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ABSTRACT 

Mixed convective flow in lid driven cavities occurs as a result of two competing mechanisms. 

The first one is due to shear flow caused by the movement of one of the walls of the 

enclosure, while the following one is due to the buoyancy flow produced by thermal non-

homogeneity of the enclosure boundaries. Analysis of mixed convective flow in a lid-driven 

enclosure finds application in material processing, flow and heat transfer in solar ponds, 

dynamics of lakes, reservoirs and cooling ponds, crystal growing, float glass production, 

metal casting, food processing, galvanizing and metal coating. 

In this thesis all mechanisms of convection such as natural, mixed and forced convection 

have been studied. The relative direction between the buoyancy force and the externally 

imposed flow is important. In the case where the buoyancy force and external force both are 

present termed as mixed convection flow. This study depends on various non-dimensional 

parameters and geometrical conditions which are abstracted below. 

A numerical simulation of two dimensional laminar steady flow for MHD mixed convection 

within rectangular cavity with two semi-circular wall heater and heated block in the middle 

has been performed. Two different shapes of heated block i.e. trapezoidal and rectangular has 

been considered. Present study consists a concentrated heated block in the middle and two 

concentrated semi-circular wall heater, adiabatic upper and bottom wall except two semi-

circular wall heater, left and right cold and low concentrated wall and moving upper wall. 

The fluid is concerned with various values of Hartmann number; Ha=0,Ha=50,Ha=100 and 

Ha=150, Richardson number ; Ri=0.1,Ri=1,Ri=5 and Ri=10, buoyancy ratio; Br=2, Br=5, 

Br=10 and Br=20 with different shapes of heated and concentrated obstacle areas as 

A=0.042 and A=0.028. Also the value of Prandtl number; Pr=7 and Lewis number; Le=2 

have been kept fixed in the present study. 

The properties of the fluid are presumed to be constant. The physical problems are 

represented mathematically by different sets of governing equations along with the 

corresponding boundary conditions. The non-dimensional governing equations are 

discretized by using Galerkin weighted residual method of finite element formulation. 
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Numerical simulation results are presented in terms of streamlines, isotherms, average 

Nusselt number along with the left and right semi-circular wall. We also plotted average 

Nusselt number Vs Richardson number for different shaped obstacle along the two semi-

circular wall heater with MHD and without MHD, average Nusselt number Vs Richardson 

number for different values of Ha along the two semi-circular wall heater with trapezoidal 

and rectangular obstacle and average Nusselt number Vs Richardson number along the two 

semi-circular wall for different values of Br with MHD for trapezoidal and rectangular 

obstacle. The range of Richardson number is selected on the basis of calculation covering 

forced, mixed and free convection dominated regions. The computational results  indicate 

that the average Nusselt number at the two semi-circular wall depends on the dimensionless 

parameters and the shapes of obstacle. Comparison with previously published work are 

presented and the results are found to be in excellent agreement. 
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CHAPTER 1 

INTRODUCTION 

1.1  Introduction 

Heat transfer is that science which seeks to predict the energy transfer which may take place 

between material bodies as a result of a temperature difference. Thermodynamics teaches that 

this energy transfer is defined as heat. The science of heat transfer seeks not merely to 

explain how heat energy may be transferred, but also to predict the rate at which the 

exchange will take place under certain specified conditions. 

The phenomenon of heat transfer was known to human being even in the primitive age when 

they used to use solar energy as a source of heat. Heat transfer in its initial stage was 

conceived with the invention of fire in the early age of human civilization. Since then its 

knowledge and use has been progressively increasing each day as it is directly related to the 

growth of human civilization. With the invention of stream engine by James watt in 1765 A. 

D., the phenomenon of heat transfer got its first industrial recognition and after that its use 

extended to a great extent and spread out in different spheres of engineering fields. In the past 

three decades, digital computers, numerical techniques and development of numerical models 

of heat transfer have made it possible to calculate heat transfer of considerable complexity 

and thereby create a new approach to the design of heat transfer equipment. 

The study of temperature and heat transfer is of great importance to the engineers because of 

its almost universal occurrence in many branches of science and engineering. Although heat 

transfer analysis is most important for the proper sizing of fuel elements in the nuclear 

reactors cores to prevent burnout, the performance of aircraft also depends upon the case with 

which the structure and engines can be cooled. The design of chemical plants is usually done 

on the basis of heat transfer analysis and the analogous mass transfer processes. The transfer 

and conversion of energy from one form to another is the basis to all heat transfer process and 

hence, they are governed by the first as well as the second law of thermodynamics. Heat 

transfer is commonly associated with fluid dynamics. The knowledge of temperature 
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distribution is essential in heat transfer studies because of the fact that the heat flow takes 

place only wherever there is a temperature gradient in a system. The heat flux which is 

defined as the amount of heat transfer per unit area in per unit time can be calculated from the 

physical laws relating to the temperature gradient and the heat flux. 

The study of the universe has led to the realization that all physical phenomena are subject to 

natural laws. The term natural might well be used to describe the framework or system of 

fundamental and universal importance within this system is the mechanisms for the transfer 

of heat. Heat transfer is a branch of applied thermodynamics. It estimates the rate at which 

heat is transferred across the system boundaries subjected to specific temperature differences 

and the temperature distribution of the system during the process. Whereas classical 

thermodynamics deals with the amount of heat transferred during the process. Heat transfer 

processes have always been an integral part of our environment. 

1.2  Heat Transfer Mechanism 

Heat is the form of energy that can be transferred from one system to another as a result of 

temperature difference. A thermodynamic analysis is concerned with the amount of heat 

transfer as a system undergoes a process from one equilibrium state to another. The science 

that deals with the determination of the rates of such energy transfers is the heat transfer. The 

transfer of energy as heat is always from the higher temperature medium to the lower 

temperature one, and heat transfer stops when the two mediums reach the same temperature. 

Heat can be transferred in three mechanisms or modes: conduction, convection and radiation. 

All modes of heat transfer require the existence of a temperature difference, and all modes are 

from the high temperature medium to a lower temperature one. In reality, the combined effect 

of these three modes of heat transfer control temperature distribution in a medium.  

1.2.1 Convective heat transfer 

Convection is a type of heat transfer which occurs generally in fluids. The transfer of heat 

from surface and a moving liquid or generally fluid at various temperature is termed as 

convection. This is due to the movement of atoms or molecules present in the liquids or 

gases.  The heat transfer from solid to fluid or fluid to solid consists of two transfer process. 

One is conduction and other one is advection. A convective transfer involves the combined 

process of conduction and advection. Advection means the heat transfer due to the bulk fluid 
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flow. The conduction or diffusion is taking place the boundary layer of the solids. So the 

combined effect of transfer is termed as convection.  

Convection is one of the major modes of heat transfer and mass transfer. Convective heat and 

mass transfer take place through both diffusion which means random Brownian motion of 

individual particles in the fluid and by advection, in which matter or heat is transported by the 

larger-scale motion of currents in the fluid. In the context of heat and mass transfer, the term 

"convection" is used to refer to the sum of advective and diffusive transfer. The term 

"convection" may have slightly different but related usages in different contexts. The broader 

sense is in fluid mechanics, where "convection" refers to the motion of fluid (regardless of 

cause). However in thermodynamics "convection" often refers specifically to heat transfer by 

convection. Additionally, convection includes fluid movement both by bulk motion 

(advection) and by the motion of individual particles (diffusion). However in some cases, 

convection is taken to mean only advective phenomena. For instance, in the transport 

equation, which describes a number of different transport phenomena, terms are separated 

into "convective" and "diffusive" effects. A similar differentiation is made in the Navier–

Stokes equations. In such cases the precise meaning of the term may be clear only from 

context. Convection occurs on a large scale in atmospheres, oceans, and planetary mantles. 

Fluid movement during convection may be invisibly slow, or it may be obvious and rapid, as 

in a hurricane. On astronomical scales, convection of gas and dust is thought to occur in the 

accretion disks of black holes, at speeds which may closely approach that of light. 

1.2.2  Mixed Convection 

Mixed convection occurs when natural convection and forced convection mechanisms act 

together to transfer heat. This is also defined as situations where both pressure forces and 

buoyant forces interact. How much each form of convection contributes to the heat transfer is 

largely determined by the flow, temperature, geometry, and orientation. Combined forced and 

natural convection is necessary where the forced convection is not enough to dissipate all of 

the heat required. At this point, combining natural convection with forced convection will 

often deliver the desired results. Examples of these processes are nuclear reactor technology 

and some aspects of electronic cooling. 
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1.2.3 Internal and External Flows 

A fluid flow is classified as being internal or external, depending on whether the fluid is 

forced to flow in a confined channel or over a surface. An internal flow is bounded on all 

sides by solid surfaces except, possibly, for an inlet and exit. Flows through a pipe or in an 

air-conditioning duct are the examples of internal flow. Internal flows are dominated by the 

influence of viscosity throughout the flow field. The internal flow configuration represents a 

convenient geometry for the heating and cooling of fluids used in the chemical processing, 

environmental control, and energy conversion areas. The flow of an unbounded fluid over a 

surface is external flow. The flows over curved surfaces such as sphere, cylinder, airfoil, or 

turbine blade are the example of external flow. In external flows the viscous effects are 

limited to boundary layers near solid surfaces. 

1.2.4 Boundary Layer 

Since fluid motion is the distinguishing feature of heat convection, it is necessary to 

understand some of the principles of fluid dynamics in order to describe adequately the 

processes of convection. When a fluid flows over a body, the velocity and temperature 

distribution at the immediate vicinity of the surface strongly influenced by the convective 

heat transfer. In order to simplify the analysis of convective heat transfer the boundary layer 

concept frequently is introduced to model the velocity and temperature fields near the solid 

surface in order to simplify the analysis of convective heat transfer. So we are concerned with 

two different kinds of boundary layers, the velocity boundary layer and the thermal boundary 

layer. 

The velocity boundary layer is defined as the narrow region, near the solid surface, over 

which velocity gradients and shear stresses are large, but in the region outside the boundary 

layer, called the potential-flow region, the velocity gradients and shear stresses are negligible. 

The exact limit of the boundary layer cannot be precisely defined because of the asymptotic 

nature of the velocity variation. The limit of the boundary layer is usually taken to be at the 

distance from the surface, at which the fluid velocity is equal to a predetermined percentage 

of the free stream value, 𝑼∞  . This percentage depends on the accuracy desired, 99 or 95% 

being customary. Although, outside the boundary layer region the flow is assumed to be 

inviscid, but inside the boundary layer the viscous flow may be either laminar or turbulent. In 

the case of laminar boundary layer, fluid motion is highly ordered and it is possible to 
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identify streamlines along which particles move. Fluid motion along a streamline is 

characterized by velocity components in both the x and y directions. Since the velocity 

component v is in the direction normal to the surface, it can contribute significantly to the 

transfer of momentum, energy or species through the boundary layer. Fluid motion normal to 

the surface is necessitated by boundary layer growth in the x direction. In contrast, fluid 

motion in the turbulent boundary layer is highly irregular and is characterized by velocity 

fluctuations. These fluctuations enhance the transfer of momentum, energy and species and 

hence increase surface friction, as well as convection transfer rates. Due to fluid mixing 

resulting from the fluctuations, turbulent boundary layer thicknesses are larger and boundary 

layer profiles are flatter than in laminar flow. The thermal boundary layer may be defined (in 

the same sense that the velocity boundary layer was defined above) as the narrow region 

between the surface and the point at which the fluid temperature has reached a certain 

percentage of ambient temperature. Outside the thermal boundary layer the fluid is assumed 

to be a heat sink at a uniform temperature of  𝑻∞  . The thermal boundary layer is generally 

not coincident with the velocity boundary layer, although it is certainly dependent on it. If the 

fluid has high thermal conductivity, it will be thicker than the velocity boundary layer, and if 

conductivity is low, it will be thinner than the velocity boundary layer. 

1.2.5 Streamfunction 

The fluid motion is displayed using the streamfunction (𝝍) obtained from velocity 

components 𝑼 and  𝑽. The relationships between streamfunction (𝝍)  and velocity 

components for two-dimensional flows are 

 andU V
Y X
  

 
 

 

which yield a single equation 

 
2 2

2 2

U V
X Y Y X
    

  
   

 

Using the above definition of the streamfunction, the positive sign of w denotes anti-

clockwise circulation and the clockwise circulation is represented by the negative sign of ψ. 
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1.2.6 Thermal Conductivity 

Thermal conductivity of a material can be defined as the rate of heat transfer through a unit 

thickness of the material per unit area per unit temperature difference. Therefore the thermal 

conductivity of a material is a measure of the ability of the material to conduct heat. A high 

value for thermal conductivity indicates that the material is a good heat conductor, and a low 

value for thermal conductivity indicates that the material is a poor heat conductor or 

insulator. For example the materials such as copper and silver that are good electric 

conductors are also good heat conductors, and have high values of thermal conductivity. 

Materials such as rubber, wood are poor conductors of heat and have low conductivity values. 

The rate of heat conduction through a medium depends on the geometry of the medium, its 

thickness, and the material of the medium, as well as the temperature difference across the 

medium. The proportionality constant k is called thermal conductivity of the material. 

1.2.7 Thermal Diffusivity 

The time dependent heat conduction equation for constant 𝒌 contains a quantity 𝜶, called the 

thermal diffusivity. Thermal diffusivity represents how fast heat diffuses through a material 

and is defined as  

PC





  

Here the thermal conductivity κ represents how well a material conducts heat, and the heat 

capacity 𝝆𝑪𝒑 represents how much energy a material stores per unit volume. Therefore, the 

thermal diffusivity of a material can be viewed as the ratio of the heat conducted through the 

material to the heat stored per unit volume. A material that has a high thermal conductivity or 

a low heat capacity will obviously have a large thermal diffusivity. The larger thermal 

diffusivity means that the propagation of heat into the medium is faster. A small value of 

thermal diffusivity means the material mostly absorbs the heat and a small amount of heat is 

conducted further. 

1.2.8 Tilted Enclosure 

The tilted enclosure geometry has received considerable attention in the heat transfer 

literature because of mostly growing interest of solar collector technology. The angle of tilt 

has a dramatic impact on the flow housed by the enclosure. Consider an enclosure heated 
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from below is rotated about a reference axis. When the tilted angle becomes 90º, the flow and 

thermal fields inside the enclosure experience the heating from side condition. Thereby 

convective currents may pronounce over the diffusive currents. When the enclosure rotates to 

180º, the heat transfer mechanism switches to the diffusion because the top wall is heated. 

1.2.9 Boussinesq Approximation 

The governing equations for convection flow are coupled elliptic partial differential equations 

and are, therefore, of considerable complexity. The major problems in obtaining a solution to 

these equations lie in the inevitable variation of density with temperature, or concentration, 

and in their partial, elliptic nature. Several approximations are generally made to considerably 

simplify these equations. Among them Boussinesq approximation is considered here. In 

flows accompanied by heat transfer, the fluid properties are normally functions of 

temperature. The variations may be small and yet be the cause of the fluid motion. If the 

density variation is not large, one may treat the density as constant in the unsteady and 

convection terms, and treat it as variable only in the gravitational term. This is called the 

Boussinesq approximation. 

 

1.3 Mass Transfer Mechanism 

Mass transfer is the net movement of mass from high concentration to low concentration. 

Mass transfer occurs in many processes, such as absorption, evaporation, adsorption, drying, 

precipitation, membrane filtration, and distillation. Mass transfer is used by different 

scientific disciplines for different processes and mechanisms. The phrase is commonly used 

in engineering for physical processes that involve diffusive and convective transport of 

chemical species within physical systems. Convection mass transfer refers to the transfer of 

mass due to an externally imposed flow and diffusion mass transfer is the transfer of mass 

due to the random molecular motion. 

Some common examples of mass transfer processes are the evaporation of water from a pond 

to the atmosphere, the purification of blood in the kidneys and liver, and the distillation of 

alcohol. In industrial processes, mass transfer operations include separation of chemical 

components in distillation columns, absorbers such as scrubbers, absorbers such as activated 

carbon beds, and liquid-liquid extraction. Mass transfer is often coupled to additional 
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transport processes, for instance in industrial cooling towers. These towers couple heat 

transfer to mass transfer by allowing hot water to flow in contact with hotter air and 

evaporate as it absorbs heat from the air. 

1.4 Diffusion mass transfer 

Diffusion is transfer of mass due to the random molecular motion. It is the net movement of 

particles from an area of high concentration to low concentration due to the random 

movement of particles. It is a passive process which means no energy is needed. 

1.5 Magneto-Hydrodynamics 

Magneto-hydrodynamics (MHD) is the academic discipline which studies the dynamics of 

electrically conducting fluids. Examples of such fluids include plasmas, liquid metals and salt 

water. The word Magneto-hydrodynamics (MHD) is derived from “magneto-” meaning 

“magnetic field”, and “hydro” meaning “liquid”, and “dynamics” meaning “movement”. The 

field of MHD was initiated by Hannes Alfven, for which he received the Noble Prize in 

Physics in 1970. The idea of MHD is that magnetic fields which induce currents in a moving 

conducting fluid, and create forces on the fluid, and also change the magnetic field itself. The 

set of equations which describe MHD are a combination of the Nevier-Stokes equations of 

fluid dynamics and Maxwell’s equations of electromagnetism. These differential equations 

have to be solved simultaneously, either analytically or numerically. MHD is a continuum 

theory and as such it cannot treat kinetic phenomena, i.e. those in which the existence of 

discrete particles or of a non-thermal velocities distribution are important. The simple form of 

MHD, Ideal MHD, assumes that fluid has so little resistivity that it can be treated as a perfect 

conductor. This is the limit of infinite magnetic Reynolds number in ideal MHD, Lenz’s law 

dictates that the fluid is in a sense tied to the magnetic fields lines. To explain, in ideal MHD 

a small rope like volume of the fluid surrounding a field line will continue to lie along a 

magnetic field line, even as it is twisted and distorted by fluid flows in the system The 

connection between magnetic field lines and fluid in ideal MHD fixes the topology of the 

magnetic field in the fluid-for example, if a set of magnetic field lines are tied into a knot, 

then they will remain so as long as the fluid/plasma has negligible resistivity. This difficulty 

in reconnecting magnetic field lines makes it possible to store energy by moving the fluid or 

the source of the magnetic field. The energy can then become available if the conditions for 
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ideal MHD break down allowing magnetic reconnection that release the stored energy from 

the magnetic field. 

The ideal MHD equations consist of the continuity equation, the momentum equation, and 

Ampere's Law in the limit of no electric field and no electron diffusivity, and a temperature 

evolution equation. As with any fluid description to a kinetic system, a closure approximation 

must be applied to highest moment of the particle distribution equation. This is often 

accomplished with approximations to the heat flux through a condition of adiabaticity or 

isothermality. 

Ideal MHD is only strictly applicable when: 

1. The plasma is strongly collisional, so that the time scale of collisions is shorter than the 

other characteristic times in the system, and the particle distributions are therefore close to 

Maxwellian. 

2. The resistivity due to these collisions is small. In particular, the typical magnetic diffusion 

times over any scale length present in the system must be longer than any time scale of 

interest. 

3. We are interested in length scales much longer than the ion skin depth and Larmor radius 

perpendicular to the field, long enough along the field to ignore Landau damping, and time 

scales much longer than the ion gyration time (system is smooth and slowly evolving). 

1.6 Dimensionless Parameter 

The dimensionless parameters can be thought of as measures of the relative importance of 

certain aspects of the flow. Some dimensionless parameters related to our study are discussed 

below: 

1.6.1 Nusselt Number, Nu 

The Nusselt number represents the enhancement of heat transfer through a fluid layer as a 

result of convection relative to conduction across the same fluid layer, and is defined as  

𝑵𝒖 =  𝒉𝑳 / 𝒌 

where k is the thermal conductivity of the fluid, h is the heat transfer coefficient and L is the 

characteristics length. The Nusselt number is named after Wilhelm Nusselt, who made 

significant contributions to convective heat transfer in the first half of the twentieth century, 
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and it is viewed as the dimensionless convection heat transfer coefficient. The larger Nusselt 

number indicates a large temperature gradient at the surface and hence, high heat transfer by 

convection. A Nusselt number of 𝑵𝒖 =  𝟏, for a fluid layer represents heat transfer across 

the layer by pure conduction. To understand the physical significance of the Nusselt number, 

consider the following daily life problems. We remedy to forced convection whenever we 

want to increase the rate of heat transfer from a hot object. In free convection flow velocities 

are produced by the buoyancy forces hence there are no externally induced flow velocities. 

1.6.2 Reynold’s Number, Re 

Reynold’s number is a dimensionless number which is the ratio of of momentum forces to 

viscous forces defined as 

𝑹𝒆 =  
𝒊𝒏𝒆𝒓𝒕𝒊𝒂𝒍 𝒇𝒐𝒓𝒄𝒆𝒔

𝒗𝒊𝒔𝒄𝒐𝒖𝒔 𝒇𝒐𝒓𝒄𝒆𝒔
=

𝝆𝒗𝑳

𝝁
=

𝒗𝑳

𝝂
. 

Where: 

 𝒗 is the maximum velocity of the object relative to the fluid (𝒎/𝒔) 

 𝑳 is a characteristic linear dimension (travelled length of the fluid)( 𝒎) 

 𝝁 is the dynamic viscosity of the fluid  (𝑷𝒂. 𝒔 or 𝑲𝒈 𝒎−𝟏𝒔−𝟏) 

 𝝂 is the kinematic viscosity (𝒎𝟐 𝒔 ) 

 𝝆 is the density of the fluid (𝑲𝒈/𝒎𝟑) 

It is a dimensionless number used in fluid mechanics to indicate whether fluid flow past a 

body or in a duct is steady or turbulent. Also help to predict similar flow patterns in different 

fluid flow situations. The concept was introduced by George Gabriel Stokes in 1851, but the 

Reynolds number is named after Osborne Reynolds (1842–1912), who popularized its use in 

1883. Reynolds numbers frequently arise when performing scaling of fluid dynamics 

problems, and as such can be used to determine dynamic similitude between two different 

cases of fluid flow. They are also used to characterize different flow regimes within a similar 

fluid, such as laminar or turbulent flow: 

Laminar flow occurs at low Reynolds numbers, where viscous forces are dominant, and is 

characterized by smooth, constant fluid motion; 

Turbulent flow occurs at high Reynolds numbers and is dominated by inertial forces, which 

tend to produce chaotic eddies, vortices and other flow instabilities. 
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1.6.3 Richardson’s Number, Ri 

The Richardson number, 𝑹𝒊 is named after Lewis Fry Richardson. It is a dimensionless 

number that expresses the ratio of the buoyancy term to the flow gradient term. i.e. 

𝑹𝒊 =
𝐛𝐮𝐨𝐲𝐚𝐧𝐜𝐲 𝐭𝐞𝐫𝐦

𝐟𝐥𝐨𝐰 𝐠𝐫𝐚𝐝𝐢𝐞𝐧𝐭 𝐭𝐞𝐫𝐦
 

In the thermal convection problems, 𝑹𝒊 represents the importance of natural convection 

relative to the forced convection. 𝑹𝒊 defined as 

𝑹𝒊 =
𝒈𝜷 𝑻𝒉𝒐𝒕 − 𝑻𝒓𝒆𝒇 𝑳

𝒗𝟐
=

𝑮𝒓

𝑹𝒆𝟐
 

Typically, the natural convection is negligible when < 0.1 , forced convection is negligible 

when 𝑹𝒊 > 10 , and neither is negligible when 𝟎.𝟏 < 𝑅𝑖 < 10. Usually the forced 

convection is large relative to natural convection except in the case of extremely low forced 

flow velocities. 

1.6.4 Prandtl Number, Pr 

The relative thickness of the velocity and the thermal boundary layers is best described by the 

dimensionless parameter Prandtl number, defined as 

𝑷𝒓 =
𝑲𝒊𝒏𝒆𝒎𝒂𝒕𝒊𝒄 𝑽𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚

𝑻𝒉𝒆𝒓𝒎𝒂𝒍 𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒗𝒊𝒕𝒚
=

𝝂

𝜶
=

𝝁𝑪𝒑

𝒌
 

Where: 

𝝂 is the kinematic viscosity of the fluid (𝝂 =
𝝁

𝝆
) (𝒎𝟐 𝒔 ) 

𝒌 is the thermal conductivity of the fluid (𝑾𝒎−𝟏𝑲−𝟏) 

𝑪𝒑 is the specific heat of the fluid (𝑱𝑲𝒈−𝟏𝑲−𝟏) 

𝜶 is the thermal diffusivity of the fluid  𝜶 =
𝒌

𝝆𝑪𝒑
  (𝒎𝟐 𝒔 ) 

It is named after Ludwig Prandtl, who introduced the concept of boundary layer in 1904 and 

made significant contributes to boundary layer theory. The Prandtl numbers of fluids range 

from less than 0.01 for liquid metals to more than 100,000 for heavy oils. Note that, the 

Prandtl numbers of gases are about 1, which indicates that both momentum and heat dissipate 
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through the fluid at about the same rate. Consequently the thermal boundary layer is much 

thicker for liquid metals and much thinner for oils relative to the velocity boundary layer. 

1.6.5 Hartmann Number, Ha 

Hartmann number is the ratio of electromagnetic force to the viscous force first introduces by 

Hartmann. It is defined by 

𝑯𝒂 =
𝑬𝒍𝒆𝒄𝒕𝒓𝒐𝒎𝒂𝒈𝒏𝒆𝒕𝒊𝒄 𝑭𝒐𝒓𝒄𝒆

𝑽𝒊𝒔𝒄𝒐𝒖𝒔 𝑭𝒐𝒓𝒄𝒆
= 𝑩𝟎𝑳 

𝝈

𝝁
 

Where: 

𝑩𝟎 is the magnetic field (𝑵𝒎−𝟏𝑨−𝟏) 

𝑳 is the characteristic length scale 

𝝈 is the electrical conductivity (𝛀𝒎) 

𝝁 is the viscosity 

In addition, it is a dimensionless quantity characterizing flow of conducting fluid in a 

transverse magnetic field, being the product of the magnetic flux density, a representative 

length and square root of the ratio of electrical conductivity to viscosity. 

1.6.6 Lewis Number, Le 

Lewis number (Le) is a dimensionless number defined as the ratio of thermal diffusivity to 

mass diffusivity. It is used to characterize fluid flows where there is simultaneous heat and 

mass transfer by convection and defined as: 

𝑳𝒆 =
𝜶

𝑫
 

where 𝜶 is the thermal diffusivity and 𝑫 is the mass diffusivity.  

The Lewis number can also be expressed in terms of the Prandtl number and the Schmidt 

number: 

𝑳𝒆 =
𝑷𝒓

𝑺𝒄
 

It is named after Warren K. Lewis (1882–1975) who was the first head of the Chemical 

Engineering Department at MIT. Some workers in the field of combustion assume 
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(incorrectly) that the Lewis number was named for Bernard Lewis (1899–1993), who for 

many years was a major figure in the field of combustion research. 

1.6.7 Sherwood Number, Sh 

The Sherwood number (also called the mass transfer Nusselt number) is a dimensionless 

number used in mass-transfer operation. It represents the ratio of the total rate of mass 

transfer to the rate of diffusive mass transport alone and is named in honor of Thomas 

Kilgore Sherwood. It is defined as  

𝑺𝒉 =
𝑲𝑳

𝑫
=

𝑪𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒗𝒆 𝒎𝒂𝒔𝒔 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓 𝒄𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕

𝑫𝒊𝒇𝒇𝒖𝒔𝒊𝒗𝒆 𝒎𝒂𝒔𝒔 𝒕𝒓𝒂𝒏𝒔𝒇𝒆𝒓 𝒄𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕
 

Where 

L is a characteristic length (𝒎) 

D is mass diffusivity (𝒎𝟐𝒔−𝟏) 

K is the mass transfer coefficient (𝒎𝒔−𝟏) 

1.7 Main Objective of the work 

The aim of the proposed study is to present the effect of MHD mixed convection flow around 

a heated obstacle placed in a lid driven rectangular cavity with two semi-circular wall heater. 

Results will be presented for non-dimensional governing and physical parameters in terms of 

streamlines, isotherms and average heat transfer rate along the semi-circular wall heater. 

The specific objectives of the present research work are: 

 To prepare the mathematical model regarding the effects of MHD mixed convection 
flow around a heated obstacle placed in a lid driven rectangular cavity with two semi-
circular wall heater. 

 To solve the model equations using finite element method. 

 To investigate the effects of Richardson number Ri, Hartmann number Ha and 
Buoyancy ratio Br. 

 To investigate the effects of the size of the heated obstacle on the flow field and 
temperature distribution. 

 To present the numerical results graphically for different values of the relevant 
physical parameters along the wall heater used in the model.  

 To compare the results with other published works. 
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1.8 Outline of the thesis 

The discussion contains six chapters. The thesis is concerned with the analysis of the effects 

on heat flow for MHD mixed convection with lid driven rectangular cavity. There are many 

cavity configurations for the study of combined effect of natural and forced convection flow. 

In this study we have considered a rectangular cavity containing a centered heated 

(trapezoidal or rectangular) obstacle. 

In chapter 1, a general framework for the description of convective heat transfers has been 

presented and discussed their properties, also relevant discussion on dimensionless 

parameters. In this chapter, a brief introduction is presented with aim and objective and also 

inspiration behind the selection of current work. 

In this chapter 2, a brief discussion of literature review of the past studies on fluid flow and 

heat transfer in cavities or channels is presented. In this state-of-the art review, different 

aspects of the previous studies have been mentioned categorically 

In Chapter 3, the  computational techniques of the problem for viscous incompressible flow 

have been discussed. 

in Chapter 4, Mathematical modeling of the problem for uniform heating have been 

discussed. 

In Chapter 5, Numerical analysis and comparison with others work have been discussed. 

In Chapter 6, results of the relevant parametric study have been performed. 

Finally, in conclusion part, the main achievements have been summarized. 
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CHAPTER 2 

LITERATURE REVIEW 

Numerous transport processes survive in nature have industrial applications in which the heat 

and mass transfer occur concurrently as a result of combines buoyancy effects of thermal and 

species diffusion. Analysis of mixed convection usually induced in closed cavities or 

channels containing heating elements in the middle or wall heater are important from both 

theoretical and practical points of view. The fundamental problem of mixed convection in 

cavity has received considerable attention from researchers. Most of the cavities commonly 

used in industries are cylindrical, rectangular, trapezoidal and triangular etc. rectangular 

cavities have received a considerable attention for its application in various fields. Many 

numerical investigations on mixed convection in different types of cavities have been 

investigated in the recent years. 

Magnetohydrodynamics (MHD) is the academic discipline which studies the dynamic of 

electrically conducting fluids. Examples of such fluids include plasmas, liquid metals and salt 

water. The MHD was originally applied to astrophysical and geophysical problems, where it 

is still very important. Engineers employ MHD principles in the design of heat exchanger, 

pumps and flow meters, in space vehicle propulsion, control and re-entry in creating novel 

power generating systems and developing confinement schemes for controlled fusion. 

Mixed convection flow in channels, ducts and cavities may occur in many applications, such 

as in heat exchangers, ventilation of rooms, double glazing, nuclear reactor insulation, solar 

energy collection, chemical processing equipment, microelectronic cooling, crystal growth in 

liquids, to name just a few of these applications studied by Aydin et al  (1999 ). Obstacle or  

partition is used to enhance heat transfer in cavities. There are many studies on natural 

convection and mixed convection in an obstructed cavity in the literatures. House et al. 

(1990) studied natural convection in a vertical square cavity with heat conducting body. Dong 

and Li (2004) performed the conjugate effect of natural convection and conduction in a 

complicated enclosure. Öztop et al. (2009) studied fluid flow due to combined convection in 
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lid-driven enclosure having a circular body. They found that the most effective parameter on 

the flow field and temperature distribution is the orientation of moving lid. Moallemi et al. 

(1992) studied Prandtl number effect on laminar mixed convection heat transfer in a lid 

driven cavity. Hasanuzzaman et al (2012) studied magnetohydrodynamic natural convection 

in trapezoidal cavities. They discuss the effect of magnetic field on natural convection heat 

transfer in trapezoidal enclosure with different inclination angles. It is found that heat transfer 

decreased by 20.70% and 16.15% as φ increases from 0 to 60 at Ra=𝟏𝟎𝟓and 𝟏𝟎𝟔 

respectively. On the other hand, heat transfer decreased by 20.28% and 13.42% as Ha 

increases from 0 to 50 for Ra=𝟏𝟎𝟓and 𝟏𝟎𝟔respectively. Rahman et al (2012) studied 

computational analysis of mixed convection in a channel with a cavity heated from different 

sides. They found that highest heat transfer is obtained when the isothermal heater is located 

at the right vertical wall. Basak et al (2009) analyzed finite element simulation of natural 

convection within porous trapezoidal enclosures for various inclination angles: effect of 

various wall heating. K. Khanafer and S.M. Aithal (2013) studied laminar mixed convection 

flow and heat transfer characteristics in a lid driven cavity with a circular cylinder. Results 

obtained in this study indicate that placing the cylinder near the bottom wall increased the 

maximum average Nusselt number while moving the cylinder near the top wall resulted in the 

lowest average Nusselt number on the bottom wall. Rahman et al (2011) studied conjugated 

effect of joule heating and magneto-hydrodynamic on double-diffusive mixed convection in a 

horizontal channel with an open cavity. The result shows that the aforesaid parameters have 

noticeable effect on the flow pattern and heat and mass transfer. Y. Varol et al (2006) 

analyzed natural convection in a triangle enclosure with flush mounted heater on the wall. 

They observed that the most important parameter on heat transfer and flow field is the 

position of heater which can be a control parameter in the above system. Billah et al (2011) 

studied numerical analysis of fluid flow due to mixed convection in a lid-driven cavity having 

a heated circular hollow cylinder. They found that the flow field and temperature distribution 

strongly depend on the cylinder diameter and also the solid–fluid thermal conductivity ratio 

at the three convective regimes. Teamah (2008) analyzed numerical simulation of double 

diffusive natural convection in rectangular enclosure in the presences of magnetic field and 

heat source. S. Sivasankaran (2011) studied hydro-magnetic combined convection in a lid-

driven cavity with sinusoidal boundary conditions on both sidewalls. They found that the 

flow behavior and heat transfer rate inside the cavity are strongly affected by the presence of 

the magnetic field. Al-Salem et al (2011) studied effects of moving lid direction on MHD 
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mixed convection in a linearly heated cavity. They found that direction of lid is more 

effective on heat transfer and fluid flow in the case of mixed convection than it is the case in 

forced convection. Heat transfer is also decreased with increasing of magnetic field for all 

studied parameters. Nithyadevi (2009) studied double diffusive natural convection in a 

partially heated enclosure with Soret and Dufour effects. Oztop et al (2011) analyzed MHD 

mixed convection in a lid-driven cavity with corner heater. A.W. Islam et al (2012) studied 

mixed convection in a lid driven square cavity with an isothermally heated square blockage 

inside. From the analysis of the mixed convection process, it is found that for any size of the 

blockage placed anywhere in the cavity, the average Nusselt number does not change 

significantly with increasing Richardson number until it approaches the value of the order of 

1 beyond which the average Nusselt number increases rapidly with the Richardson number. 

The most preferable heat transfer is obtained when the blockage is placed around the top left 

and the bottom right corners of the cavity. Basak et al (2009) analyzed the mixed convection 

flows within a square cavity with linearly heated side walls. A detailed analysis of flow 

pattern shows that as the value of Re increases from 1 to 𝟏𝟎𝟐, there occurs a transition from 

natural convection to forced convection depending on the value of Gr irrespective of Pr. 

Nasrin et al (2012) studied combined convection flow in triangular wavy chamber filled with 

water–CuO nanofluid: Effect of viscosity models. Ching et al (2012) studied finite element 

simulation of mixed convection heat and mass transfer in a right triangular enclosure. They 

found that the increase of buoyancy ratio enhances the heat and mass transfer rate for all 

values of Richardson number and for each direction of the sliding wall motion. Bhuiyan et al 

(2014) studied combined effect of Hartmann and Rayleigh numbers on free convective flow 

in a square cavity with different positions of heated elliptic obstacle. They investigated if the 

Hartman number increases, the local Nusselt number decreases for bottom left configuration, 

but changes randomly for top right configuration. Rahman et al (2011) studied 

Magnetohydrodynamic mixed convection in a horizontal channel with an open cavity. The 

results indicate that the mentioned parameters in this paper strongly affect the flow 

phenomenon and temperature field inside the cavity whereas in the channel these effects are 

less significant. Hossain and Alim (2014) investigated MHD free convection within 

trapezoidal cavity with non-uniformly heated bottom wall. They found that the average and 

local Nusselt number at the non-uniform heating of bottom wall of the cavity is depending on 

the dimensionless parameters and also tilts angles. Parvin and Hossain (2012) studied finite 

element simulation of MHD combined convection through a triangular wavy channel. The 
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study reveals that the flow as well as thermal field strongly depends on the aforesaid 

parameters. Al-Amiri et al (2007) studied effect of sinusoidal wavy bottom surface on mixed 

convection heat transfer in a lid-driven cavity. The results of this investigation illustrate that 

the average Nusselt number increases with an increase in both the amplitude of the wavy 

surface and Reynolds number. Rahman et al [27] studied natural convection effects on heat 

and mass transfer in a curvilinear triangular cavity. They  found that average Nusselt and 

Sherwood numbers increase as Br increases. Also, average Nusselt decreases and Sherwood 

numbers increases as Le increases. Serrano-Arellano et al (2014) studied numerical 

investigation of transient heat and mass transfer by natural convection in a ventilated cavity: 

outlet air gap located close to heat source. Rahman et al (2010) studied numerical study on 

the conjugate effect of joule heating and magnato-hydrodynamics mixed convection in an 

obstructed lid-driven square cavity. They also found that the parameters Ha and J have 

notable effect on flow fields, temperature distributions and heat transfer in the cavity. Ray 

and Chatterjee (2014) investigated MHD mixed convection in a lid-driven cavity including 

heat conducting circular solid object and corner heaters with Joule heating. The result 

indicates a major influence of the prevailing convection method and the applied magnetic 

field on the flow as well as the thermal field, while the effect of Joule heating is found to be 

of very small significance. Öztop et al (2012) studied MHD natural convection in an 

enclosure from two semi-circular heaters on the bottom wall. They found that the distance 

between the semi-circular heaters is the most important parameter affecting the heat and fluid 

flow fields. Rahman et al (2011) studied MHD mixed convection with joule heating effect in 

a lid-driven cavity with a heated semi-circular source using finite element technique. Chandra 

and Chhabra (2011) studied flow over and forced convection heat transfer in Newtonian 

fluids from a semi-circular cylinder. Khalil Khanafer (2014) studied comparison of flow and 

heat transfer characteristics in a lid-driven cavity between flexible and modified geometry of 

a heated bottom wall. This investigation shows the benefits of using flexible walls when 

augmentation of heat transfer is sought at high Grashof numbers. M. Hasanuzzaman et al 

(2012) investigated effects of Lewis number on heat and mass transfer in a triangular cavity. 

They found that heat transfer decreased as Le increases. On the other hand, mass transfer rate 

increased as Le increases. S. Sivasankaran et al (2010) studied numerical study on mixed 

convection in a lid-driven cavity with non-uniform heating on both sidewalls. The results 

show that heat transfer rate is increased on increasing amplitude ratio. A. Koca et al (2007) 
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studied the effects of Prandtl number on natural convection in triangular enclosures with 

localized heating from below. 
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CHAPTER 3 

COMPUTATIONAL TECHNIQUE 

3.1 Computational Technique 

Computational fluid dynamics (CFD) has been rapidly gaining popularity over the past 

several years for technological as well as scientific interests. For many problems of industrial 

interest, experimental techniques are extremely expensive or even impossible due to the 

complex nature of the flow configuration. Analytical methods are often useful in studying the 

basic physics involved in a certain flow problem, however, in many interesting problems; 

these methods have limited direct applicability. The dramatic increase in computational 

power over the past several years has led to a heightened interest in numerical simulations as 

a cost effective method of providing additional flow information, not readily available from 

experiments, for industrial applications, as well as a complementary tool in the investigation 

of the fundamental physics of turbulent flows, where analytical solutions have so far been 

unattainable. It is not expected (or advocated), however, that numerical simulations replace 

theory or experiment, but that they be used in conjunction with these other methods to 

provide a more complete understanding of the physical problem at hand. 

Mathematical model of physical phenomena may be ordinary or partial differential equations, 

which have been the subject of analytical and numerical investigations. The partial 

differential equations of fluid mechanics and heat transfer are solvable for only a limited 

number of flows. To obtain an approximate solution numerically, we have to use a 

discretization method, which approximated the differential equations by a system of algebraic 

equations, which can then be solved on a computer. The approximations are applied to small 

domains in space and / or time so the numerical solution provides results at discrete locations 

in space and time. Much as the accuracy of experimental data depends on the quality of the 

tools used, the accuracy of numerical solutions depend on the quality of discretizations used 

.Computational fluid dynamics (CFD) computation involves the formation of a set numbers 

that constitutes a practical approximation of a real life system. The outcome of computation 
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process improves the understanding of the performance of a system. Thereby, engineers need 

CFD codes that can make physically realistic results with good quality accuracy in 

simulations with finite grids. Contained within the broad field of computational fluid 

dynamics are activities that cover the range from the automation of well established 

engineering design methods to the use of detailed solutions of the Navier-Stokes equations as 

substitutes for experimental research into the nature of complex flows. CFD have been used 

for solving wide range of fluid dynamics problem. It is more frequently used in fields of 

engineering where the geometry is complicated or some important feature that cannot be 

dealt with standard methods. 

3.1.1 Merits and Demerits of Numerical Method 

As computational power grows, the need for more advanced numerical algorithms also 

increases. There are many different techniques for constructing numerical solutions of fluid 

flow problems, e.g. finite difference methods(FD), finite volume methods (FV), and finite 

element methods(FE), to name a few, and all have their strengths and weaknesses. Since the 

goal of the present research lies in the development of methods which may ultimately be used 

for large-scale applications of industrial interest, finite element methods have been chosen, 

given their accuracy as well as their ability to approximate arbitrarily complex geometric 

configurations. The finite element method applied to fluid dynamics has reached level of 

maturity over the past two decades such that it is now being successfully applied to industrial 

strength problems including turbulent flows. 

Finite element method is an ideal numerical approach for solving a system of partial 

differential equations. The finite element method produces equations for each element 

independently of all other elements. Only when the equations are collected together and 

assembled into a global matrix are the interactions between elements taken into account. 

Despite these ideal characteristics, the finite element method dominates in most of the 

computational fluid dynamics. The present research is an attempt to bring the FE technique 

again into light through a novel formulation of two dimensional incompressible thermal flow 

problems. As the formulation establishes a priority of finite element technique over the FD 

and FV method, the philosophy and approach of the three methods are recapitulated here in 

brief. The finite difference method relies on the philosophy that the body is in one single 

piece but the parameters are evaluated only at some selected points within the body, 

satisfying the governing differential equations approximately, where as the finite volume 
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method relies on the philosophy that the body is divided into a finite number of control 

volumes, On the other hand, in the finite element method, the body is divided into a number 

of elements. The Finite element method works when all other methods fail and it’s managing 

complex geometrical bodies and boundaries.  There are many commercial packages such as 

ANSYS, MATLAB and COMSOL MULTIPHYSICS for computing practical problems.  The 

demerits of this method, it considers the body is not in one piece, but it is an assemblage of 

elements connected only at nodes and Finite element solution is highly dependent on the 

element type.   

Accurate and reliable prediction of complex geometry is of great importance to meet the 

severe demand of greater reliability as well as economic challenge. It is noted that these 

complex geometries occurs most frequently in CFD. Presented methods have a common 

feature: they generate equations for the values of the unknown functions at a finite number of 

points in the computational domain. But there are also several differences. The finite 

difference and the finite volume methods generate numerical equations at the reference point 

based on the values at neighboring points. The finite element method takes care of boundary 

conditions of Neumann type while the other two methods can easily apply to the Dirichlet 

conditions. The finite difference method could be easily extended to multidimensional spatial 

domains if the chosen grid is regular (the cells must look cuboids, in a topological sense). The 

grid indexing is simple but some difficulties appear for the domain with a complex geometry. 

For the finite element method there are no restrictions on the connection of the elements 

when the sides (or faces) of the elements are correctly aligned and have the same nodes for 

the neighboring elements. This flexibility allows us to model a very complex geometry. The 

finite volume method could also use irregular grids like the grids for the finite element 

methods, but keeps the simplicity of writing the equations like that for the finite difference 

method. Of course, the presence of a complex geometry slows down the computational 

programs. Another benefit of the finite element method is that of the specific mode to deduce 

the equations for each element that are then assembled. Therefore, the addition of new 

elements by refinement of the existing ones is not a major problem. For the other methods, 

the mesh refinement is a major task and could involve the rewriting of the program. But for 

all the methods used for the discrete analogue of the initial equation, the obtained system of 

simultaneous equations must be solved. That is why, the present work emphasizes the use of 

finite element techniques to solve flow and heat transfer problems. The details of this method 

are explained in the following section. 
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3.2 Elements of Numerical Solution Methods 

Several components of numerical solution methods are available in Ferziger and Perić 

(1997), here only the main steps will be demonstrate in the following. 

3.2.1 Mathematical Model 

The starting point of any numerical method is the mathematical model, i.e. the set of partial 

differential equations and boundary conditions. A solution method is usually designed for a 

particular set of equations. Trying to produce a general-purpose solution method, i.e. one 

which is applicable to all flows, is impractical, is not impossible and as with most general 

purpose tools, they are usually not optimum for any one application.  

3.2.2 Discretization Process 

After selecting the mathematical model, one has to choose a suitable discretization method, 

i.e. a method of approximating the differential equations by a system of algebraic equations 

for the variable at some set of discrete locations in space and time. 

3.2.3 Numerical Grid 

The numerical grid defines the discrete locations, at which the variables are to be calculated, 

which is essentially a discrete representation of the geometric domain on which the problem 

is to be solved. It divided the solution domain into a finite number of sub-domains (elements, 

control volumes etc). Some of the options available are structural (regular) grid, block 

structured grid, unstructured grids etc.  

3.2.4 Finite Approximations  

Following the choice of grid type, one has to select the approximations to be used in the 

discretization process. In a finite difference method, approximations for the derivatives at the 

grid points have to be selected. In a finite volume method, one has to select the methods of 

approximating surface and volume integrals. In a finite element method, one has to choose 

the functions and weighting functions. 

3.2.5 Solution Technique 

Discretization yields a large system of non-linear algebraic equations. The method of solution 

depends on the problem. For unsteady flows, methods based on those used for initial value 
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problems for ordinary differential equation (marching in time) is used. At each time step an 

elliptic problem has to be solved. Pseudo-time marching or an equivalent iteration scheme 

usually solves steady flow problems. Since the equations are non-linear, an iteration scheme 

is used to solve them. These methods use successive linearization of the equations and the 

resulting linear systems are almost always solved by iterative techniques. The choice of 

solver depends on the grid type and the number of nodes involved in each algebraic equation. 

3.3 Discretization Approaches 

The first step to numerically solve a mathematical model of physical phenomena is its 

numerical discretization. This means that each component of the differential equations is 

transformed into a “numerical analogue” which can be represented in the computer and then 

processed by a computer program, built on some algorithm. There are several discritization 

methods available for the high performance numerical computation in CFD. 

  Finite difference method (FDM) 

  Finite volume method (FVM) 

  Finite element method (FEM) 

  Boundary element method (BEM) 

  Boundary volume method (BVM) 

In the present numerical computation, Galerkin finite element method (FEM), George R. 
Buchanan, Finite Element Analysis, Schaum's Outline Series, McGraw-Hill, 1995 has been 
used. 

3.4 Finite Element Method  

The finite element method (FEM) is a powerful computational technique for solving 

problems which are described by partial differential equations or can be formulated as 

functional minimization. The basic idea of the finite element method is to view a given 

domain as an assemblage of simple geometric shapes, called finite elements, for which it is 

possible to systematically generate the approximation functions needed in the solution of 

partial differential equations by the variation or weighted residual method. The computational 

domains with irregular geometries by a collection of finite elements makes the method a 

valuable practical tool for the solution of boundary, initial and Eigen value problems arising 

in various fields of engineering. The approximation functions, which satisfy the governing 

equations and boundary conditions, are often constructed using ideas from interpolation 
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theory. Approximating functions in finite elements are determined in terms of nodal values of 

a physical field which is sought. A continuous physical problem is transformed into a 

discretized finite element problem with unknown nodal values. For a linear problem, a 

system of linear algebraic equations should be solved. Values inside finite elements can be 

recovered using nodal values. The major steps involved in finite element analysis of a typical 

problem are: 

 Discretization of the domain into a set of finite elements (mesh generation). 

 Weighted-integral or weak formulation of the differential equation to be analyzed. 

 Development of the finite element model of the problem using its weighted-integral or 

weak form. 

 Assembly of finite elements to obtain the global system of algebraic equations. 

 Imposition of boundary conditions. 

 Solution of equations. 

 Post-computation of solution and quantities of interest. 

3.4.1 MESH GENERATION 

In finite element method, the mesh generation is the technique to subdivide a domain into a 

set of subdomains, called finite elements. Figure 3.1 shows a domain, is subdivided into a set 

of subdomains, with boundary . 

 

 

 

 

 

 

 

Figure 3.1: Finite element discretization of a domain 

The present numerical technique will discretize the computational domain into unstructured 

triangles by Delaunay Triangular method. The Delaunay triangulation is a geometric structure 
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that has enjoyed great popularity in mesh generation since the mesh generation was in its 

infancy. In two dimensions, the Delaunay triangulation of a vertex set maximizes the 

minimum angle among all possible triangulations of that vertex set. Figure 3.2 shows the 

mesh mode for the present numerical computation. Mesh generation has been done 

meticulously 

 

Figure 3.2 (a) Current mesh structure of elements for rectangular 

enclosure with trapezoidal obstacle area 0.042. 

 

Figure 3.2 (b) Current mesh structure of elements for rectangular 

enclosure with rectangular obstacle area 0.028. 

3.4.2 Finite Element Formulation and Computational Technique 

Viscous incompressible thermal flows have been the subject of our investigation. The 

problem is relatively complex due to the coupling between the energy equation and the 

Navier-Stokes equations, which govern the fluid motion. These equations comprise a set of 

coupled nonlinear partial differential equations, which is difficult to solve especially with 
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complicated geometries and boundary conditions. The finite element formulation and 

computational procedure for Navier-Stokes equations along with energy equation and mass 

equation will be discuss in  chapter 4 and chapter 5. 

3.5 Algorithm 

The algorithm was originally put forward by the iterative Newton-Raphson algorithm; the 

discrete forms of the continuity, momentum and energy equations are solved to find out the 

value of the velocity and the temperature. It is essential to guess the initial values of the 

variables. Then the numerical solutions of the variables are obtained while the convergent 

criterion is fulfilled. The simple algorithm is shown by the flow chart below. 
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Figure 3.3: Flow chart of the computational procedure 
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3.5.1 Solution of System of Equations 

A system of linear algebraic equations has been solved by the UMFPACK with MATLAB 

interface. UMFPACK is a set of routines for solving asymmetric sparse linear systems Ax = 

b, using the Asymmetric Multi Frontal method and direct sparse LU factorization. Five 

primary UMFPACK routines are required to factorize A or Ax = b: 

 Pre-orders the columns of A to reduce fill-in and performs a symbolic analysis. 

 Numerically scales and then factorizes a sparse matrix. 

 Solves a sparse linear system using the numeric factorization. 

 Frees the Symbolic object. 

 Frees the Numeric object. 

 

Additional routines are: 

 Passing a different column ordering 

 Changing default parameters 

 Manipulating sparse matrices 

 Getting LU factors 

 Solving the LU factors 

 Computing determinant 

 

UMFPACK factorizes PAQ, PRAQ, or PR−1AQ into the product LU, where L and U are 

lower and upper triangular, respectively, P and Q are permutation matrices, and R is a 

diagonal matrix of row scaling factors (or R = I if row-scaling is not used). Both P and Q are 

chosen to reduce fill-in (new nonzeros in L and U that are not present in A). The permutation 

P has the dual role of reducing fill-in and maintaining numerical accuracy (via relaxed partial 

pivoting and row interchanges). The sparse matrix A can be square or rectangular, singular or 

non-singular, and real or complex (or any combination). Only square matrices A can be used 

to solve Ax = b or related systems. Rectangular matrices can only be factorized. UMFPACK 

first finds a column pre-ordering that reduces fill-in, without regard to numerical values. It 

scales and analyzes the matrix, and then automatically selects one of three strategies for pre-
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ordering the rows and columns: asymmetric, 2-by-2 and symmetric. These strategies are 

described below. 

One notable attribute of the UMFPACK is that whenever a matrix is factored, the 

factorization is stored as a part of the original matrix so that further operations on the matrix 

can reuse this factorization. Whenever a factorization or decomposition is calculated, it is 

preserved as a list (element) in the factor slot of the original object. In this way a sequence of 

operations, such as determining the condition number of a matrix and then solving a linear 

system based on the matrix, do not require multiple factorizations of the intermediate results. 

Conceptually, the simplest representation of a sparse matrix is as a triplet of an integer vector 

i giving the row numbers, an integer vector j giving the column numbers, and a numeric 

vector x giving the non-zero values in the matrix. The triplet representation is row-oriented if 

elements in the same row were adjacent and column-oriented if elements in the same column 

were adjacent. The compressed sparse row (csr) or compressed sparse column (csc) 

representation is similar to row-oriented triplet or column-oriented triplet respectively. These 

compressed representations remove the redundant row or column in indices and provide 

faster access to a given location in the matrix. 

3.6 Chapter Summary 

This chapter has presented a tutorial introduction to computational method with advantages 

of numerical investigation, because numerical method has played a central role in this thesis. 

Various components of numerical method have been also explained. Finally, the major steps 

involved in finite element analysis of a typical problem have been discussed. 
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CHAPTER 4 

MATHEMATICAL MODELING OF THE PROBLEM 

4.1 Mathematical Modeling 

The starting point of any numerical method is the mathematical model, i.e. the set of partial 

differential equations and boundary conditions. A solution method is usually designed for a 

particular set of equations. Trying to produce a general-purpose solution method, i.e. one 

which is applicable to all flows, is impractical, is not impossible and as with most general 

purpose tools, they are usually not optimum for any one application.  

The generalized governing equations are based on the conservation laws of mass, momentum  

and energy. As the heat transfer depends upon a number of factors, a dimensional analysis is 

presented to show the important non-dimensional parameters which will influence the 

dimensionless heat transfer parameter, i.e. Nusselt number.  

4.2 Physical model 

The physical model is shown in Fig. 4.1,along with the important geometric parameters. A 

rectangular cavity of height H and wide L containing different shapes of obstacle (trapezoidal 

or rectangular) whose areas are A=0.042 and A=0.028 considered. Two semi-circular wall 

heaters are constructed at the bottom wall. The obstacle and the two semi-circular wall are 

maintained at higher temperature and higher concentrated than the two vertical walls. The 

upper wall and the bottom wall except two semi-circular walls are kept adiabatic. The upper 

horizontal wall is moving with a uniform velocity by unity and the other walls are at no slip 

condition.  The left and right vertical walls are subjected to low temperature 𝑻𝑳 and low 

concentration 𝑪𝑳, two semi-circular wall and the obstacle area are subjected to high 

temperature 𝑻𝑯 and high concentration 𝑪𝑯. The heat transfer and fluid temperature will be 

illustrated for commonly used fluids with 𝑷𝒓 = 𝟕. Hartmann number are considered 𝑯𝒂 = 𝟎 

to 𝑯𝒂 = 𝟏𝟓𝟎 to analyze the effect of magnetic field. The fluid is considered incompressible, 

Newtonian and the flow is assumed to be laminar. The boundary conditions for velocity are 

considered as no slip on solid boundaries except the upper wall. 
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Figure 4.1 (a): Schematic diagram of the cavity with trapezoidal obstacle 

Area = 0.042    

  

Figure 4.1 (b): Schematic diagram of the cavity with rectangular 

obstacle Area = 0.028    
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4.3 Mathematical Formulation 

The several steps of the mathematical formulation for the above physical configurations are 

shown as follows. 

4.3.1 Governing Equations 

The fundamental laws which are used to solve the fluid flow and heat transfer problems, are 

the conservation of mass (continuity equation), conservation of momentum (momentum 

equations), conservation of energy (energy equation) and conservation of mass (mass 

equation) and constitute a set of coupled, nonlinear, partial differential equations. The viscous 

dissipation term in the energy equation is neglected. For the treatment of the buoyancy term 

in the momentum equation, Boussinesq approximation is employed to account for the 

variations of density as a function of temperature, and to couple in this way the temperature 

field to the flow field. Also for laminar incompressible thermal flow, the buoyancy force is 

included here as a body force in the v-momentum equation. The governing equations for 

steady mixed convection flow can be written as: 

Continuity Equation 

  𝝏𝒖
𝝏𝒙

+  
𝝏𝒗

𝝏𝒚
= 𝟎 (4.1) 

Momentum Equations  

𝝆  𝒖 
𝝏𝒖

𝝏𝒙
+ 𝒗 

𝝏𝒖

𝝏𝒚
 = −

𝝏𝒑

𝝏𝒙
+  𝝁  

𝝏𝟐𝒖

𝝏𝒙𝟐
+  

𝝏𝟐𝒖

𝝏𝒚𝟐
   (4.2) 

𝝆  𝒖 
𝝏𝒗

𝝏𝒙
+ 𝒗 

𝝏𝒗

𝝏𝒚
 = −

𝝏𝒑

𝝏𝒚
+  𝝁  

𝝏𝟐𝒗

𝝏𝒙𝟐
+  

𝝏𝟐𝒗

𝝏𝒚𝟐
 + 𝝆𝒈𝜷𝑻  𝑻 − 𝑻𝑳 + 𝝆𝒈𝜷𝑪 𝑪 − 𝑪𝑳 − 𝝈𝑩𝟎

𝟐𝒗 

 (4.3) 

Energy Equation  

 𝒖 
𝝏𝑻

𝝏𝒙
+ 𝒗 

𝝏𝑻

𝝏𝒚
 =  𝜶  

𝝏𝟐𝑻

𝝏𝒙𝟐
+  

𝝏𝟐𝑻

𝝏𝒚𝟐
  (4.4) 

Mass Equation 

 𝒖 
𝝏𝑪

𝝏𝒙
+ 𝒗 

𝝏𝑪

𝝏𝒚
 =  𝑫  

𝝏𝟐𝑪

𝝏𝒙𝟐
+  

𝝏𝟐𝑪

𝝏𝒚𝟐
  (4.5) 

where 𝒙 and 𝒚 are the distances measured along the horizontal and vertical directions 

respectively; 𝒖 and 𝒗 are the velocity components in the x and y directions respectively; T 
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denote the fluid temperature, 𝑪 denotes the concentration, 𝑻𝑳 and 𝑪𝑳  denotes the low 

temperature and concentration respectively, 𝒑 is the pressure and 𝝆 is the fluid density, 𝒈 is 

the gravitational constant, 𝜷 is the volumetric coefficient of thermal expansion, 𝜶 denotes the 

thermal conductivity and 𝑫 denotes the mass diffusivity. 

4.3.2 Boundary Conditions  

The boundary conditions for the present problem are specified as follows: 

At the left and right wall: 

𝒖 𝟎,𝒚 = 𝒗 𝟎,𝒚 = 𝟎, 𝑻 = 𝑻𝑳, 𝑪 = 𝑪𝑳         ∀    𝟎 ≤ 𝒚 ≤ 𝑯         (4.6) 

At the upper wall:  

𝒖 𝒙,𝟎 = 𝒖𝟎,   𝒗 𝒙,𝟎 = 𝟎,   
𝝏

𝝏𝒚
  

𝑻−𝑻𝑳

𝑻𝑯−𝑻𝑳
 = 𝟎         ∀    𝒚 = 𝑯 (4.7) 

On the middle obstacle and semi-circular wall obstacle, 

𝒖 𝒙,𝒚 = 𝟎,   𝒗 𝒙,𝒚 = 𝟎,   𝑻 = 𝑻𝑯,𝑪 = 𝑪𝑯          ∀     𝟎 ≤ 𝒙 ≤ 𝑳,𝟎 ≤ 𝒚 ≤ 𝑯 (4.8) 

 At the bottom wall without semi-circular wall heater, 

𝒖 𝒙,𝟎 = 𝟎,   𝒗 𝒙,𝟎 = 𝟎,   
𝝏

𝝏𝒚
  

𝑻−𝑻𝑳

𝑻𝑯−𝑻𝑳
 = 𝟎         ∀    𝒚 = 𝟎 (4.9) 

where 𝒙 and 𝒚 are the distances measured along the horizontal and vertical directions, 

respectively; u and v are the velocity components in the 𝒙 and 𝒚-direction, respectively; 

𝑯 = 𝟎.𝟓 is the height and 𝑳 = 𝟎.𝟖 is the width of the rectangular cavity with middle 

obstacle with area  𝑨 =  𝟎.𝟎𝟒𝟐 and 𝟎.𝟎𝟐𝟖 ; 𝑻 denotes the temperature; 𝑻𝑯 and 𝑻𝑳 are 

heated and cold temperature respectively; 𝑪 denotes the concentration; 𝑪𝑯 and 𝑪𝑳 are high 

and low concentration respectively. 

The local Nusselt number at the heated surface of the cavity which is defined by the 

following expression: 

 𝑵𝒖 =  
𝒉 𝒙  𝑳

𝑲
 

Such local values have been further averaged over the entire heated surface to obtain the 

surface averaged or overall mean Nusselt number at the bottom, left and right walls are 

 𝑵𝒖 =  𝑵𝒖 𝒅𝒙
𝑳

𝟎
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Where L and h(x) are the length and the local convection heat transfer coefficient of the 

heated wall respectively. The average Nusselt number can be used in process engineering 

design calculations to estimate the rate transfer from the heated surface. 

4.3.3 Non-Dimensional Variables 

Non-dimensional variables or numbers used for making the governing equations (4.1−4.5) 

into dimensionless form are stated as follows: 

𝑋 =
𝑥

𝐿
 ,𝑌 =  

𝑦

𝐿
 ,𝑈 =

𝑢

𝑢0
 ,𝑉 =

𝑣

𝑢0
 ,𝑃 =  

 𝑝 + 𝜌𝑔𝑦 

𝜌 𝑢0
2

 ,𝜃 =
𝑇 − 𝑇𝐿
𝑇𝐻 − 𝑇𝐿

 ,𝐶 =
𝐶 − 𝐶𝐿
𝐶𝐻 − 𝐶𝐿

 ,𝑃𝑟 =
𝜈

𝛼
  ,  

𝐿𝑒 =
𝛼

𝐷
 ,𝑅𝑖 =  

𝑔𝛽𝑇 𝑇𝐻 − 𝑇𝐿 𝐿

𝑢0
2

=
𝐺𝑟

𝑅𝑒2 
,𝐵𝑟 =

𝛽𝐶 𝐶𝐻 − 𝐶𝐿 

𝛽𝑇 𝑇𝐻 − 𝑇𝐿 
 ,𝐻𝑎2 =

𝜎 𝐵0
2𝐿2

𝜇
 ,𝑅𝑒 =

𝐿𝑢0

𝜈
, 

𝛼 =
𝑘

𝜌𝐶𝑝
 , 𝜈 =

𝜇

𝜌
 ,𝐺𝑟 =

𝑔𝛽Δ𝑇𝐿3

𝜈2
 

Where X and Y are the coordinates varying along horizontal and vertical directions, 

respectively, U and V are the velocity components in the X and Y directions, respectively, 𝜃 

is the dimensionless temperature and P is the dimensionless pressure and Δ𝑇 = 𝑇𝐻 − 𝑇𝐿  is 

the temperature difference,𝛼 thermal diffusivity of the fluid, C and D are the concentration of 

species and the mass diffusivity respectively. 

The dimensionless parameters are the Nusselt number 𝑁𝑢, Prandtl number 𝑃𝑟, Hartmann 

number 𝐻𝑎, Richardson number 𝑅𝑖, Reynold's number 𝑅𝑒, Sherwood number 𝑆ℎ and Lewis 

number 𝐿𝑒. 

4.3.4 Non-Dimensional Governing Equations 

The non-dimensional governing equations for steady two-dimensional mixed convection flow 

in the square cavity after substitution the non-dimensional variables or numbers into the 

equations (4.1-4.5), we get,  

Continuity Equation 

𝝏𝑼

𝝏𝑿
+  

𝝏𝑽

𝝏𝒀
= 𝟎  (4.10) 

Momentum Equations 

𝑼 
𝝏𝑼

𝝏𝑿
+  𝑽 

𝝏𝑼

𝝏𝒀
= −

𝝏𝑷

𝝏𝑿
+  

𝟏

𝑹𝒆
  

𝝏𝟐𝑼

𝝏𝑿𝟐 + 
𝝏𝟐𝑼

𝝏𝒀𝟐  (4.11) 
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𝑼 
𝝏𝑽

𝝏𝑿
+  𝑽 

𝝏𝑽

𝝏𝒀
= −

𝝏𝑷

𝝏𝒀
+  

𝟏

𝑹𝒆
  

𝝏𝟐𝑽

𝝏𝑿𝟐 +  
𝝏𝟐𝑽

𝝏𝒀𝟐 + 𝑹𝒊 𝜽 + 𝑩𝒓 𝑪 − 𝑯𝒂𝟐 𝟏

𝑹𝒆
 𝑽 (4.12) 

Thermal Energy Equation 

𝑼 
𝝏𝜽

𝝏𝑿
+  𝑽 

𝝏𝜽

𝝏𝒀
=  

𝟏

𝑷𝒓𝑹𝒆
  

𝝏𝟐𝜽

𝝏𝑿𝟐 +  
𝝏𝟐𝜽

𝝏𝒀𝟐  (4.13) 

Mass Energy Equation 

𝑼 
𝝏𝑪

𝝏𝑿
+  𝑽 

𝝏𝑪

𝝏𝒀
=  

𝟏

𝑳𝒆𝑷𝒓𝑹𝒆
  

𝝏𝟐𝑪

𝝏𝑿𝟐 +  
𝝏𝟐𝑪

𝝏𝒀𝟐  (4.14) 

 

4.3.5 Non-Dimensional Boundary Conditions 

The non- dimensional boundary conditions under consideration can be written as 

At the left and right wall 

𝑈 = 0,𝑉 = 0,𝜃 = 0,𝐶 = 0        ∀     0 < 𝑌 < 1 (4.15) 

At the upper wall 

𝑈 = 1,𝑉 = 0,
𝜕𝜃

𝜕𝑌
= 0       ∀     𝑌 = 1 (4.16) 

On the middle obstacle and semi-circular wall obstacle 

𝑈 = 0,𝑉 = 0,𝜃 = 1,𝐶 = 1      ∀     0 ≤ 𝑋 ≤ 1, 0 ≤ 𝑌 ≤ 1 (4.17) 

At the bottom wall without semi-circular wall heater 

𝑈 = 0,𝑉 = 0,   
𝜕𝜃

𝜕𝑌
= 0      ∀     𝑌 = 0 (4.18) 

The local Nusselt number at the heated surface of the cavity is defined by the following 

expression: 

𝑁𝑢 = −
𝜕𝜃

𝜕𝑛
 

where n denotes the normal direction on a plane.
 

The average heat transfer rate evaluated along the heated surface and semi-circular wall 

heater based on the dimensionless quantities may be expressed respectively as 

1

𝐿𝑠
  𝑁𝑢   𝑑𝑠

𝐿𝑠

0
  and   1

𝐿
   𝑁𝑢  𝑑𝑠
𝐿

0
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where 𝐿𝑠 and 𝐿 denotes the arc length of the semi-circular wall heater and length of the 

heated wall respectively. 

4.4 Numerical Solution 

The governing equations along with the boundary conditions are solved numerically, 

employing Galerkin weighted residual finite element techniques discussed below. 

4.4.1 Finite Element Formulation 

The numerical procedure used to solve the governing equations for the present work is based 

on the Galerkin weighted residual method of finite-element formulation.  The non-linear 

parametric solution method is chosen to solve the governing equations. This approach will 

result in substantially fast convergence assurance. A non-uniform triangular mesh 

arrangement is implemented in the present investigation especially near the walls to capture 

the rapid changes in the dependent variables.  

The velocity and thermal energy equations (4.10)-(4.14) result in a set of non-linear coupled 

equations for which an iterative scheme is adopted. To ensure convergence of the numerical 

algorithm the following criteria is applied to all dependent variables over the solution domain 

  𝜓𝑖𝑗
𝑛 − 𝜓𝑖𝑗

𝑛−1  ≤ 10−5 

where 𝜓  represents a dependent variable U, V, P, T and C; the indexes i, j indicate a grid 

point; and the index 𝑛 is the current iteration at the grid level. The six node triangular element 

is used in this work for the development of the finite element equations. All six nodes are 

associated with velocities as well as temperature; only the corner nodes are associated with 

pressure. This means that a lower order polynomial is chosen for pressure and which is 

satisfied through continuity equation. The velocity component and the temperature 

distributions and linear interpolation for the pressure distribution according to their highest 

derivative orders in the differential equations (4.10)-(4.14) as 

𝑈 𝑋 ,𝑌 =  𝑁𝛼  𝑈𝛼  (4.19) 

𝑉 𝑋 ,𝑌 =  𝑁𝛼  𝑉𝛼  (4.20) 

𝜃 𝑋 ,𝑌 =  𝑁𝛼  𝜃𝛼  (4.21) 

𝐶 𝑋 ,𝑌 =  𝑁𝛼  𝐶𝛼  (4.22) 
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𝑃 𝑋 ,𝑌 =  𝐻𝜆  𝑃𝜆  (4.23) 

where  𝛼 =  1, 2,…  … , 6;  𝜆 =  1, 2, 3 ; 𝑁𝛼  are the element interpolation functions for the 

velocity components and the temperature, and 𝐻𝜆  are the element interpolation functions for 

the pressure. 

To derive the finite element equations, the method of Weighed Residuals Zienkiewicz (1991), 
George R. Buchanan, Finite Element Analysis, Schaum's Outline Series, McGraw-Hill, 1995 
is applied to the equations (4.10) - (4.14) as 

  𝑁𝛼   
∂U

∂X
+ 

∂V

∂Y
 

𝐴
 𝑑𝐴 = 0 (4.24) 

  𝑁𝛼  U 
∂U

∂X
+  V 

∂U

∂Y
 = − Hλ  A

 
∂P

∂X
  dA +  

1

Re
  NαA

 
∂2U

∂X2
+  

∂2U

∂Y2
 

𝐴
 𝑑𝐴 (4.25) 

 NαA
 U 

∂V

∂X
+  V 

∂V

∂Y
  dA = − Hλ  

A
 
∂P

∂Y
 +  

1

Re
 NαA

  
∂2V

∂X2
+  

∂2V

∂Y2
 + Ri Nα  θ dA +

A

Ri Br ANαC dA−Ha21Re ANαV dA (4.26) 

 NαA
 U 

∂θ

∂X
+  V 

∂θ

∂Y
 dA =  

1

PrRe
  NαA

 
∂2θ

∂X2 +  
∂2θ

∂Y2  dA (4.27) 

 NαA
 U 

∂C

∂X
+  V 

∂C

∂Y
 dA =  

1

LePrRe
 NαA

  
∂2C

∂X2 +  
∂2C

∂Y2 dA (4.28) 

where A is the element area. 

Gauss's theorem is then applied to equations (4.25) - (4.28) to generate the boundary integral 

terms associated with the surface tractions, heat flux and diffusion flux. Then equations 

(4.25) - (4.28) becomes, 

  𝑁𝛼  U 
∂U

∂X
+  V 

∂U

∂Y
 +  Hλ  A

 
∂P

∂X
  dA −  

1

Re
   

∂Nα

∂x
 
∂U

∂x
+

∂Nα

∂Y
 
∂U

∂Y
 

A𝐴
 𝑑𝐴 =  𝑁𝛼  𝑆𝑥  𝑑𝑆0𝑆0

 

 (4.29) 

 NαA
 U 

∂V

∂X
+  V 

∂V

∂Y
  dA +  Hλ  

A
 
∂P

∂Y
 −  

1

Re
  

∂Nα

∂x
 
∂V

∂x
+

∂Nα

∂Y
 
∂V

∂Y
 

A
− Ri Nα  θ dA −

A

Ri Br ANαC dA+Ha21Re ANαV dA=𝑆0𝑁𝛼 𝑆𝑦 𝑑𝑆0 (4.30) 

 NαA
 U 

∂θ

∂X
+  V 

∂θ

∂Y
 dA −  

1

PrRe
   

∂Nα

∂x
 
∂θ

∂x
+

∂Nα

∂Y
 
∂θ

∂Y
 

A
 dA =  Nα  qw  dSwSw

 (4.31) 

 NαA
 U 

∂C

∂X
+  V 

∂C

∂Y
 dA −  

1

LePrRe
  

∂Nα

∂x
 
∂C

∂x
+

∂Nα

∂Y
 
∂C

∂Y
 

A
 dA =  Nα  Jw  dSwSw

 (4.32) 
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Here (4.25) - (4.26) specifying surface tractions  𝑆𝑥 , 𝑆𝑦  along the outflow boundary 𝑆0 and 

(4.27) - (4.28) specifying velocity components and fluid temperature or heat flux  𝑞𝑤  and 

diffusion flux  𝐽𝑤  that flows into or out from domain along wall boundary 𝑆𝑤 . 
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CHAPTER 5 

NUMERICAL SIMULATION AND COMPARISON 

 

The heat and mass transfer and fluid flow in a two dimensional rectangular cavity with 

height H and width L with a centered heated obstacle and two semi-circular wall heater is 

considered as shown in a schematic diagram of figure 4.1 of chapter 4. In this physical 

system, dimensional governing equations (4.1-4.5) and non-dimensional governing 

equations (4.10-4.14) are solved in section 4.4.1 in previous chapter 4. for boundary 

conditions, left and right walls (i.e. side walls) are subjected to cold temperature  𝑇𝐿   and 

low concentration  𝐶𝐿  , the centered obstacle and two semi-circular walls are subjected to 

high temperature  𝑇𝐻  and high concentration  𝐶𝐻 , also upper wall and lower wall except 

two semi-circular wall heater are thermally insulated and upper wall has a moving velocity 

as shown in section 4.2. Numerical technique of finite element formulation has also been 

discussed in section 4.4.1. In this chapter grid independence test, code validation, 

comparison and results have been discussed.  
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5.1 Grid Independence Test  

Test for the accuracy of grid fineness has been carried out to find out the optimum grid 

number. 

 

Figure 5.1: Convergence of average Nusselt number with grid 

refinement for 𝑃𝑟 = 7,𝐻𝑎 = 0,𝐴 = 0.042 and 𝑅𝑒 = 100 

 

Nodes 

(Element) 

169 

274 

357 

621 

532 

946 

1163 

2145 

1740 

3260 

2654 

5036 

Nu 11.37213 14.68452 18.12174 18.92084 18.06589 18.19057 

Time(s) 14 14 16 25 36 47 

 

Table 5.1: Grid sensitivity check at 𝑃𝑟 = 7,𝐻𝑎 = 0,𝐴 = 0.042 and 

𝑅𝑒 = 100 

In order to obtain grid independent solution, a grid refinement study is performed for a 

rectangular cavity with 𝑃𝑟 = 7,𝐴 = 0.042 and 𝑅𝑒 = 100. Figure 5.1 showsthe 

convergence of the average Nusselt number Nu at the heated surface with grid refinement. 

It is observed that grid independence is achieved with 2145 elements where there is 

insignificant change in Nu with further increase of mesh elements. Six different non-

uniform grids with the following number of nodes and elements were considered for the 

11.37213 

14.68452 
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18.06589 18.19057 
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grid refinement test: 169 nodes, 274 elements; 357 nodes, 621 elements; 532 nodes, 946 

elements; 1163 nodes, 2145 elements; 1740 nodes, 3260 elements; 2654 nodes, 5036 

elements. From these values 1163 nodes, 2145 elements can be chosen throughout the 

simulation to optimize the relation between the accuracy required and the computing time. 

5.2 Code Validation 

5.2.1 Code validation through data 

Ri Present Y.C. Ching [21] 

0.01 30.258 32.386 

0.1 27.687 28.653 

1 12.323 12.231 

10 11.029 11.5689 

 

Table 5.2: Code validation for heated wall with Pr=0.71, 

Re=100,Ha=0 

For the validation of the code, a triangular cavity without MHD is considered with fluid by 

finite element weighted residual method whose vertical wall was moving upward with a 

velocity and maintained at cooled condition. The inclined wall is hot, whereas the bottom 

wall is under adiabatic conditions. Average Nusselt number is calculated for different 

values of Richardson number Ri=0.01 to Ri=10. Also Prandtl number is kept  fixed at 

Pr=0.71 and Re=100.  

    The results are compared with the literature Y.C.Ching [21] to validate the present 

numerical code. The average Nusselt number presented in Table 5.2 for different values of 

Richardson number along the heated inclined wall with fixed Prandtl number.  

5.2.2 Code validation through streamlines and isotherms 

To validate the present numerical code, the results for mixed convection flow in an 

triangular enclosure with moving cooled vertical wall, heated inclined wall and adiabatic 

bottom wall have been compared with the present model. Figure 5.2 demonstrate the 

comparison of streamline and isotherm at Ching et al. [21]  with the regenerated model for 
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Pr=1, Br=20 , Le=2 and Ri=5.Also figure 5.3 shows the comparison of streamline and 

isotherm at present model with the result presented in figure 5.2 for Pr=1, Br=20 , Le=2 

and Ri=5. 

 As  seen from both figures presented in 5.2 and 5.3 the obtained  results shows 

very good agreement. 
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Figure 5.2: Comparison of streamlines and isotherms with Pr=1, 

Br=20 , Le=2 and Ri=5. 
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Figure 5.3: Comparison of streamline and isotherm with Pr=1, Br=20 

, Le=2 and Ri=5 according Present model 

5.3 Comparison between without and with MHD 

After validation of the code, a rectangular cavity with fluid in presence of MHD is 

considered whose vertical walls (i.e. side walls) are subjected to cold temperature, middle 

obstacle and two semi-circular wall are subjected to hot temperature while the upper and 

bottom wall except two semi-circular wall are kept thermally insulated. Average Nusselt 

number is calculated for four different Richardson number and two different obstacle areas 

𝐴 = 0.042 and 𝐴 = 0.028 while the Prandtl number is kept fixed at 𝑃𝑟 = 7 along the left 

and right semi-circular wall heater respectively.   
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Ri 

Average Nusselt number 

Present work without MHD Present work with  MHD 

A = 0.042 A = 0.028 A = 0.042 A = 0.028 

0.1 10.0383 12.0834 4.7519 5.4818 

1 21.4403 25.2814 11.4664 12.6083 

5 33.2847 38.9765 27.8648 29.0452 

10 40.0748 45.8042 37.0442 37.6899 

 

Table 5.3: Comparison of average Nusselt number along the left 

semi-circular wall heater with Pr=7 and Re=100 (without and with 

MHD) 

 

Ri 

Average Nusselt number 

Present work without MHD Present work with  MHD 

A = 0.042 A = 0.028 A = 0.042 A = 0.028 

0.1 18.8839 19.4481 5.6127 6.7954 

1 24.5412 27.3028 12.4158 13.8999 

5 32.8020 39.3562 28.8039 30.2725 

10 39.8014 47.1523 38.1933 39.1586 

 

Table 5.4: Comparison of average Nusselt number along the right 

semi-circular wall heater with Pr=7 and Re=100 (without and with 

MHD) 

The results are compared between the presence and absence of MHD effect. For 

comparison average Nusselt number along two semi-circular wall heater and temperature 

of the fluid are presented for different Richardson numbers and two different obstacle 

areas with fixed Prrandtl number and Reynolds number Re=100 in Table 5.3 and 5.4. 
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5.3.1 Average Nusselt number in presence and absence of magnetic field: 

When there is trapezoidal obstacle of area A = 0.042, from table 5.3 as Richardson number 

increases from 0.1 to 1 i.e. when heat transfer is happening from forced convection to 

mixed convection region, the average Nusselt number increases. But further increase of 

Richardson number from 1 to 10 i.e. when heat transfer is happening from mixed 

convection to free convection region, the average Nusselt number also increases more 

rapidly. The same phenomena happens when there is a rectangular obstacle of area A = 

0.028. But obstacle size also has significant effect on heat transfer. In both cases as 

Richardson number increases from 0.1 to 10 heat transfer increases but table 5.3 shows 

that when there is rectangular obstacle heat transfer increases more rapidly than using 

trapezoidal obstacle. The entire phenomena happens when there is no magnetic field.  

In the presence of magnetic field, from table 5.3 as Richardson number increases from 0.1 

to 10 average heat transfer increases. But when we compare the two results with MHD and 

without MHD we observed from table 5.3, as Richardson number increases from 0.1 to 1 

i.e. when heat transfer happening from forced convection to mixed convection region, the 

average Nusselt number decreases. But further increase of Richardson number from 1 to 

10 i.e. when heat transfer happening from mixed convection to free convection region, the 

average Nusselt number increases slowly. The obstacle size also has significant effect on 

heat transfer in the presence of magnetic field. In that case as Richardson number 

increases from 0.1 to 1 heat transfer rate decreases rapidly. For further increase of 

Richardson number i.e. when varies from 1 to 10 heat transfer rate increase slowly when 

there is trapezoidal obstacle but when there is rectangular obstacle average Nusselt 

number decreases as above. 
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CHAPTER 6 

RESULT AND DISCUSSION 

6.1 Results and Discussion 

A numerical study has been performed through finite element method to analyze the laminar 

mixed convection heat transfer and fluid flow in a lid driven rectangular cavity containing 

heated block and two semi-circular wall heater. Effect of parameters such as Richardson 

number 𝑅𝑖, Reynolds number 𝑅𝑒, Hartmann number 𝐻𝑎, Buoyancy ratio 𝐵r and the area of 

the heated block 𝐴 (trapezoidal & rectangular) on heat transfer and fluid flow of the cavity 

have been analyzed. The results are presented in two parts. The first part has focused on fluid 

flow and temperature fields which explain through the streamlines and isotherms for different 

cases. The second part has focused on heat transfer rate through the explanation of average 

Nusselt number along the left and right semi-circular wall heater for different cases. The 

range of Richardson  number Ri for this investigation is chosen from 0.1 to 10 to obtain the 

characteristics on forced convection, mixed convection and natural convection region based 

on 𝑅𝑖 =
𝐺𝑟

𝑅𝑒 2
. The range of Prandtl number is chosen 7 for water at 20 C and it kept fixed for 

all cases. Reynolds number is also kept fixed 𝑅𝑒 = 100. Results are obtained for two 

different shapes of heated block namely trapezoidal and rectangular heated block which 

contained area 0.042 and 0.028 respectively.  Hartmann number is vary from 0 to 150 , 

buoyancy ratio vary from 0 to 20 and Lewis number is kept fixed 𝐿𝑒 = 20. 
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6.1.1 Effect of fluid flow and temperature with trapezoidal obstacle in 

absence of magnetic field 

 

 

Ri=0.1 

 

Ri=1 

 

Ri=5 

 

Ri=10 

 

Figure 6.1: Streamlines for different values of Ri without MHD while 

Re=100, Pr=7, A=0.042 

For the variations of Ri in absence of magnetic field with trapezoidal heated block, the overall 

features of the streamlines are predicted in figure 6.1 where Re=100, Pr=7, Br=20 and 

A=0.042. In absence of the magnetic field and in the forced convection region, the fluid flow 

is characterized by a primary rotating uni-cellular vortex occupying the bulk of the cavity 

generated by the movement of the upper lid. Without MHD and in the forced convection 

region i.e. Ri=0.1, the core of the vortex spreads in the whole cavity. When forced convection 

and natural convection are equally dominant, namely at mixed convection i.e. Ri=1, the core 

of the vortex divided in to two parts and form bi-cellular vortex at the two vertical walls. The 

density of streamlines increases at the right vertical wall than the left vertical wall because of 
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the upper moving lid in the positive x-direction. As Ri increases further i.e. Ri=5, the bi-

cellular vortex become more symmetric than that at Ri=1. When Ri=10, i.e. the effect of 

forced convection is very much less compared to the natural convection effect, the bi-cellular 

vortex become more symmetric and also some small vortex are included. Also at the natural 

convection i.e. Ri=10, the density of the streamlines increases near the two semi-circular wall 

heater. 

 
Ri=0.1 

 
Ri=1 

 
Ri=5 

 
Ri=10 

Figure 6.2: Isotherm for different values of Ri without MHD while 

Re=100, Pr=7, A=0.042 

For the variations of Ri in absence of magnetic field with trapezoidal obstacle the overall 

feature of the isotherms are predicted in figure 6.2 where Re=100,Pr=7, Br=20 and A=0.042 

are kept fixed. Without MHD and in the convection region i.e. Ri=0.1, the isotherms near the 

heated obstacle and around the semi-circular wall heater are rotated in parallel form. As Ri 

increases, the nonlinearity of isotherm increases and also it is observed that the temperature at 

the right side of the heated block is higher than the temperature of the left side of the heated 

block. With the increase of Ri two void are forms at the left and right side of the heated block 

and still the temperature at the right side of the block is higher than the temperature at the left 
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side. But in the natural convection dominated region (Ri=10) in absence of magnetic field, 

the non-linearity of the isotherm are so high that they are almost symmetric at the left and 

right side of the heated block and semi-circular wall heater. The density of isotherm increases 

around the heated block and the semi-circular wall heater. And it behaves in to parallel form. 

Also the temperature is still higher at the right side of the heated block than the left side of 

the heated block.  

For variations of Ri in absence of magnetic field with rectangular heated block the overall 

features of the streamlines are presented in figure 6.3 where Re=100, Pr=7, Br=20 and 

A=0.028 are kept fixed. from the above figure 6.3 it is observed that as Ri increases from 0.1 

to 10 the changes are similar to the changes with trapezoidal heated block. There are one 

difference between this two cases. That is, with trapezoidal heated block the overall shapes of 

streamlines are looks like mango seeds and with rectangular heated block the overall shapes 

of streamlines are looks like oval shapes. At forced convection region i.e. Ri=0.1, streamlines 

are looks similar in both cases. 

 Figure 6.4 illustrates the variation of isotherms for different values of Ri in absence of 

magnetic field with rectangular heated block where Re=100, Pr=7, Br=20 and Ri=0.028. We 

observed that the patterns of the isotherm looks same as in figure 6.2 but the shapes in this 

figure is oval. Also the temperature at the right side of the rectangular block is higher than the 

temperature at the  left side of the rectangular heated block. 

 The variations of Ha and Ri with trapezoidal heated block, the overall features of the 

streamlines are illustrated in figure 6.5 and figure 6.6 where Re=100, Pr=7, Br=20 and 

A=0.042. At forced convection region (Ri=0.1) as Ha increases from 0 to 150 the density of 

streamlines increases near the upper horizontal wall and decreases near the lower part of the 

heated block. For highest value of Ha we observed that all the streamlines gathered at the top 

of the heated obstacle. At mixed convection region (i.e. Ri=1) in absence of magnetic field 

the core divided into two parts positioned at the left and right side of the heated block. This 

divided parts are looks like mango seed and symmetric. The density of streamlines nearer to 

moving lid decreases with the increases of Ha and so the results are no more symmetric with 

the increase of Ha at Ri=1. Also streamlines contained three more minor vortex with the 

increase of Ha at Ri=1. At natural convection (i.e. Ri=10) figure illustrates that with the 

increase of Ha the velocity field form two large bi-cellular vortex with four minor vortices. 

For highest value of Ha the streamlines looks more symmetric for Ri=10. This is because of 
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the application of transverse magnetic fields which slow down the movement of the 

buoyancy-induced flow in the cavity. 

6.1.2 Effect of fluid flow and temperature with rectangular obstacle in 

absence of magnetic field 

 

Ri=0.1 

 

Ri=1 

 

Ri=5 

 

Ri=10 

Figure 6.3: Streamlines for different values of Ri without MHD while 

Re=100, Pr=7, A=0.028 

 The corresponding effect on the temperature fields are shown in figure 6.7 and figure 

6.8. The isotherms are almost parallel to both vertical walls for highest value of Ha at the 

forced convection region i.e. Ri=0.1, indicating that most of the heat transfer process is 

carried out by conduction. However some deviations in the conduction dominated isotherms 

lines are initiated near the left top surface of the cavity. With the increase of Ha at the mixed 

convection region i.e. Ri=1, isotherms line taken shape from linear to nonlinear zigzag shape. 

As Ri increases with increase of Ha, the nonlinearity in the isotherms become higher and 

plume formation is profound at the left and right side of the trapezoidal heated block and 



Chapter 6: Result and discussion 

 

52 

 

other isotherm tend to be parallel to the vertical walls. Moreover, the formation of the thermal 

boundary layers near the two vertical cold walls  are to be initiated for the lower value of Ha. 

This is owing to the dominating influence of the convective current in the cavity. Also for 

highest value of Ha and Ri the isotherm lines are in symmetric form.  
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Ri=5 

 

Ri=10 

Figure 6.4: Isotherm for different values of Ri without MHD while 

Re=100, Pr=7, A=0.028 

The variations of Ri and Ha with rectangular heated block in presence of magnetic field, the 

overall features are illustrated in figure 6.9 and figure 6.10 where Re=100, Pr=7, Br=20 and 

A=0.028. we observed that the effect of Ri and Ha in the fluid flow is same as shown in 

figure 6.5 and figure 6.6. The only change in the effect of obstacle size on streamlines in 

presence of MHD is the isotherm lines are in oval shape for rectangular obstacle whereas it is 

looks like mango seeds for trapezoidal obstacle. 
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6.1.3 Effect of fluid flow and temperature with trapezoidal obstacle in 

presence of magnetic field 
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Figure 6.5: Streamlines for different values of Ha while Re=100, Pr=7, 

A=0.042 and Ri= 0.1 & 1 
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Figure 6.6: Streamlines for different values of Ha while Re=100, Pr=7, 

A=0.042 and Ri=5&10 

The corresponding effect on the temperature fields are shown in figure 6.11 and figure 6.12. 

At forced convection region isotherms are almost parallel to the both vertical walls. But with 

the increase of Ri the isotherms become nonlinear. For further increase of Ri (i.e. Ri=10), at 

natural convection dominated region the nonlinearity become higher and plume formation is 
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profound at the left and right side of the rectangular heated block. Also we observed that the 

temperature at the right side of the heated block is higher than temperature at the left side of 

the heated block. 
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Figure 6.7: Isotherm for different values of Ha while Re=100, Pr=7, 

A=0.042 and Ri=0.1 &1 
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Figure 6.8: Isotherm for different values of Ha while Re=100, Pr=7, 

A=0.042 and Ri= 5&10 

The corresponding effect on the temperature fields are shown in figure 6.11 and figure 6.12. 

At forced convection region isotherms are almost parallel to the both vertical walls. But with 

the increase of Ri the isotherms become nonlinear. For further increase of Ri (i.e. Ri=10), at 

natural convection dominated region the nonlinearity become higher and plume formation is 

profound at the left and right side of the rectangular heated block. Also we observed that the 
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temperature at the right side of the heated block is higher than temperature at the left side of 

the heated block. 

6.1.4 Effect of fluid flow and temperature with rectangular obstacle in 

presence of magnetic field 
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Figure 6.9: Streamlines for different values of Ha while Re=100, Pr=7, 

A=0.028 and Ri=0.1&1 
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Figure 6.10: Streamlines for different values of Ha while Re=100, Pr=7, 

A=0.028 and Ri=5&10 
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Figure 6.11: Isotherm for different values of Ha while Re=100, Pr=7, 

A=0.028 and Ri=0.1&1 
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Figure 6.12: Isotherm for different values of Ha while Re=100, Pr=7, 

A=0.028 and Ri=5&10 
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6.1.5 Effect of fluid flow and temperature with trapezoidal obstacle without 

magnetic field for different values of buoyancy ratio and Richardson 

number: 
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Figure 6.13: Streamlines for different values of Br without MHD while 

Re=100, Pr=7, A=0.042 and Ri=0.1&1 
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Figure 6.14: Streamlines for different values of Br without MHD while 

Re=100, Pr=7, A=0.042 and Ri=5 & 10 

 The effect of fluid flow for the variations of Br and Ha in absence of magnetic field 

with trapezoidal heated block, the overall features are illustrated in figure 6.13 and figure 

6.14. In forced convection region (i.e. Ri=0.1) a uni-cellular vortex is characterized within 
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the whole cavity for all values of Br. The density of streamlines is high at the right top side of 

the heated obstacle because of the movement of upper lid. For highest value of Br a small 

single vortex is also formed at lower left side of the heated obstacle. At mixed convection 

region (i.e. Ri=1) the small vortex become large. With the increase of Br the streamlines are 

accumulated at the right side of the heated obstacle and the small vortex become larger and 

taking position at the left side of the heated obstacle vertically. For highest value of Br a bi-

cellular vortex form at the two side of the heated obstacle.  
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Figure 6.15: Isotherm for different values of Br without MHD while 

Re=100, Pr=7, A=0.042 and Ri=0.1 & 1 
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Figure 6.16: Isotherm for different values of Br without MHD while 

Re=100, Pr=7, A=0.042 and Ri=5 & 10 

The density of streamlines are high at the right side of the heated obstacle in absence of MHD 

because of the moving lid. For further increase of Ri i.e. at natural convection region 
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6.1.6 Effect of fluid flow and temperature with rectangular obstacle 

without magnetic field for different values of buoyancy ratio and 

Richardson number: 
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Figure 6.17: Streamlines for different values of Br without MHD while 

Re=100, Pr=7, A=0.028 and Ri=0.1 & 1 
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Figure 6.18: Streamlines for different values of Br without MHD while 

Re=100, Pr=7, A=0.028 and Ri=5 & 10 

streamlines are divided into two parts at the both side of heated obstacle. In this case it is also 

looks symmetric for highest value of Br in absence of MHD. 
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 The effect of temperature for the variations of Br and Ri in absence of MHD with 

trapezoidal heated obstacle, the overall features are illustrated in figure 6.15 and figure 6.16. 

At forced convection region (i.e. Ri=0.1) isotherms are rotated in parallel form around the 

heated obstacle and the two semi-circular wall heater. But the disturbance is observed at the 

right side of the heated obstacle and around the right semi-circular wall heater because of the 

moving lid for all values of Br. At mixed convection region (i.e. Ri=1) the disturbance in 

isotherm is increased. In this region it is observed that, the pattern of disturbance are not 

similar for the both sides of heated obstacle. At the left side isotherms are in zigzag pattern in 

parallel form but at the right  
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Figure 6.19: Isotherm for different values of Br without MHD while 

Re=100, Pr=7, A=0.028 and Ri=0.1 & 1 
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Figure 6.20: Isotherm for different values of Br without MHD while 

Re=100, Pr=7, A=0.028 and Ri=5 & 10 
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6.1.7 Effect of fluid flow and temperature with trapezoidal obstacle with 

magnetic field for different values of buoyancy ratio and Richardson 

number: 
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Figure 6.21: Streamlines for different values of Br with Ha=150 while 

Re=100, Pr=7, A=0.042 and Ri=0.1 & 1 
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Figure 6.22: Streamlines for different values of Br with Ha=150 while 

Re=100, Pr=7, A=0.042 and Ri=5 & 10 

side isotherms are in zigzag pattern which are not in parallel form. Also the temperature is 

higher at the right side of the heated obstacle than the left side of the heated obstacle. 

Isotherms are almost parallel at the two vertical cold walls. The difference at the two sides of 

heated obstacle is because of the moving lid in the positive x-direction and the increasing 

value of Br. At natural convection region (i.e. Ri=10) the disturbance increased and two void 
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created at the two sides of the heated obstacle. Also these voids looks like mango-seeds. Also 

temperature is higher at right side of the heated obstacle than the left side of the heated 

obstacle. 

 The effect of fluid flow for the variations of Br and Ri in absence of MHD with 

rectangular heated obstacle, the overall features are shown in figure 6.17 and figure 6.18. At 

forced convection region (i.e. Ri=0.1) a uni-cellular vortex  characterized for all values of Br. 
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Figure 6.23: Isotherm for different values of Br with Ha=150 while 

Re=100, Pr=7, A=0.042 and Ri=0.1 & 1 
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Figure 6.24: Isotherm for different values of Br with Ha=150 while 

Re=100, Pr=7, A=0.042 and Ri=5 & 10 

At low value of Br the density of streamlines increases around the rectangular heated 

obstacle. With the increase of Br the density decreases around the heated rectangular 

obstacle. At highest value of Br a oval shape vortex is observed at the left corner of the cavity 

and the density increases at the right vertical wall. At mixed convection region (i.e. Ri=1) the 

oval shape vortex become large for the lowest value of Br. With the increase of Br this oval 

shape vortex become larger and bi-cellular vortex formed at the right and left side of the 
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heated obstacle. The density of streamlines are higher at the right side of the heated obstacle 

than the left side. At natural convection dominated region (i.e. Ri=10) with the increase of Br 

in absence of MHD streamlines 

6.1.8 Effect of fluid flow and temperature with rectangular obstacle with 

magnetic field for different values of buoyancy ratio and Richardson 

number: 
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Figure 6.25: Streamline for different values of Br with Ha=150 while 

Re=100, Pr=7, A=0.028 and Ri=0.1 & 1 
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divided into two parts and situated at the left and right side of the heated rectangular obstacle 

and they are symmetric. 

 The corresponding effect on temperature  for the variations of Br and Ri with 

rectangular heated block in absence of MHD, the overall features are illustrated in figure 6.19 

and figure 6.20. At forced convection region isotherms are rotated parallel around the heated 

rectangular block and the two semi-circular wall heater. Some isotherms are bended at the 

right semi-circular wall heater but they bended in parallel form for all values of Br. With the 

increase of Ri i.e. at mixed convection region Ri=1, the nonlinearity increases at both sides 

around the heated obstacle. For highest value of Br the isotherm lines are accumulated at the 

two vertical wall and makes oval shape voids on both sides of the heated rectangular obstacle. 

Also the temperature at right side is higher than the temperature at the left side. Further 

increase of Ri with the increase of Br isotherm lines form more clear oval shape voids and 

they looks symmetric. Only the disturbance is found at the top of the heated rectangular 

obstacle. Also the temperature is high at the right side than the left side. 

 The effect of fluid flow for different values of Br and Ri with the trapezoidal obstacle 

and fixed Ha=150, the overall features are illustrated in figure 6.21 and figure 6.22. At the 

forced convection region i.e. Ri=0.1, all the streamlines are accumulated at the top of the 

heated trapezoidal block for each value of Br. At mixed convection region i.e. Ri=1, with the 

increase of Br a single vortex is formed. At highest value of Ha, the fluid flow experiences a 

Lorentz force due to the influence of the magnetic field. Further increase of Ri i.e. at natural 

convection region Ri=10, streamlines creates a bi-cellular vortex at the left and right side of 

the block. The heated block divided the vortex into two parts and they looks symmetric. 

 The corresponding effect of temperature are shown in figure 6.23 and figure 6.24. 

Isotherm lines are almost parallel in forced and mixed convection region. With the increase 

of Ri isotherm lines become nonlinear. At natural convection region the nonlinearity become 

higher and plume formation is profound at the left and right side of the heated block. 

 The effect of fluid flow for variations Br and Ri with rectangular heated block and 

fixed Ha=150, the overall features are illustrated in figure 6.25 and figure 6.26. We observed 

that the results in this case is similar as shown in figure 6.21 and figure 6.22. 
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Figure 6.26: Streamline for different values of Br with Ha=150 while 

Re=100, Pr=7, A=0.028 and Ri=5 & 10 
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Figure 6.27: Isotherm for different values of Br with Ha=150 while 

Re=100, Pr=7, A=0.028 and Ri=0.1 & 1 

 

The corresponding effect of temperature the variations of Br and Ri and fixed Ha=150 with 

rectangular heated block, the overall features are shown in figure 6.27 and figure 6.28. This 

results is similar as the results shown in figure 6.23 and figure 6.24.   
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Figure 6.28: Isotherm for different values of Br with Ha=150 while 

Re=100, Pr=7, A=0.028 and Ri=5 & 10 
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6.2 Heat Transfer Rates: Average Nusselt number Vs the effect of 

various parameters 

In order to evaluate how different shapes of heated obstacle effect heat transfer rate or how 

variations of parameter effect the heat transfer rate the following figures are illustrated. 

Figure 6.29 and figure 6.30 shows how different shapes of heated obstacle effect the heat 

transfer rate for different values of Ri without MHD along the left and right semi-circular 

wall heater. Heat transfer rate is higher with rectangular heated obstacle than the trapezoidal 

heated obstacle along the left and right semi-circular wall heater. But the difference between 

heat transfer is high at the right semi-circular wall heater than the left semi-circular wall 

heater. This means that, heat transfer rate is high at the right semi-circular wall heater for two 

different shapes of heated obstacle. i.e. when the area of heated obstacle decreases heat 

transfer rate increases along the both semi-circular wall heater. 

 To evaluate the effect of different shapes of obstacle in presence of magnetic field 

how heat transfer rate behave along the two semi-circular wall heater we illustrate figure 6.31 

and figure 6.32. We observed that, heat transfer rate is high for rectangular obstacle than the 

trapezoidal obstacle along the two semi-circular wall heater. But the difference between heat 

transfer rate is decreases in both case in presence of MHD. Also the value of heat transfer rate 

is almost same along the left and right semi-circular wall heater in presence of MHD. 

 Figure 6.33 and figure 6.34 shows the effect of hear transfer rate for different values 

of Ha with trapezoidal heated obstacle along the left and right semi-circular wall heater. 

Along the left semi-circular wall with trapezoidal heated obstacle in absence of magnetic 

field heat transfer rate is highest for all values of Ri except natural convection dominated 

region. In the forced convection to mixed convection dominated region it increases gradually 

but in the mixed to natural convection dominated region in increases abruptly. Presence and 

increasing values of magnetic field decreases the heat transfer rate. In presence of magnetic 

field, heat transfer decreases slightly in the region 𝟎.𝟏 ≤ 𝑹𝒊 ≤ 𝟏 but it decreases abruptly  in 

the region 𝟏 ≤ 𝑹𝒊 ≤ 𝟏𝟎. In absence of MHD and low values of Ha , the highest value of heat 

transfer rate is same for natural convection dominated region along the left semi-circular wall 

heater with trapezoidal obstacle. But this value is not same along the right semi-circular wall 

heater. For highest value of Ha heat transfer rate is same for all values of Ri along the two 

semi-circular wall heater.  
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6.2.1 Effect of Average Nusselt number for different values of Ri along the 

semi-circular wall heater for different obstacle without MHD  

 

 

Figure 6.29: Average Nusselt number Vs Ri for different obstacle 

without MHD along the left semi-circular wall heater 

 

Figure 6.30: Average Nusselt number Vs Ri for different obstacle 

without MHD along the right semi-circular wall heater 
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6.2.2 Effect of Average Nusselt number for different values of Ri along the 

semi-circular wall heater for different obstacle with MHD  

 

 

Figure 6.31: Average Nusselt number Vs Ri for different obstacle with 

MHD along the left semi-circular wall heater 

 

Figure 6.32: Average Nusselt number Vs Ri for different obstacle with 

MHD along the right semi-circular wall heater 
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6.2.3 Effect of Average Nusselt number Vs Ri along the semi-circular wall 

heater for different values of Ha with trapezoidal obstacle  

 

 

Figure 6.33: Average Nusselt number Vs Ri for different values of Ha 

with trapezoidal obstacle along the left semi-circular wall heater 

 

Figure 6.34: Average Nusselt number Vs Ri for different values of Ha 

with trapezoidal obstacle along the right semi-circular wall heater 
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6.2.4 Effect of Average Nusselt number Vs Ri along the semi-circular wall 

heater for different values of Ha with rectangular obstacle  

 

 

Figure 6.35: Average Nusselt number Vs Ri for different values of Ha 

with rectangular obstacle along the left semi-circular wall heater 

 

Figure 6.36: Average Nusselt number Vs Ri for different values of Ha 

with rectangular obstacle along the right semi-circular wall heater 
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6.2.5 Effect of Average Nusselt number Vs Ri along the semi-circular wall 

heater for different values of Br for trapezoidal obstacle with MHD 

 

 

Figure 6.37: Average Nusselt number Vs Ri for different values of Br 

with MHD trapezoidal obstacle along the left semi-circular wall heater 

 

Figure 6.38: Average Nusselt number Vs Ri for different values of Br 

with MHD trapezoidal obstacle along the right semi-circular wall heater 
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 Figure 6.35 and figure 6.36 shows the effect of heat transfer rate for different values 

of Ha with rectangular heated obstacle along the left and right semi-circular wall heater 

respectively. In absence of magnetic field, 𝑵𝒖𝒂𝒗 is highest for all values of Ri. In the forced 

to mixed convection dominated region it increases gradually but in the mixed to natural 

convection region it increases abruptly. Presence and increasing value of magnetic field 

decreases the heat transfer rate. In presence of magnetic field 𝑵𝒖𝒂𝒗 decreases slightly in the 

region 𝟎.𝟏 ≤ 𝑹𝒊 ≤ 𝟏 but it decreases abruptly in the region 𝟏 ≤ 𝑹𝒊 ≤ 𝟏𝟎. For highest value 

of Ha the curve is smooth along the left and right semi-circular wall heater. With the increase 

of Ha, this four curve behaves parallel for both cases. Also heat transfer rate is high along the 

right semi-circular wall heater than the left semi-circular wall heater. 

 Figure 6.37 and figure 6.38 illustrates the effect of Br in presence of MHD with 

trapezoidal obstacle along the left and right semi-circular wall heater. This figures shows that 

for different values of Br heat transfer rate increases with the increases of Ri. Also heat 

transfer rate increases with the increases of Br. For highest value of Br heat transfer rate is 

high along the both left and right semi-circular wall heater. 𝑵𝒖𝒂𝒗  increases slightly in the 

region 𝟎.𝟏 ≤ 𝑹𝒊 ≤ 𝟏 but increases abruptly in the region 𝟏 ≤ 𝑹𝒊 ≤ 𝟏𝟎. For lowest value of 

Br, the variation of 𝑵𝒖𝒂𝒗  is nominal in forced to mixed and mixed to natural convection 

region with trapezoidal obstacle along the two semi-circular wall heater. 

 Figure 6.39 and figure 6.40 shows the effect of Br in presence of MHD with 

rectangular heated obstacle along the left and right semi-circular wall heater. This figures 

shows the same results shown in figure 6.37 and figure6.38.  
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6.2.6 Effect of Average Nusselt number Vs Ri along the semi-circular wall 

heater for different values of Br for rectangular obstacle with MHD 

 

 

Figure 6.39: Average Nusselt number Vs Ri for different values of Br 

with MHD rectangular obstacle along the left semi-circular wall heater 

 

Figure 6.40: Average Nusselt number Vs Ri for different values of Br 

with MHD rectangular obstacle along the right semi-circular wall heater 
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CONCLUSIONS 

A Finite element method is used to study the present investigation on MHD mixed 

convection flow around a heated obstacle (i.e. trapezoidal or rectangular) placed in a lid 

driven rectangular cavity. From this investigation, it is found that all the parameters e.g. 

magnetic field, Richardson number, Buoyancy ratio and size of the heated obstacle plays 

significant role on average heat transfer. The major outcomes have been drawn as follows: 

 The heat transfer rate increases for increasing Richardson number. 

 Heat transfer rate is decreases with increases of the size of the heated obstacle in 

absence and presence of MHD. But the ratio of differences in size is high in absence 

of MHD than the presence of MHD along the left and right semi-circular wall heater. 

In absence of MHD the ratio of differences are not similar along the left and right 

semi-circular wall heater. But in presence of MHD the ratio of differences are same 

along the left and right semi-circular wall heater. 

 The magnetic field plays an important role on the flow pattern and temperature. The 

fluid flow and temperature become weak for increasing the value of Hartmann 

number. 

 Heat transfer rate is higher in absence of magnetic field. Presence of magnetic field 

decreases 𝑵𝒖𝒂𝒗 drastically. Increasing value of Ha decreases 𝑵𝒖𝒂𝒗 gradually in the 

region 𝟎.𝟏 ≤ 𝑹𝒊 ≤ 𝟏 but decreases 𝑵𝒖𝒂𝒗 abruptly in the region 𝟏 ≤ 𝑹𝒊 ≤ 𝟏𝟎. 

 Heat transfer rate resisted with the increase of magnetic field. 

 Buoyancy ratio plays an important role in absence and presence of magnetic field on 

heat transfer. 

 With the increase of Br heat transfer rate increases. With the increases of Br, 𝑵𝒖𝒂𝒗 

increases slightly in the region 𝟎.𝟏 ≤ 𝑹𝒊 ≤ 𝟏 and it increases abruptly in the region 

𝟏 ≤ 𝑹𝒊 ≤ 𝟏𝟎. For lower value of Br heat transfer rate nominal in forced to mixed and 

mixed to natural convection region. 

 Buoyancy ratio plays an important role on temperature distribution for both cases 

trapezoidal and rectangular heated obstacle with and without MHD. 
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 Fluid flow is strongly dominated by buoyancy forces. Flow strength step-up with the 

increasing value of Richardson number. 

 Heat transfer rate is high along the right semi-circular wall heater than the left semi-

circular wall heater for all the cases. 

 For rectangular heated obstacle heat transfer rate is higher than the trapezoidal heated 

obstacle for all cases. 

 In mixed convection dominated region streamlines and isotherms are not symmetric 

in both presence and absence of magnetic field. But in natural convection region 

streamlines and isotherms are symmetrical in both presence and absence of magnetic 

field. 

 There is no significant effect on fluid flow for increasing values of Lewis number. 

 There is no significant effect of Lewis number on temperature distribution. 
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