
M. Sc. Engineering Thesis

Algorithms for Constructing Multi-labeled

Phylogenetic Trees from Quartets with Fewer

Leaf Duplications

By

Md. Mizanur Rahman

Student no.: 0413052008

Submitted to

Department of Computer Science and Engineering

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology (BUET)

Dhaka-1000, Bangladesh

November 12, 2017

Contents

Board of Examiners ii

Candidate’s Declaration iii

Acknowledgements ix

Abstract x

1 Introduction 1

1.1 Problem Definition . 2

1.2 Applications of Phylogenies . 3

1.3 Applications of Multi-labeled Phylogenetic Trees 5

1.3.1 Perusing Host-Parasite Cospeciation . 5

1.3.2 Constructing Gene Trees . 6

1.3.3 Biogeography . 6

1.3.4 Constructing Phylogenetic Networks . 7

1.4 Motivation . 8

1.5 Literature Review . 9

1.6 Objectives of this Thesis . 13

1.7 Summary of Results . 13

1.8 Thesis Organization . 14

1.9 Summary . 15

iv

CONTENTS v

2 Preliminaries 16

2.1 Basic Terminology . 16

2.1.1 Trees . 16

2.1.2 Phylogenetic Trees . 17

2.1.3 Supertrees . 20

2.1.4 Caterpillar . 21

2.1.5 Multi-labeled Phylogenetic Trees . 21

2.1.6 Gene Trees and Species Trees . 22

2.1.7 Phylogenetic Networks . 23

2.1.8 Triplets and Quartets . 24

2.1.9 Splits and Super-splits . 25

2.1.10 Depth one Chains . 26

2.2 Bipartition . 27

2.2.1 Method of Bipartition . 27

2.3 Summary . 32

3 Algorithms for Constructing MUL-Trees 33

3.1 Algorithms . 33

3.1.1 RDCRD Approach . 34

3.1.2 RDCSSplitA Approach . 34

3.1.3 BDCRD Approach . 37

3.1.4 QMUL Approach . 39

3.1.5 Advanced QMUL(AQMUL) Approach 42

3.2 Super-split Analysis Technique . 46

3.2.1 Consistency Checking Method . 46

3.2.2 Super-split Method . 47

3.3 Quartet Analysis Technique . 48

3.3.1 Consistency Checking Method . 49

3.3.2 Quartet Matching Method . 49

vi CONTENTS

3.4 Summary . 50

4 Performance of Algorithms 51

4.1 Experiments on Simulated Datasets . 52

4.1.1 Simulated Datasets . 52

4.1.2 Simulated Data Results . 53

4.1.3 Computational Issues . 57

4.2 Experiments on Real Datasets . 58

4.2.1 Real Datasets . 58

4.2.2 Real Data Results . 60

4.3 Duplication Vs Consistency . 63

4.4 Summary . 64

5 Conclusion 65

A Supporting Information 68

List of Publications 69

Index 74

List of Figures

1.1 Illustration of (a) set of quartets and (b) MUL-tree. 3

1.2 Illustration of (a) a quartet set Q and (b) supertree T 8

1.3 Illustration of (a) a quartet set Q and (b) supertree T 9

2.1 Illustration of a tree (a) unrooted (b) rooted. 17

2.2 Illustration of phylogenetic tree (a) unrooted (b) rooted. 18

2.3 Illustration of bifurcating and multifurcating tree (a) unrooted (b) rooted. . . . 19

2.4 Illustration of (a) quartet set Q (b) supertree T 20

2.5 Illustration of caterpillar (a) unrooted (b) rooted. 21

2.6 Illustration of Multi-labeled Phylogenetic tree (a) unrooted (b) rooted. 22

2.7 Illustration of Phylogenetic Network (a) unrooted (b) rooted. 23

2.8 Illustration of (a) Triplet and (b) Quartet. 24

2.9 Illustration of quartet consistency with a tree T 25

2.10 Illustration of Super-split. 26

2.11 Illustration of (a) Depth one element (b) Depth one chain. 27

2.12 An example iteration of the Bipartition Algorithm. 30

3.1 Illustration of RDCRD approach . 35

3.2 Illustration of RDCSSplitA approach . 36

3.3 Illustration of BDCRD approach . 38

3.4 Illustration of QMUL approach . 41

3.5 Illustration of AQMUL approach . 43

vii

viii LIST OF FIGURES

3.6 Consistency of (a) quartets with respect to (b) depth one chain. 46

3.7 Illustration of consistency checking method. 47

3.8 Illustration of super-split method. 48

3.9 Illustration of quartet matching method. 50

4.1 A chart showing the difference in performance among five techniques in terms of

number of duplications when c=90% and q=n1.25. 54

4.2 Comparison of QMUL and AQMUL in terms of number of duplications under

various model conditions. 56

4.3 An original MUL-tree on flowering plants with 7 duplications. 59

4.4 The obtained MUL-tree by applying AQMUL on the quartets extracted from

the MUL-tree shown in Figure 4.3. This MUL-tree has 7 duplications. 59

4.5 An original MUL-tree on violet species with 20 duplications. 61

4.6 The obtained MUL-tree by applying AQMUL on the quartets extracted from

the MUL-tree shown in Figure 4.5. This MUL-tree has 20 duplications. 62

4.7 A chart showing the difference in performance among MTRT, QMUL and AQ-

MUL on real datasets in terms of number of duplications. 63

Acknowledgements

First of all, I would like to declare that all the appraisals belong to the Almighty ALLAH.

I would like to express my deep gratitude to my supervisor Professor Dr. Md. Saidur

Rahman for introducing me to the fascinating and prospective field of bioinformatics and phy-

logenetic trees. I have learned from him how to carry on a research work, how to write, speak

and present well. I thank him for his patience in reviewing my so many inferior drafts, for

correcting my proofs and language, suggesting new ways of thinking, leading to the right way

and encouraging me to continue my research work.

I would like to thank all the members of the examination board, Prof. Dr. M. Sohel Rahman,

Prof. Dr. Md. Abul Kashem Mia, Dr. Md. Shamsuzzoha Bayzid and Prof. Dr. Saifuddin

Md. Tareeq for their valuable comments. I am very grateful to the ICT Division, Ministry of

Posts, Telecommunications and Information Technology, Government of the People's Republic

of Bangladesh for funding me during the research period.

I would also like to thank Dr. Md. Iqbal Hossain, Mrs. Shaheena Sultana, Mrs. Nazmun

Nessa Moon, Mr. Md. Manzurul Hasan, Mr. Mohammad Al Mahmud, Mr. Abu Reyan

Ahmed, Mr. Sujoy Das, Mr. Malay Devnath and all the members of my research group for

their valuable suggestions and continual encouragements. I convey my heartfelt reverence to

my parents and other family members for giving their best support throughout my work to

overcome the tedium of repetitive trials to new findings.

Finally, every honor and every victory on earth is due to Allah, descended from Him and

must be ascribed to Him. He has endowed me with good health and with the capability to

complete this work. I deeply express my sincere gratitude to the endless kindness of Allah.

ix

Abstract

A central problem in computational and evolutionary biology is the inference of phylogenetic

tree from a set of triplets or quartets. Researchers try to construct phylogenetic tree by com-

bining many triplets or quartets into a single phylogenetic tree and this problem is known

as supertree construction problem. The problem with supertree construction is that the con-

structed supertree does not always ensure the consistency of the entire input quartets from

where it is designed and hence some important evolutionary information is lost. A possible

solution of this problem is to construct Multi-labeled Phylogenetic Trees (MUL-trees) instead

of supertree where all quartets are consistent. Let Q = {q1, q2, q3, ..., qk} be a collection of

quartets over a set of taxa S. A MUL-tree T over a set of quartets Q is a tree where more

than one of its leaves can be labeled by a single taxon and each quartet qǫQ are consistent with

respect to the tree T . The problem of constructing a MUL-tree from a set of quartets is much

more complex than that of standard phylogenetic trees. To the best of our knowledge, there is

no study to construct MUL-trees from quartets to date.

In this thesis, we have proposed two algorithms with three auxiliary techniques to construct

MUL-trees from a set of quartets. We first have proposed a bipartition based divide and

conquer approach (QMUL) with super-split analysis technique. But it cannot always guarantee

the minimum number of duplications. To overcome the shortcoming of QMUL approach we

finally proposed AQMUL (MUL-trees from Quartets with Advanced method) approach which

is the modification of QMUL approach. We have conducted experiments on simulated datasets

and real datasets to analyze the performance of our proposed algorithms. We have found that

AQMUL is more efficient than QMUL to construct MUL-Trees in terms of average number of

duplications.

x

Chapter 1

Introduction

After publication of Charles Darwin's book On the Origin of Species; By means of natural

selection, the theory of evolution was widely accepted. Since then remarkable developments in

evolutionary studies brought the scientists to the phylogenetics, a field that studies the biolog-

ical or the morphological data of species to output a mathematical model such as a tree known

as phylogenetic tree; representing the evolutionary interrelationship of species and the process

of their evolution. Besides, phylogenetics is not only limited to the biology but may also arise

anywhere that the concept of evolution appears. Several approaches have been introduced to

infer evolutionary relationships. Recently, a vast research effort has been devoted to phyloge-

netic tree reconstruction from quartets, a field denoted as quartet-based reconstruction among

many others.

Quartet based phylogenetic tree inference has been receiving comprehensive attention from

the researchers of evolutionary biology and mathematics. Different approaches have been pro-

posed and improved time to time for constructing supertree from quartets [1, 2, 4]. There

are various methods to design supertrees from quartets such as maximum quartet consistency

(MQC), quartets max cut (QMC), short quartet puzzling (SQP), quartet amalgamation (QA)

and matrix representation with parsimony (MRP). However constructing a supertree in which

all quartets are consistent is not always possible [5]. This raises the problem of finding a tree

in which the input is a set of quartets and a supertree is sought that displays the maximum

1

2 CHAPTER 1. INTRODUCTION

number of quartet: maximum quartet consistency (MQC) [10]. The Maximum Quartet Consis-

tency (MQC) problem is an NP hard optimization problem [17]. One the other hands deciding

whether there exists a supertree satisfying all the quartets in an arbitrary given set is NP-

complete [11]. Consequently the MQC problem cannot always ensure the consistency of the

entire input quartets from where it was designed. Thereby we are losing important evolution-

ary information. When no such tree exists because of conflicts in the branching information,

researchers may try to construct Multi-labeled Phylogenetic Trees (in short MUL-trees) by

allowing leaf duplication in which all quartets are consistent.

In the rest of this chapter, we provide the necessary background and objectives for this

study on Multi-labeled Phylogenetic Trees. In Section 1.1 we define the problem. We discuss

the applications of Multi-labeled Phylogenetic Trees in Section 1.3. We devote Section 1.4 for

the motivation of our works, Section 1.5 for the literature review and we detail the objective

of this thesis in Section 1.6. Finally, Section 1.7 is a summary of this work and Section 1.8 is

the description of the organization of this thesis.

1.1 Problem Definition

Let Q = {q1, q2, q3, ..., qk} be a collection of quartets over a set of taxa S. We have to construct

a multi-labeled phylogenetic tree (MUL-tree) which is consistent with each of the quartets in

a given set Q over the set of taxa S having more than one leaf with the same label. This

problem is known as MUL-trees construction problem. Figure 1.1(a) depicts set of quartet Q

over a taxa set S and Figure 1.1(b) depicts an unrooted MUL-tree over a quartet set Q =

{q1, q2, q3, q4, q5, q6, q7}.

Problem: MUL-trees construction.

Input: A collection of quartets Q = {q1, q2, q3, ..., qk} over a set of taxa S.

Output: A multi-labeled phylogenetic tree T from quartets Q on taxa set S

with fewer leaf duplications.

1.2. APPLICATIONS OF PHYLOGENIES 3

b

b

b

b

b bbbbbb

b b b b b
1

2

3 4 5 6 4 1

2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1

2

3

4

1

2

3 4

5

6

1 2

3

3

5

6

1

2

3

4

5

6

1 2

4

4

5

5

q1

q2

q3

q4

q5

q6

q7

(a) (b)

Figure 1.1: Illustration of (a) set of quartets and (b) MUL-tree.

1.2 Applications of Phylogenies

Phylogenies are important because it enriches our understanding of how genes, genomes, species

(and molecular sequences more generally) evolve. Through phylogenies, we learn not only how

the sequences came to be the way they are today, but also general principles that enable us to

predict how they will change in the future. This is not only of fundamental importance but

also extremely useful for numerous applications. In this section, we give a brief overview of

phylogeny and its applications from [26].

Phylogenies are reconstructed on the basis of character data, where a “character” is any

feature of an organism that can have different states. A typical biological example of a char-

acter is a nucleotide position in a DNA sequence, with the character state being the particular

nucleotide (A,G,C, T) in occupying that position. From a mathematical standpoint, a char-

acter is just a function that maps the set of taxa to its set of states. Molecular phylogenetics

research is concerned not only with the evolutionary history of different organisms, but also

with how the different characters evolve in the course of that history.

A second common use of phylogenies is to test biogeographic hypothesis. Biogeography is

concerned with the geographical distribution of organisms, extant and extinct. For example, a

researcher may be interested in whether a particular species have colonized a set of islands a

single time or repeatedly. This can be assessed by determining whether all of the species on the

island arose from a single most recent mainland common ancestor or whether they are multiple

independent mainland species.

4 CHAPTER 1. INTRODUCTION

One can also use a phylogeny to attempt to infer the amino acid sequence of extinct proteins.

These putative extinct proteins can then be synthesized or an artificial gene coding for them can

be produced, and the functional characteristics of the proteins that are of interest can be tested.

In a more practical vein, phylogenies can be used to track the evolution of diseases, which can,

in turn, be used to design drugs and vaccines that are more likely to be effective against the

currently dominant strains. The most prominent example of this use is the flu vaccine, which

is altered from year to year as medical experts work to keep track of the influenza types most

likely to dominate in a given flu season.

Phylogenies based on sequence data provide us with more accurate descriptions of patterns

of relatedness than was available before the advent of molecular sequencing. Phylogenies now

inform the Linnaean classification of new species. Molecular sequencing technologies and phy-

logenetic approaches can be used to learn more about a new pathogen outbreak. This includes

finding out about which species the pathogen is related to and subsequently the likely source of

transmission. This can lead to new recommendations for public health policy. Phylogenies can

help to inform conservation policy when conservation biologists have to make tough decisions

about which species they try to prevent from becoming extinct.

Finally, phylogenies have even been used in criminal cases in order to assess DNA evidence

presented in court cases to inform situations, e.g. where someone has committed a crime, when

food is contaminated, or where the father of a child is unknown, most famously, in a case where

a doctor in Louisiana was accused of having deliberately infected his girlfriend with HIV. The

phylogenetic evidence featured prominently in the trial and the doctor was ultimately convicted

of attempted second degree murder.

With the advent of newer, faster sequencing technologies, it is now possible to take a se-

quencing machine out to the field and sequence species of interest in situ. Phylogenies are

needed to add biological meaning to the data. In summary, phylogenies are useful in any en-

deavor where the historical and hierarchical structure of the evolution of species can be used

to infer the history of the point of interest.

1.3. APPLICATIONS OF MULTI-LABELED PHYLOGENETIC TREES 5

1.3 Applications of Multi-labeled Phylogenetic Trees

In the predominant research of evolutionary chronicle, MUL-trees arise from the modeling of

biological processes where it is necessary to use particular leaf labels more than once. For

example, a gene tree can contain several leaves labeled by the same species due to gene dupli-

cation events [8]. As another example, area cladograms (used in biogeography studies), where

the names of geographical areas are used to label the leaves, may apply the same label to

more than a single leaf [18]. MUL-trees can also be useful for perusing host-parasite cospe-

ciation [19]. MUL-trees come off naturally in, for example, biogeography and gene evolution

studies. The other applications of MUL-trees include molecular systematic, biomedical science

and computer science. Recently, MUL-trees have been used to construct phylogenetic networks

representing the evolutionary history of polyploid species [12]. Intriguingly, MUL-trees and

related structures have applications in other areas, including data mining [22], multi-labeled

data analysis [23], and the construction of directed acyclic word graphs [24]. Due to the appli-

cation of multi-labeled phylogenetic tree evolutionary scientists provide a modest attention to

construct a MUL-tree from rooted triplets and unrooted quartets.

1.3.1 Perusing Host-Parasite Cospeciation

Our first example is an application of the MUL-tree in host-parasite cospeciation. If the associa-

tion between two species is very close, they may speciate in parallel, such that speciation events

in the two taxa are coupled. This is called cospeciation. Host-parasite cospeciation has long

been of strong interest to evolutionary biologists. Cospeciation occurs when interacting groups,

such as hosts and parasites, speciate in tandem, generating congruent phylogenies. Cospeci-

ation can be a neutral process in which parasites speciate merely because they are isolated

on diverging host islands. Adaptive evolution may also play a role, but this has seldom been

tested. One of the most exciting areas of cospeciation analysis concerns comparing the rate of

evolution in host and parasites and the timing of host-parasite cospeciation. The presence of

multiple lineages of parasites on the same host can give rise to the concept of MUL-trees in

6 CHAPTER 1. INTRODUCTION

host-parasite cospeciation. So MUL-trees are useful for perusing host-parasite cospeciation.

1.3.2 Constructing Gene Trees

We now provide another application of the MUL-tree is to show the evolutionary history of gene

trees. A genetree is a model of how a gene evolves through duplication, loss, and nucleotide

substitution. As a gene at a locus in the genome replicates and its copies are passed on to more

than one offspring, branching points are generated in the gene tree. Gene trees are leaf-labeled

trees inferred from molecular sequences. Gene trees are usually multi-labeled, i.e. a single

species can label more than one leaf, since duplication events resulted in the presence of several

copies of the genes in the species genomes.

A gene tree is an evolutionary tree built by analyzing a gene family, i.e. homologous

molecular sequences appearing in the genome of different organisms. Gene trees can provide

evidence for gene duplication events, as well as speciation events. Sequences from different

homologs can be included in a gene tree; the subsequent analyses should cluster orthologs,

thus demonstrating the evolutionary history of the orthologs. Gene trees are primarily used to

estimate species trees, i.e. trees displaying the evolutionary relationships among studied species.

Unfortunately, most gene trees can significantly differ from the species tree for methodological or

biological reasons, such as long branch attraction, lateral gene transfers, deep gene coalescence

and, principally, gene duplications and losses [28]. For this reason, species trees are usually

estimated from a large number of gene trees.

1.3.3 Biogeography

Biogeography is the study of the past and present distribution of species. Closely related

species tend to be found in the same geographic region, but the same environments in distant

regions are usually occupied by very different species. This could be the result of a species

being separated and then developing to their environments in new areas. Identifying common

patterns among area cladograms that arise in historical biogeography is an important tool for

1.3. APPLICATIONS OF MULTI-LABELED PHYLOGENETIC TREES 7

biogeographical inference.

As a first step, these methods construct a general area cladogram by replacing the taxon

label of the leaf with the label of the area in which the taxon is found. Note that some

taxa may occur in more than one area (called widespread taxa) and there may be many taxa

endemic to one area (called redundant taxa). This in turn translates to many leaves with

the same area label or leaves with more than one area label in the general area cladogram.

Hence, the area cladograms constructed as above do not, and cannot, represent a history of the

areas. Consequently, the direct inference methods further process the general area cladograms

to produce a branching history of areas where each leaf is labeled with a unique area, called

resolved area cladograms.

1.3.4 Constructing Phylogenetic Networks

We now provide another important application of the MUL-tree to construct phylogenetic net-

works representing the evolutionary history of polyploid species. It is now common place to

use molecular data to reconstruct the evolutionary past of species. Often such a phylogenetic

analysis proceeds as follows: Molecular markers (such as genes or plastids) are sequenced from

organisms of interest and, using some model of evolution, the evolutionary past of each marker

is then reconstructed using one of the many tree building methods [5, 13]. The resulting leaf-

labelled phylogenetic tree is then used as an approximation to the evolutionary relationships

between the organisms under consideration. The situation becomes more complicated when

trying to unravel the evolutionary past of organisms that are suspected to have undergone

hybridization. This commonly results in polyploids, that is, organisms having several genomes.

Basically speaking, this situation is thought to have arisen either via genome duplication or

through hybridization between species resulting in organisms containing copies of all of their

parent's genomes. Consequently, the molecular markers commonly used in phylogenetic anal-

ysis have the potential of supporting conflicting evolutionary relationships. The challenge is

therefore to reconcile these conflicting relationships into an overall evolutionary picture. In

the study of the evolution of polyploids, multi-labelled trees, or trees having some leaves with

8 CHAPTER 1. INTRODUCTION

the same label, can arise. Lott et al. [16] suggested that rather than inferring a phylogenetic

network directly, it may be easier to first reconcile the input into a single MUL-tree and then

apply an algorithm to output a network with the minimum number of non-tree nodes.

1.4 Motivation

Consider a situation where quartets are input and we have to design a supertree from this

quartet by supertree method. A tree T is said to be the supertree of a set of quartets Q if all

the quartets in Q can be found from tree T by deleting leaves and contracting edges. Note

that supertree is free from leaf duplication. Different methods available in the literature for

constructing supertree from quartets. Among these, the most prominent approaches are, Maxi-

mum Quartet Consistency, Quartets MaxCut, Short Quartet Puzzling, Quartet amalgamation,

Matrix Representation with Parsimony (Most commonly used). Consider the example in Fig-

ure 1.2 in this example all quartets Q are consistent with respect to the supertree T because

we can get all quartets from tree T by deleting leaves and contracting edges. But this is not

always possible to design a supertree where all quartets are consistent.

b

b

b

b

b bbb

b b
1

2

3 4 5

6

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1

2

3

4

1

2

5

6

3

3

5

6

1

2

3

4

5

6

4

5

q1

q2

q3

q4

q5

(a) (b)

Figure 1.2: Illustration of (a) a quartet set Q and (b) supertree T .

Let see another example in Figure 1.3 to understand the actual scenario. Here Q is a set of

quartets we have to design a supertree T from Q which ensures the consistency of each quartet

in Q but it is not possible because some quartets in Q contain conflicting branch information.

At these situation researchers uses different techniques to design supertrees which ensure the

consistency of maximum number of quartets and it is known as Maximum Quartet Consistency

1.5. LITERATURE REVIEW 9

(MQC) problem. Thus we have designed the supertree in Figure 1.3 from the quartet set Q

which ensure the consistency of five quartets among seven quartets. Here quartets q3 and q7

are inconsistent because quartets q3 and q7 contain conflicting branch information. Let see the

quartet q3 in supertree T here the path from taxa 1 to taxa 3 overlaps the path from taxa 2 to

taxa 4. Similarly in case of quartet q7 in super tree T the path from taxa 1 to taxa 4 overlaps

the path from taxa 2 to taxa 5.

b

b

b

b

b bbb

b b
1

2

3 4 5

6

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1

2

3

4

1

2

3 4

5

6

1 2

3

3

5

6

1

2

3

4

5

6

1 2

4

4

5

5

q1

q2

q3

q4

q5

q6

q7

(a) (b)

Figure 1.3: Illustration of (a) a quartet set Q and (b) supertree T .

So we can say that, supertree cannot always ensure the consistency of the entire input quar-

tets from where it was designed. Thereby we are loosing of important evolutionary information.

On the other hand in 1992 Michael Steel [11] showed that deciding whether there exists a super

tree satisfying all the quartets in an arbitrary given set, is NP-complete. So overcome limita-

tions of supertree method we can construct MUL-trees. Note that MUL-tree is also a supertree

when duplication is zero.

1.5 Literature Review

Phylogenetic tree reconstruction has been receiving extensive attention from the researchers of

evolutionary biology and mathematics. Different approaches have been proposed and improved

time to time for constructing phylogenetic tree from quartets and triplets. Researcher constructs

supertree, phylogenetic network and Multi-labeled phylogenetic tree from quartets or triplets.

The problems associated with quartets or triplets consistency have been extensively studied.

Since their inception, quartets or triplets consistency have raised several interesting problems,

10 CHAPTER 1. INTRODUCTION

and most of these problems have remained unsolved. Among the other problems, MUL-trees

construction from quartets is an important concern.

Supertree methods are a fundamental and practical way of inferring phylogenies. Generally

speaking, these methods amalgamate a collection of source” trees (quartets or triplets) on

overlapping subsets of taxa into a single parent tree that contains the taxa of all of the source

trees. This parent tree is called a supertree. Supertree methods represent one of the major

ways by which the Tree of Life can be estimated, although many supertree methods have been

developed in the last few decades, none has been shown to produce more accurate trees than

the popular Matrix Representation with Parsimony (MRP) method.

In 2006 Bryant et al. [33] proved that compatibility of unrooted phylogenetic trees is

fixed parameter tractable (FPT) and they also shown that there exists a linear time, FPT

algorithm for compatibility of unrooted trees. They present an O(nf(k)) algorithm, proving

that compatibility of unrooted phylogenetic trees is fixed parameter tractable (FPT) with

respect to the number k of trees. In this research they used a set of quartet as unrooted tree

and design a compatible supertree using these quartets.

In 2008, Snir et al. [7] proposed a new quartet-based method, short quartet puzzling (SQP).

The experimental studies in [7] shows that SQP provides more accurate trees than QP, NJ and

MP. It differs from the previous techniques in that it does not require all three topologies of the

quartets on every 4 taxa. It is able to construct the output tree from a subset of all possible

quartets as input. This is a two-phase technique: the first phase uses the randomized technique

for selecting input quartets from all possible 4-trees (estimated using ML), and the second

phase uses Quartet MaxCut (QMC) [7, 8] technique for combining quartets into a single tree.

Snir et al. [14] use an algorithm to design Supertrees from a set of quartet which is known

as Quartet MaxCut (QMC). In this paper Snir and Rao presented Quartets MaxCut (QMC),

a heuristic for MQC that can be applied to arbitrary sets of quartet trees (i.e., ones that

may not contain a tree on every quartet). Quartet MaxCut is a quartet-based phylogenetic

reconstruction method. The method is based on a recursive divide and conquer algorithm

that seeks to maximize the ratio between satisfied and violated quartets at each step. This

1.5. LITERATURE REVIEW 11

task is performed by a very fast semi definite programming (SDP) like heuristic for solving

MaxCut in a graph induced by the quartets. Snir and Rao showed that by encoding the source

trees as quartet trees, QMC could be used as a supertree method for arbitrary inputs. Their

study evaluated this QMC-based supertree method for a number of biological supertree profiles;

however, since the true supertree was not known, they could not evaluate the topological

accuracy of the supertrees they constructed. Instead, they computed the average similarity

of the QMC and MRP supertrees to the source trees, using two different similarity measures.

This comparison showed that QMC had higher average similarity to the source trees under one

criterion, and lower average similarity with respect to another; thus, Snir and Rao failed to

establish that QMC produced better trees than MRP. QMC is operating in polynomial time

and providing no guarantees with respect to its optimization problem, MQC.

In 2014 Reaz et al. [1] proposed an algorithm Quartet FM (QFM) to construct accurate

phylogenetic tree from a set of quartets. In this paper, they showed that QFM is a heuristic

which uses a bipartition technique inspired from the famous Fiduccia and Mattheyses (FM)

algorithm for partitioning a hyper graph minimizing the cut size. Their approach cannot ensure

the consistency of all the quartets. In this paper they demonstrated the superiority of QFM

method over QMC (Quartet MaxCut), which is known to be the best quartet amalgamation

method to date.

The problem of recovering network-like evolutionary histories has recently attracted a con-

siderable amount of attention in the literature. In 2006 Huber et al. [12] proposed an algorithm

which takes as input a multi labeled phylogenetic tree and outputs a phylogenetic network with

certain desirable properties to understand the origins of certain polyploids. The overall com-

plexity of the algorithm is O(nlogn).

The problem of constructing an optimal rooted phylogenetic network from an arbitrary

set of rooted triplets is an NP-hard problem. In 2014 Poormohammadi et al. [7] proposed a

heuristic algorithm TripNet, which tries to construct a rooted phylogenetic network with the

minimum number of reticulation nodes from an arbitrary set of rooted triplets. They showed

that in all cases TripNet outputs an appropriate rooted phylogenetic network in an acceptable

12 CHAPTER 1. INTRODUCTION

time.

Multi-labeled phylogenetic tree construction problems are concerned to design a MUL-tree

from a set of quartets or triplets and which is consistent with respect to the set of quartets

or triplets. In 2008 Huber et al. [8] proposed an algorithm to find the complexity of deriving

Multi labeled trees from bipartitions. In this paper they showed that it is NP-hard to decide

whether a collection of bipartitions of a multiset can be represented by a multi-labeled tree.

They also show that it is possible to generalize to multi-labeled trees a well-known condition

that characterizes when a collection of bipartitions encodes a phylogenetic tree. Using this

generalization, they obtain a fixed-parameter algorithm for the complexity of deriving Multi-

labeled trees from bipartitions in terms of a parameter associated to the given multiset.

Smallest Multi-labeled Phylogenetic Tree (SMRT) is neoteric method to construct multi

labeled phylogenetic tree from rooted triplets developed by Sylvain Guillemot, Jesper Jansson

and Wing-Kin Sung in 2011 [34]. SMRT is a heuristic method that takes a set of rooted triplets

over a leaf set as input and output a MUL-tree which is consistent with rooted triplets. They

prove that even the restricted case of determining if there exists a MUL-tree consistent with the

input and having just one leaf duplication is NP-hard. They also provide an exact algorithm

for the problem running in exponential time and space where n is the number of taxa.

In 2014 Hassanzadeh et al. [6] proposed a new triplet based method (MTRT) to construct

a multi-labeled phylogenetic tree from rooted triplets. The results of MTRT show that triplets

alone cannot provide enough information to infer the true MUL-tree. So, it is in appropriate

to infer a MUL-tree using triplet information alone and considering the minimum number of

duplications. MTRT is a heuristic method that aims to solve the SMRT problem. The goal

of the algorithm is to construct a minimal MUL-tree that is consistent with the input set of

triplets and minimizes the number of its duplications.

The MUL-trees construction approaches mentioned above were developed by researchers to

construct MUL-trees from a set of triplet instead of a set of quartet. But to the best of our

knowledge, there is no study to construct MUL-trees from quartets. In this paper we present

an algorithm named QMUL and AQMUL to construct MUL-trees from quartets with fewer

1.6. OBJECTIVES OF THIS THESIS 13

leaf duplications. The QMUL and the AQMUL are conventional divide and conquer algorithm

with some modification.

1.6 Objectives of this Thesis

The objective of this thesis is to provide algorithms for constructing multi-labeled phylogenetic

trees from quartets to overcome the shortcoming of supertree construction problem mentioned in

Section 1.1. We will study the problem related to quartet based phylogenetic tree construction.

We will conduct experiments on simulated data and real data to analyze the performance of our

propose algorithms. In conventional divide and conquer based MUL-tree construction approach,

we will use the bipartition method which will ensure the consistency of maximum number of

quartets. In our research we will also provide super-split analysis technique and quartet analysis

technique which be the most decisive part of our propose algorithms. The super-split analysis

technique and the quartet analysis technique will be used to perform duplication with fewer

leaf. The main objectives of this thesis are as follows:

1. To study the problems on construction of supertrees and multi-labeled phylogenetic trees

from a set of quartets.

2. To design algorithms for constructing MUL-trees with fewer leaf duplications.

3. Performance comparison of the developed algorithms.

4. To conduct experiments on synthetic data and real data to analyze the performance of

propose algorithms.

1.7 Summary of Results

In this thesis, we basically address the limitations of supertree construction problem and pro-

posed appropriate algorithms to solve the problem. We have proposed two algorithms with

14 CHAPTER 1. INTRODUCTION

three auxiliary techniques to construct MUL-trees from a set of quartets. We first have pro-

posed a bipartition based divide and conquer approach (QMUL) with super-split analysis tech-

nique. But it cannot always guarantee the minimum number of duplications. To overcome

the shortcoming of QMUL approach we finally proposed AQMUL (MUL-trees from Quartets

with Advanced method) approach which is the modification of QMUL approach. We have con-

ducted experiments on simulated datasets and real datasets to analyze the performance of our

proposed algorithms. We have found that AQMUL is more efficient than QMUL to construct

MUL-Trees in terms of average number of duplications. Our proposed auxiliary techniques to

construct MUL-trees are are as follows:

1. Randomized divide and conquer approach with randomized duplication technique (in

short RDCRD).

2. Bipartition based divide and conquer approach with randomized duplication technique

(in short BDCRD).

3. Randomized divide and conquer approach with super-split analysis technique (in short

RDCSSplitA).

1.8 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2 we discuss the relevant ideas and

necessary definitions from phylogenetic tree and multi-labeled phylogenetic tree to understand

our research work and which was used throughout the paper. We have also discussed bipartition

method, define split, super-split and Depth one chain in this chapter. Chapter 3 describes the

meathod and material to solve our problem. In this chapter we have also describe super-

split analysis technique and quartet analysis technuque which is the most crucial part of our

algorithms. Chapter 4 is devote for simulation and performance analysis. Finally, We conclude

in Chapter 5 with some open problems and future research scopes related to this thesis.

1.9. SUMMARY 15

1.9 Summary

In this chapter we have characterized multi-labeled phylogenetic tree construction from a set of

quartet. We have provided some applications of multi-labeled phylogenetic tree like perusing

host-parasite cospeciation, design gene trees, biogeography and construct phylogenetic net-

works. We have also presented motivation and the objective of this thesis. We have introduced

the similar problems found in the literature. Finally we have provided the results of this thesis

and its organization.

Chapter 2

Preliminaries

In this chapter we give necessary definitions and terminologies which will be used throughout

the thesis. Most of the contents of this chapter are taken from the existing literature [1, 4, 5, 6,

15, 21] in order to study the basic methodologies of analyzing MUL-trees. Definitions that are

not included in this chapter will be introduced as they are needed. We start, in Section 2.1 by

giving some definitions of standard phylogeny-theoretical terms used in our thesis. In Section

2.2 we define different terms related to bipartition technique inspired by the famous Fiduccia

and Mattheyses (FM) algorithm for bipartitioning a hyper graph minimizing the cut size [9].

2.1 Basic Terminology

In this section we give some definitions of standard phylogenetic-theoretical terms used through-

out the remainder of this thesis. Interested readers are referred to see the detailed texts of the

literature [1, 4, 5, 6, 15, 21].

2.1.1 Trees

Since this thesis is about phylogenetic trees, it is therefore appropriate to start by defining a

tree. A tree S = {V,E} is a connected graph with no cycles. Figure 2.1 is an example of a

16

2.1. BASIC TERMINOLOGY 17

tree. The vertices in a tree are usually called nodes. A rooted tree is a tree in which one of the

nodes is distinguished from the others; otherwise the tree is unrooted. The distinguished node

is called the root of the tree. The root of a tree is generally drawn at the top. In Figure 2.1 (b),

the root is u1. Every node u other than the root is connected by an edge to some other node

p called the parent of u. We also call u a child of p. We draw the parent of a node above that

node. For example, in Figure 2.1(b), u1 is the parent of u2, v3 and u3, while u2 is the parent

of v1 and v2; v4 and v4 are children of u3. A leaf is a node of a tree that has no children. An

internal node is a node that has one or more children. Thus every node of a tree is either a leaf

or an internal node. In Figure 2.1(b), the leaves are v1, v2, v3, v4 and v5, and the nodes u2 and

u3 are internal nodes.

u1

u3u2

v1 v2

v3

v4 v5

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5 v6

v7
v8

v9

(a) (b)

Figure 2.1: Illustration of a tree (a) unrooted (b) rooted.

2.1.2 Phylogenetic Trees

Phylogenetics is the study of evolutionary relationships among organisms or genes. A graphical

representation of evolutionary relationships among various biological species or other entities

based upon similarities and differences in their physical or genetic characteristics is called phy-

logenetic tree or evolutionary tree. We can also say that a phylogenetic tree is a hypothesis that

depicts the evolutionary relationships among groups of organisms; in detailed in phylogenetic

trees, branch points indicate new species diverged from a common ancestor. Species (or groups

of species) and their most recent common ancestor form a clade within a phylogenetic tree.

18 CHAPTER 2. PRELIMINARIES

Technically speaking, such a tree is a simple, connected graph with no cycles, and it is leaf-

labeled in case each of its leaves (i.e. vertices of degree 1) is labeled by precisely one element

from some set. The set of labels corresponds to the set of species, populations or organisms

under consideration. Trees can be classified as unrooted or rooted phylogenetic trees.

b

b

b

b

b bbbbbb

b b b b b
w

x

y z l m n o

p

b

b b

b

b b

bbb

bb

b

b b

bb

w x y z m n ol

(a) (b)

Figure 2.2: Illustration of phylogenetic tree (a) unrooted (b) rooted.

An unrooted phylogenetic tree or just unrooted tree is an acyclic connected graph having

no internal vertices of degree two and every leaf having different label. In Figure 2.2(a) the

leaves are vertices of degree one. On the other hand a rooted phylogenetic tree in Figure 2.2(b)

is similar to an unrooted tree, except it has one internal vertex of degree two, which is called

the root. The internal vertices of unrooted or rooted (except the root) trees can have degree

three or greater. For example a binary phylogenetic tree, is a tree having all internal vertices

of degree three. Again the only exception is the root, which has degree two. In a fully resolved

binary phylogenetic tree with n leaf nodes there are n−1 internal nodes. The leaves of the tree

represent species. For example let L(T) be the set of leaves for tree T . If T the set of trees,

then we can say that L(T) is the union of the leaf sets of the trees in T . In a rooted tree we

say that a vertex x is an ancestor of a vertex y, if the path from y to the root passes through

x. We can also say that y is the descendant of x. The vertices adjacent to a vertex that are

descendants of the vertex are called the children of the vertex, and the adjacent vertex that is

an ancestor is called the parent of that vertex.

There is a clear distinction between rooted and unrooted settings. Under the rooted setting,

trees contain a distinguished internal node denoted as the root and phylogenetic relationships

are expressed by the least common ancestor relation. In the unrooted setting, there is no such

2.1. BASIC TERMINOLOGY 19

b b

b

b
b

b

b b

b

b
b

b

Bifurcating

b bb

b

b bb

Multifurcating

a

b

c d

e

f

a

b

c
d

e

f

g

b

(a)

b

bbb

b b b b

a b c d

b

bbb

b b b b

a b c
d

Bifurcating

Multifurcating

(b)

b e

b

Figure 2.3: Illustration of bifurcating and multifurcating tree (a) unrooted (b) rooted.

node and relationships are represented by splits internal edges that split the taxa set into two

parts. Both rooted and unrooted phylogenetic trees can be either bifurcating or multifurcating

, and either labeled or unlabeled. A rooted bifurcating tree has exactly two descendants arising

from each interior node (that is, it forms a binary tree), and an unrooted bifurcating tree

takes the form of an unrooted binary tree, a free tree with exactly three neighbors at each

internal node. In contrast, a rooted multifurcating (or polytomous) tree may have more than

two children at some nodes and an unrooted multifurcating tree may have more than three

neighbors at some nodes. Rooted and unrooted bifurcating and multifurcating trees are shown

in figure 2.3. A labeled tree has specific values assigned to its leaves, while an unlabeled tree,

sometimes called a tree shape, defines a topology only. The number of possible trees for a

given number of leaf nodes depends on the specific type of tree, but there are always more

multifurcating than bifurcating trees, more labeled than unlabeled trees and more rooted than

unrooted trees. The last distinction is the most biologically relevant; it arises because there are

many places on an unrooted tree to put the root.

20 CHAPTER 2. PRELIMINARIES

2.1.3 Supertrees

It often happens that several phylogenies with different but overlapping taxa sets have to be

combined within a single phylogeny, representing a summary of these source phylogenies. The

resulting tree is called a supertree as it is built from trees and usually contains more species or

taxa than each input tree. Supertrees are phylogenies assembled from smaller phylogenies that

share some but not necessarily all species or taxa (leaf nodes) in common. Thus, supertrees can

make novel statements about relationships of taxa that do not co-occur on any single input tree

while still retaining hierarchical information from the input trees. As a method of combining

existing phylogenetic information, supertrees potentially solve many of the problems associated

with other methods (e.g., absence of homologous characters, incompatible data types, or non-

overlapping sets of taxa). In addition to helping synthesize hypotheses of relationships among

larger sets of taxa, supertrees can suggest optimal strategies for taxon sampling (either for

future supertree construction or for experimental design issues such as choice of outgroups), can

reveal emerging patterns in the large knowledge base of phylogenies currently in the literature,

and can provide useful tools for comparative biologists who frequently have information about

variation across much broader sets of taxa than those found in any one tree.

b

b

b

b

b bbb

b b
1

2

3 4 5

6

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

1

2

3

4

1

2

5

6

3

3

5

6

1

2

3

4

5

6

4

5

q1

q2

q3

q4

q5

(a) (b)

Figure 2.4: Illustration of (a) quartet set Q (b) supertree T .

Mathematically we can say that a tree T is said to be the supertree of a quartet set Q =

{q1, q2, q3, ..., qk} if all the quartets in Q can be found from tree T by deleting leaves and

contracting edges. Supertrees are themselves phylogenetic trees, but they are built by combining

a set of smaller phylogenetic trees. Figure 2.4 shows a super tree which is consistent with the

quartet set Q = {q1, q2, q3, ..., q5}.

2.1. BASIC TERMINOLOGY 21

2.1.4 Caterpillar

In graph theory, a caterpillar or caterpillar tree is a special type of tree in which all the vertices

are within distance one of a central path. An unrooted caterpillar tree in Figure 2.5(a) has

one central path with leaves branching of it. In a rooted caterpillar tree in Figure 2.5(b) leaves

knot to a single path from the root to the single leaf. A binary caterpillar tree is a rooted

binary tree where every internal node has at least one child which is a leaf. Caterpillar trees

have minimum number of pendant pair. So a caterpillar is a tree which metamorphoses into a

path when its leaves are removed.

b b

b b

b b b b

b b b

a

b c d e
b b

f

g

b

b

b

b

b

b

b

b

b

b

b

b

a

b

c

d

e
f(a) (b)

Figure 2.5: Illustration of caterpillar (a) unrooted (b) rooted.

2.1.5 Multi-labeled Phylogenetic Trees

A multi-labeled tree is a natural generalization of the standard phylogenetic tree model that

allows the same leaf label to be used more than once in a single tree structure. Basically there

are two types of MUL-trees i). unrooted MUL-tree and ii). rooted MUL-tree.

An unrooted multi-labeled phylogenetic tree is a tuple T = {T,M,ψ} consisting of an un-

rooted tree T , called underlying tree, a set of labels M , and a surjective labeling function

ϕ : L(T) −→ M that maps each leaf of T with a label in M . A MUL-tree in which each leaf

has the same label (i.e., |M | = 1) is called a uniform MUL-tree. Informally, a MUL-tree is

simply an unrooted phylogeny in which multiple leaves can have the same label. For any label

(l) ∈ M , ϕ−1(l) is the set of all leaves labeled. If ϕ is a bijection, the corresponding unrooted

MUL-tree is just a (singly-labeled) unrooted tree.

Similarly, a rooted multi-labeled phylogenetic tree is a tuple T = {T,M,ψ} consisting of an

22 CHAPTER 2. PRELIMINARIES

b

b

b

b

b bbbbbb

b b b b b
w

x

y z w l m n

z

b

b b

b

b b

bbb

bb

b

b b

bb

w x y w l m n z

(a) (b)

Figure 2.6: Illustration of Multi-labeled Phylogenetic tree (a) unrooted (b) rooted.

rooted tree T , a set of labels M , and a subjective labeling function ϕ : L(T) −→M that maps

each leaf of T with a label in M . Note that the difference between unrooted and rooted MUL-

trees are in the underlying tree which is a rooted or unrooted tree for rooted and unrooted

MUL-trees, respectively. Figure 2.6 illustrate an unrooted and a rooted MUL-tree.

Number of duplications: For any MUL-tree M , denote the set of all leaf labels that

occur in M by L(M). For any leaf label xǫL(M), the number of duplications of x is equal

to the number of occurrences of x in M minus 1. The number of leaf duplications in M ,

denoted by d(M), is the total number of duplications of all leaf labels in L(M). Define m(M)

as the number of leaves in M . Then, d(M) = m(M) − L(M). For example consider the

MUL-tree in Figure 2.6(a), here the total number leaves in the MUL-tree is m(M) = 9 and

set of all leaf labels that occur in MUL-tree is L(M) = 7; so the number of duplication

d(M) = m(M)− L(M) = 9− 7 = 2.

2.1.6 Gene Trees and Species Trees

A gene tree is an evolutionary tree built by analyzing a gene family, i.e., homologous molecular

sequences appearing in the genome of different organisms. A species tree is a tree which

displaying the evolutionary relationships among studied species. Gene trees are usually multi-

labeled, i.e., a single species can label more than one leaf, since duplication events almost always

result in the presence of several copies of the genes in the species genomes. Most gene trees

can significantly differ from the species tree for methodological or biological reasons, such as

2.1. BASIC TERMINOLOGY 23

b

b

b
b

b

b
b

b
b

b

a

c

b

d
f

g

h
b
e

b

b

b bb

b

b c

(a) (b)

b

b

b

b b

b b

b b

b

b b b b b

b

b bb

b

b

b

b

b b

b b

b b

b

b b b b b
a d e f g h i j k l m n

bb

b

b

b

b

b

Figure 2.7: Illustration of Phylogenetic Network (a) unrooted (b) rooted.

long branch attraction, lateral gene transfers, incomplete lineage sorting, gene duplications and

losses [25]. For this reason, species trees are usually estimated from a large number of gene

trees.

2.1.7 Phylogenetic Networks

A phylogenetic network is any graph used to represent evolutionary relationships (either ab-

stractly or explicitly) between a set of taxa that labels some of its nodes (usually the leaves)

Explicit networks represent evolutionary events, especially reticular events like horizontal gene

transfer, where a gene is transferred between two unrelated organisms. Similar to trees, net-

works can also be divided into two groups, namely unrooted networks and rooted networks.

Both are defined analogously to unrooted and rooted trees. Unrooted networks can be compared

to an unrooted tree: there is no root and the edges can be spread to all sides.

An unrooted phylogenetic network N on X is any unrooted graph whose leaves are bijec-

tively labeled by the taxa in X. Rooted networks on the other hand are comparable to rooted

trees. Their branches emerge from one root and are built up to a tree-like network. A rooted

phylogenetic network N on X is a rooted DAG (direct acyclic graph) whose set of leaves is

bijective labeled by the taxa in X. Any node of indegree ≥ 2 is called reticulate node and all

others are called tree nodes. Any edge leading to a reticulate node is called a reticulate edge

and all others are called tree edges. Consequentially, unrooted and rooted networks are similar

to unrooted and rooted trees. The relevant difference is that networks include the representa-

24 CHAPTER 2. PRELIMINARIES

w x

b

b bb

b b

b

b

b

b

w

x

y

z
(a) (b)

y

Figure 2.8: Illustration of (a) Triplet and (b) Quartet.

tion of evolutionary events whilst trees don’t. Figure 2.7 illustrate an unrooted and a rooted

phylogenetic network.

2.1.8 Triplets and Quartets

The smallest informative piece of rooted phylogenetic information is called triplet . A rooted

triplet, or triplet for short, is a binary rooted tree on three distinct taxa. A triplet on three

taxa x, y and w is denoted by (w(xy)) if the lowest common ancestor of x and y is a proper

descendant of that of x and w, or y and w as shown in Figure 2.8. The smallest informative

piece of unrooted phylogenetic information is called quartet . It is an undirected phylogenetic

tree having exactly four taxa or leaves with a single, central and internal edge. A quartet over

the taxa w, x, y, z denoted as ((w, x), (y, z)) whenever there is an edge in the underlying tree

separating the pair w, x from the pair y, z as shown in Figure 2.8. A bipartition of an unrooted

tree T is formed by taking any edge in T , and writing down the two sets of taxa that would be

formed by deleting that edge. Let T be a tree over the taxa set S. Now, if we take an internal

edge e of T and delete e, then we get two subtrees, namely, Ta and Tb . Let Sa and Sb be the

sets of taxa of Ta and Tb respectively. We shall denote such bipartition by (Sa, Sb). Thus an

internal edge in T corresponds to a bipartition of S.

Given a quartet ((w, x), (y, z)), we say that a quartet tree on this set is unresolved if it is

a star (four edges, each touching a leaf) and denote it by (wxyz). If the quartet tree has an

internal edge separating two pairs of leaves we say that it is resolved . We will use quartet in

lieu of quartet tree or resolved quartet when the sense is clear. A quartet q = ((w, x), (y, z))

is satisfied with respect to a bipartition (Sa, Sb) if taxa w and x reside in one part and taxa

2.1. BASIC TERMINOLOGY 25

b

b

b

b

b bbbb

b b b
w

x

y z e f

g

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

w

y

y

z

w

x

z x

w

x

z

y

q1

q2

q3

(a) (b)

Figure 2.9: Illustration of quartet consistency with a tree T .

y and z reside in the other. The quartet q is said to be violated with respect to a bipartition

(Sa, Sb) when taxa w and y (or w and z) reside in one part and taxa x and z (or x and y) reside

in the other part. The quartet q is said to be deferred with respect to a bipartition (Sa, Sb) if

any three of its four taxa reside in one part and the fourth one resides in the other. On the

other hand quartet q is said to be isolated with respect to a bipartition (Sa, Sb) if all the four

taxa reside in any one part. A satisfied quartet is consistent with respect to a tree T that is

formed from the bipartition (Sa, Sb). A quartet ((w, x), (y, z)) is consistent with respect to a

tree T if in tree T , the path from w to x does not intersect the path from y to z or if there is

an edge (or path in general) separating the taxa pair (w, x) from (y, z). In Figure 2.9 among

the three quartets, quartet q1 is consistent with a tree T as there exists an edge in T such that

it separates(w, x) from (y, z). Other two quartet q2 and q3 are inconsistent with T as no such

edge exists in T . A taxon t1 of a quarte q1 is inconsistent if the location of t1 makes the quartet

inconsistent with respect to a tree T and the taxon t1 is known as inconsistent taxon. The taxa

pair which contains inconsistent taxon is called inconsistent pair . For example in Figure 2.9(a)

the taxon x makes the quartet q2 to inconsistent, so x is inconsistent taxon and the taxa pair

(x, z) is inconsistent pair.

2.1.9 Splits and Super-splits

Let T be an unrooted tree and e be an edge of T . Removal of e divides T into two components.

Let A be the set of leaves in one component and B be the set of leaves in another component.

A and B are called the parts of the resulting split A|B. Order does not matter, so A|B is

26 CHAPTER 2. PRELIMINARIES

identical to B|A. Each edge in a tree induces a unique split. A split is called quartet if

each of A and B contains exactly two leaves. For example a split w, x|y, z or ((w, x), (y, y))

is a quartet. A split A|B is called a super-split (Ssplit) of a quartet set Q over a taxa set

S if A and B contain all the leaves in S and each quartet can be derived by deleting leave

and contracting edge from A|B or if all the quartets in Q displayed by Ssplit. Let consider

a quartet set Q = {((1, 3), (2, 4)), ((1, 4), (2, 5))}. Each quartet in set Q can be derived from

the splits {((1,3,4),(2,4,5))} or {((1,2,3,5),(1,2,4))} and all leaves in S also present in splits; so

{((1,3,4),(2,4,5))} or {((1,2,3,5),(1,2,4))} is a super-split of quartet set Q. A super-split has

two parts; the left part and the right part. The part of a super-split which contains minimum

number of taxa is called minimum super-element . In Figure 2.10 there are two super-splits and

three minimum super-elements, (1, 3, 4), (2, 4, 5) and (1, 2, 4).

b

b

b b b b

b

b

b b b

b

b b b b

b

b

b b

b

b1
2

3

4

5

1
1

2

3
4

5 2

4

((1, 3, 4), (2, 4, 5)) ((1, 2, 3, 5), (1, 2, 4))

(a) (b)

Figure 2.10: Illustration of Super-split.

2.1.10 Depth one Chains

A tree T over taxa set S is said to be a star star, if T has only one internal node and there is

an edge from the internal node incident to each taxon . We shall refer to such a tree as a depth

one tree. The set of taxa which return depth one tree is refer to as depth one element in short

de. By inserting edge among depth one element de we get a chain of depth one element over

taxa set S. We shall refer to such a chain as a depth one chain in short dchain as shown in

Figure 2.11.

2.2. BIPARTITION 27

3, A2, A31, 2, A2 5, 6, A1
4, A1, A3

(a) Depth one element

3, A2, A31, 2, A2 5, 6, A1
4, A1, A3

(b) Depth one chain

Figure 2.11: Illustration of (a) Depth one element (b) Depth one chain.

2.2 Bipartition

Bipartition is a process that takes a pair of taxa set and a quartet set (S,Q) as input. It

partitions S into two sets, namely Sa and Sb with an objective that (Sa, Sb) satisfies the

maximum number of quartets from Q. A bipartition of an unrooted tree T is formed by taking

any edge in T , and writing down the two sets of taxa that would be formed by deleting that

edge. Let T be a tree over the taxa set S. Now, if we take an internal edge e of T and delete

e, then we get two subtrees, namely, Ta and Tb. Let Sa and Sb be the sets of taxa of Ta and

Tb respectively. We shall denote such bipartition by (Sa, Sb). Thus an internal edge in T

corresponds to a bipartition of S .

2.2.1 Method of Bipartition

Bipartition and MaxCut are the state-of-the-art technique to partition the taxa set. But in

our research we used bipartition method to partition the taxa set. In conventional divide

and conquer based phylogenetic tree construction, the bipartition of the taxa set agrees to an

internal edge of the tree under construction. An internal edge, in turn, plays an important

role to make quartets to be satisfied or violated against the bipartition. The input of the

bipartition algorithm is (S,Q) pair, where S is a set of taxa and Q is a set of quartet. To

satisfy the maximum number of quartets from Q we partitions S into two sets, namely, Sa and

Sb. The algorithm starts with an initial partition (Sa0 , Sb0) and iteratively searches for a better

partition. Before describing the steps of the algorithm, we describe the following algorithmic

ingredients to understand the steps of the bipartition algorithm which is similar to QFM [1].

28 CHAPTER 2. PRELIMINARIES

Partition Score: Wemete the performance of a partition by assigning a partition score. We

use a scoring function, score (Sa, Sb, Q), as well as high scores indicate a better partition. This

function checks each qǫQ against the partition (Sa, Sb) and determines whether q is satisfied,

violated or deferred. We define the score function in terms of the number of satisfied and

violated quartets. Assume that s and v signify the number of satisfied and violated quartets.

There are, two natural ways of defining the score function are: (a). taking the difference

between the number of satisfied and violated quartets (s− v), and (b). taking the ratio of the

number of satisfied and violated quartets (s/1 + v). For the convenience, in this research we

used s− v as the score function.

Gain Measure: Let (Sa, Sb) be a partition of set of taxa S. Let lǫS be a taxon and

without loss of generality we assume that lǫ(S−a). Let (Sa′ , Sb′) be the partition after moving

the taxa l from Sa to Sb. That means, Sa′= Sa - l, and Sb′ = Sb ∪ l. Then we define the

gain of the transfer of the taxon l with respect to (Sa,Sb), denoted by Gain(l,(Sa,Sb)), as

Score(Sa′ ,Sb′ ,Q)-Score(Sa,Sb,Q).

Singleton Bipartition: A bipartition (Sa, Sb) of S is singleton if |Sa|=1 or |Sb|=1. In

our bipartition algorithm, we keep a check for the singleton bipartition. We do not allow our

bipartition algorithm to return a singleton bipartition to avoid the risk of an infinite loop.

Algorithm: Now we describe the bipartition algorithm which is known as MFM (Modified

FM). Let, (S, Q) be the input to the bipartition algorithm, where S be a set of taxa and Q be

a set of quartets over the taxa set S. We start with an initial bipartition (Sa0 , Sb0) of S. The

initial bipartitioning is done in four steps.

• Step 1: We count the frequency of each distinct quartet in Q.

• Step 2: We then sort Q by the frequency count of the quartets in a decreasing order.

• Step 3: Suppose after sorting Q = {q1,q2,q3,...,qk} where k= |Q|. Now we consider the

quartets one by one in the sorted order. Initially both Sa0 and Sb0 are empty.

Let qǫ ((l1, l2), (l3, l4)) be a quartet in Q. If none of the 4 taxa belongs to either Sa0 or Sb0,

then we insert l1 and l2 in Sa0 and l3 and l4 in Sb0 . Otherwise, if any of the 4 taxa exists

2.2. BIPARTITION 29

in either Sa0 or Sb0 we take the following actions to insert a taxon which doest not exist

in Sa0 or Sb0 . We maintain an insertion order. We consider l1, l2, l3 and l4 respectively.

-To insert l1, we look for the partition of l2 (if l2 exists in any part) and insert l1 into

that partition. But if l2 does not exist in either of the partitions, then we look for the

partition of either l3 or l4 (either of these two must exist in Sa0 or Sb0) and insert l1 into

the other partition.

-To insert l2, we look for the partition of l1 and insert l2 into that partition.

-To insert l3, we look for the partition of l4 (if l4 exists in any part) and insert l3 into

that partition. But if l4 does not exist in either of the partitions, then we look for the

partition of either l1 or l2 and insert l3 into the other partition.

-To insert l4, we look for the partition of l3 and insert l4 into that partition.

• Step 4: When we insert a taxon l to any part, we remove it from S. After considering each

qǫ(Q) and inserting taxa accordingly, if S remains non-empty, we insert the remaining

taxa to either part randomly.

After finding (Sa0 , Sb0), we perform iterative search for a better partition. At each it-

eration, we perform a series of transfers of taxa from one partition set to the other to

maximize the number of satisfied quartets. At the beginning of iteration, we set the

status of all the taxa as free. Then, for each free taxon lǫS, we calculate Gain(l,(Sa0 ,

Sb0)), and find the taxon l1 with the maximum gain. There can be more than one

taxa with the maximum gain where we need to break the tie. We will discuss this issue

later. Next we transfer l1 and set the status of this taxon as locked in the new parti-

tion that indicates that it will not be considered to be transferred again in this current

iteration. First intermediate bipartition (Sa1 , Sb1) is formed by this transfer. Similarly

the algorithm finds the next free taxon l2 with the maximum gain with respect to (Sa1 ,

Sb1), and transfer and lock that taxon to create another intermediate bipartition (Sa2 ,

Sb2). Then we transfer all the free taxon one by one in this fashion. Assume that Q=

30 CHAPTER 2. PRELIMINARIES

1

2

3

4
5

6

Sb0 Gain (1) = 0

Gain (2) = 0
Gain (3) = 2
Gain (4) = 0
Gain (5) =-2
Gain (6) =-2

Locked all taxa

1

2

3

4

5

6

Sa1 Sb1 Gain (1) =-3

Gain (2) =-1

Gain (4) = 1
Gain (5) =-3
Gain (6) =-3

Sa6 Sb6

5 6

Sa5 Sb5

Gain (6) =2

Gain (1) =-3

Gain (2) =-1

Gain (5) =-3
Gain (6) =-3

2

5
6

Sa4 Sb4

Gain (5) =-2
Gain (6) =-2

Gain (1) =-2

Gain (5) =-3
Gain (6) =-3 4

3
1

4

3

2

1

5

4

3

6

2

1

Sa0

4

5

6

Sa2 Sb2

5

6

Sa3 Sb3

1
2

3

4

1 2

3

Figure 2.12: An example iteration of the Bipartition Algorithm.

{((1,2),(3,4)),((1,2),(5,6)),((1,3),(2,4)),((1,3),(5,6)), ((3,4),(5,6)),((2,3),(4,5)),((1,4),(2,5))},

be the input quartet set and hence S = {1,2,3,4,5,6}. Following the steps of the initial

bipartition, we get the initial bipartition Sa0 = (1,2) and Sb0 = (3,4,5,6). Figure 2.12

shows the first iteration of the bipartition algorithm [1] for this particular example.

Suppose that the taxa are locked in the following order: (l1, l2,l3,...,ln). That is, l1 has

been locked first, then l2, l3 and so on. Let, the gain values of the corresponding partitions

are:

Gain (l1 ,(Sa0 , Sb0)), . . . ,Gain (ln ,(San−1
, Sbn−1

)).

Now we define the cumulative gain up to the kth transfer as

CGain(k) =
∑k

n=1
Gain(ln, (Sai−1

, Sbi−1
))

The maximum cumulative gain, MCGain ({l1,l2,l3,...,ln}) is defined asMCGain ({l1,l2,l3,...,ln})

= max1≤i≤nCGain(i)

In each iteration, the algorithm finds the current ordering ({l1,l2,l3,...,ln}) of the transfers

2.2. BIPARTITION 31

Step Taxon Gain CGain(k)

1 3 2 2
2 4 1 3
3 2 -1 2
4 1 -2 0
5 5 -2 -2
6 6 2 0

Table 2.1: Gain Summary

Step Taxon Gain CGain(k)

1 4 1 1
2 2 -1 0
3 1 -2 -2
4 5 -2 -4
5 6 2 -2
6 3 2 0

Table 2.2: Gain Summary

and saves this order in a log table along with the cumulative gains (see Table 2.1 for exam-

ple). Let tm be the taxon in the log table corresponding to MCGain ({l1,l2,l3,...,ln}). This

means that we obtain the maximum cumulative gain after moving the mth taxon (with

respect to the order stored in the log table). Then we rollback the transfers of the taxa

({lm+1 ,...,ln}) that were moved after lm. Let the resultant partition after these rollbacks

is (Sa,Sb). This partition will be the initial partition for the next iteration. In this way,

the algorithm continues as long as the maximum cumulative gain is greater than zero

and returns the resultant bipartition. Table 2.1 lists the order of locking, corresponding

gain and cumulative gain with respect to the iteration illustrated in Figure 2.12. From

Table 2.1 we note that we get the maximum cumulative gain 3, after moving taxon 4. If

maximum cumulative gain is tie we break the tie arbitrarily. We consider the taxon for

which we get the maximum cumulative gain for the first time. For this example, we get

the maximum cumulative gain of 3 at taxon 4 for the first time. So we rollback all the sub-

sequent moves. The resultant partition after this rollback is ({1,2,3,4},{5,6}) (partition

(Sa2 ,Sb2) in Figure 2.12). Similarly, Table 2.2 lists the ordering of locking, corresponding

gain and cumulative gain with respect to the iteration which follows the iteration illus-

trated in Figure 2.12. From Table 2.2 we get that the maximum cumulative gain is 1. So

the moves are rolled back and we get the final resultant partition ({1,2,3,4},{5,6}).

As we have mentioned earlier, we do not allow any transfer of taxa that results into a

singleton bipartition. Therefore, we need to add some additional conditions. Also, there

could be more than one free taxa with the maximum gain, where we need to decide which

32 CHAPTER 2. PRELIMINARIES

one to transfer. We consider the following cases to address these issues. Let, F be a set

of free taxa with the maximum gain.

– Case 1: |F | ≥ 1 and at least one corresponding bipartition is not singleton. That

means, there exists lǫF such that transfer of l does not result into a singleton bi-

partition. Let F ∗ ⊆ F be the set of taxa that can be safely transferred without

resulting in a singleton bipartition. Note that, |F∗| ≥ 1. If |F∗| = 1, we transfer

the taxa F∗. Otherwise, we have more than one taxa in F∗. In that case, we pick

the taxon lǫF∗ for which the corresponding bipartition (after transferring l) satisfies

maximum number of quartets (note that every taxa in F∗ has the same gain, but the

corresponding bipartitions do not necessarily satisfy the same number of quartets).

In the case of a tie, we choose one taxon at random.

– Case 2:|k| ≥ 1 and transfer of each lǫF results in a singleton bipartition. In this

case, we consider the set of taxa with the second highest maximum gain. Let F ′

be the set of free taxa with the second highest maximum gain. We then recursively

check Case 1 and Case 2 on F ′ . If we cannot find a taxon that can be transferred

without resulting into a singleton bipartition, we make the status of all the free taxa

locked and set their gain to zero.

At each divide step we have a (S,Q) pair as input. The bipartition algorithm returns a

bipartition (Sa, Sb) of the taxa set S. We then divide Q into Qa and Qb and obtain (Sa, Qa)

and (Sb, Qb) pairs. Sa and Sb will be further bipartitioned in subsequent divide steps.

2.3 Summary

In this chapter we have defined some basic phylogenetic-theoretical terminology related to our

research. We have presented bipartition method with a particular example. We also defined

the algorithmic ingredients of bipartition method.

Chapter 3

Algorithms for Constructing

MUL-Trees

3.1 Algorithms

In this chapter, we study several method to design multi-labeled phylogenetic tree from a

set of quartets. We assume that Q is a set of quartets over a set of taxa S. We have to

construct a MUL-tree from the quartet set Q which satisfied all quartet in Q with minimum

number of leaf duplication. In Section 3.1.1 we first propose Randomized divide and conquer

approach with randomized duplication technique (RDCRD) which is less effective. In Section

3.1.2 we introduce randomized divide and conquer approach with super-split analysis technique

(RDCSSplitA). In Section 3.1.3 we provide a bipartition based divide and conquer approach

with randomized duplication technique (BDCRD). In Section 3.1.4 we present a bipartition

based divide and conquer approach with super-split analysis technique (QMUL) which is most

efficient than above three. Finally in Section 3.1.5 we present another bipartition based divide

and conquer approach with quartet analysis technique (AQMUL) which is more efficient and

advanced than QMUL.

33

34

3.1.1 RDCRD Approach

In this section we present randomized divide and conquer approach with randomized dupli-

cation technique (RDCRD). RDCRD approach has three steps i) Randomized divide step i)

Randomized duplication step and iii) Conquer step.

Randomized Divide: At each recursive step, we partition the taxa set S into two sets (Sa

and Sb) randomly. After partitioning the taxa set, the algorithm prolongs both parts (Sa and

Sb) with a unique artificial taxon Ai. This taxon will play an important role while returning

from the recursion. We then recurse on both pairs (Sa) and (Sb) until |Si| ≥ 3. If |Si| ≤ 3, we

return depth one element and depth one tree over the taxa set S. Finally add another type of

dummy taxon Du in any depth one element de that will help us to merge depth one tree with

the caterpillar.

Randomized Duplication: Before duplication process we have perform consistency check-

ing method with respect to depth one chain. By this process we found all inconsistent quartets.

We know that each quartet has two parts; the left part and the right part. Now randomly pick

left part or right part of each quartet and perform union operation. By this process we get a

set of taxa to perform duplication. Now add a dummy taxon Du with the taxa set. Finally we

use the taxa set to make a caterpillar. The dummy taxon Du will play an important role to

merge depth one tree with the caterpillar.

Conquer: On returning from the recursion, at each step, we have two trees, Ta (corre-

sponding to (Sa)) and Tb (corresponding to (Sb)). These two trees are rerooted at the dummy

taxon. Then the dummy taxon is removed from each tree and the two roots are joined by an

internal edge. Continue this process until the tree is free from artificial taxon Ai and dummy

taxon DU and finally get a MUL-tree.

3.1.2 RDCSSplitA Approach

In this section we present randomized divide and conquer approach with super-split analysis

technique (RDCSSplitA). RDCSSplitA approach has three steps i) Randomized divide step i)

3.1. ALGORITHMS 35

1, 2, 3, 4, 5, 6

1, 4, 3, A1
2, 5, 6, A1

4, A1, A2

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))
q4 : ((1, 3), (5, 6))

Quartets

D
iv

id
e

Depth One

Inconsistent Quartets = ((1, 2), (3, 4)); ((1, 2), (5, 6)); ((2, 3), (4, 5))

C
o

n
q

u
er

1

3

A2

4

A2

A1

6

Du

1

2

1

3

4

A1

1

2

1

3

4 5

2

6

1, 3, A2

6

Du

5

A1

A2

q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

Set of taxa
4, A1, A21, 3, A2 2, 6, A2

5, A1, A2

2.2. Union Operation

2, 6, A2, Du
4, A1, A21, 3, A2

5, A1, A2

5

A1

6

Du

2

A2

2

1

3 Du

4 5
2

1, 2, 3, 5, 6, Du

6

3. Conquer Step

Depth One

Chain

2.1. Quartet Checking Method

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))
q4 : ((1, 3), (5, 6))

Quartets
q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

b

b

b

b

b b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b b

bb

bb

b

b

b

b

b b b

b

b

b

b

b

bb b

b b

b b b

b b bb b

b

b

b

b

MUL− Tree

2. Randomized Duplication Step1. Divide Step

2, 6, A25, A1, A2
Element

Duplicated Taxa = (1,2) U (5,6) U (2,3) = 1,2,3,5,6

Duplicated Taxa with Dummy Taxa 1, 2, 3, 5, 6, Du

b

b 3 b

b

5

b

b

b

b

b

bb

b b

b

1

2Du

35
6

b

b

b

b

b bb

35

6b

bbb

Figure 3.1: Illustration of RDCRD approach

36

1, 2, 3, 4, 5, 6

1, 4, 3, A1
2, 5, 6, A1

4, A1, A2

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))
q4 : ((1, 3), (5, 6))

Quartets

D
iv

id
e

Depth One

Inconsistent Quartets = ((1, 2), (3, 4)); ((1, 2), (5, 6)); ((2, 3), (4, 5))

C
o

n
q

u
er

1

3

A2

4

A2

A1

Du

1

2

1

3

4

A1

1

2

1

23

4 5 6

1, 3, A2

6

Du

5

A1

A2

q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

Set of taxa
4, A1, A21, 3, A2 2, 6, A2

5, A1, A2

2.2. Super-split Method

2, 6, A2, Du
4, A1, A21, 3, A2

5, A1, A2

5

A1

6

Du

2

A2

2

1

3

2

Du

4 5

1, 2, 3, 5, 6, Du

3. Conquer Step

Depth One

Chain

2.1. Quartet Checking Method

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))
q4 : ((1, 3), (5, 6))

Quartets
q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

b

b

b

b

b b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b b

bb

bb

b

b

b

b

b b b

b

b

b

b

b

bb b

b b

b b b b

b b

b

bb b

b

b

b

b

b

MUL− Tree

2. Super-split Analysis Step1. Divide Step

2, 6, A25, A1, A2
Element

((1, 2), (3, 4))

3

b

b

b

b

b

b

1

2Du

3

3

((1, 2), (5, 6)) ((5, 6), (1, 2))

((1, 2), (3, 4, 5, 6)) ((1, 2, 5, 6), (1, 2, 3, 4))

((1, 2, 3), (3, 4, 5, 6)) ((1, 2, 4, 5), (2, 3, 4, 5, 6)) ((1, 2, 3, 5, 6), (1, 2, 3, 4, 5)) ((1, 2, 4, 5, 6), (1, 2, 3, 4))

((2, 3), (4, 5)) ((4, 5), (2, 3)) ((2, 3), (4, 5)) ((4, 5), (2, 3))

Minimum super-element 1, 2, 3, Du

b

6b

Figure 3.2: Illustration of RDCSSplitA approach

Super-split analysis step and iii) Conquer step.

Randomized Divide: At each recursive step, we partition the taxa set S into two sets (Sa

and Sb) randomly. After partitioning the taxa set, the algorithm prolongs both parts (Sa and

Sb) with a unique artificial taxon Ai. This taxon will play an important role while returning

from the recursion. We then recurse on both pairs (Sa) and (Sb) until |Si| ≥ 3. If |Si| ≤ 3, we

return depth one element and depth one tree over the taxa set S. Finally add another type of

dummy taxon Du in any depth one element de that will help us to merge depth one tree with

the caterpillar.

Super-split Analysis: The most crucial part of our algorithm is the super-split analysis

technique. It has two parts i) consistency checking method and ii) super-split method. These

3.1. ALGORITHMS 37

two methods will be described in Section 3. After divide step we check the consistency of each

quartet by consistency checking process. Finally we get all inconsistent quartets with respect to

depth one chain. By super-split method we get expected minimum super-element and it ensures

fewer leave duplications. Now add another artificial taxon Du in minimum super-element that

will help us to merge the caterpillar with the depth one tree. Consequently we design caterpillar

using the taxa from minimum super-element.

Conquer: On returning from the recursion, at each step, we have two trees, Ta (corre-

sponding to (Sa)) and Tb (corresponding to (Sb)). These two trees are rerooted at the dummy

taxon. Then the dummy taxon is removed from each tree and the two roots are joined by an

internal edge. Continue this process until the tree is free from artificial taxon Ai and dummy

taxon DU and finally get a MUL-tree.

3.1.3 BDCRD Approach

In this section we present bipartition based divide and conquer approach with randomized

duplication technique (BDCRD). BDCRD approach has three steps i) bipartition based divide

step ii) Randomized duplication step and iii) Conquer step.

Divide Step: At each divide step, we partition the set of taxa S into two sets Sa and

Sb. We shall describe the bipartition algorithm in Section 3. After partitioning the taxa set,

the algorithm prolongs both parts (Sa and Sb) with a unique artificial taxon Ai. The artificial

taxon will play an important role while returning from the recursion. After the addition of the

artificial taxon to the sets Sa and Sb we subdivide the quartet set Q into two sets Qa and Qb.

Now Qa and Qb takes the deferred quartets and the isolated quartets. That means, satisfied

and violated quartets with respect to the partition (Sa, Sb) are discarded. On the other hand,

every deferred quartet where three taxa are in the same part, the other taxon is renamed by the

name of the artificial taxon. Then the deferred quartets and the isolated quartets are continues

to the next step. Therefore we get, two pairs: (Qa,Sa) and (Qb,Sb). Consequently we recurse

on both pairs (Qa,Sa) and (Qb,Sb) until Qi is non-empty and |Si| ≥ 3. If either Qi is empty

or |Si| ≤ 3, we return depth one element de and depth one tree over the taxa set S. Now add

38

1, 2, 3, 4, 5, 6

1, 2, 3, 4, A1
5, 6, A1

3, 4, A1, A2

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))
q4 : ((1, 3), (5, 6))

Quartets

((1,2),(3,4))

((1,3),(2,4))

D
iv

id
e

Depth One

Inconsistent Quartets = ((1, 3), (2, 4)); ((1, 4), (2, 5))

C
o

n
q

u
er

1

2

A2

3

A2

A1

5

Du

1

2

1

2

3

A1

1

2

1

2

3 4 5

6

1, 2, A2

6

Du

4

A1

A2

((A1, 4), (5, 6))

Element

q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

Set of taxa

4, A1, A33, A2, A3

3, A2, A31, 2, A2 5, 6, A1
4, A1, A3

2.2. Union Operation

5, 6, A1, Du
3, A2, A31, 2, A2

4, A1, A3

4

A1

6

Du

5

A2

5

1

2 Du

3 4 5

1, 2, 3, 5, Du

5

3. Conquer Step

5, 6, A1
1, 2, A2

((2, 3), (4, A1))
((1, 4), (2, A1))

Depth One

Chain

2.1. Quartet Checking Method

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))
q4 : ((1, 3), (5, 6))

Quartets
q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

b

b

b

b

b b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b b

bb

bb

b

b

b

b

b b

5

Du

1

2

b

b

b

b

b

bb b

b b

b

b

b

b

bb

b b

b b b b

b b

b

bb b

b

b

b

b

b b

MUL− Tree

2. Randomized Duplication Step1. Divide Step

Duplicated Taxa =(1,3) U (2,5)

Duplicated Taxa with Dummy Taxon 1, 2, 3, 5, Du

b

b
3

b

b

3

b
3

b

6

Figure 3.3: Illustration of BDCRD approach

another type of dummy taxon Du in any depth one element de that will help us to merge depth

one tree with caterpillar.

Randomized Duplication: Before duplication process we have perform consistency check-

ing method with respect to depth one chain. By this process we found all inconsistent quartets.

We know that each quartet has two parts; the left part and the right part. Now randomly pick

left part or right part of each quartet and perform union operation. By this process we get a

set of taxa to perform duplication. Now add a dummy taxon Du with the taxa set. Finally we

use the taxa set to make a caterpillar. The dummy taxon Du will play an important role to

3.1. ALGORITHMS 39

merge depth one tree with caterpillar.

Conquer: On returning from the recursion, at each step, we have two trees, Ta (corre-

sponding to (Sa)) and Tb (corresponding to (Sb)). These two trees are rerooted at the dummy

taxon. Then the dummy taxon is removed from each tree and the two roots are joined by

an internal edge. Continue this process until the tree is free of dummy taxon and finally get

a MUL-tree. Continue this process until the tree is free from artificial taxon Ai and dummy

taxon DU and finally get a MUL-tree.

3.1.4 QMUL Approach

In this section we have present a revolutionary quartet based multi-labeled phylogenetic tree

reconstruction algorithm QMUL (MULtrees from quartets) to construct MUL-trees from quar-

tets with fewer leaf duplications. The QMUL is based on conventional divide and conquer

algorithm which has three steps i) Divide step ii) Super-split analysis step and iii) Conquer

step. It is based on a bipartition method. Fiduccia et al. in 1982 [9] proposed bipartition

method for improving network partitions. Reaz et al. in 2014 modified this method [9] for

bipartition of the taxa set we also used this method.

Algorithm. We follow a divide and conquer approach similar to QFM [1]. We here give a

very brief description that is essential when we elaborate on the enhancements to the algorithm

and the new implementation. Let, Q be a set of quartets over a set of taxa S. Our motive

is to construct a MUL-tree T on S, satisfying all of input quartets. The QMUL approach

recursively forms bipartitions of the input set of taxa S, where each bipartition corresponds to

an internal edge in the tree under construction. QMUL uses a heuristic bipartition technique

which is based on finding a maximum cumulative gain of a taxon [1].

Divide: At each recursive step, we partition the taxa set S into two sets (Sa and Sb). We

have described the bipartitioning algorithm in Method of Bipartition section. After partitioning

the taxa set, the algorithm prolongs both parts (Sa and Sb) with a unique artificial taxon Ai.

This taxon will play an important role while returning from the recursion. After the addition

of the dummy taxon to the sets (Sa and Sb), we subdivide the quartet set Q into two sets, (Qa

40

and Qb). A quartet set (Qi takes those quartets ((w, x), (y, z)) from Q such that either all four

taxa w, x, y and z or any three thereof belong to Si (here iǫ(w, x)). That means, satisfied and

violated quartets with respect to the partition (Sa, Sb) are not considered to be included in

either (Qa or Qb). On the other hand, every deferred quartet, where three taxa are in the same

part, the other taxon is renamed by the name of the dummy taxon, and the isolated quartets

are continues to the next step. Thus we get, two (Qi, Si) pairs: (Qa, Sa) and (Qb, Sb). We

then recurse on both pairs (Qa, Sa) and (Qb, Sb) until Qi is non-empty and |Si| > 3. If either

Qi is empty or |Si| ≤ 3, we return depth one element de and depth one tree over the taxa set

S. Now add another type of dummy taxon Du in any depth one element de that will help us

to merge depth one tree with the caterpillar.

Super-split Analysis: The most crucial part of our algorithm is the super-split analysis

technique. It has two parts i) consistency checking method and ii) super-split method. We have

described these two methods in Section 3.2. After divide step we check the consistency of each

quartet by consistency checking process. Finally we get all inconsistent quartets with respect to

depth one chain. By super-split method we get expected minimum super-element and it ensures

fewer leave duplications. Now add another artificial taxon Du in minimum super-element that

will help us to merge caterpillar tree with depth one tree. Consequently we design caterpillar

tree using the taxa from minimum super-element.

Conquer: On returning from the recursion, at each step, we have two trees, Ta (corre-

sponding to (Sa)) and Tb (corresponding to (Sb)). These two trees are rerooted at the dummy

taxon. Then the dummy taxon is removed from each tree and the two roots are joined by an

internal edge. Continue this process until the tree is free from artificial taxon Ai and dummy

taxon DU and finally get a MUL-tree.

Figure 3.4 describes the high level divide and conquer algorithm. Let Q be the input quartet

set and S be the corresponding taxa set. Assume thatQ= {((1,2),(3,4)),((1,2),(5,6))((1,3),(2,4)),

((1,3),(5,6)),((3,4),(5,6)),((2,3),(4,5)),((1,4),(2,5))}, and hence S= {1,2,3,4,5,6}. By using the

bipartition technique initially, S is partitioned into two sets, Sa= {1, 2, 3, 4, A1} and Sb =

{5, 6, A1}. Here, A1 is the artificial taxon. Quartets q2 : ((1, 2), (5, 6)), q4 : ((1, 3), (5, 6)) and

3.1. ALGORITHMS 41

1, 2, 3, 4, 5, 6

1, 2, 3, 4, A1
5, 6, A1

3, 4, A1, A2

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))

q4 : ((1, 3), (5, 6))

Quartets

((1,2),(3,4))

((1,3),(2,4))

D
iv

id
e

Depth One

Inconsistent Quartets = ((1, 3), (2, 4)); ((1, 4), (2, 5))

Minimum super-element

C
o

n
q

u
er

1

2

A2

3

A2

A1

4

Du

1

2

1

2

3

A1

1

2

1

2

3 4 5

6

1, 2, A2

6

Du

4

A1

A2

((A1, 4), (5, 6))

Element

q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

Set of taxa

4, A1, A33, A2, A3

3, A2, A31, 2, A2 5, 6, A1
4, A1, A3

2.2. Super-split Method

((1, 3), (2, 4))

((1, 4), (2, 5)) ((2, 5), (1, 4))

((1, 3, 4), (2, 4, 5)) ((1, 2, 3, 5), (1, 2, 4))

5, 6, A1, Du
3, A2, A31, 2, A2

4, A1, A3

4

A1

6

Du

5

A2

5

1

2 Du

3 4 5

1, 2, 4, Du

4

3. Conquer Step

5, 6, A1
1, 2, A2

((2, 3), (4, A1))
((1, 4), (2, A1))

Depth One

Chain

2.1. Quartet Checking Method

1, 3, 4, Du 2, 4, 5, Du 1, 2, 4, Du

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))

q4 : ((1, 3), (5, 6))

Quartets
q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

b

b

b

b

b b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b b

bb

bb

b

b

b

b

b b b

4

Du

1

2

b

b

b

b

b

bb b

b b b

b

b

bb

b b

b b b b

b b bb b

b

b

b

b

b b

MUL− Tree

2. Super-split Analysis Step1. Divide Step

6b

b

Figure 3.4: Illustration of QMUL approach

42

q5 : ((3, 4), (5, 6)), from Q are satisfies with respect to the bipartition (Sa, Sb). So these quar-

tets will not be deliberated in the next level. Qa takes q1 : ((1, 2), (3, 4)) and q3 : ((1, 3), (2, 4))

as isolated quartets and q6 : ((2, 3), (4, 5)) and q7 : ((1, 4), (2, 5)) as deferred quartets. We

replace the taxon which does not belong to Sa with the artificial taxon A1. Hence we get

Qa= {((2, 3), (4, A1)), ((1, 4), (2, A1)), ((1, 2), (3, 4)), ((1, 3), (2, 4))}. Similarly we get Qb = ∅.

Next we recurse on (Qa, Sa) and Sa partitioned further into (Saa , Sab). The partition (Saa , Sab)

satisfies ((1, 2), (3, 4)), violates ((1, 3), (2, 4)) and ((1, 4), (2, A1)) and deferred ((2, 3), (4, A1)),

in Qa. We replace the taxon which does not belong to Sab with the artificial taxon A2. Then

we get Qab = ((2, 3), (4, A2)). Further we recurse on (Qab , Sab) and Sab partitioned further into

(Saba
, Sabb

). Then we replace the taxon which does not belong to Sabb
with the artificial taxon

A3 and the partition (Saaa
, Sabb

) satisfies the quartet ((2, 3), (4, A2)). Whereas the quartet sets

for the next level are empty hence we return a depth one element trees for each of the taxa sets

Saa , Saba
, Sabb

, and Sb. The returned depth one trees trees are merged by removing the artificial

taxon of that level and joining the branches of the artificial taxa and we get an intermediate

tree with a dummy taxon Du. The caterpillar and intermediate tree are merged by removing

the dummy taxon Du of that level and joining the branches of the dummy taxon. The conquer

steps of Figure 3.4 shows how the trees are returned and merged as the recursion unfolds. Thus

we get the final merged tree ((((((1, 2), 3), 4), 5), 6), (4, (1, 2))); this is a MUL-tree satisfying all

quartets in Q with three duplicated taxa.

3.1.5 Advanced QMUL(AQMUL) Approach

In this section we have presented another revolutionary quartet based multi-labeled phyloge-

netic tree reconstruction algorithm QMUL (MULtrees from quartets) to construct MUL-trees

from quartets with fewer leaf duplications. The QMUL is based on conventional divide and

conquer algorithm which has three steps i) Divide step ii) Quartet Analysis step and iii) Con-

quer step. It is based on a bipartition method. Fiduccia et al. in 1982 [9] proposed bipartition

method for improving network partitions. Reaz et al. in 2014 [9] modified this method for

bipartition of the taxa set we also used this method.

3.1. ALGORITHMS 43

1, 2, 3, 4, 5, 6

1, 2, 3, 4, A1
5, 6, A1

3, 4, A1, A2

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))

q4 : ((1, 3), (5, 6))

Quartets

((1,2),(3,4))

((1,3),(2,4))

D
iv

id
e

Depth One

Inconsistent Quartets = ((1, 3), (2, 4)); ((1, 4), (2, 5))

C
o

n
q

u
er

1

2

A2

3

A2

A3

1

2

3

A3

1, 2, A2

5

2

4

A3

A1

((A1, 4), (5, 6))

Element

q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

Set of taxa

4, A1, A33, A2, A3

3, A2, A31, 2, A2 5, 6, A1
4, A1, A3

2.2. Quartet Matching Method

(2, 5), 6, A13, A2, A31, 2, A2
4, A1, A3

4

A3

5

6

A1

6

1

2

5
3 4 6

3. Conquer Step

5, 6, A1
1, 2, A2

((2, 3), (4, A1))
((1, 4), (2, A1))

dchain

2.1. Consistency Checking Method

q1 : ((1, 2), (3, 4))
q2 : ((1, 2), (5, 6))
q3 : ((1, 3), (2, 4))

q4 : ((1, 3), (5, 6))

Quartets
q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))

q7 : ((1, 4), (2, 5))

b

b

b

b

b b

b

b

b b

b

b

b

b

b

b

b

b

b

b b

bb

bb

b

b

b

b

b bb

b

b

b

b

b

b

bb b b

b b b

MUL− Tree

2. Quartet Analysis Step1. Divide Step

((1, 3), (2, 4))

((1, 4), (2, 5))

deq 1, 2, A2 3, A2, A3 4, A1, A3 5, 6, A1

1 3 4

1 4, 2 5

, 2

3, A2, A31, 2, A2 (2, 5), 6, A14, A1, A3Modified de

2

2

Inconsistent Taxa={2}

Set of taxa pair with inconsistent taxon= {(2, 4), (2, 5)}

Figure 3.5: Illustration of AQMUL approach

Algorithm. We follow a divide and conquer approach similar to QFM [1]. We here give a

very brief description that is essential when we elaborate on the enhancements to the algorithm

and the new implementation. Let, Q be a set of quartets over a set of taxa S. Our motive

is to construct a MUL-tree T on S, satisfying all of input quartets. The AQMUL approach

recursively forms bipartitions of the input set of taxa S, where each bipartition corresponds

to an internal edge in the tree under construction. AQMUL also used a bipartition technique

which is based on finding a maximum cumulative gain of a taxon.

Divide: At each recursive step, we partition the taxa set S into two sets (Sa and Sb).

We have already describe the bipartitioning algorithm in Method of Bipartition section. After

partitioning the taxa set, the algorithm prolongs both parts (Sa and Sb,) with a unique artificial

44

taxon Ai. This taxon will play an important role while returning from the recursion. After the

addition of the dummy taxon to the sets (Sa) and (Sb), we subdivide the quartet set Q into

two sets,(Qa) and (Qb). A quartet set (Qi) takes those quartets ((w, x), (y, z)) from Q such

that either all four taxa w, x, y and z or any three thereof belong to Si (here iǫ(w, x)). That

means, satisfied and violated quartets with respect to the partition (Sa, Sb) are not considered

to be included in either (Qa or Qb). On the other hand, every deferred quartet, where three

taxa are in the same part, the other taxon is renamed by the name of the dummy taxon, and

the isolated quartets are continues to the next step. Thus we get, two (Qi, Si) pairs: (Qa, Sa)

and (Qb, Sb). We then recurse on both pairs (Qa, Sa) and (Qb, Sb) until Qi is non-empty and

|Si| > 3. If either Qi is empty or |Si| ≤ 3, we return depth one element de and depth one tree

over the taxa set Si. Now add another type of dummy taxon Du in any depth one element de

that will help us to merge depth one tree with the caterpillar.

Quartet Analysis Technique: The most crucial part of AQMUL algorithm is the quartet

analysis technique. It has two parts i) consistency checking method and ii) quartet matching

method. We have described these two methods in Section 3.3. After divide step we check the

consistency of each quartet by consistency checking process. Finally we get all inconsistent

quartets with respect to depth one chain. By quartet matching method we get inconsistent

taxon list and expected taxa pairs. Each taxa pair contain an inconsistent taxon and a normal

taxon. Now we have to make same taxa pairs in depth one elements by adding inconsistent

taxon in depth one elements and separate that pairs from other pairs, taxa or taxon by first

bracket.

Conquer: On returning from the recursion, at each step, we have two trees, Ta (corre-

sponding to (Sa)) and Tb (corresponding to (Sb)). These two trees are rerooted at the dummy

taxon. Then the dummy taxon is removed from each tree and the two roots are joined by an

internal edge. Continue this process until the tree is free from artificial taxon Ai and dummy

taxon DU and finally get a MUL-tree.

Figure 3.5 describes the high level divide and conquer algorithm. Let Q be the input quartet

set and S be the corresponding taxa set. Assume thatQ= {((1,2),(3,4)),((1,2),(5,6))((1,3),(2,4)),

3.1. ALGORITHMS 45

((1,3),(5,6)),((3,4),(5,6)),((2,3),(4,5)),((1,4),(2,5))}, and hence S= {1,2,3,4,5,6}. By using the

bipartition technique initially, S is partitioned into two sets, Sa= {1, 2, 3, 4, A1} and Sb =

{5, 6, A1}. Here, A1 is the artificial taxon. Quartets q2 : ((1, 2), (5, 6)), q4 : ((1, 3), (5, 6)) and

q5 : ((3, 4), (5, 6)), from Q are satisfies with respect to the bipartition (Sa, Sb). So these quar-

tets will not be deliberated in the next level. Qa takes q1 : ((1, 2), (3, 4)) and q3 : ((1, 3), (2, 4))

as isolated quartets and q6 : ((2, 3), (4, 5)) and q7 : ((1, 4), (2, 5)) as deferred quartets. We

replace the taxon which does not belong to Sa with the artificial taxon A1. Hence we get

Qa= {((2, 3), (4, A1)), ((1, 4), (2, A1)), ((1, 2), (3, 4)), ((1, 3), (2, 4))}. Similarly we get Qb = ∅.

Next we recurse on (Qa, Sa) and Sa partitioned further into (Saa , Sab). The partition (Saa , Sab)

satisfies ((1, 2), (3, 4)), violates ((1, 3), (2, 4)) and ((1, 4), (2, A1)) and deferred ((2, 3), (4, A1)),

in Qa. We replace the taxon which does not belong to Sab with the artificial taxon A2. Then

we get Qab((2, 3), (4, A2)). Further we recurse on (Qab , Sab) and Sab partitioned further into

(Saba
, Sabb

). Then we replace the taxon which does not belong to Sabb
with the artificial taxon

A3 and the partition (Saaa
, Sabb

) satisfies the quartet ((2, 3), (4, A2)). Whereas the quartet sets

for the next level are empty hence we return a depth one element trees for each of the taxa sets

Saa , Saba
, Sabb

, and Sb. Then we apply quartet analysis technique and we get all inconsistent

quartets with respect to depth one chain. Here ((1, 3), (2, 4)) and ((1, 4), (2, 5)) are inconsistent

quartets. By quartet matching method we get inconsistent taxon list and expected taxa pairs.

The inconsistent taxon list = {2} and expected taxa pairs = (2, 5). Now add the inconsistent

taxon 2 in depth one element with the normal taxon 5 to make the taxa pair (2, 5). After the

modification of the depth one elements the algorithm returns depth one trees for each of the

taxa sets Saa , Saba
, Sabb

, and Sb. The returned trees are merged by removing the artificial taxon

of that level and joining the branches of the artificial taxa. The conquer steps of Figure 3.5

shows how the trees are returned and merged as the recursion unfolds. Thus we get the final

merged tree ((((1, 2), 3), 4), (5, 2), 6); this is a MUL-tree which satisfied all quartets in Q with

one duplicated taxon.

46

3, A2, A31, 2, A2 5, 6, A1
4, A1, A3

(b) Depth one chain

b

b

b

b

b

b

1

2

3

4
q1

b

b

b

b

b

b

1

2

3

4
q2

b

b

b

b

b

b

1

2

3

4
q3

(a) Quartets

Figure 3.6: Consistency of (a) quartets with respect to (b) depth one chain.

3.2 Super-split Analysis Technique

In this section, we study super-split analysis technique which is the most decisive part of

our algorithms. It has two parts i) consistency checking method and ii) super-split method.

In Section 3.3.1 we first present consistency checking method. In Section 3.3.2 we introduce

super-split method.

3.2.1 Consistency Checking Method

A quartet ((1, 2), (3, 4)) is consistent with respect to depth one chain if the path from 1 to

2 does not overlap the path from 3 to 4 in depth one chain. In Figure 3.6 among the three

quartets, quartet q1 is consistent with respect to dchain as there exists a non-overlapping path

from 1 and 2 to 3 and 4. Other two quartets are inconsistent with respect to dchain as no such

path exists in dchain.

Algorithm: Now we describe the consistency checking algorithm which we call CC algo-

rithm. Let, Q be the input to the consistency checking algorithm, where Q be a set of quartets

over the taxa set S. Consistency checking are performed by the following five steps:

• Step 1: Take all quartets set Q as input.

• Step 2: Now pick each quartet qiǫQ one by one and check its consistency with respect to

depth one chain.

• Step 3: A quartet qiǫQ is inconsistent with respect to depth one chain if the path from

first taxa to second taxa overlaps the path from third taxa to fourth taxa of a quartet;

3.2. SUPER-SPLIT ANALYSIS TECHNIQUE 47

Qi = {((1, 3), (2, 4)), (((1, 4), (2, 5))}

3, A2, A31, 2, A2 5, 6, A1
4, A1, A3

Depth one chain

q1 : ((1, 2), (3, 4))

q2 : ((1, 2), (5, 6))

q3 : ((1, 3), (2, 4))

q4 : ((1, 3), (5, 6))

Input quartets
q5 : ((3, 4), (5, 6))

q6 : ((2, 3), (4, 5))
q7 : ((1, 4), (2, 5))

Figure 3.7: Illustration of consistency checking method.

otherwise the quartet is consistent with respect to depth one chain.

• Step 4: Discard all the consistent quartets from the input list.

• Step 5: Finally list all inconsistent quartets Qin.

Figure 3.7 describes the consistency checking method. Let Q = ((1,2),(3,4)), ((1,2),(5,6)),

((1,3),(2,4)), ((1,3),(5,6)), ((3,4),(5,6)), ((2,3),(4,5)), ((1,4),(2,5)). After applying consistency

checking algorithm we get inconsistent quartet set Qin = {((1, 3), (2, 4)), (((1, 4), (2, 5))}.

3.2.2 Super-split Method

The most crucial part of our algorithm is the super-split method. Super-split method returns

some super-elements with the minimum number of leaves. The super-elements with the mini-

mum number of leaves ensure fewer leave duplications. From the minimum super-elements we

construct a caterpillar.

Algorithm: Let, (Sin, Qin) be the input to the super-split method, where Qin be a set of

inconsistent quartets over the taxa set Sin that we found from quartet checking method. We

perform super-split method over inconsistent quartets Qin as follows:

• Step 1: Take an inconsistent quartet Qin as a root.

• Step 2: Insert two edges to the left side and right side to the root.

• Step 3: Take the next inconsistent quartet from Qin and put it along left edge; reverse

the quartet and put it along right edge.

48

Qi = {((1, 3), (2, 4)), ((1, 4), (2, 5))}

Minimum super-element

((1, 3), (2, 4))

((1, 4), (2, 5)) ((2, 5), (1, 4))

((1, 3, 4), (2, 4, 5)) ((1, 2, 3, 5), (1, 2, 4))

1, 3, 4, Du 2, 4, 5, Du 1, 2, 4, Du

Figure 3.8: Illustration of super-split method.

• Step 4: Now take union of root and left edge value and it will serve as a root for next

step.

• Step 5: Also take union of root and right edge value and it will serve as a root for next

step.

• Step 6: Continue this process until Qin is empty.

• Step 7: Finally we get a binary tree of super-split and found all minimum super-elements

with minimum number of taxa.

Figure 3.8 describes the super-split method. Assume that inconsistent quartet set Qin =

((1, 3), (2, 4)); (((1, 4), (2, 5)). After applying super-split method we have three minimum super-

elements {1, 3, 4}, {2, 4, 5} and {1, 2, 4}.

3.3 Quartet Analysis Technique

In this section, we study quartet analysis technique with a particular example. It is the most

important part of AQMUL algorithm. It has two parts i) consistency checking method and ii)

quartet matching method. Recall Subsection 3.2.1 for consistency checking method. In Section

3.3.2 we introduce quartet matching method.

3.3. QUARTET ANALYSIS TECHNIQUE 49

3.3.1 Consistency Checking Method

In AQMUL approach we have used the consistency checking method to find all inconsistent

quartet Qin in Q with respect to depth one chain. It is also an important part of AQMUL

approach. Recall Section 3.2 for consistency checking method.

3.3.2 Quartet Matching Method

The most crucial part of quartet analysis technique is the quartet matching method. Quartet

Matching method returns minimum number of inconsistent taxa to perform duplication.

Algorithm: Let, (Qin, de) be the input to the quartet matching method, where Qin be a

set of inconsistent quartets and de be the depth one elements which we get from divide steps.

We perform quartet matching method over inconsistent quartets Qin and depth one elements

de as follows:

• Step 1: Take all depth one element and put all depth one element on a table in separate

column.

• Step 2: Select an inconsistent quartet and put every taxon of each pair of a quartet on

next row, bellow the depth one element.

• Step 3: Find the taxon which makes the quartet inconsistent and also find the taxa pair

which contain the inconsistent taxon. If any quartet have more than one inconsistent

taxon then select any one of them randomly.

• Step 4: Now select the next quartet and put every taxon of each quartet bellow depth

one element. Now continue the step 3 and find the expected taxa pair. To choose the

inconsistent taxon we give priority of previous inconsistent taxa.

• Step 5: Continue this process until inconsistent quartet list is empty.

• Step 6: Finally quartet matching method returns a list of inconsistent taxa and a list

of taxa pair where each pair contain exactly one inconsistent taxon. If the list contains

50

Quartet Matching Table

((1, 3), (2, 4))

((1, 4), (2, 5))

deQi
1, 2, A2 3, A2, A3 4, A1, A3 5, 6, A1

1 3 4

1 4, 2 5

, 2

Set of taxa pair with inconsistent taxon ={(2, 4), (2, 5)}

3, A2, A31, 2, A2 (2, 5), 6, A14, A1, A3

Modified depth one element

Inconsistent Taxa={2}

Figure 3.9: Illustration of quartet matching method.

more than one pair which contain same inconsistent taxon then we take the pair which

has maximum pair length.

Figure 3.9 describes the quartet matching method. Assume that inconsistent quartet set

Qin = ((1, 3), (2, 4)); (((1, 4), (2, 5)). After applying quartet matching method we have one

inconsistent taxon 2 and the set of taxa pair with inconsistent taxon = {(2, 4), (2, 5)}.

3.4 Summary

In this chapter we have proposed some algorithms; randomized divide and conquer approach

with randomized duplication technique (RDCRD), bipartition based divide and conquer ap-

proach with randomized duplication technique (BDCRD), randomized divide and conquer ap-

proach with super-split analysis technique (RDCSSplitA) bipartition based divide and conquer

approach with super-split analysis technique (QMUL) and bipartition based divide and con-

quer approach with quartet analysis technique (AQMUL). In this chapter, we study super-split

analysis technique and quartet analysis technique which are the most crucial part of our algo-

rithms.

Chapter 4

Performance of Algorithms

This chapter provides the simulation and simulation results on synthetic and real datasets.

We also analyze the simulation results to find out the performance of our algorithms. In this

thesis we mainly have proposed two algorithms QMUL and AQMUL to construct MUL-trees

from a set of quartets. We have analyzed the performance of QMUL approach and AQMUL

approach in terms of percentage of duplications and compare with QFM approach. We also

have proposed three auxiliary techniques to design MUL-trees and compare our methods with

auxiliary techniques in terms of average number of duplications. The auxiliary techniques are

following:

1. Randomized divide and conquer approach with randomized duplication technique (RD-

CRD).

2. Bipartition based divide and conquer approach with randomized duplication technique

(BDCRD).

3. Randomized divide and conquer approach with super-split analysis technique (RDCSSplitA).

First, the experimental setup for the simulations and experiments on simulated data to

design MUL-trees are presented. In the second section of the chapter experiments on real data

and results on real data are presented.

51

52 CHAPTER 4. PERFORMANCE OF ALGORITHMS

4.1 Experiments on Simulated Datasets

We perform simulation on synthetic and real datasets. For all data, the QMUL and AQMUL

algorithms was run on a computer with a 3.2 GHz core i7 processor and 8GB RAM. Here we

perform simulation of QMUL and AQMUL algorithms with other three auxiliary techniques

to design MUL-trees. In order to test the performance of QMUL and AQMUL algorithms, we

conducted experiments on synthetic dataset and real datasets and generate 15 model MUL-trees

under different conditions. The properties we wanted to measure are the number of duplication

and the running times of our methods.

4.1.1 Simulated Datasets

To scrutinize the performance of our method on various model conditions, we have generated

quartet sets, from a set of model trees, by varying the number of taxa (n), the number of

quartets (q) and the percentage of consistent quartets (c) with respect to the model tree (90%

consistency level means that 10% quartets are flipped to disagree with the model tree). Specifi-

cally, we flipped either 10% or 30% of the quartets (yielding 90 and 70 percent correct quartets,

respectively). We have generated model species trees with n = 25, 50, 100, 200 and 300 taxa.

To generate the model trees and the input quartet sets, we have used the tool developed and

used in [9]. The tool takes as input the number of taxa (n), number of quartets (q) and the

consistency level (c), and returns the quartet sets accordingly. For n =25, 50, 100, 200, 300

we have generated n1.25,n1.5 and n2 quartets. We have not generated more quartets because

n2 quartets have been empirically shown to be enough to construct very accurate phylogenetic

trees. Although n1.25 is a small number, we have chosen this size to test the performance of

both methods on a comparatively smaller number of quartets as well. For each size (q), we

have varied the percentage of consistent quartets (c) by making it 70% and 90%.

4.1. EXPERIMENTS ON SIMULATED DATASETS 53

Table 4.1: Results on synthetic dataset [1, 4] in terms of average number of duplications.

n q C=70% C=90%

RDCRD RDCSSplitA BDCRD QMUL AQMUL RDCRD RDCSSplitA BDCRD QMUL AQMUL

25 50 24 24 23 19 7 21 20 15 8 5

25 125 24 23 24 20 15 22 23 17 15 10

25 625 24 24 22 21 18 23 22 20 18 17

50 133 43 42 40 32 13 40 40 42 30 9

50 354 44 42 41 41 30 41 42 40 32 20

50 2500 47 45 43 43 35 45 47 44 40 35

100 317 93 90 87 72 28 86 80 76 70 25

100 1000 92 91 90 93 61 88 83 81 71 54

100 10000 97 94 92 94 85 90 85 84 85 71

200 753 190 191 185 144 98 190 189 189 158 88

200 2829 193 190 190 158 144 191 191 190 158 128

200 40000 193 193 191 162 150 192 191 191 162 150

300 1249 285 281 278 231 144 284 281 278 213 120

300 5197 290 285 281 240 228 290 288 281 220 210

300 90000 297 295 296 261 240 295 291 289 245 234

4.1.2 Simulated Data Results

For a phylogeny reconstruction algorithm, if a certain tree or network is used to obtain the input

data, the algorithm should return exactly this tree or network. This is an important property

for reconstructing phylogenies and known as the consistency principle. We now present the

results on the simulated datasets mentioned above. In each case, we have compared the average

number of duplication for the trees estimated by the RDCRD, RDCSsplitA, BDCRD, QMUL

and AQMUL. The results for c=70%, and c=90% are summarized in Table 4.1. Figure 4.1

shows the bar charts comparing the values presented in Table 4.1. The results in Table 4.1 are

presented in batches for different values of n as follows. For n=25, 50, 100, 200 and 300 we have

three rows, one each for q = n1.25, q = n1.5 and q = n2. The top most row of each batch of Table

4.1 shows the results when q =n1:5 (from left to right, the consistency levels reported are 70%

and 90%, respectively). From the Table 4.1 we see that for 80% of our data sets the average

number of duplications are RDCRD > RDCSsplitA > BDCRD. For the remaining 20% of the

data the number of duplications of RDCRD, RDCSSplitA and BDCRD are fluctuating. But the

54 CHAPTER 4. PERFORMANCE OF ALGORITHMS

performance of the QMUL and the AQMUL is always better than the RDCRD, RDCSsplitA

and BDCRD. If we compare the performance of QMUL and AQMUL according to the results

presented in Table 4.1, it is clear that the average number of duplications in AQMUL approach

always smaller than the average number of duplications in QMUL approach. That means

AQMUL produces better trees than QMUL.

6 25 50 100 200 300

50

100

150

200

250

300

350

4
21

40

86

190

284

4
20

40

80

189

281

3
15

42

76

189

278

3 8

30

70

158

213

1 5 9
25

88

120

number of taxa

n
u
m
b
er

of
d
u
p
li
ca
ti
on

RDCRD RDCSSplitA BDCRD QMUL AQMUL

Figure 4.1: A chart showing the difference in performance among five techniques in terms of
number of duplications when c=90% and q=n1.25.

In 2014 Reaz et al. [1] apply QFM method on similar data sets and construct supertree. Snir

et al. [4] in 2008 also use these data sets to construct supertree by applying the QMC method.

Now we show the comparison of QFM method with our method. The results are summarized

in Table 4.2. In Table 4.2 CQ indicates percentages of consistent quartet (CQ%), IQ indicate

percentages of inconsistent quartet (IQ%) and DR indicate percentages of duplication (DR%).

Here Table 4.2 shows that the QFM constructed supertree from 70%and 90%consistent quartets

without duplications. But the supertree constructed by QFM cannot ensure the consistency

of each quartet. The first row of each batch of Table 4.2 shows the results with n1.25 quartets.

4.1. EXPERIMENTS ON SIMULATED DATASETS 55

Table 4.2: Comparison of QFM, QMUL and AQMUL under various model conditions [1].

n q
QFM QMUL AQMUL

c=70% c=90% c=70% c=90% c=70% c=90%

CQ IQ CQ IQ CQ DR CQ DR CQ DR CQ DR

25 50 62 38 70 30 100 76 100 32 100 28 100 20

25 125 50 50 73 27 100 80 100 60 100 60 100 40

25 625 65 35 85 15 100 84 100 72 100 72 100 68

50 133 65 35 70 30 100 64 100 60 100 26 100 18

50 354 50 50 73 27 100 82 100 64 100 60 100 40

50 2500 70 30 90 10 100 86 100 80 100 70 100 70

100 317 65 35 71 29 100 72 100 70 100 28 100 25

100 1000 55 45 70 30 100 93 100 71 100 61 100 54

100 10000 71 29 91 9 100 94 100 85 100 85 100 71

200 753 65 35 66 34 100 72 100 79 100 49 100 44

200 2829 61 39 85 15 100 79 100 79 100 72 100 64

200 40000 69 31 93 7 100 81 100 81 100 75 100 75

300 1249 70 30 74 26 100 77 100 71 100 48 100 40

300 5197 75 25 79 21 100 80 100 73 100 76 100 70

300 90000 72 28 91 9 100 87 100 82 100 80 100 78

When q = n1.25 and the consistency of quartets is 70% the QFM can ensure the consistency of

62% quartets. So QFM method lost 38% quartets. But the AQMUL and the QMUL ensure

the consistency of 100% quartets by allowing 28% and 76% duplications respectably. In case

of 90% consistent quartets and q = n1.25 the QFM can ensure the consistency of only 70%

quartets and losing 30% quartets. In this stage the AQMUL and the QMUL requires 20% and

32% duplications respectably. The second row of each batch of Table 4.2 shows the results

with n1.5 quartets. For q = n1.5 and C=70% the consistency of QFM is 50% and the loss of

QFM is 50%. In this case the AQMUL and the QMUL ensure the consistency of 100% quartets

by allowing 60% and 80% duplications respectably. In case of 90% consistent quartets and

56 CHAPTER 4. PERFORMANCE OF ALGORITHMS

q = n1.25

25 50 100 200 300
0

20

40

60

80

100

d
u
p
li
ca
ti
on

(%
)
fo
r
c=

70
%

QMUL AQMUL

q = n1.5

25 50 100 200 300
0

20

40

60

80

100
QMUL AQMUL

q = n2

25 50 100 200 300
0

20

40

60

80

100
QMUL AQMUL

25 50 100 200 300
0

20

40

60

80

100

number of taxa

d
u
p
li
ca
ti
on

(%
)
fo
r
c=

90
%

QMUL AQMUL

25 50 100 200 300
0

20

40

60

80

100

number of taxa

QMUL AQMUL

25 50 100 200 300
0

20

40

60

80

100

number of taxa

QMUL AQMUL

Figure 4.2: Comparison of QMUL and AQMUL in terms of number of duplications under
various model conditions.

q = n1.5 the QFM can ensure the consistency of only 73% quartets and losing 27% quartets. In

this stage the AQMUL and the QMUL requires 40% and 60% duplications respectably. The

third row of each batch of Table 4.2 shows the results with n2 quartets. When q = n2 and

C=70% the QFM reconstruct highly accurate species trees and can ensure the consistency of

approximately 65% to 72% quartets. When q = n2 and C=90% the QFM reconstruct highly

accurate species trees and can ensure the consistency of approximately 85% to 93% quartets.

But for q = n2 and C=70% both AQMUL and QMUL requires average 76% and 86% leaf

duplications reasonably and for c=90% both AQMUL and QMUL requires average 72% and

80% leaf duplications respectably. With q = n2 quartets, both QMUL and AQMUL begin to

produce MUL-trees which duplication is larger than that of q = n1.25 and q = n1.5 quartets.

Figure 4.2 show percentages of duplication of QMUL and AQMUL on the simulated datasets.

4.1. EXPERIMENTS ON SIMULATED DATASETS 57

Table 4.3: Comparison of QFM, QMUL and AQMUL under the conflict-free model (100%
consistent quartets) conditions [1].

n q
QFM QMUL AQMUL
CQ IQ CQ DR CQ DR

25 125 100 0 100 0 100 0
50 1000 100 0 100 0 100 0
100 600 100 0 100 0 100 0
200 753 100 0 100 0 100 0
300 1249 100 0 100 0 100 0

We show average number of duplications (over 15 replicates of data) for each model condition.

We varied the number of taxa (n), number of quartets (q) and the percentage of consistency

level (c). For a particular value of q and c the number of taxa is varied along the X-axis, the

average number of duplications is shown along the Y-axis. From left to right: the number of

quartets are n1.25, n1.5 and n2. From top to bottom: 70% and 90% of the input quartets are

consistent with the model species tree.

We have also differentiated the performance of QFM, QMUL and AQMUL under the

conflict-free model conditions in terms of percentages of duplication. The experimental results

are shown in Table 4.3. In Table 4.3 CQ indicates percentages of consistent quartet (CQ%), IQ

indicate percentages of inconsistent quartet (IQ%) and DR indicate percentages of duplication

(DR%). From the table, we can say that the performance of QFM, QMUL and AQMUL under

the conflict-free model conditions are same. That means when the consistency level is 100%

the QMUL and the AQMUL construct the same tree as the tree constructed by the QFM.

The table 4.3 shows that when the consistency level is 100% the percentages of duplication of

QMUL and AQMUL are zero. We have also evaluated the running time of QFM, QMUL and

AQMUL under the conflict-free model conditions. From the experiments we can say that the

running time of QFM, QMUL and AQMUL under the conflict-free model conditions are same.

4.1.3 Computational Issues

We have evaluated the running time and memory usage of QMUL and AQMUL. On smaller

datasets, both QMUL and AQMUL run in few seconds. For example, on 25 taxa, QMUL took

58 CHAPTER 4. PERFORMANCE OF ALGORITHMS

between 3 minutes to 4 minutes (depending on the number of quartets), and AQMUL took

less than 3 minutes. However, QMUL is much slower than AQMUL on the larger datasets.

For example, QMUL took 17 hours for the largest datasets of our experiment with 300 taxa

and 40,000 quartets, while AQMUL took only 12 hours. From our experiments we have seen

that if the number of inconsistent quartets are increasing the computational time of QMUL

increase exponentially but computational time of AQMUL is not increase exponentially. We

believe that this difference is due to the naive implementation of our algorithm. AQMUL

has been implemented in a very efficient code, and it scales well on larger datasets. We are

currently working on improving our implementation using advanced data structures. We have

also measured the memory usage by these methods. QMUL and AQMUL are memory efficient

and use only few megabytes of memory. For example, the peak memory usages by QMUL on

the datasets with 300 taxa and 90,000 quartets are 45 MB and the peak memory usages by

AQMUL on the datasets with 300 taxa and 90,000 quartets are 44 MB.

4.2 Experiments on Real Datasets

In this section we now present the results on the real datasets. In each case, we have compared

the AQMUL with the QMUL based on the average number of duplications. Depending on the

number of duplications we also compare our methods with MTRT method [6].

4.2.1 Real Datasets

To test the performance of the QMUL and AQMUL on real biological datasets, we applied

both QMUL and AQMUL on two real datasets. The first dataset containing high-polyploid

North American and Hawaiian violets [31]. All major morphological groups occurring in North

America were sampled. All sequence were aligned with MUSCLE [32] and phylogenies were

constructed using maximum likelihood. The second dataset dataset containing the flowering

plant genus Silene (Caryophyllaceae) consisting of 12 plants was published in [30]. The gene

trees in [30] are reconstructed using standard techniques in phylogenetic analysis from regions of

4.2. EXPERIMENTS ON REAL DATASETS 59

Figure 4.3: An original MUL-tree on flowering plants with 7 duplications.

Figure 4.4: The obtained MUL-tree by applying AQMUL on the quartets extracted from the
MUL-tree shown in Figure 4.3. This MUL-tree has 7 duplications.

60 CHAPTER 4. PERFORMANCE OF ALGORITHMS

the nuclear RNA polymerase gene family, two concatenated chloroplast regions and one nuclear

ribosomal region, see [12] for more details. We collect the real biological datasets and real MUL-

tree from [6]. We have decomposed the original MUL-trees into its induced quartets which is

called embedded quartets. Then, we have taken the union of all these quartets (multiple copies

of a quartet have been retained). The labels represent Silene species, namely, S.ajanensis

(A), S. uralensis (U), S. involucrata (I), S. sorensenis (S), S. ostenfeldii (O), S. zawadskii

(Z), S. linnaeana (L), S. uralensis (Mongolia) (UM), S. samojedora (SAM), S. villosula (V),

S.sachalinensis (SAC) and S. tolmatchevii (T).

4.2.2 Real Data Results

We have used the real quartets to estimate a MUL-tree by using both QMUL and AQMUL.

The AQMUL construct MUL-trees which has less or equal number of duplications than that

of the original MUL-tree. In 2014 Hassanzadeh et al. [6] construct MUL-trees by using triplet

based method (MTRT) from rooted triplets. They also used the gene trees in [30, 31] and

extracted all triplets and then apply MTRT on these triplets.

Table 4.4: Performance analysis of MTRT approach, QMUL approach and AQMUL approach
on real datasets [6, 30, 31].

Real MUL-Trees MTRT QMUL AQMUL
MUL-tree on flowering plants

with 7 duplications
5 10 7

MUL-tree on violet species
with 20 duplications

18 27 20

The original MUL-tree for first dataset has 7 duplications, whereas the MUL-tree produced

by the MTRT has 5 duplications, the QMUL has 10 duplications and the AQMUL has 7 dupli-

cations. Figure 4.3 and Figure 4.4 show the original MUL-tree and the MUL-tree constructed

by AQMUL respectively. The original MUL-trees for second datasets have 20 duplications,

whereas the MUL-trees produced by AQMUL and QMUL have 20 and 27 duplications respec-

tively. The MUL-tree produced by the MTRT has also have 18 duplications for second data

set. Figure 4.5 and Figure 4.6 show the original MUL-tree and the MUL-tree constructed by

4.2. EXPERIMENTS ON REAL DATASETS 61

Figure 4.5: An original MUL-tree on violet species with 20 duplications.

62 CHAPTER 4. PERFORMANCE OF ALGORITHMS

Figure 4.6: The obtained MUL-tree by applying AQMUL on the quartets extracted from the
MUL-tree shown in Figure 4.5. This MUL-tree has 20 duplications.

4.3. DUPLICATION VS CONSISTENCY 63

AQMUL respectively. Table 4.4 show the performance of MTRT approach, QMUL approach

and AQMUL approach on two real datasets.

Flowering plants Violet species

0

10

20

30

5

18

10

27

7

20
n
u
m
b
er

of
d
u
p
li
ca
ti
on

MTRT QMUL AQMUL

Figure 4.7: A chart showing the difference in performance among MTRT, QMUL and AQMUL
on real datasets in terms of number of duplications.

Figure 4.7 show number of duplications of MTRT, QMUL and AQMUL on the real datasets.

The average number of duplications was shown along the Y-axis. The real gene trees are marked

along the X-axis.

4.3 Duplication Vs Consistency

It has been proved that the most frequently occurring quartet (on a set of four taxa) in the

gene trees is a statistically consistent estimator of the species tree on this set of four taxa.

Therefore, estimating a species tree by maximizing the number of consistent quartets is a

statistically consistent approach for arbitrarily large numbers of genes. In the presence of gene

tree discordance and estimation error, it may not be possible to estimate a species tree which is

consistent to all the quartets in a gene tree. However, researchers can construct MUL-trees by

allowing arbitrarily large number of leaf duplications to ensure the consistency of all quartets.

But constructing a MUL-tree by keeping the number of duplication to a minimum is very

challenging.

64 CHAPTER 4. PERFORMANCE OF ALGORITHMS

There is no mathematical, biological or empirical evidence that minimizing the number of

duplications will guarantee statistical consistency . That means, inferring a MUL-tree with

the minimum number of leaf duplications may not converge to the correct MUL-tree. But,

since in many cases, parsimonious approaches which aim to construct a tree by minimizing

number of duplication and losses or deep coalescences or horizontal gene transfers may produce

good estimates of evolutionary trees. Therefore, constructing MUL-trees by minimizing leaf

duplications and maximizing satisfying quartets should be a reasonable approach.

The algorithm that we have proposed in this dissertation is not an exact algorithm, i.e, it

does not guarantee the minimum numbers of leaf duplications. In such cases, we can consider

a trade-off between the numbers consistent quartets and the number of leaf duplications. We

can think of sacrificing some quartets in order to keep the number of duplications within a

reasonable limit. We leave this as a future work to investigate this trade-off by conducting an

extensive simulation study.

4.4 Summary

In this chapter we have showed simulation and experimental performance of algorithms on

synthetic data sets and real data sets. The computational issues of the algorithms also presented

in this chapter. We have provided comparison of QFM, QMUL and AQMUL approach under

various model conditions. Finally from the results of the simulation we have proved that the

experimental performance of the AQMUL approach is better than the QMUL approach. The

supporting information of these simulations are provided in the appendix.

Chapter 5

Conclusion

In this thesis we have studied the problem to construct MUL-trees from a set of quartets. We

have given some algorithms for this problem and provided a simulation of these algorithms. The

goal of the algorithm is to construct MUL-trees with fewer leaf duplication that is consistent

with the input set of quartets and minimizes the number of its duplications. All the algorithms

was implemented in C#. In this thesis we have also dealt with different theoretical aspects of

MUL-trees. We now briefly describe the content of each chapter of this thesis.

We have started with an introductory overview on phylogenetic tree, quartet based phylo-

genetic tree inference and MUL-trees in Chapter 1. In that chapter we have given our problem

definition, described our objective of this thesis and presented its motivation. We have pro-

vided some applications of MUL-trees like perusing host-parasite cospeciation, constructing

gene trees, constructing phylogenetic networks and in the study of biogeography. We have

introduced the similar problems found in the literature. Finally we have provided the results

of this thesis and its organization.

In Chapter 2 we have introduced the preliminary ideas on MUL-trees, supertrees and phy-

logenetic network. We have also discussed bipartition method, define split and super-split.

Depth one chain is also described in this chapter.

In Chapter 3 we have resolved the problem to construct MUL-trees from a set of quartets.

In this chapter we have also discussed about the algorithms for MUL-tree construction. In this

65

66 CHAPTER 5. CONCLUSION

chapter we have given some algorithms (RDCRD approach, RDCSSplitA approach, BDCRD

approach, QMUL approach and AQMUL approach) for constructing MUL-trees. We have also

introduced super-split analysis technique and quartet analysis technique which is the most

crucial part of our algorithms.

Finally in Chapter 4 we have conducted a simulation to see the practical performance of

our algorithms on synthetic and real datasets. Finally we have showed that the performance

of AQMUL is better than other four techniques that we proposed in this thesis. The code of

this simulation is provided in the appendix.

We now address different important and challenging problems regarding MUL-trees con-

struction. We now present some open problems and future research scopes related to this

thesis.

1. Note that a phylogenetic network can be associated to a MUL-tree. Therefore, it seems

that constructing the MUL-tree from a set of quartets could be an alternative method for

the problem of constructing a phylogenetic network with minimum reticulation from a set

of quartets. In future work it could be interesting to explore ways to also speed-up the

super-split analysis technique of the QMUL approach, which will ensure the consistency

of each quartet in a set with minimum number of duplications.

2. To design an efficient super-split method to construct the super-split with minimum super

elements and keep the computation time minimum.

3. To design more efficient quartet analysis technique which will play an important role to

ensure the consistency of each quartet in a set with minimum number of duplications.

Because the efficiency of AQMUL approach mainly depends on efficient quartet analysis

technique.

4. To study the complexity of the problem and also analysis the parameterized complexity

of the problem.

5. To set a parameter in AQMUL and QMUL approach to count the number of duplications

by using these parameter.

67

6. As the performance of AQMUL and QMUL approach decrease with the increase of quartet

size (q ≥ n2) so there is a scope to modify the AQMUL approach.

7. Execute theoretical analysis of the problem to construct MUL-trees with fewest leaf du-

plication.

Appendix A

Supporting Information

The QMUL and AQMUL approach was implemented in C# and is freely available for use from

http://cse.buet.ac.bd/research/group/gd/index.php?pageid=Resources.htm

68

List of Publications

1. Rahman, M. M., and Rahman, M. S., Multi-labeled Phylogenetic Tree Reconstruction from

Quartets, Poster presented at: Workshop on Bioinformatics and Stringology (BioS), 2015.

2. Rahman, M. M., and Rahman, M. S., Algorithms for Constructing Multi-labeled Phylo-

genetic Trees from Quartets with Fewer Leaf Duplications, Proc. of The International

Conference on Bioinformatics and Biostatistics for Agriculture, Health and Environment

(ICBBAHE2017), pp. 55, 2017.

69

References

[1] Reaz, R., Bayzid, M. S. and Rahman, M. S., Accurate Phylogenetic Tree Reconstruction

from Quartets: A Heuristic Approach, PLOS ONE, Vol 9(8): e104008, 2014.

[2] Snir, S., Warnow, T. and Rao, S., Short Quartet Puzzling: A New Quartet-Based Phylogeny

Reconstruction Algorithm, Journal of Computational Biology, Vol. 15, No.1, pp. 91103,

2008.

[3] Page, D. M., Modified Mincut Supertrees, Proc. of Workshop on Algorithms in Bioinfor-

matics, Lecture Notes in Computer Science, Vol. 2452, Springer, pp. 537-551, 2002.

[4] Snir, S. and Rao, S., Quartets MaxCut: A Divide and Conquer Quartets Algorithm,

EEE/ACM Transaction of Computational Biology and Bioinformatics, Vol. 7, No. 04,

pp. 704718, 2010.

[5] Alon, N., Snir, S. and Yuster, R., On the Compatibility of Quartet Trees, SIMA Journal

on Discrete Mathematics, Vol. 28, No. 3, pp. 14931507, 2014.

[6] Hassanzadeh, R., Eslahchi, C. and Sung, W. K., Do Triplets Have Enough Information to

Construct the Multi-Labeled Phylogenetic Tree? PLOS ONE, Vol.9, pp.1-10, 2014.

[7] Poormohammadi, H., Eslahchi, C. and Tusserkani, R., TripNet: A Method for Constructing

Rooted Phylogenetic Networks from Rooted Triplets, PLOS ONE, Vol.9, pp.1-12, 2014.

[8] Huber, K. T., Lott, M., Moulton, V. and Spillner, A., The Complexity of Deriving Multi-

Labeled Trees from Bipartitions, Journal of Computational Biology, Vol. 15, No. 6, pp.

639-51, 2008.

70

REFERENCES 71

[9] Fiduccia, C. M., and Mattheyses, R. M., A Linear-Time Heuristic for Improving Network

Partitions, Proc. of the 19th Design Automation Conference, Vol. 0146-7123, pp.175181,

1982.

[10] Semple, C., and Steel, M., Phylogenetics, Oxford University Press, Oxford, UK, 2003.

[11] Steel, M., The Complexity of Reconstructing Trees from Qualitative Characters and Sub-

trees, J.Classification, Vol. 9, pp. 91116, 1992.

[12] Huber, K. T., Oxelman, B., Lott, M., and Moulton, V., Reconstructing the Evolutionary

History of Polyploids from Multi-Labeled Trees, Molecular Biology and Evolution, Vol.

23(9), pp. 17841791, 2006.

[13] Page, R. D. M., and Charleston, M. A., Trees within trees: phylogeny and historical asso-

ciations, Trends in Ecology and Evolution, Vol. 13(9), pp. 356359, 1998.

[14] Brown, G.K., Nelson, G. and Ladiges, P. Y., Historical biogeography of Rhododendron sec-

tion Vireya and the Malesian Archipelago, Journal of Biogeography, Vol. 33, pp. 19291944,

2006.

[15] Snir, S., and Rao, S., Quartet maxcut: A fast algorithm for amalgamating quartet trees,

Journal of Molecular Phylogenetics and Evolution, Vol. 62, pp. 18, 2012.

[16] Lott, M., Spillner, A., Huber K. T., and Moulton, V., PADRE: a package for analyzing

and displaying reticulate evolution, Bioinformatics, Vol. 25(9), pp. 11991200, 2009.

[17] Berry, V., Jiang, T., Kearney, P., Li, M., and Wareham, T., Quartet Cleaning: Improved

Algorithms and Simulations, European Symposium on Algorithms, Vol. 1643, pp. 313324,

1999.

[18] Ganapathy, G., Goodson, B., and Jansen, R., Pattern Identification in Biogeography,

IEEE/ACM Transaction of Computational Biology and Bioinformatics, Vol. 3, pp. 334346,

2006.

72 REFERENCES

[19] Page, R.D.M., Parasites, Phylogeny and Cospeciation, Int. J. Parasitol. Vol. 23, 499506,

1993.

[20] Guillemot, S., Jansson, J., and Sung, W. K., Computing a Smallest Multi-labeled Phyloge-

netic Tree from Rooted Triplets, IEEE/ACM Transactions on Computational Biology and

Bioinformatics, Vol. 8, No. 04, pp. 1141-1147, 2011.

[21] Deepak, A., Baca, D. F., and McMahon, M. M., Extracting Conflict-Free Information from

Multi-labeled Trees, Algorithms for Molecular Biology, Vol. 8 No. 18, pp. 8-18, 2013.

[22] Asai, T., Arimura, H., Uno, T., and Nakano, S., Discovering Frequent Substructures in

Large Unordered Trees, Discovery Science, pp. 47-61, Springer, 2003.

[23] Chou, S., and Hsu, C. L., MMDT: A Multi-Valued and Multi-Labeled Decision Tree Clas-

sifier for Data Mining, Expert Systems with Applications, vol. 28, pp. 799-812, 2005.

[24] Crochemore, M., and Verin, R., Direct Construction of Compact Directed Acyclic Word

Graphs, Proc. Ann. Symp. Combinatorial Pattern Matching, pp. 116-129, 1997.

[25] Cotton J. A., and Page, R. D. M., Rates and Patterns of Gene Duplication and Loss in

the Human Genome, Royal Society of London, Biological science, editor, Proceedings, vol.

272, pp. 277283, 2005.

[26] Linder, C. R., and Warnow, T., An Overview of Phylogeny Reconstruction, Book chap-

ter, in S. Aluru (editor), Handbook of Computational Biology, Chapman and Hall, CRC

Computer and Information Science Series, Vol. 324, pp. 1561-1564, 2005.

[27] Huson, D. H., Rupp, R., and Scornavacca, C., Phylogenetic Networks: Concepts, Algo-

rithms and Applications, Cambridge University Press, 2010.

[28] Bruce Rannala, B., Huelsenbeck, J. P., Yang, Z., and Nielsen, R., Taxon Sampling and the

Accuracy of Large Phylogenies, Systematic Biology, vol. 47, pp. 702-710, 1998.

REFERENCES 73

[29] Eulenstein, O., Chen, D., Burleigh, J. G., Baca, D. F., and Sanderson, M. J., Performance

of Flip Supertrees with a Heuristic Algorithm, Systematic Biology, vol. 53, no. 2, pp. 299-

308, 2004.

[30] Popp M, Erixon P, Eggens F, Oxelman B, Origin and Evolution of a Circumpolar Poly-

ploid Species Complex in Silene (Caryophyllaceae) Inferred from Low Copy Nuclear RNA

Polymerase Introns, rDNA, and Chloroplast DNA, Systematic botany 30(2): 302313, 2005.

[31] Marcussen, T., Jakobsen, K. S., Danihelka, J., Ballard, H. E., Blaxland, K., Brysting, A.

K., Oxelman, B., Inferring Species Networks from Gene Trees in High-Polyploid North

American and Hawaiian Violets (Viola, Violaceae), Systematic biology, Vol. 61(1). pp.

107126, 2012.

[32] Edgar R. C., MUSCLE: Multiple Sequence Alignment with High Accuracy and High

Throughput, Nucleic acids research, Vol. 32(5), pp. 17921797, 2006.

[33] Bryanta, D., and Lagergrenb, J., Compatibility of unrooted phylogenetic trees is FPT,

Theoretical Computer Science, Vol. 351, pp. 296 302, 2006.

[34] Guillemot, S., Jansson, J., and Sung, W. K., Computing a Smallest Multilabeled Phyloge-

netic Tree from Rooted Triplets, IEEE/ACM Transactions on Computational Biology an

Bioinformatics, Vol. 8, No. 4, pp. 1141-1147, 2011.

Index

bifurcating, 19

biogeography, 5

biomedical science, 5

caterpillar, 21

cladograms, 5

consistency, 1, 13, 64

consistent, 25

deferred, 25

depth one chain, 26

depth one element, 26

depth one tree, 26

DNA, 3

evolutionary biology, 1

evolutionary events, 24

evolutionary tree, 17

gene evolution, 5

gene tree, 5, 22

inconsistent pair, 25

inconsistent taxon, 25

isolated, 25

Maximum Quartet Consistency, 8

Method of Bipartition, 39, 43

MFM, 28

minimum super-element, 26

molecular systematic, 5

MUL-tree, 33, 34, 37, 39, 40, 42, 44, 45

Multi-labeled Phylogenetic Trees, 2

multi-labeled tree, 21

multifurcating, 19

NP hard, 2

number of duplications, 22, 64

phylogenetic network, 23

phylogenetic networks, 5

phylogenetic tree, 1, 17

Phylogenetics, 17

phylogeny, 3

polyploid species, 5

QFM, 27

quartet, 24

quartet analysis, 13

resolved, 24

rooted bifurcating tree, 19

rooted multi-labeled phylogenetic tree, 21

74

INDEX 75

rooted networks, 23

rooted phylogenetic tree, 18

satisfied, 24

species tree, 22

split, 25

super-split, 26

super-split analysis, 13

supertree, 1, 20

tree, 16

child, 17

internal node, 17

leaf, 17

nodes, 17

parent, 17

root, 17

rooted tree, 17

triplet, 24

unresolved, 24

unrooted bifurcating tree, 19

unrooted MUL-tree, 2

unrooted multi-labeled phylogenetic tree, 21

unrooted phylogenetic network, 23

unrooted phylogenetic tree, 18

unrooted tree, 18

violated, 25

