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Abstract

In this thesis, we introduce an Obstructed Optimal Meeting Point (OOMP) query that enables a

group of users to identify a meeting location with the minimum total travel distance in presence of

obstacles. For example, a group of friends located at different locations in the park or in a city center

may want to meet at a point that minimizes the total distance of the group members. However,

in the park or city center they may have to face many obstacles like trees or lakes and buildings in

their walking paths. In recent years, the problem of finding optimal meeting point (OMP) has been

addressed in the Euclidean space and road networks which ignores the presence of obstacles. We

show that the problem of finding OMP in the obstructed space is NP-hard. We introduce heuristic

algorithm for processing an OOMP query. Processing an OOMP query in the obstructed space is an

exhaustive search, as the search space is infinite and filled with obstacles. To identify the optimal

meeting point, computing the total obstructed distance for every point in the search space would incur

extremely high processing overhead as finding the obstructed distance between two locations is an

expensive computation. Thus, the major challenges for an OOMP query is to refine the search space

and compute the total obstructed distance with reduced processing overhead. We exploit geometric

properties and hierarchical structure to develop techniques to refine the search space. In addition,

we develop efficient technique to compute the total obstructed distance. Our technique reduces the

number of obstacles retrieved from the database and does not retrieve the same obstacle multiple

times from the database to compute multiple individual obstructed distances required for computing

a total obstructed distance. The query processing overhead increases with the increase of the number

of the group members, obstacles and the search space. To further decrease the processing overhead,

we develop another heuristic algorithm for processing an OOMP query in real time by sacrificing

accuracy. We evaluate the efficiency and effectiveness of our algorithms using real datasets and

present a comparative analysis among our proposed algorithms.
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Chapter 1

Introduction

Finding an Optimal Meeting Point (OMP) is a fundamental problem in the field of spatial query

processing. For example, a group of friends located at different locations in the park or in a city cen-

ter may want to meet at a point that minimizes the total distance of the group members. However,

in the park or city center they may have to face many obstacles like trees or lakes and buildings in

their walking paths. In recent years, the problem of OMP has been addressed in the Euclidean space

[1–5] and Road networks [5–7] that ignore the presence of obstacles. In this thesis, we introduce an

Obstructed Optimal Meeting Point (OOMP) query that enables a group to identify the location of

the meeting point that minimizes the total obstructed distance.

Processing an OOMP query in the obstructed space is an exhaustive search, as the search space is in-

finite and filled with obstacles. To identify the optimal meeting point, computing the total obstructed

distance for every point in the search space would incur extremely high processing overhead as finding

the obstructed distance between two locations is an expensive computation. Thus, the efficiency of

an OOMP algorithm depends on (i) the number of meeting points that needs to be considered in the

search space and (ii) the efficiency of the algorithm to compute the total obstructed distance. The

smaller number of considered locations in the search space also decreases the number of obstructed

distance computations.

In this thesis, we exploit geometric properties and hierarchical structure to develop techniques to refine

the search space. In addition, we develop efficient technique to compute the total obstructed distance.

The cost of processing overhead depends on the number of obstacles considered while computing the

1



CHAPTER 1. INTRODUCTION 2

total obstructed distance. The less the number of obstacles retrieved from the database, the more we

can minimize the processing overhead. Our technique reduces the number of obstacles retrieved from

the database and does not retrieve the same obstacle multiple times from the database to compute

multiple individual obstructed distances required for computing a total obstructed distance.

Optimal Meeting Points in the Obstructed Space

Problem Definition

Where is the group’s  optimal meeting point considering obstacles?

o4

o1

o3
o5

A

B

4

o6

o2

C

p

Reality:  A lot of obstacles like trees, benches, lakes in their travel path!!

p’

Figure 1.1: An example of OOMP query in the obstructed space

1.1 Research Problem

The Obstructed space is different from the Euclidean space and the road network space. In the Eu-

clidean space, user is allowed to move freely along the space, and in the network space, although user

has to follow the network structure but can move freely through the route of the network. However,

in the obstructed space, user cannot go through obstacles. The straight line distance between any

two points is blocked in presence of obstacles. Hence, the obstructed distance between two points is

the length of the shortest path connecting the two points, without crossing the interior of any obstacles.

Consider an example scenario of Figure 1.1. Suppose a group of pedestrians A, B and C in the

park want to meet at a location that minimizes their total travel distance. Now if we use Euclidean

distances to find the optimal meeting point then the optimal meeting point will be located at location
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P since Euclidean distance is measured with the length of the straight lines between points. However,

in reality, there are many obstacles like trees, benches, lakes that can obstruct the travel path of

pedestrians. For example pedestrian B cannot walk through the fence or pedestrian C can not walk

through the lake. Thus pedestrians have to walk by avoiding obstacles. If we consider obstructed dis-

tance then the optimal meeting point will be at location P ′. Since, P ′ minimizes the total obstructed

distance of group members.

Now-a-days there is a continuous advancement in the usage of smartphones and other GPS enabled

devices. Furthermore location based social networks allows group of friends to share their locations

with each others and request a location-based service for the group. Thus using our proposed solutions

of OOMP query via location aware mobile devices, a group of pedestrians can find the meeting point

in the obstructed space efficiently.

6

7(a) Earthquake Effect (b) Battlefield

Figure 1.2: Application Scenarios of OOMP query

In addition, this problem is also related to path planning and motion control in robotics, computa-

tional geometry, complex spatial data mining involving obstacles etc. Figure 1.2(a) and 1.2(a)(b)

shows two application scenario of OOMP query. The left figure shows an example scenario of an

earthquake effect. Here emergency help is required to locate survivors from the obstructed area as

early as possible. A number of rescuers are needed to meet together in an optimal point to facilitate

the excavation. The right figure shows an example scenario of a battlefield. Here also several tanks

or soldiers can move in any direction if no obstacle obstructs their path. A group of soldiers/tanks

located in different places need to meet urgently in an optimal meeting point to launch an attack
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together.

A number of research has been conducted in the area of finding Optimal Meeting Points on the

Euclidean space and the Road Network space [1–7]. None of the algorithms consider the presence

of obstacles among the locations of group members. Thus, we are the first to address the problem

of finding an OMP query in the obstructed space. Research works involving obstacles are shortest

path queries [8], range and nearest neighbor (NN) queries[9], Obstructed Reverse Nearest Neighbor

(ORNN) queries [10], Continuous NN queries[11] , moving NN queries[12], Visible k nearest neighbor

(VkNN) queries[13–15] and Obstructed Group Nearest Neighbor (OGNN) queries[16].

In the following sections we formally discuss the obstructed space, the minimum and maximum total

obstructed distance and obstructed optimal meeting point queries. We also discuss basic ideas that

we are going to use throughout the thesis.

1.1.1 An Obstructed Space

An obstructed space consists of obstacles like buildings, lakes, roads for vehicles, trees etc. and the

query points i.e., the group of people introducing the query. Obstructed space is different from the

Euclidean space and the network space. As we already discussed, in the Euclidean space the distance

is measured as the length of the straight line between two points., and in the road network space

the distance is measured as the length of the shortest path between two points in the given network

structure. As a result movement is permitted in a predefined network structure. On the other hand,

in an obstructed space obstacles determine areas that cannot be crossed and the distance is measured

as the length of the shortest path between two points considering the obstacles. Thus, in the road

network, we define the roads that can be travelled and in the obstructed space we define the obstacles

that should be avoided.

1.1.2 Minimum and Maximum Total Obstructed Distance

The obstacle path problem is a popular topic in Robotics, Computational Geometry, GIS, Game

Planning etc. Obstructed path is the shortest path among two points p1 and p2 in the presence of

a set of obstacles O. The obstacles are non-overlapping 2D polygons and the shortest path among

the two points do not cross the interior of any obstacle. The shortest path distance connecting two
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objects without crossing any obstacle in an obstructed space (space consisting of obstacles/polygon)

is called the obstructed distance distO(p1, p2), between the two points p1 and p2. In Figure 1.3 the

obstructed distance distO(p1, p2), between the two points p1 and p2 is shown by the solid line. The

shaded polygons are obstacles in this obstructed space. The Euclidean distance distE(p1, p2), between

the two points p1 and p2 is also shown by a dashed line.

41

p1

distO(p1, p2)

distE(p1, p2) 

p2

Figure 1.3: Obstructed Distance between two points

In the Euclidean space, the minimum distance from a query point qi ∈Q to a square R, distMinE(qi, R)

is the straight line distance from the query point to the nearest point on the boundary lines of the

square and the maximum distance from a query point qi ∈ Q to a square R, distMaxE(qi, R) is the

straight line distance from the query point to the furthest point on the boundary lines of the square. In

presence of obstacles these distances might not exact. Any point on the boundary lines of the square

might give the minimum and maximum obstructed distance. However, there exists infinite number

of points on the boundary lines of the square. It is quite infeasible to examine each of these points

and find out the minimum and maximum obstructed distance. Thus, we need to develop pruning

techniques to refine the search space.

In Figure 1.3, the dotted line shows the minimum Euclidean distance from a query point qi ∈ Q to the

square R, distMinE(qi, R) and the solid line shows minimum obstructed distance distMinO(qi, R)

from the query point qi ∈ Q to the square R.

The lower bound of minimum total obstructed distance from a square to all the query points ( let n
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35

q2

R

q1

distMinO(q1,R)

distMinO(q2,R)

distMinE(q1,R) 

This is ok

distMinE(q2,R) 

Figure 1.4: Minimum obstructed distance from query points to a square

be the number of query points), distMinTO(Q,R) can be defined as:

distMinTO(Q,R) =
n∑

i=1

distMinO(qi, R) (1.1)

The Figure 1.5 shows the maximum Euclidean distance, distMaxE(qi, R) and maximum obstructed

distance, distMaxO(qi, R).

Similarly the upper bound of maximum total obstructed distance from a square to all the query points,

distMaxTO(Q,R) can be defined as:

distMaxTO(Q,R) =

n∑
i=1

distMaxO(qi, R) (1.2)

Obstacles can be in any shape (e.g., triangle, pentagon, etc.), we assume it is a rectangle in this

research. We store all our obstacles and data points in a spatial database indexed by R-tree. We

use an R-tree based indexing method for our searching and retrieval algorithms, though any kind of

indexing is applicable for our algorithms.

1.1.3 Obstructed Optimal Meeting Point (OOMP ) Queries

In the obstructed space there might be infinite points i.e. p1, p2, . . . , pm, . . . , p∞. The total obstructed

distance between any point pm from the obstructed space to all the query points can be defined as:
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34

q2

R

q1 distMaxO(q1,R)

distMaxO(q2,R)

distMaxE(q1,R) 

distMaxE(q3,R) 

This is ok

distMaxE(q2,R) 

Figure 1.5: Maximum obstructed distance from query points to a square

distTO(pm, Q) =
n∑

i=1

distO(pm, qi) (1.3)

Definition 1.1.1. (OOMP) A point poomp is the obstructed optimal meeting point OOMP , if the

total obstructed distance of the point poomp to all the query points is the smallest among all the points

in the obstructed space according to the following Equation 1.4:

distTO(poomp, Q) =
∞

min
i=1

distTO(pi, Q) (1.4)

The following figure 1.6 shows an example of OOMP queries in the obstructed space.

o4

o1

o2

o3o5

oomp
q1

q2
q3

Figure 1.6: An example of OOMP query
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1.1.4 Hardness

Finding an optimal meeting point (OMP) in the obstructed space is very much hard, since in the

search space there are infinite number of points exist. We show that finding an optimal meeting point

in the obstructed space is an NP-hard problem.

Theorem 1.1.1. The problem of computing optimal meeting point in the obstructed space is NP-hard.

Proof We reduce a known NP-hard problem, Weber [3] problem to our problem of OOMP query.

Weber problem is a simple minimum facility location [17] problem and it is proved in [17] that the

weber problem is NP-hard. It requires finding a single facility point in the plane that minimizes

the sum of the transportation costs from the facility point to a number of destination points, where

different destination points are associated with different costs per unit distance. If the transportation

costs per unit distance are the same for all destination points, then weber problem is called geometric

median problem or 1-median problem. Thus weber problem finds the optimal facility point p of a

number of destination points D = {d1, d2, . . . dn} in the Euclidean space, that minimizes the following

weighted sum:

argminp

n∑
i=1

distE(p, di) (1.5)

Here, distE(x, y) represents the Euclidean distance or transportation cost between the two points x

and y in the Euclidean space and and argmin represents the value of the argument p which minimizes

the sum. Whereas in OOMP query, we have to find out the location of optimal meeting point p′ of a

number of query points Q = {q1, q2, . . . qn} that minimizes the total obstructed distance of the query

points in the obstructed space.

argminp′

n∑
i=1

distO(p′, qi) (1.6)

Here, distO(x, y) represents the obstructed distance between the two points x and y in the obstructed

space (which is definitely harder than finding Euclidean distance ) and argmin represents the value of

the argument p’ which minimizes the sum. If the destination points D, represent the query points Q,

the single facility represents the location of optimal meeting point and the weighted sum represents

the sum of obstructed distances from the optimal meeting point to all the query points, then the

Weber problem can be mapped to finding the location of optimal meeting point in the obstructed
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space which minimizes the total obstructed distances of all the query points, which is exactly the goal

of our OOMP query.

1.2 Solution Overview

In the real world there are large number of obstacles in a pedestrian’s walking path, finding the ex-

act optimal meeting point in real time is a major challenge. The smaller number of locations that

an OOMP algorithm requires to consider for identifying the actual OOMP, the more efficient the

algorithm is as for each location, an OOMP algorithm computes the total obstructed distance from

the candidate location to the locations of pedestrians. Two heuristic algorithms are developed for

processing OOMP queries. The obstacles are stored on the database with indexing. A number of

pruning techniques have been developed to refine the infinite search space and thereby reduce the

query processing overhead. In addition, we present efficient algorithms to compute minimum and

maximum total obstructed distance from a square to all pedestrians, which is a key component to

efficiently evaluate the OOMP. Considering all obstacles for computing distance every time is not a

feasible solution. The base idea of our minimum and maximum total obstructed distance computation

technique is to consider only those obstacles, which are required for distance computation and to avoid

retrieving the same obstacles multiple times.

In Section 1.2.1 and Section 1.2.2, we give a short overview of our proposed solutions for computing

maximum and minimum total obstructed distance from a square to set of pedestrians and the OOMP

query evaluation.

1.2.1 Minimum and Maximum Total Obstructed Distance Compu-

tation

There are algorithms [16, 18] for computing total obstructed distance from a single data point to mul-

tiple query points. But no algorithm exists for computing minimum and maximum total obstructed

distance from a set of points to a square. However these two distances are playing major role to refine

the infinite search space and to reduce query processing overhead for finding the OOMP.

To compute minimum total obstructed distance from a set of query points to a square, we can apply
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our developed minimum obstructed distance computation algorithm by considering the square and

one query point (q ∈ Q) at a time from the set of query points (Q), then applying summation opera-

tion in the results. However, this technique involves high IO access. Same obstacle may be considered

multiple times for different query points in the group (Q), which is not desired. Thus we also develop

algorithm for computing minimum total obstructed distance of a set of query points from a square.

The key idea behind this algorithm is, when computing minimum total obstructed distance between

a square and a set of query points Q, we retrieve obstacles having distance equal to a threshold with

respect to the center point of the square. The algorithm does not retrieve any unnecessary obstacle,

which are not required for computing minimum total obstructed distances and also does not retrieve

the same obstacle multiple times from the database. Thus the algorithm reduces query processing

overhead significantly.

There is algorithm [11] for computing maximum obstructed distance from a point to a straight line.

In our OOMP algorithm, we divide the search space hierarchically into four quadrants. The quadrant

is a square which consists of four lines. Applying the algorithm [11] for four line segments, we have

calculated the maximum obstructed distance from a query point to a square quadrant and then

summing up we get the total maximum obstructed distance from a quadrant to all query points.

1.2.2 OOMP Algorithms

We have developed two heuristic algorithms for processing OOMP queries. We call our first heuristic

algorithm as the hierarchical algorithm because it refines the search space in a recursive manner.

The search starts by considering the total space. In every iteration of the search, the search space is

divided into four quadrants, and the quadrant that has the highest probability to include the OOMP

is considered in the next iteration. The quadrants that cannot have the OOMP are gradually pruned

by exploiting geometric properties. The search terminates when the approximate meeting point is

identified.

The query processing overhead increases with the increase of the number of the group members,

obstacles and the search space. In practical applications, it is usual to sacrifice the accuracy slightly

if the OOMP query can be processed in real time. Therefore, the second heuristic algorithm is

developed. The second heuristic algorithm finds the meeting point with less accuracy compared to
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first heuristic algorithm but incurs reduced processing overhead and computation time. We call this

heuristic algorithm as the grid algorithm since it divides the refined search space into a grid.

1.3 Contributions

We summarize our key contributions as follows:

• We introduce obstructed optimal meeting point (OOMP) queries in an obstructed space.

• We develop efficient algorithms to compute minimum and maximum total obstructed distance

between a square and a set of query points.

• We develop two heuristic algorithms to approximate an OOMP.

• We perform experimental analysis of our developed algorithms with real datasets and and show

that our proposed algorithms can determine OOMP with reduced time and space overhead.

1.4 Outline

The rest of the thesis is organized as follows:

In Chapter 2, We study existing research related to different types of OMP queries in spatial database

along with some spatial indexing technique.

In Chapter 3, We explain the algorithms for computing maximum and minimum total obstructed

distance from a square to the query points.

In Chapter 4, We describe our two algorithms to evaluate obstructed optimal meeting point (OOMP).

In Chapter 5, We implement our algorithms and show some experimental results using real datasets.

In Chapter 6, summary and outcome of the thesis with possible future directions are described.



Chapter 2

Related Work

In this chapter, we discuss existing work of optimal meeting point queries and spatial queries in the

obstructed space. First of all in Sections 2.1 and 2.2, we review the work related to optimal meeting

point queries in the Euclidean space and in the road network space. Existing obstacle path problems

in the area of computational geometry and data clustering literature is illustrated in Sections 2.3 and

2.4. In Section 2.5, a short overview of spatial queries in the obstructed space is presented. The

chapter concludes by analyzing indexing techniques for storing and accessing data from the database.

2.1 Optimal Meeting Point Queries in the Euclidean Space

Optimal meeting point (OMP) queries were first introduced by Cooper for the Euclidean space in

1960 [3]. They defined the OMP query as Weber Problem and the OMP is called geometric median

of query point set. Their goal is to minimize aggregate euclidean distance for all users. Beside this,

a number of researches [1, 2, 4] have been conducted in this area. Later Cooper [3] express the

OMP problem as the problem of minimizing the weighted sums of powers of the Euclidean distances.

Further Chen [2] generalized the weber problem for solving radial cost functions. Finally, researchers

show that gradient descent methods [19–22] are the best suited to solve the Weber Problem without

the worry of being stuck at local minimum. Recently, different variety of OMP queries have been

studied [5]. They also proposed gradient descent solution for weighted OMP queries and identified

the best algorithm for particular types of OMP queries.

12
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2.2 Optimal Meeting Point Queries in Road Networks

Researchers considered OMP query on road network space also. First initiative was taken in 2010

[23]. They proved that that an OMP must exists among the split points on a road network. For

a point p on a road network, its split point on edge (u, v) is defined to be the point x such that

d(p, u) + d(u ∼ x) = d(p, v) + d(v ∼ x), where d(a, b) represents the length of the shortest path

between points a and b and d(a ∼ b) represents the line segment of an edge with endpoints a and

b. But their proposed required search space is |Q|· |E|, which is huge. Yan [6] proposed a new

baseline algorithm for min-sum OMP query which reduces the search space to |V |+|Q|. They also

gave an effective two-phase convex-hull-based pruning technique to further prune the search space.

Most importantly, they developed an extremely efficient greedy algorithm to find a high-quality near-

optimal meeting point instead of an exact OMP, which is orders of magnitude faster than the exact

OMP algorithms. But these two methods do not guarantee optimal results. Further, Yan [5] proposed

R-tree based branch and bound algorithm both for min-sum and min-max OMP queries. They suggest

two pruning techniques namely Euclidean distance bound and threshold algorithm. Recently Tiwari

[7] proposed some grid based algorithms to find k optimal meeting points on road network databases.

2.3 Obstructed Path Problems in Computational Geom-

etry

Path problems in the obstructed space are studied in computational geometry [24]. Most solutions are

based on visibility graph and visibility polygon [25–30]. It is [31] proved that the shortest path between

source and destination point lies in the visibility graph and can be computed by any conventional

shortest path algorithms [32, 33]. The literatures in computational geometry rely on preprocessing

and does not prune any obstacle. Since, spatial database applications may require update of spatial

data any time, preprocessing will not give exact result set. On the other hand, considering all the

obstacles for each query point is costly. For very large databases, real time query processing is almost

impossible for query processing overhead.



CHAPTER 2. RELATED WORK 14

2.4 Spatial Queries in the Obstructed Space

However, none of the algorithms discussed in Sections 2.1 and 2.2, considers the presence of obstacles

in the space. Thus, we are the first to address the problem of finding OMP query in the obstructed

space. Research works involving obstacles are shortest path queries [33] in the obstructed space, range

and nearest neighbor (NN) queries [34] in the obstructed space, obstructed reverse nearest neighbor

(ORNN) queries [10], continuous obstructed NN queries (CONN) [11], moving NN queries [12] and

obstructed group NN queries (OGNN)[18]. These spatial queries are illustrated in the following

sections.

2.4.1 Obstructed Nearest Neighbor (ONN) Queries

An obstructed nearest neighbor query was introduced by Dimitris et al. [34]. They developed algo-

rithms for range search, nearest neighbors, e-distance joins and closest pairs, considering that both

data objects and obstacles are indexed by R-trees. An obstacle range (OR) query returns all the

data points from the given set of points, P those are within the given range of obstructed distance

from query point. An obstructed nearest neighbor (ONN) query returns the data points from the

set P , that have the smallest obstructed distances from query point. An obstacle e-distance join

(ODJ) query returns all entity pairs from the given two set of entities, where the distance between

the returned pair of points is within the range of given distance e. The closest pair query returns the

closest data points between two data points set, which have the smallest obstructed distance.

An efficient obstructed nearest neighbor algorithms are proposed [35]. The obstructed distance is

computed incrementally using a visibility graph with only the core obstacles. They also proposed

efficient algorithms for finding the candidate data points pruning out a lot of unnecessary data points.

Gu and Yu developed algorithms [36] for finding obstructed group nearest neighbors using a grid-

partition index combined with the obstructed voronoi diagram instead of R-tree based index. The

obstructed voronoi diagram is precomputed, thus it can not handle dynamically updated data points.

It can only handle static objects, but the overall running cost is reduced . They also introduced a

new concept named obstructed bisector and also proved that the nearest neighbor searching in this

type of grid-partition based indexing is independent of the query point q. This paper presents three
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types of pruning heuristics pruning by no obstacles, pruning by cell border min and pruning by cell

border max while computing the obstructed distance.

2.4.2 Obstructed Reverse Nearest Neighbor (ORNN) Queries

Another similar type of query in an obstructed space is obstructed reverse nearest neighbor query,

given a dataset P and a query point q, an ORNN query returns all the points in P , that have q as their

nearest neighbor. In [10], the first approach was proposed for answering ORNN which follows a filter-

refinement framework and requires no preprocessing and enables effective pruning heuristics. They

also introduced a novel boundary region concept. This paper also presents an idea to compute the

obstructed distance between two points p and q incrementally using previous shortest path calculation.

2.4.3 Continuous Obstructed Nearest Neighbor (CONN) Queries

Continuous obstructed nearest neighbor (CONN)[11, 37] query returns nearest neighbors of all the

points in a given query line (the trajectory segment through which a client is moving ) in a two-

dimensional (2D) space. It is assumed that no obstacle intersects the query line. They perform only

a single query over the query line segment and process the relevant data points and obstacles via the

concept of control points and quadratic-based split point computation approach. They propose two

different approach to continuous obstructed k nearest neighbor and trajectory obstructed k nearest

neighbor (TOkNN) to compute the kNNs for each point along with an arbitrary trajectory.

They introduce the concept of control points that simplifies the computation and comparison of the

obstructed distance between two objects. Given p: a point of interest, O:an obstacle set, and an

interval R over the query line segment, a point cp is the control point of p over R, iff (i) the shortest

path from p to any point on R passes through cp; and (ii) cp is visible to every point on R. They

propose a quadratic-based method to form split points, by solving quadratic inequalities. In order to

find CONNs, they also developed algorithm to compute maximum obstructed distance from a point

to a straight line segment.
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2.4.4 Moving Nearest Neighbor Queries

Another similar type of query is moving k nearest neighbor query. Here the query object has no

specified trajectory. Li and Gu developed algorithms [12] for solving this query. In [38], moving

k-NN query is solved based on a safe-region concept called the V*-Diagram. Our proposed obstructed

optimal meeting point queries consider only static objects. Hence it differs from moving k nearest

neighbor queries.

2.4.5 Obstructed Group Nearest Neighbor (OGNN) Queries

Obstructed Group Nearest Neighbor (OGNN) Query, returns the optimal meeting location from the

given set of point of interests (POIs), like a restaurant, movie theatre, shopping mall etc. that min-

imizes the total/maximum travel distance of all the group members in presence of obstacles such as

buildings and lakes. OGNN Query is introduced by Sultana et al. [16]. They developed two algo-

rithms, Centroid Based Query Method (CBQM) and Group Based Query Method (GBQM). GBQM

incrementally retrieves Euclidean Group Nearest Neighbors (GNNs) and refines the search space by

exploiting the fact that the obstructed distance is always greater or equal to the Euclidean distance

between two points. The search for OGNNs stops when the aggregate distance for a retrieved GNN be-

comes less or equal to the Euclidean aggregate distance of the last retrieved GNN. On the other hand,

CBQM incrementally retrieves Euclidean NNs with respect to the centroid of the query points and

refines the search space based on geometric properties. The search space becomes smaller with the re-

trieval of POIs and the search terminates when the POIs inside the refined region have been retrieved.

2.4.5.1 Aggregate Obstructed Distance from Multiple Points to a Single Point

In order to minimize the aggregate obstructed distance of the group members, Sultana [16] also de-

veloped two efficient algorithms, Single Point Aggregate Obstructed Distance (SPAOD) and Multi

Point Aggregate Obstructed Distance (MPAOD) for computing aggregate obstructed distance from a

single point to multiple query points.

Considering all obstacles every time for distance computation is not a feasible solution. SPAOD does

not retrieve the same obstacle multiple times but SPAOD may retrieve some additional obstacles
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Figure 2.1: Single Point Based Aggregate Obstructed Distance (SPAOD) computation

that are not required for the aggregate obstructed distance computation. In addition, SPAOD reuses

already computed obstructed shortest paths among different nodes in the visibility graph when com-

puting the obstructed shortest path distances for subsequent data points.

Figure 2.1 shows an example of calculating the aggregate obstructed distance between data point

p1 and query point set Q = {q1, q2, q3}. SPAOD initially retrieves obstacles within the the range, t

=max3
i=1 (distE(cQ, qi) + distE(p1, qi)) from the geometric centroid cQ of Q, where t is the threshold.

Then the algorithm compute obstructed distance of each query point qi ∈ Q from p1. If distO(p1, qi)

≤ t for all qi ∈ Q, then the algorithm stops retrieving obstacles. Because, according to Gao et al. [10]

these distances are the real obstructed distances. Thus the algorithm stops retrieving obstacles and

applying the aggregate function SUM or MAX, we get the aggregate obstructed distance distAO(p1, Q)

from p1 to Q. In this way, SPAOD retrieve obstacles incrementally and simultaneously computes ob-

structed distances between nodes in local visible graph, LV G. With the incremental retrieval of

obstacles, the algorithm gradually update the local visibility graph. Whenever, a new data point

p2 comes, SPAOD retrieves two new obstacles o4 and o5, but it is not retrieving the previous set of

obstacles again, thus SPAOD reuses the obstructed distance computations.

On the other hand, MPAOD does not reuse already computed obstructed shortest path distances but

instead filters out a large number of obstacles from the visibility graph V G that do not intersect the

current shortest path between a data point p and query points in Q. Thus, MPAOD may retrieve the
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Figure 2.2: Multi Point Based Aggregate Obstructed Distance (MPAOD)

same obstacle multiple times but keeps the visibility graph small. MPAOD works better in a distri-

bution, where the data points are located far apart from each other and the probability of retrieving

the same obstacle multiple times is small.

From Figure 2.2, we see that there are three query points, Q = {q1, q2, q3} and a data point p1. We

want to calculate the aggregate obstructed distance between p1 and Q. MPAOD at first compute

individual Euclidean distance from each query point qi to a data point p1 and assigns them as initial

obstructed distances. Then it incrementally retrieves all obstacles o1, o2 and o3, that are within the

distance, dmax = max3
i=1 distO(p1, qi) centering the data point p1. Since o3 does not intersect with

the any of the shortest path, MPAOD rejects it. After filtering out unnecessary obstacles MPAOD

updates the visibility graph with the new obstacles, o1, o2 and recomputes the obstructed distance

of q2 and q3. Then again the algorithm checks for incremental retrieval of obstacles within the range

max3
i=1 distO(p1, qi). Since no obstacle affect the shortest path, the algorithm stops retrieving ob-

stacles and applying the aggregate function SUM or MAX, we get the aggregate obstructed distance

distAO(p1, Q) from p1 to Q. For a new data point p2, MPAOD retrieves 4 obstacles o1, o2, o3 and o4,

among which only o4 is new and o1, o2, o3 were retrieved by MPAOD for p1.
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Figure 2.3: OGNN query vs. OOMP query

2.4.5.2 OGNN query vs. OOMP query

OGNN queries are very much related to OMP queries in obstructed space. The key difference between

the OGNN query and OOMP query is, An OGNN query, returns the location of a POI from the given

set of POIs, that minimizes the total obstructed travel distance with respect to the locations of the

group members, whereas in case of an OOMP query a meeting point does not need to be at the lo-

cation of a POI, it can be anywhere in the obstructed space except the areas of obstacles. Therefore,

the OOMP query is more difficult than the OGNN query due to its infinite search space.

For example, in the Figure 2.3, an OGNN query, returns the location of a POI (Point Of Interest),

p2 from the given set of 3 POIs (p1, p2, p3), that minimizes the total obstructed travel distance with

respect to the location of three group members (q1, q2, q3). Whereas in case of an OOMP query a

meeting point p, does not need to be at the location of a POI, it can be anywhere in the obstructed

space except the areas of obstacles. Therefore, the OOMP query is more difficult than the OGNN

query due to its infinite search space.

2.4.6 Visible k Nearest Neighbor (kVNN) Queries

In the obstructed space, another class of queries are visible k nearest neighbor queries. Two points p

and q are mutually visible to each other, if the open line segment joining them does not intersect the

interior of any obstacle. Visible k nearest neighbor queries returns k nearest data points which are

not blocked by any obstacles. In [15] and [39], continuous visible k nearest neighbor queries (kCVNN)
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are discussed and algorithms are proposed, which are based on R-tree based indexing. In [14] and

[40] Gao and Zheng proposed reverse visible k nearest neighbor queries, which efficiently reduces the

preprocessing time and prune the search space through half-plane property and visibility check. All

visible k nearest neighbor queries are proposed in [41], which retrieves visible k nearest neighbors for

each point in a query set Q.

2.4.7 Group Visible Nearest Neighbor (GVNN) Queries

In [13] a new type of query is proposed called a Group Visible Nearest Neighbor Query (GVNN), which

prunes both data set and obstacle set by defining the invisible region of minimum bounded rectangle

(MBR) of query set. This is the first research which relates obstacles with GNN queries. The paper

presents two algorithms Multiple Traversing Obstacles (MTO) algorithm and Traversing Obstacles

Once (TOO) algorithm to effciently solve GVNN problem. GVNN queries has some difference with

our OOMP queries. GVNN queries prune those data points which cannot be seen by all the query

points. Consider a set of query points Q for which we are going to answer GVNN query, if there is

a data point p which is blocked by an obstacle, the GVNN query rejects p though it is visible from

all the other query points in Q. On the other hand, our OOMP query considers the total obstructed

distance between the candidate point location and the query point set Q and does not prune the

invisible points in the obstructed space.

2.5 Indexing Techniques for Space Partitioning

A number of indexing techniques for space partitioning are available such as, Kd-trees, Quadtrees,

Octrees, R-trees [42–46] etc. R-tree has number of benefits over other indexing techniques. That’s

why on spatial database, researchers use R-tree and its variants [47–49] most frequently. R-tree is

a depth-balanced tree where each node corresponds to a minimum bounding rectangle. Each leaf

node consists of an array of leaf entries and each non-leaf node contains an array of node entries. An

example of R-tree is showed in Figure 2.4 which indexes a set of query points.

Here we discuss the differences among R-tree, kd-tree, octree and quad-tree in brief. For example, kd-

trees [42, 43] partition the whole space into regions whereas R-trees only partition the subset of space

containing the points of interest. Kd-trees represent a disjoint partition (points belong to only one
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(a) Point Position in R-tree (b) R-tree Structure

Figure 2.4: Example of R-tree

region) whereas the regions in an R-tree may overlap. R-trees are disk-oriented whereas kd-trees are

memory oriented. The most important benefit of R-tree is that, it can store rectangles and polygons

but kd-trees can only store point vectors. So, R-tress are much more suitable in an obstructed space

than kd-tress. On the other hand, quadtrees [44, 45] are most often used to partition a two dimensional

space by recursively subdividing it into four quadrants or regions whereas R-tree is a balanced search

tree and it organizes the data in pages, and is designed for storage on disk. Quadtrees work only on

two dimensional space but R-trees also work in multi dimensional space. R-trees requires less storage

than quadtress. Octrees [46] are the three-dimensional analog of quadtrees. For nearest neighbor

queries, R-tree indexes are faster than octress and quadtrees. We have used R-trees as the indexing

structure for our obstacles, though the algorithms are applicable for any indexing technique.

2.5.1 R-tree Indexing Structure

R-tree performs the traversing of the tree in a branch-and-bound manner. For nearest neighbor search

algorithms, two types of technique exists, the depth-first and the best-first.

First of all, the depth-first algorithm starts traversing from the root of the tree and visits the node

whose minimum distance (MinDist) from the query object is smallest. In this way, when it reaches

a leaf node, it finds the candidate nearest neighbor. After that, it traverse back and only visits the

nodes whose minimum distance is smaller than the distance of the candidate nearest neighbor.
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The best-first nearest neighbor search is known as the incremental nearest neighbor search. It main-

tains a priority queue for the visited nodes. The queue stores entries in an increasing order of their

minimum distance from the query object. The entry with the smallest minimum distance is visited

first. The best-first nearest neighbor search gives the advantage of retrieving the successive nearest

neighbors in an incremental manner without re-computing the query from the scratch. We have used

the best-first nearest neighbor search approach in this thesis to retrieve entries from R-tree.

(a) Data points in space

(b) Corresponding R-tree

Figure 2.5: A best first search example in R-tree

Figure 2.5 shows an example of best first search (BFS) in R-tree. Figure 2.5a shows the data points

a, b, c, d, e, f , g, h, i, j, k in this space and Figure 2.5b shows the corresponding R-tree. The steps to

retrieve the nearest neighbor of query point q is shown in Table 2.1, where the first column shows the

action in R-tree and the rest of the columns show the entries in the priority queue. The first nearest

neighbor g of query point q is reported at the 6th iteration.

Table 2.1: BFS in R-tree

Visit Root R1 R3 R2

Follow R1 R3 R2 R4

Follow R3 R6 R7 R2 R4

Follow R6 R7 g R2 h R4 f

Follow R7 g j i R2 h k R4 f

Report g j i R2 h k R4 f

The researchers find the optimal meeting point for a given set of query points in an Euclidean space

and road network space. But, none of them considered obstacles in the path. In this thesis we propose
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the novel approach to find the OOMP which includes relevant obstacles and search space in a branch

and bound manner by pruning out irrelevant obstacles and search space. The irrelevant obstacles are

those obstacles which does intersect the shortest path between any two points in the obstructed space.
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Obstructed Distance Computation

In this chapter, we propose our algorithms for minimum and maximum total obstructed distance

computation. In Section 3.1, we describe Visibility Graph, which is used throughout our algorithms.

In Section 3.2, we discuss existing obstructed distance computation algorithms between two points. In

Section 2.4.5.1 we describe the algorithms for computing aggregate obstructed distance computation

strategies. In Section 3.3 we give the details of the algorithms for computing minimum and maximum

total obstructed distance from a square quadrant to all query points.

3.1 Visibility Graph

To compute obstructed distance among the points we need to build visibility graph. Visibility graph

consists of all the obstacle vertices along with the query points. There is an edge between two nodes

in the visibility graph if and only if the two nodes are mutually visible to each other i.e. no obstacle

edge obstructing the visibility between them [50].

Figure 3.1 shows an example of visibility graph. There are three obstacles, O1, O2 and O3 and two

points p and q. All the visible vertices are joined by edges and the shortest obstructed path between p

and q are showed by a green solid line. An important property of visibility graph is, in an obstructed

space the edges of the shortest path are the edges of the visibility graph [51].

A number of algorithms [52–54] have been developed for the construction of visibility graph. John

et al. [55] compared the developed algorithms and showed each of the algorithm’s benefits and

limitations. The naive algorithm requires O(n3) time. The first nontrivial solution to the visibility

24
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Figure 3.1: Obstructed distance computation through visibility graph

problem is given by Lee [52]. The running time of the algorithm is O(n2logn). The other two algo-

rithms [53, 54] are based on complex data structure which are good for theoretical interest. In this

thesis, we have used the algorithm proposed by Lee et al. [52] for constructing visibility graph.

In our research problem, the size of spatial dataset is huge. It is not a good choice to keep the

whole visibility graph in the main memory. That’s why, we construct the visibility graph incremen-

tally. We add only those obstacles and data points in the graph which are relevant to the query.

Whenever in the graph any new obstacle or data point is added, we efficiently update the graph. We

also remove obstacles which are not relevant for our query and keep the size of the visible graph small.

3.1.1 Incremental Visibility Graph Computation Strategy

To update an existing visibility graph, the authors in [34] introduced the following strategies which

we have also used for the incremental visibility graph construction :

Adding a new obstacle : To add a new obstacle o in the visibility graph G, we add all the vertices

V of o to the graph and create new edges with all the visible vertices from V . If there are any existing

edges that crosses the interior of o, we remove them from the graph.

Adding a new query point : To add a new query point q in the visibility graph G, we add q in
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the graph and find all the visible vertices V of q and create new edges between them.

Deleting an existing query point : To remove a query point q from the visibility graph G, we

just simply remove the point and its incident edges from the graph.

3.2 Obstructed Distance between two Points

A number of algorithms have been developed [34–36] for computing obstructed distance between two

points. Now we give a brief a overview of the algorithms with their limitations. First attempt of

computing obstructed distance between two points was taken by Zhang [34] and later improved in

[35]. We describe the algorithm proposed by Zhang using the example shown in Figure 3.2.

36

Figure 3.2: Obstructed distance computation between p and q

Initially the algorithm computes Euclidean distance distE(p, q) between two points. Then the algo-

rithm retrieves the obstacles within the circle centered at q and the radius of the circle is distE(p, q).

The retrieved obstacle is o1. Initial visibility graph is constructed with o1, p and q. As the obstacle o1

intersects the Euclidean straight line between p and q, obstructed distance between p and q needs to

be computed. Using Visibility graph and Dijkstra shortest path algorithm, initial obstructed distance

distOinit(p, q) is computed. But distOinit(p, q) might not be real obstructed distance, as other obstacles
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lying outside of the current circular area might intersects, which may affects the actual obstructed

distance.

Thus the algorithm again executes a circular range query, where the center of the circle is p and the

radius is distOinit(p, q). The new set of retrieved obstacles are o2, o3 and o4. Thus we update the

visibility graph by adding these new three obstacles and recompute the actual obstructed distance,

distOnew(p, q). The algorithm repeats the circular range query iteratively until no new obstacle is

added in the visibility graph which affect the obstructed distance between p and q.

Second algorithm proposed by Xia [35] introduced the idea of retrieving obstacles incrementally which

filters out a large number of obstacles. Thus the size of visibility graph is kept small. Initially the

visibility graph contains the two points p and q and the obstacle which intersects the straight line

distance distE(p, q) between the two points. Then the algorithm computes the obstructed distance

distO(p, q) and check whether any obstacle which is not included in the current visibility graph, inter-

sects the distance, distO(p, q). If any obstacle intersects then, it is included in the visibility graph and

the obstructed distance is recomputed again. The algorithm stops checking when no more obstacle

further intersects the obstructed shortest path.

Gao proposed an Algorithm [10] which introduces the idea of reusing the already computed ob-

structed distance between the points and other obstacle vertices. They expands the visibility graph

incrementally and maintains a threshold. They proved that, if the obstructed distance distO(p, q)

between a data point p and a query point q is computed by considering all the obstacles in the region

bounded by a threshold from the query point q, and distO(p, q) ≤ threshold and then distO(p, q) is

the real obstructed distance between the data point p and the query point q.

These obstructed distance calculation strategies do not describe how to compute obstructed distance

from a single data point to multiple query points. By applying the already existing algorithms

recursively between the data point and each of the query points q ∈ Q incurs high query processing

overhead. In the next section, we discuss the aggregate obstructed distance computation strategies.
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3.3 Minimum and Maximum Total Obstructed Distance

Computation

In this section, we propose algorithms for computing minimum and maximum total obstructed distance

from a square to query points. In the Euclidean space there is algorithm for computing minimum

and maximum distance from a point to rectangle. However, when obstacles are present, then the

maximum and minimum euclidian distance might not be the real minimum and maximum obstructed

distance. In the obstructed space no algorithm has been yet developed for computing minimum

obstructed distance from a point to a square. In [11] Gao developed algorithm for computing

maximum obstructed distance from a point to a query line segment. We have applied their idea

to compute maximum total obstructed distance from query points to a square. Now our proposed

algorithms are discussed in the following subsections.

Table 3.1 summarizes the notations used in the rest of this chapter.

Table 3.1: Notations and their meanings

Symbol Meaning

q A user’s location (a query point)

Q A set of query points {q1, q2, . . . , qn}

O A set of obstacles {o1, o2, . . . , on}

R The square quadrant

Rcenter center point of the square quadrant

ip intersection point lies on the boundary line of the square

RTO an obstacle R-tree

LV G a local visibility graph

distMinO(q,R) minimum obstructed distance from query point to a Square

distMinE(q,R) minimum Euclidean distance from query point to a Square

distMaxO(q,R) maximum obstructed distance from query point to a Square

SP (v,R) Euclidean shortest path from obstacle vertex v to R

distO(q, v) obstructed distance between q and v

MinDistTO(Q,R) minimum total obstructed distance between Q and R

MaxDistTO(Q,R) maximum total obstructed distance between Q and R
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3.3.1 Minimum Obstructed Distance Computation from a Point to

a Square

Computing minimum obstructed distance from a point to a square is an exhaustive search, as there

are infinite number of points exist on the four boundary lines of the square. The key idea of the

algorithm is to prune the points those cannot provide minimum obstructed distance. Algorithm 1

shows the steps of computing minimum obstructed distance from a query point to a square quadrant.

Algorithm 1: CompMinObsDist(q,R, LV G)

Input: A query point q, a quadrant R, a local visibility graph LV G
Output: The minimum obstructed distance distMinO(q,R) of q from R

1 distMinO ← ∞
2 foreach v ∈ LV G do
3 distO(q, v) ← computeObsDistance(q,v)

4 while there exists a node in LV G that has not been visited do
5 let v ∈ LV G be the one with the smallest obstructed distance from q
6 among those nodes not yet visited
7 if distO(q, v) > distMinO(q,R) then
8 break

9 distMinE(v,R) ← computeMinimumEuclideanDistance(v,R)
10 if no obstacle intersects SP (v,R) then
11 newDistMinO(q,R) ← distO(q, v) + distMinE(v,R)
12 if newDistMinO(q,R) < distMinO(q,R) then
13 distMinO(q,R) ← newDistMinO(q,R)

14 return distMinO(q,R)

Algorithm 1 at first calls Dijkstras algorithm for computing obstructed distance from a query point q

to all the obstacle vertices in LV G (Line 2-3). In every iteration, the algorithm consider the vertices

in ascending order of obstructed distances from q (Line 5-6). The algorithm terminates whenever any

of the obstacle vertex’s obstructed distance, distO(q, v) is greater than already computed minimum

obstructed distance, distMinO(q,R) (Line 7-8). Otherwise the minimum Euclidean distance between

a quadrant and obstacle vertex, distMinE(v,R) is calculated (Line-9). Then the algorithm checks

whether any obstacle from LV G intersects this Euclidean shortest path from q to R, SP(q,R) (Line-10).

If any obstacle intersects the shortest path, then the algorithm goes to next iteration and consider the

next obstacle vertex. Otherwise, the new minimum obstructed distance newDistMinO(q,R) through

vertex v is computed (Line-11), which is the sum of distO(q, v) and distMinE(v,R). Now if this

new distance is less than the previous minimum obstructed distance, distMinO(q,R) an update is



CHAPTER 3. OBSTRUCTED DISTANCE COMPUTATION 30

performed (Line-12-13). Otherwise, the algorithm goes to next iteration without any update and

consider the next obstacle vertex. When all the obstacle vertices are visited, the algorithm terminates

and returns the minimum obstructed distance distMinO(q,R) between a query point and a quadrant

(Line 10).
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Figure 3.3: Minimum obstructed distance computation example

Consider the following example of Figure 3.3. We will compute minimum obstructed distance from

a query point q to a square quadrant R. The Figure shows the first three iterations of computa-

tion. Here the algorithm at first consider the nearest obstacle vertex m from q. But the shortest

path SP (m,R) is intersected by obstacles. Hence the algorithm consider next obstacle vertex w in

ascending order of obstructed distance from q. Since no obstacle intersects the shortest path from w

to R, the algorithm computes the minimum obstructed distance from q, newDistMinO(q,R) through

w which is the sum of distMinO(q, w) and distMinE(w,R). The next obstacle vertex is u, where

the new minimum obstructed distance, newDistMinO(q,R) through u is smaller than the previous

minimum obstructed distance, distMinO(q,R) through w. Hence update is performed. Now the

current updated minimum obstructed path from q to R is: q → m → u → t. The other vertices

i.e. z, v, n, o, y are considered respectively in ascending order of obstructed distance from q but no

update is performed. The algorithm stops comparing the remaining obstacle vertices i.e. r, p. Since
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the obstructed distance of y from q, distO(q, y) is greater than current minimum obstructed distance

distMinO(q,R), the remaining vertices (r, p) will never optimize the shortest path. Thus the real

minimum obstructed distance is the sum of distO(q, u) and distMinE(u,R) and the shortest path is

: q → m→ u→ t.

The following lemma illustrates the correctness of the algorithm:

Lemma 3.3.1. Algorithm CompMinObsDist returns the minimum obstructed distance from a query

point q ∈ Q to a quadrant R.

Proof (By contradiction). Let v′ be a one of the obstacle vertex in LV G witch minimizes the mini-

mum obstructed distance from a query point, q to a quadrant, R. The vertex v′ may not be considered

in the shortest path of minimum obstructed distance for two reasons: (i) The vertex v′ has not been

considered as the Euclidean distance from v′ to R intersects the obstacles. (ii) the algorithm has been

terminated before considering the vertex v′.

The algorithm consider the obstacle vertices in ascending order of obstructed distance distO(q, v) from

q. The minimum obstructed distance from a q to a quadrant R is distMinO(q,R) = distO(q, v) +

distMinE(v,R). Hence, the algorithm computes distMinE(v,R) and checks whether any obstacle

intersects the SP (v,R). However, if any obstacle intersects the shortest path SP (v,R) then the real

obstructed distance from v to R go through others vertices i.e. v1, v2, vm, which are the corner vertices

of obstacles not considered yet. Thus the algorithm goes to the next iteration and consider another

vertex. Hence, v′ is only ignored, if any obstacle intersects the straight line distance distMinE(v′, R)

between v′ and R.

Further, the algorithm terminates only when any vertex, v is found, whose obstructed distance

distO(q, v) is greater than the current value of minimum obstructed distance distMinO(q,R). Since

the vertices from the sorted list are considered in ascending order of distO(q, v) in the algorithm, the

remaining vertices would never optimize the shortest path. Thus if v′ is not considered in the compu-

tation of shortest path of minimum obstructed distance, then according to our algorithm either the

minimum Euclidean distance from v′ to R is intersected by any obstacle or v′ has obstructed distance

which is larger than the current value of minimum obstructed distance distMinO(q,R), which again

contradicts the assumption. Therefore, our assumption is invalid and the proof completes.
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3.3.2 Minimum Total Obstructed Distance Computation from Mul-

tiple Points to a Square

Now we can apply our developed Algorithm 1 for computing minimum obstructed distance form each

of the query points to a square and finally summing up the individual minimum obstructed distances

we get the minimum total obstructed distance from all query points to a square. However, this algo-

rithm would incur extremely high processing overhead, as same obstacle is retrieved multiple times

from the database to compute multiple individual obstructed distances and finding the obstructed

distance between two locations is an expensive computation. Thus, we develop Algorithm 2 for com-

puting the minimum total obstructed distance from multiple query points Q to a square R. The key

idea of this algorithm is, when computing minimum total obstructed distance between a square R and

a set of query points Q, we retrieve obstacles having distances equal to a threshold with respect to

the center point of the square R. This technique reduces the number of obstacles retrieved from the

database, and does not retrieve the same obstacle multiple times from the database. The algorithm

also checks the intersection of the retrieved obstacles with the latest shortest path. Thus prunes a

huge number of obstacles and keeps the visibility graph small. A small visibility graph makes the

obstructed distance computations faster.

Algorithm 2 shows the steps of computing minimum total obstructed distance, MinDistTO(Q,R)

from a quadrant, R to all query points, Q. The algorithm at first computes individual Euclidean

distances between the quadrant R and each of the query points q ∈ Q and assigns them as the initial

minimum obstructed distances between R and q ∈ Q, respectively (Lines 1-2). Then individual Eu-

clidean distance is computed from the center of the quadrant Rcenter to intersection point ip which

lies on the boundary line of the square quadrant R. The algorithm finds the distance computed in

this step as dmax (Line 4). Then it incrementally retrieves all obstacles (except the obstacles inside

the quadrant) that are within the distance dmax, centering the quadrant Rcenter by using a function

IOR(Rcenter, RTO, dmax) (Line 5). The intuition behind retrieving obstacles centering the quadrant

is, it is expected that the obstacles that really effects the minimum obstructed distances between q ∈

Q and R is located near R. An obstacle which is far away from R cannot actually affect the minimum

obstructed distance between the query point q ∈ Q and the quadrant R.
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Algorithm 2: CompMinTotalObsDist(Q,R,RTO, LV G)

Input: A set of query points Q = {q1, q2, . . . , qn}, a quadrant R, an obstacle R-tree RTO, a local
visibility graph LV G

Output: The minimum total obstructed distance MinDistTO(Q,R) of Q from R
1 foreach q ∈ Q do
2 distMinO(qi, R) = distMinE(qi, R)

3 repeat
4 dmax ← maxn

i=1 (distMinO(qi, R) + distE(ip, Rcenter))
5 O ← IOR (R,RTO, dmax)
6 foreach o ∈ O do
7 foreach q ∈ Q do
8 if o intersects SPq,R then
9 Add q in LQ

10 Add o in LV G

11 foreach q ∈ LQ do
12 distMinO(q,R)=compMinObsDist(q,R, LV G)

13 until LQ = ∅
14 MinDistTO(Q,R)←

∑n
i=1 distMinO(qi, R)

15 return MinDistTO

However, after retrieving the obstacles, the algorithm filters out those obstacles which do not inter-

sects any of the already computed minimum obstructed distance between the quadrant R and the

query points Q. It also stores query points in a set LQ, whose minimum obstructed distances need

to be recomputed. We denote the minimum obstructed distance between a quadrant R and a query

point q as distMinO(q,R) (Lines 6-10). The recomputation of the minimum obstructed distance,

distMinO(q,R) between a quadrant R and a query point q is required only when the minimum

obstructed distance between R and q intersects any obstacles retrieved by the incremental obstacle

retrieval.

After filtering out unnecessary obstacles the algorithm updates the visibility graph with the new ob-

stacles and re computes the minimum obstructed distance between R and all the query points q ∈ LQ

using the the function compMinObsDist(q,R, LV G) (Lines 7-12). The procedure repeats until the

minimum obstructed distance intersects no new obstacles or LQ is empty (Lines 11-13).

Finally, the algorithm calculates the minimum total obstructed distances, MinDistTO(Q,R) by com-

puting the summation of distMinO(q,R) of each query point q ∈ Q (Lines 14-15) and returns the
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minimum total obstructed distance MinDistTO(Q,R).

(a) First Iteration (b) Second Iteration

This one is right Now

Figure 3.4: Minimum total obstructed distance computation

Consider the following Figure as an example. There are three query points q1, q2 and q3 and the quad-

rant R. Figure 3.4(a) shows the first iteration of Algorithm 2. In the first iteration, three Euclidean

straight line from each query point to the quadrant is drawn which intersects at three points ip1, ip2

and ip3 respectively (shown in the solid line) and these distances are defined as distMinO(q1, R) =

distE(q1, ip1), distMinO(q2, R) = distE(q2, ip2) and distMinO(q3, R) = distE(q3, ip3). Then individ-

ual Euclidean distance is computed from the center of the quadrant Rcenter to the intersection points

ip1, ip2 and ip3 respectively, which lies on the boundary line of the square quadrant R (shown in the

dotted line). The algorithm finds the distance dmax (Line 4) as distMinO(q1, R) + distE(ip1, Rcenter).

Then it incrementally retrieves all obstacles (except the obstacles inside the quadrant) that are within

the distance dmax, centering the quadrant Rcenter by using a function IOR(Rcenter, RTO, dmax) (Line

5). The incremental obstacle retrieval algorithm retrieves obstacle o1,o2,o3,o4 and o5. The Euclidean

shortest path between the query point q1 and the quadrant R, intersects obstacle o1, and the Eu-

clidean shortest path between the query point q2 and the quadrant R, intersects obstacle o6. Thus

q1 and q2 are inserted in LQ and obstacles o1 and o6 are added to LV G. The minimum obstructed
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distance from q1 to R and from q2 to R is updated.

Figure 3.4(b) shows the second iteration of Algorithm 2, where more obstacles (o7, o8, o9, o10) are

retrieved by the incremental obstacle retrieval and checked for intersection with the query points Q.

Since, the new shortest paths do not intersect any of the obstacles, so the algorithm terminates after

computing the minimum total obstructed distance.

3.3.2.1 Correctness of Algorithm CompMinTotalObsDist

The following lemma shows the correctness of the algorithm.

Lemma 3.3.2. Algorithm CompMinTotalObsDist finds the minimum total obstructed distance from

a quadrant R to a set of query points Q = (q1, q2,. . . qn).

Proof (By contradiction). Let, there be an obstacle o, which is not retrieved CompMinTotalObsDist

(Algorithm 2) and o changes the minimum total obstructed distance distMinTO(R,Q) computed by

algorithm CompMinTotalObsDist. Algorithm CompMinTotalObsDist incrementally retrieves ob-

stacles that block current minimum obstructed distance from R to all the query points in Q. If

there are no new obstacles are retrieved that blocks the current minimum obstructed distance from

R to all the query points in Q, the algorithm computes the minimum total obstructed distance

distMinTO(R,Q) between R and Q.

In [35], Xia proves that, if an obstacle does not intersect the current shortest path between two points

in the visibility graph, then that obstacle cannot change the already computed obstructed distance

between those points.

Since o is not retrieved by Algorithm CompMinTotalObsDist so it does not intersect any of the short-

est path from R to the query points in Q. Here shortest path for each query point, is the minimum

obstructed distance between two points (q and any point lies on the boundary of quadrant R). Thus,

the obstacle o cannot change any of the minimum obstructed distances between R and a set of query

points Q. Since, minimum total obstructed distance distMinTO(Q,R) is computed by summing

up all the individual minimum obstructed distances distMinO(q,R), o cannot change total mini-

mum obstructed distance distMinTO(Q,R) too, which contradicts our assumption. Thus algorithm
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CompMinTotalObsDist computes the actual minimum total obstructed distance distMinTO(Q,R)

between a quadrant R and a set of query points Q and the proof completes.

�

3.3.2.2 Time Complexity of Algorithm CompMinTotalObsDist

Let, |Q| is the number of query points, |V | is the number of nodes in the visibility graph, |E| is the

number of edges in the visibility graph, |Ob| is the number of obstacles retrieved from the R-tree.

The for loop in lines 2-3, takes O(|E| + |V |log|V |) times to compute obstructed distance [34] from

the query point to all the nodes in LV G. After then all the nodes are sorted in ascending order of

obstructed distance from the query point which takes O(|V |log|V |) time. The algorithm in lines 7-8,

takes constant time to check whether the distO(q, v) is less than distMinO(q,R). Computation of min-

imum Euclidean distance takes constant time (In line 9). In order to check whether any obstacle (from

the |Ob| obstacles) intersects the Euclidean shortest path from v to R takes O(|Ob|) time (Line-10).

The remaining operations (line 11-13) take constant amount of time. In the worst case, the body of

the while loop takes O(|V |) times since there are |V | number of nodes (assumed) in the visibility graph.

Thus the worst case time complexity of the CompMinObsDist algorithm is:

O(|E|+ |V |log|V |+ |V |log|V |+ |V |2) = O(|E|+ 2|V |log|V |+ |V |2)

In CompMinTotalObsDist algorithm, the foreach loop in lines 1-2 takes |Q| times to compute

minimum Euclidean distance from each query point to quadrant R. Inside the repeat loop, dmax is

computed in constant time. In line-5, the incremental obstacle retrieval IOR from the R-tree, RTO

takes O(|V |2 × log|V |) [34] time. The cost of checking whether the obstacle o intersects the SPq,R

takes constant time. If intersected, then corresponding q is added to LQ in constant time and the cost

of adding obstacle in LV G takes |V |log|V | time [34] . Hence the two nested loop in lines 6-10 takes

O(|Ob|×|Q|×(|V |log|V |)) time. The for loop in lines 11-12 takes O(|Q|) × O(|E|+2|V |log|V |+ |V |2)

time for minimum obstructed distance computation from all the query points in the worst case.

Consequently, the worst case time complexity of the CompMinTotalObsDist algorithm is: O(|Ob| ×

((|V |2 × log|V |) + (|Ob| × |Q| × (|V |log|V |)) + |Q| × (|E|+ 2|V |log|V |+ |V |2)))
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≈ O(|Ob|2 × |Q| × |V | × log|V |)

3.3.3 Maximum Total Obstructed Distance Computation

Algorithm 3, CompMaxTotalObsDist finds the maximum total obstructed distance from a square

quadrant R to a set of query points Q = (q1, q2,. . . qn). A quadrant (R) is a square, hence there

are 4 boundary lines/sides. In [11], Gao et al. gave algorithm for finding the maximum obstructed

distance from a point to a line segment. Here in this Algorithm 3, in every iteration, the function

IOR proposed in [11], incrementally retrieves the obstacles those affect the computation of maximum

obstructed distance from a query point to a line (Line-3). After then for each side of the quadrant,

maximum obstructed distance distMaxO(q, linek) from a query point to a side or line is computed us-

ing the function compMaxObsDist which calls the control point list computation (CPLC) algorithm

proposed in [11] (Line-4). Then the largest of these 4 distances is taken as the maximum obstructed

distance distMaxO(R, q) from a query point to a quadrant (Line-5). After summing up the individual

maximum obstructed distances of each query point, we get the maximum total obstructed distance

distMaxTO(R,Q) from a quadrant to all the query points, Q (Line-6).

Algorithm 3: CompMaxTotalObsDist(Q,R,RTO, LV G)

Input: A set of query points Q = {q1, q2, . . . , qn}, a quadrant R, an obstacle R-tree RTO, a local
visibility graph LV G

Output: The maximum total obstructed distance MaxDistTO(Q,R) of Q from R
1 foreach q ∈ Q do
2 foreach linek ∈ R do
3 LV G ← IOR(q, RTO, linek)
4 distMaxO(q, linek) = compMaxObsDist(q, linek, LV G)

5 distMaxO(R, q) = max4
k=1distMaxO(q, linek)

6 MaxDistTO(Q,R)←
∑n

i=1 distMaxO(R, qi)
7 return MaxDistTO

Figure 3.5 shows an example of calculating maximum total obstructed distance computation from a

set of query points Q to a square quadrant ABDC. Figure 3.5(a), 3.5(b), 3.5(c) and 3.5(d) show

the computational steps of maximum obstructed distance from q to a line segments AB,AC, CD and

BD respectively.
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Figure 3.5: Computation of maximum obstructed distance from a query point to 4 Lines
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distMAXO(q, ABDC)  = MAX (distMAXO(q, AB) , distMAXO(q, AC) , distMAXO(q, CD), distMAXO(q, BD))

= MAX ({qusp1 OR qvsp1}, qvC,  {qvwsp4 OR qvxsp4}, qvxD)

distMAXO(q, ABDC)  = qvwsp4 OR qvxsp4

Figure 3.6: Computation of maximum obstructed distance from a quadrant to a query point

The incremental obstacle retrieval algorithm, IOR at first incrementally retrieves the obstacles within

the shaded area of SRq,AB which is shown in the first Figure of 3.7(a). Since it is proved [11], that

any obstacle outside the range of SRq,AB could not affect the obstructed distances from q to all the

points lying in the straight line AB. Now we have to find out the point on AB which is the farthest

point from q considering obstacles. A naive algorithm is to compute obstructed distance of all the

points along AB from q and take their MAX. However, there are infinite number of points exist along

the line segment AB. So the naive algorithm is not feasible.

In the paper [11], the authors primary focus is on developing algorithms for finding continuous ob-

structed nearest neighbor CONN query that returns nearest neighbors (among the data points or

objects lying in the obstructed space) of all the points in a given query line (the trajectory segment

through which a client is moving ) in a two-dimensional (2D) space. A naive algorithm is to perform

ONN retrieval [34] at every single point of a specified query line segment. However, it is not feasible

since there exist unlimited number of points along the line segment. They showed that nearby points

along the line segment normally share the same ONN. They decompose the given line segment into

a number of smaller segments/intervals with each having its own ONN. Thus, it is only necessary to

issue ONN search at those points where ONN objects change. Hence, the concept of split point is

introduced in [56]. The split point can be defined as:

Definition 3.3.1. Let the two end points of the line segment, l are start and end. O represents the
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obstacle set and p1 and p2 are the data points. Then the line can be split into two smaller segments,

[start, sp] and [sp, end], where p1 is the ONN to all the points along [start, sp] and p2 be the ONN for

all the points along [sp, end], point sp is a split point where the ONN corresponding to l changes.

In order to facilitate the formation of split points the authors introduce a novel concept, namely

control point which can be defined as:

Definition 3.3.2. Given p: a data point, O:an obstacle set, and an interval R over the given line

segment, a point cp is the control point of p over R, iff (i) the shortest path from p to any point on R

passes through cp; and (ii) cp is visible to every point on R.

Consider the following example of second Figure 3.5(a). Here the line segment AB is decomposed into

four intervals, [A,E], [E, sp1], [sp1, F ] and [F,B]. The split points are E, sp1 and F and u and v are

the control points are over the interval [E, sp1] and [sp1, F ] respectively. Point u is the control point

for the query point q over the line segment [E, sp1], meaning that for any point, p which lies on the

line segment [E, sp1], the shortest path from q to p must pass u, and the obstructed distance between

q and p is the length of the shortest obstacle-free path, |SP (q, p)| which is the sum of |SP (q, u)| and

Euclidean distance, distE(u, p).

In [11], the authors utilized a quadratic function to compute the split points, and exploit quadratic

characteristics to quickly determine the intervals (bounded by the split points). Moreover, several

pruning strategies and optimizations are proposed to further improve the search performance. The

Control Point List Computation (CPLC) Algorithm in [11] computes obstructed distance from q to

all the split points and end points of the intervals. Taking the maximum distance of these distances

give the maximum obstructed distance from q to AB.

Hence the maximum obstructed distance is computed using the following formula [11]:

Let the control point list of q over the line segment AB, i.e., CPLq,AB = {cpi, Ri} with i ∈ [1,m], let

distMaxO = MAXi∈[1,m] (|SP (q, cpi)| + distE(cpi, Ri.l), |SP (q, cpi)| + distE(cpi, Ri.r)), where m is

number of line segments/intervals of AB, cpi is the control point over interval Ri = [Ri.l, Ri.r].

In our Algorithm 3 , we repeatedly called the function compMaxObsDist which in turn calls the

CPLC algorithm [11] for computing maximum obstructed distance from q to all the four side lines

of the square quadrant. Then the maximum obstructed distance from q to ABDC square quadrant
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is computed as, max4
i=1 distO(q, linei). After summing up the maximum distances for every query

point, we get the total maximum obstructed distance,
∑n

i=1 distMaxO(qi, ABDC).

3.3.3.1 Time Complexity of Algorithm CompMaxTotalObsDist

Let,|Q| is the number of query points, |V | is the number of nodes in the visibility graph, |TO| is

the number of obstacles in the R-tree RTO and |T | is the maximal number of tuples/intervals in the

control point list computation.

CompMaxTotalObsDist algorithm takes O(log|TO|×|V |× log|V |) for IOR [11], takes O(|V |× log|V |×

|T |2) for maximum obstructed distance computation [11]. In every square quadrant, R there are 4

boundary lines. Consequently, the worst case time complexity of the CompMaxTotalObsDist algo-

rithm is:

O(|Q| × 4× ((log|TO| × |V | × log|V |) + (|V | × log|V | × |T |2)))

Since,|T | << |TO|, thus the complexity:

≈ O(4|Q| × log|TO| × |V | × log|V |)



Chapter 4

Our Algorithms

Two heuristic algorithms are developed for processing OOMP (Obstructed Optimal Meeting Point)

queries. We call our first heuristic algorithm as the hierarchical algorithm because it refines the search

space in a recursive manner. On the other hand, we call our second heuristic algorithm as the grid

algorithm as it divides the refined search space into a grid. The key difference between the two algo-

rithms are: the hierarchical algorithm hierarchically refines the search space by exploiting geometric

properties until obstructed optimal meeting point is identified. It gives an approximate meeting point

of pedestrians with accuracy guarantee. Here query processing overhead increases with the increase

of group size and obstacles. On the other hand, the grid algorithm converts the initial search space

into a number of binary grid cells, which are candidates for optimal meeting points. Here expensive

obstructed distance computation is avoided, thus accuracy is sacrificed more compared to hierarchical

algorithm but incurs less query processing overhead. In Sections 4.1 and 4.2, we discuss the proposed

algorithms which finds OOMP that minimizes the total obstructed distance of all the query points.

Table 4.1 summarizes the notations used in the rest of this chapter.

4.1 Hierarchical Algorithm

The key idea of our hierarchical algorithm is to search the obstructed space for an OOMP in a hi-

erarchical manner. The search starts by considering the total space. In every iteration of the search,

the search space is divided into four quadrants and the quadrant that has the highest probability to

include the OOMP is considered in the next iteration. The quadrants that cannot have the OOMP

42



CHAPTER 4. OUR ALGORITHMS 43

Table 4.1: Notations and their meanings

Symbol Meaning

qi A user’s location (a query point)

Q A set of query points {q1, q2, . . . , qn}

O A set of obstacles {o1, o2, . . . , on}

Rj The jth square quadrant, where j ∈ 1,2,3,4

Rsq Squared bounded region

R Dequeued squared quadrant from listQ which has the smallest minimum
total obstructed distance among the quadrants already enqueued

listQ List of quadrants sorted in ascending order of minimum total obstructed
distance from all query points

MinDist The smallest maximum total obstructed distance among all the quad-
rants visited so far

DistTO(Q,Rjcenter) Total obstructed distance between quadrant center point, Rjcenter and
all the query points, Q

distMinTO(Q,Rj) Minimum total obstructed distance between quadrant Rj and Q

distMaxTO(Q,Rj) Maximum total obstructed distance between quadrant Rj and Q

v A vertex of Rsq (a square grid cell)

sl Side Length/Square Unit of a grid cell

dist(v, qi) The shortest distance between v and qi

distsum(v,Q) The total shortest distance between v and Q

distoomp obstructed optimal meeting point distance
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are gradually pruned by exploiting geometric properties.

The algorithm stops splitting the quadrants when the selected quadrant satisfies the user defined

threshold. Then the center point, Rcenter is enqueued as the representative point of the quadrant

with the total obstructed distance from Rcenter to query points. Here a threshold is considered as

the side length/square unit of the quadrant. The search terminates when a point is dequeued from

the priority queue and it is returned as an OOMP with particular accuracy level or approximation

ratio. The approximation ratio is defined as the ratio of total obstructed distance from Rcenter to Q

and the minimum total obstructed distance, distMinTO from the quadrant (which at first satisfies

the threshold) to query points. For example, if the approximation ratio is 1.02, then it is guaranteed

that the optimal total obstructed distance for a group lies within 100 to 102. Thus the reported meet-

ing point has maximum 2% error. When the approximation ratio is 1, then the algorithm returns

the optimal answer. The more smaller is the threshold , the more accurate the meeting point would be.

Algorithm 4 shows the pseudocode of the hierarchical algorithm for finding optimal meeting point

which minimizes the total obstructed distance of the pedestrians. The inputs of the algorithm are

the location of n pedestrians, Q = {q1, q2, . . . , qn} and an obstacle R-tree, RTO and a threshold sl.

The algorithm returns the obstructed optimal meeting point oomp with approximation ratio as output.

The algorithm works in two steps. The first step is to bound the initial search space. Algorithm 5

shows the steps of bounding region. As in OOMP query, no point of interest is given, so the search

space is infinite. In [18] Sultana proves that, the obstructed group nearest neighbor for a set of query

points Q lies within the radius r centered at the median of Q, cQ, where, r is the average of total

obstructed distance, avg distTO(cQ, Q) for the Euclidean nearest neighbor of centroid cQ. Any point

outside the distance r from cQ gives higher total obstructed distance than all the point inside r.

Since any point outside the circle with radius avg distTO(cQ, Q), has higher total obstructed distance,

we consider only the points inside this circle as candidates for optimal meeting points. But in our

problem of OOMP query, no point of interest (POI) is given. We can choose any point in the ob-

structed space. But we select Euclidean geometric centroid cQ as first candidate for OOMP, because

centroid has the probability of smallest total obstructed distance from Q than any other arbitrary
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Algorithm 4: Hierarchical Algorithm(Q,RTO)

Input: A set of query points Q = {q1, q2, . . . , qn}, an obstacle R-tree RTO

1 and threshold sl
Output: oomp, an optimal meeting point of Q

2 Rsq ← FindBoundedRegion(Q,RTO)
3 MinDist ← ∞
4 distMinTO(Q,Rsq) ← CompMinTotalObsDist(Q,Rsq)
5 distMaxTO(Q,Rsq) ← CompMaxTotalObsDist(Q,Rsq)
6 Enqueue(listQ, Rsq, distMinTO(Q,Rsq), distMaxTO(Q,Rsq))
7 isF irstQuadrant ← true
8 do
9 { R, distMinTO(Q,R), distMaxTO(Q,R) } ← Dequeue(listQ)

10 if R is a point then
11 oomp ← R
12 approximation ratio ← distTO(Q, oomp)/lowerBound
13 return oomp

14 else if side length of R < sl then
15 if isF irstQuadrant then
16 lowerBound ← distMinTO(Q,R)
17 isF irstQuadrant ← false

18 end
19 distTO(Q,Rcenter) ← CompAggObsDist(Q,Rcenter)
20 if distTO(Q,Rcenter) ≤ MinDist then
21 Enqueue(listQ, R, distTO(Q,Rcenter), distTO(Q,Rcenter))
22 MinDist ← distTO(Q,Rcenter)

23 end

24 else
25 Divide R into four quadrants
26 for each quadrant Rj ∈ R do
27 distMinTO(Q,Rj) ← CompMinTotalObsDist(Q,Rj)
28 distMaxTO(Q,Rj) ← CompMaxTotalObsDist(Q,Rj)
29 if distMinTO(Q,Rj) ≤ MinDist then
30 Enqueue(listQ, Rj , distMinTO(Q,Rj), distMaxTO(Q,Rj))
31 if distMaxTO(Q,Rj) < MinDist then
32 MinDist ← distMaxTO(Q,Rj)
33 end

34 end

35 end

36 end

37 while ( listQ 6= ∅ )
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Algorithm 5: FindBoundedRegion(Q,RTO)

Input: A set of query points Q = {q1, q2, . . . , qn}, an obstacle R-tree RTO and a local visibility graph
LV G

Output: A bounded region, mbsq enclosing all candidate points for optimal meeting points of Q
1 Initialize(LV G, cQ)
2 distTO(cQ, Q) ← CompAggObsDist(Q, cQ, RTO, LV G)
3 avg distTO ← distTO(cQ, Q)/|Q|
4 xmin = cQ − avg distTO, ymin = cQ − avg distTO

5 xmax = cQ + avg distTO, ymax = cQ + avg distTO

6 Rsq ← boundSquareRegion(xmin, ymin, xmax, ymax)
7 return Rsq

points. So, we calculate average of total obstructed distance avg distTO(cQ, Q) between centroid and

query points and bound the infinite search space using the function FindBoundedRegion(Q,RTO) to

a circular area, whose center is the Euclidean geometric centroid of the location of the pedestrians and

the radius of the circle is the average obstructed distance between center and location of pedestrians.

Any location outside the circle can not be an obstructed optimal meeting point.

Thus, we will enclose the infinite search space that is the circular area with a minimum bound-

ing square, Rsq (Line 2). Then the algorithm refines the initial search space recursively until the

OOMP s is identified. Initially, the algorithm computes the minimum total obstructed distance

(distMinTO(Q,Rsq)) and maximum total obstructed distance(distMaxTO(Q,Rsq)) of the bounded

square region Rsq from the query points. Algorithm-1,2,3 shows the steps of computing maximum and

minimum total obstructed distance between a quadrant and query points. Then Rsq with distMinTO

and distMaxTO is inserted into a priority queue listQ. The elements of listQ are ordered in order of

distMinTO.

The two reasons behind computing these two distances are:

• To identify which quadrant we should consider first for searching OOMP

• And also to prune the quadrants where it is guaranteed that optimal meeting point never lies.

In each iteration of the search, the algorithm dequeues quadrant R from listQ that has the smallest

distMinTO among all the quadrants enqueued (Line 9). If the side length, sl of a quadrant R is

less than or equal to the value of user defined threshold, then the distMinTO of the quadrant is

saved as lowerBound of optimal meeting distance with respect to the threshold (Line 14-16) and
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the center point of the quadrant Rcenter is enqueued in the listQ after computing total obstructed

distance (Line 19-20). Whenever any point is dequeued from listQ, then it is returned as oomp with

approximation ratio, which is defined as the ratio of distTO and distMinTO (Line 10-13). Otherwise,

R is divided into four quadrants (Rj), 1 ≤ j ≤ 4 (Line 25). We use MinDist to prune the quad-

rant that cannot contain the oomp. Here, MinDist represents the smallest among maximum total

obstructed distance of the quadrants enqueued so far. MinDist is initialized to ∞. After then, for

each quadrant distMinTO(Q,Rj) and distMaxTO(Q,Rj) is computed (Line 27-28). In line 29-32,

if distMinTO(Q,Rj) is less than MinDist then the quadrant is enqueued in listQ otherwise Rj is

pruned and also if distMaxTO(Q,Rj) is less than MinDist, then MinDist is updated with the value

of distMaxTO(Q,Rj).

The following lemma illustrates the pruning condition:

Lemma 4.1.1. A quadrant Rj can be pruned if distMinTO(Q,Rj) > MinDist.

Proof (By contradiction). Let us consider the quadrant Rj can not be pruned if distMinTO(Q,Rj)

> MinDist, since the quadrant contains actual optimal meeting oomp′. We know the total obstructed

distance of any point which lies inside any quadrant R, is in between the minimum (distMinTO(Q,R))

and maximum (distMaxTO(Q,R)) total obstructed distance of the quadrant from Q. Let oomp be

the reported obstructed optimal meeting point. Thus distTO(oomp,Q) > distTO(oomp′, Q). However,

MinDist represents the smallest among the maximum total obstructed distance of the quadrants al-

ready enqueued or the total obstructed distance of the center point of the quadrants already dequeued.

Thus MinDist gives an upper bound of the optimal meeting point and distMinTO(Q,R) gives the

lower bound of the optimal meeting point. The value of optimal meeting point must satisfies the

following condition, distMinTO(Q,R) ≤ distTO(oomp′, Q) ≤ MinDist.

It is already given that a quadrant is only pruned, when distMinTO(Q,Rj) > MinDist. The

point p lies within the quadrant Rj , thus distTO(p,Q) ≥ distMinTO(Q,Rj) and distTO(oomp′, Q) ≤

MinDist. Thus the assumption, distTO(oomp′, Q) < distTO(oomp,Q) is contradictory. Therefore,

our assumption is not valid. A quadrant Rj can be pruned if distMinTO(Q,Rj) > MinDist. Since

no obstructed optimal meeting point could lie within the quadrant Rj . The proof completes.

�
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Thus if any quadrant does not satisfy the pruning condition, then the quadrant is enqueued into listQ

with distMinTO(Q,Rj), distMaxTO(Q,Rj) (Line 20-23) and then check for update of MinDist to

keep track the smallest maximum total obstructed distance of the quadrant already enqueued. Recur-

sively the algorithm continue the process until the locations of oomp is found (Line 10) or the queue

listQ is empty (Line 37).

(a) Initial Bounded Search Space (b) Recursively refining the initial search space
Figure 4.1: Initial bounded search space, Rsq of hierarchical algorithm

For example, consider the following Figure:4.1 and Figure:4.2. Let us consider a scenario, where

q1, q2, q3 represents the location of 3 pedestrians and rectangles represent obstacles. Figure:4.1 shows

the initial bounded search space, a circular area CA whose center c is the Euclidean geometric centroid

of the location of the pedestrians. The radius of the circle is the average distance between center c

and location of pedestrians.

The Figure:4.2 shows the scenario of recursively refining the initial search space. Here, minimum

total obstructed distance of quadrant R4, is greater than current smallest maximum total obstructed

distance of already enqueued quadrants. So we prune quadrant R4 as OOMP will never lie here.

So OOMP will lie within quadrants R1, R2 and R3. Suppose we got the second quadrant R2 as its

minimum total obstructed distance is the smallest. Thus we divide R2 into 4 quadrants R5, R6, R7,

R8 and repeat the steps again as before. Now we will search the quadrants R1, R3, R5, R6, R7 and

R8 for OOMP . By applying the pruning technique R6, R7 are pruned and recursively continue the
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14

Figure 4.2: Recursively refining the initial search space of hierarchical algorithm

process until we do not find out the location of OOMP .

However, the computational time increases rapidly with increase of number of candidate quadrants.

Hence we approximate the quadrant (whose side length is less than threshold) with the center point

of that square quadrant and the representative point is enqueued for further explore if the total

obstructed distance from this representative point to all the query points is less than or equal to

MinDist, otherwise the point (representing the quadrant) is dropped. Here MinDist initially holds

the value of smallest maximum total obstructed distance among the squares already enqueued. Later

when we get the representative points from the center point of the square (satisfying threshold),

then MinDist holds the smallest total obstructed distance among the representative points already

enqueued.

The algorithm save the the minimum total obstructed distance, distMinTO(Q, sq) of the first selected

quadrant sq (whose side length is less than the value of user defined threshold sl) dequeued from listQ

as the lowerBound. Since the total distance of the optimal meeting point would not greater than the

value of lowerBound.
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The following lemma illustrates the lower bound condition:

Lemma 4.1.2. The minimum total obstructed distance (distMinTO(Q, sq)) of the first selected quad-

rant (satisfying the threshold), sq dequeued from priority queue, represents the value of lower bound

of the optimal total obstructed distance.

Proof (By contradiction). Let us consider, the value of optimal total obstructed distance is greater

than the value of the lower bound, which is the minimum total obstructed distance (distMinTO(Q, sq))

of the first selected quadrant (satisfying the threshold), sq dequeued from priority queue.

We know the total obstructed distance of any point which lies inside any quadrant R, is in between

the minimum (distMinTO(Q,R)) and maximum (distMaxTO(Q,R)) total obstructed distance of the

quadrant from Q. In every iteration of the algorithm, the square quadrant is repeatedly divided

into four sub-quadrants and each sub-quadrant is enqueued with distMinTO and distMaxTO, only if

distMinTO is less than or equal to the value of MinDist, where MinDist represents the smallest max-

imum total obstructed distance of the quadrants already enqueued. Thus the optimal meeting point

should lies within the quadrants in the queue, whose distMinTO is less than the value of MinDist

and the optimal meeting distance is in between the smallest distMinTO and MinDist. The optimal

total obstructed distance distTO(oomp,Q) of an optimal meeting point is never less than the value of

smallest distMinTO of the quadrants currently in the queue.

However, the quadrants in the priority queue are sorted in ascending order of distMinTO. Thus the

first quadrant picked from the queue (satisfying the threshold) has the smallest distMinTO among all

the quadrants in the listQ. Therefore, our assumption is not valid. The minimum total obstructed

distance (distMinTO(Q, sq)) of the first selected quadrant (satisfying the threshold), sq dequeued

from priority queue, represents the value of lower bound of the optimal total obstructed distance.

The proof completes.

�

Thus the minimum total obstructed distance, distMinTO(Q, sq) of the first selected quadrant sq de-

queued from listQ is considered as the lowerBound. Then we take the center point of the quadrant

as a representative point and enqueue the center point in the priority queue listQ, if the total ob-

structed distance from this center point to Q is less than the value of MinDist and also update the
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the value of Mindist. Also in the next subsequent iterations, we follow the conditions like before.

The algorithm terminates when any point has been dequeued from the listQ, where elements of listQ

are maintained in order of distMinTO. This point’s (oomp) distMinTO actually represents the total

obstructed distance, distTO(oomp,Q) which is less than all the quadrants and points in the queue.

Thus oomp is returned as approximate meeting point. In order to find out, how much accuracy is lost

we measure the approximation ratio.

Let Q be a set of query points, Q = {q1, q2, . . . , qn}, where 1 ≤ i ≤ n and sq is the selected quadrant

of side length equal to the user defined threshold sl which has the smallest minimum total obstructed

distance among all the candidate quadrants, then the point oomp returned by hierarchical algorithm is

the approximate meeting point with approximation ratio distTO(oomp,Q)/distMinTO(sq,Q), where

distTO(oomp,Q) represents total obstructed distance from oomp to Q and distMinTO(sq,Q) repre-

sents minimum total obstructed distance from the quadrant sq to Q.

The derivation of the approximation ratio in terms of problem size and threshold value is out of scope

of this research. However, the lower bound mentioned earlier in lemma-4.1.2 has been used to mea-

sure the accuracy lost or approximation ratio which is presented in details of the experimental section.

4.1.1 Time Complexity of Hierarchical Algorithm

Let, |Q| is the number of query points, |V | is the number of nodes in the visibility graph, |TO| is the

number of obstacles in the R-tree RTO, |Ob| is the number of obstacles retrieved from the R-tree.

The Hierarchical Algorithm takes O(|Ob|2 × |Q| × |V |log|V |) time for findBoundedRegion, takes

O(|V |2 × log|V |) for OR (Obstacle Range query)[34] and CompAggObsDist algorithm [18] takes

(|Q|×|Ob|2×|V |× log|V |) time. CompMinTotalObsDist and CompMaxTotalObsDist algorithms take

O(|Ob|2×|Q|×|V |×log|V |) and O(4|Q|×log|TO|×|V |×log|V |) time respectively. In the for loop of lines

26-35 iterates 4 times which costs 4× (O(|Ob|2×|Q|× |V |× log|V |)+O(4|Q|× log|TO|× |V |× log|V |))

for computing distMinTO and distMaxTO of the four square quadrants respectively and then enqueue

the values in the listQ which takes O(1) time.
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The Dequeue function extracts the quadrant with the smallest distMinTO among the elements al-

ready inserted into the priority queue, listQ. The cost of dequeue operation depends on the number

of quadrants are in the listQ. Initially the priority queue contains 4 quadrants. In every itera-

tion the selected quadrant is divided into four sub-quadrants. Let N be the of number of times

the outer do-while loop iterates. Therefore, the length of the priority queue listQ is at most 4 × i

in the ith iteration, where 1 ≤ i ≤ N . Thus the cost of the Dequeue operation is O(log(4 × i)).

The inner loop in line 26-35 iterates four times. In the worst case, the outer do-while loop takes

N × (log(4× i) + 4× (O(|Ob|2 × |Q| × |V | × log|V |) + O(4|Q| × log|TO| × |V | × log|V |))) time.

Consequently, the worst case time complexity of the hierarchical algorithm is:

O(|Ob|2 × |Q| × |V |log|V |) +4 × ((|Ob|2 × |Q| × |V | × log|V |) + (4|Q|2 × |Ob| × |V | × log|V |)) +

O(N × (log(4× i) + 4× (O(|Ob|2 × |Q| × |V | × log|V |) + O(4|Q| × log|TO| × |V | × log|V |))))

≈ O(|Ob|2 × |Q| × |V |log|V |) + O(N × (log(4 × i) + 4 × (O(|Ob|2 × |Q| × |V | × log|V |) + O(4|Q| ×

log|TO| × |V | × log|V |))))

≈ O(|Ob|2 × |Q| × |V |log|V |) + O(N × (|Ob|2 × |Q| × |V | × log|V |))

≈ O(N × (|Ob| × |Q| × |V |2 × log|V |)) [ Since, |Ob| = 4|V | ]

4.2 Grid Algorithm

The query processing overhead increases with the increase of the number of the group members, ob-

stacles and the search space. In practical applications, it is usual to sacrifice the accuracy slightly if

the OOMP query can be processed in real time. We bound the infinite search space using minimum

bounded square [16, 18]. Then in order to make our algorithm simple, we avoid complex obstructed

distance computation techniques [16, 18]. Rather, we convert the search space into a number of binary

grid cells, which are candidates of optimal meeting locations. The side length of the grid cell is sl.

The center point of the grid cell is representative point of the corresponding grid cell. The smaller is

the number of grid cells, the more accurate our proposed algorithm would be. We applied best first

search simultaneously from respective query points grid cell and stops the search until we find the

grid cell witch hasthe smallest total distance among all candidates. Finally the centner point of the
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grid cell is returned which as the obstructed meeting point of all query points. The grid algorithm

finds the meeting point which incurs reduced processing overhead.

We develop grid algorithm which finds the obstructed meeting locations as well as grid cells of the

query points in an obstructed space. Then the center point of the returned obstructed optimal meet-

ing grid cell is considered to be obstructed optimal meeting points of the query points. First of all

the initial search space is bounded using the function findBoundedRegion(). Then it incrementally

retrieves all the obstacles that are within the distance lengthRsq/
√

2, centering at the geometric cen-

troid cQ of query points, Q by using a function OR (cQ, RTO, lengthRsq/
√

2) (Line 2).
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Figure 4.3: Grid representation of bounded square region, Rsq

To further reduce the search space, we split the Rsq into a number of grid cells. Thus each grid cell

has eight adjacent neighbors. If any obstacle lies in the grid cell, we represent it with zero (where user

is not allowed to move), otherwise with one (where user is allowed to move). Now only the square grid

cells which are filled with one are candidates for optimal meeting locations. The smaller is the side

length, sl of each grid cell, the larger is the search space but the probability of finding more accurate

optimal meeting point is increased. Algorithm 5 shows the pseudocode for finding the bounded square

region.

Our grid algorithm is based on best-first search. All the query points or users start best-first search

simultaneously from their respective locations. Here grid cells are represented with grid vertices.

Separate priority queue is maintained to keep track the list of vertices to be visited from each query
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point. The vertices in each priority queue are stored in a order of increasing distance from respective

query points. The distance between two adjacent neighbors is the straight line Euclidean distance

between the center points of the two neighbors. In every step of the iteration, each query point

chooses the most promising vertex form it’s queue, which has the smallest distance from respective

query point. After dequeuing the vertex, all it’s neighbors are enqueued in the priority queue which

are not discovered before by qi. The search is continued by every query point until all the candidate

vertices in the priority queues are visited. Finally the algorithm returns obstructed optimal meeting

vertex, which has the smallest total distances from the query points.

Algorithm 6 shows the pseudocode for finding obstructed optimal meeting vertices as well as grid

cells. The inputs of the algorithm are set of query points Q = {q1, q2, . . . , qn} and an obstacle R-tree,

RTO. The algorithm returns the obstructed optimal meeting vertex, oomv as output.

To bound the infinite obstructed search space, the Algorithm 6 called the function findBoundedRegion(),

which returns square region Rsq. The following lists are used throughout the algorithm:

1. distoomv: It is the smallest total shortest distance from the query points to optimal meeting

vertex. Initially the distance is initialized with infinity.

2. listQ[1 . . . n]: An array of n lists, where each listQ[i] contains a list of vertices from Rsq whose

shortest distances from qi has already been computed and enqueued. Each listQ[i] is sorted in

ascending order of shortest distance dist(v, qi), between query point qi and grid cell vertex v.

A function Initialize is used to initialize each candidate vertex, where v = qi as follows: ∀ni=1listQ[i]←

qi, ∀ni=1dist(v, qi) ← 0 and count[v] = 0. count[v] is needed to keep track whether each candidate

vertex is visited by all query points or not. A distoomv is needed to save the distance of obstructed

optimal meeting vertex. Initially it is infinite, distoomv ← ∞.

The other functions and symbols that the algorithm uses are listed below:

• extractMin(listQ[i]): Returns the vertex from the ith listQ, whose dist(v, qi) is the smallest

among all the vertices enqueued in listQ[i].

• isDiscovered(nv, qi): Returns true if a vertex nv is seen/discovered by query point qi. When a

vertex nv is seen by qi, then dist(nv,qi) has already been calculated and enqueued in listQ[i].
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Algorithm 6: Grid Algorithm (Q,RTO)

Input: A set of query points Q = {q1, q2, . . . , qn}, an obstacle R-tree RTO, side length of square grid
cell sl

Output: oomv, an obstructed optimal meeting vertex of Q
1 Rsq ← FindboundedRegion(Q,RTO)

2 O ← OR (cQ, RTO, lengthRsq
/
√

2)
3 Split Rsq into a number of binary square grid vertices, v
4 Initialize (listQ, dist(v, qi), count, distoomv)
5 repeat
6 foreach qi ∈ Q do
7 if listQ[i] 6= ∅ then
8 v ← extractMin(listQ[i])
9 foreach neighbor of v, nv where nv ∈ Rsq do

10 if (nv 6= 0) and (!isDiscovered(nv, qi)) then
11 if isDiagonal(nv, v) then
12 dist(nv, qi) ← dist(v, qi) + td1
13 else
14 dist(nv, qi) ← dist(v, qi) + td2
15 end
16 if dist(nv, qi) <= distoomv then
17 Add nv to listQ[i]
18 count[nv]++
19 mark nv as seen by qi
20 if count[nv] = |Q| then
21 distsum(nv, Q) ←

∑n
i=1 dist(nv, qi)

22 if distsum(nv, Q) < distoomv then
23 update(distsum(nv, Q), distoomv, oomv)
24 end

25 end

26 end

27 end

28 end

29 end

30 end

31 until ∃ni=1listQ[i] 6= ∅
32 return oomv
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• isDiagonal(nv, v): Returns true if a vertex nv is a diagonal neighbor of vertex v. In a Rsq a

vertex has eight neighbors: ul (upperLeft), um (upperMiddle), ur (upperRight), ll (lowerLeft),

lm (lowerMiddle), lr (lowerRight), il (immediateLeft) and ir (immediateRight). A vertex is a

diagonal neighbor if it is on either ul or ur or ll or lr.

For each of the query points qi, the algorithm extracts the vertex from it’s corresponding ith list (Line

8), listQ[i] whose dist(v, qi) is the smallest among all the vertices enqueued in the listQ[i].

The algorithm computes shortest distance of all its neighbors from qi (Lines 11-14). For each neighbor

nv, whose value is one (where movement is allowed) and is not yet discovered by query point qi, the

algorithm computes shortest distance from qi to nv. Each neighbor’s shortest distance, dist(nv, qi) is

the sum of its parent’s shortest distance distO(v, qi) and the threshold (side length of grid cell, sl).

For diagonal neighbors the threshold is td1 = (sl×
√

2) (Line-12), otherwise the threshold is td2 = sl

(Line-14).

The algorithm tries to prune some vertices to reduce candidates from respective listQ. If shortest

distance of any vertex v, dist(v, qi) is greater than current optimal meeting point distance, distoomv,

then the vertex would never become optimal meeting point. So we can prune or cross out this vertex

from listQ[i] by qi. The algorithm then continue searching for other neighbors.

If pruning condition is not satisfied, then the vertex is added to the listQ[i] for further exploring the

search for optimal meeting vertex through nv and update the value of counter of the discovered vertex,

nv. Then mark nv as discovered by qi. Then the algorithm checks, whether the vertex is discovered

by all query points or not (Line 19). If the vertex is discovered by all query points by checking

count[v] = |Q|, then the algorithm calculates total distance, distsum(v,Q). If the total distance of

this vertex is less than current total distance, distoomv then update() function is called to update the

optimal meeting vertex. The algorithm repeats the above process for all query points and continues

searching for optimal meeting vertex until each list listQ[i] is empty (Line 5-22). At the end the center

point of the obstructed optimal meeting vertex is considered as the obstructed optimal meeting point.

Figure 4.4 shows an example of finding obstructed optimal meeting vertex using grid algorithm.
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PRIORITY QUEUE

step list (q1) list (q2) list (q3)

1 start 

from q1

v1 (0) start 

from q2

v8 (0) start 

from q3

v9 (0)

2 visit v1 v4 (1.4) visit v8 v6(1) visit v9 v7 (1)

3 visit v4 v6 (2.4), v2 (2.8) visit v6 v4 (2) visit v7 v5 (2)

4 visit v6 v2 (2.8), v8 (3.4) visit v4 v1 (3.4), 

v2 (3.4)

visit v5 v3 (3), 

v2 (3.4)

5 visit v2 v8 (3.4), v3 (3.8), 

v5 (4.2)

visit v1 v2  (3.4) visit v3 v2 (3.4)

6 visit v8 v3 (3.8), v5 (4.2) visit v2 v3 (4.4), 

v5 (4.8)

visit v2 v4 (4.8)

7 visit v3 v5 (4.2) visit v3 v5 (4.8) visit v4 v6 (5.8), 

v1 (6.2)

8 visit v5 v7 (5.2) visit v5 v7 (5.8) visit v6 v1 (6.2), 

v8 (6.8)

9 visit v7 v9 (6.2) visit v7 v9 (6.8) visit v1 v8 (6.8)

10 visit v9
-------- visit v9

------- visit v8
-------

v1=q1 0 v2 v3

0 v4 0 v5

0 v6 0 v7

0 v8=q2 0 v9=q3

Bounded Region: Rsq

step oomv distoomv

distSUM
v1 v2 v3 v4 v5 v6 v7 v8 v9

1 --- --- 0 0 0 0 0 0 0 0 0

2 --- --- 0 0 0 1.4 0 1 1 0 0

3 --- --- 0 2.8 0 3.4 2 3.4 1 0 0

4 v2 9.6 3.4 9.6 3 3.4 6.2 3.4 1 3.4 0

5 v2 9.6 3.4 9.6 6.8 3.4 6.2 3.4 1 3.4 0

6 v4 8.2 3.4 9.6 11.2 8.2 11 3.4 1 3.4 0

7 v4 8.2 9.6 9.6 11.2 8.2 11 9.2 1 3.4 0

8 v4 8.2 9.6 9.6 11.2 8.2 11 9.2 12 10.2 0

9 v4 8.2 9.6 9.6 11.2 8.2 11 9.2 12 10.2 13

10 v4 8.2 9.6 9.6 11.2 8.2 11 9.2 12 10.2 13

Figure 4.4: Best first search for finding optimal meeting vertex of three query points
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There are three query points, q1,q2 and q3. There are 16 vertices. The vertices which are filled with 0

indicating that query user is not allowed to move here. Since these areas are occupied with obstacles.

Thus the vertices which are not intersected by obstacles are candidates for optimal meeting points.

These candidate vertices are v1, v2, v3, v4, v5, v6, v7, v8, v9. In every iteration, the first table shows

the vertices enqueued by each query point on the individual queues listQ[i] and the distances from the

source qi to the vertices is also shown in bracket. The second table shows the total distance, distSUM of

the vertices when discovered by all query users and the update of obstructed optimal meeting vertex,

oomv. After four iterations, vertex v2 becomes the oomv. Later the vertex v4 becomes the oomv,

since distSUM (v4) is less than distSUM (v2). The algorithm stops searching in a best first manner

when all the vertices are visited by all the query points. Finally the center point of the vertex v4 is

returned as OOMP . It has smallest total distance distsum(v4, Q) = 1.4 + 2.4 + 4.8 = 8.2 among all

the vertices.

4.2.1 Time Complexity of Grid Algorithm

Let, |Q| is the number of query points, |V | is the number of nodes in the visibility graph, |TO| is

the number of obstacles in the R-tree, |Ob| is the number of obstacles retrieved from the R-tree

and N is the number of vertices in the entire bounded square region. The Grid Algorithm takes

O(|Q|× |Ob|2×4|V |log|V |) time for findBoundedRegion(), takes O(|V |2× log|V |) time for OR (Ob-

stacle Range query) and CompAggObsDist() algorithm [18] takes (|Ob|2 × |Q| × 4|V | × log|V |) time.

The repeat loop iterates N times in the worst case until all the vertices (N) are visited by all query

points. The inner for loop iterates |Q| times. In line-8, extractMin takes log|N | time. The foreach

loop (line-9) iterates 8 times, since each vertex has at most eight adjacent neighbors. In each iteration,

the update operation if satisfied the condition, in line-22, takes constant time.

Thus, the worst case time complexity of the Grid algorithm is:

O((|Q| × |Ob|2 × 4|V |log|V |) + (|V |2 × log|V |) + V + N ×Q× (logN + 8×N))

≈ O(|Q| × |Ob|2 × 4|V | × log|V |)

[ Here, N = (2r/sl)2, where, r = distTO(cQ, Q)/|Q| ]



Chapter 5

Experiments

In this section we present our experimental results of our proposed algorithms. We vary the group

size, query distribution area, and the square unit. In each experiment, we evaluate the impact of one

parameter while others are fixed at their default values. Table 5.1 summarizes the values for each

parameter used in the experiments.

We used real dataset of Germany[57], which have 30674 MBRs of railway lines (rrlines) and 76999

MBRs of hypsography data (hypsogr). We normalized the dataset into an area of 10,000 × 10,000

square unit. From the dataset we used the rrlines as obstacles. Though we considered rectangle

shaped obstacles, our algorithm can support any arbitrary shaped polygons. The obstacles are in-

dexed using R-tree in the database and assuming a page size of 4K. We randomly generate the query

points which are allowed to lie on the boundary of the obstacles but not inside the obstacles. The

query points follow random uniform distribution. The default query area is set to 0.005%, hence the

group of query objects are confined to 50% of the entire data space. We performed 100 sample OOMP

queries and got the average experimental results.

Parameter Range Default

Square Unit 1, 0.5, 0.25, 0.125, 0.0625 1

Group size 2, 4, 8, 16, 32 8

Query rectangle area 0.002% to 0.01% 0.005%

Table 5.1: Experiment setup

We ran our experiments on Intel Core i7-2920XM quad-core CPU (2.50GHz) PC with 32GB RAM.

59
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We measure CPU time and IO cost by varying group size (number of query points), query area (the

area to which the group of query objects are confined) and square unit of our proposed algorithms.

To evaluate our algorithms for OOMP queries, we measure the approximation error, which gives a

measure how much accuracy we have lost. To compute the approximation error, we at first calculate

the difference between exact total obstructed distance (upper bound) of the approximate meeting

point and the lower bound of the optimal distance and then divide the difference with the lower

bound of the optimal distance. The following Equation 5.1 shows the approximation error calculation

formula:

approximation error =
distTO(oomp,Q)− distMinTO(sq,Q)

distMinTO(sq,Q)
(5.1)

For example, if the approximation error is 0.02, then it is guaranteed that the optimal total obstructed

distance for a group lies within 100 to 102. Thus the reported meeting point has maximum 2% error.

The more closer the value of approximation error is to 0, the more accurate meeting point we will get.

We calculate the exact total obstructed distance of the reported obstructed meeting point, oomp and

the minimum total obstructed distance from the square area, sq (which at first satisfies the given

threshold square unit) to all the query points, in grid and hierarchical algorithm of 100 samples by

varying square length. Then we calculate error in each sample and then take their average. We

evaluate the approximation error by varying the square unit, group size and query area.

5.1 Comparison of OOMP Algorithms

We evaluate and compare the Hierarchical and Grid algorithm. We run experiments and all the

comparisons are performed in terms of IO cost, computational time and accuracy level.

5.1.1 Effect of Group Size

We study the impact of group size on the performance of OOMP query by varying the group size

using 2, 4, 8, 16 and 32 and measure the required running time and the number of obstacle access

from the obstacle R-tree.

Figure 5.1(a) shows the performance of obstacle R-tree access with the increase of group size. In grid
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Figure 5.1: Effect of group size

algorithm, we need to access obstacle R-tree initially to bound infinite search region. After computing

the total obstructed distance between centroid and query points, we retrieve all the obstacles within

the circular area from the geometric centroid and fill the search space with obstacles. That’s why

IO access almost remain constant on varying group size. However in the hierarchical algorithm, we

retrieve obstacles incrementally from the R-tree. Thus, IO access increases rapidly with the increase

of group size. We also observe that grid algorithm gives on average 10 times lower IO access than

hierarchical algorithm. Since, in the hierarchical algorithm, the search space is refined recursively

for computing obstructed distance of the query users, hence IO access increases. Where as in the

grid algorithm the obstacles are retrieved only once while bounding the initial search space. Thus IO

access is high in hierarchical algorithm compared to grid algorithm.

Figure 5.1(b) shows the time required by grid and hierarchical algorithm for finding optimal meeting

point. It is observed that the performance of both algorithms degrade as the group size increases. For

example, for an increase of the group size from 4 to 32, CPU time increases more than 4 times on the

average. Since, finding the obstructed distance between two locations is an expensive computation.

Thus in the hierarchical algorithm, with the increase of group size increases the number of obstructed

distance computations and hence increases more obstacle retrieval from the obstacle R-tree. On the

grid algorithm, every grid cell is visited in a best first manner from the location of each pedestrian.

Hence the computational time increases with the increase of group size.

Grid algorithm is better in terms of CPU time and IO access than hierarchical algorithm. Hierarchi-

cal algorithm gives the meeting location which is very much close to optimal solution by computing
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actual obstructed distances among the locations in the bounded search space. Whereas, on the grid

algorithm expensive obstructed distance computation is avoided, thus accuracy is sacrificed but incurs

less query processing overhead.
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Figure 5.2: Effect of group size on approximation error

We also vary the group size while keeping query area and length of square area at a fixed default

value to evaluate the approximation error in both algorithms. Figure 5.2 shows the impact of group

size on approximation error. The approximation error decreases with the increase of group size in

the hierarchical algorithm, whereas in the grid algorithm the approximation error increases with the

increase of group size. Since, in the grid algorithm, the distances are computed based on heuristic

function, thus with the increase of group size the accuracy falls. Whereas, in the hierarchical algorithm,

the distances are exact obstructed distance, thus accuracy rises with the increase of group size.

5.1.2 Effect of Query Rectangle Area

Here we vary the query area, i.e., the area to which the group of query objects are confined to as

0.002%, 0.004%, 0.006%, 0.008% and 0.01% of the entire data space.

We observe that the number of IO access and computation time both increases with the increase of

query area and grid algorithm outperforms hierarchical algorithm in terms of IO access and compu-

tational time requirements.

Figure 5.3(a) shows that, in grid algorithm number of IO access remains almost constant for different

percentage of query area. Whereas, the hierarchical algorithm shows a clear increasing trend with the
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Figure 5.3: Effect of query rectangle area

increase of query area. Figure 5.3(b) shows the curves of computational time in both algorithm. In

both scenario, it is observed that the computational time to find the optimal meeting point increases

rapidly with the increase of query area. For example, with an increase of query area from 0.004% to

.006%, CPU time increases twice.
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Figure 5.4: Effect of query rectangle area on approximation error

We also vary query area to evaluate the accuracy in both algorithms. Figure 5.4 shows the impact of

query area on approximation error. Here, the more far away the users are the more accurate meeting

point is found in the hierarchical algorithm. However in the grid algorithm with the increase of query

users distribution area, the accuracy falls.

5.1.3 Effect of the Length of Square Grid Cell

Here we vary the length of square area, i.e., the area where the optimal meeting point of query objects

lies. Here we vary the length of the square area from 1 to .0625 (1, 0.5, 0.25, 0.125, 0.0625).
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Figure 5.5: Effect of square length
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Figure 5.6: Effect of square length on approximation error

Figure 5.5(a) and 5.5(b) shows that, the number of IO access and computation time increases rapidly

with the smaller of the square unit/length but from Figure 5.6 it is observed that the more smaller is

the square unit, the more accurate our proposed algorithms would be. For example, if we reduce the

length of the square cell 2 times, IO access and CPU time increases on average 4 times in the hierar-

chical algorithm whereas in the grid algorithm IO access almost remains constant but CPU time rises

sharply. However, in both algorithms, average approximation error decreases with the smaller of the

square unit. For grid algorithm, it is 5% and for hierarchical algorithm it is more than 1%. The hierar-

chical algorithm gives on average 5 times more accurate meeting point compared to the grid algorithm.
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5.2 Comparative Analysis

We show that the problem of finding the optimal meeting point in the obstructed space is NP-hard.

Since processing an OOMP query in the obstructed space is an exhaustive search, as the search space

is infinite and filled with obstacles. Thus the naive exact solution is not possible due to approximation

error. The major challenges for an OOMP query is to refine the search space and compute the total

obstructed distance with reduced processing overhead. Hierarchical algorithm is most appropriate

in order to find out the result which is very much close to the optimal solution. Otherwise, grid

algorithm is a good choice for finding the meeting point in real time with less accuracy level compared

to hierarchical algorithm.

In all experiments, the CPU time and IO access of Grid algorithm is always lower than Hierarchical

algorithm. The more smaller is the square unit threshold the more accurate meeting point is found

in both algorithms. But the Hierarchical algorithm gives more accurate meeting point compared to

Grid algorithm.

The reason behind lower cost of Grid algorithm is that, obstructed distance between the locations

is computed heuristically. Thus accuracy is sacrificed but query processing overhead reduced. On

the other hand, in the Hierarchical algorithm, obstructed distance between the locations is computed

efficiently by exploiting geometric properties and hierarchical structure. As a result, query processing

overhead increases with the increase of the number of the group members, obstacles and the search

space but accuracy increases.

.



Chapter 6

Conclusion

Researchers have developed a number of algorithms for finding optimal meeting points in the Euclidean

space and road networks that ignores the presence of obstacles. However, some research work has

been done considering obstacles for other types of queries i.e. obstructed nearest neighbor queries,

obstructed reverse nearest neighbor queries, continuous obstructed nearest neighbor queries, moving

nearest neighbor queries and obstructed group nearest neighbor queries (OGNN). An OGNN query,

returns the location of a (point of interest) POI from the given set of POIs, that minimizes the total

obstructed travel distance with respect to the locations of the group members, whereas in case of an

OOMP query a meeting point does not need to be at the location of a POI, it can be anywhere in the

obstructed space except the areas of obstacles. Therefore, the OOMP query is much more difficult

than the OGNN query due to its infinite search space.

6.1 Contribution

We summarize our key contributions in this thesis are as follows:

• We developed the first comprehensive solution to find the optimal meeting point in presence of

obstacles which we call obstructed optimal meeting point queries (OOMP). Our proposed two

algorithms find optimal meeting locations which minimizes the total obstructed distance of all

the group members.

• To identify the optimal meeting point, computing the total obstructed distance for every point

in the search space would incur extremely high processing overhead as finding the obstructed

distance between two locations is an expensive computation. Thus, the major challenges for
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an OOMP query is to refine the search space and compute the total obstructed distance with

reduced processing overhead. We exploit geometric properties and hierarchical structure to

develop techniques to refine the search space. In addition, we developed efficient technique to

compute the total obstructed distance. Our technique reduces the number of obstacles retrieved

from the database, and does not retrieve the same obstacle multiple times from the database

to compute multiple individual obstructed distances required for computing a total obstructed

distance.

• The obstacles are stored on the database using an indexing method. Processing an OOMP query

in the obstructed space is an exhaustive search, as the search space is infinite and filled with

obstacles. We develop an efficient hierarchical algorithm for processing OOMP queries, which

recursively refines the search space in order to minimize the number of retrieved obstacles from

the database and reduce the number of total obstructed distance computation using geometric

properties. The query processing overhead increases with the increase of the number of group

members, obstacles and the search space. Thus we also develop a grid algorithm for processing

OOMP queries in real time. The grid algorithm finds the meeting location which incurs reduced

processing overhead but accuracy is sacrificed.

• Our experimental results using real datasets are used in the performance analysis of our algo-

rithms for different parameters. We compare our proposed two OOMP algorithms. We find

that, the hierarchical algorithm incurs higher CPU time and IO cost than the grid algorithm,

but in the grid algorithm we need to sacrifice accuracy. The reason behind lower cost of grid

algorithm is that, here expensive obstructed distance computation techniques are avoided and

the search space is turned into a number of binary square grids, which are candidates of optimal

meeting locations. For this reason, grid algorithm compared to hierarchical algorithm performs

better than in terms of CPU time and IO cost but the hierarchical algorithm finds more accurate

meeting location than grid algorithm.

6.2 Future Work

This research work motivates several directions for future research. In this thesis, we have only

considered static obstacles and query points. We have a plan to study OOMP queries considering
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moving obstacles (i.e, vehicles in pedestrians walking path). As a future work, we intend to investigate

OOMP queries where the query points i.e, the group of users can move. Preserving the privacy of the

group members while answering OOMP queries can be another field of study for our future works.
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