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ABSTRACT 
 
Injection molding machine is a versatile machine in the field of manufacturing. It is 

mainly used in mass production to replicate plastic parts. Now-a-days, a quick shipment 

of finished products to the customer is necessary. Thus, cycle time needs to be 

minimized. However, besides quick delivery of products, maintaining quality of the 

finished plastic products is also necessary. Pressure drop is a vital factor to maintain the 

quality of the finished products. If pressure drop is large in magnitude then it can 

hamper the quality of the products. Loss of pressure hinders plastics to travel through 

the nozzle into the mold and plastic may be dried up in before reaching the mold cavity. 

Thus, to shorten lead time and to obtain good quality products both cycle time and 

pressure drop need to be minimized. However, these two objectives are conflicting in 

nature, which means minimizing cycle time, maximizes pressure drop and vice versa. 

Optimization of injection molding system is also multidisciplinary in nature. Multi-

disciplinary injection molding system is a complex engineering system consisting of 

four distinctive physically different sub-systems among which feed-forward and feed-

back coupling variables are also present. The role of uncertainty management is 

increasingly being recognized in the design of complex systems that require 

multidisciplinary analyses. Inclusion of uncertainty in the design variables and the 

system parameters further adds another level of complexity in the design of injection 

molding systems. The overall objective of this thesis is to find optimum values of design 

variables of this injection molding system using multidisciplinary design optimization  

MDO methodology and considering both feed-forward and feed-back  couplings as well 

as uncertainty in both design variables and system parameters. Specifically, this thesis 

accomplishes this objective through development of formulations and algorithms for 

design optimization of injection molding system under uncertainty, from the perspective 

of system robustness.   
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  Chapter 1

Introduction 

 Background 1.1

 (MDO) can be defined as a methodology for the design of systems in which strong 

interaction between disciplines motivates designers to simultaneously manipulate 

variables in several disciplines [1]. If a system is optimized including interactions among 

its different disciplines, the obtained result is better than the result obtained if the system 

was optimized individually under each discipline. MDO uses optimization techniques to 

solve design problems involving multiple disciplines in such a way that the desired 

output is either minimized or maximized. Engineers always work in team to develop a 

robust design. Each team wants to optimize its output; however, sometimes there is 

interaction among different disciplines which should not be ignored. Ignoring interactions 

among disciplines may optimize disciplinary level output but fails to optimize system 

level output. MDO thus considers the interactions among disciplinary level outputs. Till 

now multidisciplinary design optimization has been applied successfully to automobile 

industry, aero plane design, naval architecture, electronics etc. Increasing complexity of 

such engineering systems has sparked the need of applying multidisciplinary optimization 

methods. In MDO, computational complexity might be an issue as there would be a huge 

number of design and coupling variables due to the interactions among different 

disciplines along with nonlinear constraints. Despite this, the usage of MDO is increasing 

rapidly in modern engineering practices. 

The MDO methodology has been frequently used to solve design problems in aerospace 

and automobile engineering. However, it has hardly been used in the sector of 

manufacturing engineering. A single manufacturing process is completed with the 

contribution of different disciplines even within one machine. A machine system may 

look simple, but the complex interactions among different disciplines make a 

manufacturing process complete. If the final output of the system is minimized or 

maximized without considering internal dependency of variables (i.e., coupling), then the 

final output obtained will not constitute actual result. 
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The manufacturing sector is a vast one. In this thesis, injection molding system is chosen 

as an illustration of the application of MDO in manufacturing, it clearly consists of 

different disciplines.  Injection molding is a high precision and sophisticated tool used for 

the production of plastic parts. This machine manufactures plastic parts by replicating 

shape of the mold. With the rapid pace of modernization, time needed to deliver final 

product to the customer has been reduced. Concept of mass production and inventory 

policy has also been changed. Increasing customer satisfaction is today’s prime market 

need. Now-a-days, products are being produced on customer demand and are expected to 

be delivered as soon as possible. Reducing cycle time can increase customer satisfaction 

in this regard a lot. However, in addition to customer satisfaction, manufacturer’s 

satisfaction should be taken into account as well. While delivering the products to 

customers at a reduced cycle time, if the cost of production increases significantly, the 

manufacturers will not be satisfied. However, if the energy consumption or pressure drop 

can be reduced, then the production cost will also be reduced, delighting the customer. 

Therefore, satisfying both the customer and the manufacturer is the main challenge and 

this thesis attempts to pursue this through simultaneously minimizing cycle time and 

pressure drop. However, these two objectives can be conflicting to some extent.  

Finding the optimum design by minimizing these two objectives is the contribution of 

this thesis.  

The design of injection molding machine-system is a highly interactive manual process 

that involves substantial knowledge of several disciplines [6]. Injection molding is a 

machine where a plastic part is replicated to the shape of the mold. However, to convert 

the granular plastic to the desired shape, different processes take place before replicating 

the mold. They are- i) Plasticizing-Heating and melting the plastic in the plasticator. ii) 

Injection-Injecting controlled volume of shot of molten plastic into die under pressure. 

iii) Packing-To maintain the injected polymer in mold even after filling the die. iv) 

Cooling-To solidify the molten metal in solid state so that desired shape of part can be 

obtained in sufficiently rigid state. v) Mold Release Part-Opening the mold, ejecting the 

part and closing the mold.  
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Together, all these processes produce the desired part. The summation of their process 

times also makes up the cycle time. As mentioned earlier, one of the objectives of this 

research is to determine the design variables of injection molding machine in such a way 

that cycle time and pressure drop are minimized.  

However, if we closely observe the certain processes of injection molding machine, then 

we can figure out distinctive physical systems like melting system, injection system, 

cooling system, and ejection system. These different systems contain some interactions 

among themselves, i.e., output variable of injection system is an input to cooling system. 

However, this interaction will not always happen in feed forward manner, rather in feed-

back way too, i.e., output of cooling system can be an input to injection system 

simultaneously. These types of variables are known as coupling variables. If the effect 

of mutual interaction of these variables is not considered, system level optimization 

cannot be obtained. Optimization of a system that contains multiple disciplines and 

considers the coupling variables is thus called multidisciplinary design optimization. 

These design variables as well as some system parameters (e.g., flowrate. Temperature of 

the mold, ejection temperature) may not be deterministic rather probabilistic too. That is 

why inclusion of uncertainty in the design of injection molding process is also a major 

contribution of this thesis.  

 Objectives with Specific Aims  1.2

The specific objectives of this research are-  

i) To model an injection molding system as a fully coupled multidisciplinary system 

considering four sub-systems such as- injection, heat transfer, ejection systems and 

structural. 

ii) To develop a deterministic MDO formulation with the objective being minimization of 

both pressure drop and cycle time subject to disciplinary constraints as well as the system 

level constraints 
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iii) To develop an MDO formulation under uncertainty with the objective being 

minimization of both pressure drop and cycle time subject to probabilistic disciplinary 

and system level constraints 

The research will help manufacturers minimize cycle time, pressure drop and energy 

consumption of injection molding process which will eventually reduce cost due to 

inclusion of uncertainty and both feed forward and feed-back couplings, leading it to a 

more realistic multidisciplinary system. 

 Outline of Methodology 1.3

The proposed research methodology is outlined below: 

i. The injection molding system has been divided into four sub-systems based on the 

underlying physics such as- melting system, heat transfer system, cooling and ejection 

system. 

ii. The input variables, system parameters and uncertainty associated with each input 

variable and system parameters have been identified using existing literature. 

iii. A deterministic MDO formulation has been developed that considers multiple 

objectives, i.e., minimization of cycle time, and pressure drop subject to disciplinary 

constraints of individual sub-systems and inter-disciplinary couplings such as coupling 

between feeding system and heat transfer system. 

iv. An MDO formulation has been developed based on the deterministic formulation 

developed in Step (iii) that takes into account the uncertainty quantified in Step (ii). 

v. Classical MDO methods e.g., MDF (Multiple Disciplinary Feasible) has been used to 

solve the MDO formulation developed in Step (iii). 

vi. The stochastic MDO formulation developed in Step (iv) has been solved MDO 

methods under uncertainty named multidisciplinary robust design optimization. 

vii. Results obtained from previous two formulations have been compared with each 

other  
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 Scope and Limitation 1.4

Multidisciplinary optimization is highly used in modern engineering. With advancement 

of technology and research, design complexity of different systems is increasing day by 

day. Co-ordination of different systems is necessary. For ease of analysis, large system is 

broken into multiple disciplines. Traditionally different disciplines have developed their 

own local design tool to optimize their discipline-specific variables. However, this cannot 

produce optimal system design[2]. One approach is to partition original design problem 

in smaller and easier to solve sub-problems and then co-ordinate them towards consistent 

and optimal system solution. The focus of the MDO methods is to facilitate this 

interdisciplinary communication and enable the designers to exploit the synergy that 

exists among constituent disciplines [3]. However, computational complexity in this 

approach is quite intensive. Higher order mathematical calculation is necessary which 

costs a lot and consumes a lot of time. 

In this research, Multidisciplinary Design Optimization is discussed with all different 

varieties after discussing about the works previously done by numerous researchers. All 

three approaches, i.e. Multidisciplinary Design Feasibility approach, All At Once and 

Individual Disciplinary Feasibility approach are explained.  Then uncertainty based and 

deterministic design optimization processes are described with a generalized presentation 

of Injection Molding system. All the subsystems of Injection Molding System are 

described along with Design Variables, Process Parameters and Coupling Variables. 

Feed-forward and Feed-back coupling is explained then. When all the basics are 

explained, numerical illustration is presented which includes mathematical illustration of 

both deterministic and robust-based (uncertainty consideration) design optimization 

system. Matlab is used as the solving tool and after obtaining converging satisfactory 

results, graphical and numerical presentation of the results are then illustrated. Depicted 

results are explained to such extent that can represent that the vision of this research is 

fulfilled. Finally discussing about the conclusion and future improvements to this study, 

this research paper draws a successful bottom-line. Now previous works on this topic will 

be presented below.  
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  Chapter 2

Literature Review 
Decomposition method can make any complex design problem simple and easy to 

manipulate. One of the decomposition approaches is multidisciplinary design 

optimization. MDO is mainly based on multidisciplinary analysis (MDA) which shares 

input and output data that interact with each other. Several types of MDA analysis 

include AAO (all-at once), IDF (individual disciplinary feasible), and MDF 

(multidisciplinary feasible) methods. Among these, AAO and IDF use single level 

optimizer and MDF use multiple level optimizers. 

 Allison et. al. [3] applied MDO in anchor design problem. This problem had an MDO 

flavor due to feedback coupling. Sobieszczanski-Sobieski  et. al. [3] surveyed different 

publications in the field of aerospace, where MDO is of particular interest. They 

addressed the interdisciplinary coupling inherent in MDO as major cause of 

computational and organization changes. Cramer et.al. [4] found an alternative way to 

formulate MDO problem. Though they stated its application in the field of aero-elastic 

problem, they mainly focused on alternative way of problem formulation. They also 

showed the formulation difference of three methods namely i.e. MDF, AAO and IDF. 

Ilan et. al. [5] tried to apply MDO method to aircraft design problem in a simplified way. 

They tried solving the same problem in a new manner to reduce the complexity of MDO 

problem. Very few work can be found with the application of MDO in the field of 

manufacturing. There exist only a few methods in the literature for the applications of 

MDO methods in manufacturing, (e.g. Ferreira et al. [6] and Ferreira et. al. [7]) that 

proposed optimization methods for injection molding system recognizing its 

multidisciplinary nature. However, all these methods considered injection molding 

system as a lightly coupled system taking into account only the feed-forward coupling 

among the disciplinary analyses. In addition, the existing methods solved a single 

objective optimization problem with the objective of minimizing cycle time and also did 

not take into account the uncertainty about different parameters. The design and analysis 

of injection molding systems have been extensively studied in the literature (e.g., [6-9] ). 

Nannapaneni et. al. [7] proposed a framework using Bayesian network to predict the 

energy consumption of injection molding systems under uncertainty. However, they did 
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not optimize any performance parameter of injection molding machine or consider 

injection molding system as a multidisciplinary system. Now-a-days, cycle time is an 

important performance parameter of injection molding machine, as the minimum the 

cycle time leads to minimum energy consumption thus reducing cost. However, 

minimizing pressure drop is also a crucial performance parameter, because if pressure 

drop is large enough in magnitude, then enough material will not travel into the mold and 

would rather dry up in the runner [8]. Plastic travels through nozzle, sprue, runner, gate 

and finally part. Each stage eats up some pressure and leads to pressure drop. Eric et. al.  

described [9] two methods to determine pressure drop so that pressure losses through an 

injection mold can be better understood.  However, they did not minimize pressure drop, 

which is necessary as high pressure minimizes shrinkage.  

Uncertainty prevails in design and observed data. Uncertainty is often ignored in 

deterministic design problem. Previous work mentioned above hardly considered 

multidisciplinary optimization problem as a probabilistic. But even in the major 

application of MDO methods like automobile or aero-space industry, uncertainty 

prevails. Taguchi [10] first introduced uncertainty in the field of engineering. He 

delivered a way of choosing design variables in such a way that performance parameter 

become less sensitive to change in design variables. Wei et.al. [10] Identified methods 

developed by Taguchi were based on statistical modeling and were unable to solve 

nonlinear problems with nonlinear constraints. However, there exist a lot of methods in 

the literature to solve MDO problems under uncertainty which include collaborative 

optimization, multidisciplinary reliability based design optimization and multidisciplinary 

robust design optimization. Zaman et. al. [10] proposed a decoupled approach for 

robustness based design optimization using both interval and sparse data. Park. et. al. [11] 

described three methods such as, Taguchi approach, robust optimization, and axiom 

method to include uncertainty in engineering design and their relative advantage and 

disadvantages. In this thesis, robust design optimization is used. The essential elements of 

robust design optimization are 1) ensuring objective robustness, 2) ensuring feasibility 

robustness, 3) estimating mean and measure of variation (e.g., variance) of the 

performance function, and 4) multi-objective optimization. 
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There are different methods available in literature to estimate mean and variance of 

performance function including Taylor series expansion [1].  The following two 

equations (2.1) and (2.2) describes mean and variance of a function after using Taylor 

series expansion:   

( , )f x ff  
 (2.1) 

i

2
n

2 2
f x

i 1 i

df
dx

 


 
  

 
 (2.2) 

Du et. al. [12] formulated a framework that includes inverse reliability strategy with 

percentile performance for assessing both objective robustness and feasibility robustness.  

In this research, Taylor series expansion has been used to estimate the mean and variance 

of cycle time - main performance function of multidisciplinary design optimization of 

injection molding system. 

Design of a multi-disciplinary system under uncertainty means optimization of mean and 

minimization of variance. If variance is reduced then feasibility region is also reduced. If 

performance function is minimized, under these newly formulated constraints, then it is 

called a robust design [13]. In order to achieve improvement in product quality and 

reliability of manufacturing processes in industrial engineering, idea of robust design 

optimization was introduced by Taguchi for the first time. There are different methods 

available to optimize mean and minimize variance in design problem. As minimization of 

mean and variance is done simultaneously, then it also turns into a multi-objective 

optimization technique. A huge number of methods are available in literature to solve a 

multi-objective optimization. A very common method is weighted sum method [11]. 

Besides this weighted sum approach, some other methods are also available like ԑ-

constraint method [14], and genetic algorithm method to solve the multi-objective 

optimization problem. Among these available methods, weighted sum approach is taken 

into consideration in this research due to its simplicity. Often units of the multiple 

objectives are not the same. That is why normalization is a must in weighted sum 

approach. Normalization can be achieved in any of the three ways [15]: 

i) Normalize by dividing the objective function by its value at x0  
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ii) Normalize by diving objective function by its value at minimum point and  

iii) Normalize by the minimum of objective functions and nadir and utopia points. 

Nadir point the highest value of a point and utopia point is a point which 

optimizes almost all objective functions 

Second method with normalizing the objective function by its value at minimum 

optimization condition has been applied in the proposed robustness-based 

multidisciplinary design optimization problem.  Each method has its own advantages and 

disadvantages. Although solution distribution of weighted sum method is not uniform and 

inefficient to obtain non-convex region of Pareto front, considering implementation cost, 

it has been used in this research.  

Therefore, application of MDO methodology considering the effect of both feed-back and 

feed-forward coupling along with uncertainty is hardly seen. Though individual work has 

been observed, the current research is an attempt to apply industrial engineering 

methodology in solving manufacturing engineering problems i.e., injection molding 

systems. Injection molding system is considered as a multi-disciplinary system with feed 

forward and feed-back couplings. Details are described in the following chapter. 
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  Chapter 3

Multidisciplinary Design Optimization 
Multi-disciplinary design optimization simply means the optimization of a complex 

system containing at least two or more disciplines, which use different optimization 

methodologies to get the optimum value of the performance parameters. Output of MDO 

gives such values of design variables that optimize the overall system level output.  

Benefits of this system are vast yet limited to only a few fields, like aero-space, 

automobile etc. Multidisciplinary design optimization highly depends on multi-

disciplinary analysis.  

Design Optimization or in short DO, is the process where we find the best design 

parameters for satisfying the system requirements. To do that, we use different sets of 

tools like Design of Experiment (DoE), statistics and optimization techniques. The target 

is to evaluate trade-offs and select the best design. It might be easier to achieve for simple 

and small systems. However, in case of large systems, which involve different 

disciplines, complexity arises. The traditional approach suggests dividing the system into 

different disciplines. Now, different systems have different design variables and different 

optimization tools as well are available to solve them. However, this approach fails to 

achieve the optimal design because it optimizes the system design from the perspective of 

a certain discipline, not the entire system. Besides, communication among the disciplines 

gets increasingly difficult, which hinders the local disciplines from having information 

regarding the effect of local design change on the whole system. That is where 

multidisciplinary optimization (MDO) comes into play. It facilitates that interdisciplinary 

communication which enables the designers to exploit the existing synergy between 

constituent disciplines. MDO is believed to have tremendous effect on the design 

optimization system by reducing cycle time and producing products at lower cost. The 

following figure shows a two-discipline  system for the sake of illustration [2]: 
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Fig 3-1: A two-discipline system 

In Figure 3.1 multidisciplinary design optimization, of two disciplines are present.  x1 and 

x2 are input variables to individual systems and xs is the variable which is shared by both 

disciplines. However, the catalyst that converts a system with multiple disciplines into 

multidisciplinary system is coupling variables which are , ,  1 2 2 1u and u  here. Values of  

, ,  1 2 2 1u and u  are mutually dependent on each other and one of these variables are input to 

a subsystem whereas another is the output of the same subsystem. 

The mathematical formulation of an MDO problem can be written as follows in equation 

(3.1):                                            

min c(x)
g(x,u(x),v(x))> 0
h (x,u,v)= 01
h (x,u,v)= 02

 (3.1) 

Here, u(x) and v(x) are intermediate variables (also known as behavior or state variable) 

and h1 and h2 are implicit functions. Objective function, c(x) is cycle time and pressure 

drop in our research and x is design variables of injection molding system. 
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Now, solving even a deterministic MDO problems can be difficult- especially if effective 

handling of the multidisciplinary system of equations is taken into account. That is why 

multi-disciplinary analysis (MDA) is considered very important in MDO method. It 

capitalizes on the individual disciplinary analysis codes that interact with each other 

through shared input and output data. A feasible multidisciplinary analysis provides a 

solution that simultaneously satisfies all individual disciplinary analyses. The problem 

however is the computational expense of it. Even at conceptual level of design process, it 

is quite expensive. If we add uncertainty, the required computational effort increases 

furthermore. There are three different basic MDO methods based on how the system 

analysis is handled [4]. These are: 

1. Multi-Disciplinary Feasibility (MDF) Method 

2. All At Once (AAO) Method 

3. Individual Disciplinary Feasibility (IDF) Method 

Among these three we are going to use the MDF method. A brief description of this 

method is given below: 

3.1 MDF Approach 

The most common way to perform MDA analysis is MDF or Multidisciplinary 

Feasibility Analysis. In MDF approach, the optimizer tries to control only the design 

variables, not the coupling variables [2]. Its formulation is quite basic. Though easy to 

use, a complicated system analysis has to be carried out in each step. The coupled 

relationship is solved in that system analysis. Full multidisciplinary problem feasibility is 

maintained at each optimization iteration through repeated iteration between individual 

disciplinary analyses until convergence. Solving for coupling variables at each iteration 

makes the system quite expensive. In complete multidisciplinary feasibility approach, 

iteration feasibility is maintained at each and every step. In MDF methodology, values of 

design variables XD are sent to the coupling variables that are used to find the value of 

objective function satisfying constraints [2].                                                
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An MDF-based design optimization formulation is given below as in equation (3.2):                                               

min f  (U , X )D D
with respect to X D,
s.t. C (X ,U )> 0D D D
where, U (A(X ,G(X ,U(X ))= 0D D D D

 (3.2) 

Where, f is the objective function, which depends on the value of coupling variables UD 

and design variables XD. CD is the constraint. Value of CD and UD is also dependent on 

other coupling variables and design variables. 

Figure (3-2) shows how a MDF methodology works. In MDF methodology, coupling 

variables are not optimized rather solved outside the optimization. After each solving 

value of coupling variables are sent to the optimization algorithm, then current design 

value is obtained which is again sent to multi-disciplinary system. Thus MDF method is 

optimized. 

                                                                                                                              

Fig 3-2: Diagram of MDF Method 
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3.2 AAO Approach 

In terms of problem formulation, the AAO approach is at the opposite end of MDF. It 

performs neither the system analysis nor the individual analysis for each discipline. Here, 

both the design and coupling variables are controlled by the optimizer and the system 

compatibility requirements are appeared as constraints in the optimization.  

3.3 IDF Approach 

The IDF approach falls between MDF and AAO. Its formulation has been developed to 

eliminate the system analysis, and each discipline is independently solved. Here, 

individual discipline feasibility is maintained at each iteration and multidisciplinary 

feasibility is satisfied at the optimization convergence. While eliminating the system 

analysis, IDF uses the complimentary variables and the compatibility conditions of 

coupling variables [2]. 

Among these three, MDF method was used to analyze multidisciplinary design 

optimization in this study. MDF method could be used only in deterministic problem 

where variables are deterministic in nature and no uncertainty is taken into consideration 

while optimizing the system. However, uncertainty prevails in engineering design 

problem regardless the nature of the problem. Consideration of uncertainty while 

designing makes the design system robust. Often safety factor is used to make the system 

safe, but it does not make the system robust. Robust system is insensitive to changes in 

the design variables. As engineers always want to have firm output from their systems, 

uncertainty is not desirable in engineering design. Robust design methods make the 

system less sensitive to changes in design variables.  

3.4 Sources of Uncertainty 

There are  two types of uncertainty: aleatory uncertainty and epistemic uncertainty[16]. 

Aleatory uncertainty arises from natural variability whose reason is unknown.  Epistemic 

uncertainty arises from lack of knowledge. When proper knowledge or data is not known, 

then uncertainty due to lack of knowledge is known as epistemic uncertainty.  Epistemic 

uncertainty can be reduced if data is properly collected. Distinction between these two 

uncertainties is necessary because risk assessment decisions in engineering design sectors 
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may be tough. Thus, if we run the same experiments, due to aleatory uncertainty, value of 

the output will be changed every time. On the other hand, epistemic uncertainty is the 

systematic uncertainty where lack of proper systematic knowledge to collect data is the 

cause of uncertainty. If data is collected in proper manner then epistemic uncertainty can 

be greatly reduced. This research deals with aleatory uncertainty only. 

Aleatory uncertainty arises from natural variability like human error, machine error, 

environmental change which is out of control. For example: a worker may have to 

remove an injection part at 29◦C, but due to fatigue he may waits a bit and remove part 

from injection molding at a lower temperature. Uncertainty due to this type of reason is 

called aleatory uncertainty. 

3.5 Robustness-based Design Optimization 

Robustness-based design optimization or in short RDO is used to optimize a design 

problem under uncertainty. Uncertainty prevails in a problem when input variables as 

well as system outputs are uncertain. 

RDO can be implemented by optimizing mean and minimizing variance. For multi-

disciplinary design optimization under uncertainty, often variance of a function should be 

known. This variance of a function could be either objective function or the constraints. 

Using first-order Taylor series expansion, mean and variance of a function could be 

written as follows in equation (3.3) and (3.4): 

μ g(μ ,μ ,....,μ )x x xf n1 2
  (3.3) 

df df df2 2 2 2 2 2 2σ = σ ( ) +σ ( ) +......+σ ( )x x xif dx dx dx1 2 i1 2
      (3.4) 

Besides Taylor series expansion, sampling based methods and point estimate methods are 

also available in literature to estimate the mean and variance of performance cost 

function ([11], [12], [16]). Among these, Taylor series expansion is quite popular, 

although at high value of variance of the variables it may produce error.  



16 
 

Feasibility robustness can be achieved by minimizing boundary of the constraints. On the 

other hand, minimizing variance under these constraints provides objective robustness. 

Zaman et. al. [13] proposed a RDO formulation as follows in equation (3.5): 

 

   min , ( * * )

. . ( ( , )) ( ( , )) ( ( , ))
( ) ( ) , ,...,

, ,...,

f f

i i i

i i i i i

i i i

f w 1 w

s t k g E g k g  for all i
lb k x d ub k x for i 1 2 nrdv
lb d ub for i 1 2 nddv

   

 

 

  

   

    

  

d

LB d z d z UB d z

 

(3.5) 

where, in equation (3.5) μf and σf  are the mean and standard deviation of the objective 

functions. LB and UB are the lower and upper bounds of the constraints. Here ω≤ 1, nrdv 

and nddv are the number of random design variables and deterministic design variables. 

In our problem, value of k was taken as 1 and random design variables were design 

variables of the injection molding design problem and deterministic variables were 

process parameters. As we are minimizing both mean and variance, it could be defined as 

multi-objective optimization problem.  

The following chapter proposes a RDO methodology for injection molding system. 
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  Chapter 4

Representation of Injection Molding System as a 
Multidisciplinary System 

Injection molding is a manufacturing process for producing parts in a very large quantity, 

sometimes in thousands or even in millions to reduce cost and increase the rate of 

production. In this process, molten metal or plastic is inserted into a mold under pressure 

which through heat transformation, changes phase to become solid and turns into the 

form of the mold. The ability to scale production in a large quantity is the most lucrative 

advantages of injection molding process to manufacturers. Once initial cost gets paid, the 

price of parts becomes very low and gets even lower with the production of more parts.  

To facilitate injection molding process, the parts that need to be injection molded, need 

rigorous engineering considerations. Material of the part, material of the mold, features 

and shapes of the part, properties of the machine, pressure in the chamber, melting 

temperature, injection temperature, ejection temperature, heat transfer rate- all these 

terms need to be considered very carefully to prevent economic loss and production time.  

The history of injection molding goes back to 1872 when American Inventor John 

Wesley Hyatt along with his brother Isaiah Hyatt patented the first ever injection molding 

machine. It was a very simple machine with way fewer capabilities than the machines 

used now-a-days industrially. Arthur Eichengrun and Theodore Becker invented first 

soluble form of cellulose acetate in 1903. Arthur Eichengrun made his first molding press 

in 1919 and then in 1939 he patented the injection molding of plasticized cellulose 

acetate. World War II created a huge demand in low cost mass productions which 

triggered injection molding as one the most useful methods for manufacturing. American 

inventor James Watson Hendry invented screw injection machine in 1946, which offered 

more precision and faster production with less material waste which in later years got 

tremendously modified for even higher efficiency. In 1970, Hendry developed first gas 

assisted injection molding machine which permitted the production of complex, hollow 

articles that cools fast.  

In USA and Europe, injection molding machine is widely used to replicate parts. It 

bloomed in its production due to the capability of creating mass products of same size 
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and shape in shorter time period. Not only does this machine create part with almost full 

accuracy also saves time of producers. Manufactured parts can be used in almost all 

sectors of daily life. Thus injection molding machine is a versatile machine too. 

Injection molding machine is a machine which can replicate any part and produce them in 

plastic form. It can produce parts in different cycles. Each cycle can produce one or more 

parts. However, in our research, per cycle production of one part was considered. Thus 

the less is the cycle time the more production can be obtained. However, uniform filling 

and cooling of the plastic part may be hampered if cycle time is reduced extensively. In 

injection molding machine, granular plastic is melted at first. Then this melted liquid 

flows through a channel, sprue and runner. Lastly, it is injected into a hole to mold cavity. 

Mold has two parts - cavity and core halves. Top half of the mold is called cavity half and 

bottom half is known as core or moveable half.   

Size of the mold cavity depends on dimension of the manufactured part. Thus, length and 

diameter of runner, sprue and gates are important design variables for injection molding. 

The mold has two halves. One half contains injection system and the other half contains 

cavity and ejection system.  In core, liquid plastic is filled for some moments and then it 

shrinks to solid until ejected from the core. After completing the production of every part, 

the mold has to be opened. Therefore, this back and forth opening movement of the mold 

is controlled by a structural system. The structural system is also responsible for giving 

proper clamping force to the mold while drying the part.  

Thus, injection molding has 4 important sub-systems [6]. They are: 

1. Feeding System 

2. Heat Transfer System 

3. Ejection System 

4. Structural System 
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 Feeding system 4.1

Feeding system is the system where molten liquid is fed into the cavity. Function of it is 

to transfer the molten liquid from the channel to the cavity.  

Feeding system consists of runner system, sprue system and gating system. A properly 

well designed runner system helps producers to obtain optimum number of cavities, 

delivering melt to cavities, balancing feeling up of multiple cavities, minimizing waste by 

pouring almost all liquids to the cavity insert, reducing energy consumption, pressure 

drop and cycle time. There are two types of runner systems in injection molding system. 

First one is hot runner system and second one is cold runner system. Hot runner is 

comparatively expensive but it is really suitable for smaller pressure drop and minimized 

cycle time. On the other hand cold runner is cheaper but it gives slower cycle time and 

huge pressure drop. As our aim is to design an injection molding system with minimum 

cycle time and pressure drop, our system was considered as hot runner system. Design of 

feeding system is highly dependent on geometry and size of the finished part and its 

gating,[6]. 

 Heat Transfer System 4.2

After mold cavity is filled up with molten plastic, it should be dried to solid state so that 

it could be ejected. To draw away the heat from the cavity cooling channels are present 

around this system. When filling starts, partial filling also starts. During this period 

mainly conduction, convection and viscous flow helps to reduce the temperature of the 

liquid plastic. However, while holding the liquid plastic mainly conduction predominates. 

Filling time is negligible compared to holding time, that is why only heat transfer by 

conduction is considered in our research [17]. 

 Ejection System 4.3

Ejection system ejects the solid part after cooling the part. Its main function is to release 

the part from the mold cavity. To ease the release of the part without any hamper to the 

part, proper ejection temperature, clamping force, stroke and distance of the release 

should be proper. The quality of ejected part is highly dependent on ejection system. It 
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also determines the production efficiency because when every cycle finished, product 

needs to be taken out of mold. This process is known as de-molding. 

 Structural System 4.4

Another important subsystem of injection molding system is structural system. This 

system gives proper clamping stoke to the mold so the liquid molten plastic does not slip 

through the cavity wall. Again structural system ensures clamp opening force which must 

be enough to open the mold and take out the part in completely perfect condition. Thus, 

injection molding system can be considered as a multi-disciplinary system consisting of 

four sub-systems mentioned above. In this multi-disciplinary system different variables 

enter each system and give output (Figure 4.1).  Even output of a system can be input to 

other systems. When this happens in forward manner, it is called feed-forward coupling. 

When output of a system becomes the input of a previous system then it is known as 

feed-back coupling, like injection pressure and shot volume ( ,inj sv ). The multi-

disciplinary system is explained below in short with the help of a figure 4.1. 

 

 

Fig 4-1: Multidisciplinary Injection Molding System 
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where, 

max
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inj

v Volume of  shot                                                                                             
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


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



 







c

mer
t Time to cool the polymer  

 Quality and production efficiency of injection molding system are highly dependent on 

design of injection molding which determines the value of the above variables. Previous 

studies show that if the runner length and diameter are smaller, cycle time is reduced but 

results in a huge pressure drop. Huge pressure drop can result in defective and sticky 

product. Liquid plastic may dry in runner due to pressure drop and never reach the 

cavity. However, if runner diameter is larger, it results in less pressure drop but higher 

cycle time. Duration of cycle time determines production efficiency and pressure drop 

amount determines quality of the product. Therefore, design of injection molding system 

determines production efficiency and product quality. Pressure drop and cycle time 

minimization is good for injection molding machine. However, these two objectives are 

conflicting in nature. If value of cycle time is minimized, value of pressure drop 

increases and vice versa. Thus, to obtain optimum value of cycle time and pressure drop 

injection molding system should be optimized taking into account both objectives in 

consideration. Values of design variables should be chosen in such a way that both cycle 

time and pressure drop are minimized. 

 Cycle time consists of five stages [18] i.e. 
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i. Plasticizing: plasticizing means heating and melting of the polymer 

ii. Injection: injecting refers to the insertion of liquid polymer into the mold 

cavity 

iii. Packing: filling the cavity even after cavity is filled up with liquid polymer to 

stop back flow 

iv. Cooling : cooling the polymer to solid state 

v. Ejection: ejecting solid part from the mold cavity 

Among these five stages injection and plasticizing happen almost simultaneously, that is 

why plasticizing is ignored during cycle time calculation. Only injection time is taken 

into account. Packing time also is a part of cooling time so this is ignored too. Summation 

of injection time, cooling time and ejection time is considered as cycle time of injection 

molding system (Equation 4.1) [19]. 

Cycle time can be written as follows 

Cycle Time= injection time + cooling time + ejection time= 

=
22×V × p (T -T )s h 2d +5inj max melt mold+ ln(4)× +[1+1.17t ]d2P (T -T ) Sπ αinj ejection mold

 
 
 
 

 (4.1) 

 During minimization among these three types of time, time to cool the polymer should 

not be decreased to below 3sec (equation 4.2)[19]. In other words, cooling time must be 

more than 3 secs. 

( )max ln( )
( )

2 T Th melt mold4 32 T Tejection mold 

 
  
 
 

 (4.2) 

In injection molding machine, parameters like temperature of mold, melting temperature 

and ejection temperature completely depend on material to be replicated through 

injection molding machine. Therefore, these variables were considered as process 

parameters and other variables can be determined during design of the process. That is 

why they are considered as design variables.  Thermal diffusivity, α is taken as constant, 
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based on particular material type. Coupling variables, design variables and process 

parameters of injection molding are explained below. 

 Coupling Variables 4.5

4.5.1 Volume of shot 
It is the amount of molten plastic that goes to the cavity. While deciding volume of shot 

shrinkage allowance of the working plastic material should be taken into account. Mold 

cavity is the negative of the plastic part to be molded. In an injection molding there can 

be one or more numbers of mold cavities. Volume of shot also depends on number of 

volume of shot [20].  Volume of shot is an important variable in injection molding 

design. Shot volume is an output of injection system and an input to cooling system. Its 

value is dependent on injection pressure (equation 4.3) [21]. 

P ×tinj injv =s 2× ρinj
         (4.3) 

4.5.2 Injection Pressure 
Amount of pressure required to inject plastic in the cavity mold is called the injection 

pressure. This pressure is required when the plunger in the screw rotates to insert molten 

plastic in the cavity. While inserting molten plastic a significant amount of pressure is 

lost. That is why injection pressure must be greater than empirical pressure required for a 

material. Often researchers argue that, it must be more than 1.25 times the injection 

pressure (equation 4.4) [20]. 

.maxp 1 25 pinj inj         (4.4) 

 where, p maxinj  is maximum pressure and pinj  is required injection pressure. Once 

pressure is decided then the task is to select cavity number. After optimization, required 

injection pressure can be obtained, which is a very important parameter because volume 

of shot or injection volume in a projected area depends on this parameter. Therefore 

value of injection pressure is dependent on shot volume. Injection pressure is an input to 

injection system which depends on an input variable of cooling system  as in equation 

(4.5). 
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Q× F ×t ×vpinjclampρ =inj 22×v × As part
 (4.5) 

Now these two parameters, injection pressure and shot volume are coupling variables in 

the considered multi-disciplinary system. Coupling variables are those variables, value of 

one variable depends on the value of another but these are either inputs or outputs of 

different systems. Hence output of one system can be the input of another system and 

vice versa. As these two feed-back coupling variables belong to two different systems, 

optimizing the whole system without considering mutual interaction between these two 

systems can result in erroneous optimization result. Increment in value of volume of shot 

decreases injection pressure and vice versa. However, to minimize objective functions 

both of these variables should be minimized. Major contribution of this research is to 

incorporate these two coupling variables during optimization. Individual optimization of 

each system thus cannot provide actual minimized value. MDF method, popular for 

solving deterministic optimization problem, including the effect of  coupling variable  has 

been used to solve the multidisciplinary optimization problem of injection molding 

machine. 

 Design Variables 4.6

Design variables are those variables, values of which decide the performance function 

before machine is designed. Thus, careful choosing of the values of design variables can 

affect output of performance function. 

4.6.1 Clamping Force  

Clamping force in injection molding machine is the amount of force which is exerted by 

clamping unit to the mold of injection molding so that it can withstand the separating 

force of the mold. Separating force is the force which occurs when molten liquid enters 

the mold under huge injection pressure and tries to separate the mold. That is why 

clamping force is necessary to keep the mold halves in proper place. Clamping force is an 

important design variable as it determines amount of defects in the part, i.e., amount of 

flash in the part. Clamping force depends on different parameters, especially on the 

projected area of the part and inside cavity pressure or injection pressure of the mold. 
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Clamping force must need to be greater than the force generating from this cavity 

pressure.  This force is called separating force. Thus design of injection molding machine 

structural system should incorporate the fact that melting pressure acting in the projected 

area of the mold should not surpass the maximum clamp force (equation 4.6) [5]. 

Fclamp-p + < 0inj Aproj
 (4.6) 

4.6.2 Length and Diameter of the sprue, runner and gate 
Sprue, runner and gate are the important design variables of injection molding system. 

They control cycle time and pressure drop, the two most important performance functions 

of injection molding system. Sprue is a passage through which molten liquid passes and 

reaches the mold. The extra material dries up in the sprue and it is cut off when part is 

removed. Length and diameter of sprue are fundamental design variables, because when 

diameter and length of the sprue are too large cycle time increases, on the other hand 

when it is too small pressure drop increases. Too small diameter lets the liquid plastic to 

become solidified when it touches the wall of the sprue. The less the diameter and length 

are, the more the pressure drop is.  Runner is small passage through which molten plastic 

flows from sprue to mold. Gate is nothing but a small opening which allows melted 

plastic to run through the passage into the mold. Length and diameter of the gate are also 

important factors because these determine the amount of liquid to pass to the mold. 

Single gate is always preferred as it puts less gate mark on the finished part. Lengths of 

these three design variables determine required injection pressure which can be 

determined from Hagen-Pouseulle’s law [6] as follows (equation 4.7) : 

,  

32×(l +l +l +l )×φ×v × ηsprue runner gate part F effρ + < 0inj 0.004
where l = length of  the sprue, l = length of  the runnersprue runner
             l = length  of  the gate, l = length of  the partgate part
             φ= rati



o between width and thickness, v = front flow velocityF
             η = apparent effecctive viscosityeff

 
       

(4.7) 
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There are also some others constraints related to these design variables for example, 

sprue must have enough capacity to fill up the downstream runners  [6]. This can be 

expressed through the following equation (4.8): 

d +d n < 0sprue runner downstream  (4.8) 

Figure (4-2) shows the relative positions of the runner, sprue and gate. From the figure, it 

can be seen that how their relative positions control the flow of liquid plastic. 

 

Fig 4-2:  Schematic Diagram Injection Molding system showing primary design 
Variables 
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 Process Parameters 4.7

Process parameters are those variables that depend on the process and material selection 

but they do affect the performance function like cycle time and pressure drop. These 

variables are not defined as design variables rather process parameters. As throughout our 

research we consider only one type of material (polypropylene), these process parameters 

were considered constant during design optimization. 

4.7.1 Viscosity, Shear rate and Mold flow Index 
Injection molding machine replicates polymers into different shapes of mold. The more 

shear rate of a polymer is increased the more easily it can be pushed in to the mold. Fluid 

form of polymer in injection molding system is non-Newtonian flow. Non-Newtonian 

flow does not obey Newton’s law of viscosity. Non-Newtonian flow power law index 

becomes between 0 to 1.  If power law is less than 1, then it means effective viscosity 

would decrease with increasing shear rate. Thus, viscosity is a property of any material 

which provides resistance to every material to flow. Viscosity can be written as the ratio 

of shear stress to shear rate [22].  

SHEAR STRESS τη= =
SHEAR RATE γ

 

where,  =shear rate 

 =shear stress 

(4.9) 

Every material will flow if enough time is given. Viscosity decreases with the increment 

of shear rate, . Thus increasing value of shear rate is good for injection molding system. 

However shear stress should not be increased in such a way that, shear rate for flow 

through gates does not surpass the maximum allowable shear. This rule can be specified 

according to the power law as follows [6]: 

(3+1 / n)×Q 1/ 3-d + 2× [ ] < 0gate π× γmax
 (4.10) 

4.7.2 Injection Temperature and Mold Temperature 
Injection temperature generally varies between 180-260◦C and mold temperature 20-

30◦C. During design optimization process parameter is assumed fixed and design 
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parameters are optimized. Injection temperature and mold temperature are kept constant 

during deterministic design optimization.  

4.7.3 Length and Projected Area of Finished Part 
Length and projected area of part determines few process parameters such as amount of 

time to inject, shot volume, time to eject, force required to clamp the mold halves etc. 

Multi-disciplinary design optimization has been applied to minimize cycle time and 

pressure drop for a particular product length and projected area of the finished part was 

taken as constant and mean value of their range was used in robust design optimization 

problem.  

4.7.4 Flow Rate 
Flow rate is also considered as a process parameter as it is completely determined during 

process. However, process parameter, flow rate depends on injection pressure and 

injection power. While considering deterministic multidisciplinary optimization average 

flow rate was considered as a constant value. 

PinjQ =
ρinj

    (4.11) 

4.7.5 Dry Cycle Time 
Other than melting the polymer, injecting the liquid polymer into the cavity of the mold, 

drying the polymer to finished part there are also some other activities in injection 

molding machine. These activities include opening and closing the mold, actuating 

ejection, touching nozzle to the mold etc. This time is called dry cycle time, td. Dry cycle 

time is also a process parameter which is in the same manner taken as constant in 

deterministic design and its mean value is used in robust based design optimization. 
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  Chapter 5

Numerical Illustration 
In this research, MDF (Multidisciplinary  Feasible) method which is a method for system 

analysis available in multi-disciplinary optimization is used to optimize injection molding 

system during design. A theory of industrial engineering has been applied in sector of 

manufacturing engineering, to extend the application of industrial engineering out of its 

border.  

In this example, the whole, injection molding system is divided into four subsystems and 

interaction between these systems has also been identified. Presence of feed-forward and 

feed-back coupling was identified. Thus, optimizing the sub-systems individually will not 

give actual minimized value. The presence of coupling variables minimizing objective 

function with respect to each system may lead output of another system to maximization.  

Multidisciplinary design optimization was performed considering the system as a 

deterministic problem. However, design variables can be uncertain too. Uncertainty is the 

natural quality of any system. Optimizing any system including uncertainty makes the 

system robust. Thus, in this research multidisciplinary optimization has been performed 

incorporating and without incorporating uncertainty. Multiple disciplinary feasible and 

Robust-Design Optimization were used respectively in these cases. The mathematical 

illustrations for both methodologies are explained below. 

5.1 Mathematical Illustration of Deterministic Design Problem 

This research has focused to minimize cycle time and pressure drop. Minimum cycle time 

ensures shorter time period to send products to the customer.  Pressure drop minimization 

ensures good quality of products. Thus, objective function of multi-disciplinary design 

optimization along with constraints are described below (equation 5.1-5.9) [6,20],   

Minimize, 

i)Cycle Time, 

( )max ln( ) [ . ]
( )

22 V p T Ts h 2d 5inj melt moldf 4 1 1 17t1 d2P T T Sinj ejection mold 

         
 
 

 

 

(5.1) 
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ii)Pressure Drop, 

1 1(3+ )×Q (3+ )×Ql lsprue n nn runner nf = 4k[ ( ) + ( ) +2 d dd d 3sprue runner3sprue runner π×( )π×( ) 22
1(3+ )×Qlgate nn                                             ( ) ]dd sprue 3gate π×( )

2

 
(5.2) 

Subject to, 

i)   
2 (T -T )hmax melt moldln(4)× 32 (T -T )π α ejection mold

 
  
 
 

 
(5.3) 

 ii) 
Fclamp-p + < 0inj Aproj

 (5.4) 

iii)
32×(l +l +l +l )×φ×v ×ηsprue runner gate part F eff-ρ + <0inj 0.004  (5.5) 

 iv)           sprue runner downstreamd d n 0    (5.6) 

 v)       1/ 3
gate

max

(3+1 / n)×Q-d + 2× [ ] < 0
π× γ

 
(5.7) 

Coupling variables: 

i) inj inj
s

inj

P t
v

2 





 (5.8) 

ii) clamp inj p
inj 2

s part

Q F t v
2 v A


  


 

 (5.9) 

Where, Flow rate, inj

inj

P
Q


 ,[19]. 

Values of some above mentioned input variables were assumed to be constant, which 

depends on polymer property, (polypropylene)[22]. 
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Table 5-1: Properties of deterministic process parameters 

Properties Value 

Thermal diffusivity,  6 20.096 10 m s  

Viscosity evaluated at a shear rate 

of one reciprocal second, k 
400s-1 

Ration between width and thickness,  1.5 

Apparent effective viscosity, aeff  25s-1 

Number of downstreams, ndownstream  2 

Power law Index 0.4 

 

Thus, the optimization formulation given in (5.10)-(5.16) becomes: 

Minimize, 

( )max ln( ) [ . ]
( )

22 V p T Ts h 2d 5inj melt moldf 4 1 1 17t1 d2P T T Sinj ejection mold 

         
 
 

 (5.10) 

f =2
8×5.5× P 8×5.5× Pl lsprue inj inj0.4 0.4runner  4k[ ( ) + ( )  3 3d dπ×(d ) × ρ π×(d ) × ρsprue runnersprue runnerinj inj

8×5.5× Plgate inj 0.4                 + ( ) ]3d π×(d ) × ρgate gate inj

 
(5.11) 

 

Subject to, 

i)
2 (T -T )hmax melt moldg = 3 - ln(4)×1 2 (T -T )π α ejection mold

 
 
 
 

 

 

 

 

(5.12) 

ii)
Fclampg = -p +inj2 Aproj

 (5.13) 
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iii)
32×(l +l +l +l )×1.5×v ×ηsprue runner gate part F effg = -ρ +inj3 0.004  (5.14) 

iv) g = -d +d 2sprue runner4  (5.15) 

v)
5.5× Pinj 1/ 3g = -d + 2× [ ]gate5 π×1000× ρinj

 (5.16) 

Among these, , , , , , , , ,inj sprue runner gate sprue runner gate clamp injP  d, S, l  l  l  d  d  d  F  t  are considered as 

design variables and the rest, , , , , , , , ,melt mold ejecct d p part part FT  T  T  t  Q  V  A  l  v  are considered 

as non-design variables. Design variables have lower and upper bounds. Though non-

design variables have interval values, during design optimization a constant value within 

the range was considered. Following interval data of the design and non-design variables 

have been tabulated (Table 5-2). 

Table 5-2: Ranges of Values of Process Parameters 

Process Parameters (Non-design variables) 
Range of Value 

 

Mold temperature, moldT  29-85◦C 

Melting Temperature, meltT  218-271◦C 

Ejecting temperature, ejectionT  130-190◦C 

Dry cycle time, dt  2-7sec 

Flow rate of material, Q  0.2-0.3m3/s 

Projected area of the part, partA  0.1-0.3m2 

Part length, partl  0.0005-0.03m 

Front flow velocity of the melted liquid, Fv  0.2-0.6ms-1 
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Table 5-3: Ranges of Values of Design Variables 

Design Variables Range of Value 

Injection Power, injP  1000-5000W 

Depth of mold, d  0.004-0.2m 

Maximum clamp stroke, S  0.004-0.2m 

Length of sprue spruel  0.01-0.025m 

Length of runner, runnerl  0.002-0.02m 

Length of gate, gatel  0.002-0.02m 

Diameter of sprue, sprued  0.002-0.02m 

Diameter of runner, runnerd  0.0005-0.01m 

Diameter of gate, gated  0.02-0.2m 

Clamp stroke, clampF  1000-5000N 

Injection Time, injt  2-50sec 

The multi-disciplinary optimization problem was solved using MATLAB solvers called 

‘fmincon’ and ‘fsolve’[23]. ‘Fmincon’ can solve only a single objective at a time. That is 

why two objective functions were summed up to one objective using weighted sum 

approach. Two objectives have different units. Thus, normalization method was 

necessary.  Thus our optimization problem becomes (equation 5.17): 

,

( , , ) ( , , )min
( , , ) ( , , )

( , , )
( , )
, ....

, , .

1 2
m m

1 2

i

m n

f x p u f x p u, 
f x p u f x p u

         subject  to, g x p u 0
         u x p 0
         i 1 2 5
        m n 1 2











               (5.17) 

where, ( , , )m
1f x p u  and ( , , )m

2f x p u  are the minimum value of the objective functions. 

As, discussed previously MDF method does not consider optimize coupling variables as 

optimization variables, rather just solve their functions to deliver value of coupling 

variables at each optimization iteration.  When the values of coupling variables are sent 
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to the main function it is optimized using solver ‘fmincon’ and minimum values of 

pressure drop and cycle time are obtained [23]. Values of design variables are also 

obtained when pressure drop and cycle time are minimized. While optimizing design 

variables, process parameters are kept constant.  

In figure 4, MDF method has been applied to multidisciplinary injection molding system 

where values of coupling variables are solved outside the optimizer and supplied to main 

optimizer 

 

                                                    xk 

 

                                   xk 

 

 

 

                                                                      ui,j  

 

 

Fig 5-1: MDF methodology applied in Injection Molding Machine 

 Weighted-sum method is applied; different weights are assigned to the objective 

functions. Value of w can be between 0 and 1. Value of w was varied with an increment 

of 0.2 i.e. w=0, 0.2, 0.4, 0.6, 0.8, 1. For each of the values of w, objective function was 

minimized. That means each objective function was given different weights and different 

values of each objective function were obtained. It is observed that when cycle time was 

minimized, pressure drop function gave maximized value. When pressure drop was 

minimized, cycle time gave maximized value. 

Optimization algorithm for solving  

1 2
m m

1 2

i

f (x, p,u) f (x, p,u)min, w +(1- w)
f (x, p,u) f (x, p,u)

       w=0,0.2,0.4,0.6,0.8,1
         subject to, g (x, p,u) 0
         i = 1,2....5

 



 

Update design xk at current iteration, 
increment k to k+1 

Current design at xk 
Perform multidisciplinary 

analyses 
to obtain from coupling 

variables 

 , ,

, ,

, ,

( , , )

k
1 i j j i

k
2 i j j i

h x u u 0

h x u u 0




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5.2 Robust –Design Optimization 

MDF method was applied in multi-disciplinary optimization considering both design and 

non-design variables deterministic. However, design and non-design variables will 

always not be deterministic rather probabilistic. Probabilistic variables can lead to 

uncertainty. In this case, robust design optimization for multi-disciplinary system can 

yield more realistic results.  

5.3 Uncertainty-based design 

Methodology to obtain uncertainty based design optimization includes: 

i) Obtaining Objective Robustness: Objective robustness can be obtained by both 

minimizing the mean and variance. Thus, in robust design optimization multi-

objective optimization becomes minimization of mean and variance. 

ii) Obtaining Feasibility Robustness: Feasibility robustness can be obtained when 

function converges within feasible limit even when feasible bound of the constraints is 

reduced. In our multi-disciplinary problem, boundary was reduced my one standard 

deviation. 

iii) Estimating mean and variance of performance function: Means and variances of 

objective (5.18, 5.19) and constrain functions (5.20-5.26) are obtained using first-

order Taylor series expansion[10]. 

 As data are available as only interval data, averages of upper and lower bound were 

considered as the mean of non-design variables and 10% values of mean were considered 

as standard deviation for both design and non-design variables. In robust-based design 

optimization, we have taken mean and variance of cycle time as objective function and 

pressure drop was added as another constraint. Minimized and maximized value of 

pressure drop during deterministic optimization of multi-disciplinary system of injection 

molding machine have been used as lower and upper bound of pressure drop. Thus, two 

new constraints were added to the robust multi-disciplinary optimization of injection 

molding system. Therefore, the robust multi-disciplinary optimization formulation now 

becomes (equation 5.18-5.26): 
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i) 

22×V × p (T -T )s hinj max melt moldcycle time , f = + ln(4)×1 2P (T -T )π αinj ejection mold

2d +5                                        + [1+1.17t ]d S

 
 
 
 

 

 

(5.18) 

ii) 

22×v × ρs 0.002 1inj 2 2variance of  cycle time = [ ] ×var_P +[ ×ln(4)× ] ×var_Tinj inj-5P T -T9.457×10 minj ej
2 2T -T T -Tm m0.002 0.002inj inj 2+[ ×ln(4)× ]var_T +[ ×ln(4)× ] ×var_Tmej-5 -52 29.457×10 9.457×10(T -T ) (T -T )m mej ej

2×d+[1.17×
-1+5 1 2×d +5 22 22] ×var_t +[1.17×t × ×( ) × ] ×var_dd dS 2 S S

-11 2×d +5 2×d +5 22+[1.17×t × ×( ) ×( )] ×var_Sd 22 S S
Subject to, 

 

 

 

(5.19) 

i) 

v × ρs inj2 2 2σ ×( ) +σ ×vA pvv × A × ρ part ps part inj - F +k× 0clamp v × A × ρv s partp inj 2( )+σF2v clampp

  

 

 

(5.20) 

 

ii) 
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(5.21) 
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iii) 

666625-ρ +32×(l +l +l +l )×1.5×v ×sprue runner gate partinj F 0.004
v ×25 v ×252 2 2 2F F(σ ×32×1.5× ) +(σ ×32×1.5× )
0.004 0.004l lsprue runner
v ×25 v ×252 2 2 2F F+k +(σ ×32×1.5× ) +(σ ×32×1.5× )
0.004 0.004l lgate part

2 5+(σ ×3×10 ×(l +lv sprue ruF

0

2+l +l )nner gate part



 

 

 

 

 

(5.22) 

iv) 

1
2 5.52 2 3(σ +σ ×( ×( )1 P5.5× P d 3 3141.6× ρgate injinj inj3-d +2×( ) + < 0gate 3141.6× ρ 2inj - 23×P )inj

 

 

 

(5.23) 

v)
sprue

2 2
sprue gate downstream d gated d d k 2 0         

(5.24) 

iv) 

6

0.4 2
3

444var_ [ ( ) ]

4
var_ [

inj
sprue

sprue inj sprue

sprue
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44× Pl PKgate inj 0.4 ( ) ] +k sqrt[ l3d d dπ× ρ ×dgate gateinj
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


 
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v)
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(5.26) 

 

If RDO methodology can be presented in a short form then it could be summarized as 

below (equation 5.27): 

,
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        lb+k x x ub-k (x)
         u x p 0
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   

   

 



  

 



 . ; , , .5  m n 1 2

 (5.27) 

Among these, x= , , , , , , , ,inj sprue runner gate sprue runner gate clamp injP  d, S, l  l  l  d  d  d  F  t  are considered 

as design variables and the rest, , , , , , , , ,melt mold ejecct d p part part FT  T  T  t  Q  V  A  l  v  are 

considered as non-design variables. IN RDO problem mean value of non-design variables 

were chosen. LB and UB are lower and upper bound of the constraints and lb and ub are 

lower and upper bound of design variables. σ's are the standard deviations. Value of k 

determines how far feasible region should be reduced. k can take any value. In this 

research value of k was taken as 1[20]. 
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 Table 5-4: Means and variances of non-design variables 

Non design Variable Mean Variance 

Mold temperature, moldT  57◦C 5.7◦C 

Melting Temperature, meltT  244.5◦C 24.45◦C 

Ejecting temperature, ejectionT  160◦C 16◦C 

Dry cycle time, dt  4.5sec 0.45 sec 

Flow rate of material, Q  0.25m3 0.025m3 

Projected area of the part, partA  0.2m2 0.02m2 

Part length, partl  0.01525m 0.001525m 

Front flow velocity of the melted liquid, Fv  0.4ms-1 0.04ms-1 

Volume of the finished part 0.25m3 0.025m3 

 

Table 5-5: Variances of design variables 

Design Variables Lower Bound, LB  Upper Bound, UB  Standard Deviation,σx  

Injection Power, injP  1000W 5000W 300W 

Depth of mold, d  0.004m 0.2m 0.0102m 

Maximum clamp 

stroke, S  
0.004m 0.2m 0.0102m 

Length of sprue spruel  0.01m 0.025m 0.00175m 

Length of runner, 

runnerl  
0.002m 0.02m 0.0011m 

Length of gate, gatel  0.002m 0.02m 0.0011m 

Diameter of sprue, 

sprued  
0.002m 0.02m 0.0011m 

Diameter of runner, 

runnerd  
0.0005m 0.01m 0.000525m 
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Diameter of gate, 

gated  
0.02m 0.2m 0.011m 

Clamp stroke, clampF  1000m 5000m 300m 

Injection Time, injt  2sec 50sec 2.6sec 

 

The robust-based design optimization problem was also solved using MATLAB solvers 

called ‘fmincon’ and ‘fsolve’. ‘fmincon’ can solve only a single objective at a time [23]. 

That’s why two objective functions were summed up to one objective using weighted 

sum approach. Two objectives have different units. Thus, normalization method was 

necessary. As in this robust design optimization, variables were optimized with more 

reduced bound of constraint and variables, output becomes less sensitive to change of the 

input values of design variable. Thus robust-design is obtained. Different optimized 

values were obtained for different values of ‘w’ from 0 to 1.                                                        

                    

 

 

 

 

 

 

 



41 
 

  Chapter 6

Results and Discussions 

 Conclusion 6.1

Multidisciplinary design optimization was performed in injection molding system to 

obtain the values of design variables in such a way that the performance functions are 

optimized. Performance functions of injection molding design system are cycle time to 

produce a part, energy consumption and pressure drop.   

Multi-disciplinary design optimization was performed on injection molding system both 

in deterministic and probabilistic condition. Deterministic system considers variables of 

injection molding system without effect of uncertainty. On the other hand, probabilistic 

approach considers uncertainty of each design and non-design variable.  

Multidisciplinary Feasible Approach and Robust-design optimization have been applied 

to optimize deterministic and probabilistic optimization.  Results obtained from this 

optimization have been described below. 

 Results Obtained from Deterministic formulation 6.2

Multi-disciplinary optimization using MDF method was solved by weighted sum method. 

Value of weight, w was used from 0 to 1 i.e.  w=0, 0.2, 0.4, 0.6, 0.8, 1. Values obtained 

for the design variables are tabulated below: 

Table 6-1: Results obtained for different values of w 

w=0 

Injection Power, injP  3281.446W 

Depth of mold, d  0.102m 

Maximum clamp stroke, S  0.102m 

Length of sprue spruel  0.01m 

Length of runner, runnerl  0.02m 

Length of gate, gatel  0.002m 

Diameter of sprue, sprued  0.014142m 
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Diameter of runner, runnerd  0.0005m 

Diameter of gate, gated  0.2m 

Clamp stroke, clampF  2821.302N 

Injection Time, injt  2.702147s 

w=0.2 

Injection Power, injP  4770.078W 

Depth of mold, d  0.004m 

Maximum clamp stroke, S  0.2m 

Length of sprue spruel  0.01m 

Length of runner, runnerl  0.02m 

Length of gate, gatel  0.002m 

Diameter of sprue, sprued  0.014142m 

Diameter of runner, runnerd  0.0005m 

Diameter of gate, gated  0.2m 

Clamp stroke, clampF  4682.471N 

Injection Time, injt  3.085136s 

w= 0.4 

Injection Power, injP  3257.284W 

Depth of mold, d  0.02307m 

Maximum clamp stroke, S  0.198334m 

Length of sprue spruel  0.01m 

Length of runner, runnerl  0.02m 

Length of gate, gatel  0.002m 

Diameter of sprue, sprued  0.014142m 

Diameter of runner, runnerd  0.0005m 
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Diameter of gate, gated  0.199928m 

Clamp stroke, clampF  2952.926N 

Injection Time, injt  2.84919s 

w=0.6 

Injection Power, injP  3250.75W 

Depth of mold, d  0.004m 

Maximum clamp stroke, S  0.2m 

Length of sprue spruel  0.01m 

Length of runner, runnerl  0.02m 

Length of gate, gatel  0.002m 

Diameter of sprue, sprued  0.014142m 

Diameter of runner, runnerd  0.0005m 

Diameter of gate, gated  0.2m 

Clamp stroke, clampF  2068.659N 

Injection Time, injt  2s 

w=0.8 

Injection Power, injP  3299.112W 

Depth of mold, d  0.004m 

Maximum clamp stroke, S  0.2m 

Length of sprue spruel  0.01m 

Length of runner, runnerl  0.02m 

Length of gate, gatel  0.002m 

Diameter of sprue, sprued  0.014142m 

Diameter of runner, runnerd  0.0005m 

Diameter of gate, gated  0.2m 
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Clamp stroke, clampF  2913.254N 

Injection Time, injt  2.775274s 

w=1 

Injection Power, injP  3265.364W 

Depth of mold, d  0.004001m 

Maximum clamp stroke, S  0.2m 

Length of sprue spruel  0.017011m 

Length of runner, runnerl  0.015326m 

Length of gate, gatel  0.010307m 

Diameter of sprue, sprued  0.005729m 

Diameter of runner, runnerd  0.00502m 

Diameter of gate, gated  0.181172m 

Clamp stroke, clampF  2985.304N 

Injection Time, injt  2.000002s 

 

Therefore, for the values of design variables for which both cycle time and pressure drops 

are minimized to some extent are the optimum values of design variables. Different 

values of cycle time and pressure drop are tabulated below: 

Table 6-2: Cycle Time and Pressure Drop for different values of w 

w Cycle Time, (sec),t  Pressure Drop, Δp  

0 850.41 1.9061×105 

0.2 30.187891 1.9061×105 

0.4 30.095111 1.9061×105 

0.6 29.102755 1.9061×105 

0.8 29.87830 1.9601×105 

1 29.102763 2.9585×106 
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 The following figure summarizes these results. 

 
Fig 6-1: Cycle time Vs Pressure Drop for Different Weights of Objective Function 

Graph in Figure 6.1 shows when w=0 only pressure drop was minimized, cycle time was 

not minimized. Thus, a lower value of pressure drop (1.95×105 Pa) comes along with a 

higher value of cycle time (850 sec). However, when, w=1, which means only cycle time 

was minimized. This time, cycle time was minimized (29.102763 sec), but pressure drop 

was maximized (2.9585×106 Pa). Therefore, to get an optimized multi-disciplinary 

system, values of design variables should be chosen for w = 0.2 to w = 0.8 values, where, 

values of both cycle time and pressure drop are minimized to some extent. 

 Results Obtained from Robust Design Optimization 6.3

Multi-disciplinary optimization of injection molding system under uncertainty was solved 

by robust design optimization methodology. This includes optimization of mean and 

minimization of variance, which is also a multi-objective optimization problem. Thus, 

weighted sum method was used. Value of weight, w was used from 0 to 1 i.e.  w=0, 0.2, 

0.4, 0.6, 0.8, 1. Values obtained for the design variables are tabulated below. 

 

Table 6-3: Result of Robust-based Design Optimization for different values of w 

w = 0 

Injection Power, injP  2202.717561W 

Depth of mold, d  0.014203605m 
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Maximum clamp stroke, S  0.189799757m 

Length of sprue spruel  0.016497975m 

Length of runner, runnerl  0.016035624m 

Length of gate, gatel  0.007802651m 

Diameter of sprue, sprued  0.007443704m 

Diameter of runner, runnerd  0.004682203m 

Diameter of gate, gated  0.181223606m 

Clamp stroke, clampF  4699.996873N 

Injection Time, injt  4.600034198s 

 

w = 0.2 

Injection Power, injP  2202.743W 

Depth of mold, d  0.0142m 

Maximum clamp stroke, S  0.1898m 

Length of sprue spruel  0.016354m 

Length of runner, runnerl  0.016006m 

Length of gate, gatel  0.007679m 

Diameter of sprue, sprued  0.007384m 

Diameter of runner, runnerd  0.004591m 

Diameter of gate, gated  0.181237m 

Clamp stroke, clampF  4699.999N 

Injection Time, injt  4.6s 

w = 0.4 

Injection Power, injP  2202.492W 

Depth of mold, d  0.014206m 

Maximum clamp stroke, S  0.1898m 
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Length of sprue spruel  0.016346m 

Length of runner, runnerl  0.015997m 

Length of gate, gatel  0.007702m 

Diameter of sprue, sprued  0.007361m 

Diameter of runner, runnerd  0.00459m 

Diameter of gate, gated  0.181253m 

Clamp stroke, clampF  4699.702N 

Injection Time, injt  4.600051s 

w = 0.6 

Injection Power, injP  2202.54W 

Depth of mold, d  0.014205m 

Maximum clamp stroke, S  0.1898m 

Length of sprue spruel  0.016354m 

Length of runner, runnerl  0.016007m 

Length of gate, gatel  0.007679m 

Diameter of sprue, sprued  0.007381m 

Diameter of runner, runnerd  0.00459m 

Diameter of gate, gated  0.181236m 

Clamp stroke, clampF  4699.753N 

Injection Time, injt  4.600034s 

w = 0.8 

Injection Power, injP  2202.486W 

Depth of mold, d  0.0142m 

Maximum clamp stroke, S  0.1898m 

Length of sprue spruel  0.016401m 
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Length of runner, runnerl  0.015979m 

Length of gate, gatel  0.007627m 

Diameter of sprue, sprued  0.007365m 

Diameter of runner, runnerd  0.004573m 

Diameter of gate, gated  0.181254m 

Clamp stroke, clampF  4699.488N 

Injection Time, injt  4.600003s 

w = 1 

Injection Power, injP  1971.714W 

Depth of mold, d  0.014213m 

Maximum clamp stroke, S  0.189799m 

Length of sprue spruel  0.01555m 

Length of runner, runnerl  0.015882m 

Length of gate, gatel  0.006856m 

Diameter of sprue, sprued  0.007211m 

Diameter of runner, runnerd  0.004096m 

Diameter of gate, gated  0.182559m 

Clamp stroke, clampF  4380.323N 

Injection Time, injt  4.600069m 

 

For different values of w, values of mean and variance of the objective function cycle 

time were obtained. These values have been tabulated below: 
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Table 6-4: Mean and Variance of Cycle Time for Robust Design for different values 
of w 

w Cycle Time, t  2variance of   cycle time, σcycletime  

0 43.38169432 13.10243865 

0.2 43.38162436 13.10239874 

0.4 43.3817393 13.10255401 

0.6 43.38170852 13.10252164 

0.8 43.3816272 13.10250693 

1 43.3818315 13.21677228 

 

The following figure summarizes these results. 

 

Fig 6-2: Mean of Cycle Time vs. Variance of Cycle Time 

 

The above figure 6-2 is a graph of mean of cycle time versus variance of cycle time 

which demonstrates that, due to the inclusion of uncertainty; mean value of cycle time 

does not change to a great extent with the change of variance of cycle time. In other 

words, when robust design optimization is implemented, there is less effect on output 

with the changes in input variables. 

Results obtained from multidisciplinary design optimization with the effect of coupling 

variables, along with uncertainty and without uncertainty have been compared here with 

results from multi-disciplinary optimization without the effect of coupling variables and 

uncertainty [6] for validation of the above methodology. 
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Table 6-5: Comparison between results obtained from previous studies and present 
study 

Design Variables Without effect of 

Coupling variables 

With effect of 

coupling variables  

but not with 

uncertainty 

With effect of 

coupling variables 

and uncertainty 

Injection Power, 

inj  
3567W 3250.75W 2202.54W 

Length of sprue spruel  0.102m 0.01m 0.016354m 

Length of runner, 

runnerl  
0.084m 0.02m 0.016007m 

Length of gate, gatel  0.000502m 0.002m 0.007679m 

Diameter of sprue, 

sprued  
0.0085m 0.014142m 0.007385m 

Diameter of runner, 

runnerd  
0.009m 0.005m 0.00459m 

Diameter of gate, 

gated  
0.002m 0.2m 0.181236m 

Cycle  Time, injt  65.7sec 29.102 sec 43.3817sec 
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  Chapter 7

Conclusion and Future Work 

 Conclusion 7.1

Optimization plays a pivotal role in shaping the current world and is expected to do so in 

future as well. The objective of optimization may vary depending on the perspective or 

discipline. However, a large system can consist of different disciplines. Therefore, 

optimizing from perspective of one discipline might not necessarily optimize the system 

from overall perspective. The reason is not taking the interaction between the disciplines 

into consideration. That is why Multi-disciplinary Design Optimization was considered in 

this thesis.  

 Recommendations 7.2

This research applied MDF (Multi-disciplinary Feasibility) optimization technique to 

optimize cycle time and pressure drop of an injection molding machine. This could be 

done from several perspectives, as the mechanism of injection molding machine consists 

of several disciplines. The previous work has described injection molding system as 

Multi-disciplinary system with four disciplines.  However, though they claimed that, 

Multi-disciplinary Design Optimization (MDO) was applied, they skipped the main 

concept of coupling variables between disciplines. We, however, considered four 

disciplines, including the interaction between two of these disciplines. This leads this 

research to the actual application of Multi-disciplinary design Optimization what is called 

MDO. MDO can be applied to multi-disciplinary system in various ways, like MDF, IDF, 

AAO. Only MDF was applied in this research.  MDF method controls only the design 

variables, not the coupling variables. AAO controls both design and coupling variables. 

IDF is medium of these two extreme types MDO methods.  Though, MDF method has 

been applied in this research, future work can be extended by using IDF and AAO 

method. Collaborative Optimization (CO) can also be applied. CO used system level 

optimization instead of system level single optimization like MDF. 

Another contribution of this thesis was to incorporate uncertainty in the model. In all 

previous works, the parameters were considered deterministic. However, in real world, 
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nothing is certain. Therefore, the problem was solved considering the design variables as 

well as the parameters having uncertainty. Robust design Optimization was applied to 

reduce effect of uncertainty in the final output. If a system is sensitive to uncertain input 

parameters, then the output becomes uncertain too. Robust based design optimization 

includes optimization of mean and minimization of variance.  However, this method only 

includes aleatory uncertainty which arises from natural variability. However, epistemic 

uncertainty has not been considered here, which occurs when enough data are not 

available. Incorporation of epistemic uncertainty can improve the results. While 

collecting data to reduce epistemic uncertainty, data of many variables can be obtained in 

multiple interval value other than single interval value. In cooperating this interval values 

of design variables during optimization will make the system more robust. During 

uncertainty inclusion, estimating mean and variance was done by using Taylor series 

expansion. With higher order variability this can provide erroneous result. This can be 

improved too in future works.  

Finally, MDF has not been widely used in the manufacturing sector. However, for 

manufacturing sector, optimization is more crucial than ever now-a-days. The continuous 

depletion of resources and the increased demand and competition have forced the 

manufacturers to concentrate heavily on increasing productivity while sustaining 

reasonable profit. Also, manufacturing requires knowledge of several disciplines as well. 

That is why we believe MDF or any multi-disciplinary optimization techniques should be 

applied more frequently in this sector. We believe, our work will prove to be helpful for 

users of injection molding machine and help the world reach sustainability in terms of 

both economy and energy.  
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