

FPGA IMPLEMENTATION OF

SECURED TRANSMISSION AND HIGH SPEED TEXT DATA COMPRESSION

USING HAMMING AND HUFFMAN CODING

By

Mohammad Rakib

MASTER OF ENGINEERING

IN

INFORMATION AND COMMUNICATION TECHNOLOGY

Institute of Information and Communication Technology

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

September 2017

ii

The project titled, “FPGA Implementation of Secured Transmission and High Speed Text

Data Compression using Hamming and Huffman Coding” submitted by Mohammad Rakib,

Roll No. 0412312045(P), Session: April/2012, has been accepted as satisfactory in partial

fulfillment of the requirement for the degree of Master of Engineering in Information and

Communication Technology on 26 September, 2017.

BOARD OF EXAMINERS

1. Dr. Md. Liakot Ali

Professor
IICT, BUET, Dhaka.
(Supervisor)

Chairman

2. Dr. A. B. M. Harun-Ur-Rashid

Professor
Department of EEE, BUET, Dhaka.

Member

3. Dr. Md. Rubaiyat Hossain Mondal

Associate Professor
IICT, BUET, Dhaka.

Member

iii

CANDIDATE’S DECLARATION

It is hereby declared that this project or any part of it has not been submitted elsewhere for

the award of any degree or diploma.

 Mohammad Rakib

Roll: 0412312045 (P)

IICT, BUET.

iv

DEDICATION

I dedicate this project to my parents and my wife.

v

TABLE OF CONTENTS

List of Figures .. viii

List of Tables... x

List of Abbreviations of Technical Symbols and Terms .. xi

Acknowledgement ... xii

Abstract ... xiii

CHAPTER 1 Introduction .. 1

1.1 Overview ... 1

1.2 Motivation and Scope .. 2

1.3 Objectives of the Project ... 2

1.4 Project Outline ... 3

CHAPTER 2 Literature Review... 4

2.1 Introduction ... 4

2.2 Huffman Algorithm ... 4

2.2.1 Construction of Huffman Tree ... 6

2.3 Flowchart of Huffman Encoder ... 10

2.4 Flowchart of Huffman Decoder... 11

2.5 Hamming Code .. 12

2.6 Overview of FPGA .. 14

2.6.1 Architecture of FPGA .. 14

2.6.2 Design and Programming on FPGA .. 15

2.6.3 Programing Language for FPGA ... 15

2.6.4 Advantages of FPGAs .. 16

CHAPTER 3 Design and Implementation ... 17

3.1 Introduction ... 17

vi

3.2 Architecture of the Design .. 17

3.2.1 Controller: .. 18

3.2.2 Bit-stuffing Compression Module: .. 18

3.2.3 Huffman Compression Module .. 19

3.2.4 Hamming Encoding Module .. 23

3.2.5 Hamming Decoding Module .. 23

3.2.6 Huffman Decompression Module .. 24

3.2.7 Bit-stuffing Decompression Module .. 24

3.3 Flow Chart of the Design .. 25

3.4 Algorithm of the Proposed Method ... 25

3.4.1 Transmission Unit .. 26

3.4.2 Receiver Unit ... 28

3.5 MATLAB Simulation .. 29

3.6 Design of the System ... 31

3.7 Software Simulation Tool—MATLAB ... 31

3.8 FPGA Simulation Tool— ModelSim .. 32

CHAPTER 4 Results and Discussions ... 34

4.1 Introduction ... 34

4.2 Software Simulation .. 34

4.3 Generated Output File of SW Simulation ... 35

4.4 Compilation of the FPGA Design ... 37

4.5 Analysis of FPGA Simulation Results .. 38

4.5.1 Simulation of Bit-Stuffing Compression Module 38

4.5.2 Simulation of Character Counter ... 39

4.5.3 Simulation of Frequency Sorting Module .. 40

4.5.4 Simulation of Huffman Tree Generator ... 40

4.5.5 Simulation of Code Generator ... 41

vii

4.5.6 Simulation of Coding Module .. 42

4.5.7 Simulation of Hamming Encoding Module ... 42

4.5.8 Simulation of Hamming Decoding Module ... 43

4.5.9 Simulation of Huffman Decompression Module 45

4.5.10 Bit-stuffing Decompression Module .. 45

4.6 Error Correction Rate .. 46

4.7 Compression Ratio .. 47

4.8 Comparison with Other Compression Methods .. 49

CHAPTER 5 Conclusion ... 50

5.1 Conclusion ... 50

5.2 Future Works ... 51

References…………………………………………………………………………...53

viii

LIST OF FIGURES

Figure 2.1 Huffman Encoding Example ... 5

Figure 2.2 Construction of Huffman Tree (Step-1) .. 7

Figure 2.3 Construction of Huffman Tree (Step-2) .. 7

Figure 2.4 Construction of Huffman Tree (Step-3) .. 7

Figure 2.5 Construction of Huffman Tree (Step-4) .. 8

Figure 2.6 Construction of Huffman Tree (Step-5) .. 8

Figure 2.7 Construction of Huffman Tree (Step-6) .. 9

Figure 2.8 Construction of Huffman Tree (Step-7) .. 9

Figure 2.9 Flowchart of Huffman Encoder ... 10

Figure 2.10: Flowchart of Huffman Decoder .. 11

Figure 2.11 An Altera Cyclone II FPGA (DE2 Board) .. 14

Figure 2.12 Simplified Version of an FPGA Logic Block ... 15

Figure 3.1 Archietecture of the Proposed System ... 17

Figure 3.2 : Block Diagram of Controller ... 18

Figure 3.3 Block Diagram of Bit-stuffing Compression Module ... 18

Figure 3.4 Block Diagram of 7-Bit Adder .. 19

Figure 3.5 Block Diagram of Character Counter .. 20

Figure 3.6 Block Diagram of Frequency Sorting Module .. 20

Figure 3.7 Block Diagram of Node Sorting Module... 21

Figure 3.8 Block Diagram of Huffman Tree Generator .. 21

Figure 3.9 Block Diagram of Code Generator .. 22

Figure 3.10 Block Diagram of Coding Module .. 22

Figure 3.11 Block Diagram of Hamming Encoder ... 23

Figure 3.12 Block Diagram of Hamming Decoder ... 23

Figure 3.13 Block Diagram of Huffman Decompression Module .. 24

Figure 3.14 Block Diagram of Bit-stuffing Decompression Module 24

Figure 3.15: Flowchart of the Proposed FPGA based System .. 25

Figure 3.16: Process Flow at Transmission Unit .. 26

Figure 3.17: Process Flow at Receiver Unit ... 28

Figure 4.1 Sample of MATLAB Simulation... 34

Figure 4.2 A Sample Simulation Result on MATLAB ... 35

Figure 4.3: Sample Input Text File (Partial View) ... 36

file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765534
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765535
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765536
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765537
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765538
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765539
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765540
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765541
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765542
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765544
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765545
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765546
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765547
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765548
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765549
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765550
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765551
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765552
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765553
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765554
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765555
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765556
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765557
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765558
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765559
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765563
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765564

ix

Figure 4.4: Generated Output File in Transmission Unit. (Partial View) 36

Figure 4.5 Result of Compilation on ModelSim ... 37

Figure 4.6 Simulation of Bit-stuffing Compression Module with 104 bits Input Data. 39

Figure 4.7 Simulation Result of Character Counter. Counted frequencies match with

frequency distribution mentioned in Table 4.1. .. 39

Figure 4.8 Simulation Result of Frequency Sorting Module. .. 40

Figure 4.9 Simulation Result of Huffman Tree Generator ... 41

Figure 4.10 Simulation Result of Code Generator .. 41

Figure 4.11 Simulation of Coding Module ... 42

Figure 4.12 Simulation of Hamming Encoding Module ... 43

Figure 4.13 Simulation of Hamming Decoder Module for Error Free Input Data 44

Figure 4.14 Simulation of Hamming Decoder Module for Erroneous Input Data 44

Figure 4.15: Simulation Result of Huffman Decompression Module 45

Figure 4.16: Simulation Result of Bit-stuffing Decompression Module 46

Figure 4.17: Result of Proposed 2 Level Compressions ... 48

file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765567
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765568
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765569
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765569
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765570
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765571
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765572
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765573
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765574
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765575
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765576
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765577
file:///F:/MSc/Project/Report/Project_Report_Rakib_FINAL1.docx%23_Toc498765578

x

LIST OF TABLES

Table 2.1 Frequency Distribution of the Example Data ... 6

Table 2.2 Format of Hamming (7,4) Encoding .. 12

Table 2.3 Hamming (7, 4) code-word for data 1100... 12

Table 3.1 Node Structure .. 21

Table 3.2 Functions of Matlab Simulation ... 30

Table 3.3 Modules of FPGA Implementation ... 31

Table 4.1 Frequency Distribution and ASCII values of a Test String 38

Table 4.2: Error Correction Rate of Received Data (800 bits) ... 46

Table 4.3: Result of Proposed Two Level Compression Method ... 48

Table 4.4: Comparison of Saving Percentage (SP) and Compression Ratio (CR) between

Proposed Method and Other Compression Techniques .. 49

xi

LIST OF ABBREVIATIONS

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

CR Compression Ratio

CLB Configurable Logic Block

DLL Dynamic Link Library

DSP Digital Signal Processor

ECC Error correction code

EEPROM Electrically Erasable Programmable Read-Only Memory

FPGA Field-Programmable Gate Array

GZIP GNU's not UNIX zip

GUI Graphical User Interface

HDL Hardware Description Language

I/O Input/Output

ISE Integrated Synthesis Environment

IT Information Technology

JTAG Joint Test Action Group

LUT Look-Up Table

MATLAB MATrix LABoratory

OS Operating System

RTL Register-Transfer Level

RAM Random Access Memory

ROM Read Only Memory

SoC System on a Chip

SP Saving Percentage

SKS Single Kernel Simulator

VLSI Very-large-scale integration

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

xii

Acknowledgement

First of all I must thank to the Almighty Allah (Swt.) who has the supreme authority.

Without His mercy it is impossible to have any success. I would like to express my heartfelt

gratitude to Dr. Md. Liakot Ali, Professor, IICT, BUET for the guidance, inspiration and

constructive suggestion which helped me to complete my project work successfully. Lastly,

I offer my regards and blessings to all of my friends and family members who supported me

in any respect during the completion of the project.

xiii

Abstract

In this era of big data, high speed data compression and its secured transmission are burning

issues. Data compression and its reliable transmission are necessary especially for the

storage and transmission related applications. This project proposes a solution in this regard

and presents the design and implementation of a Field Programmable Gate Array(FPGA)

based system which offers advantages over software solution in terms of higher speed, real-

time performance, higher reliability, re-configurability and also ease of integration

with the existing consumer electronic devices. The proposed system is a blend of bit

stuffing, Huffman and Hamming algorithms. It has been simulated in the MATLAB

environment to ensure the accuracy of the system and it is then designed using Verilog

hardware description language (HDL) to implement into FPGA hardware. The proposed

system comprises various processing modules for compressing and securing data for

reliable transmission. This project is based on ASCII text data, but the proposed technique

can be implemented for other data types which have been considered as future extension of

this work. To secure text data for transmission, Hamming (7, 4) coding is used. It secures

data by adding a layer of encryption as well as by providing facility for error detection and

correction for reliable transmission. In this step, each character of sending text data is

divided into groups of 4-bit data and encoded with 3 parity bits, thus resulting 7-bit code-

word. This system can correct 2-bit errors in each 8-bit character. Furthermore, the system

includes a two-level compression. During the first level of compression, redundant bits of 8

bit characters are removed which has been mentioned as bit-stuffing. After compressing by

bit-stuffing, second level compression is done by Huffman algorithm. These two level

compression processes can achieve higher saving percentage of memory. Hence, the system

provides reliability in transmission and also compresses data to larger extent. The results

obtained are highly promising and the system is very effective for providing high level

reliability and higher saving percentage of memory which in turn reduces bandwidth and

transmission time.

1

CHAPTER 1

Introduction

1.1 Overview

This is an era of big data where big data refers to voluminous amounts of structured or

unstructured complex data sets that can be potentially mined and analyzed for

understanding the real world. Many emerging applications have come out based on big data

such as spy satellites, remote sensing, medical imaging, customer relationship management,

corporate surveillance etc. Again applications and simulations related to seismography,

oceanography, bioinformatics, cosmology etc. are coming out where billions of terabyte

data known as hyper spectral data are required to store and transmit securely which can

easily overwhelm limited space communication channels [1-2]. A survey report stated

companies are spending 12% of their IT budget on storage and this cost is doubling every

two years [2]. In this context, data compression and its secured transmission has become a

demanding issue of this day [3]. The purpose of this project is to present a mechanism for

high speed compression and reliable transmission of ASCII text data.

Our proposed technique is a combination of bit stuffing, Huffman and Hamming

algorithms. Software implementation for the proposed system cannot fulfill the performance

and real time requirements since it is inherently slow and the software designer does not

have any direct control over the way with which RAM and processors interact. This

imposes a limit on operating speed while a hardware designer has full control over timing

operations into the RAM and direct control over the usage of expensive hardware resources.

For hardware implementation, FPGA technology has brought revolution in the electronic

system design and development. It is now being widely used in various applications such as

telecommunications, networking, consumer, automotive and industrial applications, etc. [4].

FPGA chip adoption across all industries is driven by the fact that FPGAs have more

advantages than ASICs and processor-based systems. Over the few decades, FPGA device

market has been emerged as multi-billion dollar market due to its lower cost than that of

ASIC, reusability, massive parallelism, higher speed than conventional computing, lower

power, shorter time to market etc. [5]. For this reason, researches on FPGA based

compression technique has become prominent than software based or ASIC based design.

2

As mentioned, one of the prime aspects of compression is to reduce bandwidth for

transmission; it is a motivating topic to incorporate error correction mechanism into the

compression process for reliable transmission.

1.2 Motivation and Scope

Data compression has a wide range of applications including representation of the abstract

data type and file compression. A lot of researches have been conducted and also are

ongoing to develop new techniques for data compression. Huffman algorithm is amongst

the most popular algorithm for lossless compression. Though it was invented seven decades

ago, a lot of researches [6-11] have been conducted in recent times based on this algorithm.

Since software solution for data compression is inherently slow and not energy efficient, a

number of FPGA based lossless data compression solutions have been proposed focusing on

high throughput, low cost and energy efficiency [12-15]. FPGA based researches on data

compression has added a new dimension to invent robust methodology. Among the latest

FPGA based researches, Dias et al. [16] proposes a new method of code compression for

embedded systems which applies two compression techniques and uses the Huffman

algorithm. They have implemented the de-compressor using VHDL for FPGA and claimed

that their proposed method reduces code size up to 30.6%. Rigler et. al. [17] presented

hardware implementations for the LZ77 encoders and Huffman encoders that form the basis

for a full hardware implementation of a GZIP encoder. The designs have been implemented

as state machines in VHDL in such a way that they are suitable for implementation using

either FPGA or ASIC technologies. However among all these software and FPGA based

researches security and reliability issues have not much considered or lightly considered.

So, there is scope of conducting research which can provide low power, high speed, real

time data compression and at the same time can ensure data security and reliability for

transmission.

1.3 Objectives of the Project

The aim of the project is to develop a FPGA based system for high speed real time text data

compression with higher saving percentage of memory as well as ensuring its secured and

reliable transmission.

3

The project work focuses on the following objectives:

 To design the Huffman algorithm based compression and decompression engine

using suitable programming language then test it using sample data.

 To add another layer with the compression engine using Hamming code for secured

transmission and simulate the environment using suitable programming language

 To design the system using Verilog HDL and simulate the system under FPGA

environment.

 To compare the results with other data compression methods.

Outcome of this project: An HDL based design for secured transmission and high speed

data compression using Hamming and Huffman coding will be the possible outcome of this

project.

1.4 Project Outline

The rest of the project is organized as follows: Chapter 2 describes the fundamentals of

Huffman algorithm and Hamming coding which is required to understand different

functional blocks of the implemented system of this project. It also provides an overview of

FPGA technology. Chapter 3 discusses about the design and implementation of the

proposed system. Chapter 4 covers the simulation results and discussions of the proposed

system. Finally, Chapter 5 offers suggestions for future work along with concluding

remarks.

4

CHAPTER 2

Literature Review

2.1 Introduction

Compression is the art of representing the information in a compact form rather than its

original form [18]. More concisely, data compression comprises the identification and

removal of redundant elements of source data. The main objective of data compression is to

reduce the size of file to store or transmit over communication channel [19]. The design of a

compression algorithm involves understanding the types of redundancy present in the data

and then developing strategies for removing these redundancies to obtain a compact

representation of the data.

This chapter begins with the description of Huffman algorithm and Hamming coding which

are used for this project. Then it provides an overview of FPGA technology, its architecture

and advantages over conventional circuit design.

2.2 Huffman Algorithm

Huffman algorithm is a lossless statistical data compression scheme. It takes advantage of

the disparity between frequencies of the symbols or characters in the content. It uses less

memory for the frequently occurring characters and more memory for the more rare

characters. Huffman is an example of a variable-length encoding—some characters may

only require 2 or 3 bits and other characters may require 7, 10, or 12 bits. The savings from

not having to use a full 8 bits for the most common characters makes up for having to use

more than 8 bits for the rare characters and the overall effect is that the file almost always

requires less space. It was developed by David A. Huffman while he was a Sc.D. student at

MIT, and published in the 1952 paper "A Method for the Construction of Minimum-

Redundancy Codes" [20].

There are two types of Huffman coding—static and dynamic. In the static method the

frequencies of each character in the alphabet are assigned before the program begins and are

stored in a look-up table. In the dynamic method, on the other hand, one pass through the

5

content has to be made to determine the frequency of each character. Once the histogram

has either been calculated or provided, the two algorithms are identical. Elements are

selected two at a time, based on frequency; lowest frequency elements are chosen. The two

elements are made to be leaf nodes of a node with two branches. The frequencies of the two

elements selected are then added together and this value becomes the frequency for the new

node. The algorithm continues selecting two elements at a time until a Huffman tree is

complete with the root node having a frequency equal to the total number of characters of

the content. An example of Huffman encoding is given in Figure 2.1.

Character Frequency

A 16

B 32

C 36

D 8

E 8

The branches of the tree represent the binary values 0 and 1 according to the rules for

common prefix-free code trees. The path from the root tree to the corresponding leaf node

defines the particular code-word.

Character Frequency

A 110

B 10

C 0

D 1110

E 1111

Figure 2.1 Huffman Encoding Example

Huffman Codes

Histogram

Huffman Tree

6

2.2.1 Construction of Huffman Tree

The Huffman algorithm generates the most efficient binary code tree at given frequency

distribution. Prerequisite is a table with all symbols and their frequency. Any symbol

represents a leaf node within the generated tree.

The following general procedure has to be applied:

1. Creating a collection of singleton trees, one for each character, with weight equal to

the character frequency.

2. From the collection, picking out the two trees with the smallest weights and

removing them.

3. Combining them into a new tree whose root has a weight equal to the sum of the

weights of the two removed trees and with the two trees as its left and right sub-

trees.

4. Adding the new combined tree back into the collection.

5. Repeating steps 2 to 4 until there is only one tree left.

6. The remaining node is the root of the optimal encoding tree.

Let us understand the algorithm with the string “hip hop happy”. There are total 13

characters in the string with the frequency distribution mentioned in Table 2.1.

Character Frequency

p 4

h 3

_ (space) 2

a 1

i 1

o 1

y 1

With above frequency distribution, Huffman tree can be constructed by following the steps

mentioned next.

Table 2.1 Frequency Distribution of the Example Data

7

Step—1. The process begins with a collection of singleton tree; the weight (frequency)

of each node is mentioned along with them in Figure 2.2.

Step—2. Two smallest nodes will be selected. There are four nodes with the minimal

weight of 1 and any two of them can be picked. We choose 'o' and 'y' and combine

them into a new tree whose root is the sum of the weights chosen. Those two nodes

will be replaced with the combined tree. The nodes remaining in the collection are

shown in the light gray box at in Figure 2.3.

Step—3. Now step-2 will be repeated, this time there is no choice for the minimal

nodes, it must be 'a' and 'i' (Figure 2.3). So those will be combined into a tree of

weight 2 as shown in Figure 2.4.

Figure 2.2 Construction of Huffman Tree (Step-1)

Figure 2.3 Construction of Huffman Tree (Step-2)

Figure 2.4 Construction of Huffman Tree (Step-3)

8

Step—4. Again, two smallest nodes will be combined and built a tree of weight 4 as

shown in Figure 2.5.

It is noticeable that when a combined node is built, it doesn’t represent a character like the

leaf nodes do. These interior nodes are used along the paths that eventually lead to valid

encodings, but the prefix itself does not encode a character.

Step—5. Another iteration combines the weight 3 and 2 into a combined tree of weight

5 as shown in Figure 2.6.

Step—6. Combining the two 4s in Figure 2.6 gets a tree of weight 8 as shown in Figure

2.7.

Figure 2.5 Construction of Huffman Tree (Step-4)

Figure 2.6 Construction of Huffman Tree (Step-5)

9

Step—7. Finally, the last two trees in Figure 2.7 will be combined to get final tree in

Figure 2.8. The root node of the final tree will always have a weight equal to the

number of characters in the source data. In this example it is 13 as shown in Table

2.1.

Formation of the Huffman tree can be different. When there are choices among equally

weighted nodes (Figure 2.2 and Figure 2.4), picking a different two nodes will result in a

different, but still optimal prefix codes. Similarly when combining two sub-trees, it is as

equally valid to put one of the trees on the left and the other on the right as it is to reverse

them (Figure 2.5).

Figure 2.7 Construction of Huffman Tree (Step-6)

Figure 2.8 Construction of Huffman Tree (Step-7)

10

2.3 Flowchart of Huffman Encoder

Figure 2.9 shows a simple flowchart of Huffman encoder.

Figure 2.9 Flowchart of Huffman Encoder

Create the code-word table by traversing Huffman Tree

End

Compute the frequencies of the characters in the source data

Construct the binary tree called as Huffman Tree

Start

Read the source data into memory.

Replace the characters in the source with the code-words

from the code-word table.

11

2.4 Flowchart of Huffman Decoder

Figure 2.10 shows a flowchart of Huffman decoder.

Figure 2.10: Flowchart of Huffman Decoder

Yes

Start

Read a bit from source data

Replace the bit sequence with the original symbol

Original character found
in code-word table?

End

No End of input bit-
stream?

Search the code-word table with read bit
sequence for original character

No

Concatenate the bit with previously read bits (if any)

Yes

12

2.5 Hamming Code

When digital data is transmitted or stored in nonvolatile memory, it is crucial to have a

mechanism that can detect and correct a certain number of errors. Error correction code

(ECC) encodes data in such a way that a decoder can identify and correct errors in the data.

The most common types of ECC used in RAM are based on the codes proposed by R. W.

Hamming [21]. Hamming codes are capable of correcting single bit error. In the Hamming

code, k parity bits are added to an n-bit data word, forming a new word of n + k bits. The bit

positions are numbered in sequence from 1 to n+ k. Those positions numbered with powers

of two are reserved for the parity bits. The remaining bits are the data bits. The code can be

used with data of any length.

For example, let us consider the 4-bit data word is 1100. To generate Hamming (7, 4) code,

3 parity bits are included with this data word and the resultant 7 bits are arranged as

mentioned in Table 2.2.

Each parity bit is calculated as follows:

 Parity bit P1 = XOR of bits (3,5,7) = 0 ⊕ 0 ⊕ 1 = 1

 Parity bit P2 = XOR of bits (3,6,7) = 0 ⊕ 1 ⊕ 1 = 0

 Parity bit P4 = XOR of bits (5,6,7) = 0 ⊕ 1⊕ 1 = 0

As per Hamming encoding rules, each parity bit is set so that the total number of 1’s in the

checked positions, including the parity bit, is always even. The 4-bit data word is written

into the memory together with the 3 parity bits as a 7-bit composite word. By substituting

the 3 parity bits in their proper positions, Hamming (7, 4) code-word is obtained as shown

in Table 2.3.

Bit Position 7 6 5 4 3 2 1

Bit Value 1 1 0 0 0 0 1

Table 2.2 Format of Hamming (7,4) Encoding

Bit Position 7 6 5 4 3 2 1

Bit Value 1 1 0 P4 0 P2 P1

Table 2.3 Hamming (7, 4) code-word for data 1100

13

When Hamming (7, 4) codes are received, they are checked again for errors. The parity of

the word is checked over the same groups of bits, including their parity bits. The 3 check

bits are evaluated as follows:

 C1 = XOR of bits (1, 3, 5, 7)

 C2 = XOR of bits (2, 3, 6, 7)

 C4 = XOR of bits (4, 5, 6, 7)

A 0 check bit designates an even parity over the checked bits, and a 1 designates an odd

parity. Since the bits were written with even parity, the result, C = C4C2C1 = 000, indicates

that no error has occurred. However, if, the 3-bit binary number formed by the check bits

gives the position of the erroneous bit if only a single bit is in error.

Consider following three cases-

 C4C2C1 = 000 means no error

 C4C2C1 = 001 means error in first bit.

 C4C2C1 = 101 means error in 5th bit because 101 is binary of 5.

The error can then be corrected by complementing the corresponding bit.

Hamming (7, 4) code can detect and correct a single bit error. A modified Hamming code to

generate and check parity bits for a single error-correction and double-error-detection

scheme is most often used in real systems. The modified code uses a different parity check

bit scheme that balances the number of inputs to the logic for each check. The balancing

minimizes the delay through the error correction and detection circuits. These circuits can

be used in a RAM subsystem to add check bits during write operations and to correct single

errors and detect double errors during read operations.

14

2.6 Overview of FPGA

FPGA is a semiconductor device comprising programmable logic components and

programmable interconnects. It contains up to thousands of gates. The programmable logic

components can be programmed to replicate the functionality of basic logic gates such as

AND, OR, XOR, NOT or more complex combinational functions such as decoders or

simple math functions. In most FPGAs, this programmable logic also includes memory

elements such as flip-flops or more complete blocks of memories. The FPGA configuration

is generally specified using a HDL, similar to that used for an ASIC. FPGAs can be used to

implement any logical function that an ASIC could perform. Figure 2.11 shows an Altera

Cyclone II FPGA known as DE2 Board.

2.6.1 Architecture of FPGA

The most common FPGA architecture consists of an array of logic blocks known as

Configurable Logic Block (CLB), I/O pads, and routing channels. Generally, all the routing

channels have the same width. Multiple I/O pads may fit into the height of one row or the

width of one column in the array. An application circuit must be map into an FPGA with

adequate resources. The typical FPGA logic block consists of a 4-input lookup table (LUT),

and a flip-flop as shown in Figure 2.12. There is only one output, which can be either the

Figure 2.11 An Altera Cyclone II FPGA (DE2 Board)

15

registered or the unregistered LUT output. The logic block has four inputs for the LUT and

a clock input. Since clock signals are normally routed via special-purpose dedicated routing

networks in commercial FPGAs, they and other signals are separately managed.

2.6.2 Design and Programming on FPGA

To define the behavior of the FPGA, the user provides an HDL or a schematic design. In a

typical design flow, the RTL description in VHDL or Verilog is simulated by creating test

benches to simulate the system and observe results. After that, a technology-mapped netlist

is generated using an electronic design automation tool. The netlist can then be fitted to the

actual FPGA architecture using a process called place-and-route, usually performed by the

FPGA company’s proprietary place-and-route software. Then the netlist is translated to a

gate level description where simulation is repeated to confirm the synthesis proceeded

without errors. The user will validate the map, place-and-route results via timing analysis,

simulation, and other verification methodologies. Once the design and validation process is

complete, the binary file generated is used to reconfigure the FPGA. The file is then

transferred to the FPGA via a serial interface known as JTAG or to an external memory

device like an EEPROM.

2.6.3 Programing Language for FPGA

The most common HDLs are VHDL and Verilog. Although, complexities of using HDLs

has been compared to the equivalent of assembly languages. There are attempts ongoing to

raise the abstraction level through the introduction of alternative languages. National

Instrument introduced LabVIEW which is a graphical programming, has an FPGA add-in

Figure 2.12 Simplified Version of an FPGA Logic Block

16

module available to target and program FPGA hardware. The LabVIEW approach

drastically simplifies the FPGA programming process. To simplify the design of complex

systems in FPGAs, there exist libraries of predefined complex functions and circuits that

have been tested and optimized to speed up the design process.

2.6.4 Advantages of FPGAs

 High Performance—By taking advantage of hardware parallelism, FPGAs exceeds the

computing power of digital signal processors (DSPs) by accomplishing more

instructions per clock cycle. By controlling I/O at the hardware level FPGA provides

faster response times.

 Less Time to Market—FPGA technology offers flexibility and rapid prototyping

capabilities which deals less time-to-market concerns. Developer can test an idea or

concept and verify it in hardware without going through the long fabrication process of

custom ASIC design.

 Low Cost—By using FPGA, designer has no fabrication costs or long lead times for

assembly. System requirements are often changed over time, the cost of making

incremental changes to FPGA designs is negligible when compared to the large expense

of redesigning an ASIC.

 Reliability—In processor-based systems, only one instruction can be executed at a time

and those are continually at risk of time-critical tasks blocking one another. FPGAs,

which do not use OSs, minimize reliability concerns with true parallel execution and

deterministic hardware dedicated to every task.

 Long-term Maintenance—FPGA chips are field-upgradable and do not require the

time and expense involved with ASIC redesign. ASIC-based interfaces may cause

maintenance and forward-compatibility challenges due to the change in specifications.

Being reconfigurable, FPGA chips can keep up with future modifications that might be

necessary.

17

CHAPTER 3

Design and Implementation

3.1 Introduction

This chapter discusses the details of the design and implementation of the proposed system.

Details of various functional blocks as well as their FPGA implementation will be described

also.

3.2 Architecture of the Design

Figure 3.1 shows the architecture of the system along with their internal connection and

relations.

Figure 3.1 Archietecture of the Proposed System

Original

Data

Compressed

Data

Compressed
Data

Clock

 Reset

Bit-stuffing

Compression

Module

Huffman

Compression

Module

Hamming

Encoding

Module

Controller

Hamming

Decoding

Module

Huffman

De-

compression

Module

Bit-stuffing

De-

compression

Module

Enable

Original

Data

18

3.2.1 Controller:

Both transmission and receiver unit have distinct controller modules. The main feature of a

dynamic Huffman coder is that the histogram is calculated from the input data. The purpose

of this module is to take input, processing data by enabling other modules and store output

result into memory. After performing necessary operation, the data will be written into

given memory location. The main purpose of this module is to co-ordinate different

modules in transmission or receiver unit to process data and generates output. A simple

block diagram of controller module is shown in Figure 3.2.

3.2.2 Bit-stuffing Compression Module:

This module performs first level compression on transmission unit. It operates on byte level.

It removes MSBs from each input character and continues until the end of byte stream. On

negative ‘rst’ signal, internal registers of this module will be reset. Then, on positive edge

‘clk’ cycle, this will load data on its internal register and operates on the data and write

output to temporary register. Then output will be sent through ‘out’ port. Block diagram is

shown on Figure 3.3.

Figure 3.2 : Block Diagram of Controller

Figure 3.3 Block Diagram of Bit-stuffing Compression Module

Controller

19

3.2.3 Huffman Compression Module

This module is responsible for second level compression in transmission unit. At first, it

computes the frequency of the input characters. Based on the frequency of input data set, it

constructs Huffman tree. Later, this Huffman tree will be used to encode each character of

the source data. It uses dynamic Huffman algorithm for compressing input text data.

Huffman compression module is the most complex module of this project. It is divided into

several sub-modules which will be described in following sections.

3.2.3.1 7-Bit Adder

Adder module takes two 7 bit numbers— ‘NUM_1’ and ‘NUM_2’ and perform addition.

Basically this addition is required to build Huffman tree where two least frequency will be

summed up and added as a new node. Result of the addition is another 7 bit number which

will be sent through the port ‘SUM’. Figure 3.4 shows the block diagram of this adder.

3.2.3.2 Character Counter

The output of Bit-stuffing compression module acts as input of Character Counter Module.

This module takes bit-compressed data into unpacked array ‘stringIn’ along with the ASCII

value of each character into packed array ‘characters’. The size of ‘stringIn’ depends on the

output size of bit-stuffing module. For example 104 bits input ASCII data generates 90 bits

output from bit-stuffing module which is the input for character counter. Generated

frequency of each input symbol i.e. histogram is saved into ‘freq’ which is another packed

array. Each row of ‘freq’ denotes each character and corresponding frequency is saved into

the columns. A block diagram of character counter is shown in Figure 3.5.

Figure 3.4 Block Diagram of 7-Bit Adder

20

3.2.3.3 Frequency Sorting Module

This module takes the frequencies from character counter and sorts them in ascending order.

It applies bubble sorting method on frequencies ‘freq’ and sends sorted values in ‘sorted’ as

shown in Figure 3.6. Characters associated with each frequency are passed in unpacked

array ‘charsIn’ and sorted characters are sent to ‘charsOut’. That means ‘sorted[0]’ is the

frequency of the character ‘charsOut[0], ‘sorted[1]’ is the frequency of the character

‘charsOut[1] and so on.

3.2.3.4 Node Sorting Module

Sorting module is same as frequency sorting module with the difference that it takes an

extra input ‘id_in’ as the associate values for each frequency. This module is used for

intermediate sorting of nodes when building Huffman binary tree. ‘id_in’ is a packed array

which signifies identity of each node in the Huffman tree. Block diagram is shown in Figure

3.7.

Figure 3.5 Block Diagram of Character Counter

Figure 3.6 Block Diagram of Frequency Sorting Module

21

3.2.3.5 Huffman Tree Generator

This module builds Huffman binary tree to generate Huffman codes based on frequency

distribution of input character set. It uses 7-bit adder and node sorting module to build the

tree. It takes sorted frequency list ‘freq’, characters ‘chars’ and id set ‘id’ as input. ‘id’

contains identity of each primary nodes. Each node in constructed Huffman tree is stored in

a 24-bit register. The information stored in each node mentioned in Table 3.1 and block

diagram is shown in Figure 3.8.

Bit Position Description Value Range

0 to 6 Character/Symbol 0-127

7 to 14 Node ID 0-255

15 Denotes if this is left or right child.

0: Left

1: Right

16 to 23 Parent ID of the node 0-255

Table 3.1 Node Structure

Figure 3.7 Block Diagram of Node Sorting Module

Figure 3.8 Block Diagram of Huffman Tree Generator

22

3.2.3.6 Code Generator

This module generates Huffman code for each input character by traversing Huffman tree. It

takes character list ‘characters’ and Huffman tree ‘node’ as input. Generated codes are

passed into output as ‘code’ with length of each code in ‘codeLen’. Huffman codes are

variable length code. So length of each code needs to be stored in separate registers which

has been done by ‘codeLen’. Codes are generated by traversing Huffman tree starting from

leaf node to the root. This is done by implanting recursive function. Figure 3.9 shows the

block diagram of this module.

3.2.3.7 Coding Module

This module finally compresses input data by replacing each character with corresponding

Huffman code created in code generator module. It takes input data ‘in’, character list

‘chars’, generated code list ‘code’ and length of the each code ‘codeLen’ as input.

Compressed data is sent through port ‘out’ with length of compressed data in ‘length’.

Figure 3.10 shows the block diagram of this module.

Figure 3.9 Block Diagram of Code Generator

Figure 3.10 Block Diagram of Coding Module

23

3.2.4 Hamming Encoding Module

Hamming encoding module is responsible for secured transmission of text data. Huffman

compressed data is sent to this module as input ‘in’. Input data is then divided into groups of

4-bit data. Each 4-bit data generates a Hamming (7, 4) code-word with extra 3 parity bits. If

input contains extra bits i.e. input length are not multiple of 4 then remaining bits are remain

unchanged. Each code-word is written into memory module as final output ‘out’ and is sent

to the receiver. The block diagram of this module is shown in Figure 3.11.

3.2.5 Hamming Decoding Module

Processing of received data in receiver unit begins with Hamming Decoding Module. Input

data is passed though ‘in’ port. This module detects and corrects single bit error in each

received code-word. It calculates check bits from each 7-bit code-word and corrects the

error if any. It sends corrected data to ‘out’ port. If any error is found, ‘error’ signal will be

set high and error bit number is sent to ‘error_index’. Figure 3.12 shows the block diagram.

Figure 3.11 Block Diagram of Hamming Encoder

Figure 3.12 Block Diagram of Hamming Decoder

24

3.2.6 Huffman Decompression Module

Hamming decoded compressed data is taken as input ‘in’ for this module. Character list

from Huffman compression module — ‘chars’, Huffman code list ‘code’ and length of each

code ‘codeLen’ are sent to this module as other inputs. Then it identifies Huffman codes in

input data and replaces those codes with original characters found in ‘chars’. Decompressed

data is sent to ‘out’ with decompressed data length ‘outLen’. Figure 3.13 shows the block

diagram of this module.

3.2.7 Bit-stuffing Decompression Module

This module performs the final decompression on received data. It performs the reverse

process of Bit-stuffing Compression Module. It takes input ‘in’ from Huffman

decompression module and adds ‘0’ bit as an MSB to every 7-bit data blocks. Final output

is sent to ‘out’. Output of this module should be identical to original data in transmission

unit which will prove the correctness of this system. Block diagram is shown in Figure 3.14.

Figure 3.13 Block Diagram of Huffman Decompression Module

Figure 3.14 Block Diagram of Bit-stuffing Decompression Module

25

3.3 Flow Chart of the Design

Fig 3.15 shows the flowchart of the proposed FPGA based system.

3.4 Algorithm of the Proposed Method

The proposed method uses bit stuffing and Huffman algorithm to do a two level

compression to achieve higher compression ratio and then uses Hamming (7, 4) coding for

reliable and secured transmission of text data. Using of Hamming code enables it to detect

and correct single bit error when data is sent via noisy channel.

Figure 3.15: Flowchart of the Proposed FPGA based System

End

Start

Compression

By Bit-stuffing

Compression

By Huffman

Coding

Hamming

 Encoding

Decompression

By Bit-stuffing

Decompression

By Huffman

Coding

Hamming

Decoding

End

Start

26

3.4.1 Transmission Unit

The process begins with two level compressions of input text data. First compression is

done by bit stuffing and second level compression is done by Huffman coding. After

completing two level compressions, generated output is encoded by Hamming (7, 4) code to

achieve further security.

Figure 3.16 shows process flow of transmission unit

3.4.1.1 Level 1 Compression by Bit Stuffing

Input: Original text data.

Output: First level compressed data.

Step—1. Load the text data into memory and initialize counter, c = 0.

Step—2. Read each bit starting from LSB position into the bit-stuffing compression

module and increment the counter.

Step—3. If c = 7, write the bits back into register and reset the counter. Thus MSB is

discarded from each character from the input data.

3.4.1.2 Level 2 Compression by Huffman Coding

Input: First level compressed data.

Output: Second level Huffman compressed data.

Step—1. Count the frequencies of the symbols from the input and save the frequency

information along with the symbols.

Step—2. Build a Huffman tree based on the frequency information. Used Huffman

algorithm is described next.

Figure 3.16: Process Flow at Transmission Unit

Original

Text

Compression

by Bit

Stuffing

Huffman

Compression

Encoding by

Hamming (7, 4)

Code

Encoded

Text

27

Huffman (C)

I. n ←|C|

II. Q ← C

III. for i ← 1 to n-1

IV. do allocate a new node z

V. left[z] ← x ← EXTRACT-MIN(Q)

VI. right[z] ← y ← EXTRACTMIN(Q)

VII. f[z] ← f[x] + f[y]

VIII. INSERT(Q, x)

IX. return EXTRACT-MIN(Q)

Where,

 C is a set of n symbols.

 f[c] denotes the frequency of c.

 Q is a min-priority queue which is used to identify the two least frequent symbols

to merge together. A new symbol is created after merging whose frequency is the

sum of the frequencies of the two symbols that were merged.

 EXTRACT-MIN(x) is the function which returns minimum value from the queue.

 INSERT (Q, x) adds value ‘x’ in the min-priority queue ‘Q’.

3.4.1.3 Hamming (7, 4) Encoding

Input: Compressed text data.

Output: Hamming (7, 4) encoded output data.

Step—1. Read 4 bits from compressed data and calculate 3 parity bits namely P1, P2

and P4.

Step—2. Insert P1, P2 and P4 into bit position 1, 2 and 4. Remaining positions (3, 5, 6

and 7) are filled up by data bits read in step 1.

Step—3. Write resulting Hamming (7, 4) code into register.

Step—4. Repeat steps 1-3 until the end of input compressed data.

28

3.4.2 Receiver Unit

Processing of receiver unit begins with Hamming (7, 4) decoding of received data. It

calculates check bits to detect if any error occurs during the transmission. Hamming (7, 4)

code can correct single bit error. After decoding, output data is decompressed by Huffman

decompression module using Huffman codes. A second level decompression of Huffman

decompressed output is required using bit stuffing decompression process.

Figure 3.17 shows different stages of the process at receiver unit.

3.4.2.1 Hamming (7, 4) Decoding

Input: Received encoded compressed data.

Output: Hamming (7, 4) decoded compressed data.

Step—1. Read 7 bits from the encoded received data. This is a Hamming (7, 4) code-

word.

Step—2. Calculate check bits and create a 3 bit binary number with check bits to

detect single bit errors during transmission. Correct the error bit if found by flipping

it.

Step—3. Extract data bits from the position 3, 5, 6 and 7. Save the data bits into

memory.

Step—4. Repeat steps 1-3 until end of input encoded data.

Figure 3.17: Process Flow at Receiver Unit

Decoding by

Hamming (7,4)

Code

Original

Text

Encoded

Text

De-

compression

by Bit

Stuffing

Huffman

De-

compression

29

3.4.2.2 Level 1 Decompression by Huffman Algorithm

Input: Hamming (7, 4) decoded compressed data.

Output: First level decompressed text data.

Step—1. Read input character list and generated Huffman codes from transmission

unit.

Step—2. Read a bit from input data and check Huffman code list to find a match.

a. Go back to step-2 if there is no match found and concatenate new bit to the

previous one.

b. If match found in step-2, find corresponding character from character list.

Write the character into output register.

Step—3. Continue step 2-3 until whole input bit stream is processed.

3.4.2.3 Level 2 Decompression by Bit Stuffing

Input: First level decompressed data.

Output: Original text data.

Step—1. Initialize counter c = 0 and load data into bit-stuffing decompression module.

Step—2. Read a bit starting from LSB position and increment the counter.

Step—3. If c =7, add a 0 as MSB and write back into memory.

Step—4. Repeat steps 1-3 until end of the input.

3.5 MATLAB Simulation

Software implementation and intensive testing of the proposed method have been done

using MATLAB. Proposed method has been implemented in popular programing language

C and DLL (Dynamic Link Library) has been generated. Then this DLL is imported to

MATLAB project and simulated with varying text data ranging from 100B to 8MB.

There are 6 core functions in software implementation. Function signature and description

is listed on Table 3.2.

30

Function Signature Description
BitCompression(

string inputFile,

string outputFile)

It takes input as ‘inputFile’ and returns bit

compressed output in ‘outputFile’.

HuffmanCompression(

string inputFile,

string outputFile)

It takes input from the output of BitCompression() in

‘inputFile’. Then it compresses the data using

Huffman algorithm and returns compressed output in

‘outputFile’.
EncodeFileWithHamming(

string inputFile,

string outputFile)

This function takes input from

HuffmanCompression(). After that it encodes data

using Hamming (7, 4) coding and return result in

‘outFile’.
DecodeFileWithHamming(

string inputFile,

string outputFile)

This function starts processing at receiver unit by

taking input into ‘inputFile’ and decodes

Hamming(7,4) code-words. If there are any single bit

errors, it corrects those error saves output in ‘outFile’.
HuffmanDecompression(

string inputFile,

string outputFile)

After Hamming decoding done, this function does

Huffman decompression on ‘inputFile’ and sends it to

‘outFile’.

BitDecompression(

string inputFile,

string outputFile)

This is the final function on receiver unit which does

reverse process of BitCompression(). After

decompressing this reconstruct the original data saves

in ‘outFile’.

Table 3.2 Functions of Matlab Simulation

31

3.6 Design of the System

FPGA design of the proposed system has been done using Verilog HDL. Different

functional blocks of the implementation have already been described in section 3.2. A

simplified description of each Verilog module is listed in Table 3.3.

Verilog File Name Description

bit_compress.v Bit-stuffing compression module

bit_decompress.v Bit-stuffing decompression module

cotroller.v Controller module for transmission unit. It interconnects

different modules and generates final output from

transmission unit.

humming_encoder.v Hamming(7,4) encoder implementation

hamming_decoder.v Hamming(7,4) decoder implementation

add_num.v Add two 7 bit numbers and return result in SUM(7 bit)

count_characters.v Character frequency counter.

sort_frequencies.v Sort initial character frequency array in ascending order.

build_tree.v Huffman binary tree builder.

sort2~6.v Sort intermediate character frequency during Huffman

tree build process.

generate_code.v Huffman Code generator

coding.v Compress input using generated Huffman Codes.

huffman_decoder.v Decompress input data according to Huffman algorithm.

3.7 Software Simulation Tool—MATLAB

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment. A

proprietary programming language developed by the company named MathWorks,

MATLAB allows matrix manipulations, plotting of functions and data, implementation of

algorithms, creation of user interfaces, and interfacing with programs written in other

Table 3.3 Modules of FPGA Implementation

32

languages, including C, C++, C#, Java, Fortran and Python. Although MATLAB is planned

mainly for numerical computing, an optional toolbox uses the MuPAD symbolic engine,

allowing access to symbolic computing abilities. An additional package, Simulink, adds

graphical multi-domain simulation and model-based design for dynamic and embedded

systems.

In this project, MATLAB 2016a edition is used for software implementation and

simulation.

3.8 FPGA Simulation Tool— ModelSim

ModelSim is a multi-language HDL simulation environment by Mentor Graphics, for

simulation of hardware description languages such as VHDL, Verilog and SystemC and

includes a built-in C debugger. ModelSim can be used independently, or in conjunction

with Altera Quartus or Xilinx ISE. Simulation is performed using the graphical user

interface (GUI), or automatically using scripts.

ModelSim is offered in multiple editions, such as ModelSim PE, ModelSim SE, and

ModelSim XE. ModelSim SE offers high-performance and advanced debugging

capabilities, while ModelSim PE is the entry-level simulator for hobbyists and students.

ModelSim SE is used in large multi-million gate designs, and is supported on Microsoft

Windows and Linux, in 32-bit and 64-bit architectures. ModelSim XE stands for Xilinx

Edition, and is specially designed for integration with Xilinx ISE. ModelSim XE enables

testing of HDL programs written for Xilinx Virtex/Spartan series FPGA's without needed

physical hardware. ModelSim can also be used with MATLAB/Simulink, using Link for

ModelSim. Link for ModelSim is a fast bidirectional co-simulation interface between

Simulink and ModelSim. For such designs, MATLAB provides a numerical simulation

toolset, while ModelSim provides tools to verify the hardware implementation and timing

characteristics of the design.

33

 ModelSim enables simulation, verification and debugging for the following languages:

 VHDL

 Verilog

 Verilog 2001

 System Verilog

 PSL

 SystemC

In this project, ModelSim SE-64 10.5 version has been used for FPGA designing,

implementation and simulation.

34

CHAPTER 4

Results and Discussions

4.1 Introduction

The proposed method has been evaluated by considering text data of varying size. The

model is effective in providing high level reliability by correcting single bit errors during

transmission and higher saving percentage. It has been simulated in the MATLAB

environment to ensure the accuracy of the system and then it is designed using Verilog

HDL and designed for FPGA hardware. The results show high level reliability and

reduction of memory which in turn produces reduction of bandwidth and transmission time.

4.2 Software Simulation

Software simulation of this project has been done in MATLAB.

The specifications of simulation environment is given below-

MATLAB 2016a, 64-bit

OS: Windows 7, 64-bit

RAM: 4GB

Processor: Core i3 2.30GHz

Figure 4.1 shows a sample of software simulation result for various input file size.

Output result

Output File

Figure 4.1 Sample of MATLAB Simulation

35

Figure 4.2 shows a sample result of compression in MATLAB simulation. In this particular

software simulation input file size was about 4MB, generated compressed file size was

about 2.6 MB and compression ratio was 65.20.

4.3 Generated Output File of SW Simulation

Proposed method has been tested with various file size from 100 bytes to 8M bytes.

Simulation result on each simulation has been found satisfactory.

Figure 4.3 shows sample input text data which has been compressed and encoded with

proposed method.

Figure 4.4 shows generated output file after encoding process. This exhibits that proposed

method is also capable for adding an extra layer of security by performing triple encoding

on original data.

Simulation result

Figure 4.2 A Sample Simulation Result on MATLAB

36

Figure 4.3: Sample Input Text File (Partial View)

Figure 4.4: Generated Output File in Transmission Unit. (Partial View)

37

4.4 Compilation of the FPGA Design

Mentor Graphics was the first to combine single kernel simulator (SKS) technology with a

unified debug environment for Verilog, VHDL, and SystemC. The combination of industry-

leading native SKS performance with the best integrated debug and analysis environment

make ModelSim the simulator of choice for both ASIC and FPGA designs.

Screenshot of compilation summary Figure 4.5 shows successful compilaion of the project.

Figure 4.5 Result of Compilation on ModelSim

38

4.5 Analysis of FPGA Simulation Results

Each module of the FPGA design is simulated seperately by implementing testbench. The

project has also been simulated as a whole. In either simulaton, results have been found as

expected and satisfactory which proves the correctness and efficiency of the design.

Following sections describe simulation result for each module of the system.

To analyze FPGA simulation let us consider the string “hip hop happy” as input. This

string has total 13 characters and total 104 bits. Frequency of the characters with

corresponding ASCII[22] values are shown in Table 4.1.

Char Frequency ASCII

h 3 01101000

a 1 01100001

p 4 01110000

y 1 01101001

i 1 01010011

o 1 01100111

space 2 00100000

If ASCII values of the test string are considered for data transmission, then 104 bits have to

be sent. But two level compressions of the proposed method reduce total bits of the test

string to 34 bits.

4.5.1 Simulation of Bit-Stuffing Compression Module

Simulation of the input of 104 bits results in reductionof 13 bits as shown in Figure 4.6.

When ‘clk’ is on positive edge, data is loaded into this module. From timing diagram it can

be observed that output time is 11ns.1

Here original data is 104'h68697020686f70206861707079 and compressed output data is

91'h68d3c1068dfc1068c3c3879.

1 1 ns=10-9s

Table 4.1 Frequency Distribution and ASCII values of a Test String

39

4.5.2 Simulation of Character Counter

Character counter is a part of Huffman compression module. For the input on port

‘CHARACTER_IN’, counted frequency is shown on FREQUENT_OUT. The result of the

simulation matches with frequency distribution mentioned in Table 4.1. This proves

correctness of this module. Figure 4.7 shows the simulation results.

Figure 4.6 Simulation of Bit-stuffing Compression Module with 104 bits Input Data.

Figure 4.7 Simulation Result of Character Counter. Counted frequencies match with frequency
distribution mentioned in Table 4.1.

input
Compressed data

Counted Frequencies

40

4.5.3 Simulation of Frequency Sorting Module

This module sorts the character frequencies in ascending order. Input frequencies are given

at port ‘freq’ and sorted output is sent to ‘sorted’ port. Figure 4.8 shows the sorting result.

4.5.4 Simulation of Huffman Tree Generator

This module builds Huffman tree based on sorted frequency list. Basically a priority queue

has been implemented in this module with adder and sort modules. Generated tree is a

collection of nodes where each node has a size of 24 bits. Output is passed to ‘nodes’.

Figure 4.9 shows the simulation result of this module.

Figure 4.8 Simulation Result of Frequency Sorting Module.

Sorted frequencies

Unsorted

41

4.5.5 Simulation of Code Generator

It generates Huffman codes by traversing the input ‘nodes’. Generated codes are stored in

‘codes’ and length of each code is saved into ‘codeLen’. Figure 4.10 shows the simulation

result. From simulation it can be observed that first code is 7’h0f and its code length is 04.

According to the implementation, Huffman code is extracted from ‘code’ by copying the

number of bits equal to code length starting from LSB. So the Huffman code is ‘1111’ after

extracting from 7’h0f.

Figure 4.9 Simulation Result of Huffman Tree Generator

Figure 4.10 Simulation Result of Code Generator

Generated Huffman Tree

 Huffman Codes

42

4.5.6 Simulation of Coding Module

Coding module compresses the input string with generated Huffman codes. Compressed

data is stored in ‘compress’. Figure 4.11 shows the simulation result. It can be observed

from the simulation that compressed size 34 for original input size of 104 bits.

Simulation results of figure and 4.6 and 4.11 show that saving or memory shrinkage

percentage for current input data set is 67.30%.

4.5.7 Simulation of Hamming Encoding Module

Figure 4.12 shows the simulation results of Hamming Encoding module. It generates 58 bit

data as output.

Figure 4.11 Simulation of Coding Module

Compressed Data

43

4.5.8 Simulation of Hamming Decoding Module

Processing of received data in receiver unit begins with Hamming Decoding Module. Input

is received though ‘in’ port. This module detects and corrects single bit error in each

received code-word. If any error is found, ‘errorFound’ signal will be high to show which

received code-word has error. Error bit number is set high in ‘error_index’. It sends

corrected data to ‘out’ port.

For example, let’s consider there is no error in received data. For our current simulation

data set mentioned in Table 4.1, error free input to this module is

58'h34a5e0599802ccf.

So, all array indices of ‘errorFound’ and ‘errorIndex’ will be set to low. Output data is

34h0563ac3af which is a Huffman compressed data and equal to the output of Figure 4.11.

Simulation results shown in Figure 4.13 verify that.

Figure 4.12 Simulation of Hamming Encoding Module

Hamming Encoded Data

44

Again, let’s consider that there are 3 single bit errors in received data considering current

simulation data mentioned in Table 4.1. Assume erroneous input data with 3 single bit

errors— 58'h34b5e1599803ccf, where error-free data should be 58'h34a5e0599802ccf.

For error free input data, output data is 34h0563ac3af (Figure 4.13). This module can

correct single bit error in each Hamming (7, 4) code-word. So, this erroneous input data will

be corrected and ‘errorFound’ will be set high. Also ‘errorIndex’ will point to the bit

positions where error occurred. Even though there are 3 single bit errors in received data,

simulation results in Figure 4.14 show output is 34h0563ac3af which is the same output for

error-free data (Figure 4.13). So it corrects the errors in input data. This proves

effectiveness of this module.

Figure 4.13 Simulation of Hamming Decoder Module for Error Free Input Data

Figure 4.14 Simulation of Hamming Decoder Module for Erroneous Input Data

Hamming Decoded Data

No error found

Error Detection
Hamming Decoded Data

45

4.5.9 Simulation of Huffman Decompression Module

Hamming decoded compressed data will be taken as input ‘in’ for this module. Symbol list

from Huffman compression module — ‘chars’, Huffman code list ‘code’ and length of each

code ‘codeLen’ will be sent to this module as other inputs. For current data set for

simulation output is generated as 91'h68d3c1068dfc1068c3c3879. This output value is same

as the output value of Bit-stuffing compression value which proves the correctness of this

module. Figure 4.15 shows the simulation results.

4.5.10 Bit-stuffing Decompression Module

This module performs final operation on the received data and reconstructs original data as

output.It follows the reverse process of the bit compression module.

So, the input of 91 bits (‘in’) should generate original 104 bits back. Simulation shows that

the output of this module is 104'h68697020686f70206861707079 which is the original

data(ref. to Figure 4.6). So it verifies correctness and effectiveness of overall system. Figure

4.16 shows the simulation results.

Figure 4.15: Simulation Result of Huffman Decompression Module

Decompressed data

46

4.6 Error Correction Rate

To find the error correction rate of the implemented system, some random bits have been

changed intentionally in received encoded file. The proposed mechanism corrects error

almost 100% efficiently. Technically each input character is encoded into two (7, 4)

Hamming code-word. Each code-word can correct a single bit error. So if 25% of receiving

data get corrupted during transmission, implemented system can correct 100% of them.

Table 4.2 shows the result of error corrections of proposed system for an 8KB text data.

Table 4.2: Error Correction Rate of Received Data (800 bits)

Number

of Corrupted

Bits

Number

of Corrected

Bits

Error

Rate

Error

Correction

Rate

49 49 6.125 % 100 %

53 53 6.625 % 100 %

126 125 15.75 % 99.20 %

165 161 20.63 % 97.58 %

193 191 24.13% 98.86%

Figure 4.16: Simulation Result of Bit-stuffing Decompression Module

Decompressed data

47

4.7 Compression Ratio

Depending on the nature of the application there are various criteria to measure the

performance of a compression system. When measuring the performance, the main concern

would be the space efficiency. Following are some measurements used to evaluate the

performances of lossless algorithms.

Compression Ratio (CR): The ratio between the size of the compressed data and the size of

the original data.

 CR = (C2/C1) * 100% (1)

 C1= Original data size

 C2= Compressed data size

Compression Factor (CF): The inverse of the compression ratio. That is the ratio between

the size of the original data and the size of the compressed data.

 CF = 1/CR (2)

Saving Percentage (SP): Calculates the shrinkage of the source data as a percentage.

 SP = [(C1-C2)/C1] * 100% (3)

A closer examination of (1) and (3) reveals that as the compression ratio decreases, the

shrinkage of memory i.e. SP increases. All the above methods evaluate the effectiveness

of compression algorithms using data sizes. There are some other methods to evaluate the

performance of compression systems such as compression time, computational

complexity and probability distribution.

48

Figure 4.17 shows result of compression for different file size. Here X axis denotes file

number of test data and Y axis denotes file size in KB. Blue bar denotes input file size and

yellow bar denotes compressed file size.

Table 4.3 shows results of compression in terms of CR (1) and SP (3) for different file sizes.

File

Number

Input

File Size

(in bytes)

Compressed

File Size

(in bytes)

CR

(%)

SP

(%)

1 2977331 1825956 61.33 38.67

2 3221272 1700640 52.79 47.21

3 3506366 2127821 60.68 39.32

4 4052530 2642209 65.20 34.80

5 4722220 2895598 61.32 38.68

Figure 4.17: Result of Proposed 2 Level Compressions

Table 4.3: Result of Proposed Two Level Compression Method

49

4.8 Comparison with Other Compression Methods

Comparison of CR (1) and SP (3) between implemented methodology and related

algorithms are shown in Table 4.4.

Values obtained by all the algorithms listed in Table 4.4 imply that the proposed

methodology furnishes encouraging saving percentage. It shows lower compression ratio

and better saving percentage to the most of the compression techniques which have been

compared except LZW [25] which is a fairly newer compression scheme than Huffman

coding and has the potential for very high throughput in hardware implementations. The

difference between proposed technique and LZW in terms of saving percentage is

negligible. Moreover, this work presents a system which provides better approach for

reliable transmission of data by adding error correction mechanism.

 Huffman
[23]

RLE
[24]

Adaptive
Huffman

[24]

LZW
[25]

Shannon
Fano
[26]

LZOP
[27]

This
work

SP (%) 45.41 11.79 42.11 69.03 40.83 61.58 67.30

CR (%) 54.59 88.21 57.89 30.97 59.17 38.42 32.70

Table 4.4: Comparison of Saving Percentage (SP) and Compression Ratio (CR) between
Proposed Method and Other Compression Techniques

50

CHAPTER 5

Conclusion

5.1 Conclusion

Secured transmission and compression of data is important for most business and even

home computer users. Researchers around the world are conducting research to make the

transmission of data more reliable, cost effective and less time consuming. Compression

plays a vital role to reduce bandwidth during transmission which results in reduction of time

and cost. On the other hand, the adoption of FPGA technology continues to increase as

higher-level tools evolve to deliver the benefits of reprogrammable silicon to engineers and

scientists at all levels of expertise. FPGA based implementation further improves the system

performance in terms of security, reliability, speed, cost etc. The proposed FPGA based

system is a blend of bit stuffing, Huffman and Hamming algorithm for high speed data

compression and secured transmission. The proper functionality of the design has been

tested by simulating the design using MATLAB environment. Results of FPGA simulations

verify correctness and effectiveness of the overall system. The simulation results show very

impressive results in terms of storage savings and error correction capability. The results

obtained by the proposed system are compared with the existing data compression

techniques in terms of compression ratio and saving percentage. The results of comparison

imply that proposed system has encouraging saving percentage of memory. Moreover,

implemented system can achieve 100% error correction rate even if 25% of transmitting

data get corrupted during transmission through a noisy medium. The proposed two level

compression processes can achieve saving percentage of 67.30% based on input data. Since

this implementation is written in Verilog HDL, it is fully portable to a variety of hardware

architectures. As FPGA technology improves, the performance of the hardware

implementation of the proposed system will improve without the need to change the design.

51

5.2 Future Works

The system has been designed using Verilog and simulated in ModelSim as a FPGA

simulator. Due to time constraint, the design was not implemented on actual FPGA

hardware which can be considered as future work of this project. This system can be

further secured by adding symmetric or asymmetric cryptographic module which can

also be considered as its future expansion.

52

References

[1] Hofstee P., “The Big Deal about Big Data.” In Proceedings of the 8th IEEE International

Conference on Networking, Architecture, and Storage, 2013.

[2] Carlos A. J., Carlos F. A., Oscar M. R. and Javier C., “FPGA implementation of a Huffman

decoder for high speed seismic data decompression”, IEEE Data Compression

Conference(DCC), 2014, Snowbird, UT, USA

[3] Smith S. V., “Big Data creates big industry for storing data”. marketplace.org[Online].

Available at: http://www.marketplace.org/topics/business/big-data-creates-big-industry-

storing-data [Accessed 7 Oct. 2017]

[4] Chakraborty R. S. and Bhunia S., “HARPOON: An obfuscation based SoC design

methodology for hardware protection”. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493-1502, 2009

[5] Maity S. P., Kundu M. K.., “Distortion free image-in-image communication with

implementation in FPGA”. Int. J. Electron. Commun. 67 (I), pp. 438–447, 2013

[6] Wang W. and Zhang W., “Adaptive Spatial Modulation Using Huffman Coding”. IEEE

Global Communications Conference (GLOBECOM), 2016.

[7] Sorokin A. and Makushenko E., “Identification of JPEG files fragments on digital media

using binary patterns based on Huffman code table”. IEEE 3rd International Conference on

Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC),

2016.

[8] Djusdek D., Studiawan H. and Ahmad T., “Adaptive image compression using Adaptive

Huffman and LZW”. IEEE International Conference on Information & Communication

Technology and Systems (ICTS), 2016.

[9] Potthuri S., Shankar T. and Rajesh A., “Cluster head selection using Huffman coding

algorithm for Wireless Sensor Networks”. IEEE International Conference on Innovations in

Information, Embedded and Communication Systems (ICIIECS), 2015.

[10] Navarro G. and Ordonez A., “Compressing Huffman Models on Large Alphabets”. Data

Compression Conference, Snowbird, UT, USA, 2013.

[11] Kim D., Song J., Kim D. and Lee S., “Fixed cycle Huffman decoding instruction for multi-

format decoder”. IEEE International Conference on Consumer Electronics (ICCE). Las

Vegas, NV, USA, 2014.

[12] Marti D., Jamsed K., and Agarwal K., “FPGA-Based Application Acceleration: Case Study

with GZIP Compression/Decompression Streaming Engine”. International Conference on

Computer-Aided Design (ICCAD), Nov 2013.

53

[13] Dandalis N., and Prasanna V., "Configuration compression for FPGA-based embedded

systems", ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2001

[14] Jamro M.W.E., Wiatr K., "FPGA implementation of the dynamic Huffman

encoder", Proceedings of IFAC Workshop on Programmable Devices and Embedded Systems,

2006

[15] Shcherbakov I., Weis C., and Wehn N., "A High-Performance FPGA-Based Implementation

of the LZSS Compression Algorithm", Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW) 2012 IEEE 26th International, pp. 449-453, 2012

[16] Dias W., David Moreno E. and Palmeira I., “A new code compression algorithm and its

decompressor in FPGA-based hardware”. IEEE 26th Symposium on Integrated Circuits and

Systems Design (SBCCI), 2013

[17] Rigler, S., Bishop, W. and Kennings, A., “FPGA-Based Lossless Data Compression using

Huffman and LZ77 Algorithms”. Canadian Conference on Electrical and Computer

Engineering, 2007.

[18] Khalid Sayood, Introduction to Data Compression , San Francisco, USA: Elsevier Inc., 2006

[19] Martha R., Quispe Ayala , Krista Asalde-Alvarez , Avid Roman-Gonzalez, “Image

Classification Using Data Compression Techniques”, IEEE 26-th Convention of Electrical

and Electronics Engineers, Israel, 2010

[20] Huffman D., "A method for the construction of minimum-redundancy codes", Proceedings of

the Institute of Radio Engineers, vol. 40, no. 9, pp. 1098-1101, September 1952

[21] Hamming, R. W., “Error Detecting and Error Correcting Codes”. Bell SystemTech. Jour., 29

pp. 147–160, 1950.

[22] ASCII, Wikipedia, [Online]. Available:http://en.wikipedia.org/wiki/ASCII, accessed on May

2017.

[23] Kodabagi M.M., Jerabandi M.V, and Gadagin N., “Multilevel Security and Compression of

Text Datausing Bit Stuffing and Huffman Coding”. International Conference on Applied and

Theoretical Computing and Communication Technology (iCATccT), 2015

[24] Kodituwakku S. R., Amarasinghe U. S., “Comparison of Lossless Data Compression

Algorithms for Text Data”, Indian Journal of Computer Science and Engineering, Vol 1 No 4

416-425, ISSN : 0976-5166, 2015.

54

[25] Terry W., "A Technique for High-Performance Data Compression". Computer. 17 (6): 8–

19. DOI:10.1109/MC.1984.1659158,
[26] Fano, R. M., "The transmission of information". Technical Report No. 65. Cambridge (Mass.),

USA: Research Laboratory of Electronics at MIT, 1949.

[27] Comparison of compression,[Online]. Available: https://binfalse.de/2011/04/04/comparison-

of-compression/, accessed on September, 2017.

https://en.wikipedia.org/wiki/Terry_Welch
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FMC.1984.1659158
https://en.wikipedia.org/wiki/Research_Laboratory_of_Electronics_at_MIT
https://binfalse.de/2011/04/04/comparison-of-compression/
https://binfalse.de/2011/04/04/comparison-of-compression/

55

Outcome of this Research Work

The following paper based on the research work of this project has been accepted in 3rd

International Conference on Electrical Information and Communication Technology

Rakib M. and Ali L., “Design of an FPGA Based System for High Speed Data Compression

and Secured Transmission”, IEEE 3rd International Conference on Electrical Information

and Communication Technology (EICT), December 2017, KUET, Khulna.

