CalTech images and Standard images 

respectively in the Figure 5.11 (a), Figure 5.11(b) and Figure 5.11(c). In all the figures, the 

ratio between the payload and the PSNR increases for the first five embedding cycles. 
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Thereafter, it starts to decrease because the image distortions in the higher embedding cycles 

increases by the multiple of about        , e.g. by     for first cycle,     for second cycle,     

for third cycle and so on, which are inferred from Eq. (5.10.1) and Eq. (5.10.2). Besides, the 

rate of increment in the payloads after 5th cycles decreases, as shown in Figure 5.7. The 

reasons of decreasing the rate of increment in the embedding payloads are described during the 

analysis of payloads in this figure. Consequently, the payloads per PSNR decrease after 

embedding cycle 5. The same results are observed in the images of all the image datasets. 

However, regarding the single cycle process, depicted in the first bar in the Figure 5.11, the 

payloads per PSNR in all the higher cycles are still in dominating level. 

5.4.3.3 Analysis of the Ratio of PSNR Per Capacity in the Schemes 

Figure 5.12 demonstrates the behaviors of PSNR per embedding capacity in all the embedding 

cycle processes. As the embedding cycle goes higher, the embedding capacity increases. 

Meanwhile, the PSNR decreases. However, above the embedding capacity of about 0.459bpp, 

0.245bpp and 0.21bpp respectively in BOSS images, CalTech images and Standard images as 

shown in Figure 5.12(a), Figure 5.12(b) and Figure 5.12(c), the multi-cycle embedding 

processes demonstrate remarkably better PSNR. This implies that when the requirement of 

embedding capacity is higher, MLMC schemes provide better stego image quality. 

5.4.3.4 Investigating PSNR among the MLMC Schemes 

It is investigated in the Figure 5.12(b) that after the embedding capacity of 0.245bpp, double-

cycle embedding process exhibits improved PSNR value and that superiority of proving higher 

PSNR by double cycle process continues up to embedding capacity of 0.5bpp. Within that 

embedding capacity range, PSNR in the double cycle embedding process varies from 47.5dBm 

to 38.2dBm as shown in Figure 5.12(b). Again, after the embedding capacity of 0.5bpp, triple 

cycle embedding process takes the leads on providing enhanced PSNR value. That leads 

continues until the PSNR value of the triple cycle falls below 30.8dBm. At the 30.8dBm, triple 

cycle embedment process reaches its embedding capacity to 0.855bpp. Though, thereafter, 

quadruple and its higher cycles provide improved PSNR regarding the first three cycles, the 

PSNR falls below 30dBm. The PSNR value of less than 30dBm indicates noticeable image 

distortions [113]. Therefore, in the CalTech images, if the required embedding capacity is 

0.246bpp to 0.5bpp, the double cycle embedding process meets the requirement of the 
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embedding capacity as well as manages the image quality. The triple cycle is recommended 

only to meet the requirement for larger embedding capacity. The quadruple and its higher 

cycles demonstrate worsening results and thus these are not recommended in the applications 

of image quality controlled based reversible steganography schemes. 

 

  

(a) (b) 

  

(c) 

Figure 5.12: Average PSNR per embedding capacity in different embedding cycles in the images of (a) 
BOSS, (b) CalTech and (c) Standard dataset. 

 

5.4.3.5 Analysis of Embedding Capacity and Embedding Cycles at a Fixed PSNR 

The target of the scheme is to meet the demand for higher embedding capacity and in the 

meantime to manage the PSNR value of 30dBm or more. The reason for analyzing embedding 

capacity at PSNR level of 30dBm is that the effect of the modification in an image is not 

visually sensible if PSNR is not less than 30dBm. The Figure 5.12 demonstrates the behaviors 

of PSNR per embedding capacity in all the embedding cycle processes. The figure states that 
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the embedding cycles from 1 to 8 provide the embedding capacities of 0.59bpp, 1.05bpp, 

1.4bpp, 1.53bpp, 1.49bpp, 1.43bpp, 1.35bpp and 1.36bpp in the BOSS image dataset, 

0.485bpp, 0.71bpp, 0.815bpp, 0.82bpp, 0.785bpp, 0.72bpp, 0.685bpp and 0.695bpp 

respectively in the CalTech image dataset and 0.48bpp, 0.625bpp, 0.7bpp, 0.7bpp, 0.65bpp, 

0.61bpp, 0.56bpp and 0.57bpp respectively in the Standard image dataset at the PSNR value of 

30dBm. These notated capacities conclude that at the same deterioration level, for PSNR of 

30dBm, multi-cycle processes provide higher embedding capacity and the trend of progress in 

the embedding capacity continues till 4th cycles. Though, thereafter, the embedding capacity 

decreases, these are still better than MLSC and more even than the first few of the cycles. 

From the analysis on the Figure 5.11 and Figure 5.12, it can be concluded that multi-cycle 

embedding schemes present higher PSNR values during the embedment of large data. 

5.4.4 Performance Comparison with Other Schemes 

In this subsection, the results of the proposed MLMC scheme are compared with the reviewed 

MLSC schemes, e.g. the schemes of Hong (2012) [31], Leung et al. (2013) [51], Tai et al. 

(2009) [83], Wang et al. (2014) [94] and Pan et al. (2015) [114]. The image dataset of CalTech 

is a rich one (consisted of 5000 images) among our experimented datasets. Hence, only the 

results obtained in that dataset are demonstrated in Figure 5.12, Figure 5.14 and Figure 5.15. 

5.4.4.1 Comparing the Payloads among the Schemes as a Measure of Performance 

Figure 5.13 demonstrates the achieved payloads in different schemes at their various 

embedding layers. Among the MLSC schemes, the most worsening results are investigated in 

the scheme of Pan et al. [114] for several reasons. Firstly, it embeds data by modifying pixel 

histogram rather than PEH. Secondly, though it embeds data into two different pixel values of 

1pB   and Bp+1, it leaves the highest frequency pixel Bp as unchanged. Thirdly, it skips the 

block when Bp-1 or Bp+1 does not exist in the histogram (when Bp becomes the leftmost or the 

rightmost bin in the histogram) or the frequency of, at least one, them is zero. The payloads in 

the schemes proposed by Tai et al.[83], Hong [31], Wang et al.[94] and Leung et al. [51] are 

very close and mainly differ by a small quantity for their prediction policies and histogram 

properties. Among these schemes, the scheme of Leung et al.[51] provides a bit higher 

payloads because that scheme estimates pixel values more accurately in a smaller sized image 

block. Again, among the multi-cycle schemes, each upper cycle takes the lead on its immediate 
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lower cycle. The rates of payload improvements in the double cycle and the triple cycle 

processes happen on an extensive scale. The improvement rate is moderate in quadruple and 

pentadruple cycles compared with their lower cycles. In the upper cycles of these two, the 

payload increase is slight and gradual. As a whole, the payload increases in the MLMC 

processes and the payload improvement is noticeable toward their upper cycles. To explain 

that claim, consider the payload of MLTC in layer 3. Figure 5.13 depicts that this payload is 

4.95x104bits. To meet the equal number of embeddable error points, layer values in MLQC, 

MLDC and MLSC will be 2.25, 4.5 and 9 respectively (fractional value of layer is taken only 

for the comparisons). In these equalized embedding layers, the payloads in MLQC, MLDC, 

and the schemes proposed by Tai et al.[83], Hong [31], Leung et al.[51], Wang et al.[94] and 

Pan et al. [114] are 5.1x104bits, 4.2x104bits, 2.1x104bits, 2.74x104bits, 2.9x104bits, 2.8x104bits 

and 1.2x104bits respectively. These quoted values state that payloads obtained in MLMC 

processes are some multiples of the obtained payloads in MLSC schemes. These values also 

elucidate that higher cycles provide improved payloads. 

 Another experiment is carried out to test the behaviors of the minimum and the maximum 

payloads among the experimental results in a specific layer. The results are demonstrated in 

Figure 5.14. Regarding the maximum payload, the multi-cycle scheme depicts higher values. 

Even the minimum payload of MLQC and its upper cycles are very close to the maximum 

payloads of the MLSC schemes and higher than some of the maximum payload in MLSC, e.g., 

the schemes proposed by Pan et al. [114] and Tai et al. [83]. 

  

Figure 5.13: Average payload in different schemes. 
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Figure 5.14: The Minimum and the maximum payloads which are obtained from the results of 5000 
images of the CalTech image dataset in a sample layer 3 in the different embedding processes. 
 

5.4.4.2 Comparing the Stego Image Quality among the Schemes 

 In this subsection, the values of PSNR and SSIM are analyzed to measure the quality of stego 

image. When message bits are implanted into the pixel values of an image, the embedding 

scheme changes the original statistical cover information in the stego image. PSNR is used to 

detect the variation of intensities of pixel values in an image regarding another image. 

Nevertheless, the PSNR does not provide the structural changes in an image. The SSIM is very 

useful in detecting structural changes in an image. The experiments are conducted on these two 

parameters and the results are discussed in the following two subsections. 

  

Figure 5.15: The average PSNR in MLSC and MLMC schemes in different embedding layers. 
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5.4.4.2.1 Comparing the PSNR Values among the Schemes 

Figure 5.15 depicts an average of PSNR values (computed from 5000 images) separately in 

each embedding layer for MLSC and MLMC schemes. It delineates that Pan et al.[114] 

exhibits outstanding performance because the scheme does not change the highest frequency 

pixels in the block while implanting data. Besides, during implanting into second and higher 

embedding layers, this scheme reuses the stego image. Before each reuse, this partitions the 

stego image varying the size of image block and measures the highest frequent pixel in each 

block to embed data bits into its immediate smaller and greater valued pixels. During each 

reuse, the new peak takes place at different positions in the histogram of block pixels. 

Consequently, many pixels, which were shifted in the left direction in their earlier cycles, 

might be shifted in the right direction by the properties of the histogram in their next cycle. 

Therefore, the overall displacement of pixel values decreases. The figure also demonstrates 

that all the MLSC schemes provide larger PSNR values than all the multi-cycle schemes. 

Among the multi-cycle schemes, the PSNR values decrease as the embedding cycle goes 

higher. Though, the figure discourages one to choose multi-cycle processes, this does not 

depict the PSNR at an equal number of encountered error points or the PSNRs per embedded 

bit. For example, at the embedding layer 2, PSNR in MLDC process is about 40dBm. The 

PSNR values in the schemes proposed by Tai et al.[83], Hong [31], Leung et al. [51], Wang et 

al.[94] and Pan et al. [114] are about 37.5dBm, 38.5dBm, 35dBm, 33.2dBm and 45.8dBm 

respectively at equal number of encountering error points, i.e., L=4. Similarly, the PSNR at 

L=2 in MLTC and at L =6 in the schemes proposed by Tai et al.[83], Hong [31], Leung et 

al.[51], Wang et al. [94] and Pan et al. [114] are about 35.3dBm, 34dBm, 34.9dBm, 31dBm, 

29dBm and 45.5dBm respectively. The PSNR in the MLDC and the MLTC schemes are 

higher than the respective PSNR in the MLSC schemes rather than the scheme proposed by 

Pan et al.[114]. However, this method provides very small embedding capacity. Indeed, when 

the target is to embed a large amount of data in a single image and the size of data is fixed, the 

MLMC schemes provide better PSNR value. Single layer schemes like those proposed by Tai 

et al.[83], Hong [31], Leung et al.[51], Wang et al. [94] and Pan et al. [114] can only be used 

to meet smaller embedding capacity. 

5.4.4.2.2 Comparing the SSIM Values among the Schemes 

SSIM is widely used to compare the structural similarities between the two images. The results 

of average SSIM obtained in the CalTech image dataset are tabulated in Table 5.2. The 
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schemes proposed by Pan et al. [114] and Hong [31] yield higher similarity index values 

between the cover and stego image because these two methods skip lots of pixels without 

modifying by their block skipping criteria and embedding rules. The proposed scheme 

provides very competitive SSIM value compared to the schemes proposed by Tai et al.[83], 

Leung et al. [51] and Wang et al.[94]. MLMC processes are better than all the other MLSC 

schemes regarding the average SSIM values per embedding bit. For example, average SSIM is 

0.854 for L=3 and k=2. Considering an equal number of encountering error points (i.e., at L=6 

for MLSC), average SSIM in Wang et al. [94] is 0.843. On the other hand, the rate of boosting 

up the embedding capacity is significantly higher in MLMC scheme, e.g., in Figure 5.13, at 

L=3, k=2 (MLDC), embedding payload is 4.00x104bits and at L=6, payloads in the single cycle 

schemes of Tai et al.[83], Hong.[31], Leung et al.[51], Wang et al. [94] and Pan et al. [114] 

are 2.0x104bits, 2.1x104bits, 2.65x104bits, 2.5x104bits and 1.01x104bits respectively. These 

analyses of results prove that distortion per embedding capacity is smaller in MLMC.  

5.4.4.3 Analyzing the Complexity 

The time complexity of the proposed scheme is compared experimentally with the different 

competing schemes by analyzing the required embedment times. For this, at first, the 

embedding layer is set to 7. Then, each scheme separately embeds same data bits into CalTech 

images. The total time required o embed data bits into 5000 images is recorded. The average 

time spent for each image is tabulated in Table 5.3. The scheme proposed by Pan et al. [114] 

presents smallest time complexity because it does not perform any predictions. Rather, it 

embeds data bits by modifying the pixel histogram. The associated affairs in computing the 

pixel differences in the scheme proposed by Tai et al. [83] and prediction errors in the scheme 

proposed by Leung et al. [51] are less complex than measuring the prediction errors in the 

scheme proposed by Hong [31]. The required times in these two schemes are smaller than the 

required times in the scheme proposed by Hong [31]. The scheme proposed by Wang et al.[94] 

takes the highest amount of time to complete the embedding task. Each time it embeds 

message bits into a single layer and repeats the process for m-times for an m-layer data 

embedment method. At each embedding layer, it embeds data bits into the highest peaked 

errors in the error histogram. The embedding rules perform the data embedment by shifting the 

errors histogram. It employs the same histogram calculation method and an error shifting 

policy at its consecutive embedding layers. Thus, for m-layer data embedment, it computes the 

histogram for m-times and applies the error shifting policy for m-times. For that reason, it 
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takes much time. On the contrary, in each cycle, the proposed scheme accesses and shifts the 

errors for a single time only during the operation of m-layer data embedment. The error 

shifting policy is repeated for each embedding cycle and not for embedding layers. Therefore, 

the time complexity increases along with the increment of embedding cycles. Nevertheless, 

time complexities in MLDC, MLTC and MLQC are very close to that of other MLSC schemes 

and much smaller than the time required by the scheme proposed by Wang et al.[94]. 

Table 5.2: Comparison of average values of SSIM in the different schemes 

Layers 

(L) 

MLDC 

(k=2) 

MLTC 

(k=3) 

MLQC 

(k=4) 
Tai Hong Leung Wang Pan 

1 0.886 0.862 0.839 0.874 0.971 0.895 0.875 0.972 

2 0.867 0.831 0.791 0.873 0.970 0.891 0.873 0.971 

3 0.854 0.806 0.755 0.872 0.969 0.887 0.868 0.969 

4 0.842 0.781 0.717 0.871 0.968 0.884 0.861 0.967 

5 0.831 0.762 0.691 0.869 0.967 0.881 0.853 0.964 

6 0.819 0.740 0.659 0.868 0.966 0.877 0.843 0.961 

7 0.810 0.724 0.638 0.866 0.964 0.874 0.832 0.959 

 

Table 5.3: Execution time per image (in second) 

Schemes Tai Hong . Wang Pan Leung DC TC QS PS SEXC SEPC OC 

Time (in sec) 3.8 4.5 16.3 3.1 3.9 4.9 5.7 6.4 7.3 9.1 10.9 12.3 

5.5 Resistance to Statistical Attacks 

There are many steganalysers [112], which can measure the probability of the presence of 

hidden data inside an image. In the experiments, two latest steganalysers are employed to test 

the resistance of the proposed scheme against the statistical attacks. As in the upper section, 

the higher embedding cycles are not recommended for data embedment due to the objective of 

maintaining the image quality; only first four cycles are analyzed in this section. The 

descriptions of these steganalysers, their experimenting methodologies, obtained results and 

the discussions are provided in the following sub-sections. 
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5.5.1 Security Analysis in SPAM Features 

Subtractive pixel adjacency matrix (SPAM) based steganalysis [19, 73] is a very effective and 

well-known method. The SPAM features are measured by subtracting the adjacent pixels. The 

differences of adjacent pixels in two opposite horizontal directions (i.e. → and ←) constitute 

two SPAMs. For example, SPAMs in → and ← directions are measured by Ii,j-Ii,j-1 and Ii,j-1-Ii,j 

respectively. Similarly, two SPAMs for each of the vertical (↓ and↑), major (↘ and ↖) and 

minor diagonal (↗ and ↙) axis are calculated. A first-order Markov model utilizes these eight 

matrices separately to estimate their transition probabilities, i.e. probabilities of changing states 

in the Markov model. Among these eight transition probability tables, four tables, which are 

found from two horizontal (→, ←) SPAMs and two vertical (↓, ↑) SPAMs are averaged to 

form a single table. Likewise, the other four transition tables, which are formed from four 

diagonals (↘, ↖, ↗ and ↙) SPAMs, are averaged to form another transition table. A threshold 

T is used in the Markov model to minimize the processing complexity as well as the features in 

the transition table. A support vector machine (SVM) uses these two tables for both training 

and testing these features. Using half of the total images, at first, the SVM is trained in the 

features. The features of the remaining images are used to test the SVM. In the test phases, the 

SVM classifies an image as a stego or a cover. 

The svmtrain, a MATLAB tool, is used to train the SPAM features of the images. The 

values of the parameter ‘label’ of the svmtrain are initialized with ‘0’ and ‘1’ to classify the 

‘cover’ and ‘stego’ images respectively. The threshold T is set to 4 for the first order Markov 

model. The features of n cover images and n stego images are applied in first-order Markov 

model with a linear kernel. Another Matlab tool svmclassify is used to test the images and to 

classify these as the stego and the cover images. Total false positive (classifying cover as 

stego) and false negative (classifying stego as cover) are collected from the classifier confusion 

matrix of the tool. The average of false positive probability, PFP and false negative probability 

PFN i.e.      
 

 
         , is used as the measure of the performance of the classifier. The 

values are tabulated in Table 5.4. Most of the classification errors in the first column are higher 

than the respective one in the second and third column. The reason is that the embedding 

process applied into a single error (as nNEP+nPEP=1 in the first column) will shift the pixel 

values in the stego image by a smaller amount. Therefore, the miss-classification rate (i.e.      

and    ) increases. Again, in the same column, the values decrease from MLSC to MLDC, 

MLDC to MLTC and so on because at higher cycles the shifting amount of each pixel value 
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increases. Consequently, the SPAM features in the stego images differ more from the SPAM 

features in the cover images and thus the classification error rates decrease. However, in the 

quadruple cycle process, the classification error increases a bit compared to the triple cycle 

process. This is due to the value of threshold T. Though many of the differences of adjacent 

pixels exceed [-T, +T] due to their larger shifting by the quadruple cycles, these do not match 

with any error within [-4, +4] during the search for the matching by the Markov model 

process. Thus, these do not contribute to the transition table. Consequently, the dissimilarities 

between the transition tables computed for the cover and the stego images are increased. A 

better classification accuracy is observed for nNEP=2 and nPEP=3. The phenomenon is due to 

the shifting of pixel values in a marginal range. The amount of dissimilarities between two 

transition tables increases and aids the scheme to discriminate the stego images more 

successfully. Again in the third column, the classification errors have been increased because 

the quantity of pixels, which are shifted by 4 or more, is increased, as the number of 

embeddable errors is 9. Thus, lot of pixel differences exceed the range of [-T, +T] and do not 

contribute to the transition table. That is why, classifier performance decreases there. Finally, it 

can be concluded that though fluctuations among the classification error rates are observed, the 

errors are closer and stay within the range [0.2, 0.27]. Thus, multi-cycle processes are not 

precisely differentiable from the single cycle processes by the SPAM feature sets. 

5.5.2 Security Analysis in Generalized Benford's Law 

Steganalysis based on Benford’s Law is a very latest, faster and effective mechanism to detect 

larger modifications in a large volume of natural data. The generalized Benford's Law (gBL) is 

explained in Chapter 2. The successful stego detections performed by gBL in the embedding 

layers of 2 and 4 for each of the embedding cycles of MLSC, MLDC, MLTC, MLQC have 

been tabulated in Table 5.5 separately for three different image datasets. It is observed from 

the Table 5.5 that the detection rate increases for each higher embedding cycle without an 

exception in the triple cycle process. The reasons for triple cycle becoming an exception are 

explained in the following. In Figure 5.9, it can be verified for triple cycle embedding process 

at the embedding layer of 2, i.e. for 5 embeddable errors, the embedding capacity of triple 

cycles in BOSS, CalTech and standard images are 1.2bpp, 0.75bpp and 0.61bpp respectively. 

From Figure 5.12, it can be checked that single, double, triple and quadruple cycle processes 

provide better image quality respectively into embedding capacity range of {[0, 0.459], [0.46, 

0.85], [0.851, 1.2], [1.21, 1.7]} in BOSS images, {[0, 0.245], [0.246, 0.5], [0.51, 0.855], 
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[0.856, 1.4]} in CalTech images and {[0, 0.21], [0.211, 0.4], [0.41, 0.8], [0.81, 1.235]} in 

Standard images. Therefore, at the embedding capacities of 1.2bpp in BOSS, 0.75bpp in 

CalTech and 0.61bpp in Standard images, triple cycle provides better image quality. That is 

why performance of gBL decreases in the triple cycle. Again, at the embedding layer of 4, i.e. 

when total embeddable errors are 9, it is noticeable in Figure 5.9 that the embedding capacities 

of these images are 1.4bpp, 0.85bpp and 0.8bpp respectively for BOSS, CalTech and Standard 

image datasets in MLTC (i.e. k=3). At these embedding capacities, CalTech and Standard 

images provide better PSNR, as shown in Figure 11-12. On the other hand, the capacity 

achieved in the BOSS images in the triple cycle embedding process at embedding layer 4 is 

greater than 1.2. For this, the detection rate by the gBL in the triple cycle process in the BOSS 

image database has increased. Again, in the BOSS image dataset, achieved capacity at 

embedding layer 4 by quadruple cycle is about 1.55bpp, which is in the range of [1.21, 1.7]. So 

the detection rate decreases with the quadruple cycle. 

Table 5.4: SVM’s classification error rates in first four multi-cycle processes. The error rates are 
measured in the three image datasets by embedding into the errors for three layers of 0, 2 and 4. 

Image 

Databases 
Schemes 

nNEP nPEP nNEP nPEP nNEP nPEP 

0 1 2 3 4 5 

BOSS 500 

MLSC* 0.2771 0.249 0.26908 

MLDC* 0.2711 0.24699 0.25703 

MLTC* 0.247 0.249 0.25502 

MLQC* 0.259 0.251 0.25904 

CalTech 5000 

MLSC 0.264 0.236 0.264 

MLDC 0.246 0.236 0.244 

MLTC 0.234 0.238 0.256 

MLQC 0.236 0.264 0.252 

Standard 50 

MLSC 0.2581 0.2339 0.2016 

MLDC 0.25 0.2581 0.2258 

MLTC 0.25 0.2258 0.2097 

MLQC 0.2258 0.2419 0.2177 
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Table 5.5: Successful stego detections by gBL when each of the MLSC, MLDC, MLTC and MLQC 

schemes are applied in the embedding layers of 2 and 4 separately. 

Image  

Database 
MLMC Process 

Successfully Stego detection 

Total in L=2 % in L=2 Total in L=4 % in L=4 

BOSS 500 images 

MLSC 55 11 48 9.6 

MLDC 55 11 50 10 

MLTC 47 9.4 53 10.6 

MLQC 63 12.6 50 10 

CalTech 5000 

images 

MLSC 490 9.8 607 12.14 

MLDC 607 12.14 617 12.34 

MLTC 529 10.58 539 10.78 

MLQC 666 13.32 588 11.76 

Standard 50 images 

MLSC 19 9.5 23 11.5 

MLDC 23 11.5 24 12 

MLTC 20 10 21 10.5 

MLQC 26 13 24 12 

 

Another exception is also noticeable in the MLSC scheme in the BOSS images for L=4. 

In such a case, the detection rate is small because at L=4, the embedding capacity of MLSC 

(when k=1) is 0.4, as shown in Figure 5.9, and in that embedding capacity, BOSS images 

provide better PSNR for a single cycle. From that analysis, it can be concluded that embedding 

into multilayer makes a trade-off with multi-cycle to meet the demand for the higher 

embedding capacity as well as increase the stego image quality and ensure resistance again 

statistical attacks. 

As a concluding remark, it can be mentioned that the proposed multi-cycles embedding 

schemes provide more resistance than single cycle schemes when the demand for embedding 

capacity is large. Thus, MLMC schemes exhibit more resistance against any statistical attacks. 

5.6 Summary and Conclusions 

Text and audio data related to investigations, interviews and various reports are usually large 

in volume. During the implantation of such type of massive and hybrid data, the data-hiding 

scheme requires large embeddable space. The proposed scheme is a pathway to fulfill such 

higher capacity demand. The proposed multilayer multi-cycle embedding scheme enhances 
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both the payload and the stego image quality compared with those of multi-layer single cycle 

schemes. It enhances the embedding capacity at least by a factor of 2 and several times in 

higher embedding cycles and layers. The scheme can conceal large volume as well as hybrid 

data into an image of reasonable size. It serves the demand for larger embedding capacity 

required for many applications including those in medical, forensic, military and law-

enforcement agencies. It is also extendable to choose an arbitrary number of embeddable error 

points in a side in the histogram during its data implantation without any further modification 

in its embedding rules. The freedom of defining the number of embeddable error points in a 

side, choosing predictor and its parameters and selecting embedding cycles has made the 

proposed reversible scheme more robust and secured. Besides, it exhibits more resistance 

against statistical attacks when a large volume of data is embedded. For these reasons, the 

multilayer multi-cycle scheme is obviously a notable contribution in the field of prediction 

errors based reversible data hiding arena. 
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Chapter 6 

Local Pattern Codes for Enriching Embedding 
Capacity 

In the arena of reversible image steganography, prediction error based single layer embedding 

schemes implant message bits into two most frequent errors. The conceived errors are 

modified by one unit while implanting a bit value of 1 and remained unchanged while 

conceiving bit 0, or vice versa. The other errors, termed as non-embeddable errors, are shifted 

by one unit in the histogram by the encoder just to resolve the coinciding matter of the non-

embeddable errors with the modified conceived errors. The single layer data embedment 

schemes try to minimize the quantity of non-embeddable errors in the embedding space for 

two reasons. Firstly, though the quantity of the non-embeddable errors in an image varies 

depending on the accuracy of the prediction process, these errors are more or less a half of 

total image pixels. These errors certainly destroy the originality in the stego image as they 

undergo a definite modification by one unit. Secondly, many of the embeddable errors are 

remained unchanged while conceiving a message bit of either 0 or 1, depending on the 

embedding rules of the applied scheme, and thus these errors lead in preserving more cover 

information in the stego image. These two issues imply that a method capable of generating 

embeddable errors, which is equal to the number of pixels in an image, i.e., no error is non-

embeddable, will enhance both the embedding capacity as well as the stego image quality. In 

this chapter, local binary pattern (LBP) codes are generated to produce an embeddable code for 

each of the image pixels. Moreover, the local ternary pattern (LTP) codes are applied to breed 

just the required number of embeddable codes when the size of message stream is small. In 

case of LTP, engendered non-embeddable errors are not altered by the proposed embedding 

rules to improve the image quality. Both the LBP and LTP based data embedment policies are 

tested and compared with several latest embedding schemes [7, 31, 32, 51, 63, 83, 88, 94, 107] 

to justify their effectiveness and superiority over the competing ones. The proposed methods 

successfully pass the tests. 
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6.1 Introduction 

During the last decade, with the enormous advances in reversible data embedment technology 

and its widespread applications, many researches have been proposed in the area of prediction 

error based data embedment process. In all the prediction error based embedding schemes, a 

predictor is, first, applied in image pixels to predict their values. Next, prediction errors are 

measured to generate the embedding space. Two or more than two highest appeared errors are 

chosen for secret bit implantation in the single layer (SL) and multi-layer (ML) data 

embedment processes, respectively. Though the ML schemes implant more bits than the SL 

schemes, the ML schemes destroy the image quality on a larger scale. Consequently, 

applications in forensic, medical and many other agencies prefer to embed into the errors of a 

single layer in the error space. In the SL schemes, the challenges toward enhancing the 

embedding capacity, mainly, lie on improving the frequency of two most appeared errors, i.e., 

embeddable errors. The embedding capacity means the number of implanted bits per pixel 

(bpp). A very common strategy of improving the number of embeddable errors is to increase 

the prediction accuracy. Day by day, the researchers have enriched the prediction phase of the 

prediction error based embedment schemes by proposing various prediction methodologies, 

including weighted average predictors [72, 81, 94], gradient edge detection based predictors 

[31, 62, 107], reference value based predictors [7, 32, 51, 59, 83] and multi-predictor based 

processes [11, 63]. All these prediction schemes are described in Chapter 2. The prime 

objective of all the prediction processes is to increase the prediction accuracy. 

In the SL data embedment schemes, the non-embeddable errors do not accept any message 

bit. Nevertheless, these errors certainly destroy the originality of the cover values in the stego 

image because the embedding rules of these stated schemes in the immediately above 

paragraph shift all the non-embeddable errors by an amount to prepare space for the movement 

of embeddable errors. The stego image quality, therefore, mostly depends on the capability of 

the scheme in decreasing the quantity of non-embeddable errors; in other words, the image 

quality depends on increasing the number of embeddable errors. The embedding capacity, 

then, definitely increases. Although all the schemes try to increase the number of embeddable 

errors by maximizing the prediction accuracy, this is investigated that none of the schemes can 

bring all their prediction errors under the umbrella of embeddable errors in a single layer 

scheme; and even producing the exact number of embeddable errors in an image according to 

the requirement of embedding capacity is beyond their capability. For this reason, these SL 
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embedding schemes demonstrate a strong limitation in embedding into every pixel and 

achieving higher image quality, e.g., PSNR of more than 50 dB in all images. 

In this chapter, two separate proposals are presented to meet the requirement of the 

smaller and higher embedding capacity by the uses of the local ternary pattern (LTP) and local 

binary pattern (LBP) code generation methods, respectively. Though the LTP and LBP 

methods are usually used in pattern matching algorithms, in this chapter, these two methods 

are applied for generating codes of embedding space. The LTP method computes a true value 

by checking whether a pixel value is less than gc-t, greater than gc+t or within the range [gc-t, 

gc+t], where gc is a reference value which is a constant and t is a threshold value. Based on the 

true value, the LTP method produces one of the three different valued codes -1, 1 and 0, 

respectively, for each image pixel. Among these three codes, -1 and 1 are used for data 

embedment and 0 is remained unchanged by the proposed embedding rules. The LTP method 

controls the number of embeddable codes of -1 and 1 by repeatedly changing the values of t 

and produces a sufficient number of embeddable errors which are just enough for conceiving 

the whole message. On the other hand, the traditional LBP method generates two different 

valued codes 0 and 1 by comparing whether the pixel value is less than gc or not. The 

embedding rules, then, implant a bit of information into all the LBP codes. Though there is no 

LTP and LBP based embedment scheme in the literature, for the completeness of the proposed 

work, several schemes that employ weighted average predictor, gradient edge detection 

predictor, reference value based predictor and multiple predictors for generating the 

embedding space are compared with the proposed LTP and LBP based schemes. The 

performance of the prediction processes, proposed by Tsai et al., 2009 [83], Hong and Chen, 

2010 [32], Hong, 2012 [31], Chen et al., 2013 [11], Ou et al. 2013 [72], Yang et al., 2013 

[107], Leung et al., 2013 [51], Ma et al. 2015 [63], Chang et al., 2015 [7], and Wang et al., 

2014 [94], are investigated in the experiments as the related works. The prediction processes, 

their limitations and the data embedment processes into these referenced schemes are 

summarized during their explanations in the Chapter 2. Therefore, these schemes are not 

restated in this chapter. The experimental results, produced by both the proposed LTP and LBP 

based methods, demonstrate outstanding improvement in embedding capacity and stego image 

quality with respect to all the competing ones. 

The rest of the chapter is organized into several sections. The philosophy of using the 

local pattern codes LBP and LTP  for the data embedment as well as their computation 

processes are explained in section 6.2. Section 6.3 is provided to explain the processing of the 
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cover image first so that the LTP and LBP based data embedment process can be implemented. 

Section 6.4 is devoted to showing the methodological similarities between the proposed LTP 

and LBP based embedding schemes and the prediction error based embedding schemes. 

Section 6.5 narrates the LTP code generation process and embedding method on LTP codes. 

Section 6.6 explains the mechanism of applying the LBP codes for data implantation. To 

justify the claims of obtaining better outcomes by the proposed methods, the results are 

demonstrated in Section 6.7. The resistance against statistical attacks is justified in Section 6.8. 

Finally, Section 6.9 is provided to conclude and remark the chapter. 

 

     
 gp
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(e) (f) 

Figure 6.1: Generating pattern codes for a given pattern: (a) the way of addressing contents in a pattern; 
(b) a sample pattern; (c) the pseudo code for LBP; (d) pattern code for LBP; (e) pseudo-code for LTP; 

and (f) LTP codes for t=5. 

If i
p cg g   

         pattern_codei =1 
Else  
         pattern_codei =0 
End 

If i
p cg g t   

         pattern_codei =1 
Else if i

p cg g t   
         pattern_codei =0 
Else if i

p cg g t   
         pattern_codei =-1  
End 

9 
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6.2 Generating Local Pattern Codes 

Local pattern codes are used mainly for classification of objects in various retrieval purpose 

applications. Very commonly used local pattern matching operators are LBP, LTP, local 

derivative pattern (LDP), local tetra pattern (LTrP), N-th order LTrP and Gabor Transformed 

LTrP. While working on an image, all the processes divide the pixel grids into blocks of size 

3 3  each, also known as the pattern. In each pattern, the value of the center pixel is compared 

with each of its surrounding eight pixels either by value, gradient directions or both depending 

on applied local pattern matching operator. For each comparison, a code is generated. Among 

these pattern-matching operators, only the LTP and the LBP produce less variety of codes. In 

the primary stage of the operation, the LBP generates either 0 or 1 as a code value and the LTP 

creates one of the codes on -1, 0 and 1 for each comparison [67]. Thus, all the generated codes 

in these two methods are of two and three state values, respectively. On the other hand, the 

LDP first computes the gradients of pixels in one of the four directions, e.g., along 00, 450, 900 

and 1350, and then computes a set of binary pattern codes for each of the directions. In this 

way, the LDP method uses more memory space and execution times while generating the same 

binary pattern codes. The LTrP produces one tetra pattern code of eight digits long and three 

binary pattern codes of 8 bits each. The computation method of the LTrP codes is more 

complex and it is much time consuming as well as a more space requiring process than the 

LBP and the LTP method. Hence, in this research, only the LBP and the LTP codes are used 

for the data implantation. 

6.2.1 The LBP Code Generation Process 

In a pattern of 3 3  sized block, the center pixel value is addressed by gc. The other pixel 

values are denoted by i
pg , where 1 8i  . The value cg  acts as a reference value. The process 

of addressing the contents of i
pg  in a pattern is managed by the superscript value i of i

pg , as 

shown in Figure 6.1(a). The LBP features are formed by comparing each of the content i
pg  in 

the pattern with its center value cg . To explain the code computation method, a real image 

block of 3 3  pixels, as a pattern, is taken in Figure 6.1(b). The pseudo codes in Figure 6.1(c) 

are used to generate an LBP code for each content i
pg  of the pattern. The pseudo codes 

engender a code value of 1 for the pixels which are greater than the center pixel gc and a code 
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of 0 for the other pixels. The generated LBP code values are displayed in Figure 6.1(d). In this 

scenario, the values of 1
pg , 3

pg , 4
pg  and 6

pg  are greater than cg . Hence, a code value of 1 is 

generated for each of them. Code value 0 is generated from the other pixels. 

6.2.2 The LTP Code Generation Process 

While working on a block, the LTP code generation process first divides the grayscale pixels, 

values range from 0 to 255, into three parts. These three parts are 0 to cg t , cg t  to cg t  

and cg t  to 255, where t  is an integer value. The process generates code for each pattern 

value i
pg  in the pattern depending on the matching condition of whether the pattern value i

pg  

is greater than cg t , less than cg t  or within cg t  to cg t . The pseudo codes in Figure 

6.1(e) compute the LTP codes. The code block of Figure 6.1(e) generates a code value of -1, 0 

or 1 for a pixel value of i
pg  when 0 i

p cg g t   , i
c p cg t g g t     and 255i

c pg t g    

respectively. The computed LTPs are shown in Figure 6.1(f) for t=5. In this pattern, 2
pg , 7

pg  

and 8
pg  are less than cg -5; 1

pg  and 5
pg  are within the range of [ cg -5, cg +5]; and 3

pg , 4
pg  and 

6
pg  are greater than cg +5. For these three categories of pattern values, corresponding codes -1, 

0 and 1 are generated as shown in Figure 6.1(f). 

6.3 Pre-processing the Cover Image 

In this phase, the image I is divided into blocks of size d d  each, where d  is an integer 

number and the width and the height of the image I are divisible by d . It is noted that the 

image is divided into blocks of d d pixels rather than of 3 3  because the proposed research 

uses the LBP or the LTP codes as an embedding space rather than for analysis of patterns. The 

LBP method generates embeddable codes for all the pixels. In the LTP method, the quantity of 

embeddable codes is manageable by manipulating the parameter t. Hence, the size of a block is 

not a concerning issue. Additionally, it creates a scope to enlarge the size of a block up to the 

size of the image. In each block, either the LTPs or the LBPs are computed to generate the 

embedding space. To compute the LBP and the LTP codes in a block, the scheme requires a 

reference value, cg . The traditional LBP and the LTP methods use the center pixel of a block 

as the reference value for the other pixels in the block. In this case, the center pixels should be 
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remained unchanged, so that the decoder can generate the same pattern codes. The quantity of 

the center pixels is 1/8-th of the image pixels when d=3. It is possible to generate a pattern 

code for these block centers as well if the scheme uses a negotiated value between the encoder 

and the decoder as a reference value. The objective of negotiating the reference value or 

computing it from the block pixels is to allow the embedding process to embed into the center 

pixels as well as to improve the security of the scheme because without knowing the 

negotiated values, no third party will be able to produce the exact pattern codes. A simple 

method of computing a negotiated reference value for block pixels is given in the Eq. (6.1), 

 min (max min) / 4 *2cg      , (6.1) 

where min and max represent the minimum and the maximum values, respectively among the 

blocky pixels. 

 

 

(a) 

 

 

(b) 

Figure 6.2: Pixels of a block: (a) array of blocky pixels after accessing through a spiral path; (b) 
histogram of block pixel values. 

Though the reference value of a block is negotiable, for the simplicity, the center pixel of each 

block will be considered as the reference value, i.e., cg , for the other pixels in the block 

hereafter. The pixels other than the center of the block, i.e., i
pg , are accessed through a spiral 

path, where 1 i d d   , and values are stored in an array data structure, as shown in Figure 

6.2 (a) as a generalized form. A histogram of blocky pixels is drawn, as shown in Figure 6.2 

(b), where gc represents the reference value containing bin in the histogram. Regarding gc, both 

the left and right side of the histogram contain odd and even valued pixels. The LBP method 

will be allowed to implant bits in all the pixels. The data implantation process will then modify 

the block pixels. In that case, the odd valued pixels could be changed to even values by the 

gp
1 gp

2 gp
3 ... ... ... ... gp

dxd-1 gc 
 

gc 

0  1  2  3  4  5  6  7  8  9  10 
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implantation rules. The vice versa will be true as well. Many of the pixels will remain as 

unchanged. For example, a pixel value Ii,j could be modified to Ii,j+1, while another pixel Ii,j+1 

could remain unchanged by the data hider. That is why, a stego value of Ii,j+1 could be 

generated for both the cover values of Ii,j and Ii,j+1. After the completion of the data 

implantation process, the decoder will be unable to detect whether the cover value of a stego 

pixel of Ii,j+1 is Ii,j or Ii,j+1. To solve the problem, the proposed scheme, first, marks a bin in 

the histogram by the black color whose value is cg , as shown in Figure 6.2 (b). All the pixels 

in the block which are smaller than the value of cg  being converted to odd numbers and the 

others, except the reference value, e.g. the center pixel, are converted to even values while 

working with the LBP method. The histogram of these converted pixel values is shown in 

Figure 6.3. Again, the LTP method will allow only the pixels to accept message bits which are 

smaller than cg t  and greater or equal to cg t . The other pixels, i.e., greater than or equal 

to cg t  and smaller than cg t , will not conceive any bit. That is why, while working with 

the LTP method, the pixels, which are smaller than cg t  and greater or equal to cg t  are 

converted to odd and even values, respectively, at their pre-processing stage. The other pixels, 

i.e., greater than or equal to cg t  and smaller than cg t , are not modified. This operation is 

referred in the following of this chapter as the odd-even conversion process. 

 

 
Figure 6.3: Histogram of the pixels where the pixel values less than the gc are converted to odd values 

and the others are to even values. 

 

The conversion is done based on the Eq. (6.2). 

 

mod( ,2) 1     
mod( ,2)          

                                    

i i i
p p p c

i i i i
p p p p c

i
p

g g if g g t
g g g if g g t

g Otherwise

    


   



 (6.2) 

0  1  2  3  4  5  6  7  8  9  10 

Changed to even values Changed to odd values 
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where the mod function returns the remainder value when the first argument is divided by the 

second argument. The conversion equation, as shown in the Eq.(6.2), works for the LTP 

method. This equation will work for LBP as well for t=0. The processed pixels by the odd-

even conversion process are addressed by i
pg , as shown in the right histogram of Figure 6.3. 

Due to the application of odd-even conversion process, the values of pixels will be changed. 

These changes will create a problem in both the LBP and the LTP processes when the value of 

cg  in LBP and gc+t in LTP are odd. For example, if the values of five pixels are 119, 120, 121, 

121, 122, where cg =121 and t=0, the Eq. (6.2) will change the values of 120 to 121 and 121, 

other than cg , to 120 before creating LBP codes. Then the i
pg  values will be 119, 121, 121, 

120, 122. According to the demand of the embedding process, stated in the following data 

embedment section, the cover pixels which are greater than or equal to cg ,  should never be 

smaller than cg . Similarly, the pixels which are smaller than cg  should not be equal to cg . 

Nevertheless, the pixel 121 is changed to 120 and the pixel 120 is changed to 121. These 

changes will create anomalies in the cover image reconstruction process. The problem will 

also be observed for t= 2, t=4, t=6 and so on in the process of LTP as the value of cg t  in 

these cases are odd. To solve the problem, the odd-even conversion process first checks 

whether the value of cg  in LBP and cg t  in LTP are odd. If these are odd valued, the value 

of cg  is subtracted by 1, i.e., cg = cg -1. The odd-even conversion process does not impose any 

restriction to the system while choosing or computing cg  so that cg  in LBP and cg t  in LTP 

become even valued. Rather by checking the value of cg  in LBP and cg t  in LTP, it changes 

the value of cg  so that cg  in LBP and cg t  in LTP become even values. All the changes that 

are happened by the odd-even conversion process, are traced by a binary array i
pS , called the 

shift-trace array. If a change is made a bit 1 is stored in the trace array, i
pS  for that pixel. 

Otherwise, a 0 is stored there. An illustration of the process for a sample block is provided in 

Example 6.1. The compressed shift-trace array is sent to the destination through another 

communication channel at a suitable time. The bit stream M of the secret is then implanted into 

the values of pixels of i
pg s by the proposed LTP based embedding process as described in 

Section 6.5 and by the LBP based embedding process as described in Section 6.6. 
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Example 6.1:  Processing a cover block { ,i
p cg g  }={255, 250, 100, 212, 170, 131, 221, 240, 

200}. 

In this example, the odd-even conversion process modifies pixels in the block. The pixels 

before and after modification are shown in Figure 6.4. In this figure, the pixels in the blue 

cells, green cells and red cell are smaller than, greater than or equal to the cg  (=200) 

respectively. The shift-trace array i
pS  is used to track the changes in the pixel values by the 

odd-even conversion process. A '1' in the array indicates that a change is done to the 

corresponding pixel value, e.g., the first 1 indicates that the value 254 is a conversion value of 

255. 

 
Figure 6.4: Pre-processing the cover values. 

 
 

6.4 Relating the LTP and the LBP Based Data Embedment Processes 
with Prediction Error Based Scheme 

There is no scheme in the literature that uses LTP or LBP codes for the data embedment 

process. To test the embedding performance of using these two proposed codes in an 

embedding scheme, the most commonly used prediction error based techniques are used in this 

chapter. As stated in Section 4.2, in a prediction error based scheme, a predictor predicts the 

pixel values of an image. The prediction errors are measured, thereafter and secret bits are 

implanted into these errors. The modified errors are added to their corresponding predicted 

values to form the stego pixels. Whereas, in the proposed LTP and LBP based schemes, codes 

255 250 100 121 170 131 203 240 200 
 

254 250 101 121 171 131 203 240 200 
 

1 0 1 0 1 0 0 0  
 

 i
pg : Processed block  ( ,i

p cg g ): Sample image block 

 Sp
i: Shift Trace Array 
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are computed first from the cover image. The difference values between the pixels and their 

corresponding codes are measured. These differences are addressed as the code-difference. 

Bits are implanted into the codes. The modified codes are added with their corresponding 

code-difference values to form the stego pixels. The codes and code-differences act in the 

proposed scheme like as the prediction errors and the predicted values. Hence, to manage 

terminologies in the proposed schemes more similar to prediction error based embedding 

schemes; these LTP and LBP code values will be addressed in the next as the encoded errors 

and the code-differences as the encoded prediction values. 

6.5 Proposed LTP Based Data Embedment Process 

In the LTP method, the frequency of 0 valued codes increases or decreases in connection with 

rising or falling the value of t, respectively. Again, the effect of t on the other two LTP codes 

1  and 1 is opposite of the consequence on 0. This means that the frequency of 0 and the 

quantities of -1 and 1 are controllable by analyzing the value of t in the LTP method. The 

objective of this proposed LTP based embedding scheme is to implant bits into the error values 

of -1 and 1. The embedding scheme will not change the value of 0s. Hence, when the required 

embedding capacity is very smaller than the image size, the parameter t in the LTP method is 

assigned to a large value so that the number of 0 valued code increases and the frequencies of 

1  and 1 errors become just sufficient to accept the whole message bits. 

6.5.1 Generating Encoded Errors in LTP 

First set the value of t to a small value, e.g., t=1. The LTP codes, i.e., the encoded errors, are 

computed by the methods stated in Figure 6.1(e) for all the pixels i
pg . Let these encoded errors 

are i
pe . Say, the total number of encoded errors which are valued to -1 or 1 is L, i.e., 

( ) ( )1  1i i
p pL frequency frequencye e     , where ( )i

pfrequency ce  stands for the 

number of errors in i
pe  which are equal to c. If L>M, the value of t is increased by one, i.e., 

1t t  . The LTP codes for updated t and then the value of L are measured. If again, L>M, 

the value of t is increased by one and the LTPs and L computation processes are repeated. 

These repetitions are continued until L<M. In that stage, when it first holds L<M, the value of t 
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is decreased by one, i.e., 1t t  . Finally, the encoded errors are computed with that t. The 

encoded predicted values i
pP  are computed by Eq. (6.3). 

 i i i
p p pP g e   (6.3) 

6.5.2 Data Embedment and Stego Image Generation Process 

Each of the message bit m of M, where M is the to be embedded message stream, is embedded 

into the encoded errors i
pe  by Eq. (6.4). The equation generates stego-encoded errors i

pe . 

Finally, the stego pixels i
pg  are computed by Eq. (6.5) by adding the encoded prediction 

values i
pP  with the corresponding stego encoded errors i

pe . 

 
                  0
                   1

2               1

i i
p p

i i
p p

i
p

e if e
e e if m

e if m

 


 
  

 (6.4) 

 i i i
p p pg P e   (6.5) 

While implanting message bit 0, the Eq. (6.4) modifies the encoded errors -1 and 1 by -2 

and 2 respectively, and leaves as unaltered for embedding a bit 1. It skips the 0 valued codes as 

non-embeddable. The stego pixels are placed in the corresponding positions in the stego block 

through a spiral path. These stego blocks are concatenated to form the stego image I . The 

whole process is explained in Example 6.2. 

 

Example 6.2: Data embedment into encoded errors 

The processed block pixels i
pg  of Figure 6.4 are copied in Figure 6.5(a). Let the embeddable 

message chunk is 0011010. This message chunk will be implanted into the pixels i
pg  of  Figure 

6.5(a). The encoded errors, LTP codes, are computed for t=5 and tabulated in Figure 6.5 (b). 

The encoded predicted values are measured in Figure 6.5(c) by applying the Eq. (6.3). The Eq. 

(6.4) is used to implant the message bits. Due to data implantation by the Eq. (6.4), the 

encoded errors are modified. These modified errors are shown in Figure 6.5(d). Finally, the 

Eq. (6.5) is applied to form the stego pixels i
pg . The stego block is depicted in Figure 6.5(e). 
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The pixel value 203 is not modified because the difference of it with the reference value 200 is 

less than t. 

 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 6.5: Data Embedment into a sample image block using the LTP based method: (a) processed 

block i
pg ; (b) encoded errors ep

i; (c) encoded prediction values Pp
i; (d) embeddable bits and the errors 

after bit implantation; (e) the stego block generation process. 

 

6.5.3 Data Extraction Process 

The decoder is either informed the values of cg  and t  by the encoder or able to compute these 

two values by using an expression. In the premier case, the encoder side sends the values of cg  

and t  to the decoder end by implanting these values to a separate portion in the stego image or 

by sending these values through another communication channel. Hence it is assumed that the 

decoder knows the values of cg  and t . The cover pixels which were greater than or equal to 

cg t , were converted to even values and the pixels which were smaller than the cg t , were 

converted to odd values by the odd-even conversion process, as described in Section 6.3, at 

their pre-processing stage. Hence, the pixels, which are smaller than cg t  and greater than or 

equal to cg t  in the stego block i
pg  are applied in the Eq. (6.6) and Eq. (6.7), respectively, to 

extract each secret bit m. 

 mod( ,2)i
pm g   (6.6) 

 mod( ,2) 1i
pm g   (6.7) 

254 250 101 121 171 131 203 240 200 
(a)  

 

1 1 -1 -1 -1 -1 0 1  
(b)  

 253 249 102 122 172 132 203 239 200 
(c) 

  
Embedded bits 0 0 1 1 0 1 x 0  

i
pe : Stego Encoded Errors 2 2 -1 -1 -2 -1 0 2  

(d) 

Pp
i
 : Encoded Predictions 253  249  102  122  172  132  203  239  200 

i
pe : Stego Encoded Errors 2 2 -1 -1 -2 -1 0 2  

i
pg  : Stego Block 255  251  101  121  170  131  203  241  200 

(e) 
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where   stands for bitwise exclusive or operator. 

6.5.4 Cover Image Reconstruction Process 

The decoder collects the shift trace array i
pS  from the encoder end through another 

communication channel before starting the cover reconstruction process. As the decoder 

knows the values of cg  and t , it is now capable to compute the encoded error values, i
pe  by 

using the LTP method, as shown in Figure 6.1(e). The pixels, which are smaller than cg t  

were converted to even values while conceiving a bit value of 0 and remained unchanged by 

accepting bit 1. Hence, while implanting bit 0, the encoder changed the value of i
pe  by 2 i

pe , 

as shown in the Eq. (6.4). Realizing these affairs, the stego encoded errors, i
pe  are computed at 

the decoder end by using Eq. (6.8). 

 
2       mod( ,2) 0

                      

i i
p pi

p i
p

e if g
e

e Otherwise
  

 


  (6.8) 

Similarly, the pixels in    pi
, which are greater than or equal to cg t  are applied in Eq. (6.9) to 

produce the stego encoded errors, i
pe . 

 
2       mod( ,2) 1

                      

i i
p pi

p i
p

e if g
e

e Otherwise
  

 


 (6.9) 

For the other pixels in ig p , i.e., for i
c p cg t g g t    , the stego encoded error will be 0, i.e., 

i
pe =0. 

The encoded predicted values are measured by using the Eq. (6.10). The Eq. (6.10) is 

inferred from the Eq. (6.5). 

 i i iP g ep p p   (6.10) 

Finally, the pixels, which were generated by the odd-even conversion process, are 

measured by using the Eq. (6.11). The Eq. (6.11) is deduced from the Eq. (6.3). 

 i i ig P ep p p   (6.11) 

The binary values of i
pS  help in identifying the pixels which were changed due to the uses 

of the odd-even conversion process. A binary value of 1 in i
pS  implies that the corresponding 
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pixel value ig p  is generated from i
pg  using the conversion process. Consequently, for all 1s in 

i
pS , the corresponding values of ig p  are changed back to their cover state to form the cover 

pixels i
pg . Repeating the process, all the cover blocks are reconstructed. Concatenating all 

these reconstructed cover blocks, the cover image I is retrieved by the receiver. The data 

extraction and the cover image reconstruction process are explained in the following Example 

6.3. 

 

Example 6.3:  Message extractions and cover image reconstructions 

Eq. (6.6) and Eq. (6.7) are applied to the stego block ig p  to extract the message bits. Figure 

6.6(a) shows the steps. In the figure, the first row provides the stego pixels. The second-row 

states which of the Eq. (6.6) and Eq. (6.7) are applied. The third row gives the result of these 

equations. These results are the extracted message bits. The pixel 203 is applied to none of 

these equations because this is within the range [ ,  i i
p pg t g t  ]. 

Figure 6.6(b) explains the cover pixel generation process. In this figure, the first row 

represents the stego pixels. The LTP codes, i.e., the encoded errors, are generated in the 

second-row. Eq. (6.8) and Eq. (6.9) are applied to the stego pixels to compute the stego 

encoded errors. These are displayed in the third row. The first row and the third row are 

applied in the Eq. (6.10) to compute the encoded prediction values. These encoded predicted 

values are tabulated in the fourth row. The pixels, which were generated by the odd-even 

conversion process at the encoder end, are reconstructed by the Eq. (6.11). These values are 

shown in the fifth row. The shift-trace array is found from the extracted secrets. This is 

provided in the sixth row. Verifying that shift-trace array, the cover pixels are retrieved in the 

seventh row. 
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(a) 

 

 

 

 

(b) 

Figure 6.6: Message extraction and reconstruction of cover pixels: (a) message extraction, (b) 
computation sequence during the reconstruction of cover pixels. 

 

6.6 Proposed LBP Based Data Embedment Process 

The LBP codes are used to implant data bits when the required embedding payloads M is very 

close to the image size, i.e., h w , where h and w stand for the height and the width of the 

image I. The cover image I is processed as it is discussed in section 6.3.  

6.6.1 Generating LBP Codes 

The odd-even conversion process is applied to compute the i
pg  values. The LBP codes are 

computed from i
pg  as it is shown in Figure 6.1(c). The LTP based data implantation rule, 

represented by the Eq. (6.4), embeds bits into the encoded errors of -1 and 1. The LBP method 

generates only the code values of 0 and 1. Hence, to embed into the LBP based encoded errors 

using the same embedding rules, either the embedding rules of the Eq. (6.4) have to be 

modified or the 0 valued LBPs have to be updated by -1. In this research, the second option is 

chosen so that the same embedding rules can be applied in both the LTP and the LBP based 

methods. Hence, after the computation of LBP codes, the 0 valued codes are modified by -1. 

These computed full LBP codes are regarded as the encoded errors, i
pe . Eq. (6.3) is executed 

to measure the encoded prediction values, i
pP . 

Stego Block    pi  255  251  101  121  170  131  203  241  200 
Encoded Errors ep

i  1 1 -1 -1 -1 -1 0 1  
Applying Eqs. 6.8, 6.9  p

i 2 2 -1 -1 -2 -1 0 2  
Applying Eq. 6.10 Pp

i  253  249  102  122  172  132  203  239  200 
Applying Eq. 6.11   pi 254 250 101 121 171 131 203 240 200 
Sfift-Trace Array Sp

i 1 0 1 0 1 0 0 0  
Cover Pixels gp

i 255 250 100 121 170 131 203 240 200 
 

Stego Block 
ig p  255 251 101 121 170 131 203 241 200 

Applied Eq.  6.7 6.7 6.6 6.6 6.6 6.6 x 6.7  
Extracted Message M 0 0 1 1 0 1 x 0  
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6.6.2 Data Implantation Process 

Eq. (6.4) is applied to implant data bits into the encoded errors. In the Eq. (6.4), the first rule, 

i.e., the checking of '  0i
pif e  ', is ignored. Other two checking of '  1f mi  ' and '  0f mi  ' are 

executed while implanting bits in the LBP based encoded errors. A flowchart of the data 

embedment process is shown in the Algorithm 6.1 of Figure 6.7. The algorithm is called for 

each of the bit implantation. To generate the pixels of the stego image block, Eq. (6.5) is 

executed. Finally, concatenating all the stego blocks, the stego image I  is formed. 

 

 

 

 

 

 

 

 

Figure 6.7: Flowchart of data embedment into LBP codes 

6.6.3 Data Extraction and Cover Image Reconstruction Process 

During the message extraction and cover image reconstruction processes, first the reference 

value, cg  is obtained, e.g., computed by the Eq. (6.1). If cg  is an odd value,  it is reduced by 

one, i.e., cg = cg -1. Eq. (6.6) and Eq. (6.8) are then applied to the pixels which are less than 

cg . These two equations extract the secret bits and generate the stego encoded error values, 

respectively. Similarly, Eq. (6.7) and Eq. (6.9) are applied to the other pixels to extract 

implanted bits and to produce the stego encoded errors. Eq. (6.10) is used to measure the 

encoded prediction values. Finally, Eq. (6.11) is applied to reconstruct the values as the odd-

even conversion process generates it. The whole process is depicted in Figure 6.8. To extract 

each bit of the message and to reconstruct each cover pixel, the Algorithm 6.2 of the Figure 6.8 

is executed.  The shift-trace matrix is already discovered from the extracted bits. Checking this 

shift-trace matrix, the cover pixels are reconstructed. 

Algorithm 6.1: LBP_Embedment ( i
pe , m) 

Step 1. If 1i
pe   then 

   i i
p pe e and go to Step 3. 

  End if 

Step 2. If  0i
pe   then 

   2i i
p pe e   and go to Step 3 

  End if 

Step 3. Exit the module 
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Figure 6.8: Flowchart to extract a message bit and to reconstruct a pixel 

6.7 Result Analysis 

The LBP and the LTP based embedment methods and the competing schemes are 

experimented on several image data sets including the CalTech, Standard and Common 

datasets. The results obtained by experimenting on the Common dataset are demonstrated in 

the following figures and tables. As a sample, very commonly used ten images of the Common 

data set are displayed in Figure 6.9. The proposed LBP and LTP based schemes are compared 

with nine reviewed schemes [7, 31, 32, 51, 63, 83, 88, 94, 107] including several latest ones [7, 

51, 63, 94, 107]. The experimented schemes, their legends, which are used in the table and 

figures, are listed in Table 6.1. In the following discussion, the terms LBP and LTP will be 

used to refer to the meaning of LBP code based and LTP code based embedding methods, 

respectively. 

Algorithm 6.2: LBP_Extraction ( i
pe ,    pi , gc ) 

Step 1. If     pi <gc then 

   Apply Eq. (6.6) to compute the bit value m; 

   again apply Eq. (6.8) to compute i
pe ; 

   and go to Step 3. 

  End if 

Step 2. If     pi ≥gc then 

   Apply Eq. (6.7) to compute the bit value m; 

   again apply Eq. (6.9) to compute i
pe ; 

    and go to Step 3. 

  End if 

Step 3. Compute i
pP   by Eq. (6.10); 

  Compute i
pg   bu Eq. (6.11); 

  Exit the module. 



Chapter 6                                                  Local Pattern Codes for Enriching Embedding Capacity  152 
                                    

 

           

 (a)       (b)          (c)              (d)     (e) 

         

   (f)        (g)           (h)    (i)      (j) 

Figure 6.9: Cover images from our Common dataset: the images are (a) Boat, (b) Camera man (c) 
Tiffany, (d) Mona Lisa, (e) Plane, (f) Bird, (g) Elinae, (h) Lena, (i) Baboon and (j) Peppers. 

6.7.1 Variation of Payload and Image Quality in LTP 

Each of the LTP code is created against a specific pixel. Hence, an embeddable LTP code 

means that the corresponding pixel is embeddable. The quantities of embeddable and non-

embeddable pixels are measurable before starting the data embedment process. The LTP 

method uses a parameter t to control the quantity of the embeddable codes. This method 

increases or decreases the number of embeddable pixels by decreasing and increasing the value 

of t, respectively. The method sets the value of t to the best-suited value by repeatedly varying 

its value in order to generate a sufficient number of embeddable codes, which are just enough 

to meet the embedding capacity. The objective of this analysis is to maximize the quantity of 

non-embeddable errors by satisfying the demand of embedding capacity. This is done because, 

the proposed embedding rules do not change the values of non-embeddable pixels and thus, the 

attempt of maximizing the non-embeddable pixels will present more quantity of not-changed 

pixels in the stego image. The impact of increasing the value of t on the payload and PSNR of 

the stego image is depicted in Figure 6.10(a) and Figure 6.10(b). In both the figures, the 

horizontal axis represents the t value ranges from 1 to 15. The vertical axis represents the 

payload and the PSNR in the Figure 6.10(a) and Figure 6.10(b), respectively. These two 

figures state that when the value of t is increased, the amount of payloads decreases and the 

PSNR value increases for all the images. The reason is that with the increasing value of t, the 

number of non-embeddable pixels increases. 
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Table 6.1: An interpretation of the legends, which are used in the figures and tables. 

Sr. Symbolic Legend Word Legend Status Meaning (Scheme of) 

1 P1 LBP Proposed  

2 P2 LTP Proposed  

3 R1 Tai Reviewed Tai et al., [83] in 2009 

4 R2 Tsai Reviewed Tsai et al. [88] in 2009 

5 R3 Wien2010 Reviewed Hong and Chen [32] in 2010 

6 R4 Wien2012 Reviewed Hong Wien [31] in 2012 

7 R5 Weijen Reviewed W,-J Yang et al. [107] in 2013 

8 R6 Leung Reviewed Leung et al. [51] in 2013 

9 R7 Truncated Reviewed Chang et al. [7] in 2014 

10 R8 Ma Reviewed Ma Xiaoxiao et al. [63] in 2015 

11 R9 Wang Reviewed Wang et al., [94] in 2014 
 

  

(a) (b) 

Figure 6.10: Verifying the effect of t in LTP based method: if value of t increases (a) payload decreases 
and (b) PSNR increases. 

6.7.2 Comparison of Payloads among the Schemes 

The payloads of the different schemes, including LTP and LBP, for the ten images of Figure 

6.9 are measured. The results are depicted in Figure 6.11 in terms of embedding capacities 

along the y-axis for different images. During the experiment in the LBP based scheme, the 

center pixels of each block of size 3x3 were regarded as reference values. Consequently, 1/9 of 

total pixels were not applied for bit implantation. Hence, the embedding capacity in the LBP 

based scheme is 0.88bpp for all the images. If calculated or negotiated values are used as the 

reference values, the embedding capacity will reach to 1bpp in LBP based method. In the 

figure, the LTP based method is depicted for t=3. The embedding capacity of the LTP based 
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scheme varies from 0.42bpp to 0.69bpp. The average embedding capacity in Ma, i.e., R8, is 

0.4bpp. Average embedding capacities for all other schemes are no more than 0.2bpp because 

these schemes embed into their prediction errors and these applied predictors cannot produce 

embeddable prediction errors for all the pixels. This figure demonstrates that the LBP based 

scheme remarkably dominates the others. Though the embedding capacity in the LTP is 

smaller than the LBP, it dictates all the competing schemes in nine images out of ten.  

 

Figure 6.11: Embedding capacities which are obtained by difference schemes in the ten images 

 

 
(a) 
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(b) 

Figure 6.12: Payload gains by the scheme; (a) LBP and (b) LTP. 

 

In another observation, payload gains in the LBP and the LTP are analyzed. To do that, 

the payloads of the LBP and the LTP are analyzed with the payloads of competing schemes 

individually for each image. These values are demonstrated in Figure 6.12 in log scale along 

the y-axis. The payload gain for each image is presented along with each minor tic of the 

horizontal axis.  The gains are measured with respect to the legend stated schemes. The gains 

in the LBP and the LTP are presented in the Figure 6.12(a) and Figure 6.12(b), respectively. 

The Figure 6.12(a) states that all the gains in the LBP are positive valued. The LTP gains, 

shown in the Figure 6.12(b), are also positive valued other than the 6th image. The positive 

gains indicate that the obtained payloads in the proposed LBP and LTP schemes are higher 

than the competing methods. 

6.7.3 Comparison of PSNR among the Schemes 

PSNR is used to measure the quality of an image. A higher value of PSNR indicates better 

image quality. Figure 6.13 is provided to depict the PSNR values of the different schemes in 

the ten experimented images. The experiment of LTP is conducted for t=3. Several 

observations that are found in the Figure 6.13 are listed in the following: 

 The figure states that LTP provides best PSNR values, which are more than 56dB. 

This is reasoning because LTP maximizes the quantity of non-embeddable pixels for a 

given embedding payload and does not change the values of non-embeddable pixels. 

Thus, it allows a lot of pixels to remain as unchanged.  
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 The value of PSNR varies from image to image in LTP. This happens due to unequal 

payloads of LTP in the images. 

 Based on the correlation of pixel values in a block, the quantity of non-embeddable 

pixel varies from image to image. Therefore, the images, which present higher 

embedding payloads for LTP method, as shown in the Figure 6.11, demonstrate 

smaller PSNR values in Figure 6.13. 

 Though the PSNRs in LBP are smaller than the ones in LTP, these values are higher 

than the PSNRs of other competing schemes. The LBP provides the flat value of 

PSNR for two reasons. Firstly, in each image, the LBP embeds bits into all the pixels, 

except the block centers. Secondly, the changes of pixel values, and thus, the 

variations in PSNR values, are happened only for the quantity of '0' in the message 

stream. As the same stream is implanted into all the images, the PSNR is same for all 

of them, i.e., images. 

 
Figure 6.13: PSNR of different images in different schemes. 

6.7.4 Comparison of SSIM among the Schemes 

The values of structural similarity index (SSIM) are measured in the stated images for all the 

experimented schemes and these are depicted in Figure 6.14 along the y-axis. The figure states 

that the SSIM values in the LTP and the LBP are the highest. The values of SSIM in these two 

schemes are very close to each other. These values indicate that these two proposed schemes 

preserve more structural property of the cover image in the stego image. In another Figure 

6.13, the payloads per structural dissimilarity index (SDIM) are sketched. The definition of 
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SDIM is given in Chapter 2. The payloads per SDIM in the LBP and in the LTP are very 

higher than the other competing schemes. Total modified pixels are less in quantity in the LTP 

and then in the LBP based scheme than the others. That is why these two provide better results 

regarding SSIM and payload per DSSIM. 

 

 

Figure 6.14: Comparison of schemes regarding SSIM in different images. 

 

Figure 6.15: Payload per DSSIM for different images in the different schemes. 

6.8 Resistance to Statistical Attacks 

Due to data embedment at a rate of less than a single bit per pixel, the visual quality of a stego 

image degrades nominally and the changes are not detectable by the human visioning system. 

Nevertheless, attackers apply more insight examinations statistically to reveal the existence of 

hidden secrets in a carrier. To justify the resistance of our proposed schemes against attacks, 

several tests like relative entropy and statistical measures are conducted. As a measure of 
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statistical attacks, experiments on two statistical parameters like standard deviations between 

the cover and the stego image, correlation coefficients of them are conducted. 

6.8.1 Statistical Attacks 

The standard deviations are measured from the cover and the stego images in the different 

schemes. Minimizing the differences between the standard deviations, before and after data 

embedment, is a target for improving the security of the data embedment process. The 

divergence between these standard deviations is computed in percentage for each method. 

These values are shown in Table 6.2. The values in the table articulate that all the divergences, 

computed in different images, are less than one only in the proposed LBP and LTP schemes. 

These small values in the table ensure that the frequency of changed pixels in the stego image 

compared with the cover image in the proposed LBP and LTP schemes is smaller than the 

amount in the other schemes. Smaller values of these divergences, like less than 0.38% in the 

experimented results, will discourage attackers to look for the secret inside into the stego 

image. 

Table 6.2: Divergence in percent between the standard deviation of the cover image and the stego image 
in different methods. 

Image Name P1 P2 R1 R2 R3 R4 R5 R6 R7 R8 R9 
Boat 0.2 0.13 4.01 4.34 4.38 4 4 4.39 4.14 4.18 1.84 
Camera Man 0.3 0.23 1.06 1.13 1.14 0.74 0.74 1.14 1.12 1.07 1.76 
Tiffany 0.23 0.04 2.98 3.16 3.05 2.9 2.9 3.16 3.47 3.08 0.68 
Mona Lisa 0.04 0.06 1.39 1.39 1.23 1.19 1.19 1.38 1.43 1.32 1.49 
Plane 0.02 0.03 0.78 0.51 0.79 0.91 0.91 0.64 0.82 0.86 2.52 
Bird 0.22 0.19 2.3 2.34 2.16 1.91 1.91 2.31 2.38 2.23 3.96 
Elaine 0.07 0.05 3.29 3.29 3.16 3.18 3.18 3.3 3.28 3.17 5.5 
Lena 0 0.03 1.6 1.38 1.24 1.31 1.31 1.41 1.52 1.46 1.88 
Baboon 0.38 0.39 2.21 2.52 2.32 2.33 2.33 2.64 2.79 2.34 4.49 
Peppers 0.01 0.01 4.26 4.2 4.05 3.93 3.93 4.18 4.21 4.09 3.36 

6.8.2 Relative Entropy 

The relative entropy, defined in Chapter 2, is measured by subtracting the entropy of a stego 

image from the entropy of a cover image. The value of relative entropy will be zero when 

these two images coincide. This relative entropy will be smaller when the pixel values of two 

different images become close to each other. The relative entropies in the LBP scheme, which 

are computed for different images, are shown in Table 6.3. As the payload in LBP is a flat 
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value, the relative entropy is computed for a single payload in an image. The highest relative 

entropy is 0.016, which is a very small value. In the LTP case, the entropies of the stego image 

for the different level of embedding payloads are measured. These values are listed in Table 

6.4. It is shown from the table that the relative entropies vary within the range [0.008, 0.046]. 

These are also very smaller values. For three different embedding payloads, the changes in the 

relative entropy are 0.004 in the Bird image (measured by the difference between the highest 

one and the smallest one, i.e., 0.046-0.042) and less than 0.001 in all other images. These 

changes for different levels of embedding payloads are also nominal. Thus, the LBP and the 

LTP show stronger resistance against relative entropy attacks. 

Table 6.3: Relative entropy between cover and stego images in the LBP based scheme 

Image Name Implanted Data Entropy in Cover Entropy in LBP Stego Difference 
Boat 36992 7.163 7.153 0.01 
Camera Man 36992 7.024 7.011 0.013 
Tiffany 36992 6.537 6.526 0.011 
Mona Lisa 36992 7.486 7.481 0.005 
Plane 36992 6.731 6.715 0.016 
Bird 36992 7.384 7.376 0.008 
Elaine 36992 7.482 7.477 0.005 
Lena 36992 7.431 7.42 0.011 
Baboon 36992 7.214 7.203 0.011 
Peppers 36992 7.576 7.571 0.005 
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Table 6.4: Relative entropy between cover and stego images in the LTP based scheme 

Image Name Implanted Data Entropy in Cover Entropy in LBP Stego Difference 

 26451  7.148 0.015 
Boat 20535 7.163 7.147 0.016 

 16731  7.148 0.015 

 19820  6.991 0.033 
Camera Man 13250 7.024 6.992 0.032 

 10779  6.992 0.032 

 22863  6.515 0.022 
Tiffany 14992 6.537 6.515 0.022 

 10655  6.515 0.022 

 26546  7.477 0.009 
Mona Lisa 18970 7.486 7.478 0.008 

 13841  7.478 0.008 

 21761  6.703 0.028 
Plane 15242 6.731 6.703 0.028 

 12049  6.702 0.029 

 15574  7.342 0.042 
Bird 9900 7.384 7.34 0.044 

 7360  7.338 0.046 

 26688  7.473 0.009 
Elaine 18819 7.482 7.474 0.008 

 13409  7.473 0.009 

 24415  7.416 0.015 
Lena 17124 7.431 7.415 0.016 

 13374  7.415 0.016 

 32643  7.203 0.011 
Baboon 28588 7.214 7.203 0.011 

 25006  7.203 0.011 

 24621  7.566 0.01 
Peppers 16797 7.576 7.566 0.01 

 12516  7.567 0.009 

6.9 Summary and Comments 

The proposed LBP and LTP schemes demonstrate remarkable improvement over the other 

competing schemes regarding all the analyzed parameters. The LBP presents the highest 

embedding capacity while LTP demonstrates the highest image quality. Though the image 

quality in the LBP is a bit lower than the LTP, this is higher than all other competing schemes. 

The embedding capacity in LBP is about 5 to 10 times higher than the others in an average. 
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The ratio of payload per SDIM in the LBP is also 10 times higher than the other schemes. The 

security analysis states that the LBP and the LTP based data embedment policies present 

stronger security for implanted data. These schemes are easier to implement and faster than the 

others because the methods compute a code by a single comparison. Thus, from all the 

analyses, the proposed LBP and LTP show better performance. It is revealed from 

experimental results that these two unique proposals will come in the field of covert 

communication as a striking methodology. 
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Chapter 7 

Embedding by Association and Mapping of Prediction 
Error Histogram 

Though a very common strategy of reversible data hiding schemes is to present better stego 

image quality, a small number of applications destroy the cover information in the stego image 

while implanting bits. The annihilation of cover information is intensely demanded when the 

cover image itself is secret. The latest policy of destroying the cover image is to apply a 

histogram association and mapping (HAM) strategy. In this strategy, the grayscale pixel range, 

i.e., 0–255, is divided into the maximum number, say k, of equally spaced partitions for each 

working block, so that k R 255, where R stands for the range of pixel values in that block. 

The pixel value histogram of the block fits into one of the k partitions, known as the original 

partition. For each block, the scheme separates a chunk of log2k bits from the message stream 

and converts the message chunk into decimal value d. Under the reflection strategy of the 

embedding rules, the pixel value histogram of the block is shifted from the original to dth 

partition and the relative position of the histogram bins, each containing a number of pixels 

having the same value, in the destination partition remains the same as that were in the original 

one. As the scheme implants log2k bits of information in a working block, the number of 

implanted bits increases for the increasing value of k, indeed for the decreasing value of R as 

the partitioning condition implies. In this chapter, it is proposed to apply the range of absolute 

values of prediction errors rather than using the range of original pixel values while implanting 

the HAM embedding scheme because the range of absolute values of prediction errors of a 

block is very smaller compared with the original value range for the same pixels of the 

working block and hence, the strategy improves the number of implanted bits in an image. To 

further improve the embedding capacity, the range of prediction errors is minimized again 

through applying the same predictor to the absolute values of the prediction errors and then 

calculating the value range of the next level prediction errors. This prediction process is 

repeated for n times. The proposed scheme is compared with the HAM based only existed Ong 
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et al.’s embedding scheme [71] and another latest image distortion based Liao et al.'s 

embedding scheme [52] to justify its superiority and effectiveness. 

7.1 Introduction 

In the intentional image degradation based data embedment schemes, the information of the 

cover image is annihilated so that no illicit person or device can retrieve the original cover 

contents from the stego image. Such schemes play vital roles in medical and forensic 

applications; in the transmission of legal documents, evidence or report by law-enforcing 

agencies; in communicating for copyrights and certificates; and in similar applications when 

the cover image itself is secret. In the intentional degradation based data embedment schemes, 

the image distortion is achieved by the following three ways: 

i) While implanting secret bits into an embedding space, e.g., the pixel values of an 

image, transformed coefficients and the prediction errors of the image pixels, several 

embedding schemes do the data implantation task by shifting the contents of the 

embedding space up to a large embedding layer in their pixel value, coefficient or 

prediction error histogram [51]. The concepts of these schemes have been detailed in 

Chapter 2 and Chapter 5. When embedding is performed in the embedding space up 

to a large embedding layer, the pixel values are modified by a large amount and 

hence results in degradation in image quality. 

ii) Many embedding processes, e.g., Liao et al. in 2015 [52] and Zhang et al. in 2014 

[110], first annihilate the cover contents in an image by applying an encryption 

technique before performing the data embedment task. In such schemes, the data is 

embedded into the encrypted values. 

iii) The pixel values of an image block are modified by an equal amount using the 

process of shifting all the frequency data of the pixel value histogram as a single 

object by an amount [71]. In such cases, the shifting amount is derived from the range 

of pixel values in the block. 

The first methodology does not ensure the equal shifting of the pixel values. In that 

process, many pixels either remain unchanged or move to near values, as it is investigated in 

Chapter 5. Consequently, cover information is partially accessible or fully guessable. Thus, the 

schemes exploiting this methodology do not serve the objectives of intentionally image 
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degradation based data hiding policy. Though the encryption process, mentioned in the second 

case, fully razes the cover information, the data hiding process is not methodologically 

dependent on the encryption technique, rather the encryption process works independently. 

Thus, this is as if the schemes were embedding into a noisy image. In the third case, the pixel 

value histogram of a block is shifted as a single object by an amount within the gray color 

range. The translation of block histogram is performed by histogram association and mapping 

(HAM) policy. In the HAM policy, at first, a histogram for the pixels of each block is 

computed. The histogram is shifted to a new place in the grayscale range of 0 – 255. The value 

range of the block pixels and the size of message chunk to be implanted in that block 

determine the shifting amount. The pixel values are modified by the corresponding bin value 

change in the shifted histogram. This process provides a guarantee of equal modification for all 

the pixels of the block. More details of HAM based data embedment policy are described in 

Chapter 2. In the HAM scheme, the modification of pixel values is performed during the data 

embedment task. The target of the research, presented in this chapter, is to destroy the cover 

image by the embedding rules during the implantation of data bits, i.e., contributing to HAM 

based data embedment.  

Ong et al. in 2014 [71] presented the HAM scheme in the field of image steganography 

for the first time. The presented embedding policy is chosen in this research as a benchmark 

for specific four reasons: (1) the HAM based embedding method is a unique one of its kind; 

(2) the method presents higher embedding capacity; (3) it creates larger distortions in the 

image; and  (4) the embedding policy is quite simple. The number of bits implanted in each 

image block by the Ong's scheme depends on the range of pixel values in the block presented. 

The lower the range is higher the embedding capacity. Nevertheless, the reviewed scheme did 

not pay any effort to minimize the block pixel range values. 

In this chapter, a novel prediction error based HAM scheme is presented where the 

embedding capacity is improved by applying the range value of prediction errors rather than 

the range of their pixel values. The motivation of using prediction errors to control the data 

embedment task comes from the other stego quality ensuring reversible schemes, where 

prediction errors are used to improve the embedding capacity. The prediction errors become 

very small values and are mostly close to zero. If a predictor is applied to the block pixels to 

predict these pixel values and the prediction errors are measured, the range of absolute values 

of these prediction errors will be much smaller than the range value of block pixels. In this 

chapter, the embedding and extraction rules of HAM policy, which were presented in the 
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benchmark scheme, are modified to perform HAM operation using the prediction errors. The 

range of absolute values of the prediction errors is employed in the proposed HAM scheme for 

the improvement of embedding capacity. The experimental results demonstrate an 

improvement over the existing HAM scheme. To further minimize the range value of block 

pixels, the same predictor is applied repeatedly in a way so that each time it predicts values 

from the lastly computed absolute values of the prediction errors, i.e., recursively applying the 

same predictor to the lastly computed absolute values of the prediction errors. This smaller 

range values help the proposed scheme in yielding a noticeable improvement in the embedding 

capacity. 

The remainder of the chapter is organized as follows. Section 7.2 narrates the scheme of 

Ong et al. [71] briefly as a benchmark of HAM based embedding process. Section 7.3 

improves the robustness of the traditional HAM scheme; while the proposed prediction error 

based HAM (PEBHAM) scheme detailed in Section 7.4. Section 7.5 demonstrates the 

experimental results and provides an analysis of the results. The effectiveness of the scheme 

against steganalysis is verified in Section 7.6. The proposed repeated PEBHAM (RPBHAM) 

scheme and the corresponding experimental results are presented in Sections 7.7 and Section 

7.8, respectively. Finally, a conclusion is drawn in Section 7.9. 

7.2 The HAM Based Benchmark Scheme 

Ong et al.  in 2014 [71] proposed a HAM based data embedment scheme for the first time in 

the literature. The scheme intentionally destroys the image contents by implanting message 

bits. In this scheme, the image of size h w  is first divided into non-overlapping blocks of 

size m n each, where h and w are the dimensions of the image along the vertical and the 

horizontal directions and are divisible by m and n, respectively. While working on a block, the 

scheme first determines the minimum and the maximum values among the pixels. Say these 

are max and min, respectively. These two values are stored as the assistant information, also 

known as the side information, for the working block. The side information helps the receiver 

in its data extraction phase. The range of pixel values, say R, within each working block is 

measured by the relation 1R max min   . The grayscale range, i.e., 0-255, is partitioned 

into P parts where P= 2log256 / 2 R   . For P = 4, the gray partitions are (0-63), (64-127), (128-

191) and (192-255) respectively. The value of P can be any of 2i, for 1 8i  , depending on 

the pixel value range of the block. Nevertheless, for the convenience, the situation of four 
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partitions will be exercised in all the following examples while explaining the scheme. Then, 

bins of the histogram of a block will be situated to a single partition as it is expected, e.g., (64-

127) as shown in Figure 7.1 and the part is termed as the ‘origin partition’. The block 

histogram situated in the original partition is moved to one of the P partitions as a single object 

by the HAM scheme during the data embedment task. These P partitions are known as the 

‘reflective partitions’. The origin partition is marked as partition no 0. Considering the 

grayscale as a circular path, the other partitions are numbered in an incremental way by 

marching towards the right direction. During the data embedment, the scheme implants n bits 

of information in a block, where n = log2 P. The value of n will be 2 if P is 4. During the data 

embedment task, first, the HAM scheme computes a histogram of the block pixels and 

associates it to the original partition. The scheme then separates n bits of message chunk, msg, 

from the implantable message stream and builds an association of the original partition with 

the partition no Bin2Dec(msg), where Bin2Dec converts the bit stream of msg into a decimal 

value. The partition no Bin2Dec(msg) is called the destination partition. The scheme next 

performs a bin mapping operation where each bin of the histogram, currently associated with 

the origin partition, is moved to the destination partition allocating the same bin position, as it 

was for the bin in the original partition. Stego pixels of the working block are computed from 

that stego histogram. 

 

Figure 7.1: Grayscale partition and translation of histogram by HAM process. 

 

R 

0 1 2 3 

Partition No. 

0 64 128 255 192 
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The receiver decodes the stego image to extract the secret message as well as to 

reconstruct the cover image. To do the decoding operation, the receiver requires the side or 

assistant information that was prepared by the sender side. The assistant information is 

transmitted to the receiver end through some mechanisms like LSB replacement in a specific 

part of the host image or sending the assistant information to the receiver through another 

communication channel. The receiver end collects the assistant information; separates the min 

and max values of the cover block from the assistant information; and computes the cover 

block range. The receiver next computes the min and the max values of stego block as well as 

the stego block range. As the HAM scheme on the sender side shifted the whole histogram of 

pixels of the cover block to the Bin2Dec(msg)-th partition, the stego block range will be the 

same as cover block range and thus, the values of P and n are computable for the working 

block in the receiving end. The receiver divides the grayscale into P parts and marks the origin 

and destination partitions verifying the values of cover min and stego min. The partition 

number of the origin and the destination is then known to the receiver. Likewise the 

embedding phase, the receiver converts the stego block to the cover block. The extracted 

message chunk in the working block is Dec2Bin(destination partition no), where Dec2Bin 

function converts a decimal value to its equivalent binary number. 

The novel HAM scheme destroys the image quality noticeably and enhances the 

embedding capacity. Nevertheless, the following observations state that this scheme has a 

good number of limitations. These are as follows: 

i) The scheme uses both the min and the max values as assistant information for the 

respective working block and thus, has to manage and send 8x2 bits of information 

for each block. 

ii) The final length of assistant information increases for smaller sized image blocks 

because the quantity of image block rises when the size of the block is reduced. 

iii) After partitioning the grayscale range, the block pixel histogram may occupy the area 

of two partitions, e.g., if the minimum and the maximum of the block pixel is 9 and 

71, the range value will be 63 and thus, the number of gray scale partition will be 4, 

i.e., 0-63, 64-127, 128-191 and 192-255 as shown in Figure 7.2. In this scenario, the 

pixel histogram occupies the region comprising of two partitions. In such context, it is 

not possible to define which one of these two partitions would be regarded as origin 

partition. This scenario remains unsolved in the scheme. 
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Figure 7.2: Block pixel histogram occupies the region comprising of two partitions. 
 

 

Figure 7.3: Implantation of a bit '1' when the block range is greater than 127. 

 

iv) When the value range of block pixels is greater than 127, then there will have only 

one partition and bit implantation through block shifting is not possible. In such a 

case, the scheme proposed an alternative approach to embed a single bit only in a 

block. While embedding a bit '0' the block pixels are remain unchanged and for 

embedding a bit '1', the scheme shifts one half of the histogram bins in the right 

vacant places by estimating new position as x + max and another half to the left by 

estimating the new position as x - min, where x is the original value of block pixels. 

Figure 7.3 depicts the bit ‘1’ implantation process under this scenario. However, 

implantation of the '1' bit using this alternative process changes the range value in the 

stego block with respect to the cover block. As the receiver uses the range values to 

extract message bits and to reconstruct the cover values, the changed range values 

will create ambiguity. To solve the problem, the scheme stores the min and the max 
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values of each block as assistant information so that the receiver can measure the 

range value of the cover block from the assistant information. In this process of bit 

implantation, the scheme introduces three new research problems. Firstly, the scheme 

destroys the histogram shifting property because the original histogram is not shifted 

equally and in the same direction; rather the scheme divides the histogram into two 

parts and it moves the parts in two different directions. Secondly, if the scheme could 

move the block pixel histogram equally in a direction without changing the range 

value, i.e., as it does for R≤127, only min value was enough to recognize the original 

partition and to reconstruct the cover values of the stego block. Thirdly, in the 

depicted scenario, many of the stego pixels will exceed the range of grayscale, e.g., if 

the value of max is 192 and the value of a cover pixel is 190, the stego pixel will be 

382 which is greater than 255. 

v) The embedding capacity decreases for the larger size of image blocks for two 

reasons– firstly, the number of image blocks decreases; and secondly, the value of 

each block range becomes big whereas the big value of block range decreases the 

quantity of implanted bits. 

                          

              (a)                 (b) 
Figure 7.4: Robust policy for HAM scheme: (a) when R≤127; (b) when R>127. 

The size of assistant information stated in the limitations (i) and (ii) is remitted by 

considering only the min value of a block because only the min value is enough to detect its 

own partition. The embedding and extraction procedure is managed in such a way so that min 

value is enough to make the proposed scheme functioning. Shifting the partition walls in a 

direction so that a single partition can allocate all the bin values of a block pixel histogram can 

solve limitation (iii). The observation (iv) can be resolved by proposing a circular scale of 0 to 

255 so that the stego values never can exceed the grayscale. Limitation (v) can be overcome by 
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proposing a new prediction error based HAM scheme. The scheme applies the range of errors 

to associate and map a block to a destination gray part while the gray partitions are controlled 

by the value of errors range. 

 

7.3 Increasing the Robustness of the Traditional HAM Scheme 

The traditional HAM scheme cannot embed in a block when the block occupies the portions of 

two partitions, as investigated in Figure 7.2 for R≤127 because the association of the original 

block cannot be defined with a single partition. Let Ts is the starting point of the partition to 

which the min value belongs to, e.g., Ts=0 in the Figure 7.2, because min=9 lies in the 

partition 0–63 as it is greater than 0 and less than 63. To solve the double partition allocation 

by a single block, all the partitions are shifted by L amounts, where 2log (min )sL T    . The 

starting point of ith partition in the gray scale is marked at Ts +L and end point at Ts 

+L+256/P. The new partition for the Figure 7.2 is depicted in Figure 7.4 (a) where the 

partitions are redefined 9-72, 73-136, 137-200 and 201-255-8. 

When R>127, a wheel-scale is considered in shifting the values of histogram bins to 

overcome the stated limitations. The process is depicted in Figure 7.4 (b). The wheel-scale is 

comprised of a 0 to 255 ranged outer circular scale and an inner wheel scale of the same range. 

The outer scale is ballasted and the inner scale is rotated for HAM purpose. Initially, the zero 

indicator of the inner wheel maps to the zero value of outer scale. A pointer is set to the inner 

wheel to indicate the min value of a block. The pointer moves according to the rotation of the 

inner wheel. The inner wheel is circulated in the clockwise direction about an amount of d to 

build an association of the min value indicator pointer with a value in the outer scale. The 

value of d is set to 0 for embedding a bit ‘0’ and assigned a larger value, but less than 255, for 

embedding bit ‘1’. The value of d is a negotiable parameter. The scheme allows the data hider 

to choose the d value so that the image distortion is maximized. Let the pointer of inner wheel 

indicates a value x in the outer scale. The histogram bins of the cover block are then translated 

to h(i) + x - min, where h(i) indicates the value of ith bin of the cover block histogram. The 

translated histogram bins form the stego block histogram. Finally, the stego block is computed 

from that stego histogram. 

The proposed scheme uses only the min value to implant a bit of information and does not 

depends on the max value for any of its stage of operation to decode the extracted message and 
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to reconstruct the cover values. Hence, the proposed scheme uses only the min values of blocks 

as assistant information. Thus, the scheme reduces the size of the assistant information into a 

half. 

The adopted strategies solve the stated limitations (i)–(iv) and have been published in the 

Journal of Computer Science [29]. The scheme increases the embedding capacity, however, it 

does not take any measure to pre-process the image block for decreasing the value of block 

range. Section 7.4 modifies the proposed scheme further through the inclusion of prediction 

error based histogram shifting strategy to achieve higher embedding capacity by ensuring the 

smaller sized image blocks.   

7.4 Proposed PEBHAM Scheme 

In the PEBHAM scheme, a predictor is used to estimate the pixel values of the k-th block, Bk. 

The scheme measures the range of the absolute-valued prediction errors. This range of the 

block is used to translate its block histogram, indeed shift the block pixels, while implanting a 

message chunk. For the purpose of the message extraction and the cover images 

reconstruction, the same predictor is applied at the receiver end. The proposed scheme requires 

that the prediction error values in the cover image should be equal to the corresponding 

prediction error values in the stego image. 

7.4.1 Predicting Block Pixels 

The target of this section is to apply prediction errors to implement the HAM scheme. For the 

operational purpose of the proposed PEBHAM scheme, the predictors are chosen so that the 

prediction errors in the cover block and that in the stego block are the same. A mean value 

predictor is very suitable for generating the same prediction errors in the cover block and also 

in the stego block because the HAM policy shifts the pixels of the cover block by an equal 

amount in a direction. Though there are many mean value predictors in the literature, for the 

robustness of the scheme, a new prediction policy is proposed in this chapter. In the prediction 

method, the corner pixels, the edge pixels and the inner pixels of a block are estimated by the 

mean of two, three and four neighbor pixels, respectively. The inner pixels, the corner pixels 

and the edge pixels are shown in Figure 7.5(a) by filling them with white color, gray color and 

black color, respectively. A snapshot of associated neighbor pixels, while estimating the corner 
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pixel a, the edge pixel b and the inner pixel g are shown in Figure 7.5(b), Figure 7.5(c) and 

Figure 7.5(d), respectively. The values of a, b and g are predicted by using the Eq. (7.1), i.e., 

using Eq. (7.1.1), Eq. (7.1.2) and Eq. (7.1.3) respectively.  

 
( ) 2                 (7.1.1)
( ) 3            (7.1.2)
( ) 4      (7.1.3)

a

b

g

P b f
P a c g
P b h l f

 


   
    

 (7.1) 

 

a b c d e 

f g h i j 

k l m n o 

p q r s t 

u v w x y 

  (a)   (b)  (c)   (d) 

Figure 7.5: Prediction process of cover block: (a) a cover block (b) pixel value a is predicted by b and f; 
(c) b is predicted by a, c and g; and (d) g is predicted by b, f, h and l. 

 

The prediction errors Ei,j are measured by subtracting the predicted values from the 

corresponding pixel values. The absolute values of the prediction errors are computed by Eq. 

(7.2). 

 , ,

A

i j i jE ABS E      (7.2) 

Where the function ABS(.) returns a positive value irrespective of whether the value of Ei,j 

positive or negative. 

7.4.2 Computing Error Range 

The value range of ,

A

i jE  in a block is measured by    , ,max min 1A A

e i j i jR Val E Val E   , where 

the maxVal and the minVal functions return the maximum and the minimum values, 

respectively, from the absolute errors in ,
A

i jE . This range value eR  is smaller than R. The value 

of eR  is used for dividing the gray scale pixel range. In the HAM scheme, when i bits of 

information is implanted into a block, the gray scale is partitioned into 2i parts so that a 
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partition can be chosen for any possible pattern of i bits. The scheme embeds up to 8 bits in a 

block, as the grayscale range is 0-255 and 28=256. The number of bits that are embedded in a 

block varies for the value of block range Re. The length of message chunk, i, is determined by 

28 log eR    . The partitioning value Rp and the number of partitions P are computed by using 

Eq. (7.3) and Eq. (7.4), respectively. 

 2log2
R

PR
 
    (7.3) 

 256 / pP R  (7.4) 

The grayscale partitions for a sample value of PR =32 is depicted in Figure 7.6. 
 

 
Figure 7.6: Prediction error based HAM scheme 

 

7.4.3 Data Embedment Process 

Let the minimum value of the pixels in a block is cMin . The value cMin  belongs to a partition 

in the grayscale. This partition is numbered as '0'. A partition labeler marches to the right 

direction numbering each partition in an incremental order of 1, 2, 3, ..., until it reaches the last 

partition. Thereafter, it moves to the leftmost partition and again moves to the right direction 

until it labels '(P-1)', i.e., before the start of the partition numbered ‘0’. In Figure 7.6, the 

partitions are labeled as 6, 7, 0, 1, 2, 3, 4 and 5. In each block, a message chunk of 3-bits can 

be embedded. The number of messages bits b to be embedded into a block is determined by 

192 
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the equation 2b log P . Let m be the b-bits message chunk. The binary message chunk m is 

converted to decimal value d. The cMin  value of the working block is associated and mapped 

to the partition number d. The stego block kS is formed using the Eq. (7.5), where T0 and Td 

are the starting value of partition no 0 and d, respectively. Several pixels in kS  may exceed the 

extreme gray value 255 if 0max 255dT T   , as it is depicted in Figure 7.7 (a). Hence the final 

stego block kS  is formed by flipping these extreme values using Eq. (7.6). The stego block 

histogram after applying the Eq. (7.6) is depicted in Figure 7.7(b). 

 0
k k

dS B T T    (7.5) 

  mod , 256k kS S  (7.6) 

 

(a) 

 

(b) 

Figure 7.7: Stego block generation: (a) Stego block histogram after applying the Eq. (7.5); and (b) Stego 
block histogram after applying the Eq. (7.6). 

When the Eq. (7.6) is applied, a portion of the stego pixels of the stego block will reside 

very near to 255 while the others will take place very close to 0 due to the flipping operation. 

When the stego pixels are found at the two extremes of the gray scale, i.e., near to 0 and 255, it 

infers that a flipping operation was executed by the Eq. (7.6). The embedding algorithm 

measures some additional information so that the data extractor can find out on which shifted 
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values the flipping operation has been applied. It measures the maximum value among the 

pixels of kS  in each stego block when a flipping operation is realized. The minimum one of 

these maximum values, regarding the whole blocks, is stored in a variable named UpperVal . 

Similarly, the scheme measures the maximum of the minimum values of only the flipped 

pixels in the stego image. Let, the value is LowerVal . The maximum of the flipped pixels, 

regarding the whole stego pixels, are also measured. That flipped maximum value is addressed 

by MaxFlip . These LowerVal , UpperVal  and MaxFlip  are made part of side-information. 

Regarding the whole image, 24 bits of side information is required for these three values. The 

first two parameters are used to estimate whether a block undergoes a flipped operation or not. 

If a flipping operation is detected in a block, the last parameter is used to find the pixels on 

which the data hider performs the flipped operation. All the stego blocks kS  are concatenated 

to form the stego image I . The embedding process is demonstrated in the Example7.7. 

7.4.4 Side Information 

For each block, as a side information, the competing scheme [71] uses the minimum and the 

maximum value of the block and the number of shifted pixels in the left and the right side of 

the block pixel histogram when R>127. The scheme added 32-bits to the side information for 

each block to manage these four values. The proposed scheme manages only 8 bits of side 

information for cMin  for each block. In addition to that, the scheme stores 24-bits more at the 

final step, i.e., 8 bits for LowerVal, 8 bits for UpperVal and 8 bits for MaxFlip. 

The sender sends the side-information to the destination either by embedding these as a 

part of the cover image or by sending them separately through the alternate mechanism. The 

management of the side-information, including the selection of parameters and allocation of 

bits for each one, compression techniques, a mechanism for sending these to the destination, 

etc., are described in many of the literature including [32, 51, 57, 94]. The scheme presented in 

[71] has not described the policy of transmitting the side information. Therefore, the proposal 

is also avoiding the communication process of side-information because by this time the length 

of side information is minimized and thus, there is no way of degrading the performance level 

compared to its competing schemes for the maintenance of side-information. 
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7.4.5 Data Extraction and Cover Image Reconstruction Process 

The decoder extracts the values of cMin , LowerVal , UpperVal  and MaxFlip  from the side 

information. The minimum and the maximum values of the stego block is measured by min 

and max. If min LowerVal  and max UpperVal  at a time, a flipped operation, that was 

performed by the Eq. (7.6) on the sender side, is detected. In that case, some of the pixels 

require being flipped back to the state of Eq. (7.5). During returning to the state of ,
k
i jS  from 

the state of kS , the flipped pixels are determined. In the flipped block, the flipped pixels are 

these pixels which are less than or equal to MaxFlip . These pixels are summed by 256 to 

construct the ,
k
i jS . The construction of ,

k
i jS  is summarized as an expression in Eq. (7.7). 

 , ,
,

,                          Othe
256     if

r
 

wise

k k
i j i jk

i j k
i j

S S MaxFlip
S

S 





 (7.7) 

The scheme now applies the same prediction policy on ,
k
i jS , as it was applied by the 

encoder, and measures the values of ( , ) ,  A

i j PE R and P. The present stego displacement dSk in 

,
k
i jS , regarding the cover block, is measured by the Eq. (7.8). The cover block is reconstructed 

in Eq. (7.9) by again subtracting the amount of stego displacement from the ,
k
i jS . The decimal 

value of the secret is found by the Eq. (7.10).  

  ,mink k
i j cdS S Min   (7.8) 

 , ,

k k k

i j i jB S dS   (7.9) 

 
2log ( )

2
k

P
dS

Rd
 
    (7.10) 

Finally, d is converted to binary value m and sufficient '0's are appended to the left of m to 

make it b-bits length. The whole process is demonstrated in Example 7.2. 

The process is repeated for the other blocks in the stego image. The proposed work is 

published in the proceedings of International Conference on Networking Systems and Security 

(NSysS) in 2016 [42]. 
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7.4.6 Solving the Flipping Detection Anomalies for the Wider Block Range 

The pixel values of a block do not change for conceiving a 0 valued bit. When the range of 

pixel values of a block is very closed to 255 and the sender side implants a bit 0 into the block, 

the receiver end will be misguided to detect it as a flipped block because in this stego block the 

relationships of min LowerVal  and max UpperVal  hold at the same time. The problem is 

solved in the proposed scheme by assigning 255 to the side information parameter cMin . In 

such a block, the bit value of 0 is not implanted and the block is remained unchanged by the 

sender side. Therefore, in that case, cMin  does not contain the min value of the block pixels, 

rather it is fixed to 255 as an indication mark of the skipped block. The blocks that contain all 

255 valued pixels are also avoided from any bit implantation because in these blocks 

cMin =255. When the receiver end detects that cMin =255, it avoids the data extraction and 

cover block reconstruction processes, as the block was ignored for bit implantation by the 

sender side. 

 

Example 7.1: Implanting a message stream m = 00101 into an image block, as shown in Figure 7.8 
(a). 

The block as shown in Figure 7.8(a) has a 206cMin  . After the prediction process, the 

predicted values, the prediction errors and their absolute values are demonstrated in the 

tables of Figures 7.8(b), 7.8(c) and 7.8(d), respectively. It is found that Re=7 and hence, Rp=8, 

P=32 and b=5. Let the decimal value of pointed message chunk m is 5. According to the stated 

procedure, the partition number 0 is 199 to 206. The value of cMin  is associated and mapped 

to the partition number 5 having the pixel value range of 239 to 246. Hence, T0 =199, Td =239 

and Td - T0 =40. According to the Eq. (7.5), kS = Bk +40. The block kS  is shown in Figure 

7.8(e).  Finally, the flipping operation is performed by the Eq. (7.6). The final stego block is 

demonstrated in Figure 7.8(f).  As the side information, cMin , LowerVal , UpperVal  and 

MaxFlip  values are updated. Note that, LowerVal , UpperVal  and MaxFlip  are updated for 

the whole image while cMin  is stored for each block. Regarding this block, cMin =206, 

LowerVal =1, UpperVal =255 and MaxFlip =9.  
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(a)         (b)       (c)      (d)    (e)   (f) 

Figure 7.8: Data embedment into an image block: (a) image block; (b) the predicted values; (c) the 
prediction error E; (d) absolute error values ,

A
i jE ; (e) results of the Eq. (7.5) 0

k k
dS B T T  

 (7.5); and (f) the stego values computed by the Eq.  (7.6). 

 
 

Example 7.2: Message extraction and cover block reconstruction 

The decoder end first collects the values of cMin =206, LowerVal =1, UpperVal =255 and 

MaxFlip =9 from the side information. The stego pixels are depicted in Figure 7.9 (a). The 

min and max values are 1 and 255 respectively.  Both the conditions of min LowerVal  and 

max UpperVal  are satisfied. This means that it is a flipped block. The pixel values smaller 

than or equal to 9 are flipped back by adding 266 to them.  The flipped back stego block kS  is 

depicted in Figure 7.9(b). The predicted values of the pixels and the prediction errors are 

presented in Figure 7.9(c) and Figure 7.9(d), respectively. From these prediction errors, the 

values of ( , ) ,  A
i j PE R  P  and b are measured. The stego displacement dSk is computed by 

applying the Eq. (7.8). Finally, the Eq. (7.9) is employed to reconstruct the cover block, as 

shown in Figure 7.9 (e). The message in decimal format is extracted by using the Eq. (7.10). 

The computed values of b and d are 5 and 5, respectively. The value of d is converted to 

binary, which is 101. As the length of message chunk is 5, because of b = 5, two zeros are 

concatenated at the begging of the binary string to form the message chunk m. The extracted 

message chunk is 00101. 

 
 
 
 
 
 (a)    (b)      (c)         (d)            (e) 

Figure 7.9: Message extraction and cover block reconstruction: (a) stego block; (b) flipped stego block 
yield by applying Eq. (7.7); (c) predicted stego block; (d) stego prediction errors; (e) cover block 

constructed by Eq. (7.9). 
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7.5 Result Analysis 

The experiments are performed using 5000 CalTech images, 500 BOSS images and 50 

standard images. The images are resized to 240x240 before applying the embedding process. 

After the data embedment task, the embedding payload and the peak signal to noise ratio 

(PSNR) are measured. These values are investigated and analyzed for various sizes of blocks. 

The results are compared with the benchmark scheme Ong et al. in 2014 [71]. To the best of 

the author’s knowledge, there is no other HAM based data embedment scheme in the literature 

to compare the results of the proposed scheme. Nevertheless, the scheme of Liao et al. [52] is 

incorporated in this section to compare its results with the proposed scheme because, though 

the scheme is not similar, like the proposed one, it destroys the image quality intentionally. 

Additionally, the proposed scheme uses the absolute values of prediction errors in a state of the 

embedding procedure, while the scheme of Liao et al. uses the absolute difference of neighbor 

pixels to control their data embedment process. These two schemes relate themselves by using 

absolute operations in their data embedment and extraction processes. The results obtained 

from different schemes are demonstrated in the following. The demonstrated results justify the 

claim of boosting up the embedding payloads and improving the level of image distortions by 

the proposed scheme. 

7.5.1 Justification for Applying the Error Range in HAM policy 

To demonstrate the justification of using error range in HAM scheme rather than using the 

range of pixel values, the prediction errors are measured by applying the proposed predictor in 

a sample image of CalTech dataset. The results are analytically observed in Figure 7.10, where 

the histogram of the prediction errors and the pixel values are drawn in the same plane. Most 

of the prediction errors are condensed to '0' or close to '0', whereas the pixel values are 

distributed over the gray range at about a flat rate. Which implies that the pixel values in the 

blocks are distributed in a wider range. The range value R of pixel values in a block becomes 

larger. On the contrary, prediction errors are distributed into a smaller range. As a result, the 

range value RP of the prediction errors in a block becomes smaller.  
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Figure 7.10: Histogram of pixel values and prediction errors computed from an image of the 

CalTech image dataset. 

 
Table 7.1: Average number of blocks whose block range is greater than 64 at various block sizes 

Image Database Scheme 
Block Size 

3x3 5x5 8x8 12x12 

BOSS 
Ong et al. 435 312 189 115 

Proposed 110 69 41 27 

CalTech 
Ong et al. 1266 776 416 240 

Proposed 388 236 137 80 

Standard 
Ong et al. 1136 801 455 249 

Proposed 198 126 77 49 

 

The embedding capacity decreases for large valued ranges. When the value of R in a block 

is greater than 64, the number of gray partitions P will be 2 because P= 2log256 / 2 R   . The 

competing scheme will then be able to implant only a single bit in the block as 2b log P . It 

is true for the proposed scheme as well when Rp is greater than 64. The value of Rp in the 

prediction errors and the value of R in the pixel values of each block are measured. The 

measurements are done in three different image categories and various sizes of the image 

block. The number of blocks, each having a pixel value range of greater than 64, are counted 

and tabulated in Table 7.1 separately for [71] and the proposed scheme. It is investigated that 

the quantity of such large ranged blocks in [71] is about 3 to 6.36 times compared with those 

found in the proposed scheme.  
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7.5.2 Analysis of Embedding Payloads 

The payloads of the proposed scheme and its competing schemes are measured in different 

image datasets. Only the results obtained in the Caltech image dataset are demonstrated in 

Figure 7.11. The payloads of the first 100 images of the CalTech image dataset are depicted 

along the y-axis. 

 

Figure 7.11: Comparison of payloads between the proposed scheme with the schemes of Ong et al and 

Liao et al. The results are presented from the first 100 images of the CalTech image dataset. 

 

Figure 7.11 states that the proposed scheme dominates the others noticeably by the achieved 

payloads. Among the compared schemes, Liao et al.'s one [52] presents the lowest embedding 

payloads because in this method only a single bit of information is implanted in each image 

block. Ong et al.'s scheme [71] presents a bit improved payloads due to their attempts of 

embedding multiple bits in each image block. The proposed method improves Ong et al.'s 

embedding payloads by a factor of about two. The result is achieved by applying the ranges of 

the absolute values of the prediction errors while implementing the HAM operations. As only 

Ong et al.'s scheme competes with the proposed scheme by its payloads, these two schemes 

are further compared in Figure 7.12 for different sizes of image blocks. The average payloads 

in each image datasets are drawn along the y-axis and the results against different block sizes 

are shown along the x-axis. The results of the proposed scheme and the Ong et al.'s scheme are 

grouped in the figure for each block size. The embedding payloads in the proposed scheme are 

much higher than that obtained in Ong et al.'s scheme for all sizes of image blocks. The 

payloads for a block size of 3x3 is more than the payloads in the other block sizes because, in 

the block size of 3x3, the number of processed blocks are more in quantity than the others and 
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data are embedded into each block separately. With comparison to Ong et al.'s scheme, the 

average payloads increases in the proposed scheme in the image dataset of BOSS, CalTech and 

Standard by a factor of {1.31, 1.51, 1.58}, {1.33, 1.62, 1.77}, {1.35, 1.73, 1.93} and {1.38, 

1.83, 2.04} respectively for image block of size 3x3, 5x5, 8x8 and 12x12. As the factors are 

greater than 1, it certainly proves an improvement. It is also inferred that the proposed scheme 

improves its payloads by a factor of 1.31 to 2.04 depending on the categories of images and 

sizes of image blocks. 

The minimum payloads that are obtained in each image dataset are also compared for 

different sizes of image blocks in Figure 7.13. There, it is noticeable that the proposed scheme 

dominates the competing one by a factor of more than 2. Thus, it can be concluded that the 

proposed scheme definitely enhances the embedding payloads and this improvement is always 

obtainable irrespective of the sizes of blocks and the sources of images. 

 

Figure 7.12: Average payload obtained into three image databases for different sizes of blocks. 
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Figure 7.13: Minimum payloads obtained in each of the image datasets 

 

   

(a)  (b) (c) 

Figure 7.14: Cover and stego images: (a) cover image; (b) stego image obtained by  Ong et al.’s scheme; 
(c) stego image obtained by the proposed scheme. 

 

7.5.3 Analysis of PSNR 

The target of the proposed scheme is to destroy the image quality intentionally and notably. 

Figure 7.14 delineates that the cover image, here an apple, is destroyed noticeably by using 

both the Ong et al.'s scheme [71] and the proposed scheme. Nothing is recognizable about the 

cover information from these stego images. The figures state that visually the target of 

destroying the cover information in the stego image is achieved. To test the scheme 

statistically, the PSNR values of the resulted stego images are also measured. 
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Figure 7.15 and Figure 7.16 present the values of PSNR. The Figure 7.15 demonstrates 

the computed PSNR values for three different schemes in the first 100 images of the CalTech 

image dataset while the Figure 7.16 provides a comparison of PSNR values in three different 

image datasets for various sizes of image blocks. Figure 7.15 depicts that the Liao et al.'s 

scheme [52] presents the highest values for PSNR in all the images. The reason is that the 

scheme does not change the values of 50% contents of the embedding space. Further, the 3 

LSBs of the rest 50% contents are flipped by the embedding procedure. This flipping operation 

ensures that difference between the cover and stego values are no more than 8. Consequently, 

compared with the embedding space, the mean square error (MSE) is no more than 28 / 2 , which 

implies that the PSNR values will never be less than 33dBm. However, the depicted PSNR 

values of the scheme are less than 33dBm in many images. This is because the scheme first 

encrypts the cover values and then implants bits by flipping the 50% of the encrypted values. 

On the other hand, the PSNR values in the Ong et al.'s scheme [71] and in the proposed 

scheme greatly depend on the pattern of the implanted bits. Additionally, the ranges of pixel 

values in the Ong et al.' s scheme and the range of absolute values of the prediction errors in 

the proposed scheme play an important role in destroying the image quality. For this reason, 

the PSNR values of these two schemes vary in the images in a wider range. Again, the flipped 

operation, introduced in the proposed scheme, allows more pixels to be changed from very 

large values to very small values. As a result, worse PSNR is presented by the proposed 

scheme.  

In the Figure 7.16, it is examined for all categories of images that the PSNR values 

decrease for smaller sized image blocks, though the changes are happened nominally because 

the average ranging amount of pixel values in the smaller sized image blocks decreases. The 

number of gray partitions increases for the smaller valued range. Increased number of 

partitions enhances the probability of associating cover block with more number of partitions 

in the HAM policy and, thus, it, indeed, enlarges the length of the implanted message chunk. 

As the length of message chunk increases, the quantity of only ’0’ bit consisted message chunk 

decreases. If the chunk does not consist of only ‘0’s, the implantation of that chunk by the 

HAM policy confirms a certain change in the stego pixels. 
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Figure 7.15: Comparison of PSNRs achieved in the first 100 images of the CalTech image dataset by 

different schemes. 

 

 
Figure 7.16: PSNR for different image datasets at different block sizes 

 

PSNR in the proposed scheme is smaller than the same in Ong et al.'s scheme due to the 

following two reasons. Firstly, the ranges in the proposed scheme are smaller and thus, many 

blocks are shifted to distance gray parts. Secondly, the proposed scheme flipped a good 

number of stego pixels from very large values to very small values due to the use of Eq. (7.6). 

 

 

 



 Chapter 7                       Embedding by Associating and Mapping of Prediction Error Histogram     186  
                                    

 

Table 7.2: Detection of modified images in percentage by gBL method. 

Image Database Scheme 
Detection rate (%) by gBL in Block Size of 

3x3 5x5 8x8 12x12 

BOSS 
Ong et al. 72 67 72 76 
Proposed 71 71 68 69 

      

CalTech 
Ong et al. 86 77 94 97 
Proposed 86 81 95 98 

      

Standard 
Ong et al. 88 81 99 97 
Proposed 89 77 96 97 

7.6 Resistance to Steganalysis 

The steganalyzer measures in the stego image the possibility of the image being modified, but 

not the way of being modified. It also does not extract the stego contents. Hence, stego 

detection does not mean that the stego contents are detected. It is easy to detect the stego 

image of an intentional image distorted based scheme because the distances between the cover 

and the stego values are noticeable. The rate of stego detection depends on the rate of image 

distortions and it increases with the increment in the distortion rate. Consequently, the stego 

detection rate will be higher in both the proposed scheme and the Ong et al.'s scheme as these 

two schemes destroy the image intentionally. The steganalyzer is applied in this chapter just to 

check whether the steganalyzer provides higher detection rate because the higher detection rate 

ensures that the image is destroyed drastically. In this chapter, the generalized Benford Law 

(gBL) [23] is used to perform the steganalysis operation because it is easy to implement, faster 

in computing, good at stego detection and a very latest method. The detected results are listed 

in Table 7.2 for the proposed scheme and Ong et al.'s scheme. The values shown in that table 

are measured by experimenting the gBL stego detection method in the images of BOSS, 

CalTech and Standard dataset. The detection rates, that is obtained in all the sizes of block, by 

the proposed scheme in the CalTech images is a bit higher than the same in the Ong et al.'s 

scheme. In the other datasets, the matter of presenting the maximum detection rates by the gBL 

varies between the two experimented schemes for different size of the image block. 

Nevertheless, in all the stated results, the stego detection rates in both the Ong et al.'s scheme 

and in the proposed scheme are close to each other. For example, the detection rate varies in 

the Standard images by 1%, 5%, 3% and 0% for the block size of 3x3, 5x5, 8x8 and 12x12 
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respectively. The minimum and the maximum stego detection rate that is computed in the 

proposed and the Ong et al.'s schemes are also analyzed.  The minimum detection rates by the 

proposed and the competing scheme are {68, 67} in the BOSS, {81, 77} in the CalTech and 

{77, 81} in the Standard dataset and in the same manner, the maximum detection rates are {71, 

76}, {95, 97} and {97, 99} respectively. These values state that the detection rates are very 

high and the detection rates in both the schemes are very close to each other in all the image 

datasets. The high values of detection rates confirm that the stego images are destroyed 

drastically.  

7.7 Further Improvement of Embedding Capacity by Applying 
Repeated Prediction Process 

By the time, it is realized that the embedding payload increases for smaller valued ranges in a 

HAM scheme. In this section, repeated prediction policy is presented to reduce the magnitude 

of the range values in the prediction error space. In the first stage of the prediction process, the 

pixel values of a cover image are predicted. The absolute values of the prediction errors are 

measured as it was done in the single time prediction process as discussed in Section of 7.4.1. 

The absolute valued prediction errors are ,
A

i jE . At the beginning of the second phase of the 

prediction process, the absolute errors ,
A

i jE  are deemed as the pixel values of an image. The 

same predictor is applied to predict the values of ,
A

i jE . After the prediction, the prediction 

errors and then the absolute values of the prediction errors are measured as like it was 

computed in the first phase of the prediction process. Considering these newly generated 

absolute valued prediction errors as another image, the whole prediction processes, i.e., from 

predicting values to measuring absolute prediction errors, is repeated. The scheme repeats the 

whole process for n times. Doing the repeated predictions, the scheme reduces the ranges of 

error blocks in its final level. Thereafter, the processes explained in Section 7.4.2 and Section 

7.4.3 are executed to implant data bits. 
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(b) 

 
 

 
(c) 

Figure 7.17Analysis on payloads in different image dataset: (a) the Caltech; (b) the BOSS; (c) the 
Standard image datasets 
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(a)  
 

 
(b)  

Figure 7.18: PSNR in different image dataset: in (a) the CalTech; (b) the Standard image datasets 

7.8 Result Analysis and Discussion for RPBHAM Scheme 

The RPBHAM scheme is experimented in different image datasets. The results on payloads 

and PSNRs are demonstrated in Figure 7.17 and Figure 7.18, respectively. The Figure 7.17(a) 

and Figure 7.17(b) present the payloads that are obtained by Ong et al.'s scheme and 

RPBHAM scheme for different values of n in the image datasets of CalTech and BOSS. In 

both the figures, this is noticeable that the payload increases with the increment of n, i.e., under 

n-times prediction policy. The results are demonstrated for 100 images. The average payloads 

for all the images in each image dataset are presented in Figure 7.17(c). This figure establishes 

the same fact that is observed in the other two figures. These three figures firmly establish the 
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claims. The PSNR values are also analyzed in Figure 7.18. Figure 7.18(a) states that the PSNR 

decreases when the value of n increases in the scheme of RPBHAM. The reason is explained 

in the Section 7.3.5. The PSNR in average is depicted in the Figure 7.18(b). This figure 

delineates that the average PSNR is very small in all the image dataset for the RPBHAM 

scheme. As the PSNR value is smaller in our proposed scheme, this can be concluded that the 

RPBHAM scheme deeply destroys the cover information and hence fulfills the objective. 

7.9 Summary and Comments 

Image quality degradation based embedding schemes are useful when the carrier itself is 

secret. There are lots of applications where the image is a secret and the other secret messages 

are embedded in that image before sending it to a destination. The stego image is destroyed up 

to a level such that the cover contents are not recognizable. As the scheme is free from 

managing the stego image quality, the methods can embed more data bits. Hence, the usability 

of such methodology is increasing day by day. In the first phase of this chapter, the provided 

solutions to the investigated limitations have improved the robustness of the existing scheme. 

In the second phase, the prediction error based HAM scheme has improved the embedding 

capacity notably. Finally, the repeated prediction error based scheme has boosted up the 

embedding capacity to another better level. The results are very promising. The proposed 

methods enhances the embedding capacity by several multiples of its competing schemes. The 

levels of degrading the image quality by the proposed schemes are also noticeable. 
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Chapter 8 

Image Encryption Based Enhanced Embedding 
Scheme 

In many clandestine applications, secret information, e.g., investigation reports, is implanted 

into an image document like forensic evidence before sending the document to the destination. 

In that case, both the contents of the documents and the implanted information are equally 

important and secret. To protect the document's own information, called the cover information, 

from being disclosed, many reversible data hiding (RDH) schemes first destroy the cover 

information intentionally and then embed message bits into these destroyed contents. A 

reversible process in the receiver end retrieves both the implanted message bits and the 

original image information. For the constraint of managing the reversibility, these schemes 

suffer from less embedding capacity, i.e., smaller ratio of embedded bits per pixel (bpp), 

because the reversible processes either are unable to implant bit(s) into every pixel or implant a 

chunk of message bit(s) into a group of pixels where the length of the message bits is smaller 

than the number of pixels in the group. This chapter proposes a novel distortion based RDH 

scheme that provides higher embedding capacity by implanting 2n bits into every pixel, where 

0 ≤ n ≤ 3. In the proposed scheme, the documents are destroyed intentionally both before and 

after the data implantation task to strongly obliterate every information of the original image 

and the embedded bits. During this complete process, the scheme ensures seven levels of 

encapsulated securities and in consequence, strengthens the security of the mechanism. The 

maximum embedding capacity and the lowest level of image distortion are achievable up to 8 

bpp and 5dB, respectively, in the proposed scheme. These two values are significantly 

dominating figures with respect to the same in its competing schemes. 

8.1 Introduction 

In the field of forensic, medical, military and satellite applications or in operational parts of the 

industrial control units, two parties communicate between themselves to exchange secret 
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information like personal information and images, military commands, medical images and 

medical history of patients, crime reports, investigation reports and forensic evidence. In this 

communication system, an application that uses image steganography implants the secret 

message bits into an official image like a person's photograph, forensic evidence, satellite 

image, medical image and scanned document. After the bit implantation task, that official 

image is termed as the stego image. The stego image is sent to the destination over a 

communication channel. The receiver applies the reversible process to extract the secrets as 

well as to reconstruct the original cover image. In that scenario, though the stego image 

provides the security to the implanted message bits, if the cover information remains visible in 

the stego image, any third party will grab the secrets of the cover. In such applications, the 

process of damaging the secret visual contents in the stego image is a good technique because 

then any third party will not be able to guess and retrieve the cover secrets from the transmitted 

stego. At the receiver end, the original cover images are reconstructed by a reversible 

mechanism. This is already stated in Chapter 7 that the embedding rules of [29, 42, 71] modify 

the cover values during the data implantation period. In these schemes, each block of pixels is 

equally translated by an amount in a direction. The translation amount depends on the pattern 

of implanted message chunk and range of block pixels. Still, that block shifting strategy cannot 

ensure pure distortions of the cover image because lots of the cover blocks are remained 

unchanged by conceiving the message chunk of 0 bits only. Many applications [52, 110], 

therefore, first destroy the cover image entirely by an encryption process and then embed the 

data into these destroyed values. These pre-distortion demanded embedding schemes suffer 

from less embedding capacity because, for the constraint of maintenance of reversibility, these 

schemes implants either a bit in a pixel [110] or a chunk of the message bits in a block of 

pixels [52], where the number of bits in the chunk is less than the number of pixels in the 

block. Additionally, many of these schemes [110] implant a large quantity of assistant 

information. Consequently, the pure embedding capacity is poor.  

In this chapter, an intentional image destruction based reversible data hiding scheme is 

presented where encryptions are performed before and after the data embedment with two 

different 8-bit keys to maximize the level of distortions and the security of the implanted data 

bits. An algorithm is proposed to generate these two keys from another arbitrary 16-bit secret 

key, which is chosen by the data hider. This 16-bit key is placed in an arbitrary position in the 

image without destroying the values of two cover pixels. The 8-bit key generation algorithm 

increases the security of the system. The freedom of both choosing a 16-bit key of any value 
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by the data hider and placing the key at any position in the image have increased the 

robustness of the scheme. During the implantation, data bits are distributed over the binaries of 

each pixel in an equal distance to protect the least significant bit (LSB) extraction attacker 

from their successful mission. The number of implanted bits varies from pixel to pixel. This 

varying quantity of implanted bits in pixels has improved the security and the robustness of the 

proposed scheme. To further enhance the security, the dimension of the image is changed to 

make it more dissimilar to the cover image. In the proposed scheme, the embedding capacity is 

definable according to the demand of the system. The experimental results state that the 

proposed scheme dominates its competing methods [52, 53, 71, 110] by all of its measuring 

features like embedding capacity and image distortions. 

The remaining parts of this chapter are organized into four sections. Section 8.2 illustrates 

the related works on which the proposed work builds its basement. The proposed scheme is 

detailed in Section 8.3. Section 8.4 delineates the performance of the scheme over the 

competing schemes. Finally, Section 8.5 concludes the chapter.  

8.2 Related Schemes 

As the proposed scheme intentionally destroys the quality of the cover image, two pre-

distortion based schemes [52, 110], where the cover image is distorted first before starting the 

embedment process, and a benchmark scheme of distorting the image by data implantation 

rules [71], i.e., distorting during the implantation, is accounted as the related schemes. These 

schemes are described in Chapter 2. The proposed method of this chapter implants variant 

quantity of bits in the image pixels.  To implant divergent quantity of bits in pixels, the concept 

of Liao et al. [53] is applied in this chapter. Though this scheme tries to manage better image 

quality, for the concept of implanting variant bits in the pixels, the scheme of [53] is also 

considered as a related work. The scheme proposed by Liao et al. [53] is briefly explained 

below. 

The scheme in [53] works in the spatial domain. It implants bits by replacing the least 

significant bits (LSBs) of the image pixels. The scheme divided the cover image into blocks of 

four pixels. The average distance of the pixels from the minimum one in the block is 

measured. If the distance value is smaller than a threshold, the data bits to be implanted 

replaces a few numbers of LSBs; otherwise more LSBs are replaced by the similar number of 

message bits. This way, message bits are embedded in all the blocks by applying the rules of 
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LSB substitutions. The receiver end applies the reversible process to extract the exact quantity 

of implanted bits from each block by using the LSB extraction rules. 

8.3 Proposed Image Encryption Based Embedding Scheme 

The proposed scheme takes a cover image I of size . Each pixel at (i, j) location of the 

image is read by . The proposed scheme produces an encrypted stego image D from I in 

three steps - first, the image I is encrypted using an 8-bits key K, say, the encrypted image is C; 

message bits are embedded into C which is then termed as the stego image S; the stego image 

S is further encrypted by another 8-bits key R to further strengthen the security of the system. 

The image generated by using the key R, say, the image D is called the encrypted stego image. 

These two encryption processes ensure the security of the implanted data as well as the 

contents of the cover media from being realized by an adversary. Thus, three levels of 

securities, e.g., two-time encryptions and a data concealment process are implemented. During 

the data implantation, the secret bits are distributed in an equal distance over the binaries of 

each of the contents of the image C. For this reason, either 1 bits, 2 bits, 4 bits or 8 bits are 

implanted in a content of C because each content of C is long of 8 bits and the 8 bits are 

equally dividable into either 1 bit, 2 bits, 4 bits or 8 bits. This bit distribution technique 

confirms the fourth level of the data embedment security as the LSBs attacking is not possible 

and the distance between two implanted bits is unknown to the third party. The number of 

implanted bits varies from pixel to pixel. A modified policy of [53] is used in selecting the 

number of bits for embedding into a pixel. Thus, a fifth-level of security is established in the 

proposed scheme. The stated keys K and R are generated from L and M respectively, where L 

and M are the parts of another encoder generated 16-bits secret key E such that ||E L M  

where .||. stands for concatenation of binary string. The process of generating K and R from L 

and M promotes the safety of the system to the sixth level of security because other than 

knowing the exact process of generating K and R from E, the adversary cannot breed these two 

keys and thus, the challenger becomes fail to decrypt it. The process of generating K and R is 

explained in the Subsection 8.3.1. As a final step of the security measure, i.e. the seventh level 

of the system's security, the scheme generates hybrid stego image H by shuffling the values of 

the encrypted cover image C and the encrypted stego image D owing to make the H 

dimensionally and visually more dissimilar with the cover image I. All of these seven levels of 
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securities have ensured stronger protection of the implanted data in the proposed scheme 

against attacks. 

8.3.1 Key Generation and Image Encryption 

At the first stage of the proposed method, the data hider arbitrarily generates a 16-bit key E. 

The key E is either negotiated between the sender and the receiver or it is implanted into a 

specific part of the transmitted image. The E is partitioned into two disjoint parts L and M, i.e., 

||E L M , as shown in Figure 8.1 based on the first two bits of E. The decimal value of the 

first two LSBs of E is used for pointing to one of the four predefined values as the length of L. 

Nevertheless, in the proposal, the L is allowed to be 2-bits, 4-bits, 8-bits or 12-bits. The L is 

formed by the defined number of most significant bits (MSBs) of E  (i.e., |L| ϵ {2-bits MSB, 4-

bits MSB, 8-bits MSB, 12-bits MSB}, where |.| stands for the length of a string).  

 

 

 

 

 

 
 

16 15 .. .. .. .. .. .. .. .. .. .. .. .. 2 1 

If LSBs(E, 1, 2)='00' 
 L= LSBs(E, 1, 2) 
 M= LSBs(E, 3, 12) 
 K=L||L  
 R= LSBs(M, 1, 8)   LSBs(M, 9, 6) 
If LSBs(E, 1, 2)='01' 
 L= LSBs(E, 1, 4) 
 M= LSBs(E, 5, 12) 
 K=L||L  
 R= LSBs(M, 1, 8)   LSBs(M, 9, 4) 
Else if LSBs(E, 1, 2)='10' 
 L= LSBs(E, 1, 8) 
 M= LSBs(E, 9, 8) 
 K=L 
 R=M 
Else if LSBs(E, 1, 2)='11' 
 L= LSBs(E, 1, 12) 
 M= LSBs(E, 13, 4) 
 K= LSBs(L, 1, 8)   LSBs(L, 9, 4) 
 R= M||M 
End 

Figure 8.1: Encryption key and its sub-keys Figure 8.2: Generation of encryption keys K and 
R. 

 

The L and M are measured using the pseudo-code shown in Figure 8.2. In the code, the 

function LSBs(B, s, n) is used to extract n bits of information starting at the position s from a 

binary string B and the symbol   represents the bitwise exclusive-or operation. The Figure 

8.2 also constructs two 8 bit keys K and R from L and M. These two keys K and R are used to 

E 

L M 
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encrypt the working image at two different phases. The scheme first encrypts each pixel of I by 

the Eq. (8.1). 

 , ,i j i jC I R  , (8.1) 

This encrypted image C is used in hiding data. The data embedment process is explained 

in the Subsection 8.3.2. After the data concealment, the image C is termed as the stego image 

S. The stego image S is further encrypted by another key K using the Eq. (8.2) so that any third 

party cannot extract the concealed message by using any steganalyzer. 

 , ,i j i jD S K  , (8.2) 

 

 

 

 

 

 

 

8.3.2 Defining the Number of Implantable Bits in a Pixel 

The proposed scheme implants a varying quantity of bits in the contents of the encrypted 

image C. The scheme distributes the bits to be implanted over the binaries of the encrypted 

pixels in C. To estimate the quantity of bits that could be embedded in (i, j) location of C, the 

scheme first measures the average value of a negotiated number, say t, of pixels within the 

contents of C that were accessed immediately before, e.g., the average of the encrypted pixels 

located from (i, j-t) to (i, j-1) in C. As the first t pixels do not have t number of immediate 

previous pixels, first t contents of C are not used for implanting bits. While working at (i, j) 

location of C, say, the average of t number of immediately accessed contents of C is m. The 

modulus value of m and 8, i.e., d = mod(m, 8), is computed. The value of d is the estimated 

quantity of bits that could be embeddable in the content, i.e., the pixel at (i, j) location. 

However, for the constraint of equally distributing the bits over the binaries of the contents of 

C, the scheme allows to implant in each content either 1 bit, 2 bits, 4 bits or 8 bits of 

information because each content of C consists of 8 bits and 8 bits of the contents are equally 

If d ≥ 6 then  
 n=8 
Else if d ≥ 4 but d<6 then  
 n=4 
Else if d ≥ 2 but d<4 then  
 n=2 
Else   
 n=1 
End 
 

Figure 8.3: Selecting the number of embeddable bits 
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dividable into the parts of either 1 bit, 2 bits, 4 bits or 8 bits. To distribute the n bits of 

information over the binary of a content of C in an equal distance manner, the exact value of n 

will be 1, 2, 4 or 8; rather than d.  The value of n is measured by using the pseudo-code shown 

in Figure 8.3. While measuring n, the immediate previous t contents of C are accounted for 

improving the security only.  

8.3.3 Data Embedment Process 

Let the length of the message to be embedded be LL. The encoder implants LL bits of 

information in the encrypted image C. The implantation process is done taking into account 

that the receiver knows the value of E, t and LL. The bit length of E, t and LL are 16, 8 and 24, 

respectively. If the value of LL is not 24 bits, it is padded with a sufficient number of zeros to 

make it 24 bits long. These 48 bits are used as the assistant information. Without knowing the 

assistant information, the de-embedment is not possible. The 48 bits assistant information is 

negotiated between the communicating parties before sending the stego image. The assistant 

information is sent to the receiver end through another communication channel or implanting 

them at a separate location in the image C. If the assistance information is sent through 

embedding, the method of implanting them is made complex for the convenience of increasing 

the security of the system. The value of E is stored in C in an arbitrary position (u, v), i.e., E is 

stored in (u, v) and (u, v+1). The value of u and v are stored at (1, 1) and (1, 2) of C, 

respectively. The value of t and LL are stored in the last four contents of the C. Let LL and E 

be divided into 8-bit components called L1, L2, L3 and E1, E2, respectively. The implantation of 

assistant information is done using the pseudo-code containing eight assignment instructions as 

shown in Figure 8.4. In these expressions, both the keys K and R are used rather than a single 

one just to mislead the challenger during their accessing attempts. 
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Figure 8.4: Implanting mechanism of assistant information 
 

For these reasons, before starting the implantation process, the data hider picks eight 

contents, i.e., pixel values, of C from the locations of  and , two arbitrarily selected 

locations  and , and last four positions , ,  and 

, i.e. the contents of C1,1, C1,2, Cu,v, Cu,v+1, Cx,y-3, Cx,y-2, Cx,y-1 and Cx,y to protect them from 

being lost. These eight picked contents are concatenated with the secret message so that the 

decoder can reconstruct these picked values after the data extraction. Say, the concatenated 

result of the secret message and these eight content values is T. The length of T is, therefore, 

LL+64 bits. The resulting binaries of T are then implanted into the remaining contents of C. 

During the implantation process of T, eight encrypted contents of C1,1, C1,2, Cu,v, Cu,v+1, 

Cx,y-3, Cx,y-2, Cx,y-1 and Cx,y and t contents of C1,3 to C1,t+3-1 are not utilized in hiding data and 

thus, these are skipped by the data hider. These values assist the data extractor to retrieve the 

data and the cover values. The data hider implants each n bits of information, where n ε {1, 2, 

4, 8}, into each remaining values of C. The value of n is computed by using the Figure 8.3. Let 

the n bits of data be bn...b2b1, which is a part of T. During the implantation period, the 

embedded bits bz, , are distributed over the binaries of the processed pixel in an 

equal distant manner, e.g., if n=4, the 1st, 3rd, 5th and 7th bits of each 8-bits encrypted pixel are 

modified, rather than into n LSBs. Such distribution not only enhances the security and 

robustness of the scheme but also increases the distortions in the stego image. Each processing 

pixel Ci,j is first stored in a temporary variable P. After the data implantation, this stego pixel is 

assigned to the (i, j) location of the stego image S. Thus, C is kept unchanged. To realize the 

 
1,1C u  

1,2C v  

, 1u vC E  

, 1 2u vC E

  

, 3x yC t K

   

, 2 1x yC L R

   

, 1 2x yC L R

   

, 3x yC L K   
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implantation method, say, the binary of a working pixel  is P, i.e.  

where Dec2Bin returns the binary of a decimal number. The scheme divides P into n 

components, each of which is l=8/n bits long, e.g. if = 123, then P=01111011; and using 

Figure 8.3 the computed value of n is 4. The components of P are {01, 11, 10, 11}. Let each 

chunk of P is , for , e.g., =01, =11, =10 and =11. The sequential 

concatenation of the entire  is P. Each  is embedded into each part  by using Eq. (8.3).  

 z z zp p b  , (8.3) 

The stego pixel  is formed by sequentially concatenating all the  and  is the (i, j)th 

pixel of the stego image S, i.e. . By implanting all the message bits of T into the values 

of C, the stego image S is formed. The stego image is then again encrypted using the Eq. (8.2). 

8.3.4 Hybrid Stego Image Generation 

A hybrid stego image H is constructed by shuffling the pixels of the encrypted cover image C 

and the encrypted stego image D to change the dimension of the transmitted stego image by 

2x y  and to present a more meaningless image to the third party. 

To shuffle the pixels of these two images, first, the hybrid image H of size 2x y  is 

marked into black and white cells in a chessboard fashion. The pixels in C and D are assigned 

into black and white cells, respectively as it is shown in Figure 8.5. It is noticeable that the first 

row starts with C while the second row starts with D and like in the following. In this shuffling 

method, rather than starting by the pixels of C in every row, the chessboard-like distribution is 

chosen to influence the adversary to be strayed. 

8.3.5 Message Extraction Process 

The decoder receives the hybrid image H. It then writes all the black located pixel values into 

,i jC  and all the white located pixel values into ,i jD  from H, where 1 i x  , 1 j y  . The 

values of 1,1C  and 1,2C  point to a position in C, where the key E is stored. Let 1,1u C  and 

1,2v C . The bits of E were stored in ,u vC  and , 1u vC


 by the data hider. Therefore, the key E is 

extracted from , , 12 ( ) || 2 ( )u v u vE Dec Bin C Dec Bin C  . The pseudo-code shown in the Figure 

8.2 is executed to generate the keys K and R from E. The number of associated contents t, 

which were used for computing the quantity of implanted bits is found by using the Eq. (8.4).  
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Figure 8.5: Formation of hybrid stego image H. 

 , 3   x yt C K  , (8.4) 

Similarly, the last three pixels of C decrypted using the Eq. (8.5) are used to find out the 

length of total embedded bits LL. 

 
1 , 2

2 , 1

3 ,   

x y

x y

x y

L C R
L C R
L C K





 


  
  

 (8.5) 

where, 1 2 3|| ||LL L L L . The Eq. (8.6) decrypts the encrypted stego image D by the decryption 

key K to find the stego image S. 

 , ,i j i jS D K   (8.6) 

Let =Dec2Bin( ), ,2 ( )i jQ Dec Bin C  and Q P Q  . One bit of data was embedded into 

every chunk of l bits of , where . The value of n is measured for each pixel of C from 

the immediately accessed t pixels. The process is stated in the Section 8.3.2. Every 

( 1) 1z l    positioned bit of Q , where 1 z n  , represents the bit of message stream that 

was implanted by the encoder end at (i, j) location. The process of extracting message bits 

from each (i, j) location of stego image S is outlined in Figure 8.6. 

 The Figure 8.6 does change the stego pixel at (i, j) locations, where 

( , ) {(1,1) to (1, ),  ( , ),  ( , 1),  ( , 3),  ( , 2),  ( , 1),  ( , )}i j t u v u v x y x y x y x y     . The extracted 

messages from all the stego pixels are concatenated to form the final message string. The 
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extracted message also contains the original values of , , , , , , 

 and . These values are reconstructed to form the original encrypted image C. 

Finally, the cover image I is generated by using the Eq. (8.7). 

 , ,i j i jI C R   (8.7) 

 

8.4 Analysis of the Experimental Results 

The experiments are conducted on different image datasets in MATLAB. A few of these are 

presented in Figure 8.7. The objective of the research work is to increase both the embedding 

capacity and the image distortions. Therefore, these two are analyzed in this part of the thesis. 

The proposed method is compared to the scheme proposed by Ong et al. [71], Liao et al.'s 

[52], Zhang et al. [110] and Liao et al.'s [53]. Though the scheme presented in [53] is not an 

intentional image distortion based process, this scheme is used in the comparison as the 

concept of variant bit implantation of this scheme is used in the proposed work. Very 

generally, the scheme in [53] provides higher image quality than the other experimented 

schemes. 

8.4.1 Capacity Analysis 

In two different experiments, the proposed scheme is allowed to implant up to 8 bpp and the 

variable amount of quantity as required. The results of 50 images are depicted in Figure 8.8. 

The experimental results delineate that the proposed scheme dominates the others noticeably. 

While the competing schemes presented in [52, 71, 110] fail to embed even 1 bpp, the 

proposed scheme implants up to 8 bpp. The scheme presented in [53] provides an embedding 

capacity within 2bpp to 3bpp because according to the objective of the scheme, to preserve 

better image quality, it is allowed to implant either 3 bits or 2 bits in each pixel. The 

embedding capacity of 8bpp is achieved by fixing n=8. This capacity is several multiples of 

1. ,2 ( )i jP Dec Bin S  

2. ,2 ( )i jQ Dec Bin C  

3. Q P Q   
4. bz= ( 1)z l lQ

  
, for 1 z n   

Figure 8.6: Extracting message from a single stego pixel 
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that found in the other schemes. In another experiment, the value of n is predicted from 4 

previous pixels for t=4. The achieved capacity varies from 2.1 bpp to 5.7 bpp depending on the 

image properties. In 92% of images (46 out of 50), the obtained embedding capacity in the 

proposed scheme is higher than the highest performing competing scheme [53]. Thus, this is 

proved that the proposed scheme outperforms in all the experimented images and the obtained 

capacity is several multiples of others. 

   

(g) (h) (i) 

 

  

(d) (e) (f) 

   
(a) (b) (c) 

Figure 8.7: Sample cover images: (a) Lena; (b) Cameraman; (c) Old China coin; (d) X-Ray; (e) Crime 
zone; (f) Burial; (g) Plane; (h) Fingerprint; and (i) Mandril. 
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Figure 8.8: Capacity of the proposed and its competing schemes. 
 

The embedding capacity, presented for the proposed scheme, is measured regarding the 

image size of x y . Nevertheless, the size of the hybrid image is 2x y . The hybrid image is 

transmitted over the Internet. Hence, with respect to the size of the hybrid image, the 

embedding capacity of the proposed scheme is half of the presented figure. Hence the 

embedding capacity is 4 bpp for n=8 and 1.1 bpp to 2.9 bpp for variant bits implantation. 

These figures also noticeably dominate the achieved embedding capacity found by the 

schemes presented in  [52, 71, 110] for all the images and [53] for many images. 

8.4.2 Distortion Analysis 

The cover image, the encrypted cover image, the encrypted stego image and the hybrid stego 

image of the fingerprint image are demonstrated in Figure 8.9(a), Figure 8.9(b), Figure 8.9(c) 

and Figure 8.9(d), respectively. From the encrypted cover image shown in Figure 8.9(b) and 

the encrypted stego image shown in Figure 8.9(c), nothing is realizable about the cover 

information; because the stated process of the proposed scheme destroys the visual and 

statistical information about the cover image. The hybrid stego image is depicted in Figure 

8.9(d). This is also like a noisy image. Hence, the objective of destroying the cover 

information in the stego image is fully achieved through the proposed scheme. 
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(a)              (b) 

           
       (c)                                                            (d) 

Figure 8.9: Images at various processing steps: (a) Fingerprint; (b) Encrypted image; (c) Stego image; 
and (d) Hybrid image 

 

The distortions in the stego image and in the encrypted image are found due to the abrupt 

changes to the image pixels. Therefore, the pixel histograms of the cover image, encrypted 

cover image and encrypted stego image exhibit dissimilar properties, as it is shown in Figure 

8.10(a), Figure 8.10(b) and Figure 8.10(c), respectively. 

 
To compare the distortion levels, the quality of the stego image is measured by the peak 

signal to noise ratio (PSNR). The Eq. (8.8) is used to measure the PSNR values.  

 
2

10
25510logPSNR
MSE

 
  

 
 (8.8) 
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(a)  

 
(b)  

 
(c)  

Figure 8.10: Histograms of (a) the cover image; (b) the encrypted image; and (c) the stego image, 
respectively. 
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The mean square error (MSE) is computed by using the Eq. (8.9). 

  
2

, ,
1 1

1 yx

i j i j
i j

MSE S I
x y  

 

  (8.9) 

The results are depicted in the Figure 8.11. The results state that the proposed scheme 

provides the lowest PSNR values in all the images because the proposed scheme encrypts the 

image for two times and implants message bits at different but equally apart positions in the 

binaries of each content. The distortion level achieved in [53] is not demonstrated because the 

objective of this scheme is to manage higher image quality while the proposed scheme tries to 

maximize the distortion level.  

 

Figure 8.11: Comparison of PSNR values among the schemes 
 

 

Figure 8.12: PSNR comparisons for various embedding capacity 
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To check the state of distortions for various levels of embedding capacities, the proposed 

scheme embeds into each cover image separately for four times by fixing n=1, n=2, n=3 and 

n=4 respectively. First, 1 bit is embedded into each pixel and the level of distortion is 

measured. Thereafter, 2, 4, and 8 bits are implanted in each pixel in subsequent executions and 

the distortion amounts are measured respectively. The distortions for the embedding capacity 

of 1 bpp, 2 bpp, 4 bpp and 8 bpp are analyzed in the experiments. The results are demonstrated 

in the Figure 8.12. It is observed that the values of PSNR decrease in all the images when the 

embedding capacity is increased. This is happening because, with the increment in the 

embedding capacity, more bits of each pixel are altered in the bit implantation phase. This, 

indeed, increases the number of changes in the stego contents regarding their cover contents. 

As a result, the PSNRs decrease in the proposed scheme and that decrease is proportionate to 

the embedding capacity. 

 

Figure 8.13: PSNR of the proposed scheme for only data embedment at various capacities 

 

 

Figure 8.14: Effect of encryption keys to PSNR values 
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Both the encryption and the data concealment processes are responsible for lowering the 

values of PSNR. The effects of only the data embedment on the values of PSNR, excluding the 

effect of the image encryption, for different levels of embedding capacity are also examined in 

the proposed scheme. The results are delineated in Figure 8.13. The PSNR is decreased with 

the increment in the embedding capacity. The reason is same as it is observed in the Figure 

8.12. When the embedding capacity is improved, the scheme implants more bits per pixel. This 

implies that the scheme alters more numbers of bits in each pixel's binary.  

8.4.3 Effects of Encryption Keys on Image Distortions 

Encryption keys do not have any effect on the embedding capacity; however, these affect the 

image distortions by the frequency of ‘1’s in their binary values. It is investigated that keys 

with more ‘1’s in their binary values destroy the image on a large scale because during the 

exclusive or operation in the Eq. (8.1) and the Eq. (8.2) each binary bit 1 in the encryption key 

modifies the respective binary bit in the image pixel. To check the effect, the values of key {R, 

K} are set to {100, 137} and {235, 183} in two separate execution periods. The produced 

results are compared. The key values of {235, 183} contain more '1's in their binaries than for 

the key values of {100, 137}. The results are demonstrated in the Figure 8.14. In the figure, it 

is noticeable that the number of ‘1’s in the binaries of the keys plays an important role in 

affecting the values of PSNR. For all the investigated embedding capacities, it is observed that 

the values of PSNR decrease for the uses of keys with more ‘1’s. Thus, it is found that {235, 

183} valued keys destroy the image quality more than the keys of {100, 137}. 

8.5 Summary and Comments 

The distortion based reversible data hiding schemes do not care about the quality of the image. 

Rather, these try to destroy all the cover information in the stego image including the smallest 

one. These schemes provide higher embedding capacity because it is easy to manage the pixel 

values during the implantation of more quantity of message bits in a distorted image. 

Nevertheless, to the best of the author's knowledge, none of the reversible schemes in the 

literature provide an embedding capacity of 8 bpp. The proposed work shows enough novelty 

in achieving both the embedding capacity of up to 8 bpp and degrades the image quality up to 

a value of 5dB. Besides, it offers the data hider either to embed different quantity of bits into 

the pixels or to select the embedding capacity to one of the four values – 1 bpp, 2 bpp, 4 bpp 
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and 8 bpp. The proposed scheme is very effective in hiding the large volume of data and 

securing the secret messages and evidence related to forensic, medical, military, law-enforcing 

agency application. The seven levels of security features are implemented into the scheme in 

an encapsulation way. Hence, breaking the security is difficult. As a whole, it will be a useful 

contribution to the field of reversible data hiding arena. 
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Chapter 9 

A Comparative Study of the Proposed Schemes 

The thesis presents a good number of proposals to improve the embedding performance of 

predictive reversible image steganographic schemes. The thesis enhances the embedding 

capacity and the image quality by improving the prediction accuracy of multiblock center 

reference based predictor in Chapter 3. The chapter also narrates the ways of implanting bits 

for multiple times into the errors of a single layer in the prediction error histogram. Chapter 4 

employs multiple predictors to compute optimal prediction errors owing to enhance the 

number of embeddable errors. A method of efficiently utilizing the embeddable errors in 

multi-layer approach is presented in Chapter 5. The bit implantation process, in Chapter 6, 

employs two different local pattern codes for the first time in this field to increase the 

embedding capacity and the quality of the stego image. Chapter 7 and Chapter 8 present two 

different image distortion based techniques where the embedding performance is improved 

notably by different mechanisms. Each of these proposed schemes has its own objectives and 

usefulness in a specific scenario. Therefore, it is hard to compare all these schemes by a 

common property. In this chapter, these schemes are grouped into several categories based on 

their relational properties and then performance comparisons are performed among the 

schemes in a group. 

9.1 Introduction 

The reversible image steganographic schemes either take care to preserve the image quality 

while data implantation, e.g., schemes of Chapter 3 to Chapter 6, or destroy the image quality 

intentionally by the embedding process, e.g., Chapter 7 to Chapter 8. The predictive reversible 

data hiding schemes employ one or more predictors to either improve the embeddable contents 

in the embedding space or estimate the number of bits that are allowed to be embedded in a 

content(s) by the applied scheme. In the proposed scheme of Chapter 3 and Chapter 4, the 

embeddable quantity is improved by improving the prediction accuracy. The embeddable 
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contents are efficiently used for multiple times data embedment in a part of Chapter 3 and 

Chapter 5. The objective of using local binary pattern code (LBP), in Chapter 6, is to enhance 

the embedding capacity of the single layer (SL) data embedment process at its highest level. 

The same chapter uses local ternary pattern code (LTP) to increase the quality of the stego 

image when the demanded embedding capacity is small. Chapter 7 and Chapter 8 destroy the 

cover information in the carrier image either by embedding rules or applying an encryption 

method during and before the data implantation, respectively. Both the schemes estimate the 

number of bits that is embeddable in a block or in a pixel. The scheme in Chapter 7 applies a 

predictor at its pre-processing stage so that the data implantation phase can estimate a higher 

value as a number of bits that is embeddable in a block. Thus, it is found that each scheme has 

its own objectives and it is hard to make a general comparison among the schemes. Rather, the 

findings state that the schemes relate themselves by their attempts of either (i) improving the 

prediction accuracy presented in Chapter 3 and Chapter 4, (ii) embedding multiple times as 

presented in Chapter 3 and Chapter 5, (iii) embedding into single layer for single cycle times 

(in Chapter 3, Chapter 4 and Chapter 6) and (iv) destroying image quality (in Chapter 7 and 

Chapter 8). In this chapter, the proposed schemes are compared among themselves based on 

these stated five relations. In the experiment, ten images are, first, randomly selected from 

image datasets, stated in Section 2.8. The experimental results conducted on these ten images 

are demonstrated in this chapter. 

The rest of the chapter is organized into two more sections. Section 9.2 delineates the 

comparison results of the proposed schemes from different perspectives. Last Section 9.3 

concludes the chapter. 

9.2 Comparing the Proposed Schemes at Different Perspectives 

Five different types of relational properties are established in section 9.1 to make comparisons 

among the schemes in each relational group. Based on these relational properties, the schemes 

are compared in the following four subsections. 

9.2.1 The Schemes that Work to Improve the Prediction Accuracy 

Most of the prediction error based embedding schemes mainly concentrate on improving the 

prediction accuracy during their workout for the development of embedding space because the 
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improved predictor presents more embeddable errors. The single layer data embedment 

process based on the improved predictor is presented in Chapter 3 and Chapter 4. Comparison 

of payloads and PSNR are presented in the following Figure 9.1 and Figure 9.2 for these two 

schemes. 

 

Figure 9.1: Comparison of the payloads of the prediction accuracy improvement based schemes 

 

 

Figure 9.2: Comparison of the PSNR values of the prediction accuracy improvement based schemes 

 
Figure 9.1 demonstrates that the multi predictor (two, three, four and five predictors) 

based schemes, proposed in Chapter 4, provide higher embedding payloads than the single 

layer Euclidean distance based scheme presented in Chapter 3, because with the application of 

more number of predictors, the scheme presented in Chapter 4 yields more prediction 

accuracy. This means that the scheme generates a good number of embeddable errors that is 
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larger than the one yielded with a single predictor. The same scenario is investigated for PSNR 

value in the Figure 9.2. It has already been stated in Chapter 3 and Chapter 4 that the more the 

embeddable errors, the less the image distortions. The number of embeddable errors increases 

with the application of more number of predictors. That is why the PSNR values of multiple 

predictor based schemes are higher. 

Though the multi predictor based schemes provide better payloads and PSNR values than 

the single predictor based schemes, the processing time of the multi predictor based schemes is 

higher. That processing time increases with the increment of the applied predictors, as shown 

in Table 9.1. The time complexity is not a notable issue if the scheme implants secrets into a 

single image. However, it will be accountable if the scheme requires implantation of a large 

secret stream into more than a single image. 
Table 9.1: Execution times for the different schemes in seconds. 

Schemes 
Image 

1 2 3 4 5 6 7 8 9 10 

Euclidean 7.5 7.7 7 6.2 7.9 5.6 5.3 5.6 7.1 6.8 

2-Preictor 8.8 6.07 7.03 6.01 7.3 5.6 5.5 6.1 7.9 6.6 

3-Predictor 9.4 7 7.8 7.4 7.9 6.2 6.2 6.6 8.5 7.2 

4-Predictor 17.5 13.4 15.1 12.4 15.3 11.7 12.1 12.9 16.9 14.7 

5-Predictor 29.7 21.6 23.4 20.4 24.6 19.4 19.2 20.4 26.7 23.5 

9.2.2 The Schemes that Implant for Multiple Times 

The multi-time data embedment process implants message bits in the embeddable errors for 

multiple times. The objectives of embedding multiple times into only a few high-frequency 

errors rather than into more errors for single time are explained in Chapter 3 and Chapter 5. 

The scheme in the Chapter 3 implants into the errors of a single layer while the scheme in the 

Chapter 5 does the same into the errors of more than one layer. When the size of the secret 

message is not too big, but errors of a single layer are unable to accept the secrets by a single 

time data embedment process, the multiple time embedment process is then employed. On the 

other hand, if the size of the to-be-embedded data is large, the multilayer, multi-time 

embedment process is applied because the later scheme provides higher image quality. 

 



Chapter 9                                                         A Comparative Study of the Proposed Schemes   214 
                                    

 

 

Figure 9.3: Comparison of payloads among the single layer, the multilayer and the multi-cycle schemes 

 

 
Figure 9.4: Achieved payloads per PSNR in single layer, multilayer and their multi cycle schemes 

 
The results in Figure 9.3 states that the multi-time data embedment schemes provide 

higher embedding payloads. In the figure, layer 0 means single layer data embedment while 

the layers, greater than 0, stand for multilayer data embedment processes. In the figure, the 

results up to three times data embedment are demonstrated. The payload increases for both the 

increment of layer values and embedding cycles. The finding also states that the payloads of 

multilayer, multi cycle schemes are greater than the payloads of a single layer, multi cycle 

schemes. Figure 9.4 also delineates the same scenario where the payloads per PSNR value 

increases for both increasing the embedding cycle and in multilayer schemes. 
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9.2.3 The Schemes that Implant into Single Layer for Single Time 

In this research work, Chapter 3, Chapter 4 and Chapter 6 present the process of implanting 

bits into the errors of a single layer, i.e., in the error values of -1 and 0, for a single time. The 

scheme in the Chapter 3 improves the prediction process of [32] and thus enhance the 

embedding capacity. The scheme presented in Chapter 4 presents a novel work that improves 

the prediction accuracy by employing multiple predictors in its prediction phase. Chapter 6 

proposes two other novel works in which the first one achieves an embedding capacity of 1bpp 

and the second one improves the image quality when the requirement of embedding capacity is 

very small. A comparison of embedding payloads and PSNR values of these schemes are 

presented in Figure 9.5 and Figure 9.6, respectively. 

 

Figure 9.5: Comparison of payloads between the single layer and the single cycle schemes. 

 

 
Figure 9.6: Comparison of PSNR values between the single layer and the single cycle schemes 
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Figure 9.5 demonstrates that the LBP based scheme provides highest embedding capacity 

and it is about 0.83bpp. The next highest schemes are the multi-predictor based processes. 

Therefore, these two processes are recommended for meeting large embedding capacity. 

Figure 9.6 delineates that the LTP based schemes provide noticeable larger PSNR value. When 

the requirement of embedding capacity is small, the LTP based scheme provides better 

performance. The LBP based scheme also demonstrates better image quality. For large size of 

to-be-embedded data, the LBP based scheme will give the highest embedding performance. 

Nevertheless, the LBP based scheme sends assistant information to the destination through 

another communication channel. If it is considered as a drawback of the system, the uses of the 

multi-predictor based schemes in implanting large data could be a better solution. 

Table 9.2: The embedding times of the LBP and the LTP schemes 

Schemes 
Image 

1 2 3 4 5 6 7 8 9 10 

LBP 1.89 1.85 1.85 1.86 1.86 1.86 1.86 1.89 1.86 1.87 

LTP with t=5 1.89 1.9 1.88 1.91 1.92 1.88 1.89 1.89 1.9 1.91 

LTP with t=10 1.89 1.88 1.91 1.92 1.94 1.98 1.99 1.95 1.93 1.91 

If the values in Table 9.2 is concatenated with the values of Table 9.1, the execution times 

of the schemes, which are discussed in this subsection, will be found. The values show that the 

LBP is the most optimal one regarding the execution time and the second optimal one is the 

LTP based method. The reason is that the schemes other than the LBP and the LTP first 

generate a prediction value by applying prediction rules on a set of neighbor pixels and then 

generate prediction errors before the start of the data implantation process. The prediction 

method has to compute several affairs for each pixel which takes much time, e.g., the location 

of the predicting pixel, the number of associated neighbors and the required operations with 

the associated pixels like the mean of the block pixels, the gradient of a pixel. On the other 

hand, the LBP and the LTP do not apply any prediction process, rather, these two schemes 

generate codes comparing the pixel values with a reference value in a single step and then 

generate encoded prediction values in another step. Thus, the LBP and the LTP methods spend 

less amount of time while completing the embedding task. 
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9.2.4 The Schemes which Destroy the Image Quality Intentionally 

Intentionally image distortion based reversible embedment schemes are useful when the cover 

image itself is a secret. These schemes fully destroy the cover information in the stego image 

either during the bit implantation, e.g., the scheme in Chapter 7, or before the start of the bit 

implantation process, e.g., the scheme in Chapter 8. The scheme in the Chapter 7 destroys the 

image quality by the applied embedding rules, whereas the scheme in the Chapter 8 razes the 

image quality by using an encryption method to the image contents. In the following, the 

comparisons of their achieved embedding capacities and PSNR values are demonstrated. 

 
       (a)      (b) 

Figure 9.7: Comparisons of (a) embedding capacity and (b) PSNR value of the image distortion based 
schemes. 

 
The embedding capacities and PSNR values for ten images are presented in the Figure 

9.7(a) and Figure 9.7(b), respectively, for the HAM and the encryption based schemes. The 

embedding capacity in the encryption based scheme is 8bpp. The proposed encryption based 

scheme provides very unlike and higher embedding capacity. The PSNR values are very small 

and very close to each other. Therefore, in hiding massive data, the proposed encryption based 

scheme will be a better choice. 

Table 9.3: The embedding times of the HAM and the encryption based schemes 

Schemes 
Image 

1 2 3 4 5 6 7 8 9 10 

HAM 7.3 7.32 7.54 7.43 7.33 6.9 7.1 7.4 6.9 7.1 

Encryption 38.72 40.16 40.11 40.23 40.29 40.54 40.33 40.23 40.03 38.25 

Again, if the size of the to-be-implanted data is too big and the data have to be implanted 

into more than one image, the encryption based method will not provide better performance 
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because the later scheme takes much time in its bitwise encryption operation, as shown in 

Table 9.3. 

9.3 Summary and Comments 

The thesis proposes several embedding methods each of which demonstrates outstanding 

performance regarding their competing schemes in their embedding area. These schemes are 

presented in Chapter 3 to Chapter 8. The performed comparisons of the proposed schemes, in 

this chapter, reveal that the LBP based scheme provides higher embedding payload and higher 

payload per PSNR value. Nevertheless, the scheme produces big assistant information which is 

proposed to be sent to the destination through another communication channel. The multi-

predictor based scheme, on the other hand, do not send any assistant information through 

another channel; however, it presents large embedding payloads and significantly higher value 

of PSNR. When the size of the to-be-implanted data is very small compared to the image size, 

the LTP based scheme provides outstanding performance regarding the image quality. The 

control parameter t, defined in Chapter 6, is a very useful parameter to manage the image 

quality according to the demanded payloads of the application. Between the two image 

distortion based schemes, the encryption based one shows incomparable better performance. 

However, the investigation states that the encryption based scheme takes much time and hence, 

the scheme will not be a useful one if it is implemented in an online based application that 

requires to implant the message bits into more than one image.  
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Chapter 10 

Conclusions and Future Works 

The use of image steganography is continuously increasing for the purpose of covertly 

communication of secret information. Between irreversible and reversible image 

steganographic methods, the reversible processes exhibit more implementation challenges and 

provide ever-increasing supports of being used for practical applications. The reversible data 

hiding schemes devote their concentration mainly on improving either the embedding capacity 

[36], the stego image quality [53] or both [51]. Several latest schemes [52, 71, 110] 

intentionally destroy their stego image to provide better security to the cover contents when the 

cover image itself is secret. During the achievement of these major goals, the proposed 

schemes take care to minimize the time complexity and to improve the security of the 

implanted data. The embedding capacity depends on several issues. The notable matters are: 

i) the correlations among the pixels in each locality. 

ii) uses of embedding space, e.g., spatial domain, transformed coefficients, neighbour 

pixel differences and prediction errors. 

iii) applied method to generate the embedding space, e.g., types of predictor,  

iv) applied embedding rules. 

v) tolerance of the system to the level of image distortions observed during the data 

implantation by the embedding rules. 

The level of image distortion is governed by the demand of embedding capacity and the 

highest amount of pixels' displacement that is allowed by the embedding rules. The time 

complexity is a concern issue when data communication between two parties should be done 

within a time constraint, e.g., in live communications and steganographic based authentication 

processes. Though the thesis does not directly contribute to the issue of reducing the execution 

time of the proposed steganographic processes, the schemes implemented in the Chapter 5 and 

6 dominate their competing schemes by the time complexity. The security of the implanted 

data is mainly provided by encrypting image, assigning negotiated values to secret parameters, 
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e.g., starting point of the data embedment task in an image, length of the secret message and 

initialized values of the parameters at the pre-processing stage. Though the thesis improves the 

security of the implanted data as discussed in Chapters 3 to 8 at its pre-processing stage, it 

shows a novel mechanism of implanting security at the post-processing stage in Chapter 8 by 

applying encryption process after the completion of the embedment task.  

Taking all of these issues into consideration, the thesis proposes numerous predictive 

reversible data hiding processes where one or several predictors are applied to predict pixels. 

The thesis either improves the prediction accuracy of an existing scheme to improve the 

frequencies of the embeddable errors (e.g., the Chapters 3 and 4), uses the prediction errors in 

more efficient way to enhance the embedding capacity and the stego image quality (e.g., the 

Chapter 5) rather than concentrating to improve the prediction accuracy, employs encoded 

error based scheme to embed into all the image pixels (e.g., the Chapter 6) or shows an way of 

applying predictor to the existing non-prediction based new data embedment policies (e.g., the 

Chapters 7-8) to enhance the embedding capacity.  

 

The major contributions of the thesis are: 

 the development of a multi-block centre reference predictor that improves the 

prediction accuracy with compared to its competing scheme for the purpose of 

enhancing the quantity of the embeddable errors (e.g., the Chapter 3). 

 the formulation for the issue of block centre biasness of the block pixels to 

improve the prediction accuracy  (e.g., the Chapter 3). 

 the development of a new predictor with higher accuracy by employing multiple 

predictors owing to improve the frequency of two embeddable errors in the single 

layer data embedment process  (e.g., the Chapter 4). 

 the implementation of a multilayer multi-cycle scheme where the embedding 

capacity per structural dissimilarity index is improved notably by embedding into 

fewer sample errors for multiple times rather than more sample errors for single 

time (e.g., the Chapter 5). 

 the development of a new encoded error based data embedment process where 

local binary pattern and local ternary pattern code are used both to improve the 

image quality and to achieve higher embedding capacity as well as to control the 
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quantity of generated embeddable errors depending on the demanded embedding 

capacity (e.g., the Chapter 6). 

 the implementation of histogram association and mapping based data embedment 

scheme by the help of prediction error histogram rather than the presently 

operational pixel value histogram to improve the embedding capacity as well as to 

distort the image quality intentionally (e.g., the Chapter 7). 

 the development of a method that is able to implant up to 8 bits per pixel in the 

intentional image distortion based embedding category. 

The proposals vary for the applied predicting methodologies, uses of the embedding layer, 

applied repeated embedment in the prediction errors in the quality preservation based 

embedding area and uses of predictor in the quality distortion based area. The experiments are 

conducted on several image datasets to test the proposals. The category wise results are 

presented in this thesis as chapter by chapter. The results presented in the depicted figures and 

tables are promising. All the results in their own categories noticeably dominate the other 

competing schemes. Though all the processes demonstrate more or less improved results, some 

of the improvements are very attractive as shown in Chapters 4, 6, 7 and 8. The scheme of the 

Chapter 4 demonstrates the process of using multiple predictors to enhance the quantity of 

embeddable prediction errors. The scheme presented in Chapter 6 is unbeatable because it 

ensures both the image quality and higher embedding capacity through implanting bit into 

every pixel. Chapter 7 presents an embedment process that uses prediction error histogram 

rather than using pixel value histogram, while implanting histogram association and mapping 

policy in its data embedment task. Though, in this thesis, several methods are proposed and 

implemented to enhance the embedding capacity as well as the stego image quality, the author 

believes that there are many potential areas where the research findings presented could be 

extended: 

 Demolishing the necessity of side-information: Most of the embedding schemes use 

side information in order to de-embed secret message from the stego image at the 

receiver end. The side-information is compressed first and then, either implanted into 

the cover image in a specific part through LSB substitutions or sent to the destination 

through another communication channel. In the case of implanting the side information 

in the cover image, the pure embedding capacity is decreased. If the side information 
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used in different methods can be demolished, the pure embedding capacity can be 

increased significantly.  

 Applying LTP codes in multi-layer embedding process: The schemes proposed, in 

this thesis, apply LTP codes in single-layer data embedment process. These LTP codes 

can also be used in the multi-layer embedding process to improve the image quality and 

to meet the requirement of embedding capacity dynamically. 

 Reducing image distortions: The data embedment processes stated in Chapters 3, 4 

and 6 try to implant a single bit in each pixel. It is possible to attain an image quality of 

57 dBm or higher if a group of bits can be implanted in a block e.g., 9 bits in a block of 

9 pixels, at a time by modifying just a single pixel in the block.  Modelling of such a 

scheme can be explored in future. 

 Specific application based development: E-medicine, m-medicine, forensic and law-

enforcing agencies require different stego image management process. For these 

purposes, the embedding process varies. Design and development of application specific 

embedding scheme will be a major contribution in future research.  

The presented contributions of this thesis will make significant effects on the field of 

reversible data hiding arena. These contributions have boosted up the embedding capacity 

notably, which is a crying demand in the current high volume data communication world. The 

proposed image quality preservation based schemes present higher image quality than their 

competing schemes. The LBP and the LTP based embedment processes are two unique 

policies for enhancing both the embedding capacity and the image quality. These two schemes 

will attract the attention of the application developers and the researchers in this area. 
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