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Abstract

In view of recent increase of brain computer interface (BCI) based applications, the

importance of efficient classification of various mental tasks has increased prodi-

giously now-a-days. For effective classification purpose, efficient feature extraction

scheme is necessary. Most of the reported algorithms are performed on the EEG

signals or the processed EEG signals taken from various channels while the inter-

channel relationship has not been utilized. Depending on the nature of the mental

tasks, different spatial locations of brain become more actuated compare to other

locations. It is expected that the correlation obtained from different combination

of channels will be different for different mental tasks which can be exploited to

extract distinctive feature. To corroborate this idea, in the proposed method, a

feature extraction scheme based on cross-correlation among data (or decomposed

data) obtained from various channels is proposed. Instead of directly utilizing EEG

signal, various decomposition techniques, such as empirical mode decomposition

(EMD), spectral band division, wavelet decomposition (WD) and wavelet packet

decomposition (WPD) are employed on a test EEG signal obtained from a channel.

Different well defined narrow frequency bands , corresponding to state of vigilance,

are also investigated for feature extraction. Since EEG is a non-stationary signal,

EMD, WD and WPD have the potential to perform better than the conventional

time-frequency analysis method. Correlation coefficients are extracted from inter-

channel pre-processed EEG signal. At the same time, different statistical features

of decomposed EEG signals are also obtained. Finally, the feature matrix is formed

utilizing inter-channel features and intra-channel features (statistical features) of the

decomposed EEG signals. Different kernels of support vector machine (SVM) clas-

sifier are used to carry out classification result. For the purpose of demonstrating

classification performance, ten different combinations of five different mental tasks,

namely geometrical figure rotation, mathematical multiplication, mental letter com-

posing, visual counting, base-line resting obtained from a publicly available dataset

are utilized. It is found that the proposed scheme can classify mental tasks with a

very high level of accuracy compared to some existing methods.
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Chapter 1

Introduction

Classification of various mental tasks plays an essential role in various applications

of brain-computer interface (BCI). Mental task is a specific type of human intentions

or thoughts based task in which subjects are instructed to imagine themselves per-

forming a specific arithmetic task (such as mathematical multiplication or counting

task) or a particular motor imagery (MI) task (such as a hand or foot movement)

without an overt motor output. There are various acquisition techniques for cap-

turing brain activities while performing mental tasks in BCI system. Among these

techniques, electroencephalogram (EEG) is one of the most promising tools, which

is widely used now-a-days in the study of brain science, neural engineering and re-

habilitation [1]. It is the most studied measure of potential for noninvasive BCI

designs, mainly due to its excellent temporal resolution, non-invasiveness, usability,

and low set-up costs [2–4]. In view of providing a direct communication interface

between a brain and an external device, BCIs utilize various channels placed in the

skull. Brain activities produce electrical signals detectable on the scalp, or within

the brain. BCIs translate these signals into outputs that allow total lock-in patients

suffering from brain or spinal cord injury to communicate without the participation

of peripheral nerves and muscles via thoughts alone [5], [6]. One of the main chal-

lenges of BCI systems is to correctly and efficiently identify different EEG signals

corresponding to different mental tasks using appropriate classification schemes. For

the purpose of effectively classifying various mental tasks corresponding to a BCI

system, in general, features are extracted from EEG signals obtained from various

channels. Therefore, distinctive feature extraction utilizing EEG signal correspond-

ing to various mental tasks can make the classification process more accurate and

faster.

1
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In this Chapter, a brief description of various feature extraction methods of

mental task classification utilizing EEG signal is presented. It begins with a brief

introduction to the acquisition technique of EEG signal. This Chapter presents

the motivation of the thesis by providing the past and current research scenarios

in the use of various types of feature extraction and classification techniques. The

objectives and organization of the thesis are finally presented at the end.

1.1 EEG

An EEG is a process used to evaluate the electrical activity in the brain. Brain cells

communicate with each other through electrical impulses. An EEG can be used to

help detecting this activity. During EEG recordings, small sensors are attached to

the scalp to pick up the electrical signals produced when brain cells send messages

to each other. These signals are recorded by a machine and can be utilized to

establish communication between man and machine. Since this recording process

is non-invasive i.e. the electrode only picks up electric signal from the brain and

does not affect the brain. Therefore, this process is totally painless and harmless.

Despite limited spatial resolution, EEG continues to be a valuable tool for research

and diagnosis, especially when millisecond-range temporal resolution is required.

1.1.1 Source of EEG Signal

EEG is a graphic representation of the difference in voltage between two different

cerebral locations plotted over time. The scalp EEG signal generated by cerebral

neurons is modified by electrical conductive properties of the tissues between the

electrical source and the recording electrode on the scalp, conductive properties of

the electrode itself, as well as the orientation of the cortical generator to the record-

ing electrode. Because of the process of current flow through the tissues between

the electrical generator and the recording electrode which is known as volume con-

duction, EEG provides a two-dimensional projection of our brain. It detects the

summed ionic currents of thousands of pyramidal neurons beneath each of the 16

and 25 individual macro electrodes, and reports them as voltage differences across

low resistance extracellular space. Specifically, the potentials recorded by the macro-

electrodes on the skin of the skull are primarily generated by extracellular current
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Figure 1.1: EEG electrodes position on the scalp in 10-20 EEG recording system

flow of synaptic potentials in pyramidal cells. Action potentials of the neurons

are usually asynchronous and too fast-moving to generate detectable potentials on

the skin’s surface. As a result, brain cells other than pyramidal neurons such as

interneurons and glial cells make relatively little contribution to skin potentials be-

cause, unlike pyramidal neurons, these cells are neither oriented in parallel to one

another nor do their dendrites run perpendicular to the cortical surface. In contrast,

pyramidal neurons run parallel to one another with large dendritic branches that

run perpendicular to the cortical surface. Since voltage fields fall off with the square

of distance, activity from deep sources is more difficult to detect than currents near

the skull. The EEG waves obtained from the scalp electrodes show oscillations at

different frequencies. Such oscillations at a variety of frequencies are associated with

different states of brain functioning involving different parts of our brain. As a re-

sult, such oscillations depict synchronized activity over different networks of neurons

which are known as neuronal networks. From such neuronal networks some of these

oscillations are understood, while many others are not.

1.1.2 10-20 Standard EEG System

The international 10-20 system of electrode placement is the most widely used

method to describe the location of scalp electrodes during an EEG recording or

experiment. The 10-20 system is based on the relationship between the location of

an electrode and the underlying area of cerebral cortex. Each site has a letter (to

identify the lobe) and a number or another letter to identify the hemisphere loca-
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tion. The positions of the electrodes of the 10-20 system are shown in Fig. 1.1 [7].

This method was developed to ensure standardized reproducibility so that a sub-

jects studies could be compared over time and subjects could be compared to each

other. The letters F, T, C, P and O stand for frontal, temporal, central, parietal,

and occipital lobes, respectively. Even numbers (2, 4, 6, and 8) refer to the right

hemisphere and odd numbers (1, 3, 5 and 7) refer to the left hemisphere. “Z”

refers to an electrode placed on the mid line. The smaller the number, the closer

the position to the mid line. “Fp” stands for Front polar. Two anatomical land

marks are used for the essential positioning of the EEG electrodes: first, the nasion

which is the point between the forehead and the nose; second, the inion which is

the lowest point of the skull from the back of the head and is normally indicated by

a prominent bump. The “10” and “20” (10-20 system) refer to the 10% and 20%

inter electrode distance. When recording a more detailed EEG with more electrodes,

extra electrodes are added utilizing the spaces in-between the existing 10-20 system.

This new electrode-naming-system is more complicated giving rise to the Modified

Combinatorial Nomenclature (MCN). This MCN system uses 1, 3, 5, 7, 9 for the

left hemisphere which represents 10%, 20%, 30%, 40%, 50% of the inion-to-nasion

distance respectively. 2, 4, 6, 8, 10 are used to represent the right hemisphere. The

introduction of extra letters allows the naming of extra electrode sites. These new

letters do not necessarily refer to an area on the underlying cerebral cortex.

1.2 Literature Review

EEG signal is used extensively now-a-days by the researchers to handle different

applications of BCI. EEG-based BCI systems employ electrical activity of brain to

classify different EEG signals corresponding to various mental tasks precisely. Most

popular way to classify the signals effectively is to acquire discriminative features

from that signal. As a matter of fact, different schemes to extract distinctive fea-

tures are available in literature. Several researchers concentrate in various MI task

classification which is a special type of mental tasks. For example, in [8], a bayesian

framework is proposed in order to find frequency band which can substantially seg-

regate the feature vectors corresponding to two classes of MI tasks (right hand or

right foot movement). However, the method offers moderate classification perfor-
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mance. With the ease of availability of high quality low cost EEG leads, one major

concern now-a-days is the huge amount of data to be handled in case of multi-lead

EEG signal analysis. For the purpose of EEG channel reduction for MI task, vari-

ous types of spatial filters are widely employed, where regularized parameters need

to be chosen manually. Choosing lesser pairs of channels reduce feature size and

computation time effectively. In [9], the task of channel reduction is performed by

using sparse spatial filter optimization method, where manual intervention is re-

quired for obtaining some parameters. In [10], the common spatial pattern (CSP)

with generic learning is proposed for EEG channel reduction where optimal selection

of regularized parameters needs further investigation.

Besides motor imagery type mental tasks, several researchers concentrate in other

types of mental tasks, such as geometrical figure rotation, mathematical multiplica-

tion, mental letter composing, visual counting, and baseline-resting. For example,

in [11], spectral power and asymmetry ratio based feature extraction scheme is pro-

posed where an additional band (24− 37 Hz) is used along with conventional lower

spectral bands namely delta (< 4 Hz), theta (4− 7 Hz), alpha (8− 13 Hz) and beta

(14 − 20 Hz) for the classification of these five mental tasks. This method offers

comparatively satisfactory classification performance but lacks consistency for all

cases. In [12], similar feature extraction scheme used in [11] is proposed, however,

the difference is that it utilizes an additional high frequency band (40− 100 Hz) to

obtain those features. In [13], a dictionary consisting of power spectral density and

common spatial pattern (CSP) algorithm is introduced to classify various mental

tasks.

Autoregressive (AR) model can be used to extract features for classification

of mental tasks. For example, in [14], a feature extraction scheme based on AR

modelling is proposed where sixth order AR system is considered to extract feature.

Moreover, in [15], multivariate AR models are taken into consideration and four

different representations of AR coefficients are tested to classify mental task. In [16],

feature extraction scheme based on sparse AR model are investigated, which involves

complex computation to exclude AR coefficients that are useless in the prediction

stage. In the feature extraction for EEG signals, [17] extend the usual AR models

for feature extraction. The extension model is an AR with exogenous input (ARX)
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model for combined filtering and feature extraction. In [18], a feature extraction

method based on generalized Higuchi fractal dimension spectrum along with AR

parameters is proposed.

Wavelet transform is also widely used in extracting EEG features [19], [20] in

which EEG signals are decomposed by wavelet transform to calculate approximation

and detail coefficients. Approximate entropy (ApEn) is a statistical parameter that

measures the predictability of the current amplitude values of a physiological signal

based on its previous amplitude values. A novel feature extraction method based

on multi-wavelet transform and ApEn is proposed by [21]. The proposed method

uses ApEn features derived from multiwavelet transform and combines with an

artificial neural network to classify the EEG signals. Multiple kernel learning SVM

based classification scheme is investigated in [22], where wavelet packet entropy and

Granger causality is used for feature extraction.

Considering the non-stationary nature of EEG signal, empirical mode decompo-

sition (EMD) is also applied for EEG analysis in different applications [23], [24], [25] .

Recently in [23], the potential of EMD analysis in MI data handling is discussed with

a note that relevant features must be carefully selected for getting better accuracy.

In [24], empirical mode decomposition based classification method is proposed where

feature selection method is utilized for better classification performance. Moreover,

MI EEG signal classification scheme based on entropy of intrinsic mode function is

reported in [25].

In [26], stockwell transform based algorithm is proposed and mean square root

of standard deviation of signal after transformation is utilized as distinctive feature

for mental task classification. A parametric feature extraction and classification

strategy for brain-computer interfacing [27] use fast Fourier transform as feature

extraction method. In [6], cross-correlation based feature extraction scheme is in-

troduced where cross correlation is computed between two channels keeping one of

them always a fixed reference channel. Since one channel is kept fixed, the effect of

considering cross correlation between all channels on overall feature quality has not

been investigated. Moreover, unique choice of a fixed channel depends on various

reasoning.



7

1.3 Motivation

In EEG based BCI system, EEG recording is needed to capture the event of per-

forming mental task, which can be used for further diagnosis and classification.

EEG signals vary in time and frequency domain simultaneously, so instead of di-

rectly utilizing raw EEG data, time-frequency analysis can extract time-frequency

information more precisely. Since, EEG is a non-stationary signal, EMD, wavelet

decomposition (WD), wavelet packet decomposition (WPD) have the potential to

perform better than the conventional time-frequency analysis method [28–31]. How-

ever, most of the reported algorithms are performed on the EEG signals or the

processed EEG signals taken from various channels while the inter-channel relation-

ship is ignored. It is considered that for different types of tasks, different channels

corresponding to different parts of the brain are actuated. Measuring inter-channel

relationship in some efficient spectro-temporal domains may play a significant role

to cover the spatial and temporal relationship between different channels during var-

ious mental tasks. Thus, development of a proficient method capable of detecting

and classifying different types of mental tasks utilizing the inter-channel relationship

is still undiscovered and exploring this is the main motivation of this research.

1.4 Objectives and Scope

The objectives and scope of this thesis are:

1. To quantify inter-channel relationship in terms of statistical measure like cor-

relation coefficient.

2. To obtain different statistical features in EMD, spectral band and wavelet

domain.

3. To derive an efficient feature extraction scheme obtained by measuring inter-

channel relationship in EMD, spectral band and wavelet domain.

4. To perform test validation of the proposed method on a publicly available

mental task EEG dataset using different classifiers.

The outcome of this thesis is an efficient method of mental task classification from

EEG signal exploiting inter-channel relationship in EMD, spectral band and wavelet
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domain. This can be utilized to develop EEG-based BCI systems in assisting, aug-

menting, and repairing human cognitive or sensory-motor functions, which play a

significant role in the treatment of autism, depression, mental disorder etc.

1.5 Organization of the Thesis

In the first Chapter, a brief introduction to BCI technology and its acquisition

technique utilizing EEG signal is presented. Moreover, it presents the motivation

and objectives of the thesis by providing the past and current research scenarios in

the use of various types of feature extraction and classification techniques. The rest

of the thesis is organized as follows

In Chapter 2, a feature extraction scheme based on inter-channel relationship

of intrinsic mode function of EEG signal corresponding to various mental tasks is

proposed. The EMD technique is employed on a test EEG signal obtained from a

channel, which provides a number of intrinsic mode functions (IMFs) and correla-

tion coefficient extracted from inter-channel IMF data, referred to as inter-IMFCC

in this paper, is computed for the selected IMF. At the same time, different statisti-

cal features are also obtained from each IMF. Finally, the feature matrix is formed

utilizing inter-channel features (inter-IMFCC) and intra-channel features (statistical

features) of the selected IMFs of EEG signal. Different kernels of support vector

machine (SVM) classifier are used to carry out classification result. For the pur-

pose of demonstrating classification performance, ten different combinations of five

different mental tasks namely geometrical figure rotation, mathematical multiplica-

tion, mental letter composing, visual counting, and baseline-resting obtained from

a publicly available dataset is utilized.

In Chapter 3, mental task classification scheme utilizing correlation coefficient

extracted from inter-channel band limited signals is presented. Instead of directly

utilizing EEG signal, different frequency bands , namely delta (< 4 Hz), theta (4−7

Hz), alpha (8 − 13 Hz), beta (14 − 20 Hz), gamma (24 − 37 Hz) and 40 − 100Hz

band are investigated to extract correlation coefficient from inter-channel data of a

selected band, which is referred to as inter-SBCC. Moreover, different intra-channel

statistical features are also obtained from each band-limited signal. Comparative

performance analysis is also presented between proposed method and few recent
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papers from the literature using the same dataset and same classifier.

In Chapter 4, an efficient scheme of extracting features from EEG signal is pro-

posed for mental task classification based on inter-channel relationship in wavelet

domain. It is shown that use of wavelet domain inter-channel relationship can drasti-

cally improve the classification performance obtained by conventional wavelet statis-

tics. Both multi-level wavelet decomposition and node reconstruction are utilized

for proposed inter-channel correlation features and intra-channel statistical features

extraction. Detail experimental results are presented considering the same dataset

and same classifier.

Chapter 5 summarizes the outcome of this thesis with some concluding remarks

and possible future works.



Chapter 2

Mental Task Classification Scheme
Utilizing Correlation Coefficient
Extracted from Inter-channel Intrinsic
Mode Function

In this Chapter, a feature extraction scheme based on inter-channel relationship of

intrinsic mode function (IMF) of EEG signal corresponding to various mental tasks

is proposed. Instead of directly dealing with temporal EEG data, it is expected that

features extracted from decomposed EEG data will provide more consistent charac-

teristics . In particular, in this Chapter, widely used empirical mode decomposition

(EMD) is utilized to obtain IMFs and first three IMFs are selected. Each IMF is

utilized to compute the correlation coefficient from inter-channel IMF data, referred

to as inter-IMFCC. Moreover, in the proposed method, unlike [6], only the chan-

nel information of the test trial is utilized to extract correlation coefficient and no

previously defined reference signal is required for that purpose. It is also observed

whether the classification accuracy improves if different statistical features obtained

from respective IMF are used along with inter-IMFCC. SVM classifier is used to

carry out classification process. The effect of the variation of number of channels

and that of using different kernels are investigated. Simulation results are reported

for a publicly available EEG dataset on various mental tasks. It is observed that

the proposed algorithm can classify various mental tasks with a satisfactory level of

performance. The detail results of this Chapter is reported in [32].

10
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2.1 Data Acquisition

A widely used EEG data set collected by Keirn and Aunon is utilized [33] in this

Chapter. EEG signals are acquired from the locations C3, C4, P3, P4, O1, and

O2 which are denoted as the 10 − 20 international system of electrode placement.

Measurements are made considering A1 and A2 as reference. Data are band pass

filtered using an analog filter with band limit of 0.1 − 100 Hz and sampled at 250

Hz with 12 bit quantizer. The recording is carried out for ten seconds during each

session. EEG signals from seven subjects performing five different mental tasks,

namely geometrical figure rotation (R), mathematical multiplication (M), mental

letter composing (L), visual counting (C), and baseline-resting (B) are investigated.

For notational convenience, hereafter, each task is abbreviated with an alphabet as

shown in the parentheses. However, data obtained from three subjects contain fewer

than ten sessions or have some recording errors. Hence, like some other existing

research works [11], in this Chapter, data from four subjects, each having ten or

more sessions, are taken into consideration.

For the purpose of analysis of each ten second session, a number of frames with

shorter time interval are investigated as EEG signal is assumed to be non-stationary.

In this case, one second frame duration is considered with 0.5 second frame shift (i.e.

50% overlap between successive frames) [12], which provides a reasonable number

of samples (250 samples) in each frame.

2.2 Proposed Method

The proposed mental task classification scheme can be divided into four major steps:

empirical mode decomposition, inter-channel relation, feature extraction and classi-

fication. These steps are described in detail in the following subsections.

2.2.1 Empirical mode decomposition

Due to random nature of recordings of EEG data, it is very difficult to obtain dis-

criminative characteristic from the time domain EEG data. Therefore, instead of

directly utilizing EEG data, it may be easier to extract distinctive characteristic if

decomposition is imposed on EEG data. Empirical mode decomposition is found
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very effective as it decomposes the signals in particular patterns preserving the orig-

inality of the signal. EMD is intuitive and adaptive, with intrinsic mode functions

(IMF) directly derived from the signal under test without changing their domains.

Moreover, each IMF contains information about how the frequency of the original

signal changes in time. In Fig. 2.1, a sample EEG signal and it’s four IMFs ob-

tained from counting task is plotted. It is observed that the four IMFs, obtained

after employing EMD on the test EEG signal, are lesser irregular and complex in

nature than the original signal and have particular patterns. As a result, it is ex-

pected that classification performance will improve if IMFs are utilized to obtain

distinctive features instead of main signal.
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Figure 2.1: EEG signal and it’s IMFs
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An IMF can be defined as a function which has either equal number of maxima

and minima or the difference between them is at most one. Moreover, the mean

value of the envelope defined by the local maxima and the local minima is zero. In

what follows, a brief description of obtaining IMFs by employing EMD on the EEG

signal is described.

First, all the local maxima points of EEG data yi, obtained from channel i, are

connected to define the upper envelope and all the local minima points are connected

to define the lower envelope. The new signal h1[n] is reconstructed as

h1[n] = yi[n]− µ1, n = 1, 2, 3, ....., N, (2.1)

where µ1 is the mean value of the envelopes and N is the number of samples of EEG

signal, yi. The whole process is iterated w times until an IMF signal is generated

according to the definition. The first IMF, u1 is defined by

u1[n] = hw[n] and hw[n] = hw−1[n]− µw, (2.2)

where µw is the mean value of the envelopes at w-th iteration. The residue signal is

found by subtracting the constructed IMF from the main signal,i.e.,

r1[n] = yi[n]− u1[n]. (2.3)

This residue signal is considered as the main signal to estimate the next IMF. The

process continues until the residue signal is either a signal consisting of a single

maxima or minima or a constant value. Finally, L IMFs and a residue signal are

generated after performing the whole decomposition process. For L level of decom-

position, yi[n] can be reconstructed as

yi[n] =
L∑

m=1

um[n] + rL[n], n = 1, 2, 3, ....., N. (2.4)

Here u1, u2, ....., uL represent the IMFs.

In the proposed method, it is observed that the number of IMFs that can be

extracted considering any frame is four or more. It is expected that higher order

IMFs which contain low frequency information may not be necessarily required while

mental task is evaluated. Alternatively, it is expected to find more distinguishable

characteristics in the IMFs that contains relatively high frequency information. As
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shown in Fig. 2.1(e), it is clearly observed that fourth IMF contains very low fre-

quency information. Considering all these facts, for the sake of consistency, each

channel data of a given frame is decomposed into only three IMFs. However, effect

of varying the number of IMFs on the classification performance is delineated next

in Sec. 2.3.1.

2.2.2 Inter-channel relation

In general, it is considered that for different types of tasks, different spatial locations

of brain, such as central, parietal or occipital are stimulated. It is expected that

data obtained from locations of the brain that are highly stimulated due to a specific

type of task will be less correlated with data obtained from other less stimulated

locations. For example, tasks involving visual effects are most likely to stimulate

occipital regions predominantly. Therefore, EEG data obtained from the channels

located in the occipital region will be significantly different from the data obtained

from other less stimulated regions. Measuring inter-channel relationship may play

a significant role to cover this spatial and temporal relationship between different

channels for a particular type of task. In the proposed method, correlation coefficient

is utilized to measure inter-channel relationship.

Correlation coefficient is a kind of statistical measure to quantify relationship

between two or more signals. In this Chapter, it is utilized as a measuring tool to

obtain inter-channel correlation of i-th and j-th channel. Instead of directly using

EEG data, correlation coefficient is obtained from the m-th IMF, um decomposed

from EEG signal. The correlation coefficient extracted from inter-channel IMF data

is referred to as inter-IMFCC in this Chapter. The inter-IMFCC Re(i, j) obtained

from i-th and j-th channel can be estimated as

Re(i, j) =
Ce(i, j)√

Ce(i, i)Ce(j, j)
, (2.5)

where Ce(i, j) is the (i, j)-th component of the covariance matrix Ce of the i-th and

j-th channel IMFs u
(i)
m and u

(j)
m , each consists of N samples. It is expressed as

Ce =

[
cov
〈
u
(i)
m , u

(i)
m

〉
cov
〈
u
(i)
m , u

(j)
m

〉
cov
〈
u
(j)
m , u

(i)
m

〉
cov
〈
u
(j)
m , u

(j)
m

〉] . (2.6)

The covariance of u
(i)
m and u

(j)
m denoted by cov

〈
u
(i)
m , u

(j)
m

〉
is calculated considering
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the following formula

cov
〈
u(i)m , u

(j)
m

〉
=

1

N − 1

N∑
n=1

(u(i)m [n]− µi)?(u(j)m [n]− µj). (2.7)

Here µi and µj indicate the mean of IMF data obtained from i-th and j-th chan-

nels, respectively and ? denotes the complex conjugate. In the proposed method,

all possible pairs of i-th and j-th channels are taken into consideration to obtain

inter-IMFCC which is expected to provide maximum utilization of channel informa-

tion. However, effect of choosing lesser pairs of channels are also investigated and

presented in Sec. 2.3.4.

One of the major advantages of utilizing inter-IMFCC as feature is that it’s

values are bounded , which is |Re(i, j)| < 1. If the IMF data obtained from the

channels are same, inter-IMFCC is one, otherwise if there is no relationship, it is

zero. To investigate the differentiating quality of inter-IMFCC as feature, a sample

experiment considering multiplication and rotation task is performed. All fifteen

different combination of six channels denoted as C3-C4, C3-P3, C3-P4 etc. are

universally taken into consideration to measure inter-IMFCC. In Fig. 2.2, the box

plot corresponding to inter-IMFCC obtained for fifteen different combinations of

channels is presented. The boxplot indicates various statistical information, such

as median, 25th and 75th percentile, and outliers of inter-IMFCC. There are thirty

boxplots in each subfigure, each boxplot represents inter-IMFCC measured from a

particular combination of channel for a particular type of task performed by Subject

1. In comparison to the boxplots presented in Fig. 2.2(a)-2.2(c), the presence of

outliers in boxplot presented in Fig. 2.2(d) is much higher. As discussed before,

higher order IMF contains very low frequency information which is less relevant to

mental task considered here and hence poor distinctive features are expected to be

extracted if 4-th IMF is used. This fact is also reflected in boxplot presented in

Fig. 2.2(d). Therefore, in what follows, our discussions are restricted only for the

first three IMFs.

It is observed that the values of inter-IMFCCs obtained for three combination

of channels, namely C4-O1, P4-O1 and O1-O2 are found significantly higher in case

of multiplication task than that in case of rotation task. It is to be noted that

for these three combinations, O1 is considered as the reference channel obtained

from left hemisphere and other non-reference channels, namely C4, P4 and O2,
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Figure 2.2: Inter-IMFCC obtained from different IMFs of Subject 1.

are from right hemisphere. One possible reason behind this observation is that in

case of rotation task, O1 channel may get more stimulated than other channels due

to the fact that in rotation task, visually observed objects are required to rotate

around their axis mentally. As a result, data obtained from O1 channel is less

correlated with data obtained from other channels, specially the channels located

in right hemisphere in case of rotation task. This observation corroborates the

hypothesis that during performing a particular type of task if any location of the

brain becomes more excited than other locations, data obtained from stimulated

location will be significantly different from data obtained from comparatively less

stimulated locations resulting lower inter-IMFCC. Moreover, it is also found that

inter-IMFCC values are comparatively higher in case of multiplication task than

that obtained in case of rotation task. It is expected that being an arithmetic task,

multiplication involves more complexity in comparison to rotation task. As a result,

all locations of brain get more excited while performing multiplication task than

rotation task, which in turn leads to more correlation between channels in case

of multiplication task. However, location of stimulation may vary from person to
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person depending on the nature of task.

2.2.3 Feature extraction

In the proposed method, for the purpose of feature extraction, inter-IMFCCs are

utilized to exploit the relationship among various channels. Moreover, statistical

parameters, such as root mean square(RMS), standard deviation and entropy are

also included in the feature vector to represent statistical measure of IMF data

obtained from various channels. RMS depicts statistical measure of numerical values

of varying quantity of the data obtained from channel i of corresponding IMF. For

IMF data um consisting of N samples, RMS can be expressed as

rms(u(i)m ) =

√√√√ 1

N

N∑
n=1

u
(i)
m [n]2, n = 1, 2, ..., N. (2.8)

To measure the dispersion of the IMF data around it’s mean value µi, standard

deviation is proposed as a distinctive feature. Standard deviation of IMF data u
(i)
m

obtained from channel i is given by

std(u(i)m ) =

√√√√ 1

N

N∑
n=1

(u
(i)
m [n]− µi)2, n = 1, 2, ..., N. (2.9)

For the purpose of measuring uncertainty of the IMF data u
(i)
m , entropy is introduced

in the feature vector. Entropy is a statistical measure of randomness that is defined

as

ent(u(i)m ) = −
N∑
r=0

(p
〈
u(i)m [r]

〉
× log2(p

〈
u(i)m [r]

〉
)), (2.10)

where p
〈
u
(i)
m [r]

〉
indicates the probability of occurrence of a particular value u

(i)
m [r]

of IMF data u
(i)
m of i-th channel and is denoted by

p
〈
u(i)m [r]

〉
= nr/N. (2.11)

nr indicates the number of occurrence of u
(i)
m [r] among the N number of samples of

u
(i)
m , i.e.

∑
nr = N .

In brief, for the purpose of feature extraction, at first, the raw EEG signal is

preprocessed with a 60 Hz notch filter. After that, the eeg data corresponding to

a channel is decomposed utilizing empirical mode decomposition where from each

channel data three IMFs are extracted. Finally, the feature vector is formed utilizing
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inter-IMFCC and statistical parameters of IMFs, such as rms, standard deviation

and entropy obtained from each channel. For L number of selected IMFs and Nc

number of channels for each IMF, number of inter-IMFCC obtained is L ×Nc C2.

The number of features obtained from statistical parameters (std, rms and entropy)

of IMFs for a test frame is L× (Nc +Nc +Nc). Finally the total feature dimension

of the proposed method is L× (NcC2 + 3×Nc).

2.2.4 Classification

Classifier selection is essential to obtain satisfactory result while performing test

validation of the proposed method. In the proposed method, kernel based SVM

classifier is chosen to effectively classify mental tasks due to its effectiveness and

acceptability in supervised classification. To generate an N dimensional decision

vector w = [w1 w2 · · · wN ]T , features extracted from the IMF data are provided

into the classifier instead of raw EEG data. The extracted features from the the

training data set consisting of P frames are converted from the original space to a

new representative vector space to discriminate different classes more efficiently. A

class label is provided for each Ni dimensional frame xi = xi(n), n = 1, · · · , Ni. For

two class problem with two class label +1 and −1, each frame xi fulfill the following

inequalities:

wTxi + b ≥ +1, for all positive xi (2.12)

wTxi + b ≤ −1, for all negative xi.

In kernel based SVM classifier, to match with class label of the training data set, the

following discriminant function f(x) is utilized to form the decision vector, which

can be expressed as

f(x) =
P∑
i=1

cik(xi, x) + b. (2.13)

Here ci is an empirical vector and kernel matrix K is given by

K =


k(x1, x1) k(x1, x2) · · · k(x1, xP )
k(x2, x1) k(x2, x2) · · · k(x2, xP )

...
... · · · ...

k(xP , x1) k(xP , x2) · · · k(xP , xP )

 . (2.14)

For the purpose of classification, the performance of different kernel functions

in SVM classifier is observed considering various feature extraction methods. It is
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found that polynomial kernel based classification approach outperforms other kernels

in terms of classification accuracy. In all calculations of the reported classification

accuracies, leave-one-out cross validation scheme is employed to generate classifica-

tion result. In this scheme, each frame is tested one by one, i.e. when a frame is

left out for testing, remaining frames are used for training. Let us consider total

NA + NB number of frames where NA number of frames belong to class A and NB

number of frames belong to class B. In the leave-one-out cross validation scheme,

when one of those NA + NB frames is left out for testing, remaining NA + NB − 1

frames are used for training. This process is repeated NA + NB times. Finally,

classification accuracy is defined as the percentage of correctly identifying the class

of each frame. Among total NA +NB number of frames if Nt number of frames are

correctly classified, the classification accuracy can be expressed as

Accuracy =
Nt

(NA +NB)
× 100%. (2.15)

2.3 Simulation and Results

In this Section, performance of various feature extraction methods is investigated

considering classification accuracy obtained under different conditions, such as vary-

ing the feature dimension, utilizing different statistical parameters as feature and

use of various EEG channel locations. Moreover, effect of utilizing different kernel

functions of SVM classifier on classification accuracy is also analyzed. A compara-

tive analysis on classification performance between the proposed method and some

other methods is also presented.

In the proposed method, instead of directly using channel data, corresponding

IMFs are used to extract inter-IMFCC and statistical parameters (std, rms and

entropy) using (2.4)-(2.10). Unless otherwise specified, polynomial kernel of SVM

classifier is employed in leave one out cross-validation manner to obtain classification

accuracy. The classification task is carried out considering two types of mental

tasks at a time, as conventionally done by other researchers [11], [12]. In this way,

ten different combinations of the five types of tasks, as mentioned in Sec. 2.1, are

possible. Here, for notational convenience, each combination of tasks is denoted

with two alphabets from two different tasks. For example, MC refers to a two class

(multiplication and counting) classification problem, BL corresponds to another two
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class (baseline-resting and mental letter composing tasks) classification problem. In

what follows, detail results and analyses are presented.

2.3.1 Effect of varying the number of IMFs

The number of IMFs to be used in the feature matrix directly dictates the feature

dimension. It is already mentioned that higher order IMFs which contain very low

frequency information are not necessary to be considered. The distinctive quality of

the proposed inter-IMFCC feature deteriorates for 4-th IMF as shown in Fig. 2(d).

Hence, in the proposed method, only first three IMFs are considered. In this subsec-

tion, effect of variation of number of IMFs are demonstrated on overall classification

accuracy for four subjects. Here the number of IMFs is varied from 1 to 4 and

different cases like extracting only one IMF (1IMF), two IMFs (2IMFs) etc. are

considered.
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Figure 2.3: Effect of number of IMFs variation on classification accuracy

In Fig. 2.3, the box plot corresponding to classification performance obtained

by varying number of IMFs is presented. The sixteen boxplots indicate various

statistical information, such as median, 25th and 75th percentile, and outliers of

classification accuracy. Each boxplot represents classification accuracy of ten differ-

ent combination of tasks for a subject considering particular number of IMFs to be

used for feature extraction. It is found that with the increase in number of IMFs,

classification accuracy becomes more consistent for each subject until number of

IMF is three. Moreover, it is observed that for all subjects, features extracted con-
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sidering the first three IMFs offer the best classification accuracy with respect to all

other combinations of IMFs. That is why, although all channel data of a frame can

be decomposed into four or more IMFs, only three IMFs are considered to extract

feature. Meanwhile, considering three IMFs rather than four or higher number of

IMFs offer a reduced feature dimension.

2.3.2 Effect of different statistical feature

In the proposed method, as mentioned in Sec. 2.2.3, some statistical parameters are

used as features, which are extracted from the channel IMF data. Effect of using

conventional statistical features on classification accuracy is investigated consider-

ing ten widely used higher and lower order statistical parameters namely average

(avg), median (med), mode (mod), maxima (max), minima (min), standard devi-

ation (std), root mean sqare (rms), entropy (ent), skewness (skew) and kurtosis

(kurt). For notational convenience, hereafter, each statistical feature is abbreviated

as shown in the parentheses. It is to be noted that the main objective of this Chap-

ter is to demonstrate the efficacy of proposed correlation feature (inter-IMFCC)

obtained from inter-channel IMFs. It is expected that the use of proposed inter-

IMFCC feature along with the conventional statistical features of IMFs will offer

better classification performance. In this regard, two different cases are considered:

1. Use of only statistical features: Each statistical feature is extracted from each

of three IMFs of a channel i.e., for NC number of channels with L number of

IMFs extracted from each channel, feature dimension is NC × L.

2. Use of proposed inter-IMFCC feature along with statistical feature: In this

case, number of inter-channel correlation coefficients (inter-IMFCC) to be ob-

tained from Nc channels for each IMF is NcC2. Hence, for NC number of

channels with L number of IMFs extracted from each channel, total feature

dimension is (NcC2 +NC)× L.

In Fig. 2.4, classification accuracies considering the previously discussed two cases

for the ten statistical features obtained for all subjects are shown. It is observed that

classification accuracy increases if inter-IMFCC is combined with channel statistical

information of each IMF. Statistical parameters, such as std, rms and entropy of
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Figure 2.4: Classification accuracy obtained utilizing different statistical feature of
IMFs

IMFs offer better classification performance compared to some higher order statis-

tical feature, namely skewness and kurtosis. Moreover, features like max and min

which are likely to be more biased because of the presence of noise are avoided.

First order statistical parameters, such as avg, med, mod are also excluded as EEG

signals are very random in nature. Due to distinctive nature of std, rms and entropy,

these three statistical parameters are finally chosen for the feature vector along with

proposed inter-IMFCC feature to classify mental tasks.

2.3.3 Effect of utilizing kernel of SVM classifier

The effect of using different kernels in SVM classifier on overall classification perfor-

mance of the proposed method is thoroughly investigated. In order to demonstrate

the performance variation due to change in kernels, three widely used kernels are

considered, namely linear, quadratic and polynomial kernel. To observe the varia-

tion of classification accuracies for different kernels, all 10 different combinations of

tasks, namely MC, MB, ML, MR, CB, CL, CR, BL, BR and LR from each subject

are considered and average classification accuracy of those combination of tasks are

measured from four subjects. In Fig. 2.5, average classification accuracies for 10

different combination of tasks by using three different kernels are plotted.

It is found that between linear and quadratic kernel, the later offers better clas-

sification performance. However, it is observed that the classification performances
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Figure 2.5: Effect of different SVM kernel on proposed IMF based method

of polynomial kernel are consistently better in comparison to those obtained by lin-

ear and quadratic kernels in all cases. For that purpose, polynomial kernel of SVM

classifier is chosen to classify the tasks in the proposed method.

2.3.4 Effect of variation of number of channel pairs

In the proposed method, all possible pairs of channels are taken into consideration

to obtain inter-IMFCC so that maximum channel information can be utilized. How-

ever, choosing lesser pairs of channels reduce feature size effectively. Reduction in

feature size definitely helps in reducing computation time. Hence, effect of variation

of the number of channel pairs is presented in this subsection. It is to be noted that

in [11], [12], asymmetry ratio of a pair of channel is computed considering one chan-

nel from left hemisphere and the other channel from right hemisphere. Similarly, in

this Chapter, the effect of measuring inter-IMFCC considering one channel from left

hemisphere and the other from right hemisphere is investigated. This investigation

is performed considering counting and baseline resting task and denoted as Exp1 in

Fig. 2.6. Moreover, the effect of measuring inter-IMFCC with respect to a specific

region, denoted as Exp2, is also observed.

Exp1: For three channels located in left hemisphere C3, P3, O1 and three chan-

nels located in right hemisphere C4, P4, O2, possible nine combinations of computing

inter-IMFCCs are (C3, C4), (C3, P4), (C3,O2), (P3, C4), (P3, P4), (P3,O2),(O1,
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C4), (O1, P4), (O1,O2).

Exp2: Depending on the choice of region, such as parietal, central or occipital,

to obtain reference signals, three different investigations can be performed:

(a) Considering signals of parietal region as reference, eight combination of chan-

nels for computing inter-IMFCCs are possible, such as (P3, C3), (P3, C4), (P3, O1),

(P3, O2), (P4, C3), (P4, C4), (P4, O1), (P4, O2).

(b) Considering signals of central region as reference, eight combination of chan-

nels for computing inter-IMFCCs are possible, such as (C3, P3), (C3, P4), (C3, O1),

(C3, O2), (C4, P3), (C4, P4), (C4, O1), (C4, O2).

(c) Considering signals of occipital region as reference, eight combination of

channels for computing inter-IMFCCs are possible, such as (O1, C3), (O1, C4),

(O1, P3), (O1, P4), (O2, C3), (O2, C4), (O2, P3), (O2, P4).
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Figure 2.6: Effect of variation of number of channel pairs on proposed inter-IMFCC
feature in case of MB tasks

In Fig. 2.6, a comparative analysis among these experiments is presented in

terms of classification accuracy. In the above two experiments, reduced number of

channel pairs are utilized and lower classification accuracy compared to the proposed

method is achieved. As a result, it is not possible to select any one particular choice

of reduced number of channels to obtain acceptable classification performance in all

subjects.
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2.3.5 Performance Comparison among Various Methods

With a view to comparing the classification performance, five methods referred

to as PAR4, PAR5, PAR6, EF8 and EF3 have been considered. Among these

five methods, three methods are based on power asymmetry ratio (namely PARq)

computed from q number of spectral bands [11], [12]. Remaining two methods are

based on EMD feature (namely EFn) where n corresponds to number of features to

be extracted from each IMF obtained by EMD decomposition [24].

In PARq methods, depending on the number of frequency bands utilized, the

methods are referred to as PAR4, PAR5 and PAR6. For example, in PAR4 method,

features are extracted from the four traditionally used bands, namely delta (< 4

Hz), theta (4− 7 Hz), alpha (8− 13 Hz), beta (14− 20 Hz) while PAR5 utilizes an

additional gamma band (23−37 Hz). In PAR6, one more additional band (40−100

Hz), along with these five bands, is proposed to compute power of spectral bands and

asymmetry ratios. For one pair of channels, the asymmetry ratio for each spectral

band is computed as [11]

A(i, j) =
(P (i)− P (j))

(P (i) + P (j))
(2.16)

where two indices i and j are used to correspond channel pairs placed in the left

and right hemispheres, respectively. For example, P (i) corresponds to the spectral

band power of the i-th channel placed in the left hemisphere and P (j) corresponds

to that obtained from the j-th channel placed in the right hemisphere. Depending

on the number of channels (Ni and Nj) in each hemisphere, total Ni ×Nj number

of asymmetry ratios, denoted by A(i, j), can be computed for each spectral band.

As a result, the feature dimension for PAR4, PAR5 and PAR6 method is (q ×Ni ×

Nj + q × (Ni +Nj)) where q denotes number of spectral band considered for these

methods.

On the otherhand, in EF8 method, eight features are extracted from each IMF,

namely RMS, variance, Shannon entropy, Lempel-Ziv complexity measure, central

frequency, maximum frequency, skewness and kurtosis. However, in the proposed

method, the first three of these eight statistical features are employed along with

the proposed inter-IMFCC feature. In order to better demonstrate the effect of

incorporating the inter-IMFCC feature, another method EF3 is considered where

only the first three features are used without the proposed inter-IMFCC feature
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and classification performance of the EF3 method is also compared with that of the

proposed mehtod.

For the purpose of performance evaluation, leave one out cross validation tech-

nique is carried out in all methods. In Tables 2.1-2.4, the classification accuracies

obtained by using four different subjects are separately reported for six methods. It

is found that the classification accuracies obtained from different subjects are 90.5%

or more in the proposed method. In all cases, it is observed that the proposed feature

extraction method outperforms other existing methods reported in this Chapter in

terms of classification accuracy. However, in some combinations of mental tasks, ex-

isting methods offer competitive classification performance with respect to proposed

method. For example, in case of BR combination of Subject 1 reported in Table 2.1,

both EF8 and proposed method achieve 99.74% classification accuracy. In Table 2.4,

it is observed that the average classification accuracies obtained by PAR6 and EF8

are very comparable with those obtained by the proposed method. For all subjects,

it is found that the average classification accuracy obtained for EF8 is very close to

EF3 despite having a larger feature dimension. However, after adding inter-IMFCC

along with the three parameters used in EF3, the average classification accuracy

increases drastically and for Subject 2 and Subject 3, it increases around 7.5% from

EF3. In each reported existing method, it is observed that for various combina-

tion of mental tasks, classification accuracy varies a lot. For example, in PAR4

method, for Subject 1 and Subject 4, the standard deviation of classification accu-

racies for various subjects are found 8.91% and 7.75% compared to 3.21% and 2.52%

of the proposed method. It is found that the classification performance obtained by

the proposed method varies from subject to subject, but not at a very large scale.

For Subject 2, the standard deviation obtained from different combination of mental

tasks is found 1.16% which is the least among all four subjects. It is clearly observed

that the proposed method offers consistently satisfactory classification accuracy in

all cases irrespective of subjects and combination of mental tasks.

2.3.6 Computation time

Average computational time is measured to extract features from one test signal

for six methods namely PAR4, PAR5, PAR6, EF8, EF3 and proposed method.
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Table 2.1: Classification performance comparison of proposed IMF based feature
extraction method with existing methods for Subject 1

Task PAR4 PAR5 PAR6 EF8 EF3 Proposed
[11] [11] [12] [24]

MC 88.42 88.95 91.58 96.32 96.32 97.89
MB 82.11 83.95 87.37 95.79 90.53 97.37
ML 86.05 87.37 90.26 98.68 96.84 99.47
MR 89.47 91.05 93.95 98.95 97.63 100.00
CB 72.37 78.95 82.63 92.11 92.11 98.95
CL 65.26 69.74 77.11 84.47 83.95 91.32
CR 71.58 74.74 80.26 86.32 81.58 91.84
BL 69.74 71.05 82.89 90.53 86.58 94.74
BR 83.42 86.58 92.37 99.74 97.89 99.74
LR 70.26 77.37 81.84 94.47 89.21 95.53
Avg 77.87 80.97 86.03 93.74 91.26 96.68

Stddev 8.91 7.65 5.82 5.30 5.92 3.21

Table 2.2: Classification performance comparison of proposed IMF based feature
extraction method with existing methods for Subject 2

Task PAR4 PAR5 PAR6 EF8 EF3 Proposed
[11] [11] [12] [24]

MC 69.47 76.58 83.42 82.37 80.79 93.95
MB 78.95 86.32 91.05 83.16 84.74 93.16
ML 70.53 83.42 87.63 90.79 88.42 95.00
MR 71.32 79.21 90.00 85.79 82.63 92.89
CB 74.74 80.53 92.11 82.89 84.74 92.63
CL 64.74 75.53 89.47 91.32 92.37 93.95
CR 68.68 73.42 87.11 79.74 84.47 93.42
BL 71.84 79.47 86.84 87.89 89.47 94.21
BR 76.05 79.74 86.05 85.53 84.47 91.58
LR 71.58 80.79 84.21 88.16 85.79 95.53
Avg 71.79 79.50 87.79 85.76 85.79 93.63

Stddev 4.01 3.74 2.85 3.79 3.41 1.16
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Table 2.3: Classification performance comparison of proposed IMF based feature
extraction method with existing methods for Subject 3

Task PAR4 PAR5 PAR6 EF8 EF3 Proposed
[11] [11] [12] [24]

MC 68.42 74.91 79.82 86.32 88.25 96.32
MB 73.16 74.56 81.40 85.79 86.49 93.68
ML 71.58 74.39 80.70 85.96 86.32 92.46
MR 74.74 79.47 87.89 92.63 87.89 96.49
CB 70.53 72.98 81.05 87.89 85.26 91.23
CL 72.81 77.19 80.35 88.60 83.68 93.16
CR 68.60 75.44 81.40 92.63 90.00 94.91
BL 74.39 74.56 84.21 87.54 83.68 94.91
BR 73.86 75.96 84.21 92.28 85.61 94.74
LR 77.89 83.33 87.54 92.98 93.33 98.42
Avg 72.60 76.28 82.86 89.26 87.05 94.63

Stddev 2.92 3.05 2.96 3.03 2.96 2.11

Table 2.4: Classification performance comparison of proposed IMF based feature
extraction method with existing methods for Subject 4

Task PAR4 PAR5 PAR6 EF8 EF3 Proposed
[11] [11] [12] [24]

MC 83.95 90.53 97.63 99.47 98.42 99.74
MB 86.84 90.53 94.74 96.84 95.00 97.11
ML 86.05 88.42 92.89 95.00 92.89 95.79
MR 84.21 88.95 93.95 92.63 91.32 97.11
CB 81.58 82.37 86.58 94.21 95.26 98.16
CL 78.16 81.58 87.63 85.79 87.89 94.21
CR 88.68 92.89 96.32 95.26 92.63 97.11
BL 68.16 77.63 83.95 85.26 86.58 90.53
BR 94.47 95.26 97.11 97.89 93.95 97.63
LR 94.47 96.05 97.37 96.05 93.16 96.84
Avg 84.66 88.42 92.82 93.84 92.71 96.42

Stddev 7.75 6.09 4.99 4.78 3.48 2.52
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Table 2.5: Feature dimension and feature extraction time comparison of proposed
IMF based method with existing methods

Different methods PAR4 PAR5 PAR6 EF8 EF3 Proposed
[11] [11] [12] [24]

Feature dimension 60 75 90 192 72 99
Average time (ms) 52.63 60.02 76.36 2749.30 128.80 108.11

The whole process of computation is performed using Intel(R) Core(TM) i5-4200M

processor with 2.50 GHz clock speed and 4 GB ram. The feature dimension and the

feature extraction time for six methods are listed in Table 2.5.

It is found that the proposed method uses a very small computation time for

feature extraction compared to recently reported EF8 method. One of the reasons

for such a small computation time for the proposed method is it’s feature dimension

compared to EF8. For three selected IMFs and six channels for each IMF, the feature

dimension of the proposed method is 3×(6C2+3×6) = 99. On the contrary, for four

selected IMFs and similar number of channels for each IMF, the feature dimension

of the EF8 and EF3 method is 4× (8× 6) = 192 and 4× (3× 6) = 72 respectively.

In case of PAR4, PAR5 and PAR6, feature dimension is 4 × 3 × 3 + 4 × 6 = 60,

5 × 3 × 3 + 5 × 6 = 75 and 6 × 3 × 3 + 6 × 6 = 90 respectively. The PAR4, PAR5

and PAR6 method utilizes lesser time and features but the classification accuracies

are lesser in these methods than the proposed method.

2.4 Conclusion

In the proposed mental task classification scheme, inter-channel correlation coeffi-

cient of each IMF is utilized to explore the relationship between channels, which

is referred to as inter-IMFCC method. Moreover, intra-channel features, such as

standard deviation, rms and entropy of each IMF are also measured. Finally, both

inter-channel features and intra channel features of each IMF are utilized to form

feature vector and a quite satisfactory classification performance is achieved. It is

observed that increase in feature dimension by considering more IMFs not necessar-

ily provides better classification performance and thus only three IMFs from each

channel are found sufficient. Effect of selecting different combinations of channels

is also investigated and it is observed that considering all combination of channels
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provide the best classification performance irrespective of the tasks or the subjects.

Classification performance for various feature extraction methods are listed consid-

ering polynomial kernel and it is observed that the proposed method outperforms

other methods in terms of classification accuracy. Results obtained from various

types of investigation verify that the proposed mental task classification scheme is

capable of classifying EEG signals with high classification accuracy.



Chapter 3

Mental Task Classification Scheme
Utilizing Correlation Coefficient
Extracted from Inter-channel Spectral
Band Limited Signal

In this Chapter, mental task classification scheme utilizing correlation coefficient

extracted from inter-channel spectral band limited signals is presented. It is ex-

pected that features extracted from band-pass filtered EEG data will provide more

consistent characteristics in comparison to that obtained from full band raw EEG

data. For this purpose, different well defined narrow frequency bands , namely delta

(< 4 Hz), theta (4−7 Hz), alpha (8−13 Hz), beta (14−20 Hz), and wide frequency

bands, namely gamma (24− 37 Hz) and 40− 100 Hz bands are used to preprocess

the EEG signal. Each band-limited signal is utilized to compute the correlation co-

efficient from inter-channel spectral band limited signals, referred to as inter-SBCC.

In view of obtaining the proposed inter-SBCC feature, only the channel information

of the test frame is utilized, therefore no previously defined reference channel data is

required for that purpose. It is shown that use of proposed inter-SBCC feature can

drastically improve the classification performance obtained by conventional statis-

tics of spectral band-limited signals. Classification process is carried out by using

the SVM classifier. The effect of extracting features from each band limited signal

on classification accuracy is also investigated. Extensive experimentation is carried

out on the same dataset used in the previous Chapter.

31
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3.1 Proposed Method

The proposed mental task classification scheme can be divided into four major steps:

preprocessing, inter-channel relation, feature extraction and classification. These

steps are described in detail in the following subsections.

3.1.1 Preprocessing

Due to random nature of recordings of EEG data, it is very difficult to obtain

discriminative characteristic from the time domain EEG data. Therefore, instead

of directly utilizing EEG data, it may be easier to extract distinctive characteris-

tic from spectral band limited EEG data. In EEG signal analysis, depending on

the nature of practical applications, different well defined narrow frequency bands ,

namely delta (< 4 Hz), theta (4− 7 Hz), alpha (8− 13 Hz), beta (14− 20 Hz), and

gamma (24− 37 Hz) are widely investigated for feature extraction [11]. However, in

the current application of mental task classification, it may not be useful to restrict

the EEG signal analysis only to these low frequency bands. The reason behind is

explained as follows. It is well known that while performing mental tasks, relatively

high frequency bands (e.g. beta bands or even higher) remain active. Considering

this fact in [11], for the purpose of mental task classification, frequency band up to

37 Hz and in [12] frequency band up to 100 Hz is used. In view of investigating the

presence of high frequency components in EEG signal while performing mental tasks,

spectral analysis on a large number of EEG frames taken from different channels

is carried out. In Fig. 3.1, average values of magnitude spectra along with stan-

dard deviations, computed from 19 consecutive overlapping frames of EEG signal

obtained from Subject 1 considering mathematical multiplication task, are plotted.

As mentioned before, these frames correspond to one complete session within which

the mental task is performed. It is clearly observed from this figure that substantial

amount of spectral information exists in high frequency region (> 40 Hz) of the

averaged magnitude spectra. It is found that the patterns of the averaged spectrum

obtained in different other frames exhibit quite similar nature. As a result, in the

proposed method, like [12] six bands are utilized in order to extract spectral infor-

mation residing in higher frequency region. However, effect of selecting a specific

band-limited signal on the classification performance is delineated next in the re-
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sult section. It is to be mentioned that in order to remove 60 Hz artifact, at the

beginning a digital notch filter is used.
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Figure 3.1: Average magnitude spectrum corresponding to a session of mathematical
multiplication task obtained from C3 channel of Subject 1. The red dotted line on
both sides of the average spectrum indicates the standard deviation.

3.1.2 Inter-channel relation

As discussed in Chapter 2, measuring inter-channel relationship can play a significant

role to to cover the spatial and temporal relationship between different channels for

a particular type of task. It is expected that data obtained from locations of the

brain that are highly stimulated due to a specific type of task will be less correlated

with data obtained from other less stimulated locations. This hypothesis may be

utilized to obtain distinctive feature by measuring inter-channel relationship. In

this regard, in the proposed method, correlation coefficient is utilized to measure

inter-channel relationship.

Correlation coefficient is a kind of statistical measure to quantify relationship

between two or more signals. In this Chapter, it is utilized as a measuring tool to

obtain inter-channel correlation of i-th and j-th channel. Instead of directly using

EEG data, correlation coefficient is obtained from a particular band limited EEG

signal, denoted as fm. f1, f2, f3, f4, f5 and f6 correspond to EEG signal extracted

from delta, theta, alpha, beta, gamma and 40 − 100Hz band respectively. The

correlation coefficient extracted from inter-channel spectral band data is referred to
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as inter-SBCC in this Chapter. The inter-SBCC Rf (i, j) obtained from i and j-th

electrode can be estimated as

Rf (i, j) =
Cf (i, j)√

Cf (i, i)Cf (j, j)
(3.1)

where Cf (i, j) is the (i, j)-th component of the covariance matrix Cf obtained from

the channel band-limited signal f
(i)
m and f

(j)
m , each consists of N samples. It is

expressed as

Cf =

[
cov
〈
f
(i)
m , f

(i)
m

〉
cov
〈
f
(i)
m , f

(j)
m

〉
cov
〈
f
(j)
m , f

(i)
m

〉
cov
〈
f
(j)
m , f

(j)
m

〉] . (3.2)

The covariance of f
(i)
m and f

(j)
m denoted by cov

〈
f
(i)
m , f

(j)
m

〉
is calculated considering

the following formula

cov
〈
f (i)
m , f (j)

m

〉
=

1

N − 1

N∑
n=1

(f (i)
m [n]− µi)?(f (i)

m [n]− µj). (3.3)

Here µi and µj indicate the mean of band-limited signal obtained from i-th and

j-th channels respectively and ? denotes the complex conjugate. Similar to inter-

IMFCC feature extraction method described in Chapter 2, to obtain inter-SBCC,

all possible pairs of i-th and j-th channels are taken into consideration, The reason

behind that is to utilize the information obtained from all possible channel pairs. To

investigate the distinctive quality of inter-SBCC as feature, a sample experiment,

similar to the one investigated in Sec. 2.2.2 considering multiplication and rotation

task, is performed. Fifteen different combination of six channels denoted as namely

’C3-C4’, ’C3-P3’, ’C3-P4’, ’C3-O1’, ’C3-O2’, ’C4-P3’, ’C4-P4’, ’C4-O1’, ’C4-O2’,

’P3-P4’, ’P3-O1’, ’P3-O2’, ’P4-O1’, ’P4-O2’ and ’O1-O2’ are taken into considera-

tion to measure inter-SBCC. In Fig. 3.2, the box plot corresponding to inter-SBCC

obtained for these fifteen different combinations of channels is presented. As de-

scribed in the previous chapter, the boxplot indicates various statistical informa-

tion, such as median, 25th and 75th percentile, and outliers of inter-SBCC. There

are thirty boxplots, each boxplot represents inter-SBCC measured from a particular

combination of channel for a particular type of task.

It is observed that the presence of outliers decrease gradually from boxplot pre-

sented in Fig. 3.2(a) to boxplot presented in Fig. 3.2(f). The boxplot in Fig. 3.2(a)

represents the inter-SBCC feature quality obtained from delta band signal which
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Figure 3.2: Inter-SBCC obtained from different band-limited signals of Subject 1

contains very low frequency information. Similarly, boxplots in Fig. 3.2(b)-Fig. 3.2(f)

represent the statistical information of the proposed inter-SBCC feature obtained

from theta, alpha, beta, gamma and 40 − 100 Hz band respectively. As discussed

before, in mental task application, relatively high frequencies remain active. There-

fore, comparatively better feature quality is obtained in high frequency band-limited

signals than that obtained by low frequency narrow band-limited signals as shown

in Fig. 3.2.
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3.1.3 Feature extraction

In the proposed method, for the purpose of feature extraction, inter-SBCCs are

utilized to exploit the relationship among various channels. Moreover, root mean

square(RMS), standard deviation and entropy are also included in the feature vec-

tor to represent statistical measure of data obtained from various channels. Like

inter-SBCC method, statistical parameters are also obtained from band-limited sig-

nals obtained from EEG data instead of EEG data itself. RMS depicts statistical

measure of numerical values of varying quantity of the data obtained from channel

i of corresponding band, fm, which can be expressed as

rms(f (i)
m ) =

√√√√ 1

N

N∑
n=1

f
(i)
m [n]2 (3.4)

Standard deviation of band-limited signal obtained from i-th channel is given by

std(f (i)
m ) =

√√√√ 1

N

N∑
n=1

(f
(i)
m [n]− µi)2 (3.5)

Here, µi indicates mean value of the data.

For the purpose of measuring uncertainty of the band-limited signal f
(i)
m , entropy

is introduced,which is defined as

ent(f (i)
m ) = −

∑
(p
〈
f (i)
m [r]

〉
? log2(p

〈
f (i)
m [r]

〉
)) (3.6)

where p
〈
f
(i)
m

〉
indicates the probability of occurrence of a particular value f

(i)
m [r] of

f
(i)
m and is denoted by

p
〈
f (i)
m [r]

〉
= nr/N. (3.7)

nr indicates the number of occupance of f
(i)
m [r] among the N number of values of

f
(i)
m , i.e.

∑
nr = N .

In brief, for the purpose of feature extraction, at first, the raw EEG signal is

preprocessed with a 60 Hz notch filter. After that, six band limited EEG signals are

extracted from the raw EEG data of a channel. The feature vector is formed utilizing

inter-SBCC and statistical parameters of spectral bands, such as rms, standard

deviation and entropy obtained from each channel. A method utilizing statistical

features extracted from the spectral band (SB) is referred to as SBS and when inter-

SBCC is extracted from SB, it is termed as SBC. The proposed method, denoted as
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SBS+SBC utilizes both the SBS and the SBC methods simultaneously for extracting

distinctive features from spectral bands. For Nc number of channels and L number

of spectral bands extracted from each channel, number of inter-SBCC obtained is

L ×Nc C2. The number of features obtained from statistical parameters of band-

limited signals for a test frame is L × (Nc + Nc + Nc). Finally the total feature

dimension of the proposed method is L× (NcC2 +Nc +Nc +Nc).

3.1.4 Classification

The classification process is carried out via different kernels of SVM classifier similar

to the previous Chapter. It is found that polynomial kernel based classification

approach outperforms other kernels in terms of classification accuracy for the method

proposed in this Chapter. In all cases, leave-one-out cross validation scheme is

employed to generate classification result, where each frame is tested one by one.

During the testing of a frame, all the remaining frames are used for training. The

overall accuracy is calculated based on the classification results obtained in all the

frames using (2.15) described in the previous Chapter.

3.2 Simulation Results and Discussion

In this Section, performance of various feature extraction methods is investigated

considering classification accuracy obtained under different conditions, such as choos-

ing a specific band limited signal, utilizing different statistical parameters as feature

and use of various EEG channel locations. Moreover, effect of different kernel func-

tions in SVM classifier on classification accuracy is also analyzed. A comparative

analysis on classification performance between the proposed method and some other

methods is also performed.

In the proposed method, instead of directly using channel data, corresponding

band-limited EEG signals are used to extract inter-SBCC and statistical parameters

(std, rms and entropy) using (3.1)-(3.7). Unless otherwise specified, polynomial ker-

nel of SVM classifier is employed in leave one out cross-validation manner to obtain

classification accuracy. In what follows, detail results and analyses are presented.
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3.2.1 Effect of Frequency Band Selection

In different EEG signal analysis, most commonly band limited signals are used

considering conventional frequency bands, namely delta, theta, alpha, beta, and

gamma [11]. Estimating inter-SBCC and statistical parameters from a specific band-

limited EEG signal may not be capable of providing representative characteristics.

However, for the purpose of investigation, each band of EEG signal is separately

generated by using narrow-band filters and fifteen inter-SBCC are estimated from

the band-limited EEG signals. Classification performance for each band is separately

computed. Moreover, various wide-band signals, such as 24− 37 Hz or 40− 100 Hz

signals, are also taken in consideration and here also classification performance is

computed considering the fifteen inter-SBCCs and statistical features.
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Figure 3.3: Effect of frequency band selection on classification accuracy for all four
subjects in case of MC tasks.

The variation of classification performance for different band limited EEG sig-

nals is demonstrated in Fig. 3.3. It is observed that extracting features from dif-

ferent narrow-band EEG signals cannot provide satisfactory performance. How-

ever, considering wide-band EEG signals offer comparatively better performance

than narrow-band EEG signals. In particular, the best classification performance is

achieved when features from all bands are merged together. That is why, specific

band limitation of the given EEG data is not adopted in this Chapter.
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3.2.2 Effect of Different Statistical Feature

In the proposed method, as mentioned in Sec. 3.1.3, some statistical parameters

are used as features, which are extracted from various band-limited EEG signals

obtained from different channels. Similar to the previous Chapter, in this Chapter,

effect of using conventional statistical features on classification accuracy is investi-

gated considering same set of statistical parameters namely avg, med, mod, max,

min, std, rms, ent, skew and kurt. It is to be noted that the main objective of this

Chapter is to demonstrate the efficacy of proposed correlation feature obtained from

various band-limited signals. For that purpose, a sample experiment utilizing band-

limited signals is considered. It is expected that the use of proposed inter-SBCC

feature along with the conventional statistical features will offer better classification

performance. In this regard, two different cases similar to the previous Chapter are

considered:

1. Use of only statistical features

2. Use of proposed inter-SBCC feature along with statistical feature
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Figure 3.4: Effect of different statistical features of band limited signals on classifi-
cation accuracy for all four subjects

In Fig. 3.4, classification accuracies considering the previously discussed two

cases for the ten statistical features obtained from all four subjects are shown. It

is observed that classification accuracy increases if inter-SBCC is combined with
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channel statistical information of band-limited signals. Statistical features, such as

std, rms and entropy of band-limited signals offer better classification performance

similar to the feature extraction method described in the previous Chapter. Due

to distinctive nature of std, rms and entropy, these three parameters are chosen

in the feature vector along with proposed inter-SBCC feature to classify mental

tasks. In Fig. 3.5, average classification accuracies of ten different combinations of

mental tasks obtained by both SBS and SBS+SBC methods are shown to observe

the effect of proposed inter-channel correlation feature on the proposed statistical

features. It is found that use of spectral band domain inter-channel correlation

feature drastically improves the classification accuracy of statistical features of band-

limited signals in all four subjects.
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Figure 3.5: Effect of inter-SBCC feature on statistical features in terms of classifi-
cation accuracy for four subjects

3.2.3 Effect of Kernel in SVM Classifier

The effect of using different kernels in SVM classifier on overall classification per-

formance of the proposed method is thoroughly investigated similar to the feature

extraction method described in Chapter 2. In Fig. 3.6, average classification accura-

cies for 10 different combination of tasks by using three different kernels are plotted.

It is found that between linear and quadratic kernel, the latter offers better classifi-

cation performance. However, it is observed that the classification performances of

polynomial kernel are consistently better in comparison to those obtained by linear
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and quadratic kernels in all cases as observed in the previous Chapter. For that

purpose, polynomial kernel of SVM classifier is chosen to classify the tasks in the

proposed method.

10 combinations of tasks

MC MB ML MR CB CL CR BL BR LR

A
v
er

ag
e 

cl
as

si
fi

ca
ti

o
n
 a

cc
u
ra

cy

80

82

84

86

88

90

92

94

96

98

100

Linear

Quadratic

Polynomial

Figure 3.6: Effect of various SVM kernels on proposed spectral band division based
method

3.2.4 Effect of variation of number of channel pairs

In the proposed method, all possible pairs of channels are taken into consideration

to obtain the proposed inter-channel correlation feature so that maximum channel

information can be utilized. However, similar to the previous Chapter, two different

experiments are performed to observe the effect of variation of number of channel

pairs. In Fig. 3.7, a comparative analysis among these experiments is presented

in terms of classification accuracy. In these two experiments, reduced number of

channels are utilized and lower classification accuracy compared to the proposed

method is found. As a result, it is not possible to select any one particular choice

of reduced number of channels to obtain acceptable classification performance in all

subjects.

3.2.5 Performance Comparison among Various Methods

The classification performance of the proposed method and that of the three avail-

able methods reported in [11], [12] is compared. Among these three methods, the
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Figure 3.7: Effect of variation of number of channel pairs on proposed inter-SBCC
feature

first one utilizes power of spectral bands and asymmetry ratios from four bands

(referred to as PAR4) and the second one also utilizes similar power and asymmetry

ratios from five bands including the Gamma band (referred to as PAR5) as features.

The third one introduces one additional band (40 − 100 Hz) along with the five

bands utilized in third method and extracts power and asymmetry ratios as features

(referred to as PAR6).

For the purpose of performance evaluation, leave one out cross validation tech-

nique is carried out in all methods. In Tables 3.1-3.4, the classification accuracies

obtained by using four different subjects are separately reported for four methods.

It is found that the classification accuracies obtained from different subjects are

87.19% or more in the proposed method. It is found that the classification per-

formance obtained by the proposed method varies from subject to subject, not at

a very large scale. Methods 1 to 3 provide relatively low classification accuracy

and consistently better classification accuracy is obtained by the proposed method

compared to other methods.

3.2.6 Computation Time

Average computational time is measured to extract features from one test signal

for four methods namely PAR4, PAR5, PAR6 and proposed method. The whole

process of computation is performed using Intel(R) Core(TM) i5-4200M processor
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Table 3.1: Overall classification accuracy comparison of proposed SBS+SBC method
with existing methods for Subject 1

Task PAR4 [11] PAR5 [11] PAR6 [12] Proposed
MC 88.42 88.95 91.58 97.37
MB 82.11 83.95 87.37 97.37
ML 86.05 87.37 90.26 98.95
MR 89.47 91.05 93.95 99.47
CB 72.37 78.95 82.63 96.58
CL 65.26 69.74 77.11 91.32
CR 71.58 74.74 80.26 94.21
BL 69.74 71.05 82.89 89.21
BR 83.42 86.58 92.37 99.47
LR 70.26 77.37 81.84 96.05
Avg 77.87 80.97 86.03 96.00

Stddev 8.91 7.65 5.82 3.47

Table 3.2: Overall classification accuracy comparison of proposed SBS+SBC method
with existing methods for Subject 2

Task PAR4 [11] PAR5 [11] PAR6 [12] Proposed
MC 69.47 76.58 83.42 91.32
MB 78.95 86.32 91.05 93.95
ML 70.53 83.42 87.63 93.95
MR 71.32 79.21 90.00 92.37
CB 74.74 80.53 92.11 87.63
CL 64.74 75.53 89.47 90.53
CR 68.68 73.42 87.11 89.47
BL 71.84 79.47 86.84 90.26
BR 76.05 79.74 86.05 90.53
LR 71.58 80.79 84.21 90.26
Avg 71.79 79.50 87.79 91.03

Stddev 4.01 3.74 2.85 1.96
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Table 3.3: Overall classification accuracy comparison of proposed SBS+SBC method
with existing methods for Subject 3

Task PAR4 [11] PAR5 [11] PAR6 [12] Proposed
MC 68.42 74.91 79.82 90.88
MB 73.16 74.56 81.40 90.18
ML 71.58 74.39 80.70 92.11
MR 74.74 79.47 87.89 95.79
CB 70.53 72.98 81.05 87.19
CL 72.81 77.19 80.35 92.81
CR 68.60 75.44 81.40 92.98
BL 74.39 74.56 84.21 91.40
BR 73.86 75.96 84.21 94.91
LR 77.89 83.33 87.54 97.19
Avg 72.60 76.28 82.86 92.54

Stddev 2.92 3.05 2.96 2.92

Table 3.4: Overall classification accuracy comparison of proposed SBS+SBC method
with existing methods for Subject 4

Task PAR4 [11] PAR5 [11] PAR6 [12] Proposed
MC 83.95 90.53 97.63 99.74
MB 86.84 90.53 94.74 98.16
ML 86.05 88.42 92.89 96.58
MR 84.21 88.95 93.95 97.63
CB 81.58 82.37 86.58 97.89
CL 78.16 81.58 87.63 95.53
CR 88.68 92.89 96.32 98.16
BL 68.16 77.63 83.95 93.16
BR 94.47 95.26 97.11 99.21
LR 94.47 96.05 97.37 99.47
Avg 84.66 88.42 92.82 97.55

Stddev 7.75 6.09 4.99 2.01
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Table 3.5: Feature dimension and feature extraction time comparison for proposed
SBS+SBC method with existing methods

Different methods PAR4 [11] PAR5 [11] PAR6 [12] Proposed
Feature dimension 60 75 90 198
Average time (ms) 52.63 60.02 76.36 34.19

with 2.50 GHz clock speed and 4 GB ram. The feature dimension and the feature

extraction time for four methods are listed in Table 3.5.

It is found that despite having more features, the proposed method uses a very

small computation time for feature extraction compared to other three methods.

For six selected band-limited signals and six channels of each band-limited signal,

the feature dimension of the proposed method is 6 × (6C2 + 3 × 6) = 198. In

case of PAR4, PAR5 and PAR6, feature dimensions are 4 × 3 × 3 + 4 × 6 = 60,

5× 3× 3 + 5× 6 = 75 and 6× 3× 3 + 6× 6 = 90 respectively.

3.3 Conclusion

In the proposed mental task classification scheme, inter-channel correlation coef-

ficient of each band-limited signal is utilized to explore the relationship between

channels, which is referred to as inter-SBCC method. Moreover, intra-channel fea-

tures, such as standard deviation, rms and entropy of each band-limited signal are

also measured. It is found that consistently better classification accuracy is obtained

if proposed inter-SBCC feature is utilized along with conventional statistical features

of the band-limited signals. It is observed that adoption of specific band limitation

does not provide better classification performance and thus all six bands from each

channel are taken into consideration for feature extraction. Effect of selecting differ-

ent combinations of channels is also investigated and it is observed that considering

all combination of channels provide the best classification performance irrespective

of the task or the subject. Results obtained from various types of investigation ver-

ify that the proposed method outperforms other methods in terms of classification

accuracy.



Chapter 4

Mental Task Classification Scheme
Utilizing Correlation Coefficient
Extracted from Inter-channel Wavelet
Domain Signal

In this Chapter, an efficient scheme of extracting features from EEG signal is pro-

posed for mental task classification based on inter-channel relationship in wavelet

domain. It is shown that use of wavelet domain inter-channel relationship can

drastically improve the classification performance obtained by conventional wavelet

statistics. Both multi-level wavelet decomposition and node reconstruction are uti-

lized for proposed inter-channel correlation feature extraction. It is expected that

the correlation obtained from different combination of channels will be different for

various mental tasks depending on the nature of the stimulus generated in the brain

and thus can provide distinctive features. Support vector machine (SVM) classifier

is used to carry out classification of five different mental tasks obtained from the

same dataset described in Chapter 2. It is found that the proposed scheme can

classify mental tasks with a very high level of accuracy compared to that obtained

by some existing methods.

4.1 Proposed Method

The proposed mental task classification scheme can be divided into four major steps:

wavelet domain analyses, inter-channel relation, feature extraction and classification.

These steps are described in detail in the following subsections.

46
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4.1.1 Wavelet domain analyses

Due to random nature of EEG data and interferences introduced during recording,

it is very difficult to obtain distinctive characteristics from the time domain EEG

data for different types of mental tasks. In view of obtaining better distinguishing

behaviour of EEG signal for various mental tasks, one common approach is to di-

vide the EEG data in various frequency bands and then carry out analysis in each

band separately. In this regard, generally standard frequency bands corresponding

to various states of vigilance (or activity) are considered for band-limited signal gen-

eration. These common bands are: delta (< 4 Hz), theta (4− 7 Hz), alpha (8− 13

Hz), beta (14−20 Hz), and gamma (24−37 Hz) [11]. However, in the current appli-

cation of mental task classification, it may not be useful to restrict the EEG signal

analysis only to these low frequency bands. The main reason behind the fact is that

while performing mental tasks, relatively high frequencies remain active. In [12] ,

for the purpose of mental task classification, frequency band up to 100 Hz is used.

As a result, in the proposed method, available all high frequency signals are taken

into consideration. In order to decompose the EEG data, like some existing mental

task classification techniques [24], wavelet analysis is utilized. It is well known that

wavelet decomposition (WD), the most common time-frequency multi-resolution

technique, is found very effective in EEG [24]. However, WD based scheme per-

forms decomposition only in the lower frequency bands. As an alternative, wavelet

packet decomposition (WPD) can be used where decomposition is performed both

in lower and higher frequency regions. Moreover, it offers low computational cost

and ease of implementation [22], [34].

A wavelet packet is represented as a function

W φ
ψ,k[n] = 2−ψ/2W φ(2−ψn− k), φ = 1, 2, ....., ψm (4.1)

where parameters φ, ψ, k and m correspond to modulation, dilation, translation and

level of decomposition in wavelet packet tree respectively [22], [34]. The following

relationships are utilized to obtain the wavelet W φ :

W 2φ =
1√
2

∞∑
−∞

h(k)W φ(
n

2
− k) (4.2)

W 2φ+1 =
1√
2

∞∑
−∞

g(k)W φ(
n

2
− k) (4.3)
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Figure 4.1: Tree decomposition of EEG signal

Here W φ is called as a mother wavelet and the discrete filters h(k) and g(k) are

quadrature mirror filters associated with the scaling function and the mother wavelet

function. The filtering operations in the WPD result in a change in the signal

resolution and the sub-sampling operation causes change in the scale. Thus, WPD

helps in analyzing the signal at different frequency bands with different resolutions.

The wavelet packet coefficients cφψ,k corresponding to the signal y[n] can be ob-

tained as,

cφψ,k =
∞∑
−∞

y[n]W φ
ψ,k[n] (4.4)

provided the wavelet coefficients satisfy the orthogonality condition. Wavelet packet

coefficients thus obtained at different levels can be used to reconstruct the original

signal. However, wavelet packet coefficients at a particular node can also be used

to reconstruct signal corresponding to that node, which is termed as WPNR signal

in this Chapter. For example, in Fig. 4.1, where two level decomposition is con-

sidered, four different WPNR signals can be reconstructed from four nodes namely

(2,0), (2,1), (2,2) and (2,3). In Fig. 4.2, a sample EEG signal is considered and

shown in Fig. 4.2(a). Corresponding four WPNR signals are termed as WPNR(2,0),

WPNR(2,1), WPNR(2,2) and WPNR(2,3) respectively.

One major problem in WPD is the rapid reduction of the length of wavelet

coefficients in each decomposition level similar to conventional wavelet analysis. As a

result, if features are extracted from multi-level wavelet coefficients, there is a chance

of getting deteriorated feature quality due to reduced length of multi-level wavelet

coefficients in comparison to main data length. On the contrary, if WPNR signal is
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considered at each particular node of decomposition level, because of retaining same

length (without decreasing the coefficient length in each decomposition level), better

statistical characteristics can be obtained. For example, for two level WPD of an N

length data, as shown in Fig. 4.1, from four different nodes, by performing wavelet

packet node reconstruction, one can obtain four different N length WPNR signals.

On the contrary, the length of each WPD coefficient vector corresponding to those

four nodes would be N/4. In comparison to N/4 length WPD coefficient vector, N

length WPNR signal is expected to provide better statistical characteristics.

A large number of wavelet functions are available in the literature namely Daubechies,

Symlets, Coiflet, Biorsplines, ReverseBior, and Discrete Meyer. Since the Daubechies

family shows good performance in mental task related EEG signal [34], [22], db4

wavelets of the Daubechies family are utilized for feature extraction in the proposed

method. Finally, various wavelet domain analyses are taken into consideration for

the purpose of feature extraction, namely wavelet decomposition (WD), wavelet

packet decomposition (WPD), wavelet node reconstruction (WNR) and wavelet

packet node reconstruction (WPNR). In all the proposed methods, two levels of

decomposition are taken into consideration.

4.1.2 Inter-channel relation

The amount of stimulation generated in different areas of brain depends on the

nature of tasks performed. For example, visual tasks most likely stimulate the

occipital region. Therefore, it is expected that EEG data obtained from different

areas of brain while performing a particular task will not be same. This idea may be

utilized in order to extract discriminative features for different types of mental tasks.

Measuring inter-channel relationship may be an effective approach to compute this

correlation feature. For this purpose, in the proposed method, correlation coefficient

is computed between a pair of channels.

Correlation coefficient is one kind of measuring tool to quantify relationship

between two or more signals. In this Chapter, it is utilized to obtain inter-channel

correlation of i-th and j-th channel. Instead of directly using EEG data, correlation

coefficient is obtained from various representations of wavelet data obtained from

different channels. The inter-channel correlation coefficient Rw(i, j) obtained from
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i and j-th electrode can be estimated as

Rw(i, j) =
Cw(i, j)√

Cw(i, i)Cw(j, j)
(4.5)

where Cw(i, j) is the (i, j)-th component of the covariance matrix Cw of the channel

wavelet represented signals yiw and yjw, each consists of N samples. It is expressed as

Cw =

[
cov
〈
yiw[n], yiw[n]

〉
cov
〈
yiw[n], yjw[n]

〉
cov
〈
yjw[n], yiψ,i[n]

〉
cov
〈
yjw[n], yjw[n]

〉] (4.6)

The covariance of yiw[n] and yjw[n] denoted by cov
〈
yiw[n], yjw[n]

〉
is calculated consid-

ering the following formula

cov
〈
yiw[n], yjw[n]

〉
=

1

N − 1

N∑
n=1

(yiw[n]− µi)?(yjw[n]− µj) (4.7)

Here µi and µj indicate the mean of wavelet represented signals obtained from

i-th and j-th channels, respectively and ? denotes the complex conjugate. In the

proposed method, all possible pair of i-th and j-th channels are taken into con-

sideration to obtain inter-channel correlation coefficient of wavelet data, which is

expected to provide maximum utilization of channel information. For six channels,

if two of them are used to obtain inter-channel correlation coefficient, then total

6C2 = 15 combinations are plausible and all combinations namely ‘C3-C4’, ‘C3-P3’,

‘C3-P4’, ‘C3-O1’, ‘C3-O2’, ‘C4-P3’, ‘C4-P4’, ‘C4-O1’, ‘C4-O2’, ‘P3-P4’, ‘P3-O1’,

‘P3-O2’, ‘P4-O1’, ‘P4-O2’ and ‘O1-O2’ are taken into consideration. The reason

behind choosing all possible channel pairs is to avoid selection of subset of channel

pairs, which depends on empirical knowledge and intuition. Moreover, choosing all

possible channel pairs also provides maximum channel information.

There are various advantages of utilizing correlation coefficient as feature. It is

found that the effect of different types of external noises is reduced after cross corre-

lation. Moreover, it provides bounded values. For the purpose of investigating the

feature quality of correlation coefficient obtained for various tasks, a sample experi-

ment considering multiplication and rotation task is performed. Inter-channel corre-

lation coefficient is obtained from WPNR signal, which is termed as IC-WPNRCC.

In Fig. 4.3, the box plot corresponding to IC-WPNRCCs obtained for fifteen differ-

ent combinations of channels is presented. The boxplot indicates various statistical

information, such as median, first and third quartiles and outliers of IC-WPNRCC.
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There are thirty boxplots, each boxplot represents IC-WPNRCC measured from a

particular combination of channel for a particular type of task.
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Figure 4.3: IC-WPNRCC obtained from WPNR signals of Subject 1

The presence of outliers decrease gradually from boxplot presented in Fig. 4.3(a)

to boxplot presented in Fig. 4.3(d). The boxplot in Fig. 4.3(a) represents the IC-

WPNRCC feature quality obtained from WPNR(2,0) signal which contains very

low frequency information as shown in Fig. 4.2(b). Similarly, boxplot in Fig. 4.3(b)-

Fig. 4.3(d) represent the IC-WPNRCC feature quality obtained from WPNR(2,1) to

WPNR(2,3) signal. As discussed before, in mental task application, relatively high

frequencies remain active. Therefore, comparatively better feature quality is ob-

tained in high frequency WPNR signal than that obtained by low frequency WPNR

signal as shown in Fig. 4.3.

4.1.3 Feature extraction

In the proposed method, at first, the raw EEG signal is preprocessed with a 60 Hz

notch filter. To decompose EEG data corresponding to a channel, various wavelet
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domain analyses are taken into consideration, namely WD, WPD, WNR and WPNR

as discussed in Sec. 4.1.1. Along with the proposed inter-channel correlation feature,

a set of statistical parameters, namely root mean square(RMS), standard deviation

and entropy are computed from all four wavelet representations. A method utilizing

statistical features extracted from the WD is referred to as WDS and when inter-

channel correlation coefficient is extracted from WD, it is termed as WDC. Similarly,

WPDS and WPDC for WPD, WNRS and WNRC for WNR and WPNRS and

WPNRC for WPNR can be obtained. Hence there are four different approaches to

be used for feature extraction by the proposed method, namely

1. WDS+WDC

2. WPDS+WPDC

3. WNRS+WNRC

4. WPNRS+WPNRC.

For each of the four proposed methods, number of correlation coefficients obtained

is Nw ×Nc C2. Here, Nc indicates number of channels and Nw indicates number

of wavelet represented signal. The number of features obtained from statistical

parameters (std, rms and entropy) of each wavelet represented data for a test frame

is Nw× (Nc +Nc +Nc). Finally the total feature dimension of the proposed method

is Nw × (NcC2 +Nc +Nc +Nc).

4.1.4 Classification

Unless otherwise specified, polynomial kernel of SVM classifier is utilized to obtain

classification accuracy in the proposed method. In all cases, leave-one-out cross

validation scheme is employed to generate classification result, where each frame is

tested one by one. During the testing of a frame, all the remaining frames are used

for training. The overall accuracy is calculated based on the classification results

obtained in all the frames using (2.15).

4.2 Simulation Results and Discussion

In this Section, performance of various feature extraction methods is investigated

considering proposed four methods and some available existing methods. Moreover,
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performance of various feature extraction methods is investigated considering clas-

sification accuracy obtained under different conditions, such as utilizing different

statistical parameters as feature, use of various EEG channel locations and effect

of different kernel functions in SVM classifier. A comparative analysis on classifi-

cation performance between the proposed method and some other methods is also

performed.

In the proposed method, instead of directly using channel data, corresponding

wavelet signals are used to extract inter-channel correlation feature and statistical

parameters (std, rms and entropy). Polynomial kernel of SVM classifier is employed

in leave one out cross-validation manner to obtain classification accuracy. The clas-

sification task is carried out considering two types of mental tasks at a time, as

conventionally done by other researchers [11], [12]. In this way, ten different combi-

nations of the five types of mental tasks, as mentioned in Sec. 2.1, are possible. In

what follows, detail results and analyses are presented.

4.2.1 Effect of Different Statistical Feature

In the proposed method, as mentioned in Sec. 4.1, some statistical parameters are

used as features, which are extracted from the various wavelet representations of the

channel EEG signals. Similar to the previous two chapters, in this Chapter, effect

of using conventional statistical features on classification accuracy is investigated

considering same set of statistical parameters, namely avg, med, mod, max, min,

std, rms, ent, skew and kurt. It is to be noted that the main objective of this

Chapter is to demonstrate the efficacy of proposed correlation feature obtained from

various wavelet domain signals. For that purpose, a sample experiment utilizing

WPNR signal is considered. It is expected that the use of proposed IC-WPNRCC

feature along with the conventional statistical features will offer better classification

performance. In this regard, two different cases similar to the previous two chapters

are considered:

1. Use of only statistical features

2. Use of proposed IC-WPNRCC feature along with statistical feature

In Fig. 4.4, classification accuracies considering the previously discussed two cases

for the ten statistical features obtained for all subjects are shown. It is observed that
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Different statistical feature
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Figure 4.4: Effect of different statistical features of WPNR signals on classification
accuracy for all four subjects.

classification accuracy increases if IC-WPNRCC is combined with channel statistical

information of WPNR signals. Statistical features, such as std, rms and entropy of

WPNR signals offer better classification performance similar to the two proposed

methods described in the previous two chapters. Due to distinctive nature of std,

rms and entropy, these three parameters are chosen in the feature vector along with

proposed inter-WPNCC feature to classify mental tasks.

4.2.2 Effect of Kernel in SVM Classifier

The effect of using different kernels in SVM classifier on overall classification per-

formance of the proposed method is thoroughly investigated similar to the previous

two methods. In Fig. 4.5, average classification accuracies for 10 different combi-

nation of tasks by using three different kernels are plotted. It is to be noted that

the features are extracted from WPNR signals. It is observed that the classification

performances of polynomial kernel are consistently better in comparison to those

obtained by linear and quadratic kernels in all cases as observed in the previous two

chapters. For that purpose, polynomial kernel of SVM classifier is chosen to classify

the tasks in the proposed method.
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Figure 4.5: Classification accuracy obtained from WPNR signals considering differ-
ent SVM kernels

4.2.3 Effect of variation of number of channel pairs

In the proposed method, all possible pairs of channels are taken into consideration

to obtain the proposed inter-channel correlation feature so that maximum channel

information can be utilized. However, similar to the previous two chapters, two

different experiments is performed to observe the effect of variation of number of

channel pairs. In Fig. 4.6, a comparative analysis among these experiments is pre-

sented in terms of classification accuracy. It is to be noted that these experiments

are performed on WPNR signals. In these two experiments, reduced number of

channels are utilized and lower classification accuracy compared to the proposed

method is achieved. As a result, it is not possible to select any one particular choice

of reduced number of channels to obtain acceptable classification performance in all

subjects.

4.2.4 Effect of using inter-channel correlation feature

One of the objectives is to observe the effect of using proposed inter-channel corre-

lation feature along with conventional statistical features on classification accuracy.

In this regard, in Table 4.1, average classification accuracies obtained by various

wavelet based proposed features as mentioned in Sec. 4.1.3 are reported to observe

the effect of utilizing inter-channel correlation features. It is clearly observed from
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Figure 4.6: Effect of variation of number of channel pairs on proposed IC-WPNRC
feature in terms of classification accuracy

Table 4.1: Effect of using inter-channel correlation feature on statistical features in
terms of classification accuracy

WD WPD WDNR WPDNR
WDS WDS+ WPDS WPDS+ WDNRS WDNRS+ WPDNRS WPDNRS+

WDC WPDC WDNRC WPDNRC
Sub-1 93.42 97.16 94.74 97.50 93.42 97.39 95.08 97.82
Sub-2 85.53 94.87 86.39 94.42 89.32 95.11 89.21 95.16
Sub-3 86.95 93.32 88.33 94.39 88.35 93.98 90.98 95.30
Sub-4 92.18 97.55 92.47 97.34 92.55 97.79 93.24 97.84

Table 4.1, use of wavelet domain inter-channel correlation feature drastically im-

proves the classification accuracy than that obtained by statistical features in all

four cases.

Classification accuracy of wavelet packet decomposed data is found higher than

that of wavelet decomposed data. In all four proposed methods, if proposed inter-

channel correlation feature is utilized along with statistical features, classification

accuracy increases a lot. For example, for four proposed methods, average classi-

fication accuracies obtained from four subjects increase 6.2%, 5.43%, 5.16%, 4.4%

respectively as shown in Fig. 4.7. It is found that the classification accuracies ob-

tained from four proposed methods are almost similar. However,highest classifica-

tion accuracy is obtained in WPNRS+WPNRC method.
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Figure 4.7: Effect of using inter-channel correlation feature on statistical features in
terms of classification accuracy

4.2.5 Performance Comparison among Various Methods

With a view to investigate the classification performance, the proposed methods are

compared with three existing methods, referred to as PAR5, PAR6 and WF8, in

terms of classification accuracy. Among these three methods, the first two methods

extract features utilizing power of spectral bands and asymmetry ratios [11], [12].

In PAR5 method, features are extracted from the traditionally used bands, namely

delta (< 4 Hz), theta (4− 7 Hz), alpha (8− 13 Hz), beta (14− 20 Hz) and gamma

band (23 − 37 Hz). In PAR6 method, one additional band (40 − 100 Hz) along

with these five bands are proposed. The last method utilizes wavelet features for

classification purpose [24]. In WF8 method, eight features are extracted from each

wavelet decomposed data, namely RMS, variance, Shannon entropy, Lempel-Ziv

complexity measure, central frequency, maximum frequency, skewness and kurtosis.

For the purpose of performance evaluation, leave one out cross validation tech-

nique is carried out in all methods. In Tables 4.2-4.5, the classification accuracies

obtained by using four different subjects are separately reported for four methods.

In all cases, it is observed that the proposed feature extraction method outperforms

other existing methods reported in this Chapter in terms of classification accuracy.

The classification accuracy obtained for BL combination of Subject 4 is found 90.53%

which is the lowest classification accuracy obtained among all combination of tasks
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Table 4.2: Comparison of proposed WPNRS+WPNRC method with existing meth-
ods for Subject 1 in terms of classification accuracy

Task PAR5 [11] PAR6 [12] WF8 [24] WPNRS+WPNRC
MC 88.95 91.58 95.53 98.42
MB 83.95 87.37 95.26 98.68
ML 87.37 90.26 97.63 99.74
MR 91.05 93.95 98.42 99.74
CB 78.95 82.63 88.16 97.89
CL 69.74 77.11 84.74 95.53
CR 74.74 80.26 84.21 93.95
BL 71.05 82.89 80.26 97.63
BR 86.58 92.37 98.16 100.00
LR 77.37 81.84 90.79 96.58
Avg 80.97 86.03 91.32 97.82

Stddev 7.65 5.82 6.64 1.97

irrespective of subjects. However, if BL combination of mental task is excluded, the

average classification accuracy of Subject 4 becomes 98.65% which is comparatively

higher than any other subjects. In some combinations of mental tasks, it is observed

that existing methods offer competitive classification performance with respect to

proposed method. For example, in case of BR combination, almost similar classifica-

tion accuracy is obtained in case of Subject 1 and Subject 4 for WF8 and proposed

method. It is also found that for various combination of mental tasks, classifica-

tion accuracy varies a lot in each reported existing method. For example, in PAR5

method, for Subject 1 and Subject 4, the standard deviation of classification accura-

cies for various subjects are found 7.65% and 6.09% compared to 1.97% and 2.80%

of the proposed method. It is found that the classification performance obtained by

the proposed method varies from subject to subject, but not at a very large scale.

For Subject 2, the standard deviation obtained from different combination of mental

tasks is found 1.17% which is the least among all four subjects. It is clearly observed

that the proposed method offers consistently satisfactory classification accuracy in

all cases irrespective of subjects and combination of mental tasks.

4.2.6 Computation Time

The average feature extraction time for a test frame is computed for the proposed

methods described in Sec. 4.1.3 and the existing methods Sec. 4.2.5. The whole

process of computation is performed using Intel(R) Core(TM) i5-4200M processor
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Table 4.3: Comparison of proposed WPNRS+WPNRC method with existing meth-
ods for Subject 2 in terms of classification accuracy

Task PAR5 [11] PAR6 [12] WF8 [24] WPNRS+WPNRC
MC 76.58 83.42 80.26 95.26
MB 86.32 91.05 85.79 97.63
ML 83.42 87.63 85.00 95.00
MR 79.21 90.00 82.37 95.26
CB 80.53 92.11 78.95 95.26
CL 75.53 89.47 85.53 96.05
CR 73.42 87.11 80.26 93.95
BL 79.47 86.84 87.63 95.53
BR 79.74 86.05 81.84 93.95
LR 80.79 84.21 81.32 93.68
Avg 79.50 87.79 82.89 95.16

Stddev 3.74 2.85 2.90 1.17

Table 4.4: Comparison of proposed WPNRS+WPNRC method with existing meth-
ods for Subject 3 in terms of classification accuracy

Task PAR5 [11] PAR6 [12] WF8 [24] WPNRS+WPNRC
MC 74.91 79.82 80.70 97.54
MB 74.56 81.40 80.35 93.16
ML 74.39 80.70 80.70 93.51
MR 79.47 87.89 89.65 98.07
CB 72.98 81.05 78.42 91.93
CL 77.19 80.35 84.21 94.39
CR 75.44 81.40 88.07 97.37
BL 74.56 84.21 80.70 94.56
BR 75.96 84.21 87.19 94.21
LR 83.33 87.54 90.88 98.25
Avg 76.28 82.86 84.09 95.30

Stddev 3.05 2.96 4.51 2.29
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Table 4.5: Comparison of proposed WPNRS+WPNRC method with existing meth-
ods for Subject 4 in terms of classification accuracy

Task PAR5 [11] PAR6 [12] WF8 [24] WPNRS+WPNRC
MC 90.53 97.63 95.53 99.74
MB 90.53 94.74 97.37 98.95
ML 88.42 92.89 94.21 98.95
MR 88.95 93.95 94.21 96.58
CB 82.37 86.58 96.05 97.11
CL 81.58 87.63 85.00 97.89
CR 92.89 96.32 94.21 99.74
BL 77.63 83.95 84.74 90.53
BR 95.26 97.11 99.21 99.47
LR 96.05 97.37 96.84 99.47
Avg 88.42 92.82 93.74 97.84

Stddev 6.09 4.99 4.94 2.80

Table 4.6: Feature dimension and average time for feature extraction for existing
methods

Different PAR5 PAR6 WF8
methods [11] [12] [24]

Feature dimension 75 90 192
Average time (ms) 60.02 76.36 732.38

Table 4.7: Feature dimension and average time for feature extraction for wavelet
domain methods

Different WDS WDS+ WPDS WPDS+ WNRS WNRS+ WPNRS WPNRS+
methods WDC WPDC WNRC WPNRC

Feature dim. 54 99 72 132 54 99 72 132
Average time 17.09 25.26 56.29 70.23 29.74 37.87 86.97 103.93

with 2.50 GHz clock speed and 4 GB ram. The feature dimension and the feature

extraction time for all eleven methods are listed in Tables 4.6-4.7.

The average feature extraction time increases due to use of proposed inter-

channel correlation feature along with statistical features. For example, for four

proposed methods, average feature extraction time of a test frame increase 8.17ms,

13.94ms, 8.13ms, 16.96ms respectively than that obtained in case of utilizing only

statistical features. However, this slight increase in feature extraction time is very

much applicable in real life application considering the drastic improve in classifica-

tion accuracy obtained due to use of the proposed inter-channel correlation feature.

It is observed that the feature extraction time for the proposed WDS+WDC method

is very small compared to the existing PAR5 and PAR6 method despite having a
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larger feature dimension. All four proposed methods in various wavelet represen-

tations, namely WD, WPD, WNR and WPNR use a very small computation time

for feature extraction compared to recently reported WF8 method. One of the

reasons for such a small computation time is the smaller feature dimension of the

proposed methods compared to WF8. For six channels and four wavelet packet

data obtained from each channel signal utilizing level two decomposition, the fea-

ture dimension of the proposed WPDS+WPDC and WPNRS+WPNRC method is

4×3×6+4×6 C2 = 132. Similarly, feature dimension of the proposed WDS+WDC

and WNRS+WNRC method is 3 × 3 × 6 + 3 ×6 C2 = 99, where three wavelet

coefficient vectors are obtained from each channel signal utilizing level two decom-

position. For four wavelet coefficient vectors and similar number of channels for

each wavelet coefficient vector, the feature dimension of the WF8 is 4×8×6 = 192.

In case of PAR5 and PAR6, feature dimensions are 5 × 3 × 3 + 5 × 6 = 75 and

6× 3× 3 + 6× 6 = 90 respectively.

4.3 Conclusion

In this Chapter, an efficient feature extraction scheme based on wavelet domain

inter-channel correlation is proposed. Consistent classification performance is ob-

tained irrespective of mental tasks and irrespective of subjects in comparison to

some of the existing methods. It is to be noted that use of correlation feature dras-

tically improves classification accuracy in all cases, namely WD, WPD, WNR and

WPNR. Although feature dimension increases due to use of inter-channel correlation

feature along with intra-channel statistical features (std, rms and entropy) , it is still

implementable in real life application and acceptable considering the achievement

in classification accuracy. Classification performance for various feature extraction

methods are investigated considering polynomial kernel of SVM classifier. Results

obtained from various types of investigation verify that the proposed mental task

classification scheme is capable of classifying EEG signals with high classification

accuracy.
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Conclusion

5.1 Concluding Remarks

In this Thesis, three different approaches for mental task classification utilizing inter-

channel relationship of EEG signal are presented. Inter-channel correlation coeffi-

cient of each decomposed EEG signal is utilized to explore the relationship between

channels, which is referred to as inter-IMFCC, inter-SBCC and IC-WPNRCC. More-

over, intra-channel features, such as standard deviation, rms and entropy of each

decomposed signal are also measured. Finally, both inter-channel features and intra

channel features of each decomposed EEG signal are utilized to form feature vector

and a quite satisfactory classification performance is achieved. Effect of using con-

ventional statistical features on classification accuracy is investigated considering

ten widely used higher and lower order statistical parameters. Moreover, effect of

selecting different combinations of channels is investigated and it is observed that

considering all combinations of channels provide the best classification performance

irrespective of the decomposition techniques. Classification performance for vari-

ous feature extraction methods are listed considering polynomial kernel. Results

obtained from various types of investigation verify that the proposed mental task

classification schemes are capable of classifying EEG signals with high classification

accuracy.

5.2 Contributions of This Thesis

The major contribution of the thesis are summarized below:

• One of the main contributions of this work is to show the effective use of

63
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inter-channel relationship in mental task classification. It is shown that use of

cross correlation between various pair of channel data (or decomposed data)

can drastically improve the classification accuracy. It is considered that for

different types of task, different channels corresponding to different parts of

the brain are actuated. Measuring inter-channel relationship in some efficient

spectro-temporal domains plays a significant role to cover the spatial and tem-

poral relationship between different channels. Correlation coefficient is utilized

to measure the inter-channel relationship of decomposed EEG signal. It is to

be noted that in determining the inter-channel relationship, no prior channel

selection is required, rather all possible channel combinations are found to

provide better results.

• Next it is shown that inter-channel relationship can be better exploited in

case of decomposed data domain. In this case, various time-frequency domain

decompositions are tested and inter-channel features are proposed utilizing

spectral band decomposition, EMD and wavelet decomposition.

• Statistical analysis of the proposed correlation features namely inter-IMFCC,

inter-SBCC and IC-WPNRCC is carried out. It is observed that extracted

features offer high within class compactness and between class separability.

• The performance of the proposed methods have been investigated based on

leave one out cross validation scheme along with the state-of-the art compar-

ison methods. In all classification cases, proposed methods have the superior

accuracy with the state-of-the art comparison methods. Results obtained from

various types of investigation verify that the three proposed mental task classi-

fication methods are capable of classifying EEG signals with consistently high

classification accuracy.

5.3 Scopes for Future Work

In this Thesis, three effective feature extraction methods for mental task classifi-

cation are developed. However, there are some scopes for future research. In this

research, we use a popular EEG database of mental tasks, which consists of five class
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EEG data. The proposed methods can classify those mental tasks with highest ac-

curacy using different decomposition techniques. In future, the proposed feature

extraction methods can be utilized in other applications of EEG based system, such

as classification of motor-imagery tasks, alcoholic and non-alcoholic persons, fatigue

and non-fatigue condition, drowsiness etc.
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